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Preface

This manual describes implementation details of VAX Ada in the context
of the VMS operating system. It contains information on input-output,
representation of types and objects, mixed-language programming, calling
VMS system services, exception handling, tasking, and increasing program
efficiency. It also lists and gives the specifications for some of the VAX Ada
predefined packages.

Intended Audience

This manual is intended primarily for systems and applications program-
mers, or any other programmers whose work requires the use of operating
system features outside of the language, advanced Ada features, or more
than one VAX language. The reader should have a working knowledge of
Ada and some familiarity with the VMS operating system.

Structure of This Document

This manual has ten chapters and two appendixes:
¢ Chapter 1 introduces VAX Ada.

¢ Chapter 2 explains how VAX Ada objects and types are represented and
sized; it also gives information on sharing object storage among Ada and
non-Ada routines.

¢ Chapter 3 discusses VAX Ada input-output, giving details about file
sharing, record locking, and the VAX Ada input-output packages. This
chapter also summarizes information about the VMS File Definition
Language and the specification of file names.

XV



Chapter 4 describes the implementation of VAX Ada exception handling
and discusses the importing and exporting of VAX conditions and Ada
exceptions.

Chapter 5 describes the VAX Ada parameter-passing mechanisms and
import-export pragmas, and discusses how to write mixed-language
programs that involve VAX Ada.

Chapter 6 explains how to call system and other callable routines (VMS
system services, Run-Time Library routines, and so on).

Chapter 7 describes how to access the VAX Common Data Dictionary
from VAX Ada.

Chapter 8 discusses tasking issues, including issues related to calling
non-Ada routines (such as VMS system services) from tasks.

Chapter 9 gives information on how to make VAX Ada programs more
efficient.

Chapter 10 discusses additional details of VAX Ada that you need to
consider when writing VAX Ada programs.

Appendix A lists all of the VAX Ada predefined generic instantiations.

Appendix B lists all of the VAX Ada packages, and gives the specifica-
tions for the packages that are system-specific or that do not have their
specifications given in the VAX Ada Language Reference Manual.

Associated Documents

The following manuals from the VAX Ada documentation set may be of
interest to you:

The VAX Ada Language Reference Manual, which gives information on
VAX Ada language details

Developing Ada Programs on VMS Systems, which gives information on
how to develop and run VAX Ada programs using the VAX Ada program
library manager and VMS Debugger

You should also have access to the VMS system documentation.
The following Ada textbooks may also be of interest:

Barnes, J.G.P. Programming in Ada. Reading, Massachusetts: Addison-
Wesley, second edition, 1984.

Booch, Grady. Software Components with Ada: Structures, Tools
and Subsystems. Menlo Park, California: The Benjamin/Cummings
Publishing Company, Inc., 1987.



Booch, Grady. Software Engineering with Ada. Menlo Park, California:
The Benjamin/Cummings Publishing Company, Inc., second edition,
1987.

Cherry, G.W. Parallel Programming in ANSI Standard Ada. Reston,
Virginia: Reston Publishing Company, Inc., 1984.

Gehani, Narain. Ada, Concurrent Programming. Englewood Cliffs, New
Jersey: Prentice Hall, Inc., 1984.

Habermann, A.N., and D.E. Perry. Ada for the Experienced Programmer.
Reading, Massachusetts: Addison-Wesley, 1983.

¢  Weiner, Richard, and Richard Sincovec. Programming in Ada. New
York: John Wiley & Sons, 1983.

Conventions
Convention Meaning
RETURN In interactive examples, a label enclosed in a box
indicates that you press a key on your keyboard, for
example, [FETURN].

The phrase CTRL/x indicates that you must press
the key labeled CTRL while you simultaneously
press another key, for example, CTRL/C, CTRL/Y,
CTRL/O.

$ SHOW TIME Interactive examples show all output lines or

05-JUN-1988 11:55:22

task

type_name

prompting characters that the system prints or dis-
plays in black letters. All user-entered commands
are shown in red letters.

A horizontal ellipsis in a figure or example indicates
that not all of the statements are shown.

Boldface indicates Ada reserved words.

Italicized words in syntax descriptions indicate
descriptive prefixes that are intended to give addi-

tional semantic information rather than to define a
separate syntactic category.
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Convention

Meaning

[expression]
{, mechanism_name }

quotation marks
apostrophes

Square brackets indicate that the enclosed item is
optional.

Braces indicate that the enclosed item may be
repeated zero or more times.

The term quotation marks is used to refer to double
quotation marks (). The term apostrophe (‘) is
used to refer to a single quotation mark.




New and Changed Features

For this release, this manual has been reorganized, information has been
clarified and corrected, and examples have been added.

This version of the manual also discusses the following VAX Ada features,
which have been added or changed since VAX Ada Version 1.0:

¢ The implementation of fixed-point types has changed (see Chapter 2).

* Record components may be biased under certain conditions (see
Chapter 2).

® Address representation clauses are allowed for variables (see Chapter 2).

e The FDL SHARING PROHIBIT attribute is no longer set by the
input-output packages (see Chapter 3).

¢ Indexed files can be sorted by descending (as well as ascending) keys
(see Chapter 3).

* File sharing and record locking are available for all input-output files
(see Chapter 3).

* In response to Ada interpretation AI-00387, VAX Ada raises
CONSTRAINT_ERROR wherever the standard requires that
NUMERIC_ERROR be raised (see Chapter 4).

¢ Support for the pragma SUPPRESS has been added (see Chapter 4).

¢ Improvements have been made to the way in which the VAX Ada
run-time library deals with unhandled exceptions signaled by non-Ada
code. In addition, messages are now displayed before waiting begins for
dependent tasks (see Chapter 4).

¢ Changes have been made to the default passing mechanisms for some
parameter and function result types (see Chapter 5).

¢ The RESULT_MECHANISM mechanism option has been added to the
pragma IMPORT _FUNCTION (see Chapter 5).
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XX

The pragma EXPORT_VALUED_PROCEDURE has been added (see
Chapters 5 and 6).

The function SYSTEM.IMPORT_VALUE has been added (see Chapter 6).

The FIRST OPTIONAL_PARAMETER mechanism option has been
added to the import pragmas (see Chapter 6).

A set of VMS Run-Time Library (DTK, LIB, MTH, OTS, PPL, SMG, and
STR) and utility (CLI, NCS, LBR, and SOR) packages has been added
(see Chapter 6).

The pragma MAIN_STORAGE has been added (see Chapter 8).
Support for the pragma SHARED has been added (see Chapter 8).

The effects and restrictions on using the pragma INLINE have been
further defined (see Chapter 9).

The pragmas INLINE_GENERIC and SHARE_GENERIC have been
added (see Chapter 9).

A number of hardware-related types and operations have been added to
the package SYSTEM (see Chapter 10).

The packages SYSTEM_RUNTIME_TUNING, ASSERT GENERIC,
ASSERT_EXCEPTIONS, and the package instantiation ASSERT have
been added (see Appendix B).

The package TASKING_SERVICES now includes an interface to the
VMS $GETQUIW system service, and problems with the TASK_ENQW
and TASK_UPDSECW procedures have been identified and corrected
(see Appendix B).

Changes and corrections have been made to the package STARLET (see
Appendix B for type definition changes).



Chapter 1

Introduction

Ada is a general-purpose programming language suitable for writing
large-scale and real-time systems programs. For example, Ada is strongly
typed, provides for exact or approximate numerical calculations, supports
concurrency, and allows separate compilation of program units. The
language is specified in ANSI/MIL-STD-1815A-1983 and 1SO/8652-1987,
Reference Manual for the Ada Programming Language, which has been
reproduced, with supplementary Digital insertions, as the VAX Ada
Language Reference Manual.

VAX Ada implements the ANSI and ISO standard Ada programming
language on the VMS operating system. VAX Ada provides for all of the
standard language features. VAX Ada also provides additional packages,
attributes, and pragmas designed to allow Ada programmers to work
efficiently in a VMS environment and make use of the VMS operating
system.

Like other languages in the VAX Common Language Environment, VAX Ada
has the following properties:

¢ It conforms to the VAX Procedure Calling Standard.
e It interacts with the VMS Run-Time Library.

¢ It uses VAX Record Management Services (RMS) to implement
input-output.

¢ It depends on the VAX Condition Handling Facility (CHF) to implement
exception handling.

The VAX Ada compiler produces highly optimized object code and makes use
of the VAX hardware instruction set.
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VAX Ada is described in the following chapters, with a focus on those
VAX Ada features that allow you to interact with the VMS operating
system and other VAX languages. Machine- and operating-system-related
implementation details are provided as appropriate.

By being able to call VMS system, Run-Time Library, and callable utility
routines from Ada subprograms or tasks, you can write programs that
make efficient use of all of the capabilities of the VMS operating system.
By being able to call other languages and handle exceptions from both Ada
and non-Ada code, you can make use of existing non-Ada routines, or take
advantage of features of other languages that may be suitable for your
application.
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Chapter 2
Object Representation and Storage

An Ada object is an entity that can have values of a particular type. For
each Ada object, the VAX Ada compiler determines how much storage is
required, where and when that storage will be allocated and deallocated,
and how the different values of the object are represented. The compiler
makes these determinations based on the type of the object, the subtype of
the object, and the use of the object.

In simple cases, the representation and storage of objects is determined at
compile time. In more complex cases (such as the case of an array object
whose bounds are not computed until run time), the compiler generates
code that computes the amount of storage required at run time. In general,
the compiler chooses storage sizes and representations that make the best
compromise between CPU time and the amount of memory required by the
generated code.

Pragmas and representation clauses allow you to control how objects are
represented and stored. You most often need this control when you are
working with the following kinds of objects:

¢ Objects whose addresses are explicitly obtained with the ADDRESS
attribute

* Objects whose addresses are explicitly specified with an address
representation clause

¢ Objects that are passed to imported routines or used in exported
subprograms

e Objects that are imported/exported using the VAX Ada pragma PSECT_
OBJECT
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When the VAX Ada compiler determines how to store and represent objects,
it uses rules that are similar to those used by other VAX language compilers.
Thus, you can still use those objects whose storage and representation
cannot be controlled in the VAX Common Language Environment.

For example, simple objects of the type STANDARD.BOOLEAN are repre-
sented as unsigned bytes containing the values 0 (FALSE) and 1 (TRUE).
Similarly, the types STANDARD.CHARACTER and STANDARD.STRING
correspond to the VAX notions of character and string, and objects of these
types are represented as one or more unsigned bytes (although the type
STANDARD.CHARACTER does not include the upper half of the DEC
Multinational Character Set).

To increase efficiency, the VAX Ada compiler may use alternative represen-
tations for some objects (for example, it may use a 32-bit longword rather
than an 8-bit byte for some objects of the type STANDARD.BOOLEAN, as
this representation tends to be more efficient in the use of CPU resources).
However, the compiler will not choose an alternative representation for
objects that are visible outside the Ada program; that is, it will not choose
an alternative representation for an object that is passed to an imported
routine, passed into an exported subprogram, or imported/exported using
the VAX Ada pragma PSECT_OBJECT.

This chapter discusses the following topics:

* The representation and storage chosen by the VAX Ada compiler for
objects of a variety of VAX Ada types

* How to tailor the representation of the objects in your program to suit
your particular application

¢ Storage allocation and deallocation

You should be familiar with the material in Chapters 3 and 13 of the VAX
Ada Language Reference Manual before using the material in this chapter.

2.1 Type and Object Representations

The following sections describe the representations and storage sizes
chosen by the VAX Ada compiler for objects of the various Ada type classes,
including scalar (enumeration, integer, floating-point, and fixed-point), array,
record, access, address, and task types.
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2.1.1 Enumeration Types and Objects

Each enumeration literal in an enumeration type has a corresponding in-
ternal code. Unless otherwise specified in an enumeration representation
clause, the internal codes for an enumeration type are represented by the in-
tegers from 0 to N — 1, where N is the number of enumeration literals in the
type. For example, the internal codes for the enumeration literals of the Ada
predefined types STANDARD.BOOLEAN and STANDARD.CHARACTER

are as follows:

Enumeration Type Internal Codes
STANDARD.BOOLEAN 0 (FALSE)
1 (TRUE)

STANDARD.CHARACTER 0..127*

1The internal code for each character is its conventional ASCII value (the NUL character
has the internal code 0, ' A’ has the internal code 65, “a’ has the internal code 97, and so
on); see the specification of the package STANDARD in Annex C of the VAX Ada Language
Reference Manual.

Because Ada does not include the DEC Multinational Character Set in the package
STANDARD, the internal codes 128..255 have no meaning in VAX Ada for enumeration
literals of the type STANDARD.CHARACTER.

Section 2.2.3 explains how to use an enumeration representation clause to
specify other values (including negative ones) for internal codes.

The amount of storage allocated by the VAX Ada compiler for an object of
an enumeration type depends on the range of the internal codes and on any
length representation clauses that provide a size for the type or first named
subtype. (A first named subtype is a subtype declared by a type declaration;
see Chapter 13 of the VAX Ada Language Reference Manual.) Note that
when you specify a length representation clause for a first named subtype,
the clause may not be applied to the representation of objects of the base
type; for example, this effect may occur with loop parameters.

Thus, for simple enumeration objects and enumeration components of
unpacked arrays and records, the VAX Ada compiler chooses a byte

(8 bits), a word (16 bits), or a longword (32 bits)—whichever is smallest—to
represent an object of an enumeration type. The size chosen is large enough
to represent all of the values of the type, and is greater than or equal to any
applicable length representation clause.

For most enumeration types, the representation is unsigned; the representa-
tion is signed only when the first internal code is negative.
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For example:
type ANSWER is (YES, NO, UNDECIDED);

An object of the type ANSWER will be stored in an unsigned byte, because a
byte is all that is needed to represent the default internal codes (0, 1,

and 2) corresponding to YES, NO, and UNDECIDED. To guarantee a
particular representation or to achieve a signed representation, you can

use an enumeration representation clause. See Section 2.2.3 for more
information.

2.1.2 Integer Types and Objects

VAX Ada provides three predefined integer types:

SHORT_SHORT_INTEGER
SHORT_INTEGER
INTEGER

These types are declared in the predefined package STANDARD (see
Annex C of the VAX Ada Language Reference Manual).

Values for objects of all three integer types are represented as signed, two’s
complement (binary) numbers.

You can achieve an unsigned representation for integer objects by declaring
an integer type with a length representation clause (see Section 2.2.2).
However, because of the way the Ada language defines integer operations,
operations on these unsigned objects will involve signed intermediate values.
See Chapter 10 for more information on working with unsigned types.

Table 21 lists the range of integer values and storage sizes for each of these
predefined integer types.
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Table 2-1: Range of Values and Storage Sizes for VAX Ada Predefined

Integer Types
Storage Size
Ada Type Range of Values (Bits)
SHORT_SHORT_INTEGER 272" -1 8
-128..127
SHORT_INTEGER 215,21 _ 1 16
-32_768..32_767
INTEGER 231,281 _ 1 32
—2_147_483_648..2_147_483_
647

2.1.3 Floating-Point Types and Objects

Floating-point types provide approximations to the real numbers, with
relative bounds on the errors. For each floating-point type—predefined
and nonpredefined—the VAX Ada compiler chooses one of the four VAX
floating-point data representations, depending on the required range and
accuracy:

F_floating
D_floating
G_floating
H_floating

The chosen representation and size is used for all objects of the type,
regardless of the objects’ subtypes, and regardless of whether or not the
objects are themselves part of packed array or record objects. Sections
2.1.3.2 through 2.1.3.5 explain the VAX floating-point data representations
in detail.

VAX Ada provides a number of predefined floating-point types. Table 2-2
lists the representation and storage size for each type.
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Table 2-2: VAX Type Representations and Storage Sizes for VAX Ada
Predefined Floating-Point Types

Storage Size

Ada Type VAX Representation (Bits)
Defined in the Package STANDARD:
FLOAT F_floating 32
LONG_FLOAT D_floating or 64

G_floating!
LONG_LONG_FLOAT H_floating 128
Defined in the Package SYSTEM:
F_FLOAT F_floating 32
D_FLOAT D_floating 64
G_FLOAT G_floating 64
H_FLOAT H_floating 128

1By default, or in the presence of the pragma LONG_FLOAT(G_FLOAT), the type LONG_
FLOAT has a G_floating representation; it has a D_floating representation in the presence of
the pragma LONG_FLOAT(D_FLOAT). Section 2.1.3.1 of this manual and Chapter 3 of the
VAX Ada Language Reference Manual discuss this pragma in more detail.

You can also use the ACS CREATE LIBRARY, CREATE SUBLIBRARY, and SET PRAGMA
commands to control the representation of the type LONG_FLOAT. These commands are
described in Developing Ada Programs on VMS Systems.

VAX Ada allows you to define your own floating-point types. The choice of
representation for nonpredefined floating-point types that are not explicitly
derived depends on the precision (digits) and the range specified. The

VAX Ada compiler chooses the first of the types STANDARD.FLOAT,
STANDARD.LONG_FLOAT, and STANDARD.LONG_LONG_FLOAT that
has adequate precision and range, and uses it as the parent type from which
the new type is derived.

If the G_floating representation of the type LONG_FLOAT is in effect for the
compilation (see Table 2-2 and Section 2.1.3.1), the following representations
are used if the specified range can also be accommodated:

G_floating
Digits Specified Representations
1.. 6 F_floating
7. 15 G_floating
16 .. 33 H_floating
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If the D_floating representation of the type LONG_FLOAT is in effect for the
compilation (see Table 2-2 and Section 2.1.3.1), the following representations
are used if the specified range can also be accommodated:

D_floating
Digits Specified Representations
1.. 6 F_floating
7.. 9 D_floating
10 .. 33 H_floating

For example, the pragma LONG_FLOAT in the following declaration
ensures that the D_floating representation of the type LONG_FLOAT is in
effect when the declaration is compiled. However, the compiler will choose
the type STANDARD.LONG_LONG_FLOAT as the parent type for the type
SIZE because although a D_floating representation satisfies the precision, it
does not satisfy the range.

pragma LONG_FLOAT (D_FLOAT) ;
package FLOAT TYPES is
type SIZE is digits 9 range -0.1E-50 .. 0.1E+50;

end FLOAT TYPES;

In all cases, the choice of representation for a floating-point type is
determined by the model number limits specified by the Ada language (see
Chapter 3 of the VAX Ada Language Reference Manual). However, once the
representation is chosen, the full accuracy of the underlying VAX floating-
point type is used in any calculations involving numbers of that type. For
example, the following type declaration causes the full 16 decimal digits

of accuracy provided by the VAX D_floating hardware representation to be
used in calculations involving objects of the type:

type VOLUME is digits 9 range -100.0 .. 100.0;

Table 2-3 lists the model numbers for each VAX floating-point type (and
thereby for each VAX Ada predefined floating-point type). The ranges in
the table are approximate; the exact ranges are listed in Appendix F of the
VAX Ada Language Reference Manual. You can also find the exact ranges
by evaluating language-defined attributes T- SMALL and T'LARGE, where
T is the floating-point type. Table 2-3 lists only the positive ranges; all
floating-point numbers are, in fact, signed, and an equivalent negative range
(as well as zero) exists for each type.
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Table 2-3: Model Numbers Defined for Each Floating-Point Type

Mantissa Exponent

VAX Ada Types and Digits Bits Range

Representations (D) (B) (-4*B..+4*B) Approximate Range

F_floating 6 21 -84 .. 84 2.5E-26 .. 1.9E+25
F_FLOAT
FLOAT

D_floating 9 31 -124 .. 124 2.3E-38 .. 2.1E+37
D_FLOAT
LONG_FLOAT

G_floating 15 51 -204 .. 204 1.9E-62 .. 2.5E+61
G_FLOAT
LONG_FLOAT

H_floating 33 111 —444 .. 444 1.1E-134 .. 4.5E+133
H_FLOAT

LONG_LONG_FLOAT

For both predefined and nonpredefined types, the Ada language rules about
safe numbers also apply (see Chapter 3 of the VAX Ada Language Reference
Manual). Table 2—4 lists the safe numbers for each VAX floating-point type
(and thereby for each VAX Ada floating-point type). The ranges in the table
are approximate; the exact ranges are listed in Appendix F of the VAX
Ada Language Reference Manual. You can also find the exact ranges by
evaluating the language-defined attributes T' SAFE_SMALL and T’ SAFE_
LARGE, where T is the floating-point type. As with the model numbers,
only the positive ranges are listed; each type includes zero and a set of
corresponding negative values.
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Table 2-4: Safe Numbers Defined for Each Floating-Point Type

Mantissa Exponent

VAX Ada Types and Digits Bits Range

Representations (D) (B) (-E..+E) Approximate Range

F_floating 6 21 -127 .. 127 2.9E-39 .. 1.7E+38
F_FLOAT
FLOAT

D_floating 9 31 -127 .. 127 29E-39 .. 1.7E+38
D_FLOAT
LONG_FLOAT

G_floating 15 51 -1023 .. 1023 5.5E-309 .. 8.9E+307
G_FLOAT
LONG_FLOAT

H_floating 33 111 -16383 .. 16383 8.4E-4933 ..
H_FLOAT 5.9E+4931

LONG_LONG_FLOAT

2.1.3.1 Pragma LONG_FLOAT

The VAX Ada predefined pragma LONG_FLOAT acts as a program library
switch that controls whether the G_floating or D_floating representation

is used to represent the type LONG_FLOAT. Use of this pragma implies a
recompilation of the predefined environment—the package STANDARD—for
a given program library. See the VAX Ada Language Reference Manual

for the specific rules governing the use of this pragma; see Developing Ada
Programs on VMS Systems for a discussion of the implications of recompiling
the package STANDARD.

For example, the compilation of the following unit will cause all subsequent
compilations in the same library to use the set of representations that
include D_floating, as appropriate (see Section 2.1.3):

pragma LONG_FLOAT(D_FLOAT) ;
package USE D FLOAT is

—- D_floating representation will be used.

type MY D FLOAT is digits 9 range -100.0 .. 100.0;

-—- H _floating representation will be used.

type MY H FLOAT is digits 11 range -100.0 .. 100.0;
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-- D_floating representation will be used.

D _OBJECT: LONG_FLOAT;

end USE_D FLOAT;

To return to G_floating representations, you can use one of the following
methods:

¢ Compile another unit (in the same library) that contains the pragma
LONG_FLOAT(G_FLOAT).

e TUse the ACS SET PRAGMA command.

¢ Recreate your library by first deleting it with either the ACS DELETE
LIBRARY or DELETE SUBLIBRARY command, and then creating it
with the ACS CREATE LIBRARY or SUBLIBRARY command.

See Developing Ada Programs on VMS Systems for information on the ACS
commands.

2.1.3.2 VAXF_floating Representation

An F_floating-point number (single precision) is represented in memory by 4
contiguous bytes (32 bits). The bits are numbered from the right, 0 through
31, as shown in Figure 2-1.

Figure 2-1: F_floating Representation

15 14 76 0
S EXPONENT FRACTION A
FRACTION
31 16
ZK-1039-GE
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The address of an F_floating-point value is the address of the byte containing
bit 0 (address A in Figure 2-1). The form of the value is signed magnitude
as follows:

¢ Bit 15 is the sign bit.
e Bits 14 through 7 are an excess 128 binary exponent.

¢ Bits 6 through 0 and 31 through 16 are a normalized 23-bit fraction,
with the redundant most significant fraction bit not represented. Within
the fraction, bits of increasing significance go from 16 through 31 and
from 0 through 6.

The 8-bit exponent field encodes the values 0 through 255 as follows:

* An exponent value of 0 with a sign bit of 0 indicates that the floating-
point number has a value of 0.

¢ Exponent values of 1 through 255 indicate binary exponents of —127
through +127.

If you are doing unchecked conversions to floating-point types (see

Chapter 13 of the VAX Ada Language Reference Manual), note that an
exponent value of 0 with a sign bit of 1 is considered to be a reserved
operand. Floating-point instructions that process a reserved operand cause
a reserved operand fault.

In VAX Ada, the VAX F_floating representation is used to represent the set
of model numbers shown in Table 2-3 and the set of safe numbers shown in
Table 2—4. On VAX machines, the value of an F_floating-point number is in
the approximate range of 0.29¥10~38 through 1.7*¥10%8. The precision of an
F_floating-point value is approximately one part in 223, or at least 6 decimal
digits.

2.1.3.3 VAX D_floating Representation

A D_floating-point number (double precision) is represented in memory by
8 contiguous bytes (64 bits). The bits are numbered from the right, 0
through 63, as shown in Figure 2-2.

Object Representation and Storage 2-11



Figure 2-2: D_floating Representation

15 14 76 0
S EXPONENT FRACTION A
FRACTION
FRACTION
FRACTION
63 48
ZK-1040-GE

The address of a D_floating-point value is the address of the byte containing
bit 0 (address A in Figure 2-2). The form of the value is signed magnitude

as follows:
e Bit 15 is the sign bit.

* Bits 14 through 7 are an excess 128 binary exponent.

¢ Bits 6 through 0 and 63 through 16 are a normalized 59-bit fraction,
with the redundant most significant fraction bit not represented. Within

the fraction, bits of increasing significance are numbered 48 through 63,
32 through 47, 16 through 31, and 0 through 6.

The 8-bit exponent field encodes the values 0 through 255 as follows:
* An exponent value of 0 with a sign bit of 0 indicates that the floating-

point number has a value of 0.

¢ Exponent values of 1 through 255 indicate binary exponents of —127

through +127.

If you are doing unchecked conversions to floating-point types (see

Chapter 13 of the VAX Ada Language Reference Manual), note that an
exponent value of 0 with a sign bit of 1 is considered to be a reserved
operand. Floating-point instructions that process a reserved operand cause

a reserved operand fault.
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In VAX Ada, the VAX D_floating representation is used to represent the

set of model numbers shown in Table 2-3 and the set of safe numbers
shown in Table 2-4. On VAX machines, the exponent conventions and
approximate range of values are the same for D_floating-point values as for
F_floating-point values. However, the precision of a D_floating-point value is
approximately one part in 255, or 16 decimal digits.

2.1.34 VAX G_floating Representation

A G_floating-point number (double precision) is represented in memory by

8 contiguous bytes (64 bits). The bits are numbered from the right,
0 through 63, as shown in Figure 2-3.

Figure 2-3: G_floating Representation

15 14 4 3 0
S EXPONENT FRACTION A
FRACTION
FRACTION
FRACTION
63 48
ZK-1041-GE

The address of a G_floating-point value is the address of the byte containing
bit 0 (address A in Figure 2-3). The form of a G_floating-point value is
signed magnitude as follows:

¢ Bit 15 is the sign bit.
* Bits 14 through 4 are an excess 1024 binary exponent.

¢ Bits 3 through 0 and 63 through 16 represent a normalized 53-bit frac-
tion, with the redundant most significant fraction bit not represented.
Within the fraction, bits of increasing signficance go from 48 through 63,
32 through 47, 16 thraugh 31, and 0 through 3.
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The 11-bit exponent field encodes the values 0 through 2047 as follows:

* An exponent value of 0 with a sign bit of 0 indicates that the
G_floating-point number has a value of 0.

* Exponent values of 1 through 1047 indicate binary exponents of —1023
through +1023.

If you are doing unchecked conversions to floating-point types (see

Chapter 13 of the VAX Ada Language Reference Manual), note that an
exponent value of 0 with a sign bit of 1 is considered to be a reserved
operand. Floating-point instructions that process a reserved operand cause
a reserved operand fault.

In VAX Ada, the VAX G_floating representation is used to represent the set
of model numbers shown in Table 2-3 and the set of safe numbers shown
in Table 2—4. On VAX machines, the value of a G_floating-point number is
in the approximate range of 0.56*10~3%8 through 0.90*103%. The precision
of a G_floating-point value is approximately one part in 252, or 15 decimal
digits.

2.1.3.5 VAX H_floating Representation

An H_floating-point (quadruple precision) value is represented in memory by
16 contiguous bytes (128 bits). The bits are numbered from the right,
0 through 127, as shown in Figure 2—4.
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Figure 2—4: H_floating Representation

15 14 0
S EXPONENT A

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION
127 112
ZK-1042-GE

The address of an H_floating-point value is the address of the byte contain-
ing bit 0 (address A in Figure 2—4). The form of an H_floating-point value is
signed magnitude as follows:

¢ Bit 15 is the sign bit.
¢ Bits 14 through 0 are an excess 16,384 binary exponent.

* Bits 127 through 16 are a normalized 113-bit fraction, with the redun-
dant most significant fraction bit not represented. Within the fraction,
bits of increasing significance go from 112 through 127, 96 through 111,
80 through 95, 64 through 79, 48 through 63, 32 through 47, and 16
through 31.

The 15-bit exponent field encodes the values 0 through 32,767 as follows:

* An exponent value of 0 with a sign bit of 0 indicates that the
H_floating-point number has a value of 0.

¢ Exponent values of 1 through 32,767 indicate binary exponents of
-16,383 through +16,383.
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If you are doing unchecked conversions to floating-point types (see

Chapter 13 of the VAX Ada Language Reference Manual), note that an
exponent value of 0 with a sign bit of 1 is considered to be a reserved
operand. Floating-point instructions that process a reserved operand cause
a reserved operand fault.

In VAX Ada, the VAX H_floating representation is used to represent the set
of model numbers shown in Table 2-3 and the set of safe numbers shown in
Table 2—4. On VAX machines, the value of an H_floating-point number is in
the approximate range of 0.84*10~4932 through 0.59*10%932, The precision
of an H_floating-point value is approximately one part in 2112, or 33 decimal
digits.

2.1.4 Fixed-Point Types and Objects

Fixed-point types provide approximations to the real numbers, with absolute
bounds on errors determined by the value T- SMALL, where T is the
fixed-point type. T SMALL is defined to be less than or equal to the delta
specified in the type declaration. In the absence of a length representation
clause for T SMALL, the delta value determines the value of T SMALL,
and the model numbers chosen for the type are determined from the value
of T SMALL and the specified range.

VAX Ada supports only values of T SMALL that are powers of two between
2.0762 and 2.031, inclusive. The VAX Ada compiler chooses the largest
possible value of T* SMALL that is not greater than the specified delta,
regardless of the range.

Values for objects of a fixed-point type are represented in VAX Ada as signed
or unsigned, two’s complement (binary) numbers multiplied by the value of
T+ SMALL. You can use length representation clauses to achieve unsigned
representations; see Section 2.2.2.

In VAX Ada, the storage size for an object of any fixed-point type is
determined by its delta and range and rounded up to an 8-, 16-, or

32-bit boundary. You can change the size with a representation clause
(see Section 2.2 of this manual and Chapter 13 of the VAX Ada Language
Reference Manual).

Operations on fixed-point types truncate the result towards 0.0, unless the
language specifies otherwise.
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Note that both model numbers and model intervals are used to define the
permissible legal values for the results of operations on real (in this case,
fixed-point) types. Any value that falls in the defined model interval for
an operation is a legal result value for that operation. Thus, when you
are working with fixed-point numbers, you may obtain results that are not
what you expect in some cases. (See Chapter 4 of the VAX Ada Language
Reference Manual for more information on model intervals and operations
involving real types.)

For example, consider the following declaration:
type FP_TYPE is delta 0.1 range 0.0..1.0;

Because there is no representation clause for the type FP_TYPE,
FP_TYPE'SMALL is 0.0625 (2~4); 0.0625 is the largest power of 2 that

is not greater than the delta (0.1). Now, suppose that your program uses an
object of type FP_TYPE as follows:

A: FP_TYPE := 0.1;

A. - 3*A;

Because FP_TYPE'SMALL is 0.0625, and the model numbers used to
represent objects of the type FP_TYPE are multiples of 0.0625, the model
numbers for A are 0.0625, 0.125, 0.1875, 0.25, and so on up to 1.0. In this

case, the model interval for A is 0.0625..0.125; the model interval for 3*A is
3*0.0625..3*0.125, or 0.1875..0.375.

Because 0.125 is too large, it is not a possible value for A. However, the
lower bound, 0.0625, is a possible, and legal, value for A. For reasons of
efficiency and to guarantee that the value of 3*A is also legal, the compiler
could choose 0.0625 for A. Then, 3*A would result in 0.1875, which may

be rounded up when printed out with an input-output procedure (rounding
occurs when the FORE or AFT parameters constrain the number of decimal
digits that the input-output procedure can print).

If FP_TYPE' SMALL were instead 0.03125 (either because of a different
delta or because of a representation clause), the model interval for A would
be 0.09375..0.125. Again, 0.125 is too large, but this time if the lower bound,
0.09375, is chosen for the value of A, 3*A results in 0.28125. This value is
closer to the expected value, and is rounded up to 0.3 when printed out.

Therefore, when working with fixed-point types, and the results are not
what you expect, consider tuning the distance between the underlying model
numbers by using a representation clause (see Chapter 13 of the VAX Ada
Language Reference Manual).
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2.1.5 Array Types and Objects

In VAX Ada, an object of an array type is stored as a vector of equally
spaced storage cells, one cell for each component. Any space between the
components is assumed to belong to the array object, and may or may not
be read or written by operations on the object. Thus, the storage size for an
object of an array type is determined by the following equation:

number of components * (component size + distance between components)

Multidimensional arrays are stored in row-major order, and the components
of all VAX Ada arrays are byte-aligned by default.

To force bit alignment and/or to minimize gaps, you must use the pragma
PACK with the array type declaration.

For example, consider the following declarations:

type COLORS is (RED, ORANGE, YELLOW, GREEN, BLUE, VIOLET):;
type SPECTRUM is array(l..10) of COLORS;
WHITE LIGHT: SPECTRUM;

Here, because values of the type COLORS are stored in a byte (see
Section 2.1.1), and SPECTRUM has 10 components of the type COLORS,
10 bytes are allocated for the object WHITE_LIGHT.

In the next example, the object CHAR_ARRAY is stored in 30 bytes (thirty
8-bit components):

subtype INT is INTEGER range 1..10;
type TWO_DIM ARRAY is

array (INT range <>, INT range <>) of CHARACTER;
CHAR_ARRAY: TWO_DIM ARRAY(1l..5,5..10);

2.1.6 Record Types and Objects

In VAX Ada, the representation chosen for objects of a record type depends
on a complex interaction among any applicable representation clauses and
the types and subtypes of the record components. VAX Ada does not place
any implementation-defined components within the object. For example,

if the offset from the start of the object to a particular component depends
on a value of a discriminant of the object, that offset is recalculated rather
than stored in a “hidden” component in the record. This implementation
allows you to explicitly specify all of the components of a record object, and
to expect the result to be suitable for mixed-language programming.
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Record objects are laid out so that all components affected by record
representation clauses are first placed at the specified storage places; the
remaining components are then laid out in the order in which they appear
in the record declaration, discriminants first. Variants are overlaid and any
alignment requirements of the components are met.

Thus, in the following example, the components are laid out in the order I,
dJ, A, and B:

type SIMPLE ARRAY is array (INTEGER range <>) of BOOLEAN;
type SIMPLE LAYOUT (I,J: INTEGER) is
record
A: INTEGER;
B: SIMPLE ARRAY(I..J);
end record;

Consider another example:

type SHOW LAYOUT (DISCRIMINANT: BOOLEAN) is
record
A: INTEGER;
case DISCRIMINANT is
when TRUE => B: CHARACTER;
when FALSE => C: INTEGER;
end case;
end record;

Here, the components are laid out so that DISCRIMINANT appears first,
then A. Then, because they are not affected by representation clauses, the
variants are laid out starting on the first byte boundary after A.

If the type SHOW_LAYOUT from the preceding example were declared
with a representation clause that specifically placed a component of one of
the variants elsewhere, then that variant would be laid out first. Thus, if
SHOW_LAYOUT were declared with the following representation clause, the
compiler would lay out B first, then DISCRIMINANT, then A, then C:

for SHOW_LAYOUT use
record
B at 0*8 range 0..7;
end record;

When working with records with discriminants, be aware that the offset
from the start of the record object to a particular component may depend
on the values of the discriminants, and thus may differ from one object to
another. Similarly, the sizes of record objects of the same type may vary
because of different discriminant values.
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Within any record type, components whose sizes cannot be determined until
run time cause succeeding components unaffected by representation clauses
to be allocated at run-time-computed offsets from the start of the record. A
component whose size or position cannot be determined until run time is
called a dynamic component.

The dynamic calculation of component offsets and sizes may be done when
the type is elaborated, or it may be done later—when the subtypes of all of
the components have been forced, when the type itself is forced, or even at
the point where the component is selected (this happens when the actual
value of a discriminant is needed to make the calculation).

Thus, in the following example, A and B are both dynamically allocated: A
because it is a dynamic component (an array with variable bounds), and B
because its offset depends on the size of A:

type COMPONENT_ ARRAY is array (INTEGER range <>) of INTEGER;
type ANOTHER ORDER (I, J: INTEGER) is
record
A: COMPONENT ARRAY (I..J);

B: INTEGER; .
end record;

The laying out of a record type allows the compiler to determine the size of
the type, where the size of the type is also the size of the largest possible
object of that type. The size is related not to the sum of the sizes of the
record’s components, but to where the last component was laid out, including
any allowances that were made for alignments. In other words, the size of a
record type is computed as the position of the last component that physically
appears in the layout plus the size of the last component (rounded up to

a byte boundary if necessary). (Rounding depends on whether or not the
record type itself is packable; see Section 2.2.1.)

Consider the following example:

type BIT ARRAY is
array (INTEGER range <>, INTEGER range <>) of BOOLEAN;
pragma PACK (BIT_ARRAY);
subtype N is INTEGER range 1..25;
type OFFICE_SECTION_LAYOUT (LENGTH : N :
WIDTH : N :

1;
1) is

]

record
OCCUPIED : BIT ARRAY(1l..LENGTH, 1..WIDTH);
end record;
FLOOR1l : OFFICE_SECTION LAYOUT;
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Here, the component OCCUPIED is an array of 1-bit components whose
bounds depend on the values of LENGTH and WIDTH. When an uncon-
strained object, such as FLOOR], is declared, it must be allocated enough
storage to accommodate a value in which LENGTH and WIDTH could have
any value in the range 1..25. For example, FLOORL1 could be assigned the
following aggregate:

FLOOR1 := (20, 25, (1..20 => (1..25 => FALSE)));

Because the storage size allocated for an object like FLOOR1 must be
adequate for any value that could be assigned to that object, the storage size
must be the maximum storage size for the object. (The maximum storage
size for an object is equal to the size of the type of the object.)

For example, you can calculate the maximum storage size of FLOOR1

as follows. The maximum values for LENGTH and WIDTH are each 25,
and the largest possible OCCUPIED component is a 25-by-25 array (625
1-bit components). Because LENGTH and WIDTH are each of an integer
subtype, one longword (32 bits) is allocated for each; 625 bits are allocated
for the component OCCUPIED. The type is not packable (it does not have
a compile-time constant size of 32 or fewer bits; see Section 2.2.1), so the
estimated storage is rounded up to a byte boundary. Therefore, a total of 838
bytes (82 + 32 + 625 + rounding bits)/8) will be allocated for FLOOR1.

The exact calculation of the size of a record can be nontrivial. For example,
the size of the following record type can be calculated only by determining
each possible record object and then choosing the largest result (which
occurs when the value of the discriminant D is 5 or 6):

subtype INT is INTEGER range 1..10;
type TWO_DIM ARRAY is

array (INT range <>, INT range <>) of CHARACTER;
type REC (D: INT := 1) is

record

A: TWO_DIM_ARRAY(I..D,D..10);

end record;

REC_OBJECT: REC;

The compiler uses simplifying assumptions to calculate the size of the type
REC (REC' SIZE is also the maximum storage size for the object REC_
OBJECT). These assumptions can cause the size allocated (or the values
returned by the SIZE and MACHINE_SIZE attributes) to be different from
what you might otherwise expect.

For example, if you manually calculate the number of bits required for
component A, and add that to the number of bits required for discriminant
D, you will arrive at one answer. Alternatively, if you ask the compiler for
REC_OBJECT" SIZE (or REC_OBJECT' MACHINE_SIZE, as described in
Section 2.2.7), you will receive a different answer. In fact, the compiler’s
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answer is based on a value of 10 for the upper bound of the first dimension,
and a value of 1 for the lower bound of the second dimension. Therefore,
the assumed maximum number of elements is 100, and the assumed storage
size—(100*8)+32—is 832 bits.

See Section 2.2.7 of this manual and Chapter 13 of the VAX Ada Language
Reference Manual for more information on the size attributes.

2.1.7 Access Types and Objects

VAX Ada uses a VAX virtual address to represent the value of an access
type; the storage size for this value is a longword (82 bits). The objects
designated by values of an access type are sized and represented according
to their specified types. If the designated type is an unconstrained array,
the virtual address points to an array descriptor that is chosen by the
same rules used for choosing descriptors during parameter passing (see
Chapter 5).

NOTE

These addresses do not necessarily point directly to objects of the
access type. Thus, it is unsafe (as well as nonportable) to use
the predefined generic procedure UNCHECKED_CONVERSION
to convert between addresses and access types. Unchecked
conversion between VAX addresses and access types is safe only
when the accessed object is of a record type.

Each nonderived access type is associated with a collection, which is storage
to be used for the objects designated by the type when allocators of that
type are evaluated. If you specify a nonzero value in a length representation
clause for the access type, that value determines the number of bytes
(rounded up to an integral number of 512-byte pages) to be allocated for the
collection associated with the type. The collection is not extended if it is
exhausted. If you specify a zero value (or no length representation clause),
the effective size of the collection is all of the available memory; no initial
allocation is made, and the collection is extended as needed.

The collection associated with an access type is released when the scope of
the access type is exited. See Section 2.3.2 for more information on storage
deallocation. See Chapter 13 of the VAX Ada Language Reference Manual
for more information on length representation clauses and collections. VAX
Ada does not do automatic garbage collection.

2-22 Obiject Representation and Storage



In the following example, a 512-byte (1-page) collection is initially allocated
for the access type NUM_PTR. One allocator is evaluated for FIRST_NUM,
and 64 allocators are evaluated in the loop. Each evaluation causes 8 bytes
of storage to be allocated as follows:

¢ The designated object in each case is of the type NUM_RECORD, and

thus requires a longword (32 bits, or 4 bytes) for the integer component
NUM.

¢ Each access type component (NEXT_NUM) requires a longword (32 bits,
or 4 bytes).

When I reaches 63, a total of 64 allocators has been evaluated, and the
collection limit has been reached. When I reaches 64, the collection limit is
exceeded and not extended, and the exception STORAGE_ERROR is raised.

—- Procedure to construct a linked-list of integers.

procedure COLLECTION is

type NUM_RECORD;
type NUM PTR is access NUM RECORD;
for NUM PTR’STORAGE_SIZE use 512;
type NUM_RECORD is
record
NUM: INTEGER;
NEXT NUM: NUM_PTR;
end record;

FIRST_ NUM,ASSIGN_NUM: NUM PTR;
I: INTEGER;

begin

FIRST_NUM := new NUM RECORD’ (0,null);

ASSIGN_NUM := FIRST_NUM;

for I in 1..64 loop
ASSIGN_NUM.NEXT_NUM := new NUM_RECORD’ (I, null);
ASSIGN_NUM := ASSIGN_NUM.NEXT NUM;

end loop;

end COLLECTION;

2.1.8 Address Types and Objects
VAX Ada uses a VAX virtual address to represent the value of an object of

the type SYSTEM.ADDRESS. The storage size for an object of an address
type is a longword (32 bits).
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2.1.9 Task Types and Objects

VAX Ada uses a VAX virtual address to represent the value of an object of a
task type. The storage size for an object of a task type is a longword
(32 bits).

When you declare an object of a task type, the value of the object is used by
the VAX Ada run-time library to determine the address of the task control
block created for the task. See Chapter 8 for more information on task
storage allocation.

2.2 Data Optimization

VAX Ada provides type representation clauses, address clauses, and the
language-defined pragma PACK to allow you to tailor the representation of
nonpredefined types. Type representation clauses also allow you to control
the representation of any new or derived types that you declare.

2.2.1 Pragma PACK

The predefined pragma PACK allows you to minimize gaps between the
components of composite types (record and array types). When you apply
the pragma PACK to a VAX Ada record or array type declaration, it has
an effect only on the record or array components that are packable. In
VAX Ada, a component is packable if its type allows it to be aligned on an
arbitrary bit boundary.

For example, if you use the pragma PACK to pack an array of BOOLEAN
components, any gaps between the components are minimized because
enumeration type components are packable. However, the pragma PACK
has no effect on an array of floating-point components.

Table 2-5 lists the type categories provided in VAX Ada and shows whether
or not components of each type are packable.
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Table 2-5: Packable Types

Considered
Packable Affected by the Pragma PACK if a
Type Category as a Type Component of a Record or Array
Integer Yes Yes
Enumeration® Yes Yes
Fixed-point Yes Yes
Floating-point No No
Address No No
Access No No
Task No No
Record Depends?® Only if packable
Array Depends® Only if packable

1The predefined enumeration type CHARACTER (in the package STANDARD) is imple-
mented as though the following declaration occurred in the package STANDARD: for
CHARACTER' SIZE use 8. Thus, even in the presence of the pragma PACK, composite-
type components of the type CHARACTER (or derived from the type CHARACTER) are not

packed into 7 bits.

20nly if the record type has a compile-time constant size that is less than or equal to 32 bits,

and if all of its components are packable.

30nly if the array type is itself a packed array of packable arrays, or if it is an array of 1-bit
components. Components of the predefined array type STRING are not packable because the
type STRING does not have 1-bit or packable array components.

Table 2—6 shows the effect of the pragma PACK on arrays and records with

packable components.
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Table 2-6: Effects of Packing the Components of Arrays and Records

With Length Without Length
Representation Clause Representation Clause
on Component Type on Component Type
With the Space between array and Space between array and
Pragma PACK record components is min- record components is min-
imized. Component size is imized. Component size is
determined by the length the default allocation for the
clause. component type.
Saves only as much space as Saves the maximum amount of
the length clause allows. storage space.
Without the Space between array and Space between array and
Pragma PACK record components is not record components is not

minimized. Component size
is determined by the length
clause.

Saves only as much space
as the length clause and the
default byte alignment allow.

minimized. Component size is
the default allocation for the
component type.

Saves no storage space.

In the following example, the pragma PACK is used to minimize gaps in an
array of fixed-point numbers:

type SMALL FIXED POINT is

delta 2.0**(~4) range 0.0..0.5;
type SMALL_FIXED POINT_ ARRAY is

array (INTEGER range <>) of SMALL FIXED POINT;
pragma PACK (SMALL FIXED_POINT_ ARRAY) ;

If SMALL_FIXED_POINT_ARRAY were not packed, the space-saving benefit
of the small range of the SMALL_FIXED_POINT components would be lost.
All of the components would be aligned on byte boundaries, causing 8-bit
instead of the expected 3-bit component representations, and increasing the
array size.

The next example shows the difference in space saving when length repre-
sentation clauses are involved (see Section 2.2.2 for more information on
length clauses):
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type SMALL INTEGER is new INTEGER range 0..7;
for SMALL INTEGER'’SIZE use 4;

type UNPACKED SMALL_ INTEGER ARRAY is array (1..10) of SMALL_INTEGER;

type PACKED SMALL_INTEGER ARRAY is array (1..10) of SMALL_INTEGER;
pragma PACK (PACKED_ SMALL_INTEGER ARRAY) ;

In this example, the range of type SMALL_INTEGER causes it to require
only 3 bits; however, the length clause specifies a size of 4 bits. For the
array UNPACKED_SMALL_INTEGER_ARRAY, the length clause is honored
for the SMALL_INTEGER components. However, because the array is
declared without the pragma PACK, all of the components will be aligned
on byte boundaries, and each component will have an effective size of 8 bits,
instead of 4; the size of the array will be 80 bits. For the array PACKED_
SMALL_INTEGER_ARRAY, each component will have a size of 4 bits, and
any extra space between the components is eliminated; the size of the array
will be 40 bits.

When using the pragma PACK, you must be careful to pack at the appro-
priate level: the pragma packs the components with respect to each other;
it does not pack the subcomponents of the components closer together. In
the following example, the size of the record UNPACKED_COMPONENTS
is significantly larger than the size of the record PACKED_COMPONENTS,
even though both are declared with the pragma PACK:

type UNSIGNED_INTEGER is new INTEGER range 0..7;
for UNSIGNED_INTEGER’SIZE use 3;

type PACKED ARRAY is array (1..10) of BOOLEAN;
pragma PACK (PACKED_ARRAY) ;

type UNPACKED_ ARRAY is array (1..10) of BOOLEAN;

type UNPACKED_COMPONENTS is
record
A,B: UNSIGNED_INTEGER;
C: UNPACKED_ARRAY;
end record;
pragma PACK (UNPACKED_COMPONENTS);

type PACKED_ COMPONENTS is
record
D,E: UNSIGNED_INTEGER;
F: PACKED_ARRAY;
end record;
pragma PACK (PACKED_COMPONENTS) ;

BIG_RECORD: UNPACKED_COMPONENTS; —- Size is 88 bits.
COMPACT_RECORD: PACKED COMPONENTS; -- Size is 16 bits.
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Note that the pragma PACK never forces a component that begins a record
variant off of a byte boundary. Such components are allocated on the next
byte boundary. To force a component that begins a record variant to a
boundary other than a byte boundary, you must use a record representation
clause (see Sections 2.1.6 and 2.2.4 of this manual and Chapter 13 of the
VAX Ada Language Reference Manual).

2.2.2 Length Representation Clauses

Length representation clauses allow you to explicitly control the amount of
storage allocated for objects of a particular type.

The following example shows how length representation clauses are useful
for declaring unsigned integer and unsigned fixed-point objects:

type UNSIGNED INTEGER is new INTEGER range 0..2**16-1;
for UNSIGNED_ INTEGER’SIZE use 16;

type UNSIGNED FIXED POINT is
delta 2.0**(-8) range 0.0..255.0%2**(-8);
for UNSIGNED_FIXED POINT’SIZE use 8;

The first declaration causes objects of the type UNSIGNED_INTEGER to
be stored as unsigned words, rather than as signed longwords. The second
declaration causes objects of the type UNSIGNED_FIXED_POINT to be
stored as unsigned bytes, rather than as signed words. Note that because of
Ada language rules, arithmetic operations involving these objects is signed.
See Chapter 10 for more information on working with unsigned numbers.

A length representation clause is also useful for controlling the size of
components in packed arrays. For example:

type SMALL INTEGER is new INTEGER range 0..7;
for SMALL INTEGER’SIZE use 4;

type SMALL INTEGER ARRAY is array (1..16) of SMALL INTEGER;
pragma PACK (SMALL_INTEGER_ARRAY) ;

In this example, the range of SMALL_INTEGER and the use of the pragma
PACK would cause the size of each component of SMALL_INTEGER_ARRAY
to be 3 bits. However, the length representation clause causes the size of
each component in the packed array to be 4 bits.

The VAX Ada Language Reference Manual gives complete information on
the use of length representation clauses. Table 2-6 gives information on the
interaction between length representation clauses and the pragma PACK.

2-28 Object Representation and Storage



2.2.3 Enumeration Representation Clauses

Enumeration representation clauses allow you to specify the internal codes
that represent the literals of an enumeration type. When you use an
enumeration representation clause, the storage size of each enumeration
type is the amount of storage required to represent the full range of codes
specified.

For example:

type ANSWER is (YES, NO, UNDECIDED);
for ANSWER use (YES => 0, NO => 8, UNDECIDED => 65535);
MY UNSIGNED ANSWER: ANSWER;

Here, the storage allocated for MY_UNSIGNED_ANSWER is a word. Even
though only three integer codes must be represented, a word (16 bits) is
needed to store values in the range 0..65535.

If any of the internal codes specified by the representation clause are
negative, the representation for the type is signed; otherwise, it is unsigned.
Thus, if you were to redeclare the type ANSWER as follows, the internal
codes would be signed:

type ANSWER is (NO, YES, UNDECIDED)
for ANSWER use (NO => -8, YES=> 0, UNDECIDED => 65535):
MY SIGNED_ANSWER: ANSWER;

Note that the signed representation requires an additional sign bit. To
meet both the range of values (0..65535) and the signed representation, the
storage allocated for MY_SIGNED_ANSWER is a longword.

2.2.4 Record Representation Clauses

Record representation clauses allow you to force a record type to have a
particular representation. Thus, they are useful anytime you need to lay
out an area of memory in a particular way. For example, you can use a
record with a record representation clause to lay out a series of objects in
a particular order. Or, you can use record representation clauses to lay
out record types that declare objects that may be passed to other-language
routines (including VMS system routines and VMS Run-Time Library
routines). In particular, it is good programming practice to specify the
layout of any record that is read from or written to an external file.
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The following example defines a 16-bit mask for specifying the protection
of a file (this definition is taken from the VAX Ada predefined package
STARLET, which also defines the interfaces for various system service and
VMS RMS routines). The mask contains four 4-bit fields, each of which
specifies the protection to be applied to file access attempts by one of the
four categories of user (system, owner, group, world).

—-- Record defining a 4-bit field, each bit
-— representing a level of file protection.
type FILE PROTECTION FLAGS_TYPE is
record
NOREAD : BOOLEAN;
NOWRITE : BOOLEAN;
NOEXE ": BOOLEAN;
NODEL : BOOLEAN;
end record;

for FILE PROTECTION_FLAGS_TYPE'SIZE use 4;
for FILE PROTECTION_FLAGS TYPE use
record
NOREAD at 0 range 0..0;
NOWRITE at 0 range 1..1;
NOEXE at 0 range 2..2;
NODEL at 0 range 3..3;
end record;

pragma PACK (FILE PROTECTION_FLAGS_ TYPE) ;

—-— Record defining a 16-bit mask that determines

-- the kind of file protection for each kind of

-- user; the record representation clause lays

-- out the 4-bit fields so that they are contiguous
—-— half-bytes.

type FILE_PROTECTION REC_TYPE is
record
SYS : FILE_PROTECTION_FLAGS_TYPE;
OWN : FILE_PROTECTION_FLAGS_TYPE;
GRP : FILE_PROTECTIONuFLAGS_TYPE;
WLD : FILE PROTECTION_FLAGS_TYPE;
end record;

for FILE PROTECTION_REC_TYPE use
record
SYS at 0 range 0..3
OWN at 0 range 4..7;
GRP at 1 range 0..3
WLD at 1 range 4..7
end record;

for FILE PROTECTION REC_TYPE'SIZE use 16;
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When declaring record types with variants, you can use record representa-
tion clauses to conserve space. For example:

package ALIGN_VAR is

type SMALL_INT is new INTEGER range 0..7;
for SMALL INT’SIZE use 3;

type VARIANT RECORD (VAR: BOOLEAN) is
record
A: SMALL_ INT;
case VAR is
when TRUE => X: CHARACTER;
Y: SMALL_INT;
when FALSE => Z: SMALL INT;
end case;
end record;

for VARIANT_ RECORD use
record
A at 0 range 0..2;
VAR at 0 range 3..3;
X at 0 range 4..11;
Y at 0 range 12..14;
Z at 0 range 4..6;
end record;

end ALIGN_VAR;

Here, the representation clause on the type VARIANT_RECORD causes the
variant, VAR, to be aligned on a bit boundary; when an object is declared
and a case choice is made, the appropriate component is stored starting on
bit 4 of the word of the storage allocated for the record object. (Without the
representation clause, the variants would be aligned on byte boundaries.)

If you declare a record type with fixed-size components that follow (or are
interspersed with) varying-size components, you will generate slower, less
efficient code than if you declare a record type where all of the fixed-size
components precede the varying-size components. For example:

package SLOW_LAYOUT is
type VARYING ARRAY is array (INTEGER range <>) of BOOLEAN;

type SLOW_RECORD (I,J: INTEGER) is
record
A: INTEGER;
B: VARYING_ARRAY(I..J);
C: INTEGER;
D: VARYING_ARRAY(I;.I);
end record;

SLOW_OBJECT: SLOW_RECORD (1,10);
end SLOW_LAYOUT;
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Here, the layout for the type SLOW_RECORD can be set up by the compiler
only to the point of SLOW_RECORD.B; the rest of the layout and the alloca-
tion of storage for SLOW_OBJECT must be done at run time. Furthermore,
each time you access SLOW_OBJECT.B, the size of SLOW_OBJECT.A must
be calculated, thus decreasing the efficiency of any code that uses SLOW_
OBJECT.

If the logical layout of a record type such as SLOW_RECORD is important,
you can improve the efficiency of your code by declaring the type with

a representation clause that forces the fixed-size components to known
locations. For example:

package NOT_ SO_SLOW_LAYOUT is

type VARYING_ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK (VARYING ARRAY);

type FASTER_RECORD(I,J: INTEGER) is
record
A: INTEGER;
B: VARYING_ARRAY(I..J);
C: INTEGER:;
D: VARYING_ARRAY(I..I);
end record;

for FASTER_RECORD use
record

I at 0 range 0..31;
J at 4 range 0..31;
A at 8 range 0..31;
C at 12 range 0..31;

end record;
FASTER_OBJECT: FASTER_RECORD(l,lO);
end NOT_SO_SLOW_LAYOUT;

Here, FASTER_OBJECT will be laid out so that the components fall in
the following order: I, J, A, C, B, and D. The type representation clause
forces the allocation of the components FASTER_OBJECT.B and FASTER _
OBJECT.D to the end of the record.

Note that when you use a record representation clause to request a very
small storage space for a component of a nonfixed-point discrete type, the
record component value may be biased (its value may be predictably altered).
When biasing occurs, the value stored is the unsigned quantity formed by
subtracting COMPONENT_SUBTYPE' FIRST from the original value.
(Because subtraction or addition is required to assign or fetch from the
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component storage location, the generated code uses slightly more machine
time than the unbiased form.)

Thus, in the following example, the values of R.C will be biased to allow
them to be stored in the 2 bits required by the record representation
clause (without the record representation clause, they would be stored as
longwords):

subtype S is INTEGER range 100..103;
type R is
record
cC : S;
end record;
for R use
record
C at 0 range 0..1;
end record;

O : R;

0.C := 100;

2.2.5 Alignment Clauses

When you use a record representation clause to define the layout of a
particular record type, you have the option of specifying an alignment clause
to determine the alignment of all record objects (including record objects that
are components) of that type. The VAX Ada Language Reference Manual
gives the syntax and rules for using alignment clauses.

In VAX Ada, records can be aligned on any byte address that is a power of 2,
up to 512 (or 29). Thus, in the following fragment, the value of ALIGN_AT
could be any integer in the series 1, 2, 4, 8, ..., 512. A value of 1 indicates
byte alignment, a value of 2 indicates word alignment, and a value of 512
indicates page alignment.

type SMALLNUM is new INTEGER range 0..7;
for SMALLNUM’SIZE use 3;

ALIGN_AT: constant := 2;

type ALIGNED RECORD is
record
Al: BOOLEAN;
A2: SMALLNUM;
end record;
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for ALIGNED_RECORD use
record at mod ALIGN_AT;
Al at 0 range 0 .. O;
A2 at 0 range 1 .. 3;
end record;

type SHOW ALIGNMENT is
record
sS1,82,83: ALIGNED_ RECORD;
end record;

In this example, the components of the record SHOW_ALIGNMENT are
aligned on 2-byte (word) boundaries, and the record SHOW_ALIGNMENT
itself is aligned so that its component alignment can be observed. If the
value of ALIGN_AT were 16, then the components of the record SHOW_
ALIGNMENT would be aligned on 16-byte boundaries.

If you were to declare an array of components of the type ALIGNED_
RECORD, and apply the pragma PACK to the array (which would be legal
because the components of ALIGNED_RECORD are packable, and the
record could have a compile-time size of less than 32 bits), the pragma would
have no effect because the alignment clause interacts with the pragma.

VAX Ada places some restrictions on the possible alignments, depending
on how objects of an aligned type are allocated (see Chapter 13 of the
VAX Ada Language Reference Manual for a list of the restrictions). For
example, a record object declared in a subprogram will be stack allocated,
and thus can be aligned only at mod 1, 2, or 4 (it can be only byte-, word-,
or longword-aligned). To force another alignment, you would have to declare
the record type and object in a library package (it would then be statically
allocated, and there would be no restrictions). Alternatively, you could
declare an access type that designates the record; the designated object
would be dynamically allocated, and, again, there would be no restrictions.
See Section 2.3 for more information on dynamic storage allocation.

Alignment clauses can be useful in a mixed-language environment, where
you may want to force objects to particular boundaries. Note, however,
that the VAX hardware generally requires very little alignment; only a

few instructions and VMS Run-Time Library routines need alignments (for
example, queue and interlocked instructions). VAX Ada currently generates
very few interlocked instructions.
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2.2.6 Address Clauses

In VAX Ada, address clauses allow you to store objects (constants and
variables) at specific memory locations. Thus, you can use address clauses
to precisely map memory areas and overlay memory areas during program
execution. Chapter 13 of the VAX Ada Language Reference Manual gives the
syntax and rules for using address clauses; in particular, note the following
rules or effects:

e A program that uses address clauses to overlay two or more Ada objects
is erroneous.

e  When you declare an object with an address clause, the usual implicit or
explicit initialization associated with the type of the object is performed.
Thus, access values are initialized to null, and record components may
also receive initial values.

When you declare an object without an address clause, the compiler chooses
an appropriate location for storing the object. However, when you specify
an address clause, the compiler does not check that the address you have
specified is appropriate. Thus, when you use address clauses, you need to be
sure that you choose values that are meaningful in the VMS environment.

One way to obtain a meaningful value is to use the VMS Run-Time Library
routine LIB§GET_VM to obtain a storage location. Example 2-1 is a
complete procedure showing the use of an address clause to overlay an

Ada record object onto storage allocated by LIBSGET_VM. The VMS RTL
Library (LIB$) Manual describes LIBSGET_VM in more detail. For general
information on the VMS environment (including information on VMS virtual
address space), see the VAX Hardware Handbook.
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Example 2-1: Using an Address Clause and LIB$GET_VM

with CONDITION_HANDLING; use CONDITION HANDLING;
with SYSTEM; use SYSTEM;

with INTEGER_TEXT_IO; use INTEGER TEXT IO;

with TEXT IO; use TEXT IO;

with LIB;

procedure USE_ADDRESS CLAUSE is

—- Declare a record for which storage will be allocated
—-- by the VMS Run-Time Library routine LIB$GET VM; and
-- freed by LIBSFREE_VM.

subtype STRING_14 is STRING(1l..14);

type OBJ_REC is

record
A: CHARACTER;
B: INTEGER;

C: STRING_14;
end record;

—-- Declare the values needed to be passed to LIB$GET VM and
-— LIBSFREE_VM.

NUM_BYTES: constant INTEGER := OBJ_REC’MACHINE_ SIZE/8;
BASE_ADDR: ADDRESS;

STATUS: COND_VALUE_TYPE;

begin
-- Allocate the storage for a record of type OBJ REC.

LIB.GET_VM (STATUS, NUM_BYTES, BASE_ADDR) ;
if not CONDITION_HANDLING.SUCCESS (STATUS)
then
PUT_LINE("Failed to allocate memory");
else
PUT ("Address of allocated storage is ");
PUT(TO_INTEGER(BASE_ADDR));
NEW_LINE;
end if;

-- Declare an object of type OBJ_REC, and place it at the
—-- storage location obtained with LIB$GET VM using an
—- address clause.
declare
OBJECT: OBJ_REC;
for OBJECT use at BASE_ADDR;
O: STRING_14 := "Time for fun..";

(continued on next page)
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Example 2-1 (Cont.): Using an Address Clause and LIBSGET_VM

-- Do some useful work with the record object, and
-— then free the storage by calling LIBSFREE_VM.

begin
OBJECT := (A => 'A’, B => 5, C => "Summer is a...");
PUT_LINE (OBJECT.C) ;
OBJECT.C := O;
PUT_LINE (OBJECT.C) ;
end;

LIB.FREE VM (STATUS, NUM BYTES, BASE_ADDR);
end USE_ADDRESS_CLAUSE;

2.2.7 Determining the Sizes of Types and Objects

VAX Ada provides a number of methods for determining how much storage
has been allocated for particular types and objects:

¢ You can use the predefined attributes T’ SIZE and T MACHINE_SIZE
to determine the number of bits used and allocated for a given type or
object.

¢ You can use the /WARNINGS=COMPILATION_NOTES qualifier on
any of the compilation commands (DCL ADA and ACS COMPILE and
RECOMPILE) to determine how record types and so on have been laid
out.

* You can use the debugger (after compiling and linking your program) to
examine the sizes of your variables.

The first of these methods is discussed in this section; the other two are
described in Developing Ada Programs on VMS Systems.

As indicated by its name, the predefined SIZE attribute returns information
on the size of a type or an object (see Chapter 13 of the VAX Ada Language
Reference Manual). When using this attribute, note the following differences
in the values it returns:

e T/SIZE (where T represents a type) returns the minimum number of
bits needed to represent an object of the type.

¢ O'SIZE (where O represents an object) returns the actual number of
bits used for the object’s current value.
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The minimum number of bits and the actual number of bits can often be
quite different. For example, given the following declaration, the value of
BOOL17’ SIZE will be 1:

type BOOL17 is new BOOLEAN;

One bit is the minimum amount of storage required for an object of the type
BOOL17. Even if you used a representation clause to declare BOOL17, as

in the following declaration, the value of BOOL17’ SIZE will still be 1; when
applied to types, the SIZE attribute is not affected by representation clauses:

type BOOL17 is new BOOLEAN;
for BOOL17’/SIZE use 17;

The VAX Ada attribute T MACHINE_SIZE provides similar information for
a type or subtype that O’ SIZE provides for an object. Table 2—-7 summarizes
the differences between T’ SIZE, O’ SIZE, and T MACHINE_SIZE.

Table 2-7: Comparison of SIZE and MACHINE_SIZE Attribute Results
Type or Subtype T’ SIZE O’ SIZE T’ MACHINE_SIZE
Discrete or fixed-point ~ Minimum number Actual number of Total number of
without length clause of bits needed to bits used by O. If bits allocated for
represent an object of O is not a record an object of the
the type or subtype T.  or array component subtype. Result is
or is unpacked, the the actual number of
result is the same as bits used, rounded
the T MACHINE_ up to an 8-, 16-, or
SIZE result for O’s 32-bit boundary;
subtype. If O is a representation is

packed component, the signed.
result is the number

of bits needed so that
components can be

packed as tightly as

possible.

(continued on next page)
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Table 2-7 (Cont.):

Comparison of SIZE and MACHINE_SIZE Attribute Results

Type or Subtype T’ SIZE O’ SIZE T’ MACHINE_SIZE
Discrete or fixed-point ~ Minimum number Actual number of bits  Total number of
with length clause of bits needed to used by O; length bits allocated for an

All other types, with or
without length clauses

represent an object of
the type or subtype T.

Minimum number

of bits needed to
represent an object of
the type or subtype T.

clause determines
upper bound (except if
O is a component of a
record specified with a
component clause).

Actual number of bits
used by O.

object of the type or
subtype T. Result is
the actual number of
bits used, rounded
up to an 8-, 16-, or
32-bit boundary;
representation can
be unsigned.

Total number of
bits allocated for an
object of the type T.
Result is the actual
number of bits used,
rounded up to a byte
boundary.

Note that the T MACHINE_SIZE of a base type can be equal to or greater
than the T’ SIZE of the same base type. The T' MACHINE_SIZE of a base
type can also be less than the T’ SIZE of a first named subtype that has an
associated size representation clause. Consider the following declarations:

type INT8 is range 0..255;
for INT8’SIZE use 8;

I: INTS:;

An examination of INT8 and I produces the following results:

INT8’ SIZE

INT8* MACHINE_SIZE

I SIZE

INT8' BASE’ SIZE
INT8’ BASE' MACHINE_SIZE

8
8
8
16
16

The number of bits needed to represent the specified range values symmet-
rically about 0 is 16, so that INT8’ BASE' SIZE is 16. This value is greater
than the values of INT8- MACHINE_SIZE, INT8’ SIZE, and I' SIZE. Note
that the values of INT8 MACHINE_SIZE and I’ SIZE are equal, as they

should be.
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Table 2-8 gives a set of results for a variety of interesting cases.

Table 2-8: Results of Size Attributes for Various Types and Objects

Declaration and Attributes Number of Bits

type BOOL17 is new BOOLEAN;
for BOOL17’ SIZE use 17;

B: BOOL17;
Type BOOL17" SIZE 1
Object B’ SIZE 17
Type BOOL17’ MACHINE_SIZE 32
Type BOOL17’ BASE’ SIZE 1
Type BOOL17" BASE’ MACHINE_SIZE 32

type ET is range 0..255;
for ET' SIZE use 8;
E: ET;

Type ET” SIZE
Object E’ SIZE

Type ET MACHINE_SIZE

Type ET" BASE’ SIZE

Type ET” BASE’ MACHINE_SIZE

O 00 00 O

et

type NET is new ET range 0..7;
NE: NET;

Type NET' SIZE
Object NE’ SIZE

Type NET” MACHINE_SIZE

Type NET” BASE' SIZE

Type NET” BASE’ MACHINE_SIZE

O 0 00 W

-t

type NT is new INTEGER range 0..255;
for NT' SIZE use 8;
N:NT;

(continued on next page)
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Table 2-8 (Cont.): Results of Size Attributes for Various Types and
Objects

Declaration and Attributes Number of Bits

Type NT' SIZE
Object N” SIZE

Type NT* MACHINE_SIZE

Type NT” BASE' SIZE

Type NT’ BASE’ MACHINE_SIZE

B DN 00 0o Co

w W

C: CHARACTER;

Type CHARACTER' SIZE

Object C’ SIZE

Type CHARACTER’ MACHINE_SIZE

Type CHARACTER’ BASE’ SIZE

Type CHARACTER’ BASE’ MACHINE_SIZE

@ 3 0 03

type BIT_ARRAY is array (1..10) of
BOOLEAN;

pragma PACK (BIT_ARRAY);

BA: BIT_ARRAY;

Type BIT_ARRAY’ SIZE 10
Object BA’ SIZE 10
Type BIT_ARRAY’' MACHINE_SIZE 16
Type BIT_ARRAY' BASE' SIZE 10
Type BIT_ARRAY’ BASE’' MACHINE_SIZE 16

2.3 Storage Allocation and Deallocation

To make efficient use of storage from your VAX Ada programs, you need

to know how and where objects are stored. You also need to know how
and when objects, particularly objects designated by access types, are
deallocated. The following sections give information on both of these topics.
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2.3.1 Storage Allocation

The VAX Ada compiler stores objects in registers, on a stack, in static
memory, or in dynamic memory (on the heap) depending upon the objects’
size, when their size is known, their type, how long their lifetimes are, and
how they are used.

If you take the address of an object (O’ ADDRESS), an implicit pragma
VOLATILE is assumed for the object within the scope of the subprogram or
task where the address is taken. Within that scope, the object is guaranteed
to be allocated at a unique memory location, regardless of where the object
is declared. If the object is also declared within that scope, the object is
allocated in memory for the duration of the object’s lifetime; the object
receives a unique memory address, and keeps that address from the time it
is elaborated until the time when its containing scope is left. See Chapter 10
for more information on working with address values. See the VAX Ada
Language Reference Manual and Chapter 8 for more information on the
pragma VOLATILE.

If you have specified an object with an IMPORT_OBJECT, EXPORT_
OBJECT, or PSECT_OBJECT pragma, the object is initialized each time it
is elaborated. See the VAX Ada Language Reference Manual and Chapter 5
for more information on these pragmas.

The compiler always stores objects created by allocators in dynamic memory.
In accordance with Ada language rules, the dynamic memory allocated for
each access type is structured as a collection. A collection is a memory area
that comes into existence when the access type is elaborated, and goes out
of existence when the scope containing the access type is left. Each time

an allocator is evaluated, storage for the resulting object is allocated from
the collection belonging to the corresponding access type. There is some
CPU overhead involved both when the collection is allocated and when the
collection is deallocated (see Section 2.3.2 for more information on storage
deallocation).

By default, no storage is initially allocated for a collection; storage is
allocated as needed, until all virtual memory is depleted. You can change the
default behavior with a length clause (see the VAX Ada Language Reference
Manual). See Section 2.1.7 for more information on the representation and
allocation of objects of access types.

You may be able to improve the efficiency of your program by carefully
sizing the collections allocated for access types. When you use a length
representation clause (T STORAGE_SIZE) to specify the sizes of access type
collections, choose values that will be integrally related after they have been
rounded up to a number of pages (T STORAGE_SIZE specifies the number
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of bytes to be used for a collection; in VAX Ada, this number is rounded up to
an integral number of 512-byte pages). For example, values of 512*4, 512*8,
and 512*12 are better than values of 512*2, 512*7, and 512%13. There is no
common denominator for 2, 7, and 13, but there is a common denominator
for 4, 8, and 12.

This practice will result in reduced fragmentation of memory; also, when
you free several collections (implicitly) at scope exit, the freed storage will
most likely be in blocks large enough to be useful for other collections.

2.3.2 Storage Deallocation

VAX Ada does not provide garbage collection. However, there are at least
two ways in which you can deallocate objects of access types:

* Make use of the fact that the collection associated with an access
type is automatically deallocated when the end statement of the scope
containing the access type is encountered.

¢ Instantiate the language-defined generic procedure UNCHECKED_
DEALLOCATION and call the instantiation to explicitly deallocate
the storage for an object designated by a value of an access type (see
Chapter 13 of the VAX Adae Language Reference Manual for the syntax
of UNCHECKED_DEALLOCATION).

When you call an instantiation of UNCHECKED_DEALLOCATION,
storage is deallocated for the object within the collection allocated for the
access type. Thus, the effect of using UNCHECKED_DEALLOCATION
is to conserve the use of the collection, rather than to deallocate the
collection for general use by your program.

Note that the collections for access types declared in library packages are
not deallocated until the entire program has completed executing. The only
way you can conserve the use of such storage is to use an instantiation of
the procedure UNCHECKED_DEALLOCATION.

Example 2-2 shows a main program that depends on an access type declared
in a library package. The program uses an instantiation of the procedure
UNCHECKED_DEALLOCATION to deallocate the storage for the access
type.
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Example 2-2: Using UNCHECKED_DEALLOCATION to Control Access
Type Storage Deallocation

-—- Package containing declarations of access type and

—-— corresponding deallocation procedure. Collection size is
-— set using a length clause, to simulate a limited-storage
-- application.

with UNCHECKED DEALLOCATION;
package ACCESS_TYPES is

type LIST ELEMENT CLASS is (HEAD,ELEMENT) ;
type LIST_ELEMENT (CLASS: LIST ELEMENT CLASS);
type LIST ELEMENT PTR is access LIST ELEMENT;
for LIST ELEMENT PTR’STORAGE_SIZE use 4*512;
type LIST ELEMENT (CLASS: LIST ELEMENT_ CLASS) is
record
NEXT: LIST ELEMENT_ PTR;
case CLASS is
when ELEMENT => ELEMENT VALUE: INTEGER;
when HEAD => HEAD VALUE: INTEGER := 0;
end case;
end record;

procedure FREE ELEMENT is
new UNCHECKED_DEALLOCATION(LIST_ ELEMENT,
LIST_ELEMENT_ PTR);

end ACCESS_TYPES;

-- Main program that demonstrates how a collection can be used up
-— quickly: the main program creates a 65-element linked list

-— (including the header); the block inside the program creates an
-- array of tasks, which, in turn, create linked lists of various
~- lengths. If the access types used by the tasks were declared
-- only in the block, the storage would be deallocated at the end
-- of the block. Because the types are declared in a library

-- package used by both the main program and the block, the

—-- collection for the access type is maintained until the main

-- program finishes and exits. Unchecked deallocation must be

—- used instead to conserve use of collection storage.

with INTEGER_TEXT IO; use INTEGER TEXT IO;
with ACCESS_TYPES; use ACCESS_TYPES;
procedure CONTROL_STORAGE is

(continued on next page)
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Example 2-2 (Cont.): Using UNCHECKED_ DEALLOCATION to Control

Access Type Storage Deallocation

Procedure to create and initialize a unidirectional linked
list of integers; the parameter to the procedure determines
the list length.

procedure MAKE LIST (Y : in INTEGER) is

HEAD ELEMENT: LIST ELEMENT PTR := new LIST ELEMENT (HEAD) ;
THIS_ELEMENT, NEXT ELEMENT: LIST_ELEMENT PTR;
N : INTEGER := Y;

begin

—- Create and initialize values of list, starting at the
-—- first element.

THIS_ELEMENT := HEAD ELEMENT;
for I in 1..N loop
THIS_ELEMENT.NEXT := new LIST ELEMENT’ (CLASS => ELEMENT,
NEXT => null,
ELEMENT VALUE => I);
THIS ELEMENT := THIS_ELEMENT.NEXT;
end loop;

—- Do something with the linked list...and then deallocate
-- the storage.
loop
THIS_ELEMENT := HEAD ELEMENT.NEXT;
exit when THIS_ELEMENT = null;
HEAD_ELEMENT.NEXT := THIS ELEMENT.NEXT;
FREE ELEMENT (THIS ELEMENT) ;
end loop;

end MAKE_LIST;

begin

—— Create (and deallocate) the list for the main program.

MAKE_LIST(64) ;

(continued on next page)
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Example 2-2 (Cont.): Using UNCHECKED_ DEALLOCATION to Control
Access Type Storage Deallocation

—-- Concurrently, create (and deallocate) a series of
-- varied-length lists used by an array of tasks.
INNER BLOCK:
declare
task type USE_SPACE is
entry NUM ELEMENTS (X : in INTEGER);
end USE_SPACE;

type TASK_ARRAY is array (1..10) of USE_SPACE;
SPACE_ARRAY: TASK ARRAY;

task body USE_SPACE is
begin
accept NUM ELEMENTS (X : in INTEGER) do
MAKE_LIST(X) ;
end;
end ‘USE_SPACE;

begin
for I in SPACE_ARRAY'RANGE loop
SPACE_ARRAY (I) .NUM_ELEMENTS (I) ;
end loop;
end INNER BLOCK;

end CONTROL_STORAGE;
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Chapter 3

Input-Output Facilities

Although VAX Ada allows you to invoke VMS input-output system services
and VMS Record Management Services (RMS) directly (see Chapters 5

and 6), for most applications it is not necessary to do so. The VAX Ada
predefined input-output packages provide a rich and comprehensive set of
file operations, and each input-output package is tailored for operations on a
specific kind of file.

VAX Ada predefines the following packages:

SEQUENTIAL_IO
DIRECT_IO
RELATIVE_IO
INDEXED_IO
SEQUENTIAL_MIXED_IO
DIRECT_MIXED_IO
RELATIVE_MIXED_IO
INDEXED_MIXED_IO
TEXT_IO

Of these, the packages SEQUENTIAL_IO, DIRECT IO, and TEXT IO are
predefined by the Ada language; the rest are predefined by the VAX Ada
implementation. All of the package specifications, as well as explanations of
the operations provided by each package, are presented in Chapter 14 of the
VAX Ada Language Reference Manual.

The VAX Ada predefined packages and their operations are implemented
using VMS RMS file organizations and facilities. This chapter describes the
implementation and explores some of its implications.
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The information in this chapter is based on the information in Chapter 14 of
the VAX Ada Language Reference Manual. You should also be familiar with
VMS RMS file organizations and access methods, know how to work with
VMS file specifications and directories, and be familiar with the VMS File
Definition Language (FDL).

If you need introductory information on VMS file specifications and
directories or FDL, see the Guide to VMS File Applications. For more
information about VMS RMS and VMS RMS services, see the VMS Record
Management Services Manual; for more information on FDL, see the VMS
File Definition Language Facility Manual.

3.1 Files and File Access

3-2

To input and output data to and from an Ada program, you must first
associate the file objects in your program with external files. All of the VAX
Ada input-output packages supply CREATE and OPEN procedures that
allow you to make this association:

¢ Each CREATE procedure creates a new external file and then associates
a file object with it.

* Each OPEN procedure associates a file object with an existing external
file.

Thus, in the following example, EXTERNAL_FILE.TXT is created only once,
but it is associated with both file objects ONE_FILE and ANOTHER_FILE
at different points in the procedure:
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with TEXT IO; use TEXT IO;
procedure MAKE FILES is

ONE_FILE: FILE TYPE;
ANOTHER_FILE: FILE_TYPE;
begin

-— Create EXTERNAL FILE.TXT and associate it with
-- the file object ONE_FILE.

CREATE (FILE => ONE_FILE,
NAME => "EXTERNAL FILE.TXT");

-- Close EXTERNAL FILE.TXT and disassociate it with
-- the file object ONE_FILE.

CLOSE (ONE_FILE) ;

—-—- Reopen EXTERNAL FILE.TXT and associate it with
-- a different file object.

OPEN (FILE => ANOTHER_FILE,
MODE => OUT FILE,
NAME => "EXTERNAL FILE.TXT");

end MAKE FILES;

When you create or open a VAX Ada file object, the external file with which
it is associated is a VMS RMS file that has a particular kind of organization
and that allows a particular kind of access. Each element in the file is
associated with a VMS RMS record that has a particular kind of format.

A default organization, access, and record format is determined by the
input-output package that you use to create the file. Depending on the
package, you can change these defaults with a CREATE or OPEN FORM
parameter.

Section 3.3 discusses the FORM parameter and system-dependent external
file attributes in more detail; Sections 3.6.1 through 3.6.4 and 3.7 provide
tables of default attributes for each VAX Ada input-output package.

The following sections summarize how file objects, called Ada files in this
chapter, and external files (VMS RMS files) are related. See Chapter 14 of
the VAX Ada Language Reference Manual for detailed definitions of Ada
files; see the Guide to VMS File Applications for detailed definitions of VMS
RMS file organizations and record formats.
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3.1.1 Ada Sequential Files

An Ada sequential file is a set of file elements occupying consecutive
positions in linear order. Values are transferred in the order in which they
are read or written to the file, and when you open a file, the transfer starts
from the beginning of the file.

You can associate an Ada sequential file with a VMS RMS file of any
organization; the records in the VMS RMS file can have fixed-length,
variable-length, variable-length with fixed-length control (VFC), or stream
format.

The packages SEQUENTIAL_IO and SEQUENTIAL_MIXED_IO provide
sequential access to Ada sequential files.

3.1.2 Ada Direct Files

An Ada direct file is a set of file elements occupying consecutive positions
in linear order. You can transfer values to or from an element of the file at
any selected position. The position of an element is specified by its index,
which is an integer in the range from 1 to 231 — 1 (a value of the subtype
POSITIVE_COUNT). The first element, if any, has an index of 1; the index
of the last element, if any, is called the current size. The current size is zero
if there are no elements.

An open Ada direct file has a current index, which is set to 1 when you
create or open the file. The current index determines which element will be
involved in the next read or write operation.

You can associate an Ada direct file only with a VMS RMS file with sequen-
tial organization; the records in the VMS RMS file must have fixed-length
format.

The packages DIRECT_IO and DIRECT_MIXED_IO provide direct access to
Ada direct files.

3.1.3 Ada Relative Files

34

An Ada relative file is a set of fixed-length cells occupying consecutive
positions in linear order. Cells in a relative file are numbered from 1 to
231 _ 1 (the numbers are values of the subtype POSITIVE_COUNT); the
number of a cell is called its index. The cells in a relative file can either be
empty or can contain fixed- or variable-length elements.
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An open Ada relative file has a current index, which is set to 1 when the file
is created or opened. The current index determines which element will be
involved in the next read or write operation. The concept of size does not
apply to relative files; end-of-file is true if, starting at the current index, all
cells are empty.

You can associate an Ada relative file only with a VMS RMS file with
relative organization; the records in the VMS RMS file can have fixed-
length, variable-length, or variable-length with fixed-length control (VFC)
format.

The packages RELATIVE_IO and RELATIVE_MIXED_IO provide relative
access to Ada relative files.

3.1.4 Ada Indexed Files

An Ada indexed file is a set of file elements that are ordered by predefined
keys. Each element has at least one primary key (numbered 0), and may
have as many as 254 alternate keys (numbered 1 to 254). You define keys
in the form string (in the FORM parameter) when the file is created. The
elements of an indexed file can be accessed by any key.

An open Ada indexed file has a next element, which is the first element
determined by the primary key when the file is first opened; the next
element is redefined after each successful read operation, or it may be reset
to the first sequential element according to the specified key. The concept
of size does not apply to Ada indexed files: end-of-file is true if, starting at
next element in the file, no elements exist.

You can associate an Ada indexed file only with a VMS RMS file with
indexed organization; the records in the VMS RMS file can have fixed-length
or variable-length format.

The packages INDEXED_IO and INDEXED_MIXED_IO provide indexed
access to Ada indexed files.

3.1.5 Ada Text Files

An Ada text file is a sequence of pages, where a page is a sequence of lines,
and a line is a sequence of characters. Characters, lines, and pages are all
numbered starting from 1 and range to 231 — 1 (the numbers are values
of the subtype POSITIVE_COUNT). The number of a character is called
its column number. The line terminator that marks the end of a line has a
column number that is one more than the number of characters in the line.
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The current column number in a text file is the column number of the next
character or line terminator to be read or written. Similarly, the current line
number is the number of the current line, and the current page number is
the number of the current page.

You can associate an Ada text file only with a VMS RMS file with sequential
organization. The records in the VMS RMS file can have fixed-length,
variable-length, or variable-length with fixed-length control (VFC) format.

The package TEXT_IO provides sequential access to Ada text files.

3.2 Naming External Files

3-6

In VAX Ada, you identify external files using VMS file specifications. All of
the VAX Ada input-output packages have CREATE and OPEN procedures
which, in turn, have a NAME parameter that allows you to associate the
name of an external file with a particular file object. The NAME parameter
can have one of two values:

* A string that denotes a VMS file specification or a logical name. If
the value of NAME is a file specification, the Ada file object given by
the FILE parameter in the particular CREATE or OPEN procedure is
associated with an external file named by that specification.

* A null string (the default). If the value of NAME is a null string, then
the external file is a temporary file that is deleted when the file is closed.
Temporary files have no file name; however, they are created using the
file specification SYS$SCRATCH:. To redirect temporary files to another
device, redefine the logical name SYS$SCRATCH to name a different
device. Note that because temporary files are not entered in a directory,
they cannot inherit the file ownership of any directory.

The CREATE and OPEN procedures also have a FORM parameter that
allows you to identify an external file (see Section 3.3). In VAX Ada, the
FORM parameter takes as its value a VMS FDL string or a reference to a
file of FDL statements. By specifying a value for the FDL FILE DEFAULT _
NAME attribute in a CREATE or OPEN FORM parameter, you can give
file specification information that will be used by default if any of that
information is omitted from the string given for the NAME parameter.

Thus, in the following example, the external file will have the specification
SOME_FILE.DAT:
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CREATE (FILE => F,
MODE => OUT_FILE,
NAME => "SOME_FILE",
FORM => "FILE; DEFAULT_NAME ' .DAT'");

The value of the NAME parameter governs, even if you give a value using
the FORM parameter and FDL attributes. For example, if you omit a value
for the NAME parameter and try to specify a complete file name with the
FDL FILE DEFAULT _NAME attribute, the default name is ignored, and the
external file is still a temporary file that is deleted when the file is closed.

You cannot use the FDL FILE NAME attribute to name an external file; a
value specified with that attribute is ignored.

The following sections summarize how to write and use logical names in
place of file specifications. For a full description of file specifications and
logical names, see the VMS DCL Concepts Manual and the Guide to VMS
File Applications.

3.2.1 File Specification Syntax

A file specification identifies an external file or a device on the VMS operat-
ing system. The syntax is as follows:

node: :device: [directory] filename.type;version

node
Is the name of a network node. This element applies only to systems that
are part of a network (systems that support DECnet-VAX).

device

Is the name of the physical device on which the file is stored or is to be
written. The device name is the only part of a file specification that is used
for record-oriented devices (such as printers and card readers).

directory

Is the name of the directory (and any subdirectories) under which the file
is cataloged on the specified device. You must delimit the directory name
with square brackets ([]), as shown in the syntax description, or with angle
brackets (<>). You must use a period to separate a series of directories or
subdirectories within the square or angle brackets. Directory names apply
only to files stored on disk devices (as opposed to files stored on tape).
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filename

Is the name of the file; the maximum length is 39 characters. The allowed
characters are upper- or lowercase letters, digits, underscore (_), hyphen
(~), or dollar sign ($). A file name specification is appropriate only for files
stored on mass storage devices (such as disks and tape).

type
Is the type of the file; the maximum length is 39 characters. The allowed

characters are upper- or lowercase letters, digits, underscore (_), hyphen
(=), or dollar sign ($). The type must begin with a letter or digit. By
convention, the type is an abbreviation that describes the kind of data in
the file. You must use a period to separate the file name and type. A type
specification is appropriate only for files stored on mass storage devices.

version

Is a decimal number that specifies which version of the file is desired.

The version number is incremented by one each time a new version of a
file is created. The maximum version number is 32767. You can refer to
version numbers in a relative manner by specifying 0 as the latest (highest
numbered) version of the file, —1 as the next most recent version, -2 as the
version before that, and so on. You can use either a semicolon, as shown in
the syntax description, or a period to separate type and version. A version
number is appropriate only for files stored on mass storage devices (such as
disks and tape).

The maximum size of a file specification, including all delimiters, is 255
characters.

You do not need to explicitly state all of the elements of a file specification.
If you omit an element, a default value is applied. For more information, see
the VMS DCL Concepts Manual.

You can use VAX Ada form strings (that is, the value of the FORM param-
eter in an input-output package CREATE or OPEN procedure) to further
define or change default file specifications. See Section 3.3.3.

3.2.2 Logical Names

3-8

A logical name is a name that represents a file, directory, or physical
device. Every logical name is paired with an equivalence string (or list of
equivalence strings). An equivalence string is a character string denoting
a full file specification, a device name, or another logical name. Thus,
logical names are a convenient shorthand for file names to which you refer
frequently. See the VMS DCL Concepts Manual and Guide to VMS File
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Applications for complete explanations of logical names and examples of
their use. See also the descriptions of the DCL ASSIGN and DEFINE
commands in the VMS DCL Dictionary or VMS General User’s Manual.

Logical names are maintained by the system in four logical name tables:
your process table, the job table for your process, your group table, and the
system table. These tables are described in the VMS DCL Concepts Manual.

By default, VMS creates a set of logical names for you when you log in.
Table 3-1 lists the predefined names that are most relevant to VAX Ada
input-output.

Table 3-1: Predefined (Default) Logical Names

Table in Which the

Logical Name Name is Stored What the Name Represents

SYS$COMMAND Process Original (first-level) SYS$INPUT
stream.

SYS$DISK Process Default device established at
login or changed by the DCL SET
DEFAULT command.

SYS$ERROR Process Default device or file to which
the system writes error messages
generated by warnings, errors, and
severe errors.

SYS$INPUT Process Default input stream for the
process.

SYS$LOGIN Job Device and directory established at

login time as the home directory for
the process.

(continued on next page)
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Table 3-1 (Cont.):

Predefined (Default) Logical Names

Logical Name

Table in Which the

Name is Stored

What the Name Represents

SYS$NET

SYS$OUTPUT
SYS$SCRATCH

TT
ADASINPUT

ADASOUTPUT

Process

Process
Job

Process

Determined by user

Determined by user

The source process that invokes

a target process in DECnet-VAX
task-to-task communication. When
opened by the target process,
SYS$NET represents the logical
link over which that process can
exchange data with its partner.
SYS$NET is defined only during
task-to-task communication. (Task-
to-task communication refers to
tasks that are VMS images running
in the context of a process, not Ada
tasks.) )

Default output stream for the
process.

Default device and directory to
which temporary files are written.

Default device name for terminals.

Default device or file from which
Ada TEXT_IO input is read;
SYSS$INPUT if not defined by
the user.

Default device or file to which

Ada TEXT_IO output is written;
SYS$OUTPUT if not defined by the
user.

The names SYS§COMMAND, SYS$ERROR, SYS$INPUT, and SYS$OUTPUT
represent process-permanent files (files that are open for the life of your
process). They have different equivalence strings associated with them
depending on whether they are used interactively, in a batch job, or in a
command procedure. You can also redefine them. The VMS DCL Concepts
Manual explains and demonstrates the use of these names; Table 3—2 shows
the source of the equivalence strings associated with them.

Note that you can achieve asynchronous input-output in tasking programs
by defining the logical names ADASINPUT and ADA$OUTPUT so that they
refer to nonprocess-permanent files; for example, by defining ADA$INPUT
and ADASOUTPUT so that they refer to TT, you can achieve asynchronous
terminal input-output. See Section 3.9.2 for more information.
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Table 3-2: Equivalence Strings for Default Logical Names for Process-
Permanent Files

Interactive Batch
Logical Name Mode! Mode! Command Procedure!
SYS$COMMAND  Terminal Disk Terminal
SYS$INPUT Terminal Disk Disk
SYS$ERROR Terminal Log file Terminal
SYS$OUTPUT Terminal Log file Terminal

INote the following definition of terms: terminal means the device name of your terminal; disk
means the batch input or command file; and log file means the batch job log file.

3.3 Specifying External File Attributes

The CREATE and OPEN procedures in the VAX Ada input-output packages
all have a FORM parameter that allows you to specify the system-dependent
attributes of an external file. Most of the time you will not need to use the
FORM parameter when you create or open a file because each input-output
package assumes certain attributes for the external file by default (see
Section 3.3.3). In fact, you never need to specify a value for FORM when you
open an existing file. You do need to specify it under the following conditions
when you create a file:

* With a relative or direct file where the item by which the input-output
package is instantiated is unconstrained, you must specify the maximum
size of the file elements (records) in bytes.

* With a relative mixed-type or direct mixed-type file, you must specify the
maximum size of the file elements (records) in bytes.

* With an indexed file, you must specify information about the primary
and any alternate keys.

The value of the FORM parameter must be a VMS FDL string, or it must be
a reference to a file of FDL statements.

FDL is a special-purpose language that is written as an ordered sequence
of file attribute keywords (sometimes called FDL statements) and their
associated values. These keywords and values determine the characteristics
of external files. By using an FDL string (or a reference to a file of FDL
statements) as the value of the FORM parameter in a CREATE or OPEN
input-output operation, you can give your file any of the VMS RMS
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attributes available in FDL, and you thereby supersede the default file
attributes of your input-output package (see Section 3.3.3).

If you are not familiar with FDL, see the Guide to VMS File Applications;
it introduces FDL and shows how to design files using the Edit/FDL
Utility. See the VMS File Definition Language Facility Manual for complete
information about FDL, including specific definitions of the FDL statements.
The following sections summarize the FDL concepts and statements that
you need to know to specify file attributes in VAX Ada FORM parameters.

3.3.1 The VMS File Definition Language (FDL): Primary and Secondary
Attributes

FDL statements—whether in an FDL file or in a VAX Ada form string—
specify predefined VMS RMS file attributes. Primary attributes take a single
value or represent a group of related, or secondary, attributes, which also
take values. Most of the primary attributes that have secondary attributes
do not themselves take a value. Table 3-3 lists the available primary and
secondary attributes.

Table 3—-3: FDL Primary and Secondary Attribute Descriptions
Primary
Attribute Function Secondary Attributes
TITLE Primary attribute gives a title to None
the FDL file.
IDENT Primary attribute gives the None
date and time of creation of the
FDL file, and specifies the name
of the creating utility (either
Edit/FDL or Analyze/RMS_File).
SYSTEM Primary attribute takes no DEVICE, SOURCE, TARGET
value.

Secondary attributes give system
identification information.

(continued on next page)
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Table 3-3 (Cont.):

FDL Primary and Secondary Attribute Descriptions

Primary
Attribute Function Secondary Attributes
FILE Primary attribute takes no ALLOCATION,

value.

Secondary attributes determine
file characteristics: its default
name, owner, organization,
protection, and revision; what
will happen when it is opened
or closed; whether or not data
checking will be done when the
file is read or written; what
kind of processing is allowed;
how much space is allocated for
the file, and whether or not the
space is contiguous; and so on.

Secondary attributes also allow
specification of magnetic tape
file operations. Some FILE
secondary attributes have
corresponding AREA secondary
attributes.

BEST_TRY_CONTIGUOUS,
BUCKET_SIZE, CLUSTER_SIZE,
CONTEXT, CONTIGUOUS,
CREATE_IF, DEFAULT NAME,
DEFERRED_WRITE,
DELETE_ON_CLOSE,
DIRECTORY_ENTRY,
EXTENSION, FILE_MONITORING,
GLOBAL_BUFFER_COUNT,
MAXIMIZE_VERSION,
MAX_RECORD_NUMBER,
MT_BLOCK_SIZE,
MT_CLOSE_REWIND,
MT_CURRENT _POSITION,
MT_NOT_EOF,
MT_OPEN_REWIND,
MT_PROTECTION,

NAME, NON_FILE_STRUCTURED,
ORGANIZATION,

OUTPUT _FILE_PARSE, OWNER,
PRINT_ON_CLOSE,
PROTECTION, READ_CHECK,
REVISION, SEQUENTIAL_ONLY,
SUBMIT_ON_CLOSE,
SUPERSEDE, TEMPORARY,
TRUNCATE_ON_CLOSE,
USER_FILE_OPEN,
WINDOW_SIZE, WRITECHECK

(continued on next page)
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Table 3-3 (Cont.):

FDL Primary and Secondary Attribute Descriptions

Primary
Attribute Function Secondary Attributes
DATE Primary attribute takes no BACKUP, CREATION,
value. EXPIRATION, REVISION
Secondary attributes specify
dates and times for backup,
creation, expiration, and revision
of the file. In general, the only
secondary attribute that can
be routinely and safely set is
EXPIRATION; the others should
be set by the system, and thus
are not useful in an Ada FORM
parameter.
RECORD Primary attribute takes no BLOCK _SPAN,
value. CARRIAGE_CONTROL,
Secondary attributes specify CONTROL_FIELD,
the characteristics of records FORMAT, SIZE
in the file: their size; the kind
of carriage control; and their
format.
ACCESS Primary attribute takes no BLOCK_IO, DELETE, GET, PUT,
value. RECORD_IO, TRUNCATE, UPDATE
Secondary attributes specify
the file-processing operations
allowed on the file.
NETWORK Primary attribute takes no BLOCK_COUNT
value. LINK_CACHE_ENABLE
Secondary attributes set run- LINK_TIMEOUT
time network access parameters. NETWORK_DATA_CHECKING
SHARING Primary attribute takes no DELETE, GET, MULTISTREAM,
value. PROHIBIT, PUT, UPDATE,
Secondary attributes specify USER_INTERLOCK

whether or not multiple readers
or writers can concurrently
access the file.

(continued on next page)
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Table 3-3 (Cont.):

FDL Primary and Secondary Attribute Descriptions

Primary
Attribute Function Secondary Attributes
CONNECT Primary attribute takes no ASYNCHRONOUS, BLOCK_IO,

value.

Secondary attributes specify
run-time attributes that are
application dependent and
related to record access and
performance.

BUCKET IO, CONTEXT,
END_OF_FILE, FAST DELETE,
FILL_BUCKETS,
KEY_GREATER_EQUAL,
KEY_GREATER_THAN,
KEY_LIMIT,
KEY_OF_REFERENCE,
LOCATE_MODE, LOCK_ON_READ,
LOCK_ON_WRITE,
MANUAL_UNLOCKING,
MULTIBLOCK_COUNT,
MULTIBUFFER_COUNT, NOLOCK,
NONEXISTENT_RECORD,
READ_AHEAD,
READ_REGARDLESS,
TIMEOUT_ENABLE,
TIMEOUT_PERIOD,
TRUNCATE_ON_PUT,
TT_CANCEL_CONTROL_O,
TT_PROMPT,
TT_PURGE_TYPE_AHEAD,
TT_READ_NOECHO,
TT_READ_NOFILTER,
TT_UPCASE_INPUT,
UPDATE_TF,
WAIT_FOR_RECORD,
WRITE_BEHIND

(continued on next page)

Input-Output Facilities 3-15



Table 3-3 (Cont.): FDL Primary and Secondary Attribute Descriptions
Primary
Attribute Function Secondary Attributes
AREA Primary attribute takes an ALLOCATION,
integer value in the range 0 to BEST_TRY_CONTIGUOUS,
254, which identifies the area in BUCKET_SIZE, CONTIGUOUS,
an indexed file. (Multiple areas EXACT_POSITIONING,
must have a separate AREA EXTENSION, POSITION,
section defined for each.) VOLUME
Secondary attributes specify
characteristics of the area: how
much space is allocated; whether
or not the space is contiguous;
positioning of the area; the
volume on which the area will
reside, and so on.
Most AREA secondary at-
tributes have corresponding
FILE secondary attributes.
KEY Primary attribute takes an CHANGES, COLLATING_SEQUENCE,
integer value in the range 0 to DATA_AREA,DATA_FILL,
254, which gives the number DATA_KEY_COMPRESSION,
of a key in an indexed file; the DATA_RECORD_COMPRESSION,
primary key number must be 0. DUPLICATES, INDEX_AREA,
Secondary attributes specify the INDEX_COMPRESSION,
characteristics of keys in the INDEX_FILL, LENGTH,
indexed file. LEVEL1_INDEX_AREA, NAME,
NULL_KEY, NULL_VALUE,
POSITION, PROLOG,
SEGn_LENGTH,
SEGn_POSITION, TYPE
ANALYSIS_OF_ Result of using Analyze/RMS_ RECLAIMED_SPACE
AREA File Utility; will appear only in
FDL files that describe indexed
files. Neither primary nor
secondary attributes are useful
in an Ada FORM parameter.
(continued on next page)
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Table 3-3 (Cont.): FDL Primary and Secondary Attribute Descriptions
Primary

Attribute Function Secondary Attributes
ANALYSIS_OF_ Result of using Analyze/RMS_ DATA_FILL,

KEY File Utility; will appear only in DATA_KEY_COMPRESSION,

FDL files that describe indexed
files. Neither primary nor
secondary attributes are useful
in an Ada FORM parameter.

DATA_RECORD_COMPRESSION,
DATA_RECORD_COUNT,
DATA_SPACE_OCCUPIED,
DEPTH,
DUPLICATES_PER_SIDR,
INDEX_COMPRESSION,
INDEX_FILL,
INDEX_SPACE_OCCUPIED,
LEVEL1_RECORD_COUNT,
MEAN_DATA_LENGTH,
MEAN_INDEX_LENGTH

When using FDL to specify the attributes of an Ada external file, observe
the following FDL rules. Any FDL errors occurring in a FORM parameter
will raise the Ada predefined exception USE_ERROR.

* The primary attributes must appear in the order shown in Table 3-3.

¢ Each attribute string (primary or secondary) constitutes an FDL
statement, and must be terminated with a semicolon. In the following
example, RECORD, FORMAT FIXED, and SIZE 120 are three separate

FDL statements:

-— Create SOME_FILE.DAT with fixed record format and

-—- a record size of 120 bytes.

CREATE (FILE => MY_FILE,
MODE => OUT_FILE,

NAME => "SOME_FILE.DAT",

FORM => "RECORD; FORMAT FIXED; SIZE 120;"):

The exclamation point is the comment character in FDL, and anything
following it is ignored. For example:

-- Create SOME_FILE.DAT with 80-byte records.

CREATE (FILE => MY FILE,
MODE => OUT_FILE,

NAME => "SOME_ FILE.DAT",
FORM => "RECORD; SIZE 80;

180-byte records"):;
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¢ Each FDL statement can represent only one primary or secondary
attribute and its associated value. Each statement can have no more
than 132 characters (including blanks). To format your program without
adding extra blanks to the form string, use the Ada catenation operator
(&) to break up the form string into individual statement strings. Thus,
you could rewrite the preceding example as follows:

CREATE (FILE => MY FILE,
MODE => OUT_FILE,
NAME => "SOME FILE.DAT ",

FORM => "RECORD; " &
"FORMAT FIXED; " &
"SIZE 120;" ) ;

* If you are working with an indexed file that has two or more AREA
primary attributes, they must follow one another in numerical order.

¢ If you are working with an indexed file that has two or more KEY
primary attributes, they must follow one another in numerical order.
In addition, any SEGn secondary attributes must follow one another in
numerical order, and the SEGn numbers must be dense. In other words,
if you use SEG3 to label a key segment, then segments SEG0, SEG1,
and SEG2 must also exist.

* Keywords can be truncated to their shortest unique abbreviations, and
strings must be enclosed either in a pair of apostrophes (’ ‘) or a pair of
double quotation marks (" ). Note that Ada based integers or integers
with underscores are not legal FDL syntax.

In addition to allowing you to specify file attributes directly in a form string,
VAX Ada also allows you to give a reference to an FDL file using a VMS
file specification. The specification must be preceded by an at sign (@). For
example:

—-— Create SOME FILE.DAT with specifications declared in
-- the FDL file FILE_ATTRIBUTES.FDL.
CREATE (FILE => MY FILE,

MODE => OUT FILE,

NAME => "SOME FILE.DAT",

FORM => "@FILE ATTRIBUTES.FDL");

1l

An advantage of being able to give a reference to an FDL file is that you can
use the Edit/FDL Utility to construct the FDL file. The utility is designed to
help you choose file attributes that will help optimize the efficiency of your
program. In particular, the utility is helpful in tuning indexed files. For
example, it can plot graphs to help you determine appropriate bucket sizes
for specific indexed files. See the Guide to VMS File Applications for more
information on the Edit/FDL Utility and file design.
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Table 3—4 describes the primary and secondary FDL attributes that you will
be most likely to use in a VAX Ada program, and gives their default values.
For convenience, primary attributes are shown in boldface type; secondary
attributes are shown in regular type and indented. The intent of the table is
to provide a quick reference and to summarize information presented in the
VMS File Definition Language Facility Manual; see that manual for details.

As shown in the table, the value assigned to an attribute can take one of the
following forms:

Switch

Keyword

Integer
String

A logical value, set to TRUE, YES, FALSE, or NO. TRUE (or YES)
sets the attribute; FALSE (or NO) clears it. (You can also use the
abbreviations T, Y, F, and N for TRUE, YES, FALSE, and NO.)

An actual word that you must type (in either upper- or lower-
case) after the attribute name. You can truncate a keyword to its
shortest unique abbreviation.

A decimal integ