PDP-10
SYSTEMS USER’'S GUIDE

August 1968

Order No. DEC-10-NGCB-D from Program Library, Maynard Mass. Price $10.00

Direct comments concerning this manual to Software Quality Control, Maynard, Mass.

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

Printed in U.S.A.

Ist Printing November 1967
2nd Printing June 1968
Revised Printing August 1968

Copyrighf@ 1968 by Digital Equipment Corporation

Instruction times, operating speeds and the like are in-
cluded in this manual for reference only; they are not to
be taken as specifications.

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CONTENTS

INTRODUCTION

DEMONSTRATION

DECTAPE EDITOR (EDITOR)

TEXT EDITOR AND CORRECTOR (TECO)]
MACRO-10 ASSEMBLER (MACRO)
FORTRAN IV COMPILER (F40)

LINKING LOADER (LOADER)

FORTRAN LIBRARY
FORTRAN OPERATING SYSTEM (FORSE.)
SCIENTIFIC SUBROUTINES

JOB DATA AREA (JOBDAT)

FILE UPDATE GENERATOR (FUDGE2)
DYNAMIC DEBUGGING TECHNIQUE (DDT)
CROSS-REFERENCE LISTING (CREF)
GLOBAL SYMBOL CROSS-REFERENCE LIST (GLOB)
PERIPHERAL INTERCHANGE PROGRAM (PIP)
DECTAPE FORMAT CONVERTER (CONVRT)
CODE TRANSLATOR (CODE)

SOURCE COMPARE (SRCCOM)

BINARY COMPARE (BINCOM)

ALGEBRAIC INTERPRETIVE DIALOGUE (AID)
DESK CALCULATOR (DESK)

BATCH PROCESSOR (BATCH)

JOB STACKER (STACK)

SYSTEM BUILDER (BUILD)

TIME-SHARING MONITORS
FOR TIME-SHARING MONITORS
FOR SINGLE-USER MONITORS

MONITORS
TIME-SHARING MONITORS
SINGLE-USER MONITORS

APPENDICES
ASSEMBLY INSTRUCTIONS FOR CUSP SOURCES

| INTRODUCTION

ORGANIZATION

PDP-10 software can be generally divided into eight functional groupings with respect to

common programming activities. These are:

1. Source Program Preparation;
Conversational Language Translators;
Program Loading and Library Facilities;
Debugging;

Utilities;

Calculators;

Batch Processing; and

0 N o W N

Monitoring.

This Guide is arranged according to the above order.

Source Program Preparation (EDITOR, TECO)

The DECtape Editor and the Text Editor and Corrector (TECO) programs can be used to create (and later
correct or modify) text files (e.g., Macro-10 and FORTRAN source language programs) for subsequent
assembly or compilation. Editor creates and modifies files on DECtape; TECO performs more complex
editing functions on any standard 1/O devices.

Conversational Language Translators (MACRO, F40)

The Macro-10 Assembler (MACROQ) and the FORTRAN Compiler (F40) translate source programs written
in the Macro-10 and FORTRAN |V languages, respectively, into binary machine language for subsequent
loading and execution.

Program Loading and Library Facilities (LOADER, LIB40, JOBDAT, FUDGE2)

Loading is performed by the Linking Loader, which takes specified relocatable binary programs, loads
them in core, links their references to each other, and searches the appropriate subroutine libraries
(e.g., LIB40) for required subroutines. A job data area (JOBDAT) is created by the Loader for each
program; this area is used to store the current status of the job during execution. Library files of binary
programs can be updated when desired by use of the File Update Generator (FUDGE2).

INTRO-1

Debugging (DDT, CREF, GLOB)

Once a program is compiled (or assembled), it can be loaded along with the Dynamic Debugging Tech-
nique (DDT) program and debugged. DDT allows the user to control program execution and to modify

his program in any of several modes, including symbolic. For purposes of further program analysis (and
for documentation), the user can elect to use the Cross Reference Listing (CREF) program, which produces
a cross-referenced listing of all symbols within his Macro program, and the Global Cross-Reference
Listing (GLOB) program, which produces one to three helpful listings of all global symbols encountered
in one or more programs.

Utilities (PIP, CONVRT, CODE, SRCCOM, BINCOM)

Digital provides a variety of utility programs for general purpose data handling. Among these programs
are: the Peripheral Interchange Program (PIP), which transfers data between any standard 1I/O devices;
DECtape Format Converter (CONVRT), which converts DECtapes from the old PDP-6 format to the new
PDP-10 format (or vice versa); Code Translator (CODE), which performs translations between standard
ASCII codes and code of other manufacturers; Source Compare (SRCCOM), which compares two versions
of an ASCII file; and Binary Compare (BINCOM), which compares two versions of a binary file.

Calculators (AID, DESK)

Two easy-to-use problem solving calculators for scientists and engineers are included as part of the
PDP-10 software: the Algebraic Interpretive Dialogue (AID), a problem solving calculator which is
based upon the famous RAND JOSS]algebraic language; and Desk Calculator (DESK), which provides
immediate access to common arithmetic subroutines.

Batch Processing (BATCH, STACK)

The Batch Processor (BATCH) supervises the sequential execution of a series of user jobs with a minimum

of operator attention, operates as one of the "users" in a time-sharing environment and runs concurrently
with the Batch-controlled jobs (as well as other jobs on the system), and permits constant communication by
the operator. Job Stacker (STACK) prepares input stacks for BATCH and processes output stacks from BATCH

Monitors

PDP-10 software includes five separate Monitors, ranging from the single-user 10/10 Monitor, designed
for an 8K paper tape system, to the swapping time-sharing 10/50 Monitor, designed for the 32K (and
larger) disk systems. In between these are the single-user 10/20 Monitor for an 8K DECtape system, the
single-user 10/30 Monitor for larger systems, and the time-sharing 10/40 Monitor for 16K (and larger)
multiprogramming systems. System Builder (BUILD) is used to construct a Monitor specifically designed
for the user's machine configuration and other requirements.

1
JOSS is the trademark and service mark of the RAND Corporation for its computer program and services
using that program.

INTRO-2

SYSTEM OPERATION

Communication with the Monitor and loading and executing Digital-supplied Common User Service
Programs (CUSP's), as well as your own programs, is a simple matter once you become familiar with a

few basic rules.

To establish communication with the Monitor, you place your Teletype in Monitor mode by entering the

Monitor command mode. Generally, this is accomplished by typing #C (i.e., by holding down the

CTRL key while striking "C") . Monitor responds with a period (.) and you can then direct Monitor to
foad and start a program from the System Library (.RUN prog), start a program already loaded in core
(.START), discontinue your job (.KJOB), and many other operations.

All CUSP's supplied by Digital are device independent. Because of this, you must tell the CUSP, via

a command string typein, which devices to use. Readiness to receive a command string is signalled by

the CUSP via an asterisk (*) typeout after loading. For example, when you have called in the FORTRAN

IV Compiler and it has responded with an asterisk, you would type in a command string indicating (m

the device containing the source program to be compiled, (2) the device on which the binary output is

to be placed, and (3) the device on which the compilation listing is to be written:
*binary-output-device, listing-device @——source-device

Devices are specified by a 3-character device name (a fourth character, a digit, specifies the particular

unit in the case of DECtapes and magnetic tapes) followed by a colon.

Card reader CDR:
Line printer LPT:
Paper tape reader PTR:
Paper tape punch PTP:
Teletype TTY:
DECtape DTAn:
Magnetic tape MTAnR:
Disk DSK:

For file—oriented devices (DECtape and disk), a filename is also required following the device name to
specify either the specific file to be read or the filename to be assigned to the output. A filename can
consist of a maximum of six characters. A filename can be further specialized by adding a 3-character
extension name to it, preceded by a period (.). Extension names are generally used to classify a file
into a particular category and certain standard extensions are used and recognized throughout the system
(e.g., .REL for relocatable binary files, .DMP for saved core image files, etc.). A sample FORTRAN

command string might appear as follows.

INTRO=-3

DTAT:BIN.REL,LPT: @— DTA0:SOURCE Compile the file called "SOURCE" on
DECtape 0; write the binary output on
DECtape 1, calling it "BIN.REL"; print
the listing on the line printer.

INTRO-4

COLOR CODE CONVENTIONS

All computer typeouts are printed in dark blue.

All operator typeins are printed in black.

SYMBOLOGY USED IN CONSOLE EXAMPLES

fcC
px
Shown in This

Key Designation Manual as: Method of Entry 1
AR
(not-TAPE) QT Hold down CTRL key while striking "T.
TAB) (horizontal) —| or {1 Jold down CTRL key while striking "I
AL
VD (vertical tab) aK
?a
XOFF s
Q—
or

] "Method of Entry" is for Models 33 and 35 Teletypes primarily. On the Model 37 Teletype, many of
the special symbols appear on the keyboard and are easily entered.

INTRO-5

-

A

>

INE-FEED
RUBOUT

'On the Model 37 Teletype, this key is labeled DELETE.

INTRO=-6

DEMONSTRATION

The following example is designed to demonstrate the ease of operation and flexibility of a PDP-10 soft-
ware system. Basically, this particular sequence involves the compilation of a FORTRAN source program,
the assembly of a Macro-10 subprogram written in conjunction with the FORTRAN program, the loading
and linking of the two resultant machine language programs, their execution and correction under control
of the Dynamic Debugging Technique (DDT) program, correction of the original source coding, and a
final rerun of the corrected programs. Several errors have been purposely introduced in the source coding
to demonstrate the ease with which testing, debugging, and updating of programs is accomplished. The
- procedure for detaching from the current job, logging in and beginning a second job, and then returning
to the original job is also illustrated.

DEMO-1

FLOW CHART

USER LOGS IN HIS
{DENTIFICATION TO
MONITOR AND IS
ASSIGNED A JOB
NUMBER

'

FORTRAN IX¥
COMPILATION
(SOURCE STATEMENTS
ARE INPUT FROM THE
CARD READER)

'

GENERATION OF MACRO
SOURCE SUBPROGRAM ON
DECTAPE VI A TEXT
EDITOR AND CORRECTOR
(TECO)PROGRAM

:

MACRO-10 ASSEMBLY OF
SUBPROGRAM

DETACH FROM u0B 1

ATTACH TO JOB 1

USER LOGS IN
AS JOB 2

:

START CROSS REFERENCE
LISTING ON LINE
PRINTER VIA CREF

'

ERRORS DETECTED IN SOURCE CODING

CREF CONTINUES AS
USER RETURNS TO JOB 1

TRANSFER MACRO
ASSEMBLER BINARY OUTPUT
FROM DtSK TO DECTAPE
CONTAINING FORTRAN
QUTPUT

CORRECT MACRO SOURCE
SUBPROGRAM VIA TECO

:

A

LOAD DYNAMIC
DEBUGGING TECHNIQUE
(DDT), FORTRAN AND
MACRO BINARY OUTPUT

DEMO-2

REASSEMBLE CORRECTED
SOURCE SUBPROGRAM;
BINARY OUTPUT WRITTEN
ON DISK

®

®

®

©

©)

©
'

EXECUTE FORTRAN IV
@ PROGRAM AND MACRO

obT)

SUBPROGRAM (WITHOUT

ERRONEOUS OUTPUT

@ SAVE CORRECTED
PROGRAM ON DECTAPE

DEBUG, CORRECT, AND
EXECUTE (ALL PERFORMED
UNDER DDT)

'

@ {VIA PERIPHERAL

LIST DECTAPE DIRECTORY

INTERCHANGE PROGRAM)

'

@ SUBPROGRAM VIA TECO

FOUND DURING DDT
EXECUTION

UPDATE MACRO SOURCE

BY CORRECTING ERRORS

l RERUN SAVED PROGRAM

® |

TERMINATE JOB 1

ATTACH TO JOB 2

® [

@ |

TERMINATE JOB 2

DEMO-3

CONSOLE OPERATION

@ .LOGINY

JOB 1 DEC 3.16K 4

12,4

JEDH)

0426 1-27-68 ¢
fcy

@ -ASSIGN LPTy

LPT ASSIGNED,)
.ASSIGN CDR
CDR ASSIGNED,
.ASSIGN DTA DT
DTAO ASSIGNED,

-R F40,y

*DT:ARRIVE, LPT: @— CDR:)

MAIN.ERRORS DETECTED: 04
TOTAL ERRORS DETECTED: 0y
9K CORE USED Y

Ry

The user begins by identifying himself to the system.
Monitor assigns the user a job number (JOB 1) and
types the version of the Moniter currently in use
(DEC 3.16K). User then responds by typing his
project-programmer number (12,4) and his password
(typed over a mask generated by Monitor). Monitor
indicates acceptance of number and password by
responding with the current time and date and $C,

User assigns the line printer (LPT) and the card reader
(CDR) to his job (both are nonsharable devices). He
also requests that an available DECtape also be as-
signed and given the logical name "DT". Monitor
responds by assigning an available DECtape, DTAOQ,
to the job. At this point, the user mounts his DEC-
tape on DECtape unit 0, places his FORTRAN source
program deck in the card reader, and checks that
both the card reader and printer are in o ready status.

NOTE: If the user is operating from o remote Tele-
~ type, he can transmit appropriate instruc-
tions to the console operator's Teletype via
the Monitor TALK command.

Directs the Monitor to load and execute the FOR-
TRAN IV compiler.

The compiler responds with an osferisk when loaded.

At this point, the user instructs the compiler to (1)
read the source program deck from the card reader

(= CDR:); (2) place the binary output on his DECtape
and assign it a filename of "ARRIVE" (DT:ARRIVE);

and (3) print the compilation listing on the line

printer (LPT:).

NOTE: A listing of the FORTRAN source program
deck is presented in Figure DEMO-1,

The compiler completes the compilation and types the
number of errors detected and amount of core used and
an * to indicate it is ready to do another compilation.
Since the user has no further compilations at this

time, he returns to the Monitor command level { £C).

NOTE: The FORTRAN compilation listing is shown
in Figure DEMO-2.

DEMO-4

- DEASSIGN LPT)
- DEASSIGN CDRYJ

@ .R TECOY

*ITITLE RANDOM NUMBER GENERATING SUBROUTINE J
SUBTTL CHARLIE PROGRAMMER 27 JAN 1968y

;AIgANDOM NUMBER GENERATING SUBROUTINE,
® v
*I;THE FORTRAN CALLING SEQUENCE 1S --/
CALL RANDOM(ARG)
WHERE ARG SPECIFIES THE LOCATION AT WHICH THE RESULTING ¥
; SINGLE PRECISION FLOATING POINT RANDOM NUMBER WILL BE J
; STORED. NUMBERS PRODUCED BY THIS ROUTINE ARE "PSEUDO-4
RANDOM NUMBERS" BUT ARE UNIFORMLY DISTRIBUTED OVER[0, 1].,)

OJOP]

4
“INTERNAL RANDOM

4

7

ACX=5 ;ACCUMULATOR ¥
ACY=6 ; SYMBOLIC y
ACZ=ACY+I ; DEFINITIONS.

DEMO-5

OO

*IRANDOM: 0 ;ENTERED BY JSA 16 ,RANDOM ¥
CALL ACX, [SIXBIT/TIMER] ;GET TIME IN CLOCK TICKS. 4
ANDI ACX,3 ;USE TIME TO SELECT 1-4 ITERATIONS.

oJor:

*IRLOOP: ~ MOVE ACY,RNUMBR ;FETCH PREVIOUS PSEUDO-RANDOM NUMBER. 5
MUL ACY,MAGIC ;MULTIPLICATIVE RANDOM NUMBER GENERATOR.
MOVEM ACZ,RNUMBR ;SAVE NEXT PSEUDO-RANDOM NUMBER. o/
SOJGE ACX,RLOOP ;ITERATE AGAIN ? 4

OO

*] LSH ACZ,-D8 ;CONVERT TO FLOATING POINT FORMAT ¥
TLO ACZ, 20000 ; IN THE RANGE[0,1] .2
FADRI ACZ,0 ;NORMALIZE. 4
MOVEM ACZ/@(16) ; STORE RESULT, AND - - 4
JRA 16,1(16) ;FH*RETURN . *%%)

®© ®4

g
*1;THE MULTIPLIER USED IN THIS PSEUDO-RANDOM NUMBER GENERATOR IS 5 RAISED Y
; TO THE 15TH POWER (SEE COMPUTER REVIEWS VOL. 6, NO. 3, REVIEW NUMBER Y

; 7725, AND THE REFERENCED PAPER IN JACM JAN'65 PP83-89).

ﬁ(/\AGIC: 5%5%555% 545555554 54555454555 THE MULTIPLIER ./

RNUMBR: 1 ;THE NEXT RANDOM NUMBER IS ALWAYS HERE
;(THE ITERATION STARTS FROM A VALUE OF 1). 4

Sarch BLOCK 10 ;PATCHING SPACE.y

d END,

® ©

*HT

OF
TITLE RANDOM NUMBER GENERATING ... 4
SUBTTL CHARLIE PROGRAMMER ... J
etc.
PATCH: BLOCK 10 ;PATCHING 4
ENDyY

DEMO-6

*BJSNTERNAL ®-7Cc11®-L2T4

OIOF!
INTERNAL RANDOM 4
+sppg3 (321 @QoT® ®y

. 7725, AND THE REFERENCED PAPER IN JACM JAN '65 PP 83-89. 4
*EWDT:RANDOM.MAC ® PWEF® ® »

“BCy

@ .R MACROyY

*DSK:BIN, /C 9— DT:RANDOM.MACH

A 000001/040240 000026' CALL ACX,[SIXBIT/TIMER])
;GET TIME IN CLOCK TICKS.J

THERE 1S 1 ERROR y
PROGRAM BREAK IS 000027y
5K CORE USEDy

.DETACHR

.LOGINJ

JOB 2 DEC 3.16K))
12, 4)

AEDF

0458 1-27-68)
ch

DEMO-7

.R CREFQ

9cl)

,CCONT)

ATTACH 1, (12, 4))

@.RTEco; o

*ERDT:RANDOM .MAC$YBJS/TIMER ® I/ ® oLT &) ®
CALL ACX,[SIXBIT/TIMER/];....I)

*EWDT:RANDOM.MAC ® PWEF® ® J

oy

*DSK:BIN, LPT:@— DT:RANDOM.MAC }

THERE ARE NO ERRORS
PROGRAM BREAK IS 000027,
5K CORE USED,)

+8c))

@ R PIPY

*DT:RAN.REL @— DSK:BIN.REL g

DEMO-8

*%J

.R LOADER 7)

*/D DT:RAN, ARRIVE 2

LOADER)
EXITy
#cy

@ .STARTY

RANDOM INTER-ARRIVAL TIME GENERATOR. ..,
TYPE MEAN WAITING TIME PLEASE: 100.04
NOW TYPE NUMBER OF SAMPLE TIMES DESIRED:10 4

d prints instruc-
|

a nt 100 ~ned
e OF Uy anda

I

0.77751067E+04,
0.78527278E+044
0.78476048E+04 4
0.78677823E+044/
0.78103187E+044
0.77700529E+04,
0.
0.
0.
0.

I

77733533E+04y
77725470E+04 4
80251919E+04y
77787954E+04

Il

Il

I
I
I
I
I
I
I
I
I
I

TYPE MEAN WAITING TIME PLEASE:?CJ Since the program has obviously produced incorrect
results (the output is far from random and conspicu~
ously in the wrong range), the user returns fo the

Monitor command level.

DEMO-9

.DDT,;
$

RANDOMS: »
RLOOP+5/44TLO ACZ,20000-5TLO ACZ,2000004 '+

MAIN.$: 4

12P+11$T/ ED:'$ "/ED: / (UNE FEED) J
12P+12/) "/ '8)/

RANDOM INTER-ARRIVAL TIME GENERATOR FOR POISSON PROCESSES ¢
TYPE MEAN WAITING TIME PLEASE: 100.0 ¢
NOW TYPE NUMBER OF SAMPLE TIMES DESIRED: 104

.13360079E+03 4
.83559460E+01 g
.48267604E+038
.12974962E+00 8
.12997161E+03g
.10218452E+03
.18005033E+03 8
.20455130E+024
.40742972E+024
.39184699E+01g

L = I I I
T T T TR TR TR
lcNoNeoNoNoNoNeNoNeoNe

1l

TYPE MEAN WAITING TIME PLEASE:?C& Results appear to be correct this time. The user re-

turns to the Monitor command level.

@ -SAVE DT:ARRIVE 7 ¢4 The user directs Monitor to save the core image of
his corrected program on his DECtape, calling the
saved file ARRIVE (the file extension ,SAV is auto-
matically appended) He specifies that 7K of core is

JOB SAVEDQ to be used any time this program is run. After the
image file has been written, Monitor automatically
cy
returns to the command level.

DEMO-10

@.R PIP

*TTY:@—DT:/L ¢
426. FREE BLOCKS LEFT ¢

ARRIVE . REL 27-JAN-684

RANDOM .MAC 27-JAN-68p

RAN.REL 27-JAN-68

ARRIVE, SAV 27-JAN-68¢
ORL

R TECOZ

*ERDT:RANDOM . MAC(®YBJS520000®100LT® J

TLO ACZ,200000 ; IN THE RANGE[O,I].J
*EWDT:RANDOM.MAC ® PWEFO®3

-RUN DT:ARRIVE §

RANDOM INTER-ARRIVAL TIME GENERATOR FOR POISSON PROCESSES ¢
TYPE MEAN WAITING TIME PLEASE: 50E+1g
NOW TYPE NUMBER OF SAMPLE TIMES DESIRED: 44

I
[eNeNeNe)]

.57171754E+03 3
.90873993E+03 ¢
.49264013E+03 g

.
:
r
T = 0.22028286E+03 3

TYPE MEAN WAITING TIME PLEASE: 4 Ccg

.ATTACH 2 [12, 4])
OF S

00.30

DEMO-11

N ocOn O0N00O0O0O0O0n

aANO O OO 0O

SAMPLE PROGRAM -~ CHARLIE PROGRAMMER 27 JAN 1968

THIS PROGRAM GENERATES RANDOM INTER-ARRIVAL TIMES FOR
A "POISSON PROCESS" WITH ANY DESIRED MEAN INTER-ARRIVAL
TIME. (THE INTER-ARRIVAL TIMES FOR. POISSON PROCESSES

ARE THEORETICALLY KNOWN TO HAVE AN EXPONENTIAL
PROBABILITY DISTRIBUTION.)

TYPE 9
FIRST ACCEPT THE MEAN INTER-ARRIVAL TIME FROM THE
USER (VIA HIS TELETYPE CONSOLE).
TYPE 10
ACCEPT 11, TMEAN
NEXT LET THE USER SIMILARLY SPECIFY THE NUMBER OF
RANDOM SAMPLES HE WANTS PRODUCED.
TYPE 12
ACCEPT 13,N
ITERATE AS MANY TIMES AS REQUESTED --
DO 7 I=1,N
USE MACROX-CODED SUBROUTINE TO PRODUCE A UNIFORMLY
DISTRIBUTED RANDOM VARIABLE, R, IN THE RANGE [0,1].
CALL RANDOM(R)
TRANSFORM TO AN EXPONENTIALLY DISTRIBUTED RANDOM VARIABLE .
T = -TMEAN*ALOG(R)
TYPE OUT RESULTING INTER-ARRIVAL TIME --
TYPE 14,7
LET THE USER REPEAT ENTIRE PROGRAM WITH NEW VALUES.
GO TO 6
FORMAT(' RANDOM INTER-ARRIVAL TIME GENERATOR
1 FOR POISSON PROCESSES'//)

FORMAT(* TYPE MEAN WAITING TIME PLEASE: 'S)
FORMAT(E)
FORMAT(' NOW TYPE NUMBER OF SAMPLE TIMES DESIRED: '$)
FORMAT(I)
FORMAT(' T =',E15.8)

END

Figure DEMO-1 FORTRAN Source Program Deck

DEMO-12

ARRIVE 1/27/67 17:18

C SAMPLE CHARLIE PROGRAMMER 27 JAN 1968
C
C THIS PROGRAM GENERATES RANDOM INTER-ARRIVAL TIMES FOR
C A "POISSON PROCESS" WITH ANY DESIRED MEAN INTER-ARRIVAL
C TIME. (THE INTER-ARRIVAL TIMES FOR POISSON PROCESSES
C ARE THEORETICALLY KNOWN TO HAVE AN EXPONENTIAL
C PROBABILITY DISTRIBUTION.)
C
TYPE 9
M MOVEI 01,9p
ouT. o0,777777
FIN. 00,0
C FIRST ACCEPT THE MEAN INTER-ARRIVAL TIME FROM THE
C USER (VIA HIS TELETYPE CONSOLE).
6 TYPE 10
6P MOVEI 01,10p
ourT. 01,777777
FIN. 00,0
ACCEPT 11, TMEAN
MOVEI 01,11pP
IN. 01,777774
DATA. 02, TMEAN
FIN. 00,0
C NEXT LET THE USER SIMILARLY SPECIFY THE NUMBER OF
C RANDOM SAMPLES HE WANTS PRODUCED.
TYPE 12
MOVEI 01,12
our. 01,777777
FIN. 00,0
ACCEPT 13,N
MOVEI 01,13P
IN. 01,777774
DATA. 00,N
FIN. 00,0
C ITERATE AS MANY TIMES AS REQUESTED --
DO 7 1=1,N
MOVEL 15,1
2M MOVEM 15,1
3M BLOCK 0
C USE MACROX-CODED SUBROUTINE TO PRODUCE A UNIFORMLY
C DISTRIBUTED RANDOM VARIABLE, R, IN THE RANGE [0,11.
CALL RANDOM(R)
JSA 16,RANDOM
ARG 02,R
C TRANSFORM TO AN EXPONENTIALLY DISTRIBUTED RANDOM VAIRABLE.
= -TMEAN* ALOG(R)
JSA 16,ALOG
ARG 02,R
FMPR 00, TMEAN

MOVNM 00,7

C TYPE OUT RESULTING INTER-ARRIVAL TIME --
7 TYPE 14,T
7pP MOVEI 01,14P
OuT. o1,777777
DATA. 02,7
FIN. 00,0
CAMGE 15,N
ADJA 15,3M
C LET THE USER REPEAT ENTIRE PROGRAM WITH NEW VALUES.
GO TO 6
JRST 6P
9 FORMAT (' RANDOM INTER-ARRIVAL TIME GENERATOR
1 FOR POISSON PROCESS'//)
oP JRST 4M
ASCII (' RA
ASCII NDOM
ASCII INTER

Figure DEMO-2. FORTRAN Compilation Listing

DEMO-13

ASCII -ARRI

ASCII VAL T
ASCII IME G
ASCII ENERA
ASCII TORF
ASCIHI OR PO
ASCIL 1SSON
ASCII PROC
ASCII ESSES
ASCII /)
4M BLOCK 0
10 FORMAT(' TYPE MEAN WAITING TIME PLEASE: '$)
10P JRST 5M
ASCII (TY
ASCII PE ME
ASCIHI AN WA
ASCII ITING
ASCII TIME
ASCII PLEA
ASCII SE:
ASCII '$)
5M BLOCK 0
11 FORMAT(E)
1p JRST 6M
ASCII (E)
6M BLOCK 0
12 FORMAT(* NOW TYPE NUMBER OF SAMPLE TIMES DESIRED:'S)
12p JRST 7M
ASCII (* NO
ASCII wTYP
ASCII E NUM
ASCII BER O
ASCII F SAM
ASCII PLET
ASCII IMES
ASCII DESIR
ASCII ED:'S
ASCII)
7M BLOCK 0
13 FORMAT(I)
13p JRST 8M
ASCII M
8M BLOCK 0
14 FORMAT('T =',6E15.8)
14p JRST oM
ASCII T
ASCII ='E
ASCII 15.8)
oM BLOCK 0
END
JSA 16, EXIT
MAIN . % RESET. 00,0
JRST M
SUBPROGRAMS
FORSE.
RANDOM
ALOG
FLOUT.
FLIRT.
INTO.
INTI.
EXIT
SCALARS
TMEAN 115
N 116
I 17
R 120
T 121

Figure DEMO-2 (Cont.) FORTRAN Compilation Listing

DEMO-14

RANDOM NUMBER GENERATING SUBROUTINE MACROX V003 17:46 27-JAN-68 PAGE 1
TITLE RANDOM NUMBER GENERATING SUBROUTINE
SUBTTL CHARLIE PROGRAMMER 27 JAN 1968
;RANDOM NUMBER GENERATING SUBROUTINE
;THE FORTRAN CALLING SEQUENCE IS --
; CALL RANDOM(ARG)
;WHERE ARG SPECIFIES THE LOCATION AT WHICH THE RESULTING
;SINGLE-PRECISION FLOATING POINT RANDOM NUMBER WILL BE
;STORED. NUMBERS PRODUCED BY THIS ROUTINE ARE "PSEUDO-
iRANDOM NUMBERS" BUT ARE UNIFORMLY DISTRIBUTED OVER [0,11.
INTERNAL RANDOM
000005 ACX=5 ;ACCUMULATOR
000006 ACY=6 ; SYMBOLIC
000007 ACZ=ACY+1 ; DEFINITIONS.
000000 000000 000000 RANDOM: 0 ;ENTERED BY JSA 16,RANDOM
000001 040240 000026' CALL ACX, [SIXBIT/TIMER/] ;GET TIME IN CLOCK TICKS.
000002 405240 000003 ANDI ACX,3 ;USE TIME TO SELECT 1-4 ITERATIONS.
000003 200300 000015' RLOOP: MOVE ACY ,RNUMBR ;FETCH PREVIOUS PSUEDO-RANDOM NUMBER.
000004 224300 000014' MUL ACY,MAGIC ;MULTIPLICATIVE RANDOM NUMBER GENERATOR.
000005 202340 000015" MOVEM ACZ,RNUMBR ;SAVE NEXT PSUEDO-RANDOM NUMBER.
000006 365240 000003 SOJGE ACX,RLOOP ;ITERATE AGAIN ?
000007 242340 777770 LSH ACZ,-1D8 ;CONVERT TO FLOATING POINT FORMAT
000010 661340 020000 TLO ACZ,20000 ; IN THE RANGE [0,1].
000011 145340 000000 FADRI ACZ,0 ;iNORMALIZE.
000012 202376 000000 MOVEM ACZ,@ (16) ;STORE RESULT, AND --
000013 267716 000001 JRA 16,1(16) 5 *** RETURN, ***
;THE MULTIPLIER USED IN THIS PSUEDO-RANDOM NUMBER GENERATOR IS 5 RAISED
; TO THE 15TH POWER (SEE COMPUTER REVIEWS VOL. 6, NO. 3, REVIEW NUMBER
; 7725, AND THE REFERENCED PAPER IN JACM JAN'65 PP 83-89).
000014 343277 244615 MAGIC: 5*5*5*5*5%5*5*5*5%5+5%5%5%5+5 . THE MULTIPLIER.
000015 000000 000001 RNUMBR: 1 ;THE NEXT RANDOM NUMBER IS ALWAYS HERE
i(THE ITERATION STARTS FROM A VALUE OF 1).
000016 PATCH: BLOCK 10 ;PATCHING SPACE.
END
000026 645155 456200
THERE ARE NO ERRORS
PROGRAM BREAK 1S 000027
RANDOM NUMBER GENERATING SUBROUTINE MACROX V003 17:46 27-JAN-68 PAGE 2
SYMBOL TABLE
ACX 000005
ACY 000006
ACZ 000007
MAGIC 000014'
PATCH 000016"
RANDOM 000000’ INT
RLOOP 000003’
RNUMBR 000015"
5K CORE USED

Figure DEMO-3 Macro-10 Assembly Listing

DEMO-15

DECTAPE EDITOR (EDITOR)

FUNCTION To create, add to, or delete from sequentially

numbered source files recorded in lines of ASCII

characters on a DECtape .]

® Provides a simple method of creating or
modifying Macro or FORTRAN 1V source

programs
ENVIRONMENT
Monitor All
Minimum Core 1K
Additional Core Not used.
Equipment One DECtape unit for the reel containing the file(s) to be
Required modified.

]Editor edits the sourcefile; i.e., the input and output files are the same. Fresh source files have editing
space in each physical DECtape block. If the user has more edits for a block than will fit in it, an extra

block in the DECtape is used and appropriately linked to the preceding and following logical blocks of
the file.

EDITOR-1

INITIALIZATION

-R EDITOR)

*

COMMANDS

INITIALIZE A FILE FOR PROCESSING

St
Sn,Filencme.efoA

Sn,Filename.exfl}

Sn, filename .ext(ALTMODE

INSERT A LINE

Innnnna

nNNNN Qaad. «..... al

e (RLTMODD))

*

INSERT MULTIPLE LINES
Innnnn, incremenf;
nnnnn qaaa. . .caa;

nnnxx bbbb. . bbby
nnnxx ALTMODE))

*

EDITOR-2

DELETE A LINE

Dnnnnn;

*

DELETE A SERIES OF LINES

Dmmmmm, nnnnn)

*

PRINT A LINE
Pnnnnna

nnnnn aaa.. .OGQR

*

PRINT A SERIES OF LINES

Pmmmmm, nnnnn)

mmmmm aaa. . .QGGQ

r.mnnn bbb. . .bbbg

*

CLOSE THE CURRENT FILE

EQ

*

EDITOR-3

EXAMPLES

.R EDITORQ
*S1,VECTOR(ALTMOD
*120,203

00020 DEFINE VMAG(A,B))
00040< MOVE 0,AQ
00060 FMP 0p

00080 MOVE 1,A+14
00100 FMP 1,19
00120 FAD 14

00140 MOVE 1,A+2p
00160 FMP 1,13
00180 FAD 14

00200 JSR FSQRT Y
00220 MOVEM B p

00240 ALTMODD)

*120)
00020 DEFINE VMAG(A,8,C))

*ILR*Y

*190 9
00090 MOVE 1,Cp

ILS)

*D180,

i anag

e
fine

]

T
1 o0

Delete %i»v e 001
velere jine Uwiou.

EDITOR-4

*P20,220 g

00020 DEFINE VMAG(A,B,C)B
00040 < MOVE 0,AQ
00060 FMP 0Q
00080 MOVE 1,A+1Q
00090 MOVE 1,C)
00100 FMP 1,14
00120 FAD 13
00140 MOVE 1,A+2
00160 FMP 1,14
00200 JSR FSQRTR
00220 MOVEM B))

*E)
Ac,)

.KJOBQ

EDITOR-5

DIAGNOSTIC MESSAGES

Table EDITOR-1 Editor Diagnostic Messages

Message Meaning

?DDE* Device data error due to a write error or WRITE LOCK switch. Editor must be
restarted.

?DEC* DECtape directory is full.

?FAU* A file name assigned to a new file already exists on the DECtape.

?ILC* Illegal command.

ILR The line sequence increment specified for the insert function will cause the

[LS next existing line to be either replaced (R) or skipped (S). This is a warning
message only and does not necessarily indicate an error.

?NCF* Not a current file.

?NFO* A command requiring an active file has been given but no file is currently
open.

PNLN* A print (P) or delete (D) command refers to a nonexistent line.

PUNA* The DECtape specified in an Sn command is assigned to another job.

EDITOR-6

TEXT EDITOR AND CORRECTOR (TECO)!

To edit files recorded in ASCII characters on any

FUNCTION

standard device.

o Performs simple editing functions as well as
highly sophisticated search, match, and
substitute operations

» Operates upon arbitrary length character
strings under contro! of commands which are
themselves character strings (and contains the
mechanisms necessary to exploit this recursive-
ness)

ENVIRONMENT

Monitor All
Minimum Core 4K

Additional Core | Takes advantage of any additional core available. Each 1K
additional core augments the basic 6,200+~ character buffer
by 5K additional characters.2

Equipment One input device and one output device.
Required

1PDP-]O TECO was developed at Project MAC, Massachusetts Institute of Technology. The work of the

following people is acknowledged: Daniel L. Murphy, Stewart Nelson, Jack Holloway, Richard Green-
blatt.

2TECO automatically requests more core to expand its buffer under any of the following situations:

1. An insert by way of the "I" command or "X" (Q Register) will overflow the present memory
boundaries.

2. The command acceptance routine needs more core.

3. The total number of charucters in the Data Buffer falls below 5000, and an input command
from a peripheral device (other than the user console) is executed. Thus, TECO maintains a Data
Buffer of at least 5000 characters.

If TECO is successful at obtaining more core, the following message will be typed:

*10000<1 J$>$$

STORAGE CAPACITY EXCEEDED

1K NEEDED, 5K CORE IN JOB

*

If TECO is unsuccessful at obtaining the core request, the following message is typed:

STORAGE CAPACITY EXCEEDED

11K NEEDED, NOT AVAILABLE
?
*

TECO-1

INITIALIZATION

.R TECOB

*

BASIC COMMANDS

NOTES: When typing command strings to TECO, the following points should be noted.

- One ALTMODE is used to terminate the text within a command string,

where applicable; two successive ALTMODE's terminate the entire com-
mand string sequence and generate a RETURN, LINE-FEED. ALTMODE's

type back as $'s.

RUBOUT - The RUBOUT key can be used to erase the preceding typed-in character(s)
of a command string. Each character erased is echoed back on the Tele-
type (e.g., ABD DC...). Successive RUBOUT's can be used

to erase more than one character.

N.B. To erase a carriage return (which generates RETURN, LINE-FEED),
two RUBOUT's are required, one RUBOUT to erase the LINE-
FEED and one to erase the RETURN.

Two successive £G's (BELL) 's) can be used to wipe out the entire
command string currently being typed.

TECO commands in the form #x (where "x" is any character) can be entered by either holding
down the CTRL key while striking the "x" key or typing up=arrow (shift N) followed by the "x"
character. These alternatives are not true where $x is a character within a text string (such
as in a Search argument); in this case, the CTRL key must be used.

A carriage return, line feed, () is ignored in a TECO command string as long as it does
not appear within a particular command, such as Insert. Examples of this are given on the
following pages.

TECO-2

SELECT THE INPUT DEVICE

ERdev:filename.ext [proi,prog] Selects the input device and file (if specified)
dev: DTAn: ’)
PTR:
DSK:
MTAn:
CDR:
TTYn:

filename.ext (DSK: or DTAn: only)
[proi,prog] (DSK: only)

SELECT THE OUTPUT DEVICE

EWdev:filename.ext [proi,prog] Selects the output device and file (if specified).
EZdev:filename.ext [proi,prog] '

DTAnR:
DSK:
MTAn:
PTP:
LPT:
TTYn:

filename.ext (DSK: or DTAn: only)
[proi,prog] (DSK: only)

EF

MAGNETIC TAPE POSITIONING

EM
nEM

TECO-3

MAGNETIC TAPE POSITIONING (Cont)

one e,

NOTE 1: Throughout TECO, all numbers in command strings are interpreted as decimal.

INPUT COMMANDS

Y Read from current input device into buffer until

TECO-4

OUTPUT COMMANDS

PW

nP

m,nP

Output the entire buffer to the selected output device, with a FORM character appended
as the last character. Do not alter the contents of the buffer or move the pointer.

Equivalent to o PW command followed by a Y command (i.e., output the current contents
of the buffer followed by a FORM character, and then read in more data from the input
device).

If n is specified, repeat this operation n times. If n is omitted, it is assumed to be equal
3 3 i

to 1.

Output the m+1 through the nth character from the buffer to the current output file. Do
not append a FORM character at the end. Do not alter the confents of the buffer or
move the pointer,

EDITING COMMANDS

Move the Pointer

nJ

nC

nR

nL

Delete Text

nD

nK

m,nK

Move pointer to right of the nth buffer character and give the pointer symbol (.} the
value of n, If n is omitted, set pointer in front of the first buffer character (same as

0Jy.

Set the pointer to the right of the nth character beyond the pointer's present position
{equal to .+nJ). Ifn is omitted, T is assumed,

Set the pointer to the left of the nth character prior to the pointer’s present position
(equal to .=nJ). If n is omitted, 1 is assumed.

+n - Move the pointer to the right, stopping affer it has passed over n LINE=-FEED
characters,

-n = Move the pointer to the left, stopping after it has passed over n+1 LINE=-FEED

characters, then move to the right of the last LINE-FEED character passed over,
If n is omitted, assume 1L.

Delete n characters.
+n = Delete them just to the right of the pointer.

~n ~ Delete them just to the left of the pointer,
If n is omitted, 1 is assumed,

n = Move the pointer fo the right, stopping affer it has possed over n LINE-FEED
characters, Delete all characters the pointer posses over,

-n ~ Move the pointer to the left, stopping after it has passed over n+1 LINE-FEED
characters, then move it to the right of the last LINE=FEED character passed over.
Delete all characters between this point and the poinfer's previous position,

If n is omitted, 1 is assumed.

Delete the m+1 through the nth characters of the buffer. Set the pointer where the
deletion occurred.

TECO-5

EDITING COMMANDS (Cont)

Insert Text

ALTM