dlilgli[tlall

aecsUsceno

assembly
language
handbook

third edition

system reference link-10
Macro ddt
monitor cdlls utilities

decsustenio handbook series

203000

decsystenmo

assembly
language
handbook

third edition

itional copies of this handbook may be ordered from:
Software Distribution Center, DEC, Maynard, Mass. 01754. Order Code: DEC-10-NRZC-D.

handbook series

The material in this handbook, including but not limited to instruction
times and operating speeds, is for information purposes and is subject
to change without notice.

Copyright © 1967, 1968, 1969, 1970, 1971, 1972, 1973 by
Digital Equipment Corporation

Actual distribution of the software described in this specification will
be subject to terms and conditions to be announced at some future date
by Digital Equipment Corporation. '

DEC assumes no responsibility for the use or reliability of its software on
equipment which is not supplied by DEC. o

The software described in this manual is furnished to purchaser under a
license for use on a single computer system and can be copied (with in-
clusion of DEC's copyright notice) only for use in such system, except
as may otherwise be provided in writing by DEC.)

The following are trademarks of
p_igital Equipment Corporation, Maynard, Massachusetts:

DEC - ~ PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

system reF‘erence B

macro

monitor calls [

link-10 |
ot I

utilicies [}

index ||

FOREWORD

This handbook is a collection of documents and sections of documents taken
from the DECsystem-10 SOFTWARE NOTEBOOKS (DEC-10-SYZB-D). It is
intended to be used by experienced programmers interested in writing and oper-
ating assembly-language programs on the DECsystem-10. The material in this
handbook is aimed at providing the information needed for user-mode program-
ming.

Most documents in this handbook are reprinted without change from the DEC-
system-10 Software Notebooks. However, the first document in the handbook,
the System Reference Manual, is an excerpt from the System Reference Manual in .
the Notebook set. This excerpt contains only the user-mode programming infor-
mation needed by most assembly language programmers, and does not cover the
documentation related to the various peripheral devices. If additional information
is required, the reader is referred to the complete System Reference Manual in the
Software Notebooks. All DECsystem-10 installations have two copies of the note-
book set for reference.

The documents contained in this handbook reflect the following hardware and
versions of the software:

System Reference Manual - KA 10 and K110 processors
MACRO - Version 47

Monitor Calls — 5.06 release

DDT - Version 34

LINK-10 - Version 1

CREF - Version 47

FILCOM - Version 20

FUDGE2 — Version 15

GLOB - Version 5A

The Assembly Language Handbook is one in the set of DECsystem-10 hand-
books. The other handbooks comprising this series are:

(1) the COBOL Language Handbook.

(2) the Mathematical Languages Handbook, which covers FORTRAN,
BASIC and ALGOL.

(3) the DECsystem-10 Users Handbook, which includes an introductory
section, the operating system commands, TECO, and PIP.

In addition to the above-mentioned handbooks, the following documentation is
also available:

(1) the COBOL Users Guide, which is aimed at COBOL users who wish
to become familiar with COBOL on the DECsystem-10.

(2) the System Reference Card, which includes the word formats, instruc-
tions, and conversion tables for the DECsystem-10.

(3) the Operating System Commands Reference Card, which describes the
commands, along with their formats, that are a part of the operating
system.

(4) the Monitor Calls Reference Card, which covers the programmed oper-
ators (UUOs), and their formats, that can be used with the monitor.

(5) the BASIC Language Reference Card, which includes the statements,
intrinsic functions, and edit and control commands of the DECsystem-
10 BASIC Language.

The handbooks, Users Guide, and reference cards may be ordered from:
Software Distribution Center
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

DECsystem-10

System Reference Manual

ORDER NO. DEC-10-HGAD-D FROM PROGRAM LIBRARY, MAYNARD, MASSACHUSETTS PRICE $5.00

DIRECT COMMENTS CONCERNING THIS MANUAL TO SOFTWARE QUALITY CONTROL, MAYNARD, MASSACHUSETTS

DIGITAL EQUIPMENT CORPORATION e MAYNARD, MASSACHUSETTS

SYSTEM REFERENCE -2

Instruction times, operating speeds and the like are December 1971
included here for reference only; they are not to be ’
taken as specifications.

Copyright © 1968, 1969, 1971
by Digital Equipment. Corporation

First edition, May 1968
Three printings

Second edition, December 1971

This edition has been expanded to provide system reference information for
a DECsystem—10 with KA10 or KI10 central processors. The KI10 material
has been mcorporated into the text throughout.

Manufactured in the United States of America

Contents
1. INTRODUCTION'
1.1 Number System
Floating point arithmetic
1.2 Instruction Format
Effective address calculation
1.3 Memory ‘
KI10 memory allocation
KA 10 memory allocation
1.4 Programming Conventions
2. CENTRAL PROCESSOR
2.1 Half Word Data Transmission
2.2 Full Word Data Transmission
Move instructions
Pushdown list
2.3 Byte Manipulation
2.4 Logic
Shift and rotate
2.5 Fixed Point Arithmetic
Arithmetic shifting .
2.6 Floating Point Arithmetic
Scaling
Number conversion
Single precision with rounding
Single precision without rounding
Double precision operations
2.7 Arithmetic Testing
2.8 Logical Testing and Modification
29 Program Control
2.10 Unimplemented Operations
2.11 Programming Examples

Double precision floating point

11
12

14
15

16
18
18

19

23
24

31
32
34

37
39
46
48
52

53
S5
56
58
60
64
67
73
80
91

93
95

SYSTEM REFERENCE

SYSTEM REFERENCE | -4-

v

2.12 Input-Output 96
Readin mode 101
Console-program communications 102
2.13 Priority Interrupt 103
2.14 Trapping and Processor Conditions 111
Overflow trapping 111
KI10 processor conditions 112
KA10 processor conditions 115
2.15 KI10 Modes 117
Paging 118
Page failure ' 122
Monitor programming 124
Executive XCT 127
2.16 KA 10 Modes 129
User programming 131
Monitor programming 131
2.17 Real Time Clock DK 10 132
2.18 KA 10 Operation 135
Indicators ’ 136
Operating keys ' 138
Operating switches , 140
2.19 K110 Operation (Not available at this time)
APPENDICES
A " Instruction and Device Mnemonics ‘ 147
Numeric listing 149
Alphabetic listing 152
Device mnemonics : 156
Algebraic representation 157
B In-out Codes 167
Teletype code 168
Card codes 172
C Timing 175
KA 10 timing 176
KI10 timing (Not available at this time)
D KA10 Algorithms 179
Fixed point algorithms 180
Floating point algorithms 185
E Processor Compatibility (Not available at this time)
F Indicator Panels { Available in the System Reference Manual
published as a part of the DECsystem-10
Software Notebooks.)

G Bit Assignments 191

1

Introduction

The DECsystem—10 is a general purpose, stored program computing system
that includes at least one PDP—10 central processor, a memory, and a variety
of peripheral equipment such as paper tape reader and punch, teletypewriter,
card reader and punch, line printer, DECtape, magnetic tape, disk, drum,
display and data communications equipment. Each central processor is the
control unit for an entire large-scale subsystem, in which it is connected by
an in-out bus to its own peripheral equipment and by a memory bus to one or
more memory units in a main memory, some of whose units may be shared
by several processors. Within the subsystem the central processor governs
all peripheral equipment, sequences the program, and performs all arithmetic,
logical and data handling operations. Besides central processors, there are
also direct-access processors, which have much morelimited program capabil-
ity and serve to connect large, fast peripheral devices to memory bypassing
the central processor. Every direct-access processor is connected to the in-out
bus of some central processor, to which it appears as an in-out device; the
direct-access processor is also connected to memory by its own memory bus,
and to its peripheral equipment by a device bus. The DECsystem~10 may
also contain peripheral subsystems, such as for data communications, which
are themselves based on small computers; such a subsystem in toto is con-
nected to a PDP-10 in-out bus and is treated by the PDP-10 as a peripheral
device. Unless otherwise specified, the words “processor” and “‘central pro-
cessor” refer to the large-scale PDP-10 central processor, and “in-out bus”
refers to the bus from the central processor to its peripheral equipment. A
direct-access processor and the bus to its peripheral equipment are all always
referred to by their names, eg the DF10 data channel and its channel bus
(often a direct-access processor and device control are a single unit).

At present there are two types of PDP-10 central processors, the KA10
and the KI10. The latter is faster and more powerful, having a somewhat
larger instruction repertoire including double precision floating point. Both
- processors handle words of thirty-six bits, which are stored in a memory
whose maximum capacity depends upon the addressing capability of the
processor. Internally both processors use 18-bit addresses and can thus
reference 262,144 word locations in memory. This is the total addressing
capability of the KA10, but in the KI10 it is only the virtual address space
available to a single program. Paging hardware supplies four additional
address bits to map pages in the program virtual address space into pages
anywhere in a physical memory that is sixteen times as large. Thus for
a number of different programs, the processor actually has access to a

1-1

SYSTEM REFERENCE

Confusion could result only
in a chapter dealing with a
small-computer subsystem.
Here the small processor is
usually referred to by its
name (PDP-8, PDP-11) and
the words “computer” and
“memory”’ refer to the small
computer. To differentiate,
the PDP-10 is referred to by
its name or as the “DEC-
system—10 central processor”,
and the large scale memory
connected to the PDP-10
memory bus is referred to as
“DECsystem—10 main mem-
ory”.

SYSTEM REFERENCE

1-2

-6-

INTRODUCTION

physical memory with a capacity of 4,194,304 words. Storage in memory
is usually in the form of 37-bit words, the extra bit producing odd parity
for the word. The bits of a word are numbered 0-35, left to right (most
significant to least significant), as are the bits in the registers that handle
the words. The processor can handle half words, wherein the left half
comprises bits 0-17, the right half, bits 18-35. There is also hardware
for byte manipulation — a byte is any contiguous set ‘of bits within a word.
KA1O registers that hold addresses have eighteen bits, numbered 18-35
according to the position of an address in a word. KI10 internal address
registers have eighteen bits, but a register that must supply a complete
address to physical memory has twenty-two bits (numbered 14—35). Words
are used either as computer instructions in the program, as addresses, or as
operands (data for the program).

Of the internal registers shown in the illustration on the next page, only
PC, the 18-bit program counter, is directly relevant to the programmer. The
processor performs a program by executing instructions retrieved from the
locations addressed by PC. At the beginning of each instruction PC is incre-
mented by one so that it normally contains an address one greater than the
location of the current instruction. Sequential program flow is altered by
changing the contents of PC, either by incrementing it an extra time in a
skip instruction or by replacing its contents with the value specified by a
jump instruction. Also of importance to the programmer are the sense °
switches and the 36-bit data switch register DS on the processor console:
through these switches the program can read information supplied by the
operator. The processor also contains flags that detect various types of
errors, including several types of overflow in arithmetic and pushdown opera-
tions, and provide other information of interest to the programmer.

The processor has other registers but the programmer is not usually con-
cerned with them except when manually stepping through a program to
debug it. By means of the address switch register AS, the operator can
examine the contents of, or deposit information into, any memory location;
stop or interrupt the program whenever a particular location is referenced;
and through AS the operator can supply a starting address for the program.
Through the memory indicators MI the program can display data for the
operator. The instruction register IR contains the left half of the current
instruction word, fe all but the address part. The memory address register
MA supplies the address for every memory access. The heart of the proc-
essor is the arithmetic logic, principally the 36-bit arithmetic register AR.
This register takes part in all arithmetic, logical and data handling operations;
all data transfers to and from memory, peripheral equipment and console are
made via AR. Associated with AR are an extremely fast full adder, a buffer
register BR that holds a second operand in many arithmetic and logical
instructions, a multiplier-quotient register MQ that serves primarily as an
extension of AR for handling double length operands, and smaller registers
that handle floating point exponents and control shift operations and byte
manipulation. In the KI10, AR and the adder each have a 28-bit left
extension for handling double precision floating point numbers.

From the point of view of the programmer however the arithmetic logic
can be regarded as a black box. It performs almost all of the operations

-7~ SYSTEM REFERENCE

CORE MEMORY CORE MEMORY CORE MEMORY
~ MEMORY _BUS , CENTRAL
[} ¥ PROCESSOR
FAST
* MEMORY [*
16 X 36
T - ‘ . ‘
POMA e | - IR
4 18 . 18
) ARITHMETIC
| LOGIC Ml "
, y (AR, BR, MQ)
: AS PC > —] DS
43 18 .18 . . 36
IN-OUT BUS I

: |
‘ | P
PRIORITY PAPER TAPE PAPER TAPE
INTERRUPT READER _PUNCH - TELETYPE

DECSYSTEM-10 SIMPLIFIED

necessary for the execution of a program, but it never retains any
information from one instruction to the next. Computations performed in
the black box either affect control elements such as PC and the flags, or
produce results that are always sent to memory and must be retrieved by the
processor if they are to be used as operands in other instructions.

An instruction word has only one 18-bit address field for addressing any
location throughout all of the virtual address space. But most instructions
have two 4-bit fields for addressing the first sixteen memory locations. Any
instruction that requires a second operand has an accumulator address field,

SYSTEM REFERENCE

1-4

The KI10 actually has four
fast memory blocks, but only
one of these is available to a
program at any given time.

The KI10 allows unrestricted
in-out with a limited number
of devices for special real
time applications.

-8-

INTRODUCTION

which can address one of these sixteen locations as an accumulator; in other
words as though it were a result held over in the processor from some
previous instruction (the programmer usually has a choice of whether the
result of the instruction will go to the location addressed as an accumulator
or to that addressed by the 18-bit address field, or to both). Every
instruction has a 4-bit index register address field, which can address fifteen
of these locations for use as index registers in modifying the 18-bit memory
address (a zero index register address specifies no indexing). Although all
computations on both operands and addresses are performed in the single
arithmetic register AR, the computer actually has sixteen accumulators,
fifteen of which can double as index registers. The factor that determines
whether one of the first sixteen locations in memory is an accumulator or an
index register is not the information it contains nor how its contents are
used, but rather how the location is addressed. These first sixteen memory
locations are not actually in core memory, but are rather in a fast solid state
memory contained in the processor. This allows much quicker access to
these locations whether they are addressed as accumulators, index registers
or ordinary memory locations. They can even be addressed from the
program counter, gaining faster execution for a short but oft-repeated
subroutine. ‘

~ Besides the registers that enter into the regular execution of the program
and its instructions, the processor has a priority interrupt system and
equipment to facilitate time sharing. The interrupt system facilitates
processor control of the peripheral equipment by means of a number of
priority-ordered channels over which external signals may interrupt the
normal program flow. The processor acknowledges an interrupt request by
executing the instruction contained in a particular location for the channel
or doing some special operation specified by the device (such as
incrementing the contents of a memory location). Assignment of channels
to devices is entirely under program control. One of the devices to which
the program can assign a channel is the processor itself, allowing internal
conditions such as overflow or a parity error to signal the program.

Time Sharing. Inherent in the basic machine hardware are restrictions that
apply universally: only certain instructions can be used to respond to a
priority interrupt, and certain memory locations have predefined uses. But
above this fundamental level, the time share hardware provides for different
modes of processor operation and establishes certain instruction restrictions
and memory restrictions so that the processor can handle a number of user
programs (programs run in user mode) without their interfering with one
another. The memory restrictions are dependent to a great extent on the
processor, but the instruction restrictions are not, and these are relatively
obvious: a program that is sharing the system with others cannot usually be
allowed to halt the processor or to operate the in-out equipment
arbitrarily. A program that runs in executive mode — the Monitor — is
responsible for scheduling user programs, servicing interrupts, handling
input-output needs, and taking action when control is returned to it from a
user program. Any violation of an instruction or memory restriction by a
user transfers control back to the Monitor. Dedication of the entire facility
to a single purpose, in other words with only one user, is equivalent to

operation in exectuitive mode (specifically kernel mode in the KI10).

The KA10 has the two modes discussed above, user and executive. It also
has protection and relocation hardware to confine the user virtual address
space within a particular range, and to relocate user memory references to
the appropriate area in physical core. A user ordinarily has access to two
separate core areas, one of which may be write-protected, ie the user cannot
alter its contents. _

The KI10 has paging hardware for the mapping of pages from the limited
virtual address space into pages anywhere in physical memory. A page map
for each program specifies not only the.correspondence from virtual address
to physical address, but also whether an individual page is accessible or not,
alterable or not, and public or concealed. Both user and executive modes are
subdivided according to whether the program is running in a public area or a
concealed area. Within user mode these are the public and concealed modes;
within executive mode, the supervisor and kernel modes. A program in
concealed mode can refererice all of accessible user memory, but the public
program cannot reference the concealed area except to transfer control into
it at certain legitimate entry points.

In kernel mode the Monitor handles the in-out for the system, handles
priority interrupts, constructs page maps, and performs those functions that
affect all users. This mode has no instruction restrictions and the program
cail even address some of memory directly (ie unpaged); in the paged address
space, individual pages may be restricted as inaccessible or write-protected,
but it is the kernel mode program that establishes these restrictions. In
supervisor mode the Monitor handles the general management of the system
and those functions that affect only one user at a time. This mode has
essentially the same instruction and memory restrictions as user mode,
although the supervisor inode program can read, but not alter, the concealed
areas; in this way the kernel mode Monitor supplies the supervisor program
with information the latter cannot alter (even though the information is not
write-protécted from the kernel program). In either mode the Mornitor
automatically uses fast memory block O (the hardware requires this). The
kernel program is responsible for assigning fast memory blocks to the various
user programs: ordinarily blocks 2 and 3 are for special real time
applications, and block 1 is assigned to all other users.

The illustration on the next page shows a typical layout of the virtual
address space for thie various modes. The space is 256K, made up of 512
pages numbered 0-777 octal. Any program can address locations 0—17 as
these are in a fast memory block and are completely unrestricted (although
the same addresses may be in different blocks for different programs). The
public mode user program operates in the public area, part of which may be
write-protected. The public program cannot access any locations in the
concealed areas except to fetch instructions from prescribed entry
points. The concealed mode user program has access to both public and
concealed areas, but it cannot alter any write-protected location whether
public or concealed, and fetching an instruction from the public area
automatically returns the processor to public mode. ;

The supervisor mode program is confined within the paged area of the
address space, pages 340 and above. Part of the public area in this space may

SYSTEM REFERENCE

1-5

The concealed area would or-
dinarily be used for proprie-
tary programs that the user
can call but cannot read or
alter.

o
| . - m
| . : T
o |2 W AN
A [© @ o B 5 LT.
O = 5 < o -F g
w
@ | o o |22 o
> lo s E 2 2 35 I
13 - ¥ |82 1
1< = 4 2t £
s o
| : w
(=3
(=3
A
(=]
w
=
(=3
jre)
. LB
=3

Lm
<I
z
RM
g
w
P=}
o
M (=]
w
=
—
e |
C |
[E)
.w_A._R _
(=] _D F_
m m_m oY .
w . .
[- 9 P_W ;
w _c w ..
|
.]
o =4
N , =4
e
=
13}
: 2
(] 2
[| DO“
z o
Z Sk
2|8
Ll s

S |
Ns
Q=
(&)
[F9]
o
o o
=
(s 4
wt
o
oD
m
(S5 |
5 a2 ==
£ i
Ll :
o2
& | u.
— |
o
7 p

-11-

§1.1 NUMBER SYSTEM

be write-protected, but the program can read information in the concealed
areas — it cannot alter any location in a concealed area whether that area is
write-protected or not. Pages 340-377 constitute the per-process area, which
contains information specific to individual users and whose mapping
accompanies the user page map. In other words the physical memory
corresponding to these virtual pages can be changed simply by switching
from one user to another, rather than the Monitor changing its own page
map. The kernel mode program can access all of the unpaged area without
restriction and can reference all of the accessible paged area, both public and
concealed, with the usual restriction that it cannot alter a write-protected
area. As in the case of concealed user mode, fetching an instruction from a
public area returns control to supervisor mode.

1.1 NUMBER SYSTEM

The program can interpret a data word as a 36-digit, unsigned binary num-
ber, or the left and right halves of a word can be taken as separate 18-bit
numbers. The PDP-10 repertoire includes instructions that effectively add
or subtract one from both halves of a word, so the right half can be used for
address modification when the word is addressed as an index register, while
the left half is used to keep a control count.

The standard arithmetic instructions in the PDP-10 use twos comple-
ment, fixed point conventions to do binary arithmetic. In a word used as a
number, bit 0 (the leftmost bit) represents the sign, 0 for positive, 1 for
negative. In a positive number the remaining 35 bits are the magnitude in
ordinary binary notation. The negative of a number is obtained by taking its
twos complement. If x is an n-digit binary number, its twos complement is
2" —x, and its ones complement is (27 — 1) — x, or equivalently (2" —x) — 1.
Subtracting a number from 2" -1 (je, from all 1s) is equivalent to perform-
ing the logical complement, ie changing all Os to 1s and all 1s to Os. There-
fore, to form the twos complement one takes the logical complement
(usually referred to merely as the complement) of the entire word including
the sign, and adds 1 to the result. In a negative number the sign bit is 1, and
the remaining bits are the twos complement of the magnitude.

+153,0 = +2315 =000 000 000 000 000 000 000 000 000 010 011 001]

0 3s
~153,9 = —231g =[111 111 111 111 111 111111 111 111 101 100 111]
0 3s

Zero is represented by a word containing all 0s. Complementing this
number produces all 1s, and adding 1 to that produces all Os again. Hence
there is only one zero representation and its sign is positive. Since the
numbers are symmetrical in magnitude about a single zero representatijon, all
even numbers both positive and negative end in 0, all odd numbers in 1 (a

SYSTEM REFERENCE

1-7

SYSTEM ‘REFERENCE

1-8

Multiplication produces a
double length product, and
the programmer must remem-
ber that discarding the low
order part of a double length
negative leaves the high order
part in correct twos comple-
ment form only if the low
order part is null.

-12-

INTRODUCTION : §1.1

number all 1s represents —1). But since there are the same number of
positive and negative numbers and zero is positive, there is one more negative
number than there are nonzero positive numbers. This is the most negative
number and it cannot be produced by negating any positive number (its
octal representation is 400000 000000; and its magnitude is one greater
than the largest positive number).

If ones complements were used for negatives one could read a negative
number by attaching significance to the Os instead of the 1s. In twos
complement notation each negative number is one greater than the
complement of the positive number of the sime magnitude, so one can read
a negative number by attaching significance to the rightmost 1 and attaching
significance to the Os at the left of it (the negative number of largest
magnitude has a 1 in only the sign position). In a negative integer, 1s may be
discarded at the left, just as leading Os may be dropped in a positive
integer. In a negative fraction, Os may be discarded at the right. So long as
only Os are discarded, the number remains in twos complement form because

it still has a 1 that possesses significance; but if a portion including the

rightmost 1 is discarded, the remaining part of the fraction is now a ones
complement. ,

The computer does not keep track of a binary point — the programmer
must adopt a point convention and shift the magnitude of the result to con-
form to the convention used. Two common conventions are to regard a
number as an integer (binary point at the right) or as a proper fraction
(binary point at the left); in these two cases the range of numbers repre-
sented by a single word is —2%° to0 23— 1 or —1 to 1 — 273, Since multiplica-
tion and division make use of double length numbers, there are special
instructions for performing these operations with integral operands.

The format for double length fixed point numbers is just an extension of
the single length format. The magnitude (or its twos complement) is the
70-bit string in bits 1-35 of the high and low order words. Bit 0 of the high
order word is the sign, and bit O of the low order word is 0. The range for
double length integers and proper fractions is thus —27° to 27 — 1 and —1 to
1-277°, ‘

Floating Point Arithmetic. The KI10 has hardware for processing single
and double precision floating point numbers; the KA10 can generally process
only single precision numbers, although the hardware does include features
that facilitate double precision arithmetic by software routines. The same
format is used for a single precision number and the high order word of a
double precision number. A floating point instruction interprets bit 0 as the
sign, but interprets the rest of the word as an 8-bit exponent and a 27-bit
fraction. For a positive number the sign is 0, as before. But thie contents of
bits 9-35 are now interpreted only as a binary fraction, and the contents of
bits 1-8 are interpreted as an integral exponent in excess 128 (200g)
code. Exponents from —128 to +127 are therefore represented by the
binary equivalents of 0 to 255 (0-3774). Floating point zero and negatives
are represented in exactly the same way as in fixed point: zero by a word
containing all Os, a negative by the twos complement. A negative riumber
has a 1 for its sign and the twos complement of the fraction, but since every
fraction must ordinarily contain a 1 unless the entire number is zero (see

-13-

§1.1 NUMBER SYSTEM

below), it has the ones complement of the exponent code in bits 1-8. Since
the exponent is in excess 128 code, an actual exponent x is represented in a
positive number by x+ 128, in a negative number by 127 —x. The
programmer, however, need not be concerned with these representations as
the hardware compensates automatically. Eg, for the instruction that scales
the exponent, the hardware interprets the integral scale factor in standard
twos complement form but produces the correct ones complement result for
the exponent.

+153;, = 4231, = +.462,X28 =

|o]to 001 000]100 110 010 000 000 000 000 000 000

01 89 35

~153,, = =231y = —.4624X28 =

101 110 111{011 001 110 000 000 000 000 000 000}

01 89 35

Except in special cases the floating point instructions assume that all
nonzero operands are normalized, and they normalize a nonzero result. A
floating point number is considered normalized if the magnitude of the
fraction is greater than or equal to % and less than 1. The hardware may not
give the correct result if the program supplies an operand that is not
normalized or that has a zero fraction with a nonzero exponent.

Single precision floating point numbers have a fractional range in
magnitude of % to 1 —27%". Increasing the length of a number to two
words does not significantly change the range but rather increases the
precision; in any format the magnitude range of the fraction is % to 1
decreased by the value of the least significant bit. In all formats the
exponent range is —128 to +127.

The precaution about truncation given for fixed point multiplication
~ applies to most floating point operations as they produce extra length
results; but here the programmer may request rounding, which automatically
restores the high order part to twos complement form if it is negative. In
single precision division the two words of the result are quotient and
remainder, but in the other operations they form a double length number
which is stored in two accumulators if the instruction is executed in “long”
mode. (Long mode division uses a double length dividend.) A double length
number used by the single precision instructions is in software double
precision format. As such it contains a 54-bit fraction, half of which is in
bits 9-35 of each word. The sign and exponent are in bits 0 and 1-8
respectively of the word containing the more significant half, and the
standard twos complement is used to form the negative of the entire 63-bit
string. In the remaining part of the less significant word, bit 0 is 0, and bits
1-8 contain a number 27 less than the exponent, but this is expressed in
positive form even though bits 9-35 may be part of a negative fraction. Eg
the number 2!8 +27'% has this two-word representation in software

SYSTEM REFERENCE

1-9

SYSTEM REFERENCE

1-10

-14-

INTRODUCTION §1.2

double precision format:

o]0 010 011]100 000 000 000 000 000 000 000 000

o1 89 35

|0jo1 111 000[000 000 000 100 000 000 000 000 000)

o1 89 35

whereas its negative is

[1/01 101 100J011 111 111 111 111 111 111 111 111]

01 89 35

[0j01 111 000[111 111 111 100 000 000 000 000 000}
o1 89 ' 35

The double precision floating point instructions use a more straight-
forward double length format with greater precision than is allowed by the
software format. For these instructions all operands and results are double
length, and all instructions except division calculate a triple length answer,
which is rounded to double length with the appropriate adjustment for a .
twos complement negative. In hardware double precision format the high
order word is the same as a single precision number, and bits 1-35 of the
low order word are simply an extension of the fraction, which is now
sixty-two bits. Bit 0 is ignored. The number used above as an example of
software double precision format has this representation in hardware format:

loj10 010 011]100 000 000 000 000 000 000 000 000

01 89 35

|0joo 000 000 010 000 000 000 000 000 000 000 000]

01 35

and its negative is

L101 101 100]011 111 111 111 111 111 111 111 111]

01 89 35

IOIll 111 111 110 000 000 000 000 000 000 000 OOOl

01 35

1.2 INSTRUCTION FORMAT

In all but the input-output instructions, the nine high order bits (0-8)
specify the operation, and bits 9-12 usually address an accumulator but are
sometimes used for special control purposes, such as addressing flags. The

-15-

§1.2 INSTRUCTION FORMAT

rest of the instruction word usually supplies information for calculating the
effective address, which is the actual address used to fetch the operand or
alter program flow. Bit 13 specifies the type of addressing, bits 14-17 spec-
ify an index register for use in address modification, and the remaining
eighteen bits (18-35) address a memory location. The instruction codes

ADDRESS TYPE

ACCUMULATOR INDEX REGISTER
ADDRESS |/ ADDRESS
H
| INSTRUCTION CODE l \ I | ! l MEMORY ADDRESS
0 89 121314 17 1’8 35

BASIC INSTRUCTION FORMAT

that are not assigned as specific instrictions are performed by the processor
as so-called ““‘unimplemented operations”.

An input-output instruction is designated by three 1s in bits 0-2. Bits
3+9 address the in-out device to be used in executing the instruction, and
bits 10-12 specify the operation. . The rest of the word is the same as in
other instructions.

ADDRESS TYPE -

INSTRUCTION INDEX REGISTER
CODE / ADDRESS
7 N 1 li]
L7 I DEVICE CODE I | I | MEMORY ADDRESS l
0 23 910 121314 1718 35

IN-OUT INSTRUCTION FORMAT

Effective Address Calculation. Bits 13-35 have the same format in every
instruction whether it addresses a memory location or not. Bit 13 is the

[

1314 1718 . 35

indirect bit, bits 14-17 are the index register address, and if the instruction
must reference memory, bits 18-35 are the memory address Y. The
effective address £ of the instruction depends on the values of /, X and Y.
If X is nonzero, the contents of index register X are added to Y to produce a
modified address. If 7 is 0, addressing is direct, and the modified address is
the effective address used in the execution of the instruction; if I is 1,
addressing is indirect, and the processor retrieves another address word from
the location specified by the modified address already determined. This new
word is processed in exactly the same mariner: X and Y determine the
effective address if / is 0, otherwise they are used for yet another level of
address retrieval. This process continues until some referenced location is
found with a 0 in bit 13; the 18-bit number calculated from the X and ¥
parts of this location is the effective address E.

The calculation outlined above is carried out for every instruction even
if it need not address a memory location. If the indirect bit in the instruc-

SYSTEM REFERENCE

Among the unimplemented
operations are some that are
specified as “unimplemented
user operations” or UUOs (a
mnemonic that means nothing
to the assembler). Half of
these are for the local use of a
program (LUUOs) and the
other half are for commu-
nication with the Monitor
(MUUOs). In general, unas-
signed codes act like MUUOs.

On the other hand, please note
that this calculation is carried

SYSTEM REFERENCE

1-12

out only for words indicated
in the text as having the for-
mat shown. Do not assume
that the procedure is used for
any miscellaneous pointer sim-_
ply because it happens to con-
tain an address [see page G2].

-1E-

INTRODUCTION ‘ §1.3

tion word is 0 and no memory reference is necessary, then Y is not an ad-
dress. It may be a mask in some kind of test instruction, conditions to be
sent to an in-out device, or part of it may be the number of places to shift in
a shift or rotate instruction or the scale factor in a floating scale instruction.
Even when modified by an index register, bits 18-35 do not contain an ad-
dress when 7 is 0. But when [is 1, the number determined from bits 14-35
is an indirect address no matter what type of information the instruction
requires, and the word retrieved in any step of the calculation contains an
indirect address so long as / remains 1. 'When a location is found in which 7
is 0, bits 18-35 (perhaps modified by an index register) contain the desired
effective mask, effective conditions, effective shift number, or effective scale
factor. Many of the instructions that usually reference memory for an oper-
and even have an ‘“‘immediate” mode in which the result of the effective
address calculation is itself used as a half word operand instead of a word
taken from the memory location it addresses.

The important thing for the programmer to remember is that the same
calculation is carried out for every instruction regardless of the type of infor-
mation that must be specified for its execution, or even if the result is
ignored. In the discussion of any instruction, E refers to the actual quantity
derived from /, X and Y and used in the execution of the instruction, be it
the entire half word as in the case of an address, immediate operand, mask or |
conditions, or only part of it as in a shift number or scale factor.

1.3 MEMORY

The internal timing for each in-out device and each memory is entirely
independent of the central processor. Because core memory readout is
destructive, every word read must be written back in unless new information
is to take its place. But the processor need never wait the entire cycle
time. To read, it waits only until the information is available and then
continues its operations while the memory performs the write portion of the
cycle; to write, it waits only until the data is accepted, and the memory then
performs an entire cycle to clear and write. To save time in an instruction
that fetches an operand and then writes new data into the same location, the
memory executes a read-modify-write cycle in which it performs only the
read part initially and then completes the cycle when the processor supplies
the new data. This procedure is not used however in a lengthy instruction
(such as multiply or divide), which would tie up a memory that may be
needed by some other processor. Such instructions instead request separate
read and write access. The KI10 further increases the speed of memory
operation by overlapping memory cycles. Fg it can start one memory to
read a word before receiving a word previously requested from a different
memory. :

Access times for the accumulator-index register locations are decreased
considerably by substitution of a fast memory (contained in the processor)
for the first sixteen core locations. Readout is nondestructive, so the fast
memory has no basic cycle: the processor reads a word directly, but to write
it must first clear the location and then load it.

-17-

§1.3 MEMORY

The following table gives the characteristics of the various memories.
Modify completion is the time to finish a read-modify-write cycle after the
processor supplies the new data. Times are in microseconds and include the
delay introduced by ten feet (three meters) of cable. Fast memory times are
for referencing as a memory location (18-bit address); when a fast memory
location is addressed as an accumulator or index register, the access time is
usually considerably shorter. The size of the MD10 can be increased in units
of 32K up to 128K.

Read Write : Modify
Access Access Cycle Completion Size

161 Core Memory 2.5 .49 4.7 2.69 16K
163 Core Memory .94 49 1.8 1.33 16K
164 Core Memory
MB10 Core Memory} .60* .20%* 1.65% .97 16K
MA10 Core Memory - .61 .20 1.00 .57 16K
MD10 Core Memory .83 33 1.8 1.23 32-128K
ME10 Core Memory .61 .20 1.00 .65 16K
KA10 Fast Memory 21 .21 16

. KI10 Fast Memory 16

From the simple hardware addressing point of view, the entire memory is
a set of contiguous locations whose addresses range from zero to a maximum
dependent upon the capacity of the particular installation. In a system with
the greatest possible capacity, the largest KA10 address is octal 7777717,
decimal 262,143; the largest KI10 address is 17777777, decimal
4,194,303. (Addresses are always in octal notation unless otherwise
specified.) But the whole memory would usually be made up of a number of
core memories of different capacities as listed above. Hence a given address
actually selects a particular memory and a specific location within it. For a
16K memory with 18-bit addressing, the high order four address bits select
the memory, the remaining fourteen bits address a single location in it;
selecting a 32K memory takes three bits, leaving fifteen for the
location. The times given above assume the addressed memory is idle when
access is requested. To avoid waiting for a previously requested memory
cycle to end, the program can make consecutive requests to different
memories by taking instructions from one memory and data from
another. All memories can be interleaved in pairs in such a way that
consecutive addresses actually alternate between the two memories in the
pair (thus increasing the probability that consecutive references are to
different memories). Appropriate switch settings at the memories
interchange the least significant address bits in the memory selection and
location parts, so that in any two memories numbered # and # + | where # is
even, all even addresses are locations in the first memory, all odd addresses
are locations in the second. Hence memories 0 and 1 can be interleaved as
can 6 and 7, but not 3 and 4 or 5 and 7. Some memories can be interleaved
in contiguous groups of four, where the number of the first memory in the

SYSTEM REFERENCE

*Add .1 in a multiproces-
sor system.

SYSTEM REFERENCE

The kernel mode program
can always address locations
0-337777 as these are un-
paged. Virtual pages 340 and
above -are mapped.

The Monitor keeps a user
process table for each user
program and one executive
process table for itself for
each KI10 processor. In the
text, the phrase “the user
process table” refers to the
process table currently speci-
fied by the Monitor as the
one for the user, even if that
user is not currently running.
The Monitor must also specify
the whereabouts of the ex-
ecutive process table for the

processor under consideration.

The initial control word ad-
dress for the DF10 Data
Channel must be less than
1000.

-18-

§1.3

INTRODUCTION

group is divisible by four (eg memories 0-3 or 14-17). In this case all
addresses ending in O or 4 reference the first memory in the group, all ending
in 1 or § reference the second, and so forth. _

In terms of the virtual address space (the addresses that can be specified
within the limits of the instruction format) or the subset of it that is
accessible to a user, the situation may be quite different. In the KA10 the
user program has a continuous address space beginning at 0, or two
continuous spaces beginning at 0 and 400000. In the KI10 the possible
program address space is the set of all 18-bit addresses just as in the KA10,
but which addresses a program can actually use depends entirely upon which
of the 512 virtual pages (512 words per page) are accessible to it. For a
so-called ‘“‘small user”, the accessible space must lie within the ranges
0-37777 and 400000-437777. In any event all programs have access to fast
memory, whether as accumulators, index registers or ordinary memory
references (ie addresses 0—17 are never restricted or relocated). ‘

KI10 Memory Allocation. The KI10 hardware defines the use of certain
memory locations, but almost all of these are relative to pages whose
physical location is specified by the Monitor. The only physical locations
uniquely defined by the hardware are those in fast memory, whose addresses
are the same for all programs: location O holds a pointer word during a
bootstrap readin, 0-17 can be addressed as accumulators, and 1-17 can be
addressed as index registers. The only addresses uniquely specified in the '
user virtual space are for user local UUOs — locations 40 and 41.

All other addresses defined by the hardware, for use in page mapping,
responding to priority interrupts, or other hardware-oriented situations, are
to locations within a page specified by the Monitor for a particular user
(including itself). For each user the Monitor keeps a process table, which
must begin at location 0 of some page. The locations used by the hardware
for the page map, traps, etc. of a given user are all in the first page of the
table for that user. The parts of a user process table not used by the
hardware may be used by the Monitor to keep accumulators (when the user
is not running), a pushdown list that the Monitor uses for the job, and
various user statistics such as running time, memory space, billing
information, and job tables. The detailed configuration of the
hardware-defined parts of the process tables (user and executive) is given in
§2.15.

KA10 Memory Allocation. The use of certain memory locations is
defined by the KA10 hardware. ’

0 Holds a pointer word during a bootstrap readin

0-17 Can be addressed as accumulators

1-17 Can be addressed as index registers

40-41 Trap for unimplemented user operations (UUOs)

42-57 Priority interrupt locations \

60-61 Trap for remaining unimplemented operations: these include

the unassigned instruction codes that are reserved for future
use, and also the byte manipulation and floating point instruc-
tions when the hardware for them is not installed

- -19-

§1.4

PROGRAMMING CONVENTIONS
140-161

Allocated to second processor if connected (same use as 40-61
for first processor)

In a user program the trap for a local UUO is relocated to locations 40 and
41 of the user area; a Monitor UUO uses unrelocated locations. All other
addresses listed are for physical (unrelocated) locations.

1.4 PROGRAMMING CONVENTIONS

The computer has five instruction classes: data transmission, logical, arith-
metic, program control and in-out. The instructions in the in-out class con-
trol the peripheral equipment, and also control the priority interrupt and
time sharing, control and read the processor flags, and communicate with the
console. The next chapter describes all instructions mentioned above,
presents a general description of input-output, and describes the effects of
the in-out instructions on the processor, priority interrupt and time share
hardware. Effects of in-out instructions on particular peripheral devices are
discussed with the devices.

. The Macro—10 assembly program recognizes a number of mnemonics and
other initial symbols that facilitate constructing complete instruction words
and organizing them into a program. In particular there are mnemonics for
the instruction codes (Appendix A), which are six bits in in-out instructions,
otherwise nine or thirteen bits. Eg the mnemonic

MOVNS
assembles as 213000 000000, and
MOVNS 2570

assembles as 213000 002570. This latter word, when executed as an instruc-
tion, produces the twos complement negative of the word in memory loca-
tion 2570.

NoTtE

Throughout this manual all numbers representing instruction words,
register contents, codes and addresses are always octal, and any num-
bers appearing in program examples are octal unless otherwise indi:
cated. On the other hand, the ordinary use of numbers in the text to
count steps in an operation or to specify word or byte lengths, bit
positions, exponents, etc employs standard decimal notation.

The initial symbol @ preceding a memory address places a 1 in bit 13 tc
produce indirect addressing. The example given above uses direct addressing,
but

MOVNS @2570
assembles as 213020 002570, and produces indirect addressing. Placing the

SYSTEM REFERENCE

1-15

All information given in this
manual about memory loca-
tions 40-61 for a KA10 ap-
pliesinstead to locations 140—
161 for programming a second
KA10 connected to the same
memory.

The assembler translates
every statement into a 36-bit
word, placing Os in all bits
whose values are unspecified.

SYSTEM REFERENCE

-20-

INTRODUCTION §1.4

number of an index register (1-17) in parentheses following the memory
address causes modification of the address by the contents of the specified
register. Hence

MOVNS @2570(12)

which assembles as 213032 002570, produces indexing using index register
12, and the processor then uses the modified address to continue the effec-
tive address calculation.

An accumulator address (0~17) precedes the memory address part (if any)
and is terminated by a comma. Thus

MOVNS 4,@2570(12)

assembles as 213232 002570, which negates the word in location F and
stores the result in both £ and in accumulator 4. The same procedure may
be used to place 1s in bits 9-12 when these are used for something other
than addressing an accumulator, but mnemonics are available for this pur-
pose.

The device code in an in-out instruction is given in the same manner as an
accumulator address (terminated by a comma and preceding the address
part), but the number given must correspond to: the octal digits in the word
(000-774). Mnemonics are however available for all standard device codes. ,
To control the priority interrupt system whose code is 004, one may give

CONO 4,1302
which assembles as 700600 001302, or equivalently
CONO PI, 1302

The programming examples in this manual use the following addressing
conventions:
¢ A colon following a symbol indicates that it is a symbolic location name.

A: ADD 6,5704

indicates that the location that contains ADD 6,5704 may be addressed sym-
bolically as A.
¢ The period represents the current address, eg

ADD 5,.4+2
is equivalent to
A: ADD 5,A+2

¢ Square brackets specify the contents of a location, leaving the address of
the location implicit but unspecified. Eg

ADD 12,[7256004]
and

ADD 12,A

-21- SYSTEM REFERENCE

§1.4 PROGRAMMING CONVENTIONS 1-17 .

A: 7256004

are equivalent.
Anything written at the right of a semicolon is commentary that explains
the program but is not part of it.

-3

2

Central Processor

This chapter describes all PDP-10 instructions but does not discuss the
effects of those in-out instructions that address specific peripheral devices.
In the description of each instruction, the mnemonic and name are at the
top, the format is in a box below them. The mnemonic assembles to the
word in the box, where bits in those parts of the word represented by letters
assemble as Os. The letters indicate portions that must be added to the mne-
monic to produce a complete instruction word.

For many of the non-IO instructions, a description applies not to a unique
instruction with a single code in bits 0—8, but rather to an instruction set
defined as a basic instruction that can be executed in a number of modes.
These modes define properties subsidiary to the basic operation; eg in data
transmission the mode specifies which of the locations addressed by the in-
struction is the source and which the destination of the data, in test instruc-
tions it specifies the condition that must be satisfied for a jump or skip to
take place. The mnemonic given at the top is for the basic mode; mnemonics
for the other forms of the instruction are produced by appending letters
directly to the basic mnemonic. Following the description is a table giving
the mnemonics and octal codes (bits 0—-8) for the various modes. '

In a description E refers to the effective address, half word operand, mask,
conditions, shift number or scale factor calculated from the 7, X and Y parts
of the instruction word. In an instruction that ordinarily references mem-
ory, a reference to E as the source of information means that the instruction
retrieves the word contained in location E; as a destination it means the in-
struction stores a word in location E. In the immediate mode of these
instructions, the effective half word operand is usually treated as a full word
that contains E in one half and zero in the other, and is represented either as
0, F or E,0 depending upon whether E is in the right or left half.

Most of the non-IO instructions can address an accumulator, and in the
box showing the format this address is represented by A ; in the description,
“AC” refers to the accumulator addressed by A. “AC left” and “AC right”
refer to the two halves of AC. If an instruction uses two accumulators, these
have addresses A and A+1, where the second address is 0 if A is 17. In some
cases an instruction uses an accumulator only if A is nonzero: a zero address
in bits 9—-12 specifies no accumulator.

The instructions are described in terms of their effects as seen by the user
in a normal program situation, and on the assumption that nothing is amiss —
the program is not attempting to reference a memory that does not exist or
to write in a protected area of core. In general, all descriptions apply equally

2-1

SYSTEM REFERENCE

Letters representing modes
are suffixes, which produce
new mnemonics that are rec-
ognized as distinct symbols
by the assembler.

SYSTEM REFERENCE

2-2

ol

CENTRAL PROCESSOR §2.1

well to operation in executive mode. For completeness, the effects of restric-
tions on certain instructions are noted, as are the effects of executing
instructions in special circumstances. But for the details of programming in
such special situations the reader must look elsewhere. In particular, §2.13
describes the priority interrupt, §2.14 discusses trapping, and § §2.15 and
2.16 describe the special effects and restrictions associated with the various
machine modes in the KI10 and the KA10 respectively.

To minimize processor execution time the programmer should minimize
the number of memory references and the number of shifts and other
iterative operations. When there is a choice of actions to be taken on the
basis of some test, the conditions tested should be set up so that the action
that results most often takes the least time. There are also various subtleties
that affect timing (such as the nature of the arithmetic algorithms), but
these are generally not worth considering except in very special circum-
stances (to determine the effect often takes more than the time saved).

No execution times are given with the instruction descriptions as the time
may vary greatly depending upon circumstances. At the outset the time
depends upon which processor performs the instruction, the mode the
processor is in, and the speeds of the memories used for fetching the instruc-
tion, fetching its operands, and storing its results. Beyond this the time
depends in many cases on the configuration of the operands and the number
of iterative steps specified by the programmer as in a shift. Lastly the
processor is designed to save time wherever possible by inspecting the
operands in order to skip unnecessary steps.

The text sometimes refers to an instruction as being ‘“‘executed.” To
‘“execute” an instruction means that the processor performs the instruction
out of the normal sequence, ie the sequence defined by the program counter
(which sequence may not be consecutive, as when a skip or jump or some
special circumstance changes PC). The processor fetches an executed instruc-
tion from a location whose address is supplied not by PC, but rather by an
execute instruction (whose operand is itself interpreted as an instruction)
or by some feature of the hardware such as a priority interrupt, trap, etc.
It is assumed that control will shortly be returned to PC, at the location it
originally specified before the interruption unless the instruction executed
or the hardware feature itself changes PC.

Some simple examples are included with the instruction descriptions, but
more complex examples using a variety of instructions are given in §2.11.

2.1 HALF WORD DATA TRANSMISSION

These instructions move a half word and may modify the contents of the
other half of the destination location. There are sixteen instructions deter-
mined by which half of the source word is moved to which half of the des-
tination, and by which of four possible operations is performed on the other

-25-

§2.1 HALF WORD DATA TRANSMISSION

half of the destination. The basic mnemonics are three letters that indicate
the transfer

HLL Left half of source to left half of destination
HRL Right half of source to left half of destination
HRR Right half of source to right half of destination
HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation.

Operation Suffix Effect on Other Half of Destination
Do nothing ' None
Zeros Places Os in all bits of the other half

Z
Ones - ' 0] Places 1s in all bits of the other half
E

Extend Places the sign (the leftmost bit) of
the half word moved in all bits of the
other half. This action extends a right
half word number into a full word
number but is valid arithmetically
only for positive left half word num-
bers — the right extension of a number
requires Os regardless of sign (hence
the Zeros operation should be used to
extend a left half word number).

An additional letter may be appended to indicate the mode, which deter-
mines the source and destination of the half word moved.

Mode Suffix Source Destination
Basic ; E AC
Immediate 1 The word 0, F AC
Memory M AC E
Self S E E, but full word result also

goes to AC if A is nonzero

Note that selecting the left half of the source in immediate mode merely
clears the selected half of the destination.

HLL Half Word Left to Left
| soo0 (M| 4 |1 x | Y
4] 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are un-
affected; the original contents of the destination left half are lost.

SYSTEM REFERENCE

23

SYSTEM REFERENCE

2-4

HLLI merely clears AC left.
If A is zero, HLLS is a no-op,
otherwise it is equivalent to
MOVE.)

HLLZI merely clears AC. If A
is zero, HLLZS merely clears
the right half of location E.

HLLOI sets AC to all Os in
the left half, all 1s in the

right

-26-

CENTRAL PROCESSOR §2.1

HLL Half Left to Left 500

HLLI Half Left to Left Immediate 501

HLLM - Half Left to Left Memory 502

HLLS Half Left to Left Self 503
HLLZ Half Word Left to Left, Zeros

si0 M| 4 [l x | Y ' B

0 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un-
affected, the original contents of the destination are lost. .

HLLZ Half Left to Left, Zeros 510
HLLZI Half Left to Left, Zeros, Immediate 511
HLLZM Half Left to Left, Zeros, Memory 512
HLLZS Half Left to Left, Zeros, Self 513
HLLO Half Word Left to Left, Ones

[520 [mM] a4 Ji x | Y

0 67 89 121314 1718 . 35

Move the left half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HLLO Half Left to Left, Ones : 520
HLLOI Half Left to Left, Ones, Immediate 521
HLLOM Half Left to Left, Ones, Memory 522
HLLOS Half Left to Left, Ones, Self 523
HLLE Half Word Left to Left, Extend

[530 [m] 4 |1 x | Y

(1] ‘67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal to
bit O of the source. The source is unaffected, the original contents of the
destination are lost.

-97-

§2.1 HALF WORD. DATA TRANSMISSION

HLLE Half Left to Left, Extend 530
HLLEI Half Left to Left, Extend, Immediate - 531
HLLEM Half Left to Left, Extend, Memory 532
HLLES _Half Left to Left, Extend, Self ’ 533
HRL Half Word Right to Left

| 504 [mM[4 [i x | Y

(1] 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are unaf-
fected; the original contents of the destination left half are lost.

HRL Half Right to Left . 504
HRLI Half Right to Left Immediate 505
HRLM Half Right to Left Memory 506
"HRLS ~ Half Right to Left Self 507
HRLZ Half Word Right to Left, Zeros

| 514 [mM] 4 Ji] x] Y]
o 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un-
affected, the original contents of the destination are lost.

HRLZ Half Right to Left, Zeros 514
HRLZI Half Right to Left, Zeros, Immediate 515
HRLZM Half Right to Left, Zeros, Memory 516
HRLZS Half Right to Left, Zeros, Self 517
HRLO Half Word Right to Left, Ones

524 M| 4 |1l x | Y

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

SYSTEM REFERENCE

2-5

HLLEI is equivalent to HLLZI
(it merely clears AC).

HRLZI loads the word E,0
into AC.

SYSTEM REFERENCE

If 4 is zero, HRRS is a no-op;
otherwise it is equivalent to
MOVE.

-28-

CENTRAL PROCESSOR §2.1

HRLO Half Right to Left, Ones 524

HRLOI Half Right to Left, Ones, Immediate 525

HRLOM Half Right to Left, Ones, Memory 526

HRLOS Half Right to Left, Ones, Self . 527
HRLE Half Word Right to Left, Extend

s34 [m] a4 1] x | Y]

o 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRLE Half Right to Left, Extend 534

HRLEI Half Right to Left, Extend, Immediate 535

HRLEM Half Right to Left, Extend, Memory - 536
, HRLES Half Right to Left, Extend, Self 537

HRR Half Word Right to Right

[540 [m] a4 [1i] x | Y |

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HRR Half Right to Right 540
HRRI Half Right to Right Immediate 541
HRRM Half Right to Right Memory 542
HRRS Half Right to Right Self 543
HRRZ Half Word Right to Right, Zeros

| 550 [m]| 4 Ji] x | Y]

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the

-29-

§2.1 HALF WORD DATA TRANSMISSION

specified destination, and clear the déstination left half. The source is unaf-
fected, the original contents of the destination are lost.

HRRZ Half Right to Right, Zeros : 550
HRRZ! Half Right to Right, Zeros, Immediate 551
HRRZM Half Right to Right, Zeros, Memory 552
HRRZS Half Right to Right, Zeros, Self 553
HRRO Half Word Right to Right, Ones

se0 M| 4 1] x | Y |
0 67 89 121314 1718) 35

Move the right half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source is
unaffected, the original contents of the destination are lost.

HRRO Half Right to Right, Ones 560,
HRROI Half Right to Right, Ones, Immediate 561
HRROM Half Right to Right, Ones, Memory 562
HRROS Halif Right to Right, Ones, Self 563
HRRE Half Word Right to Right, Extend

s70 |m] 4 |1l x | Y |
)] 67 89 T 121314 1718 - 35

Move the right half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost, ’

HRRE ' Half Right to Right, Extend 570
HRREI Half Right to Right, Extend, Immediate 571 .
HRREM Half Right to Right, Extend, Memory 572
HRRES Half Right to Right, Extend, Self 573
HLR Half Word Left to Right

saa M| 4] x | Y
° 67 89 1213 14 1718 : 35

Move the left half of the source word specified by M to the right half of the

SYSTEM REFERENCE

HRRZI loads the word 0,F
into AC. If 4 is zero, HRRZS
merely clears the left half of
location E.

SYSTEM REFERENCE

2-8

'HLRI merely clears AC right.

HLRZI merely clears AC and
is thus equivalent.to HLLZI.

HLROI sets AC to all 1s in
the left half, all Os in the

right.

-30-

CENTRAL PROCESSOR §2.1

specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HLR Half Left to Right 544
HLRI Half Left to Right Immediate 545
HLRM Half Left to Right Memory . 546
HLRS Half Left to Right Self 547
HLRZ " Half Word Left to Right, Zeros

ss4 M| 4 1] x | | Y
0 - 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is un-
affected, the original contents of the destination are lost.

HLRZ Half Left to Right, Zeros 554

HLRZI Half Left to Right, Zeros, Immediate ' 555
HLRZM Half Left to Right, Zeros, Memory ‘ 556

HLRZS Half Left to Right, Zeros, Self 557

HLRO Hatf Word Left to Right, Ones

[564 [mM] 4 1] x | Y

0 67 89 . 121314 1718 35

Move the left half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all 1s.” The source is:
unaffected, the original contents of the destination are lost.

HLRO Half Left to Right, Ones 564
_ HLROI Half Left to Right, Ones, Immediate ' 565
HLROM Half Left to Right, Ones, Memory ‘ 566
HLROS Half Left to Right, Ones, Self . 567
HLRE Half Word Left to Right, Extend
574 | M| 4 [1] x | Y
[} 6v7 89 121314 17 18 . 35

Move the left half of the source word specified by M to the right half of the

-31-

§2.2 FULL WORD DATA TRANSMISSION

specified destination, and make all bits in the destination left half equal to
bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.

HLRE Half Left to Right, Extend 574
HLREI Half Left to Right, Extend, Immediate 575
HLREM Half Left to Right, Extend, Memory 576
HLRES Half Left to Right, Extend, Self 577

ExampLes. The half word transmission instructions are very useful for
handling addresses, and they provide a convenient means of setting up an
accumulator whose right half is to be used for indexing while a control count
is kept in the left half. Eg this pair of instructions loads the 18-bit numbers
M and N into the left and right halves respectively of an accumulator that is
addressed symbolically as XR.

HRLZI XR,M
HRRI XR,N

Of course the source program must somewhere define the value of the
symbol XR as an octal number between 1 and 17. ’

Suppose that at some point we wish to use the two halves of XR inde-
pendently as operands (taken as 18-bit positive numbers) for computations.
We can begin by moving XR left to the right half of another accumulator
AC and leaving the contents of XR right alone in XR.

HLRZM XR,AC

HLLI XR, ;Clear XR left

2.2 FULL WORD DATA TRANSMISSION

These are the instructions whose basic purpose is to move one or more full
words of data from one place to another, usually from an accumulator to a
memory location or vice versa. In a few cases instructions may perform
minor arithmetic operations, such as forming the negative or the magnitude
of the word being processed. -

EXCH Exchange
L 250 | 4 1] x] Y]
V] 89 121314 1718 ’ 35

Move the contents of location E to AC and move AC to location E.

SYSTEM REFERENCE

29

HLREI is equivalent to
HLRZI (it merely clears AC).

It is not necessary to clear the
other half of XR when load-
ing the first half word. But
any instruction that modifies
the other half is faster than
the corresponding instruction
that does not, as the latter
must fetch the destination
word in order to save half of
it. (The difference does not
apply to self mode, for here
the source and destination are
the same.)

SYSTEM REFERENCE

2-10

Besides the move instructions
for single words there are also

-32-

CENTRAL PROCESSOR §2.2

BLT Block Transfer
251 | 4 il x | Y.]
0 89 121314 1718 35

Beginning at the location addressed by AC left, move words to another area
of memory beginning at the location addressed by AC right. Continue until
a word is moved to location E. The total number of words in the block is
thus E —ACg + 1. '

CavuTioN

Priority interrupts are allowed during the execution of this instruction,
following the processing of each word. If an interrupt occurs, the BLT
stores the source and destination addresses for the next word in AC, so
when the processor restarts upon the return to the interrupted program,
it actually resumes at the correct point within the BLT. Therefore,
unless the interrupt system is inactive, 4 and X must not address the
same register as this would produce a different effective address calcula-
tion upon resumption should an interrupt occur; and the program must
not attempt to load an accumulator addressed either by A4 or X unless it
is the final location being loaded. Furthermore, the program cannot
assume that AC is the same after the BLT as it was before.

ExampLes. This pair of instructions loads the accumulators from memory
locations 2000-2017.

HRLZI 17,2000 ;Put 2000 000000 in AC 17
BLT 17,17

But to transfer the block in the opposite direction requires that one accumu-
lator first be made available to the BLT:

MOVEM 17,2017 ;Move AC 17 to 2017 in memory
MOVEI 17,2000 ;Move the number 2000 to AC 17
BLT 17,2016

If at the time the accumulators were loaded the program had placed in loca-
tion 2017 the control word necessary for storing them back in the same
block (2000), the three instructions above could be replaced by

EXCH 17,2017
BLT 17,2016

Move Instructions

Each of these instructions moves a 'single word, which may be changed in the
process (eg its two halves may be swapped). There are four instructions,

-33-

§2.2 FULL WORD DATA TRANSMISSION

each with four modes that determine the source and destination of the word
moved.

Mode) Suyfix Source Destination
Basic E AC
Immediate 1 The word 0, E AC

- Memory M AC E
Seif S E E, but also AC

if A is nonzero

MOVE Move
| 200 [m[a4 1] x] Y
0 67 89 121314 1718 35

Move one word from the source to the destination specified by M. The
source is unaffected, the original contents of the destination are lost.

MOVE Move 200
MOVEI Move Immediate 201
MOVEM Move to Memory 202
MOVES Move to Self 203
Movs Move Swapped

204 (M| 4 1] x] Y |
(4] 67 89 121314 1718 35

Ihterchange the left and right halves of the word from the source specified
by M and move it to the specified destination. The source is unaffected, the
original contents of the destination are lost.

MOvVsS Move Swapped 204
MOVSI Move Swapped Immediate 205
MOVSM Move Swapped to Memory 206
MOVSS Move Swapped to Self 207
MOVN Move Negative

210 M| a4 i x] Y |
0 67 89 121314 1718 35

Negate the word from the source specified by M and move it to the specified
destination. If the source word is fixed point —23% (400000 000000) set the

SYSTEM REFERENCE

2-11

four transmission instructions
that handle double length
operands (operands of two
adjacent words). These are
available, however, only in
the KI10; and since they are
principally for use in hardware
double precision floating point
operations, they are described
with the floating point instruc-
tions in §2.6

_ MOVEI loads the word 0,F

into AC and is thus equiva-
lent to HRRZI. If A is zero,
MOVES is a no-op; otherwise
it is equivalent to MOVE.

Swapping halves in immediate
mode loads the word E,0 into
AC. MOVSI is thus equivalent
to HRLZI.

SYSTEM REFERENCE

2-12

In the K110 a move executed
as an interrupt instruction can
set no flags.

MOVNI loads AC with the
negative of the word 0, F and
can set no flags. -

In the KI10 a move executed
as an interrupt instruction can
set no flags.

The word O,E is equivalent
to its magnitude, so MOVMI
is equivalent to MOVEL

-3

CENTRAL PROCESSOR §2.2

Overflow and Carry 1 flags. (Negating the equivalent floating point -1 X 217
sets the flags, but this is not a normalized number.) If the source word is
zero, set Carry 0 and Carry 1. The source is unaffected, the original contents
of the destination are lost. Setting Overflow also sets the Trap 1 flagin the
KI10.

MOVN Move Negative 210 -
MOVNI Move Negative Immediate 211
MOVNM Move Negative to Memory 212
MOVNS Move Negative to Self 213
MOVM Move Magnitude

214 M| 4 |1 x | Y
V] 67 89 121314 1718 35

Take the magnitude of the word contained in the source specified by M and
move it to the specified destination. If the source word is fixed point —23
(400000 000000) set the Overflow and Carry 1 flags. (Negating the equiva-
lent floating point —1 X 21?7 sets the flags, but this is not a normalized num-
ber.) The source is unaffected, the original contents of the destination are
lost. Setting Overflow also sets the Trap 1 flag in the KI10.

MOVM Move Magnitude 214
MOVMI Move Magnitude Immediate 215
MOVMM Move Magnitude to Memory 216
MOVMS

Move Magnitude to Self - 217

An example at the end of the preceding section demonstrates the use of a
pair of immediate-mode half word transfers to load an address and a control
count into an accumulator. The same result can be attained by a single move
instruction. This saves time but still requires two locations. Eg if the num-
ber 200 001400 is stored in location M, the instruction

MOVE ACM

loads 200 into AC left and 1400 into AC right. If the same word, or its nega-
tive, or with its halves swapped, must be loaded on several occasions, then
both time and space can be saved as each transfer requires only a single move
instruction that references M.

Pushdown List

These two instructions insert and remove full words in a pushdown list. The
address of the top item in the list is kept in the right half of a pointer in AC,

-35-

§2.2 FULL WORD DATA TRANSMISSION

and the program can keep a control count in the left half. There are also
" two subroutine-calling instructions that utilize a pushdown list of jump ad-
dresses [§2.9].

PUSH Push Down
261 | 4 1] x| Y |
o 89 121314 1718 : 35

Add one to each half of AC, then move the contents of location £ to the
location now addressed by AC right. If the addition causes the count in AC
left to reach zero, set the Pushdown Overflow flag in the KA10, set the
Trap 2 flag in the KI10. The contents of £ are unaffected, the original
contents of the location added to the list are lost.

Note: The KA10 increments the two halves of AC by adding 1000001,
to the entire register. In the K110 the two halves are handled independently.

POP Pop Up

262 | a4 1] x | Y Il
89

121314 1718 35

[}

Move the contents of the location addressed by AC right to location E, then
subtract one from each half of AC. If the subtraction causes the count in AC
left to reach —1, set the Pushdown Overflow flag in the KA10, set the Trap 2
flag in the KI10. The original contents of E are lost.

Because of the order in which the operands are stored, the instruction
POP AC,AC would load the contents of the location addressed by AC right
into AC on top of the pushdown count, destroying it.

Note: The KA1Q decrements the two halves of AC by subtracting
10000015 from the entire register. In the KI10 the two halves are handled
independently.

In the KA10, incrementing and decrementing both halves of AC together

is effected by adding and subtracting 1 0000014. Hence a count of —2 in AC
left is increased to zero if 2!8 —1 is incremented in AC right, and conversely,
1 in AC left is decreased to —1 if zero is decremented in AC right.

A pushdown list is simply a set of consecutive memory locations from
which words are read in the order opposite that in which they are written.
In more general terms, it is any list in which the only item that can be re-
moved at any given time is the last item in the list. This is usually referred
to as “first in, last out” or “last in, first out”. Suppose locations g, b, ¢, ...
are set aside for a pushdown list. We can deposit data in q, b, ¢, d, then read

SYSTEM REFERENCE

2-13

In the KI10 a PUSH executed
as an interrupt instruction
cannot set Trap 2.

In the KI10 a POP executed
as an interrupt instruction
cannot set Trap 2.

SYSTEM REFERENCE

2-14

-36-

CENTRAL PROCESSOR , §2.2

d, then write in d and e, then'read e, d, ¢, etc.

Note that by trapping or checking overflow and keeping a control count in
AC left, the programmer can set a limit to the size of the list by starting the
count negative, or he can prevent the program from extracting more words
than there are in the list by starting the count at zero, but he cannot do both
at once. The common practice is to limit the size of the list.

Pushdown storage is very convenient for a program that can use data
stored in this manner as the pointer is initialized only once and only one
accumulator is required for the most complex pushdown operations. To ini-
tialize a pointer P for a list to be kept in a block of memory beginning at
BLIST and to contain at most N items, the following suffices.

MOVSI P,—N
HRRI P,BLIST-1

Of course the programmer must define BLIST elsewhere and set aside loca-
tions BLIST to BLIST + N—1. Using Macro to full advantage one could
instead give '

MOVE P,[IOWD N,BLIST]
where the pseudoinstruction
IOWD J, K

is replaced by a word containing —J in the left half and K — 1 in the right.
Elsewhere there would appear

BLIST: BLOCK N

which defines BLIST as the current contents of the location counter and sets
aside the N locations beginning at that point.

In the PDP-10 the pushdown list is kept in a random access core mem-
ory, so the restrictions on order of entry and removal of items actually apply
only to the standard addressing by the pointer in pushdown instructions —
other addressing methods can reference any item at any time. The most
convenient way to do this is to use the right half of the pointer as an index
register. To move the last entry to accumulator AC we need simply give

MOVE AC/P) .

.Of course this does not shorten the list — the word moved remains the last

item in it.

One usually regards an index register as supplying an additive factor for a
basic address contained in an instruction word, but the index register can
supply the basic address and the instruction the additive factor. Thus we can
retrieve the next to last item by giving

MOVE AC,—1(P)
and so forth. Similarly

PUSH P,-3(P)

-37-

§2.3 ~ . ' BYTE MANIPULATION

adds the third to last item to the end of the list;
POP P,—2(P)

removes the last item and inserts it in place of the next to last item in the
shortened list.

2.3 BYTE MANIPULATION

This set of five instructions allows the programmer to pack or unpack bytes
of any length anywhere within a word. Movement of a byte is always
between AC and a memory location: a deposit instruction takes a byte from
the right end of AC and inserts it at any desired position in the memory
location; a load instruction takes a byte from any position in the memory
location and places it right-justified in AC. . .

The byte manipulation instructions have the standard memory reference
format, but the effective address E is used to retrieve a pointer, which is used
in turn to locate the byte or the place that will receive it. The pointer has
the format

P s |l x | Y]

0 56 11121314 1718 3s

where S is the size of the byte as a number of bits, and P is its position as the
number of bits remaining at the right of the byte in the word (eg if P is 3 the
rightmost bit of the byte is bit 32 of the word). The rest of the pointer is
interpreted in the same way as in an instruction: 7, X and Y are used to cal-
culate the address of the location that is the source or destination of the
byte. Thus the pointer aims at a word whose format is

L 78 BITS P BITS 1

(1 35-P-S+1 35-P 35-P+1 35

where the shaded area is the byte.
To facilitate processing a series of bytes, several of the byte instructions

increment the pointer, ie modify it so that it points to the next byte position -

in a set of memory locations. Bytes are processed from left to right in a
word, so incrementing merely replaces the current value of P by P — S, unless
there is insufficient space in the present location for another byte of the
specified size (P —S < 0). In this case Y is increased by one to point to the
next consecutive location, and P is set to 36 —S to point to the first byte at
the left in the new location.

Caurion (kA10 ONLY)
Do not allow Y to reach maximum value. The whole pointer is incre-

SYSTEM REFERENCE

2-15

Note that E is calculated
before the contents of P are
changed.

In a KA10 without byte ma-
nipulation hardware, all of the
instructions presented in this
section are trapped as un-
assigned codes [§2.10].

~ SYSTEM REFERENCE

2-16

In the KII0, incrementing
maximum Y produces a zero
address without affecting X.

-38-

CENTRAL PROCESSOR | §2.3

mented, so if Y is 2!8—1 it becomes zero and X is also incremented.
The address calculation for the pointer uses the original X, but if a pri-
ority interrupt should occur before the calculation is complete, the in-
cremented X is used when the instruction is repeated.

Among these five instructions one simply increments the pointer, the
others load or deposit a byte with or without incrementing.

LDB Load Byte

135 | 4 1] x] Y |

0 89 1213 14 1718 35

Retrieve a byte of S bits from the location and position specified by the
pointer contained in location E, load it into the right end of AC, and clear
the remaining AC bits.. The location containing the byte is unaffected, the
original contents of AC are lost.

- DPB Deposit Byte.
| 137 | 4 i x | Y
V] 89 121314 1718 35

Deposit the right § bits of AC into the location and position specified by the
pointer contained in location E. The original contents of the bits that receive
the byte are lost, AC and the remaining bits of the deposit location are
unaffected.

IBP Increhent Byte Pointer
L 133 [4 [i] x] Y]
0 89 121314 1718 35

Increment the byte pointer in location E as explained above.

ILDB Increment Pointer and Load Byte

134 | 4 1] x | Y l
V] 89 121314 1718 35

Increment the byte pointer in location E as explained above. Then retrieve a
byte of S bits from the location and position specified by the newly incre-
mented pointer, load it into the right end of AC, and clear the remaining AC
bits. The location containing the byte is unaffected, the original contents of
AC are lost.

-39-

§2.4 LOGIC

IDPB Increment Pointer and Deposii Byte

| 136 | 4 1] x T ~ Y]
0 89 121314 1718 . 35

Increment the byte pointer in location E as explained above. Then deposit
the right S bits of AC into the location and position specified by the newly
incremented pointer. The original contents of the bits that receive the byte
are lost, AC and the remaining bits of the deposit location are unaffected.

Note that in the pair of instructions that both increment the pointer and
process a byte, it is the modified pointer that determines the byte location
and position. Hence to unpack bytes from a block of memory, the program
should set up the pointer to point to a byte just before the first desired, and
then load them with a loop containing an ILDB. If the first byfe is at the
left end of a word, this is most easily done by initializing the pointer with a
P of 36 (445). Incrementing then replaces the 36 with 36 — .S to point to the
first byte. At any time that the program might inspect the pointer during

* execution of a series of ILDBs or IDPBs, it points to the last byte processed
(this may not be true when the pointer is tested from an interrupt routine
[§2.13]). ’ ‘

Special Considerations. If S is greater than P and also greater than 36,
incrementing produces a new P equal to 100~ S rather than 36 —S. For
§ > 36 the byte is at most the entire word; for P> 36 no byte is processed
(loading merely clears AC). If both P and S are less than 36 but P +.5 > 36,
a byte of size 36 — P is loaded from position P, or the right 36 — P bits of the
byte are deposited in position P.

24 LOGIC

For logical operations the PDP~10 has instructions for shifting and rotating
as well as for performing the complete set of sixteen Boolean functions of
two variables (including those in which the result depends on only one or
neither variable). The Boolean functions operate bitwise on full words, so
each instruction actually performs thirty-six logical operations simultane-
ously. Thus in the anp function of two words, each bit of the result is the
AnD of the corresponding bits of the operands. The table on page 2-23 lists
the bit configurations that result from the various operand configurations for
all instructions.

Each Boolean instruction has four modes that determine the source of the

non-AC operand, if any, and the destination of the result. For an instruction
without an operand (one that merely clears a location or sets it to all 1s) the
modes differ only in the destination of the result, so basic and immediate

SYSTEM REFERENCE

2-17

SYSTEM REFERENCE

2-18

SETZ and SETZI are equiva-

lent (both merely clear AC).
MAcro also tecognizes
CLEAR, CLEARI, CLEARM
and CLEARB as equivalent to
the set-to-zeros mnemonics.

SETO and SETOI are equiva-
lent.

-40-

CENTRAL PROCESSOR

§2.4

modes are equivalent. The same is true also of an instruction that uses only
an AC operand. When specified by the mode, the result goes to the accumu-

lator addressed by A4, even when there is no AC operand.

‘ ' ‘ -Source of non- Destination

Mode Suffix AC operand of result
Basic - , E AC
Immediate I The word 0, E AC
Memory M E E
Both B E ACand F
SETZ Set to Zeros ‘
L 400 [m[4 [x | Y]
(1] . 67 89 1213 14 1718 35

Change the contents of the destination specified by M to all Os.

SETZ Set to Zefos

400
SETZI Set to Zeros Immediate 401
SETZM Set to Zeros Memory 402
SETZB Set to Zeros Both 403
SETO Set to Ones
| 474 [m] a4 [x | Y |
o §7 89 121314 1718 35

Change the contents of the destination specified by M to all 1s.

SETO Set to Ones

SETOI Set to Ones Immediate
SETOM Set to Ones Memory
SETOB Set to Ones Both

SETA Setto AC

474
475
476
477

424 M| 4 [I] x | Y

67 89 121314 1718

Make the contents of the destination specified by M equal to AC.

-4i1-
§2.4 LOGIC
SETA Set to AC 424
SETAI Set to AC Immediate 425
SETAM Set to AC Memory . 426
SETAB Set to AC Both 4217
SETCA . Setto Complement of AC
| 450 |m| 4 |1] x | Y
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement
of AC. '

SETCA Set to Complement of AC 450
SETCAI Set to Complement of AC Immediate 45]
SETCAM Set to Complement of AC Memory 452
SETCAB Set to Complement of AC Both 453
SETM Set to Memory

| 414 M| 4 [l x | Y |
0 67 89 1213 14 1718 35

Make the contents of the destination specified by M equal to the specified
operand. : :

SETM Set to Memory 414
SETMI Set to Memory Immediate 415
SETMM Set to Memory Memory , 416
SETMB Set to Memory Both ‘ 417
SETCM Set to Complement of Memory

460 M| 4 |1 x | Y
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of
the specified operand. ‘

SYSTEM REFERENCE

2-19

SETA and SETAI are no-ops.
SETAM and SETAB are both
equivalent to MOVEM (all
move AC to location E).

SETCA and SETCAI are
equivalent (both complement .
ACQ).

SETM and SETMB are equiv-
alent to MOVE. SETMI
moves the word 0,F to AC
and is thus equivalent to
MOVEI. SETMM is a no-op
that references memory.

SYSTEM REFERENCE .

2-20

SETCMI moves the comple-
ment of the word 0, F to AC.
SETCMM complements loca-
tion E.

—42-

CENTRAL PROCESSOR ‘ §2.4

SETCM Set to Complement of Memory -~ 460

SETCMI Set to Complement of Memory Immediate 461

SETCMM Set to Complement of Memory Memory 462

SETCMB Set to Complement of Memory Both 463
AND And with AC

404 M| a |1 x | Y |

(1] 67 89 121314 1718 35

Change the contents of the destination specified by M to the anp function
of the specified operand and AC.

AND And 404
ANDI And Immediate 405
ANDM And to Memory 406
ANDB And to Both ‘ 407

ANDCA And with Complement of AC

410 M| a4 i x | Y]

4] . 67 89 121314 1718 35

Change the contents of the destination specified by M to the anp function
of the specified operand and the complement of AC.

ANDCA And with Complement of AC 410
ANDCAI And with Complement of AC Immediate 411
ANDCAM And with Complement of AC to Memory 412
ANDCAB And with Complement of AC to Both 413

ANDCM And Complement of Memory with AC

420 [mM| a4 1] x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the anp function
of the complement of the specified operand and AC.

ANDCM And Complement of Memory 420
ANDCMI And Complement of Memory Immediate 421

-3~
§2.4 LOGIC
ANDCMM And Complement of Memory to Memory 1422
ANDCMB And Complement of Memory to Both ' 423
ANDCB And Complements of Both
440 |m| a4 |1 x | Y |
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the anp function of
the complements of both the specified operand and AC. The result is the
Nor function of the operands.

ANDCB And Complements of Both 440
ANDCBI And Complements of Both Immediate 441
ANDCBM And Complements of Both to Memory 442
ANDCBB And Complements of Both to Both 443
I0R Inclusive Or with AC

[434 [m] a4] x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the specified operand and AC.

I0R Inclusive Or : 434

I0RI Inclusive Or Immediate) o 435
I0RM Inclusive Or to Memory 436
I0RB Inclusive Or to Both 437
ORCA Inclusive Or with Complement of AC

454 [m] a4 1] x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the specified operand and the complement of AC.

ORCA Or with Complement of AC 454
ORCAI Or with Complement of AC Immediate 455
ORCAM Or with Complement of AC to Memory 456

ORCAB Or with Complement of AC to Both 457

SYSTEM REFERENCE

2-21

MAcro also recognizes OR,
ORI, ORM and ORB as equiv-
alent to the inclusive OR mne-

* monics.

e

SYSTEM REFERENCE

2-22

ORCM

-4l

CENTRAL PROCESSOR

Inclusive Or Complement of Memory with AC

§24

464

M| 4 1] x |

Y

-

(]

67 89 121314 1718

35

Change the contents of the destination specified by M to the inclusive or

function of the complement of the specified operand and AC.

URCM Or Complement of Memory 464
ORCMI Or Complement of Memory Immediate 465
ORCMM Or Complement of Memory to Memory 466
ORCMB Or Complement of Memory to Both 467
ORCB Inclusive Or Complements of Both

| 470 [m] a4 i x | Y B

0

67 89 121314 1718

35

Change the contents of the destination specified by M to the inclusive or ,
function of the complements of both the specified operand and AC. The
result is the NaND function of the operands.

ORCB Or Complements of Both 470

ORCB! Or Complements of Both Immediate 471
ORCBM Or Complements of Both to Memory 472
ORCBB Or Complements of Both to Both 473
XOR Exclusive Or with AC

430 M| a4 [i] x] Y
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the exclusive or
function of the specified operand and AC.

XOR Exclusive Or ' 430
XORI Exclusive Or Immediate 431
XORM Exclusive Or to Memory 432
XORB Exclusive Or to Both ' 433

The original contents of the destination can be recovered except in XORB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the exclusive or of the remaining operand and the result.

-45-
§2.4 ’ LOGIC
EQV quiivalence with AC v
L 444 M| a4 J1 x] Y |
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of
the exclusive or function of the specified operand and AC (the result has 1s
“wherever the corresponding bits of the operands are the same).

EQV Equivalence . 444
EQvi Equivalence Immediate : 445
EQVM Equivalence to Memory 446
EQVB Equivalence to Both 447

The original contents of the destination can be recovered except in EQVB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the equivalence function of the remaining operand and
the result.

For the four possible bit configurations of the two operands, the above
sixteen instructions produce the following results. In each case the result as
listed is equal to bits 3—6 of the instruction word.

AC
Mode Specified Operand

- O
—

SETZ
AND
ANDCA
SETM
ANDCM
SETA
XOR
IOR
ANDCB
EQV
SETCA
ORCA
SETCM
ORCM
ORCB
SETO

e R N N = B R = N = B = I = S = S S N
- = - - 0000 == = —=000O0|o —
—_—, 0 0O = OO =m0 0 .= O O
—_— 0 O O =0 O =0 -0 = O

SYSTEM REFERENCE

2-23

SYSTEM REFERENCE

2-24

LSH

LSHC

ROT -

ROTC

ASH

ASHC

-46-

CENTRAL PROCESSOR §2.4

Shift and Rotate

The remaining logical instructions shift or rotate right or left the contents of
AC or the contents of two accumulators, 4 and A+1 (mod 20g), concat-
enated into a 72-bit register with A on the left. The illustration below
shows the movement of information these instructions produce in the accu-

0 A 0
0 35
0 - ' A ' A+1 0
0 ' 35 0 35
A
0 35
A - A+
0 35 0 35
A - A 0
0 1 35
A+t
0 0
A A+1 0
1 35 1 35

ACCUMULATOR BIT FLOW IN SHIFT AND ROTATE INSTRUCTIONS

-47-

§24 LOGIC -

mulators. In a (logical) shift the contents of a register are moved bit-to-bit
with Os brought in at the end being vacated; information shifted out at the
other end is lost. [For a discussion of arithmetic shifting see §2.5.] In
rotation the contents are moved cyclically such that information rotated out
at one end is put in at the other. 7

The number of places moved is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 28 in magnitude. In other words the effective shift £ is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc-
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive £ produces motion to the left, a negative £ to the right.
In the KA10, maximum movement is 255 places. The KI10 eliminates re-
dundant movement of the operand by shifting E mod 72 places, for a
maximum of 71. B

LSH Logical Shift
1 242 | 4 [i] x] Y]
o 89 121314 1718 . 35

Shift AC the number of places specified by E. If E is positive, shift left
bringing Os into bit 35; data shifted out of bit 0 is lost. If E is negative, shift
right bringing Os into bit 0; data shifted out of bit 35 is lost.

LSHC Logical Shift Combined
246 | 4 1] x] Y]
V] 89 121314 1718 . 35

Concatenate accumulators 4 and A+1 with 4 on the left, and shift the
72-bit combination the number of places specified by E. If E is positive,
shift left bringing Os into bit 71 (bit 35 of AC A+1); bit 36 is shifted into bit
35; data shifted out of bit 0 is lost. If E is negative, shift right bringing Os
into bit O; bit 35 is shifted into bit 36; data shifted out of bit 71 is lost.

ROT Rotate
[241 | 4 il x | Y]
o 89 121314 1718 35

Rotate AC the number of places specified by E. If E is positive, rotate left;
bit O is rotated into bit 35. If E is negative, rotate right; bit 35 is rotated
into bit 0.

SYSTEM REFERENCE

2-25

SYSTEM REFERENCE

2-26

Overflow is determined di-
rectly from the carries, not
from the carry flags, as their
states may reflect events in
previous instructions.

In the KI10 an arithmetic
instruction executed as an
interrupt instruction can set
no flags.

-48-

CENTRAL PROCESSOR §2.5
ROTC Rotate Combined
| 245 | 4 |1l x | Y]
0 89 121314 1718 35

Concatenate accumulators 4 and A+1 with A on the left, and rotate the
72-bit combination the number of places specified by E. If E is positive,
rotate left; bit O is rotated into bit 71 (bit 35 of AC A+1) and bit 36 into bit
35. If E is negative, rotate right; bit 35 is rotated into bit 36 and bit 71 into
bit 0.

2.5 FIXED POINT ARITHMETIC

For fixed point arithmetic the PDP-10 has instructions for arithmetic shift-
ing (which is essentially multiplication by a power of 2) as well as for per-
forming addition, subtraction, multiplication and division of numbers in
fixed point format [§1.1]. In such numbers the position of the binary point
is arbitrary (the programmer may adopt any point convention). The add and
subtract instructions involve only single length numbers, whereas multiply
supplies a double length product, and divide uses a double length dividend..
The high and low order words respectively of a double length fixed point
number are in accumulators A and 4+1 (mod 20g4), where the magnitude is
the 70-bit string in bits 1-35 of the two words and the signs of the two are
identical. There are also integer multiply and divide instructions that involve

“only single length numbers and are especially suited for handling smaller

integers, particularly those of eighteen bits or less such as addresses (of
course they can be used for small fractions as well provided the programmer
keeps track of the binary point). For convenience in the following, all oper-
ands are assumed to be integers (binary point at the right).

The processor has four flags, Overflow, Carry 0, Carry 1 and No Divide,
that indicate when the magnitude of a number is or would be larger than can
be accommodated. Carry 0 and Carry 1 actually detect carries out of bits 0
and 1 in certain instructions that employ fixed point arithmetic operations:
the add and subtract instructions treated here, the move instructions that
produce the negative or magnitude of the word moved [§2.2], and the
arithmetic test instructions that increment or decrement the test word
[§2.7]. In these instructions an incorrect result is indicated — and the Over-
flow flag set — if the carries are different, ie if there is a carry into the sign
but not out of it, or vice versa. The Overflow flag is also set by No Divide
being set, which means the processor has failed to perform a division because
the magnitude of the dividend is greater than or equal to that of the divisor,
or in integer divide, simply that the divisor is zero. In other overflow cases
only Overflow itself is set: these include too large a product in multiplica-
tion, too large a number to convert to fixed point [§2.6], and loss of signi-
ficant bits in left arithmetic shifting. In the KI10 any condition that sets
Overflow also sets the Trap 1 flag. : '

These flags can be read and controlled by certain program control instruc-
tions [§§2.9, 2.10]. In the KA10, Overflow is available as a processor

~49-

§2.5 FIXED POINT ARITHMETIC

condition (via an in-out instruction) that can request a priority interrupt if
enabled, whereas KI10 overflow is handled by trapping through the setting
of Trap 1 [both subjects are discussed in §2.141. The conditions detected
can only set the arithmetic flags and the hardware does not clear them,
so the program must clear them before an instruction if they are to give
meaningful information about the instruction afterward. However, the
" program can check the flags following a series of instructions to determine
whether the entire series was free of the types of error detected.

All but the shift instructions have four modes that determine the source
of the non-AC operand and the destination of the result.

Source of non- Destination

Mode Suffix AC operand . of result
Basic E AC
Immediate I The word 0, F AC -
Memory M E E
Both B E ACand E
ADD Add
[270 [mM[a4 Ji] x | ‘ Y
(1] 67 89 121314 1718 . | 35

Add the operand specified by M to AC and place the result in the specified
destination. If the sum is > 23 set Overflow and Carry 1; the result stored
has a minus sign but a magnitude in positive form equal to the sum less 2%.
If the sum is < —23 set Overflow and Carry 0; the result stored has a plus
sign but a magnitude in negative form equal to the sum plus 235 Set both
carry flags if both summands are negative, or their signs differ and their mag-
nitudes are equal or the positive one is the greater in magnitude.

ADD Add : ' 270
ADDI Add Immediate 271
ADDM Add to Memory 272
ADDB Add to Both 273
SuB Subtract

[274 [mM] 4 |i] x | Y |
(1) 67 89 121314 1718 35

Subtract the operand specified by M from AC and place the result in the
specified destination. If the difference is = 2% set Overflow and Carry 1;
the result stored has a minus sign but a magnitude in positive form equal to
the difference less 235. If the difference is < —23° set Overflow and Carry O;
the result stored has a plus sign but a magnitude in negative form equal to

SYSTEM REFERENCE

2-27

Besides indicating error types,
the carry flags facilitate per-
forming multiple precision
arithmetic.

SYSTEM REFERENCE -50-

2-28 CENTRAL PROCESSOR §2.5

the difference plus 235. Set both carry flags if the signs of the operands are
the same and AC is the greater or the two are equal, or the signs of the
operands differ and AC is negative.

SuB Subtract 274
susBl Subtract Immediate 275
SuBM Subtract to Memory 276
SUBB Subtract to Both : 277
MUL Multiply

224 M| a4 i x | Y

0 67 89 121314 1718 35

Multiply AC by the operand specified by M, and place the high order word
of the double length result in the specified destination. If M specifies AC as
a destination, place the low order word in accumulator 4A+1. If both oper-
ands are —23° set Overflow; the double length result stored is —27°.

MUL Multiply) 224
MULI Multiply Immediate 225
MULM Multiply to Memory ' 226
MULB Multiply to Both 227
iMUL Integer Multiply

220 M| 4 |1l x] Y
)] 67 89 1213 14 1718 35

Multiply AC by the operand specified by M, and place the sign and the 35
low order magnitude bits of the product in the specified destination. Set
Overflow if the product is = 23 or < —23% (je if the high order word of the
double length product is not null); the high order word is lost.

IMUL Integer Multiply ' 220
IMULI Integer Multiply Immediate 221
IMULM Integer Multiply to Memory 222
IMULB Integer Multiply to Both 223
DIV Divide

234 M| 4] x] Y |
0 67 89 121314 1718 35

If the magnitude of the number in AC is greater than or equal to that of the

-51-

§2.5 FIXED. POINT ARITHMETIC

operand specified by M, set Overflow and No Divide, and go immediately to
the next instruction without affecting the original AC or memory operand in
any way. Otherwise divide the double length number contained in accumula-
tors A and A+1 by the specified operand, calculating a quotient of 35
magnitude bits including leading zeros. Place the unrounded quotient in the
specified destination. If M specifies AC as a destination, place the remainder,
with the same sign as the dividend, in accumulator A+1.

DIV Divide 234
BIvI Divide Immediate 235
DIVM Divide to Memory ’) 236
DIve Divide to Both 237
IDIV Integer Divide

| 230 [m] 4 Jif x] Y |
0 67 89 121314 1718 35

If the operand specified by M is zero, set Overflow and No Divide, and go
immediately to the next instruction without affecting the original AC or
memory operand in any way. Otherwise divide AC by the specified operand,
calculating a quotient of 35 magnitude bits including leading zeros. Place
the unrounded quotient in the specified destination. If M specifies AC as the
destination, place the remainder, with the same sign as the dividend, in
accumulator A+1.

DIV Integer Divide 230
1DIvI Integer Divide Immediate ’ 231
IDIVM Integer Divide to Memory 232
1DIVB Integer Divide to Both . 233

ExamrLE. The iiteger multiply and divide instructions are very useful for
computations on addresses or character codes, or performing any integral
operations in which the result is small enough to be accommodated in a
single register. ' '

As an example suppose we wish to determine the parity of the 8-bit char-
acter abcdefgh, where the letters represent the bits of the character. Assum-
ing the character is right-justified in AC, we first duplicate it twice to the left
producing :

abc def gha bed efg hab cde fgh

where the bits (in positions 12-35) are grouped corresponding to the octal
digits in the word. Anding this with

001 001 001 001 0C1 001 001 001

SYSTEM REFERENCE

2-29

SYSTEM REFERENCE

2-30

~-52-

CENTRAL PROCESSOR §2.5
retains only the least significant bit in each 3-bit set, so we can represent the
result by

‘ cfadgbeh

where each letter represents an octal digit having the same value (0 or 1) as
the bit originally represented by the same letter. Multiplying this by
111111114 generates the following partial products:

c fadgbekh
c fadgbeh
c fadghbehn
c fadghbeh
c fadgbeh
c fadghbehn
c fadgbeh
c fadgbeh

Since any digit is at most 1, there can be no carry out of any column with
fewer than eight digits unless there is a carry into it. Hence the octal digit
produced by summing the center column (the one containing all the bits of
the character) is even or odd as the sum of the bits is even or odd. Thus its
least significant bit (bit 14 of the low order word in the product) is the par-
ity of the character, O if even, 1 if odd.

The above may seem a very complicated procedure to do something
trivial, but it is effected by this quite simple sequence (with the character
right-justified in AC): -

IMULI AC,200401
AND AC,ONES
IMUL AC,ONES

ONES: 11111111

where the parity is indicated by AC bit 14. Of course, following the IMUL
would be a test instruction to check the value of the bit.

Arithmetic Shifting

These two instructions produce an arithmetic shift right or left of the num-
ber in AC or the double length number in accumulators A and A+1. Shifting
is the movement of the contents of a register bit-to-bit. The operation dis-
cussed here is similar to logical shifting [see §2.4 and the illustration on
page 2-24], but in an arithmetic shift only the magnitude part is shifted —
the sign is unaffected. In a double length number the 70-bit string made up
of the magnitude parts of the two words is shifted, but the sign of the low
order word is made equal to the sign of the high order word.

Null bits are brought in at the end being vacated: a left shift brings in Os at
the right, whereas a right shift brings in the equivalent of the sign bit at the
left. In either case, information shifted out at the other end is lost. A single

-53-

§2.5 FIXED POINT ARITHMETIC

shift left is equivalent to multiplying the number by 2 (provided no bit of
significance is shifted out); a shift right divides the number by 2.

The number of places shifted is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 2% in magnitude. In other words the effective shift E is the number
composed of bit 18 (which is the sign) and bits 28—-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc-
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive £ produces motion to the left, a negative E to the right;
E is thus the power of 2 by which the number is multiplied. In the KA10,
maximum movement is 255 places. The KI10 eliminates redundant move-
ment of the operand by shifting £ mod 72 places, for a maximum of 71.

ASH Arithmetic Shift
[240 [4 1] x | Y]
0 89 121314 1718 : 35

.Shift AC arithmetically the number of places specified by £. Do not shift
bit 0. If E is positive, shift left bringing Os into bit 35; data shifted out of bit
1 is lost; set Overflow if any bit of significance is lost (a 1 in a positive num-
ber, a 0 in a negative one). If E is negative, shift right bringing Os into bit 1
if AC is positive, 1s if negative; data shifted out of bit 35 is'lost.

ASHC Arithmetic Shift Combined

244 | 4 |1 x] Y B
0 89 121314 1718 35

Concatenate the magnitude portions of accumulators A and 4+1 with 4 on
the left, and shift the 70-bit combination in bits 1-35 and 37-71 the num-
ber of places specified by E.” Do not shift AC bit 0, but make bit 0 of AC
A+1 equal to it if at least one shift occurs (ie if E is nonzero). If E is posi-
tive, shift left bringing Os into bit 71 (bit 35 of AC A+1); bit 37 (bit 1 of AC
A+1) is shifted into bit 35; data shifted out of bit 1 is lost; set Overflow if
any bit of significance is lost (a 1 in a positive number, a 0 in a negative one).
If E is negative, shift right bringing Os into bit 1 if AC is positive, 1s if nega-
tive; bit 35 is shifted into bit 37; data shifted out of bit 71 is lost.

2.6 FLOATING POINT ARITHMETIC

For floating point arithmetic the PDP-10 has instructions for scaling the
exponent (which is multiplication of the entire number by a power of 2)

SYSTEM REFERENCE

2-31

An arithmetic right shift trun-
cates a negative result differ-
ently from IDIV if 1s are
shifted out. The result of the
shift is more negative by one
than the quotient of IDIV.

To obtain the same quo-
tient that IDIV would give
with a dividend in A divided

byN= 2K use '
SKIPGE A
ADDI AN-1
ASH A-K

This takes 5—6 us as opposed
to about 16 us for IDIVL

In a KA10 without floating
point hardware, all of the in-
structions presented in this
section are trapped as un-
assigned codes [§2.10].

SYSTEM REFERENCE

2-32

A subtraction involving two
like-signed numbers whose
exponents are equal and
whose fractions differ only in
the LSB gives a result con-
taining only one bit of signi-
ficance.

CENTRAL PROCESSOR §2.6

and negating double length numbers (software format) as well as performing
addition, subtraction, multiplication and division of numbers in single pre-
cision floating point format. Moveover the KI10 has instructions for per-
forming the four standard arithmetic operations on floating point numbers
in hardware double precision format, for moving double precision numbers
(with the option of taking the negative) between a pair of accumulators and
a pair of memory locations, and for converting single precision numbers
from fixed format to floating and vice versa. Except for the conversion in-
structions and the simple moves, all instructions treated here interpret all
operands as floating point numbers in the formats given in § 1.1, and gener-
ate results in those formats. The reader is strongly advised to reread § 1.1 if
he does not remember the formats in detail.

For the four standard arithmetic operations in single precision, the pro-
gram can select whether or not the result shall be rounded. Rounding
produces the greatest consistent precision using only single length operands.
Instructions without rounding have a “long” mode, which supplies a two-
word result for greater precision; the other modes save time in one-word
operations where rounding is of no significance.

Actually the result is formed in a double length register in addition, sub-
traction and multiplication, wherein any bits of significance in the low order
part supply information for normalization, and then for rounding if re-

quested. Consider addition as an example. Before adding, the processor

right shifts the fractional part of the operand with the smaller exponent until
its bits correctly match the bits of the other operand in order of magnitude.
Thus the smaller operand could disappear entirely, having no effect on the
result (“‘result’ shall always be taken to mean the information (one word or
two) stored by the instruction, regardless of the number of significant.bits it
contains or even whether it is the correct answer). Long mode is likely to
retain information that would otherwise be lost, but in any given mode the
significance of the result depends on the relative values of the operands.
Even when both operands contain twenty-seven significant bits, a long addi- -
tion may store two words that together contain only one significant bit. In
division the processor always calculates a one-word quotient that requires no
normalization if the original operands are normalized. An extra quotient bit
is calculated for rounding when requested; long mode retains the remainder.

Among the floating point instructions available only in the KI10, those
that convert between number types operate only on single words. The in-
struction that converts to floating point assumes the operand is an integer
and always normalizes and rounds the result. In the opposite direction, only
the integral part of the result is saved, and rounding is an option of the pro-
gram. The instructions for the four standard operations using double pre-
cision have no modes. In division the processor always calculates a two-word
quotient that is normalized if the original operands are normalized, but
rounding is not available. In addition, subtraction and multiplication, the
result is formed in a triple length register, wherein bits of significance in the
lowest order part supply information for limited normalization and then
for rounding, which is automatic.

The processor has four flags, Overflow, Floating Overflow, Floating
Underflow and No Divide, that indicate when the exponent is too large or

-55-

§2.6 FLOATING POINT ARITHMETIC

too small to be accommodated or a division cannot be performed because of
the relative values of dividend and divisor. Except where the result would be
in fixed point form, any of these circumstances sets Overflow and Floating
Overflow. If only these two are set, the exponent of the answer is too large;
if Floating Underflow is also set, the exponent is too small. No Divide being
set means the processor failed to perform a division, an event that can be
produced only by a zero divisor if all nonzero operands are normalized. Any
condition that sets Overflow in the KI10 also sets the Trap 1 flag. These flags
can be read and controlled by certain program control instructions [§ §2.9,
2.10]. In the KA10, Overflow and Floating Overflow are available as proces-
sor conditions (via an in-out instruction) that can request a priority interrupt
if enabled, whereas K110 overflow is handled by trapping through the setting
of Trap 1 [both of these subjects are discussed in §2.14]. The conditions

detected can only set the arithmetic flags and the hardware does not clear -

them, so the program must clear them before a floating point instruction if
they are to give meaningful information about the instruction afterward.
. However, the program can check the flags following a series of instructions
to determine whether the entire series was free of the types of error detected.
The floating point hardware functions at its best if given operands that
are either normalized or zero, and except in special situations the hardware
normalizes a nonzero result. An operand with a zero fraction and a nonzero
" exponent can give wild answers in additive operations because of extreme
loss of significance; eg adding %2 X 22 and 0 X 2% gives a zero result, as the
first operand (having a smaller exponent) looks smaller to the processor and
is shifted to oblivion. A number with a 1 in bit 0 and Os in bits 9-35 is not
simply an incorrect representation of zero, but rather an unnormalized
“fraction” with value —1. This unnormalized number can produce an incor-
rect answer in any operation. Use of other unnormalized operands simply
causes loss of significant bits, except in division where they can prevent its
execution because they can satisfy a no-divide condition that is impossible
for normalized numbers.

Scaling

One floating point instruction is in a category by itself: it changes the
exponent of a number without changing the significance of the fraction. In
other words it multiplies the number by a power of 2, and is thus analogous
to arithmetic shifting of fixed point numbers except that no information is
lost, although the exponent can overflow or underflow. The amount added
to the exponent is specified by the result of the effective address calculation
taken as a signed number (in twos complement notation) modulo 28 in mag-
nitude. In other words the effective scale factor E is the number composed
of bit 18 (which is the sign) and bits 28—-35 of the calculation result. Hence
the programmer may specify the factor directly in the instruction (perhaps
indexed) or give an indirect address to be used in calculating it. A positive E
increases the exponent, a negative £ decreases it; E is thus the power of 2 by
which the number is multiplied. The scale factor lies in the range —256 to
+255.

SYSTEM REFERENCE

2-33

In the KI10 an arithmetic
instruction executed as an in-
terrupt instruction can set no
flags.

The processor normalizes the
result by shifting the fraction
and adjusting the exponent to
compensate for the change in
value. Each shift and accom-
panying exponent adjustment
thus multiply the number
both by 2 and by % simulta-
neously, leaving its value un-
changed.

Note that with normalized
operands, the processor uses
at most two bits of informa-
tion from the lowest order
part to normalize the result.
In multiplication this is
obvious, since squaring the
minimum fractional magni-
tude % gives a result of %. In
an addition or subtraction of
numbers that differ greatly in
order of magnitude, the result
is determined almost com-
pletely by the operand of
greater order. A subtraction
involving two like-signed num-
bers with equal exponents re-
quires no shifting beforehand
so there is no information in
the lowest order part. Hence
an addition or subtraction
never requires shifting both
before the operation and in
the normalization; when there
is no prior shifting, the nor-
malization brings in Os.

SYSTEM REFERENCE

234

This instruction can ‘be used
to float a fixed number with
27 or fewer significant bits.
To float an integer contained
within AC bits 9-35,

FSC AC,233

inserts the correct exponent
to move the binary point
from the right end to the left
of bit 9 and then normalizes
(2333 = 155, = 128 +27).

In the KA10 these instruc-
tions are trapped as unassigned
codes.

This overflow test checks for
a value > 2% assuming the
operand is normalized.

This is the standard Fortran
truncation (““fixation”). For
it, the processor drops the

-56-
CENTRAL PROCESSOR ‘ i §2.6
FSC Floating Scale
132 [4 il x | Y |
0 89 121314 1718 35

If the fractional part of AC is zero, clear AC. Otherwise add the scale factor
given by E to the exponent part of AC (thus multiplying AC by 2%), normal-
ize the resulting word bringing Os into bit positions vacated at the right, and
place the result back in AC.

NoTtE

A negative E is represented in standard twos com-
plement notation, but the hardware compensates
for this when scaling the exponent.

If the exponent after normalization is > 127, set Overflow and Floating
Overflow; the result stored has an exponent 256 less than the correct one. .
If < —128, set Overflow, Floating Overflow and Floating Underflow; the
result stored has an exponent 256 greater than the correct one.

Number Conversion

Although FSC can be used to float a fixed point number, the KI10 has three
single precision instructions specifically for converting between integers and
floating point numbers. In all cases the operand is taken from location E,
and the converted result is placed in AC.

FIX Fix
| 122 [4 Ji] x | Y |
0 89 121314 1718 35

If the exponent of the floating point number in location £ is > 35, set
Overflow and Trap 1, and go immediately to the next instruction without
affecting AC or the contents of E in any way.

Otherwise replace the exponent X in the word from location E with bits

equal to the sign of the fraction, and shift the (now fixed) extended fraction

N =X —27 places to the correct position for its order of magnitude with the
binary point at the right of bit 35. For positive N, shift left bringing Os
into bit 35 and dropping null bits out of bit 1. For negative N, shift right
bringing null bits (0Os for positive, 1s for negative) into bit 1, and then
truncate to an integer. Place the result in AC.

Truncation produces the integer of largest magnitude less than or equal to
the magnitude of the original number. Eg a number > +1 but < +2 becomes
+1; a number < —1 but > —2 becomes —1.

-57-

§2.6 FLOATING POINT ARITHMETIC

FIXR “Fix and Round

[126 | 4 |1 x] Y ‘
] 89 121314 1718 - 35

If the exponent of the floating point number in location E is > 35, set
Overflow and Trap 1, and go immediately to the next instruction without
affecting AC or the contents of E in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended fraction
N =X —27 places to the correct position for its order of magnitude with the
binary point at the right of bit 35. For positive N, shift left bringing Os
into bit 35 and dropping null bits out of bit 1. For negative N, shift right
bringing null bits (Os for positive, 1s for negative) into bit 1, and then round
the integral part. Place the result in AC.

Rounding is in the positive direction: the magnitude of the integral part
is increased by one if the fractional part is 2 % in a positive number but
> % in a negative number. FEg +1.4 (decimal) is rounded to +1, whereas
+1.5 and +1.6 become +2; but with negative numbers, —1.4 and —1.5
become —1, whereas —1.6 becomes —2.

FLTR Float and Round

127 | a4 |1 x | Y

0 89 121314 1718 35

Shift the magnitude part of the fixed point integer from location E right
eight places, insert the exponent 35 (in proper form) into bits 1 -8 to move
the shifted binary point to the left of bit 9 (35 =27 + 8), and normalize the
fraction bringing first the bits originally shifted out and then Os into bit
positions vacated at the right. If fewer than eight bits (left shifts) are needed
to normalize, use the next bit to round the single length fraction. Place
the resuit in AC. '

The rounding function is the same as that used by the standard floating
point arithmetic instructions [see below].

Since the largest fixed point magnitude (without considering sign) is
235 — 1, a floating point number with exponent greater than 35 (and
assumed normalized) cannot be converted to fixed point. There is no limit
in the opposite direction, but precision can be lost as floating point format
provides fewer significant bits. A fixed integer greater.than 227 — 1 cannot
be represented exactly in floating point unless all its significant bits are
clustered within a group of twenty-seven.

SYSTEM REFERENCE

2-35

fractional part in a positive
number, but adds one to the
integral part (as required by
twos complement format) if
any bits of significance are
shifted out in a negative
number.)

This overflow test checks for
a value > 2% assuming the
operand is normalized.

This is the Algol standard for
real to integer conversion. For
it the processor adds one to
the integral part if the frac-
tional part is > % in a posi-
tive number or (as required
by twos complement format)
is < % in a negative number.

SYSTEM REFERENCE

2-36

In the hardware the rounding
operation is actually some-
what more complex than
stated here. If the result is
negative, the hardware com-
bines rounding with placing
the high order word in twos
complement form by decreas-
ing its magnitude if the low
order part is < 4LSB. More-
over an extra single-step re-
normalization occurs if the
rounded word is no longer
normalized.

58

CENTRAL PROCESSOR §2.6

Single Precision with Rounding

There are four instructions that use only one-word operands and store a
single-length rounded result. Rounding is away from zero: if the part of the
normalized answer being dropped (the low order part of the fraction) is
greater than or equal in magnitude to one half the LSB of the part being
retained, the magnitude of the latter part is increased by one LSB.

The rounding instructions have four modes that determine the source of
the non-AC operand and the destination of the result. These modes are like
those of logic and fixed point arithmetic, including an immediate mode that
allows the instruction to carry an operand with it.

Source of non- Destination
Mode Suffix AC operand of result
Basic E AC
Immediate I The word E,0 AC
Memory M E E
Both B E ACand F

Note however that floating point immediate uses £,0 as an operand, not
0,E. In other words the half word E is interpreted as a sign, an 8-bit expo- .
nent, and a 9-bit fraction.

In each of these instructions, the exponent that results from normaliza-
tion and rounding is tested for overflow or underflow. If the exponent is
> 127, set Overflow and Floating Overflo’; the result stored has an expo-
nent 256 less than the correct one. If <—128, set Overflow, Floating Over-
flow and Floating Underflow; the result stored has an exponent 256 greater
than the correct one.

FADR Floating Add and Round
| 144 Jm] a i x | Y]
0 67 89 121314 1718 35

Floating add the operand specified by M to AC. If the double length fraction
in the sum is zero, clear the specified destination. Otherwise normalize the
double length sum bringing Os into bit positions vacated at the right, round
the high order part, test for exponent overflow or underflow as described
above, and place the result in the specified destination.

FADR Floating Add and Round 144
FADRI Fldating Add and Round Immediate : 145
FADRM Floating Add and Round to Memory 146
FADRB

Floating Add and Round to Both 147

-59-

§2.6 FLOATING POINT ARITHMETIC

FSBR Flaating Subtract and Round

| 154 |m| a4 |i| x | Y |
0 67 89 121314 1718 35

Floating subtract the operand specified by M from AC. If the double length
fraction in the difference is zero, clear the specified destination. Otherwise
normalize the double length difference bringing Os into bit positions vacated
at the right, round the high order part, test for exponent overflow or under-
flow as described above, and place the result in the specified destination.

FSBR Floating Subtract and Round 154
FSBRI Floating Subtract and Round Immediate 155
FSBRM Floating Subtract and Round to Memory 156
FSBRB Floating Subtract and Round to Both 157
FMPR Floating Multiply and Round

164 (M| a4 Jif x | Y |
0 67 89 121314 1718 35

Floating Multiply AC by the operand specified by M. If the double length
fraction in the product is zero, clear the specified destination. Otherwise
normalize the double length product bringing Os into bit positions vacated at
the right, round the high order part, test for exponent overflow or underflow
as described above, and place the result in the specified destination.

FMPR Floating Multiply and Round k 164
FMPRI Floating Multiply and Round Immediate 165
FMPRM Floating Multiply and Round to Memory : 166
FMPRB Floating Multiply and Round to Both 167
FDVR Floating Divide and Round

[174 M| a4 |1 x | Y |
0 67 89 121314 1718 35

If the magnitude of the fraction in AC is greater than or equal to twice that
of the fraction in the operand specified by M, set Overflow, Floating Over-
flow and No Divide, and go immediately to the next instruction without
affecting the original AC or memory operand in any way.

If the division can be performed, floating divide AC by the operand spec-
ified by M, calculating a quotient fraction of 28 bits (this includes an extra
bit for rounding). If the fraction is zero, clear the specified destination.
Otherwise round the fraction using the extra bit calculated. If the original

SYSTEM REFERENCE

2-37

Division fails if the divisor is
zero, but the no-divide condi-
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

SYSTEM REFERENCE

2-38

Usually the double length
number is in two adjacent
accumulators, and E equals
A+1.

Note that this instruction
can be used to negate num-
bers in software double pre-
cision format only, for the
KI10 hardware double pre-
cision format, the program
must use the double moves.

-60-

CENTRAL PROCESSOR §2.6

operands were normalized, the single length quotient will already be
normalized; if it is not, normalize it bringing Os into bit positions vacated
at the right. Test for exponent overflow or underflow as described above,
and place the result in the specified destination.

FDVR Floating Divide and Round 174

FDVRI Floating Divide and Round Immediate 175
FDVRM Floating Divide and Round to Memory 176
FDVRB Floating Divide and Round to Both 177

Single Precision without Rounding

Instructions that do not round are faster for processing floating point
numbers with fractions containing fewer than 27 significant bits. On
the other hand the long mode provides double precision (software format)
or allows the programmer to use his own method of rounding. Besides
the four usual arithmetic operations with normalization, there are two
nonnormalizing instructions that facilitate software double precision arith-
metic [§2.11 gives examples of double precision floating point routines).
These two instructions have no modes.

DFN ~ Double Floating Negate
[13t] a [if x | Y]
0 89 121314 1718 35

Negate the double length floating point number composed of the contents of
AC and location E with AC on the left. Do this by taking the twos comple-
ment of the number whose sign is AC bit 0, whose exponent is in AC bits
1-8, and whose fraction is the 54-bit string in bits 9-35 of AC and location
E. Place the high order word of the result in AC; place the low order part of
the fraction in bits 9-35 of location £ without altering the original contents
of bits 0—8 of that location.

UFA Unnormalized Floating Add
| 130 | 4 1] x | Y |
[\] : 89 121314 1718 ’ 35

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear accumulator A+1. Otherwise normalize the sum
only if the magnitude of its fractional part is > 1, and place the high order
part of the result in A€ A+1. The original contents of AC and E are
unaffected.

-61-

§2.6 . FLOATING POINT ARITHMETIC

NotE

The result is placed in accumulator A+I. This is
the only arithmetic instruction that stores the
result in a second accumulator, leaving the original
operands intact.

If the exponent of the sum following the one-step normalization is > 127,
set Overflow and Floating Overflow; the result stored has an exponent 256
less than the correct one.

The remaining single precision floating point instructions perform the four
standard arithmetic operations with normalization but without rounding.
All use- AC and the contents of location E as operands and have four modes.

Mode Suffix Effect

Basic High order word of result stored in AC.
Long L In addition, subtraction and multiplica-

tion, the two-word result (in the double
length format described in §1.1) is

stored in accumulators A and A+1. In_

division the dividend is the double length
word in A and A+1; the single length
quotient is stored in AC, the remainder

in ACA+1. ‘
Memory M High order word of result stored in E.
Both B High order word of result stored in AC
and E.

In each of these instructions, the exponent that results from normaliza-
tion is tested for overflow or underflow. If the exponent is > 127, set Over-
flow and Floating Overflow; the result stored has an exponent 256 less than
the correct one. If < —128, set Overflow, Floating Overflow and Floating
Underflow; the result stored has an exponent 256 greater than the correct
one. ‘

FAD Fleating Add

140 |M| 4 |1 x | Y |

0 67 89 121314 1718 35

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear the destination specified by M, clearing both accu-
mulators in long mode. Otherwise normalize the double length sum bringing
Os into bit positions vacated at the right, test for exponent overflow or

SYSTEM REFERENCE

2-39

The exponent of the sum is
equal to that of the larger
summand unless addition of
the fractions overflows, in
which case it is greater by 1.
Exponent overflow can occur
only in the latter case.

SYSTEM REFERENCE

2-40

-62-

CENTRAL PROCESSOR §2.6

underflow as described above, and place the high order word of the result in
the specified destination.

In long mode if the exponent of the sum is > 154 (127 +27) or <-101
(—128 +27) ‘or the low order half of the fraction is zero, clear AC A+1.
Otherwise place a low order word for a double length result in A+1 by
putting a 0 in bit 0, an exponent in positive form 27 less than the exponent
of the sum in bits 1-8, and the low order part of the fraction in bits 9-35.

FAD Floating Add ; 140
FADL Floating Add Long 141
FADM Floating Add to Memory : 142
FADB Floating Add to Both 143
FSB Floating Subtract

[150 [m] a4 1] x | Y j
0 . 67 89 121314 1718 35

Floating subtract the contents of location E from AC. If the double length.
fraction in the difference is zero, clear the destination specified by M, clear-
ing both accumulators in long mode. Otherwise normalize the double length
difference bringing Os into bit positions vacated at the right, test for expo-
nent overflow or underflow as described above, and place the high order
word of the result in the specified destination.

In long mode if the exponent of the difference is > 154 (127 +27).or
< —101 (-128 + 27) or the low order half of the fraction is zero, clear AC
A+1. Otherwise place a low order word for a double length result in A+1 by
putting a O in bit 0, an exponent in positive form 27 less than the exponent
of the difference in bits 1-8, and the low order part of the fraction in bits
9-35. '

FSB Floating Subtract o 150
FSBL Floating Subtract Long 151
FSBM Floating Subtract to Memory 152
FSBB Floating Subtract to Both ' 153
FMP Floating Multiply

| 160 M| a4 [1] x] Y

0 67 89 121314 1718 35

Floating inultiply AC by the contents of location E. If the double length
fraction in the product is zero, clear the destination specified by M, clearing
both accumulators in long mode. Otherwise normalize the double length

-63-

§2.6 ' FLOATING POINT ARITHMETIC

product bringing Os into bit positions vacated at the right, test for exponent
overflow or underflow as described above, and place the high order word of
the result in the specified destination.

~ In long mode if the exponent of the product is > 154 (127+27) or
< =101 (—128 +27) or the low order half of the fraction is zero, clear AC
A+1. Otherwise place a low order word for a double length result in A+1
by putting a 0 in bit 0, an exponent in positive form 27 less than the
exponent of the product in bits 1-8, and the low order part of the fraction
in bits 9-35. ‘

FmP Floating Multiply ' 160
FMPL Floating Multiply Long 161
FMPM Floating Multiply to Memory 162
FMPB Floating Multiply to Both 163
FDV Floating Divide

[170 [mM[4 1] x | Y |]
0 67 89 1213 14 1718 35

If the magnitude of the fraction in AC is greater than or equal to twice that
of the fraction in location E, set Overflow, Floating Overflow and No Divide,
and go immediately to the next instruction without affecting the original AC
or memory operand in any way.

If division can be performed, floating divide the AC operand by the
contents of location E. In long mode the AC operand (the dividend) is the
double length number in accumulators A and A+1; in other modes it is the
single word in AC. Calculate a quotient fraction of 27 bits. If the fraction
is zero, clear the destination specified by M, clearing both accumulators in
lonig mode if the double length dividend was zero. A quotient with a non-
zero fraction will already be normalized if the original operands were nor-
malized; if it is not, normalize it bringing Os into bit positions vacated at the
right. Test for exponent overflow or underflow as described above, and
place the single length quotient part of the result in the specified destination.

In long mode calculate the exponent for the fractional remainder from the
division according to the relative magnitudes of the fractions in dividend and
divisor: if the dividend was greater than or equal to the divisor, the exponent
of the remainder is 26 less than that of the dividend, otherwise it is 27 less.
If the remainder exponent is > 127 or < —128 or the fraction is zero, clear
AC A+1. Otherwise place the floating point remainder (exponent and frac-
tion) with the sign of the'dividend in AC A+1.

FDV Floating Divide . 170
FDVL Floating Divide Long 171
FDVM Floating Divide to Memory 172

FDvVB Floating Divide to Both 173

SYSTEM REFERENCE

2-41

Division fails if the divisor is
zero, but the no-divide condi-
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

In long mode a nonzero un-
normalized dividend whose
entire high order fraction.is
zero produces a zero quo-
tient. In this case the second
AC receives rubbish.

SYSTEM REFERENCE

242

In the KA 10 these instructions
are trapped as unassigned
codes.

An arithmetic instruction exe-
cuted as an interrupt instruc-
tion can set no flags.

~6l-

CENTRAL PROCESSOR . §2.6

Double Precision Operations

Although double precision floating point arithmetic can be done by routines
using the single precision instructions and the software double length format,
the KI10 has instructions specifically for handling double length operands
in the hardware double precision format described in §1.1. Four of the

. instructions use two double length operands, perform the standard arith-

metic operations, and store double length results. The other four instructions
each move one double length operand between the accumulators and
memory, either unchanged or negated.

All of these instructions address a pair of adjacent accumulators and a
pair of adjacent memory locations. The accumulators have addresses A and
A+1 (mod 20g) just as they do for the double length operands used in some
shift, rotate and single precision arithmetic instructions. The memory
locations have addresses £ and E+1 (mod 2'®), where the second address
is 0 if E is 777777.

For the two instructions that simply move a pair of words without
altering them, the format of those words is actually irrelevant. The other
six instructions process each word pair as a double length number in the
hardware floating point format. Hence they ignore bit 0 in the low order
word of every operand and clear that bit in the result.

The four nonmove instructions perform the standard arithmetic opera-,
tions. All use two double length operands in the hardware double precision
format, one from the accumulators and one from memory. Addition
and subtraction always normalize the result; in multiplication and division
the result is guaranteed to be normalized only if the original operands
are normalized. In all cases the result, rounded except in division, is
placed in the accumulators. The rounding function is the same as that
used in single precision: if the part of the answer being dropped (the
low order part of the fraction) is greater than or equal in magnitude to
one half the LSB of the double length part being retained, the magnitude
of the latter part is increased by one LSB (with appropriate adjustment for
a twos complement negative). : : '

In each of these instructions, the exponent that results from normaliza-
tion and rounding (if done) is tested for overflow or underflow. If the
exponent is > 127, set Overflow and Floating Overflow; the result stored
has an exponent 256 less than the correct one. If < —128, set Overflow,
Floating Overflow and Floating Underflow; the result stored has an
exponent 256 greater than the correct one. Setting Overflow also sets
the Trap 1 flag.

DFAD Double Floating Add
110 | 4 |1 x | Y
0 89 121314 1718 . 35

Floating add the operand of locations £ and E+1 to the operand of
accumulators A and A+1. If the high order 70 bits of the fraction in the

-65-

§2.6 FLOATING POINT ARITHMETIC

sum are zero, clear A and A+1. Otherwise normalize the triple length sum
bringing Os in at the right, round the high order double length part, test for
exponent overflow or underflow as described above, and place the result
in ACs A and A+1.

DFSB Double Floating Subtract
111 | 4 |1 x | Y |
(4] 89 121314 1718 35

Floating subtract the operand of locations £ and E+1 from the operand of
accumulators A and A+1. If the high order 70 bits of the fraction in the
difference are zero, clear A and A+1. Otherwise normalize the triple
length difference bringing Os into bit positions vacated at the right, round
the high order double length part, test for exponent overflow or underflow
as described above, and place the result in ACs A and A+1.

DFMP Double Floating Multiply
112 [4 |1 x | Y |
0 89 121314 1718 35

Floating multiply the operand of accumulators A and A+1 by the operand
of locations E and E+1. If the high order 70 bits of the fraction in
the product are zero, clear A and A+1. Otherwise, if there are any
bits of significance among the high order 35, do at most one normalization
shift if required; if the high order 35 bits are zero, shift the fraction
left 35 places (adjusting the exponent), and then do at most one normaliza-
tion shift if required. Round the high order double length part, test for
exponent overflow and underflow as described above,; and place the result
in ACs A and A+1.

DFDV Double Floating Divide
| 113 | 4 [1] x | Y |
0 89 121314 1718 35

If the magnitude of the fraction in the operand of accurnulators A and A+1
is greater than or equal to twice that of the fraction in the operand of
locations £ and E+1, set Overflow, Floating Overflow, No Divide and
Trap 1, and go immediately to the next instruction without affecting the
original AC or memory operands in any way.

If the division can be performed, floating divide the' AC operand by the
memory operand, calculating a quotient fraction of 62 bits. If the fraction

SYSTEM REFERENCE

2-43

The 35-bit shift can be done
only if the original operands
are unnormalized.

Division fails if the divisor is
zero, but the no-divide condi-
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

SYSTEM REFERENCE

244

A nonzero quotient is normal-

ized if the original operands
are normalized.

Do not use the instruction
DMOVEM AC,AC+1. Atpre-
sent the processor places AC
in both AC+1 and AC+2, but
this result is not guaranteed.

Note that these two instruc-
tions can be used to negate
numbers in hardware double
precision format only; for
software double precision, the
program must use DFN.

Note also that there is no
overflow test, as negating a
correctly formatted floating
point number cannot cause
overflow.

Do not use the instruction
DMOVNM AC,AC+1. Atpre-

-6b-

CENTRAL PROCESSOR §2.6

is zero, clear A and A+1. Otherwise test for exponent overflow or under-
flow as described above, and place the double length quotient part of the
result in ACs A and A+1 (the remainder is lost).

DMOVE Double Move
[120 [4 1] x | Y
(1] 89 121314 1718 35

Move the contents of locations E and E+1 respectively to accumulators 4
and A+1. The memory locations are unaffected, the original contents
of the ACs are lost.

DMOVEM Double Move to Memory
| 124 [4 Ji] x | Y I
[} 89 121314 1718 35

Move the contents of accumulators A and A+1 respectively to locations E
and E+1. The ACs are unaffected, the original contents of the memory
locations are lost.

DMOVN Double Move Negative
| 121 [a4 [l x] Y 1
o 89 121314 1718 35

Negate the double length floating point number taken from locations E and
E+1, and move it to accumulators A and A+1. The memory locations are
unaffected, the original contents of the ACs are lost.

DMOVNM Double Move Negative to Memory
| 125 | 4 I x | Y]
0 89 121314 1718 35

Negate the double length floating point number taken from accumulators
A and A+1, and move it to locations E and E+1. The ACs are unaffected,
the original contents of the memory locations are lost.

-67-

§2.7 ARITHMETIC TESTING

Although the configuration of the operands is irrelevant in DMOVE and
DMOVEM, none of the above instructions is available in the KA10.
Therefore unless a program is actually doing floating point arithmetic in the
hardware double precision format, it is recommended that the double
moves not be used irn KI10 programs so they will be compatible with
the KA10. Simply to move a two-word operand unaltered requires two
one-word moves. To negate a two-word operand that is actually in the
hardware format requires a somewhat longer substitution; eg this sequence
is equivalent to DMOVN AC,E.

SETCM AC,E ;Take ones complement of high word

MOVN AC+1,E+1 ;Take twos complement of low word

TDNN AC+1,[377777777777] ;If low part of fraction is

ADDI AC,1 ;zero, change high word to twos com-
: ;plement

2.7 ARITHMETIC TESTING

" These instructions may jump or skip depending on the result of an arithmetic
test and may first perform an arithmetic operation on the test word. Two of
the instructions have no modes.

AOBJP Add One to Both Halves of AC and Jump if Positive

| 252 [4 il x | Y |

o 89 121314 1718 35

" Add one to each half of AC and place the result back in AC. If the result
is greater than or equal to zero (ie if bit 0 is 0, and hence a negative count
in the left half has reached zero or a positive count has not yet reached
217) take the next instruction from location E and continue sequential
operation from there.

Note: The KA10 increments the two halves of AC by adding 1 000001,
to the entire register. In the KI10 the two halves are handled independently.

AOBJN Add One to Both Halves of AC and Jump if Negative

| 253 | 4 i x | Y]

[} 89 121314 1718 35

Add one to each half of AC and place the result back in AC. If the result
is less than zero (ie if bit 0 is 1, and hence a negative count in the left half
has not yet reached zero or a positive count has reached 217), take the next
instruction from location E and continue sequential operation from there.

SYSTEM REFERENCE

2-45

sent the processor places the
negative of AC (the comple-
ment, if AC+1 originally con-
tains zero) into AC+1, and
the negative of that into
AC+2, but this result is not
guaranteed.

SYSTEM REFERENCE

2-46

In the KI10 an arithmetic
instruction executed as an
interrupt instruction can set
no flags.

-68 -

CENTRAL PROCESSOR § 2.7

Note: The KA1O increments the two halves-of AC by adding 1 0000014
to the entire register. In the KI10 the two halves are handled independently.

In the KAI1O, incrementing both halves of AC together is effected by
adding 1 0000015. A count of —2 in AC left is therefore increased to zero if
28 — 1 is incremented in AC right.

These two instructions allow the program to keep a control count in the
left half of an index register and require only one data transfer to initialize.
Problem: Add 3 to each location in a table of N entries starting at TAB.
Only four instructions are required.

MOVSI XR,—-N ;Put —N in XR left (clear XR right)
MOVEI AC,3 ;Put 3in AC

ADDM AC,TAB(XR) ;Add 3 to entry

AOBIN XR,.—-1 ;Update XR and go back unless all

;entries accounted for

The eight remaining instructions jump or skip if the operand or operands
satisfy a test condition specified by the mode.

Mode Suffix

Never

Less L
Equal ‘ E
Less or Equal LE
Always A
Greater or Equal GE
Not Equal N
Greater G

Inistructions with one operand compare AC or the contents of location E
with zero, those with two compare AC with E or the contents of location E.
The processor always makes the comparison even though the result is used in
only six of the modes. If the mnemonic has no suffix there is never any
program control function, and the instruction may be a no-op; an A suffix
produces an unconditional jump or skip — the action is always taken regard-
less of how the two quantities compare.

The last four of these instructions perform arithmetic operations, which
are checked for overflow. In the KI10 any condition that sets Overflow
also sets the Trap 1 flag.

-69-

§2.7 ARITHMETIC TESTING
CAl Compare AC Immediate and Skip if Condition Satisfied
(30 [m[4 [f x | Y |
° 56 89 121314 1718 35

Compare AC with E (ie with the word 0, E) and skip the next instruction in
sequence if the condition specified by M is satisfied.

CAl Compare AC Immediate but Do Not Skip 300

CAIL Compare AC Immediate and Skip if AC Less than E 301

CAIE Compare AC Immediate and Skip if Equal 302

CAILE Compare AC Immediate and Skip if AC Less than 303
or Equal to £

CAIA Compare AC Immediate but Always Skip 304

CAIGE Compare AC Immediate and Skip if AC Greater than 305
or Equal to F

CAIN Compare AC Immediate and Skip if Not Equal 306
CAIG Compare AC Immediate and Skip if AC Greater than £ 307
CAM ' Compare AC with Memory and Skip if Condition Satisfied

[31 [m[4 [i] x | Y |
0 56 89 121314 1718 35

Compare AC with the contents of location E and skip the next instruction in
sequence if the condition specified by M is satisfied. The pair of numbers
compared may be either both fixed or both normalized floating point.

CAM Compare AC with Memory but Do Not Skip 310

CAML Compare AC with Memory and Skip if AC Less 311

CAME Compare AC with Memory and Skip if Equal 312

CAMLE Compare AC with Memory and Skip if AC Less 313
or Equal

CAMA Compare AC with Memory but Always Skip 314

CAMGE Compare AC with Memory and Skip if AC Greater 315
or Equal

CAMN Compare AC with Memory and Skip if Not Equal 316

CAMG Compare AC with Memory and Skip if AC Greater 317

JUmP Jump if AC Condition Satisfied

32 [w] 4] x| v]

0 56 89 121314 1718 35

Compare AC (fixed or floating) with zero, and if the condition specified by

SYSTEM REFERENCE

2-47

CAl is a no-op.

CAM is a no-op that refer-
ences memory.

SYSTEM REFERENCE

2-48

JUMP is a no-op (instruction
code 320 has this mnemonic
for symmetry).

If A is zero, SKIP is a no-op;
otherwise it is equivalent to
MOVE. (Instruction code 330
has mnemonic SKIP for sym-

" metry.)

SKIPA is a convenient way to
load an accumulator and skip
over an instruction upon en-
tering a loop.

-70-

CENTRAL PROCESSOR §2.7

M is satisfied, take the next instruction from location E and continue
sequential operation from there.

JUMP Do Not Jump 320
JUMPL Jump if AC Less than Zero 321
JUMPE Jump if AC Equal to Zero 322
JUMPLE Jump if AC Less than or Equal to Zero 323
JUMPA Jump Always 324
JUMPGE Jump if AC Greater than or Equal to Zero 325
JUMPN Jump if AC Not Equal to Zero 326
JUMPG Jump if AC Greater than Zero 327
SKip Skip if Memory Condition Satisfied

| 33 [m[a4 [1f x | Y i
(V] 56 89 121314 1718 35

Compare the contents (fixed or floating) of location E with zero, and skip
the next instruction in sequence if the condition specified by M is satisfied.
If A is nonzero also place the contents of location E in AC.

SKIP Do Not Skip : 330
SKIPL Skip if Memory Less than Zero 331
SKIPE Skip if Memory Equal to Zero , 332
SKIPLE Skip if Memory Less than or Equal to Zero 333
SKIPA Skip Always 334
SKIPGE Skip if Memory Greater than or Equal to Zero 335
~ SKIPN Skip if Memory Not Equal to Zero 336
SKIPG Skip if Memory Greater than Zero 337
AOQJ Add One to AC and Jump if Condition Satisfied
34 | M| a4 [i] x] Y]
[} 56 89 121314 1718 35

Increment AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next in-
struction from location E and continue sequential operation from there. If
AC originally contained 235 — 1, set the Overflow and Carry 1 flags; if —1,
set Carry O and Carry 1.

A0J Add One to AC but Do Not Jump 340
AQJL Add One to AC and Jump if Less than Zero 341
AQJE Add One to AC and Jump if Equal to Zero 342

AQJLE Add One to AC and Jump if Less than or Equal to Zero 343

-71-

§2.7 : ARITHMETIC TESTING

AOJA Add One to AC and Jump Always 344
AQJGE ~ Add One to AC and Jump if Greater than or Equal 345

to Zero

AOJN Add One to AC and Jump if Not Equal to Zero 346
A0JG Add One to AC and Jump if Greater than Zero 347
AOS‘ Add One to Memory and Skip if Condition Satisfied

| 35 [m][4 |1f x | ¥ |
V] 56 89 121314 1718 35

Increment the contents of location £ by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
235 —1, set the Overflow and Carry 1 flags; if —1, set Carry 0 and Carry 1.

If A is nonzero also place the result in AC.

A0S Add One to Memory but Do Not Skip 350
.~ AOSL Add One to Memory and Skip if Less than Zero 351

AQSE Add One to Memory and Skip if Equal to Zero 352

AOSLE Add One to Memory and Skip if Less than or Equal 353

' to Zero : :
AQSA Add One to Memory and Skip Always - 354
AOSGE Add One to Memory and Skip if Greater than or 355
Equal to Zero

AOSN Add One to Memory and Skip if Not Equal to Zero 356

A0SG Add One to Memory and Skip if Greater than Zero 357

sSoJ Subtract One from AC and Jump if Condition Satisfied

56 [#] 4 [x| 7

0 56 89 121314 1718 35

Decrement AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next in-
struction from location E and continue sequential operation from there. If
AC originally contained —23%, set the Overflow and Carry O flags; if any other

nonzero number, set Carry 0 and Carry 1.
S0J Subtract One from AC but Do Not Jump

SOJL Subtract One from AC and Jump if Less than Zero
SOJE Subtract One from AC and Jump if Equal to Zero
SOJLE Subtract One from AC and Jump if Less than or

Equal to Zero

360
361
362
363

SYSTEM REFERENCE

2-49

SYSTEM REFERENCE

2-50

This procedure is invalid in
the KA10 if the programmer

-72-

CENTRAL PROCESSOR §2.7
SOJA Subtract One from AC and Jump Always 364
SO0JGE Subtract One from AC and Jump if Greater than or 365

Equal to Zero _

SOJN Subtract One from AC and Jump if Not Equal to Zero 366
S0JG Subtract One from AC and Jump if Greater than Zero 367
S0S Subtract One frem Memory and Skip if Condition Satisfied
| 37 [m] a4 [x] Y
0 56 89 121314 1718 35

Decrement the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
—2%, set the Overflow and Carry O flags; if any other nonzero number, set
Carry 0 and Carry 1. If A is nonzero also place the result in AC.

S0S Subtract One from Memory but Do Not Skip 370 -

SoSL Subtract One from Memory and Skip if Less than Zero 371

SOSE Subtract One from Memory and Skip if Equal to Zero ' 372

SOSLE Subtract One from Memory and Skip if Less than or 373
Equal to Zero ;

SOSA Subtract One from Memory and Skip Always 374

SOSGE Subtract One from Memory and Skip if Greater 375
than or Equal to Zero

SOSN Subtract One from Memory and Skip if Not Equal 376
to Zero

S0SG Subtract One from Memory and Skip if Greater 377
than Zero .

Some of these instructions are useful for determining the relative values of
fixed and floating point numbers; others are convenient for controlling
iterative processes by counting. AOSE is especially useful in an interlock
procedure in a multiprocessor system. Suppose memory contains a routine
that must be available to two processors but cannot be used by both at once.
When one processor finishes the routine it sets location LOCK to —1. Either
processor can then test the interlock and make it busy with no possibility of
letting the other one in, as AOSE cannot be interrupted once it starts to
modify the addressed location. '

-73-

§2.8 ' LOGICAL TESTING AND MODIFICATION
AOSE LOCK :Skip to -interlocked code only if
JRST —1 ;LOCK is zero after addition

;Interlocked code starts here

SETOM LOCK ;Unlock

Since it takes several days to count to 239, it is alright to keep testing the
lock.

2.8 LOGICAL TESTING AND MODIFICATION

These eight instructions use a mask to modify and/or test selected bits in
AC. The bits are those that correspond to 1s in the mask and they are
referred to as the “masked bits”. The programmer chooses the mask, the
. way in which the masked bits are to be modified, and the condition the
masked bits must satisfy to produce a skip.

The basic mnemonics are three letters beginning with T. The second letter
selects the mask and the manner in which it is used.

Mask Letter Effect ‘
Right R AC right is masked by E (AC is masked
by the word 0, E)
Left L AC left is masked by E (AC is masked by
the word E,0)
Direct D AC is masked by the contents of loca-
tion E '
Swapped S AC is masked by the contents of loca-
‘ tion E with left and right halves inter-
changed

The third letter determines the way in which those bits selected by the mask
are modified.

Modification Letter Effecton AC

No N None

Zeros Z Places Os in all masked bit positions
Complement C Complements all masked bits

Ones (@) Places 1s in all masked bit positions

An additional letter may be appended to indicate the mode, which spec-
ifies the condition the masked bits must satisfy to produce a skip.

SYSTEM REFERENCE

2-51

is making use of the drum
split feature (which is not
used by any DEC equipment).

SYSTEM REFERENCE

2-52

These mode names are con-
sistent with those for arith-
metic testing and derive from
the test method, which ands
AC with the mask and tests
whether the result is equal to
zero or is not equal to zero.
The programmer may find it
convenient to think of the
modes as Every and Not
Every: every masked bit is 0
or not every masked bit is 0.

TRN is a no-op.

74
CENTRAL PROCESSOR §2.8
Mode Suffix Effect
Never k Never skip
Equal _ E Skip if all masked bits equal 0
Always A Always skip
Not Equal N Skip if not all masked bits equal 0

(at least one bit is 1)

If the mnemonic has no suffix there is never any skip, and the instruction is
a no-op if there is also no modification; an A suffix produces an uncondi-
tional skip — the skip always occurs regardless of the state of the masked
bits. Note that the skip condition must be satisfied by the state of the
masked bits prior to any modification called for by the instruction.

TRN Test Right, No Modification, and Skip if Condition Satisfied
| 60 Ml 4 [x] Y]
1] 56 789 121314 1718 35 -

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TRN Test Right, No Modification, but Do Not Skip 600

TRNE Test Right, No Modification, and Skip if All 602
Masked Bits Equal O »

TRNA Test Right, No Modification, but Always Skip 604

TRNN Test Right, No Modification, and Skip if Not 606

All Masked Bits Equal 0

TRZ Test Right, Zeros, and Skip if Condition Satisfied
62 |ml] 4 Ji] x] Y |
o 56 789 121314 1718 35

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TRZ Test Right, Zeros, but Do Not Skip 620

TRZE Test Right, Zeros, and Skip if All Masked Bits 622
Equaled 0

TRZA Test Right, Zeros, but Always Skip 624

TRZN Test Right, Zeros, and Skip if Not All Masked 626

Bits Equaled O

~75-] SYSTEM REFERENCE

§2.8 LOGICAL TESTING AND MODIFICATION 2-53
TRC Test Right, Complement, and Skip if Condition Satisfied

| 64 Jm 4 [x] Y

0 56 789 121314 1718 35

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TRC Test Right, Complement, but Do Not Skip 640

TRCE Test Right, Complement, and Skip if All Masked 642
Bits Equaled 0

TRCA Test Right, Complement, but Always Skip 644

TRCN Test Right, Complement, and Skip if Not All 646
Masked Bits Equaled 0

TRO Test Right, Ones, and Skip if Condition Satisfied

66 [mlo] 4 Jif x] Y |
(1] 56 789 121314 17 18 35

If the bits in AC right corresponding to s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
1s; the rest of AC is unaffected.

TRO Test Right, Ones, but Do Not Skip 660

TROE Test Right, Ones, and Skip if All Masked Bits 662
Equaled 0

TROA Test Right, Ones, but Always Skip 664

TRON Test Right, Ones, and Skip if Not All Masked 666
Bits Equaled O

TLN Test Left,‘ No Modification, and Skip if Condition Satisfied

| 60 Jm[i] a4 1] x] Y |

0 56 789 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TLN Test Left, No Modification, but Do Not Skip 601 TLN is a no-op.
TLNE Test Left, No Modification, and Skip if All 603
Masked Bits Equal 0
TLNA Test Left, No Modification, but Always Skip 605
TLNN Test Left, No Modification, and Skip if Not 607

All Masked Bits Equal 0

SYSTEM REFERENCE

2-54

-76-
CENTRAL PROCESSOR §2.8
TLZ Test Left, Zeros, and Skip if Condition Satisfied
| 62 [mM 4 [1] x | Y |
0 56 7809 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition speciﬁed
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TLZ Test Left, Zeros, but Do Not Skip 621

TLZE Test Left, Zeros, and Skip if All Masked Bits 623
Equaled 0

TLZA Test Left, Zeros, but Always Skip 625

TLZN Test Left, Zeros, and Skip if Not All Masked 627

Bits Equaled O

TLC Test Left, Complement, and Skip if Condition Satisfied
L 64 [mp] 4 |1f x | Y]
(V] 56 789 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected. ‘

TLC Test Left, Complement, but Do Not Skip 641
TLCE Test Left, Complement, and Skip if All Masked 643
Bits Equaled O g
TLCA Test Left, Complement, but Always Skip 645
TLCN Test Left, Complement, and Skip if Not All 647
‘ Masked Bits Equaled O

TLO Test Left, Ones, and Skip if Condition Satisfied

66 |[mNi] 4 |1 x] Y |
0 56 789 121314 - 1718 . 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
1s; the rest of AC is unaffected.

TLO Test Left, Ones, but Do Not Skip 661

TLOE Test Left, Ones, and Skip if All Masked Bits 663
Equaled 0 :

TLOA Test Left, Ones, but Always Skip 665

TLON Test Left, Ones, and Skip if Not All Masked 667

Bits Equaled O

-77-

§2.8) ‘ LOGICAL TESTING AND MODIFICATION

TDN Test Direct, No Modification, and Skip if Condition Satisfied

| 61 [mlo] a4 i x | Y |
0 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. AC is un-
affected.

TDN Test Direct, No Modification, but Do Not Skip 610

TDNE Test Direct, No Modification, and Skip if All 612
Masked Bits Equal 0

TDNA Test Direct, No Modification, but Always Skip 614

TDNN Test Direct, No Modification, and Skip if Not 616

All Masked Bits Equal 0

TDZ Test Direct, Zeros, and Skip if Condition Satisfied
L 63 [mlo 4 [1] x] Y il
. 0 56 789 1213 14 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to Os; the rest of AC is unaffected.

TDZ Test Direct, Zeros, but Do Not Skip 630

TDZE Test Direct, Zeros, and Skip if All Masked Bits 632
Equaled 0

TDZA Test Direct, Zeros, but Always Skip 634

TDZN Test Direct, Zeros, and Skip if Not All Masked 636
Bits Equaled O

TDC Test Direct, Complement, and Skip if Condition Satisfied

| 65 [aufo[4 [x] Y i

0 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Complement
the masked AC bits; the rest of AC is unaffected.

TDC Test Direct, Complement, but Do Not Skip 650

TDCE Test Direct, Complement, and Skip if All Masked 652
Bits Equaled 0 '

TDCA Test Direct, Complement, but Always Skip 654

TDCN Test Direct, Complement, and Skip if Not All 656

Masked Bits Equaled 0

SYSTEM REFERENCE

2-55

TDN is a no-op that refer-
ences memory.

SYSTEM REFERENCE

2-56

TSN is a no-op that refer-
ences memory.

78

CENTRAL PROCESSOR §2.8
TDO Test Direct, Ones, and Skip if Condition Satisfied
67 |[mo] 4 |1 x | Y |

o 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to 1s; the rest of AC is unaffected.

TDO Test Direct, Ones, but Do Not Skip 670

TOOE Test Direct, Ones, and Skip if All Masked Bits 672
Equaled O

TDOA Test Direct, Ones, but Always Skip 674

TDON Test Direct, Ones, and Skip if Not All Masked 676
Bits Equaled O

TSN Test Swapped, No Modification, and Skip if Condition Satisfied

| 61 |mlil 4 |1 x | Y

0o 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. AC is unaffected.

TSN Test Swapped, No Modification, but Do Not Skip 611

TSNE Test Swapped, No Modification, and Skip if All 613

‘ Masked Bits Equal 0

TSNA Test Swapped, No Modification, but Always Skip 615

TSNN Test Swapped, No Modification, and Skip if Not ' 617
All Masked Bits Equal 0

182 Test Swapped, Zeros, and Skip if Condition Satisfied

L 63 |ml[4 [if x | Y]

) 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to Os; the rest of
AC is unaffected.

182 Test Swapped, Zeros, but Do Not Skip 631

TSZE Test Swapped, Zeros, and Skip if All Masked Bits 633
Equaled 0

TSZA Test Swapped, Zeros, but Always Skip 635

TSZN Test Swapped, Zeros, and Skip if Not All Masked 637

Bits Equaled O

- 79_
§2.8 LOGICAL TESTING AND MODIFICATION
TSC Test Swapped, Complement, and Skip if Condition Satisfied
| 65 |mp] a4 Ji] x] Y
0 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Complement the masked AC bits; the rest of
AC is unaffected.

TSC Test Swapped, Complement, but Do Not Skip 651

TSCE Test Swapped, Complement, and Skip if All ' 653
Masked Bits Equaled O

TSCA Test Swapped, Complement, but Always Skip 655

TSCN Test Swapped, Complement, and Skip if Not 657
All Masked Bits Equaled O

TS0 Test Swapped, Ones, and Skip if Condition Satisfied

| 67 Jufh] 4 Ji] x] Y]

(4] 56 789 121314 1718 3 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to 1s; the rest of
AC is unaffected.

TSO Test Swapped, Ones, but Do Not Skip 671

TSOE Test Swapped, Ones, and Skip if All Masked Bits 673
Equaled O

TSOA Test Swapped, Ones, but Always Skip ‘ 675

TSON Test Swapped, Ones, and Skip if Not All Masked 677
Bits Equaled O

With these instructions any bit throughout all of memory can be used as a
program flag, although an ordinary memory location containing flags must
be moved to an accumulator for testing or modification. The usual pro-
cedure, since locations 1-17 are addressable as index registers, is to use AC 0
as a register of flags (often addressed symbolically as F).

Unless one frequently tests flags in both halves of F simultaneously, it is
generally most convenient to select bits by 1s right in the address part of the
instruction word. A given bit selected by a half word mask M is then set by
one of these:

TRO F,M TLO F,.M.

SYSTEM REFERENCE

2-57

SYSTEM REFERENCE -80-

2-58 CENTRAL PROCESSOR §2.9

and tested and cleared by one of these:
TRZE F,.M TRZN F,M TLZE F,M TLZN F,M

Suppose we wish to skip if both bits 34 and 35 are 1 in location L. The
following suffices.

SETCM F,L
TRNE F,3

We can refer to a flag in a given bit position within a word as flag X, where X
is a binary number containing a single 1 in the same bit position as the flag.
This sequence determines whether flags X and Y in the right half of accumu-
lator F are both on: :

TRC F,X+Y ;Complement flags X and Y

TRCE F.X+Y ;Test both and restore original states
;Do this if not both on
;Skip to here if both on

2.9 PROGRAM CONTROL

The program control class of instructions includes the unimplemented user
operations {[discussed in the next section] and the arithmetic and logical test
instructions. Some instructions in this class are no-ops, as are a few of the
instructions for performing logical operations. The most commonly used
no-op is JFCL, which is discussed below. No-ops among the instructions
previously discussed are SETA, SETAI, SETMM, CAI, CAM, JUMP, TRN,
TLN, TDN, TSN. Of these, SETA, SETAI, CAI, JUMP, TRN and TLN do
not use the calculated effective address to reference memory. Hence in these
instructions one can store any information in bits 18-35 without fear of
attempting to address a location outside a user block or in a memory that ‘
does not exist. '

The present section treats all program control instructions other than
those mentioned above and in-out instructions that test input conditions
[§2.12]. All but one of these are jumps, although the exception causes the
processor to execute an instruction at an arbitrary location and may there-
fore be regarded as a jump with an immediate and automatic return. Also,
all but two of the jumps are unconditional; one exception tests various flags,
the other tests an accumulator. '

Several of the jump instructions save the current contents of the program
counter PC in the right half of an accumulator or memory location and save
the states of various flags in the left half. The bits saved in the left half of

FLOATING FLOATING
OVERFLOW OVERFLOW UNDERFLOW
"] canar | canny P est USER ADDRESS ! NO
0 \ ggsg USER | Tour | PUBLIC mLI%TTE TRAP 2| TRAP 1 ovioe| O 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17

-81-

§2.9 PROGRAM CONTROL

this PC word in K110 user mode are as shown here. In the KA10, bits 7-10

are not used. In KI10 executive mode, bit 6 receives the same flag although

it has a different meaning, and bit O receives a different flag altogether [see
below]. In either processor all unused bit positions are cleared.

The following lists the left PC-word bit positions that receive information
and explains the meaning of the flags at the time they are saved. Certain
instructions can set up these flags to restore them to their original states
following an interruption or to control specific situations. The explanations
assume the flags reflect normal circumstances — not arbitrary rigging. In the
following an X in a mnemonic indicates any letter (or none) that may appear
in the given position to specify the mode, eg ADDX comprises ADD,
ADDI, ADDM, ADDB.

Bit Meaning of a 1 in the Bit
0 Overflow — any of the following has occurred:

A single instruction has set one of the carry flags (bits 1 and 2)
without setting the other.

An ASH or ASHC has left shifted a 1 out of bit 1 in a positive
number or a 0 out in a negative number.

An MULX has multiplied —23° by itself (product 279).

An IMULX has multiplied two numbers with product > 235 or
<-23%,

An FIX or FIXR has fetched an operand with exponent > 35.
Floating Overflow has been set (bit 3).

No Divide has been set (bit 12).

1 Carry 0 — if set without Carry 1 (bit 2) being set, causes Overflow to
be set and indicates that one of the following has occurred:
An ADDX has added two negative numbers with sum <—-2%,

An SUBX has subtracted a positive number from a negative num-
ber with difference <—2%.

An SOJX or SOSX has decremented —235.

But if set with Carry 1, indicates that one of these nonoverflow
events has occurred:

In an ADDX both summands were negative, or their signs differed
and their magnitudes were equal or the positive one was the
greater in magnitude.

In an SUBX the signs of the operands were the same and AC was
the greater or the two were equal, or the signs of the operands
differed and AC was negative.

An AOJX or AOSX has incremented —1.

An SOJX or SOSX has decremented a nonzero number other than
_235.

An MOVNX has negated zero.

SYSTEM REFERENCE

2-59

Note that nothing is stored in
bits 13-17, so when the PC
word is addressed indirectly it
can produce neither indexing
nor further indirect address-
ing.

In user mode, bit O reflects
the state of Overflow. But
when the flags are saved in
KI10 executive mode, bit O
represents the Disable Bypass
flag, which the Monitor uses
to control certain aspects of
the execution of an instruc-
tion by an executive XCT
[see below and §2.15]. Al-
though these are two separate
flags that are read in different
circumstances, when a PC
word is used to restore or set
up the flags, bit O conditions
both of them.

Remember [§2.5], overflow
is determined directly from
the carries, not from the
flags. The carry flags give
meaningful information only
if no more than one instruc-
tion that can set them occurs
between clearing and reading
them.

SYSTEM REFERENCE

2-60

Although this flag is set upon
completion of the first part of
every interruptable two-part
instruction, it is seldom rele-
vant to the programmer as it
is always cleared by the com-
pletion of the second part.
The flag is seen only in an
interruption, and its effect on
the repeated first part is auto-
matic provided only that it is
properly restored at the
return.

In the KA10, User In-out is

applicable only to user mode -

[8§2.16]. In the KI10 this flag
has the stated effect when the
processor is in user mode, but
is used in executive mode to
control certain aspects of the
execution of an instruction
by an executive XCT [see
below and §2.15].

-82-

CENTRAL PROCESSOR §2.9

Carry 1 — if set without Carry O (bit 1) being set, causes Overflow to
be set and indicates that one of the following has occurred:

An ADDX has added two positive numbers with sum > 235,

An SUBX has subtracted a negative number from a positive num-
ber with difference > 235,

An AOJX or AOSX has incremented 235 — 1.

An MOVNX or MOVMX has negated —23.

But if set with Carry O, indicates that one of the nonoverflow events
listed under Carry 0 has occurred.

Floating Overflow — any of the following has set Overflow:

In a floating point instruction other than FLTR, DMOVN,
DMOVNM or DFN, the exponent of the result was > 127.

Floating Underflow (bit 11) has been set.
No Divide (bit 12) has been set in an FDVX, FDVRX or DFDV.

First Part Done — the processor is responding to a priority interrupt
between the parts of a two-part instruction or to a page failure in the
second part. A 1 in this bit indicates that the first part has been
completed, and this fact should be taken into account when the .
processor restarts the instruction at the beginning upon the return to
the interrupted program. Eg if an ILDB or IDPB is interrupted after
the processing of the pointer but before the processing of the byte,
the pointer now points not to the last byte, but rather to the byte
that should be handled at the return [§2.13]. Thus when the pro-
cessor restarts the instruction, it must retrieve the pointer but not
increment it.

Besides indicating a priority interrupt in the middle of a byte
instruction, the KI10 First Part Done indicates a page failure in the
processing of a byte, in the transfer of the second (low order) word
in a DMOVEM or DMOVMN, or in a noninterrupt data IO instruc-
tion that results from a block 10 instruction (following the processing
of the pointer [§2.12]).

User — the processor is in user mode {§ §2.15, 2.16].

User In-out — even with the processor in user mode, there are no
instruction restrictions (but memory restrictions still apply).

Public (K110 only) — the last instruction performed was fetched
from a public area of memory, ie the processor is in user mode public
or executive mode supervisor.

Address Failure Inhibit (KI10 only) — an address failure cannot occur
during the next instruction [§2.15].

Trap 2 (KI10 only) — if bit 10 is not also set, arithmetic overflow
has occurred. If trapsare enabled, the setting of this flag immediately
causes one [§2.14]. At present, bits 9 and 10 cannot be set
together by any hardware condition.

-83-

§2.9 PROGRAM CONTROL

10 Trap 1 (KI10 only) — if bit 9 is not also set, pushdown overflow has
occurred. If traps are enabled, the setting of this flag immediately
causes one [§2.14]. At present, bits 9 and 10 cannot be set
together by any hardware condition.

11 Floating Underflow —in a floating point instruction other than
FLTR, DMOVN, DMOVNM or DF N, the exponent of the result
was < —128 and Overflow and Floating Overflow have been set.

12 No Divide — any of the following has set Overflow:

In a DIVX the dividend was greater than or equal to the divisor.
In an IDIVX the divisor was zero.

In an FDVX, FDVRX or DFDV the divisor was zero, or the
dividend fraction was greater than or equal to twice the divisor
fraction in magnitude; in either case F loating Overflow has been set.

XCT Execute
| 256 | 4 i x] Y |
0 89 121314 1718 35

Execute the contents of location E as an instruction. Any instruction may
be executed, including another XCT. If an XCT executes a skip instruction,
the skip is relative to the location of the XCT (the first XCT if there are
several in a chain). If an XCT executes a jump, program flow is altered as
specified by the jump (no matter how many XCTs precede a jump instruc-
tion, when PC is saved it contains an address one greater than the location of
the first XCT in the chain). '

JFFO Jump if Find First One
[243 | 4 1] x] Y |
(1] 89 121314 1718 35

If AC contains zero, clear AC A+1 and go on to the next instruction in
sequence. ' :

If AC is not zero, count the number of leading Os in it (Os to the left of
the leftmost 1), and place the count in AC A+1. Take the next instruction
from location E and continue sequential operation from there.

In either case AC is unaffected, the original contents of AC A+1 are lost.

JFCL Jump on Flag and Clear
| 255 | F 1] x] Y H
[} 89 121314 1718 35

If any flag specified by F is set, clear it and take the next instruction from

SYSTEM REFERENCE

2-61

If normalized operands are
used, only a zero divisor can
cause floating division to fail.

A user XCT or any KA1l0
XCT acts as described here,
and the A portion of the in-
struction is ignored. But in
KI10 executive mode this in-
struction performs as stated
only when A4 is zero. Nonzero
A results in a so called “execu-
tive XCT”, whose ramifica-
tions are far more widespread
than indicated here [for de-
tails refer to §2.15].

Note that when AC is nega-
tive, the second accumulator
is cleared, just as it would be
if AC were zero.

To left-normalize an in-
teger in AC:

JFFO AC,.+1
ASH AC,—1(AC+1)

SYSTEM REFERENCE

2-62

This instruction can be used
simply to clear the selected
flags by having the jump ad-
dress point to the next con-
secutive location, as in

JFCL 17,.+1

which clears all four flags
without disrupting the nor-
mal program sequence. A
JFCL that selects no flag is
the fastest no-op as it neither
fetches nor stores an operand,
and bits 1835 of the instruc-
tion word can be used to
store information.

The A portion of this instruc-
tion is ignored.

-84

CENTRAL PROCESSOR §2.9

location E, continuing sequential operatibn from there. Bits 9—12 are pro-
grammed as follows.

Bit Flag Selected by a 1
9 Overflow

10 Carry O

11 Carry 1

12 Floating Overflow

To select one or a combination of these flags (which are among those des-
cribed above) the programmer can specify the equivalent of an AC address
that places 1s in the appropriate bits, but MAcro recognizes mnemonics for
some of the 13-bit instruction codes (bits 0—12).

JECL JFCL O, No-op 25500
JOV JFCL 10, Jump on Overflow 25540
JCRYO JFCL 4, Jump on Carry O 25520
JCRY1 JFCL 2, Jump on Carry 1 25510
JCRY JECL 6, Jump on Carry O or 1 25530
JFOV JFCL 1, Jump on Floating Overflow 25504
JSR Jump to Subroutine

| 264 [a4 1] x | Y]
0 89 121314 1718 35

Place the current contents of the flags (as described above) in the left half of
location E and the contents of PC in the right half (at this time PC contains
an address one greater than the location of the JSR instruction). Take the
next instruction from location E + 1 and continue sequential operation from
there. The flags are unaffected except First Part Done, Address Failure
Inhibit, and the trap flags, which are cleared.

While the processor is in user mode, if this instruction is executed as an
interrupt instruction or by a KA10 MUUO, bit 5 of the PC word stored
is 1 and the processor leaves user mode, clearing Public. (In the KI10 an
interrupt that is not dismissed automatically returns control to kernel mode.)

JSP Jump and Save PC v
265 | 4 il x | Y
0 89

121314 1718 35

Place the current contents of the flags (as described above) in AC left and

-85-

§2.9 ’ PROGRAM CONTROL

the contents of PC in AC right (at this time PC contains an address one
greater than the location of the JSP instruction). Take the next instruction
from location E and continue sequential operation from there. The flags
are unaffected except First Part Done, Address Failure Inhibit, and the trap
flags, which are cleared.

While the processor is in user mode, if this instruction is executed as an
interrupt instruction or by a KA10 MUUO, bit 5 of the PC word stored
is 1 and the processor leaves user mode, clearing Public. (In the KI10 an
interrupt that is not dismissed automatically returns control to kernel mode.)

JRST Jump and Restore
| 254 [F [x | Y]
[V} 89 121314 1718 35

Perform the functions specified by F, then take the next instruction from
location E and continue sequential operation from there. Bits 9-12 are
programmed as follows.

Bit Function Produced by a 1

9 Restore the channel on which the highest priority interrupt is cur-
' rently being held [§2.13].
Unless the User In-out flag is set, this function cannot be
performed in a user program. Instead of restoring the channel, it
acts just like an MUUO [§2.10].

10 Halt the processor. When it stops, the MA lights on the console dis-
play an address one greater than that of the location containing the .

instruction that caused the halt, and PC displays the jump address
(the location from which the next instruction will be taken if the
operator causes the processor to resume operation without changing
PC).

Unless the User In-out flag is set, this function cannot be
performed in a user program. Instead of halting the processor, it
acts just like an MUUO [§2.10].

11 Restore the flags listed above from the left half of the word in the
last location referenced in the effective address calculation. Hence
to restore flags requires that the JRST instruction use indexing or
indirect addressing.

Restoration of all but the user and Public flags is directly according
to the contents of the corresponding bits as given above: a flag is set
by a 1 in the bit, cleared by a 0. A 1 in bit 5 sets User but a 0 has no
effect, so the Monitor can restart a user program by restoring flags
but the user cannot leave user mode by this method. A O in bit 6
clears User In-out, but a 1 sets it only if the JRST is being performed
by the Monitor, ie if User is clear. A 1 in bit 7 sets Public, but a 0

SYSTEM REFERENCE

2-63

MA actually displays the
address of the location that
would have been executed
next had the JRST been re-
placed by a no-op. So except
for a JRST in a priority
interrupt, MA points to the
location one beyond that
containing the instruction
that caused the halt. This
instruction -is ordinarily the
JRST or perhaps an XCT, but
could even be a UUO.

By manipulating the contents
of the left half word used to
restore the flags, the program-
mer can set them up in any
desired way except that a
user program cannot clear
User or set User In-out, and
no public program can clear

SYSTEM REFERENCE

2-64

Public for itself. As an ex-
ample, setting First Part Done
prevents incrementing in the
next ILDB, IDPB or noninter-
rupt KI10 block IO instruc-
tion provided there is no inter-
vening JSR, JSP or PUSHI.
Note that if overflow traps are
enabled, setting a trap flag
immediately causes one.

JEN completes an interrupt
by restoring the channel and
restoring the flags for the
interrupted program.

-86-

CENTRAL PROCESSOR §2.9

clears it only if the JRST is being performed in executive mode with
a 1 in bit 5 (fe User is being set). These conditions imply that the
processor is entering user mode: hence the user cannot enter con-
cealed mode by clearing Public; and although the supervisor can
place the processor in user mode concealed, it cannot use this
procedure to enter kernel mode.

12 KAI10. Enter User mode. The user program starts at relocated
location E.

KII10. The instruction is simply a jump except when fetched from

a nonpublic area, in which case it clears Public. In other words a

location containing a JRST 1, is a valid entry to a nonpublic area

and the instruction places the processor in concealed or kernel mode.

To produce one or a combination of these functions the programmer can
specify the equivalent of an AC address that places 1s in the appropriate bits,
but Macro recognizes mnemonics for the most important 13-bit instruction
codes (bits 0—12).

JRST JRST O, Jump 25400
JRST 10, Jump and Restore Interrupt 25440
Channel :
HALT JRST 4, Halt 25420
JRSTF JRST 2, Jump and Restore Flags 25410
PORTAL JRST 1, Allow Nonpublic Entry (KI110) 25404
Jump to User Program (KA10)
JEN JRST 12, Jump and Enable 25450

In a JRSTF or JEN the flags are restored from bits 0—12 of the final word
retrieved in the effective address calculation; hence any JRST with a 1 in bit
11 must use indirect addressing or indexing, which takes extra time. If the
PC word was stored in AC (as in a JSP), a common procedure is to use AC to
index a zero address (eg, JRSTF (AC)), so its right half becomes the effec-
tive (jump) address. If the PC word was stored in core (as in a JSR), one
must address it indirectly (remember, bits 13-17 of the PC word are clear,
so again its right half is the effective address). A JRSTF (AC) is con-
siderably faster than a JRSTF @PCWORD.

CAUTION

Giving a JRSTF or JEN without indexing or
indirect addressing restores the flags from the
_instruction code itself.

While the KA1Q is in user mode, if this instruction is executed as an
interrupt instruction or by an MUUO, bit 5 of the PC word stored is 1 and
the processor leaves user mode.

-87-

§2.9 PROGRAM CONTROL

JFCL is the only jump that can test any of the flags directly. In fact it is
the only basic program control instruction that can do so — several of the
flags can be tested as processor conditions by in-out instructions, but these
are ordinarily illegal in user programs anyway. But JFCL can test only four
of the flags, and it saves no information for a subsequent return from a sub-
routine. Hence it serves as a branch point for entry into either one of two
main paths, which may or may not have a later point in common. Eg, it may
test the carry flags simply to take appropriate action in a double precision
fixed point routine. :

JSR and JSP are regularly used to call subroutines. They are uncondi-
tional, but the execution of such an instruction can be the result of a
decision made by any conditional skip or jump. In the case of the flags, a
basic overflow test and subroutine call can be made as follows.

Jov 42
JRST 2 ;Faster than skipping
JSR OVRFLO ;Jump over this if Overflow clear

If we wish to go to the DIVERR routine when No Divide is set, we must first
" read the flags into a test accumulator T and then use a test instruction.

JSP T,.+1 ;Store flags but continue in sequence
TLNE T,40 ;40 left selects bit 12

JSR DIVERR ;Skip this if No Divide clear

A subroutine called by a JSR must have its entry point reserved for the PC
word. Hence it is nonreentrant: the JSR modifies memory so the subroutine
cannot be shared with other programs. The JSP requires an accumulator,
but it is faster and is convenient for argument passing. To return from a
JSR-called subroutine one usually addresses the PC word indirectly, return-
ing to the location following the JSR. But there are two ways to get back
from a JSP. We can address the PC word indirectly with a JRST @AC (or
JRSTF @AC if the flags must be restored), but we can also get it by
addressing AC as an index register: JRST (AC). By using the second return
method we can place N words of data for the subroutine immediately after
the call, and return to the location following the data by giving a
JRST N(ACQ).

Suppose we wish to call a print subroutine and supply the words from
which the characters are to be taken. Our main program would contain the
following:

JSP T,PRINT ;Put PC word in accumulator T
;Text inserted here by ASCIZ pseudo-
;instruction, which automatically
;places a zero (null) character at the
;end
;Next instruction here

SYSTEM REFERENCE

2-65

The fastest skip is CAIA in.
the KA10, TRNA in the KI10.

SYSTEM REFERENCE

2-66

-88-

CENTRAL PROCESSOR S §29

The subroutine can use T as a byte pointer which already addresses the first
word of data. For the print routine, characters are loaded into another
accumulator CH.

PRINT: HRLI T,440700 ;Initialize left half of pointer
ILDB CH,T ;Increment pointer and load byte
JUMPE CH,I(T) ;Upon reaching zero character return
;to one beyond last data word
;Print routine

JRST PRINT+1 ;Get next character

JSA Jump and Save AC
266 | 4 1] x | Y |
0 89 121314 1718 35

Place AC in location E, the effective address E in AC left, and the contents
of PC in AC right (at this time PC contains an address one greater than the -
location of the JSA instruction). Take the next instruction from location
E+1 and continue sequential operation from there. The original contents
of E are lost. '

While the KA10 is in user mode, if this instruction is executed as an
interrupt instruction or by an MUUO, bit 5 of the PC.word stored is 1 and
the processor leaves user mode.

JRA Jump and Restore AC
267 | 4 |1 x | Y
V] 89 121314 1718 35

Place the contents of the location addressed by AC left into AC. Take the
next instruction from location E and continue sequential operation from
there.

A JSA combines advantages of the JSR and JSP. JSA does modify
memory, but it saves PC in an accumulator without losing its previous
contents (at a cost of not saving the flags). It is thus convenient for multiple-
entry subroutines. In a-subroutine called by a JSR, the returning JRST must
refer to the (single) entry point. Since a JRA can retrieve the original PC by
addressing AC as an index register, it is independent of any entry point

-89-

§2.9 , PROGRAM CONTROL

without tying up an accumulator to the extent a JSP would.

The accumulator contents saved by a JSA are restored by a JRA paired
with it despite intervening JSA-JRA pairs. Hence these instructions are
especially useful for nesting subroutines, as shown by this example.

;Main program

.:I SA 17,S1 ‘ ;Call to first subroutine (A4)
S1: 0 ;First subroutine starts here

.:ISA 17,82 ;Call to second subroutine (B)

.:IRA i7,(17) ;Return to 4 + 1 in main program
S2: 0 ;Second subroutine starts here

;SA. 17,83 ;Call to third subroutine (C)

iT RA 17,(17) ;Return to B + 1 in first subroutine
S3: 0 ;Third subroutine starts here

:IRA 17,(17) ;Return to C + 1 in second subroutine

To call the next deeper subroutine at any level, a JSA places E and PC in the
left and right of AC 17, saves the previous contents of AC 17 in E (the first
subroutine location), and jumps to £+ 1. To return to the next higher level,
a JRA restores the previous contents of AC 17 from the location addressed
by AC 17 left (the first subroutine location) and jumps to the location
addressed by AC 17 right (the location following the JSA in the higher sub-
routine). If N lines of data for the next subroutine follow a J SA, the return
to the location following the data is made by giving a JRA 17,N(17).

PUSHJ Push Down and Jump
| 260 | 4 [x] Y |
0 ' 89 121314 1718 3s

Add one to each half of AC and place the result back in AC. If the addition
causes the count in AC left to reach zero, set the Pushdown Overflow flag
in the KA10, set the Trap 2 flag in the KI10. Then place the current

contents of the flags (as described above) in the left half of the location now ,

addressed by AC right and the contents of PC in the right half of that
location (at this time PC contains an address one greater than the location of
the PUSHJ instruction). Take the next instruction from location E and con-
tinue sequential operation from there.

SYSTEM REFERENCE

2-67

In the KI10a PUSHJ executed
as an interrupt instruction
cannot set Trap 2.

SYSTEM REFERENCE

2-68

The effective address E is
ignored. In the KI10 a POPJ
executed as an interrupt in-
struction cannot set Trap 2.

-90-

CENTRAL PROCESSOR §2.9

The flags are unaffected except First Part Done, Address Failure Inhibit,
and the trap flags, which are cleared. However, pushdown overflow overrides
the Trap 2 clear, so if the list overflows, Trap 2 sets and the KI10 traps
instead of jumping. The original contents of the location added to the list
are lost.

Note: The KA10 increments the two halves of AC by adding 1 0000014
to the entire register. In the KI10 the two halves are handled independently.

While the processor is in user mode, if this instruction is executed as an
interrupt instruction or by a KA10 MUUO, bit 5 of the PC word stored is 1
and the processor leaves user mode, clearing Public. (In the KI10 an
interrupt that is not dismissed automatically returns control to kernel mode.)

POPJ Pop Up and Jump
| 263 [4 Jil x | Y]
0 89 121314 1718 .) 35

Subtract one from each half of AC and place the result back in AC. If the
subtraction causes the count in AC left to reach — 1, set the Pushdown Over-
flow flag in the KA10, set the Trap 2 flag in the KI10. Take the next in- °
struction ‘from the location addressed by the right half of the location that
was addressed by AC right prior to the decrementing, and continue
sequential operation from there.

Note: The KA1Q decrements the two halves of AC by subtracting
10000014 from the entire register. In the KI10 the two halves are handled
independently.

The address of the top item in the pushdown list is kept in the right half
of the pointer in AC, and the program can keep a control count in the left
half. In the KA10, incrementing and decrementing both halves of AC
together is effected by adding and subtracting 1 0000015. Hence a count of
—2 in AC left is increased to zero if 2'® — 1 is incremented in AC right, and
conversely, 1 in AC left is decreased to —1 if zero is decremented in AC right.

Since the pushdown list is independent of the subroutine called, PUSHJ-
POPJ can be used like JSA-JRA for multiple entries. Moreover, ordering by
level is inherent in the structure of a pushdown list [§2.2], so paired
PUSHJ-POP] instructions are excellent for nesting subroutines: there can be
any number of subroutines at any level, each with more subroutines nested
within it. Recursive subroutines are also possible.

Unlike JSA-JRA, the pushdown instructions tie up an accumulator, but
the usual procedure is to keep both data and jump addresses in a single list so
only one AC is required for the most complex pushdown operations. The
programmer must keep track of whether a given entry in the list is data or
a PC word; in other words, every item inserted by a PUSH should be
removed by a POP, and every PUSHJ should be matched by a POPJ. If flag

-91-

§2.10 UNIMPLEMENTED OPERATIONS

restoration is desired, the returning
POPJ P,
can be replaced by

POP P,AC
JRSTF (AC)

which requires another accumulator. If the flags are not important, data
may be stored in the left halves of the PC words in the stack, reducing the
required pushdown depth.

By trapping or checking overflow and keeping a control count in AC left, the
programmer can set a limit to the size of the list by starting the count
negative, or he can prevent the program from extracting more items than

there are in the list by starting the count at zero, but he cannot do both at -

once. If only jump addresses are kept in the list, the first procedure limits
the depth of nesting. A technique to catch extra POPJs is to put a PC word
addressing an error routine at the bottom of the list,

2.10 UNIMPLEMENTED OPERATIONS

Codes not assigned as specific instructions act as unimplemented operations,
wherein the word given as an instruction is trapped and must be interpreted
by a routine included for this purpose by the programmer. Codes in the
range 001-077 are unimplemented user operations, or UUQs. Half of these
(001-037) are for the local use of the user or Monitor (LUUOs); the other
half (040-077) are set aside for user communication with the Monitor
(MUUOs) and are interpreted by it (although they may be used by the
Monitor as well). Codes 100 and above that are not used for instructions
are regarded as the “‘unassigned codes”; 000 is not regarded as a legal code
at all. Instructions that violate the instruction restrictions act in the same
manner as MUUO:s.

Local Unimplemented User Operation

001-037 | 4 [1] x] Y

0 89 121314 1718 35

Store the instruction code, A and the effective address E in bits 0-8, 9-12
and 18-35 respectively of location 40; clear bits 13-17. Execute the
instruction contained in location 41. The original contents of location 40
are lost.

Every LUUO uses some pair of locations numbered 40 and 41, but which

such pair depends upon the circumstances. An LUUO in a user program uses
relocated locations 40 and 41 and is thus entirely a part of and under control

SYSTEM REFERENCE

2-69

These are convenience mne-
monics that mean nothing to
the assembler. UUOs are also
sometimes called “program-
med operators”,

If a single memory serves as
memory number 0 for two
KA10 processors, the second

SYSTEM REFERENCE

2-70

(with the trap offset) uses
unrelocated 140-141 and 160-
161 respectively for each in-
stance in which 40-41 and
60-61 are given here. The
offset does not apply to user
LUUOs as it is assumed the
Monitor would relocate these
to different physical blocks.

The unassigned codes are
100-107, 114-117, 123 and
247.

Note that even in a dedicated
system, the program must still
define a user process table.

Note that if overflow traps are
enabled, setting a trap flag
immediately causes one.

-92-

CENTRAL PROCESSOR §2.10

of the user program. An LUUO in KA10 executive mode uses unrelocated

locations. In KI10 executive mode an LUUO uses locations 40 and 41 in
the executive process table.

The actions of MUUOs and unassigned codes depend to a considerable
degree on the processor. All use at least two consecutive locations, where
the first receives the information specified above for an LUUO (in the Ki10
a third nonconsecutive location is also used). The unassigned codes are
included so that the Monitor steps in when a user gives an incorrect code.
The code 000 acts in exactly the same way as an MUUO but is not a standard
communication code: it is included so that control returns to the Monitor

-should a user program wipe itself out.

KI10. MUUOs and unassigned codes in user or executive mode act in
exactly the same way. They store the information specified above for an
LUUO in location 424 of the user process table, save the flags and PC (the
current PC word) in location 425, set up the flags and PC according to a new
PC word taken from a third location, and restart the processor in normal
sequence at the location then addressed by PC. In the PC word saved in
location 425, bit O may represent either Overflow or Disable Bypass
depending upon the mode the processor is in when the MUUO is given. If
the MUUO is given directly by the program, the address in the right half of
the PC word saved is one greater than the location of the MUUO; otherwise
it depends upon the circumstances in which the MUUO is executed. The
new PC word can be taken from among the eight locations in the user
process table listed here depending upon the mode at the time the MUUO is

" given, and whether or not it is executed as the result of a trap (page failure

or overflow).

Mode Execution Location
Kernel No trap 430
Kernel Trap 431
Supervisor No trap 432
Supervisor Trap 433
Concealed No trap - 434
Concealed Trap 435
Public No trap - 436
Public Trap 437

There are no restrictions on the manner in which the new PC word of an
MUUO can set up the flags. It can switch the processor from any mode to
any other. A 1 in bit O sets both Overflow and Disable Bypass; a O clears
both. Hence bit 0 should be adjusted to produce the desired state in the flag

~ that is relevant to the mode the processor is entering.

KA10. MUUOs and unassigned codes, regardless of mode, perform
exactly the operations given above for an LUUO with the exception that

-93- SYSTEM REFERENCE

§2.11 PROGRAMMING EXAMPLES » 2-71

MUUOs use unrelocated 40-41 and unassigned codes use unrelocated 60-61 Note that in executive mode,
(140-141 and 160-161 for a second processor). The unassigned codes are LUUOs and MUUOs act
100~127, 247 and 257. The codes 130-177, which are the floating point ~identically.
and byte manipulation instructions, are equivalent to the unassigned codes if
unimplemented, 7e if the hardware for them is not included. In this case
all codes 100~177 trap to unrelocated 60-61. - '
The important point is that an MUUO or unassigned code results in
'executing an instruction in an unrelocated location, ie an instruction under
the control of the Monitor. This would most likely be a jump that leaves
user mode, saves the PC word and enters a routine to interpret the MUUO
configuration. In the instruction descriptions, any reference to events
resulting from execution by an MUUO should be taken to include the
unassigned and illegal codes as well. ’

2.11 PROGRAMMING EXAMPLES

Before continuing to input-output and related subjects, let us consider some
simple programs that demonstrate the use of a variety of the instructions
- described thus far.

The instruction repertoires of the KA10, the K110 and the 166 processor
used in the PDP-6 are very similar, and most programs require no changes to
run on any of them. Because of minor differences and the fact that some
instructions are not available on the earlier machines, a program that is to be
compatible with all three should have some way of distinguishing which
machine it is running on. This simple test suffices.

JECL 17,.+1 *;Clear flags

JRST +1 ;Change PC

JFCL 1,PDP6 ;PDP-6 has PC Change flag

MOVNI AC,1 ;Others do not, make AC all s

AOBIN AC,+1 ;Increment both halves

JUMPN AC,KA10 ;KA10 if AC = 1000000

JRST KI10 ;KIT0 if AC=0 (no carry between
;halves) '

Suppose we wish to count the number of 1s in a word. We could of
course check every bit in the word. But there is a quicker way if we remem-
ber that in any word and its twos complement the rightmost 1 is in the same
position, both words are all Os to the right of this 1, and no corresponding
bits are the same to the left (the parts of both words at the left of the right-
most 1 are complements). Hence using the negative of a word as a mask for
the word in a test instruction selects only the rightmost 1 for modification.
The example uses three accumulators: the word being tested (which is lost)
is in T, the count is kept in CNT, and the mask created in each step is stored
in TEMP.

MOVEI CNT,0 ;Clear CNT
MOVN TEMP,T ;Make mask to select rightmost 1

SYSTEM REFERENCE -94-

2-72 CENTRAL PROCESSOR §2.11
TDZE T,TEMP ;Clear rightmost 1 in T
AOJA CNT,.-2 ;Increase count and jump back

;Skip to here if no 1sleftin T

CNT is increased by one every time a 1 is deleted from T. After all 1s have
been removed, the TDZE skips.

In the standard algorithm for converting a number N to its equivalent in
base b, one performs the series of divisions

N/b = g, +ry/b rn<b
q./b = q,+ry/b rn<b
q2/b = q3+rs/b r;<b
Qn-1/b = 0+r,/b r,<b

The number in base b is then r,...r3r,r;. Eg the octal equivalent of 61
decimal is 75:

61/8 = 7+5/8

7/8 = 0+7/8
The following decimal print routine converts a 36-bit positive integer in
accumulator T to decimal and types it out. The contents of T and T+ 1 are

destroyed. The routine is called by a PUSHJ P, DECPNT where P is the
pushdown pointer.

DECPNT: IDIVI T,12 ;12 =104,
. PUSH P, T+1 ;Save remainder
SKIPE T ;All digits formed?
PUSHJ P,DECPNT ;No, compute next one
DECPN1: POP P, T ';Yes, take out in opposite order
ADDI T,60 ;Convert to ASCII (60 is code for Q)

JRST TTYOUT ;Type out

This routine repeats the division until it produces a zero quotient. Hence it
suppresses leading zeros, but since it is executed at least once it outputs one
“0” if the number is zero. The TTYOUT routine returns with a POPJ P, to
DECPN1 until all digits are typed, then to the calling program.

Space can be saved in the pushdown stack by storing the computed digits
in the left halves of the locations that contain the jump addresses. This is
accomplished in the decimal print routine by making the followmg substi-
tutions.

PUSH P,T+1 - HRLM T+1,(P)
POP P,T - HLRZ T,(P)

The routine can handle a 36-bit unsigned integer if the IDIVI T,12 is

-05-
§2.11 PROGRAMMING EXAMPLES
replaced by
LSHC T,—1D35 ;Shift right 35 bits into T+1
LSH T+1,-1 ;Vacate the T+1 sign bit
DIVI T,12 ;Divide double length integer by 10

Many data processing situations involve searching for information in tables

and lists of all kinds. Suppose we wish to find a particular item in a table
beginning at location TAB and containing N items. Accumulator T contains
the item. The right half of A is used to index through the table, while the
left half keeps a control count to signal when a search is unsuccessful.

MOVSI A,—-N ;Put =N, 0in A

CAMN T,TAB(A) ;Skip if current item not the one
JRST FOUND ;Item found '

AOBIN A,.-2 ;Try next item until left count =0

;Item not in list

The location of the item (if found) is indicated by the number in the right
half of A (its address is that quantity plus TAB). A slightly different pro-
cedure would be

HRLZI A,-N .
- CAME T,TAB(A) ;Skip if current item is the one
AOBIN A, .—-1

JUMPL A,FOUND ;Jump if left count < 0
.. ;Item not found

Locations used for a list can be scattered throughout memory if data is
kept in the left half of each location and the right half addresses the next
location in the list. The final location is indicated by a zero right half. The
following routine finds the last half word item in the list. It is entered at
FIND with the first location in the list addressed by the right half of
accumulator T. At the end the final item is in T right. ‘

MOVE T,(T) ;Move next item to T
FIND: TRNE T,777777 ;Skip if AC right =0

JRST =2

HLRZS T ;Move final item to right

The following counts the length of the list in accumulator CNT.

MOVEI CNT,0 ;Clear CNT
JUMPE T,0UT ;Jump out if T contains 0
HRRZ T\(T) ;Get next address

AOJA CNT,.—-2 ;Count and go back

Double Precision Floating Point. The following are straightforward rou-
tines for handling double precision floating point arithmetic in software
format [§2.6 describes the floating point instructions] .

DFAD: UFA A+1,M+1 ;Sum of low parts to A+2

SYSTEM REFERENCE

2-73

MACRO interprets a number
following 1D as decimal.

SYSTEM REFERENCE

2-74

These routines are given to
show the mechanics of double
precision floating point oper-
ations. They produce correct
results in all ordinary circum-
stances, but do not handle
pathological cases.

96
CENTRAL PROCESSOR §2.12
FADL AM ;Sum of high parts to A, A+1
UFA A+1,A+2 ;Add low part of high sum to A+2
FADL AA+2 ;Add low sum to high sum
POPJ P,
DFSB: DFN AA+1 ;Negate double length operand
PUSHJ P,DFAD ;Call double floating add
DFN AA+1 —M—-AC)=AC-M
POPJ P,
DFMP: MOVEM A,A+2 ;Copy high AC operand in A+2
FMPR A+2,M+1 ;One cross product to A+2
FMPR A+1,M ;Other to A+1 ‘
UFA A+1,A+2 ;Add cross products into A+2
FMPL AM ;High product to A, A+1
UFA A+1,A+2 ;Add low part to cross sum in A+2
FADL A ,A+2 ;Add low sum to high part of product
POPJ P,

A double precision division is of the form

A _ atcX2?”
B b+dx2™
Using the relationship
Ab = q+rX27%b

where q and r are the quotient and remainder produced by FDVL, the
following routine computes a double length quotient by the algorithm

—_ -27
4 L, Cogd)x2
B b

which gives a result correct to the next-to-last bit in the low order half.

DFDV: FDVL AM ;Get high part of quotient
MOVN A+2,A ;Copy negative of quotient in A+2
FMPR = A+2,M+1 ;Multiply by lew part of divisor
UFA A+1,A+2 ;Add remainder

FDVR A+2 M ;Divide sum by high part of divisor
FADL A,A+2 . ;Add result to original quotient
POPJ P, : :

2.12 INPUT-OUTPUT

The input-output instructions govern all transfers of data to and from the
.peripheral equipment, and also perform many operations within the proc-

-97-

§2.12 ‘ INPUT-OUTPUT

essor. . An instruction in the in-out class is designated by 111 in bits 0-2, ie
its left octal digit is 7. Bits 3—-9 address the device that is to respond to the
instruction. The format thus allows for 128 codes, two of which, 000 and
004 respectively, address the processor and priority interrupt, and are used
for the console as well. The KA10 also uses the first two codes for the time
share hardware, but the KI10 has a separate code, 010, for this purpose.
A chart in Appendix A lists all devices for which codes have been assigned,
and gives their mnemonics and DEC option numbers. Electrical and logical
specifications of the IO bus are given in the interface manual.

Bits 13-35 are the same as in all other instructions: they are the /, X, and
.Y parts, which are used to calculate an effective address, set of conditions,
or mask to be used in the execution of the instruction. The remaining bits,
10-12, select one of the following eight IO instructions.

NotE

All instructions described in the remainder of this manual are in-out
instructions, which are affected by the time share instruction restric-
tions. In the KA10 no in-out instruction can be performed by a user
mode program unless the User In-out flag is set. In the KI10, in-out
instructions using device codes 740 and above are not restricted. But
an instruction using a device code under 740 cannot be performed by a
user mode program unless User In-out is set and cannot be performed
in supervisor mode at all (in-out is normally handled in kernel mode).
Any in-out instruction that violates these restrictions does not perform
the functions given for it in the instruction description. Instead it acts
just like an MUUO {§2.10].

These restrictions will not be mentioned in the instruction descrip-
tions, as'they apply to all instructions from this point on.

CONO Conditions Out
7] b J20]i] x] Y
0 23 - 910 121314 1718 35

Set up device D with the effective initial conditions £. The number of con-
dition bits in E that are actually used depends on the device.

CONI Conditions In

17| D [24]1] x | Y
0 23 910 121314 1718 35
Read the input conditions from device D and store them in location £. The

number of condition bits stored depends on the device; the remaining bits
in location E are cleared.

SYSTEM REFERENCE

2-75

E will always be regarded as
being bits 18-35, even though
it is actually placed on both
halves of the bus and many
devices receive the informa-
tion from the left half.

SYSTEM REFERENCE

2-76

-98-

CENTRAL PROCESSOR §2.12

DATAO Data Out

(7] » Juaff x | Y |

0 23 910 121314 1718 35

Send the contents of location E to the data buffer in device D, and perform
whatever control operations are appropriate to the device.

The amount of data actually accepted by the device depends on the size
of its buffer, its mode of operation, etc. The original contents of location E
are unaffected.

DATAI Data In

[7] b Joaf] x | Y |
0 23

910 121314 1718 35

Move the contents of the data buffer in device D to location E, and perform

“whatever control operations are appropriate to the device.

The number of data bits stored depends on the size of the device buffer,
its mode of operation, etc. Bits in location E that do not receive data are
cleared.

CONSZ Conditions In and Skip if Zero

L 7 Ja D_ [30 [1] x | Y B

910 121314 1718 35

Test the input conditions from device D against the effective mask £. If all
condition bits selected by 1s in E are Os, skip the next instruction in
sequence.

If the device supplies more than 18 condition bits, only the right 18 are
tested.

CONSO Conditions In and Skip if One

(7 o Tse]] x | Y]

] 23 910 121314 1718 . 35

Test the input conditions from device D against the effective mask E. If any
condition bit selected by a 1in E is 1, skip the next instruction in sequence.

If the device supplies more than 18 condition bits, only the right 18 are
tested. '

-99-

§2.12 INPUT-OUTPUT

BLKO Block Qut

7] b Jioli] x] Y

0o 23 910 121314 1718 35
BLKI Block In »

(71T 5 Jool x| v |
0 23 910 121314 1718 35

Add one to each half of a pointer in location E, and place the result back
in E. Then perform a data IO instruction in the same direction as the block
IO instruction, using the right half of the incremented pointer as the
effective address. If the given instruction is a BLKO, perform a DATAOQO;
if a BLKI, perform a DATAL _ ‘

The remaining actions taken by this instruction depend on whether it is
executed as a priority interrupt instruction [§2.13].
¢ Not as an Interrupt Instruction. If the addition has caused the count in
the left half of the pointer to reach zero, go on to the next 'instruction in
sequence. Otherwise skip the next instruction.
& As an Interrupt Instruction. If the addition has caused the count in the
‘left half of the pointer to reach zero, execute the instruction in the second
interrupt location for the channel. Otherwise dismiss the interrupt and
return to the interrupted program.

Note: The KA1O increments the two halves of the pointer by adding
1 000001¢ to the entire register. In the KI10 the two halves are handled
independently.

The above eight instructions differ from one another in their total effect,
but they are not all different with respect to any given device. A BLKO acts
on a device in exactly the same way as a DATAO — the two differ only in
counting and other operations carried out within the processor and memory.
Similarly, no device can distinguish between a BLKI and a DATAI; and a
device always supplies the same input conditions during a CONI, CONSZ or
CONSO whether the program tests them or simply stores them.

Hence the eight instructions may be categorized as of four types, repre-
sented by the first four instructions described above. Moreover, a.complete
treatment of the programming of any device can be given in terms of these
four instructions, two of which are for input and two for output. The four
exhaust the types of information transfer that occur in the IO system, at
least three of which are applicable to any given device. Thus all instruction
descriptions in the rest of this manual will be of the CONO, CONI, DATAO
and DATALI instructions combined with the various device codes. The dis-
cussion of each device will present timing information pertinent to device
operation, as internal device timing is dependent only upon the device and
not upon processor instruction time (which is given in Appendix-C).

Every device requires initial conditions; these are sent by a CONO, which

SYSTEM REFERENCE

2-77

A block 10 instruction is
effectively a whole in-out
data handling subroutine. It
keeps track of the block loca-
tion, transfers each data
word, and determines when
the block is finished.

Initially the left half of the
pointer contains the negative
of the number of words in
the block, the right half con-
tains an address one less than
that of the first word in the
block.

The word “input” used with-
out qualification always refers
to the transfer of data from
the peripheral equipment into
the processor; “output” refers
to the transfer in the opposite
direction.

SYSTEM REFERENCE

2-78

A DATAI that addresses an
output-only device simply
clears location E. DATAI PI,
(code 70044) produces only
this effect as the priority in-
terrupt has no data for input.
On the other hand a DATAO
that addresses an input-only
device is a no-op.

When the device code is
undefined or the addressed
device is not in the system,
a DATAQO, CONO or CONSO
is a no-op, a CONSZ is an
absolute skip, a DATAI or
CONI clears location E.

Busy and Done both set is a
meaningless situation.

Occasionally a device with a
second code may wuse a
DATAI or DATAO to trans-
mit additional control or
maintenance information.

-100-

CENTRAL PROCESSOR §2.12
can supply up to eighteen bits of control information to the device control
register. The program can determine the status of the device from up to
thirty-six bits of input conditions that can be read by a CONI (but only the
right eighteen can be tested by a CONSZ or CONSO). Some input bits
simply reflect initial conditions sent by a previous CONO; others are set up
by output conditions but are subject to subsequent adjustment by the
device; and still others, such as status levels from a tape transport, have no
direct connection with output conditions.

Data is moved in and out in characters of various sizes or in full 36-bit
words. Each transfer between memory and a device data buffer requires a
single DATAI or DATAO. Every device has a CONO and CONI, but it may
have only one data instruction unless it is capable of both input and output.
Eg, the paper tape reader has only a DATAI, the tape punch has only a
DATAO, but the teletype has both. (A high speed device, such as a disk file,
can be connected to a direct-access processor, which in turn is connected
directly to memory by a separate memory bus and handles data auto-
matically. This eliminates the need for the program to give a DATAO or
DATAI for each transfer.)

A Typical 10 Device. Every device has a 7-bit device selection network, a
priority interrupt assignment, and at least two flags, Busy and Done, or some
equivalent. The selection network decodes bits 3—-9 of the instruction so
that only the addressed device responds to signals sent by the processor over
the in-out bus. To use the device with the priority interrupt, the program
must assign a channel to it. Then whenever an appropriate event occurs in
the device, it requests an interrupt on the assigned channel.

The Busy and Done flags together denote the basic state of the device.
When both are clear the device is idle. To place the device in operation, a
CONO or DATAO sets Busy. If the device will be used for output, the pro-
gram must give a DATAO that sends the first unit of data — a word or char-
acter depending on how the device handles information. When the device has
processed a unit of data, it clears Busy and sets Done to indicate that it is
ready to receive new data for output, or that it has data ready for input.
In the former case the program would respond with a DATAO to send more
data; in the latter, with a DATAI to bring in the data that is ready. If an
interrupt channel has been assigned to the device, the setting of Done signals
the program by requesting an interrupt; otherwise the program must keep
testing Done to determine when the device is ready.

All devices function basically as described above even though the number
of initial conditions varies considerably. Besides Busy and Done flags, the
tape reader and punch have a Binary flag that determines the mode of
operation of the device with respect to the data it processes — alphanumeric
or binary. The teletype has no binary flag, but it has two Busy flags and two
Done flags — one pair for input, another for output. A complicated device,
such as magnetic tape, may. require two device codes to handle the large
number of conditions associated with it. Initial conditions for a tape system
include a transport address and an actual command the tape control is to
perform; input conditions include error flags and transport status levels.

Most 10 devices involve motion of some sort, usually mechanical (in a
display only the electron beam moves). With respect to mechanical motion

-101-

§2.12 INPUT-OUTPUT

there are two types of devices, those that stay in motion and those that do
not. Magnetic tape is an example of the former type. Here the device
executes a command (such as read, write, space forward) and the done flag
indicates when the entire operation is finished. A separate data flag signals
each time the device is ready for the program to give a DATAI or DATAO,
but the tape keeps moving until an entire record or file has been processed.

Paper tape, on the other hand, stops after each transfer, but the program
need not give a new CONO every time. The reader logic is set up so that a
DATAI not only reads the data, but also clears Done and sets Busy. Hence
if the instruction is given within a critical time, the tape moves continuously
and only two CONOs are required for a whole series of transfers: one to start
the tape, and one to stop it after the final DATAI

Other devices operate in one or the other of these two ways but differ in
various respects. The tape punch and teletype output are like the reader.
Teletype input is initiated by the operator striking a key rather than by the
program. The card reader reads an entire card on a single CONO, with a
DATALI required -for each column. The DECtape stays in motion, and the
program must give a CONO to stop it or it will go all the way to the end
Zone. .

Readin Mode

This mode of processor operation provides a means of placing information
in memory without relying on a program already in memory or loading one
word at a time manually. -Its principal use is to read in a short loader
program which is then used for loading other information. A loader program
should ordinarily be used rather than readin mode, as a loader can check the
validity of the information read. _

Pressing the readin key on the console activates readin mode by starting
the processor in a special hardware sequence that simulates a DATAI fol-
lowed by a series of BLKI instructions, all of which address the device whose
code is selected by the readin device switches at the left just above the
console operator panel. Various devices can be used, and for each there are
special rules that must be followed. But the readin mode characteristics of
any particular device are treated in the discussion of the device. Here we
are concerned only with the general characteristics.

The information read is a block of data (such as a loader program) pre-
ceded by a pointer for the BLKI instructions. The left half of the pointer
contains the negative of the number of words in the block, the right half
contains an address one less than that of the location that is to receive the
first word. ‘

To read in, the operator must set up the device he is using, set its code
into the readin device switches, and press the readin key. This key function
first duplicates the action of the console reset key, which. clears both the
processor and the in-out equipment; in particular it places the processor in
executive mode, and in the KI10 selects kernel mode, selects physical page 0
for the executive process table, and disables overflow traps. Following this
the processor places the device in operation, brings the first word (the
pointer) into location 0, and then reads the data block, placing the words in

SYSTEM REFERENCE

2-79

SYSTEM REFERENCE

2-80

MACRO also recognizes the
mnemonic RSW (Read
Switches) as equivalent to
DATAI APR,.

-102-

CENTRAL PROCESSOR §2.12

the locations specified by the pointer. Data can be placed anywhere in
memory (including fast memory) except in location 0. The operation affects
none of memory except location 0 and the block area. For the KI10 it is
recommended that read in be confined to the unpaged area, as bringing data
into locations above 337777 would require prior loading of the appropriate
pointers into the executive page map in physical page 0.

Upon completing the block, the processor halts only if the single instruc-
tion switch is on. Otherwise it leaves readin mode and begins normal
operation. This is done in the KI10 by jumping to the location addressed
by the last word in the block, in the KA10 by executing the last word
as an instruction.

Console-Program Communication

Neither the processor nor the priority interrupt system require all four types
of 10 instructions, so the program can make use of their device codes for
communicating with the console. Both processors have two instructions that
transfer data between console and program. But in the KI10, the program
can actually operate some of the switches on the console. For this purpose
it uses a data-out instruction with the device code for the paper tape reader
(an input-only device). The KI10 program can also inspect the states of a .
number of operating and sense switches, but the bits for these are included
in the left half words of the standard input conditions for the interrupt

and processor [§§2.13, 2.14].

DATAI APR, Data In, Console

| 70004 1l x | Y |

o . 121314 1718 35

Read the contents of the console data switches into location E.

DATAD PI, Data Out, Console |
| 70054 1 x] Y]
0 121314 1718 35

Unless the console MI program disable switch is on, display the contents of
location £ in the console memory indicators and turn on the triangular light
beside the words PROGRAM DATA just above the indicators (turn off the
light beside MEMORY DATA).

Once the indicators have been loaded by the program, no address condi-
tion selected from the console [§§2.18, 2.19] can load them until the
operator turns on the MI program disable switch, executes a key function
that references memory, or presses the reset key.

-103-
§2.13 PRIORITY INTERRUPT
DATAO PTR, Operating Data Qut, Console
| 71054 Ul x T Y |
0 121314 1718 35

Unless the MI program disable switch is on, set up the console address and
address-condition switches according to the contents of location £ as shown
(a 1 in a bit turns on the switch, a 0 turns it off).

INST DATA WRITE ADDRESS{ EXEC USER

FETCH FETCH . BREAK | PAGING | PAGING
h -
H 0 1 2 3 4 5 ___f___J 7 8
1 e T T T
i

ADDRESS SWITCHES

0 6 14 35

For complete information on the use of these switches, see §2.19.

2.13 PRIORITY INTERRUPT

Most in-out devices must be serviced infrequently relative to the processor
speed and only a small amount of processor time is required to service them;
but they must be serviced within a short time after they request it. Failure
to service within the specified time (which varies among devices) can often
result in loss of information and certainly results in operating the device
below its maximum speed. The priority interrupt is designed with these
considerations in mind, ie the use of interruptions in the current program
sequence facilitates concurrent operation of the main program and a number
of peripheral devices. The hardware also allows conditions internal to the
processor to signal the program by requesting an interrupt.

Interrupt requests are handled through seven channels arranged in a
priority chain, with assignment of devices to channels entirely at the discre-
tion of the programmer. To assign a device to a channel, the program sends
the number of the channel to the device control register as part of the condi-
tions given by a CONO (usually bits 33—35). Channels are numbered 1-7,
with 1 having the highest priority; a zero assignment disconnects the device
from the interrupt channels altogether. Any number of devices can be
connected to a single channel, and some can be connected to two channels
(eg a device may signal that data is ready on one channel, that an error has
occurred on another). _

Interrupt Requests. When a device requires service it sends an interrupt
request signal over the in-out bus to its assigned channel in the processor. If
the channel is on, the processor accepts the request at the next memory
access unless the processor is either starting an interrupt on any channel or
holding an interrupt on the same channel. The request signal is a level, so
it remains on the bus until turned off by the program (CONO, DATAO or

SYSTEM REFERENCE

2-81

On the KII0 console, all
switches are pushbutton-
flipflop combinations; the in-
struction Qf,'course controls
the flipflops, not the buttons.

SYSTEM REFERENCE

2-82

The request signal is generally
derived from a flag that is set
by various conditions in the
device. Often associated with
these flags are enabling flags,
where the setting of some
device condition flag can re-
quest an interrupt on the
assigned channel only if the
associated enabling flag is also
set. The enabling flags are in
turn controlled by the condi-
tions supplied to the device by
a CONO. Eg a device may
have half a dozen flags to
indicate various internal condi-
tions that may require service
by an interrupt; by setting up
the associated enabling flags,
the program can determine
which conditions shall actual-
ly request interrupts in any
given circumstances.

Interrupt locations for a sec-
ond processor are 140 + 2N
and 141 + 2N.

Note that there are therefore
two orders of priority asso-
ciated with a KI10 interrupt:
first the channel, and then for
all devices requesting inter-
rupts simultaneously on the
same channel, proximity to
the processor on the bus.

-104-

CENTRAL PROCESSOR §2.13

DATAI). Thus if a request is not accepted because of the conditions given

above, it will be accepted when those conditions no longer hold. A single
channel will shut out all others of lower priority if every time its service
routine dismisses the interrupt, a device assigned to it is already waiting with
another request. The program can usually trigger a request from a device but
delay its acceptance by turning on the channel later.

Starting an Interrupt. After a request is accepted the channel must wait
for the interrupt to start. No interrupts can be started unless the priority
interrupt system is active. Furthermore, the processor cannot start an
interrupt if it is already holding an interrupt on a channel with priority
higher than those on which requests have been accepted (in other words if
the current program is a higher priority interrupt routine). If there is a
higher priority channel waiting, the processor stops the current program to
start an interrupt on the waiting channel that has highest priority. The inter-
rupt starts following the retrieval of an instruction, following the retrieval of
an address word in an effective address calculation (including the second cal-
culation using the pointer in a byte instruction), or following a transfer in a
BLT. The KI10 can also interrupt the relatively long process of calculating
the quotient in double floating division. When an interrupt starts, PC points
to the interrupted instruction, so that a correct return can later be made to
the interrupted program.

For the KAI1O two fixed memory locations are associated with each -
channel: unrelocated locations 40 + 2N and 41 + 2N, where N is the channel
number. Channel 1 uses locations 42 and 43, channel 2 uses 44 and 45, and
so on to channel 7 which uses 56 and 57. The KA1O starts an interrupt for
channel N by executing the instruction in the first interrupt location for the
channel, ie location 40+ 2N. Even though the processor may be in user
mode when an interrupt occurs, the interrupt operations are performed in
executive mode. ' '

The KI10 starts an interrupt by sending an interrupt-granted signal for the
channel on which it has accepted a request. This signal goes out on the bus
and is transmitted serially from one device to the next. Upon receiving the
grant, a device that is-not requesting an interrupt on the specified channel
sends the signal on to the next device. A device that is requesting an inter-
rupt on the specified channel terminates the signal path and sends an
interrupt function word back to the processor. The KI10 also has a pair of
fixed locations associated with each channel, and these have the same
numbers as in the KA10 but are locations in the executive process table.
These locations however need not be used. The interrupt function word sent
by the device may specify a standard interrupt using the fixed locations, or
an equivalent interrupt using a pair-of locations specified by the function
word, or some other interrupt function entirely. The format of the function
word and the operations the processor performs in response to the function
selected by bits 3-5 of the word are as follows.

FUNCTION

[l \ I INTERRUPT ADDRESS
3 56 1718 - 35

INCREMENT

-105-

§2.13 PRIORITY INTERRUPT
Bits 3-5 Interrupt Function
0 Processor waiting or no response. If the latter, perform a standard
interrupt (see function 1).
1 Standard interrupt — execute the instruction in location 40 + 2N
of the executive process table.
2 Dispatch — execute the instruction in the location specified by
bits 18-35.
3 Increment — add the contents of bits 6~17 to the contents of the

location specified by bits 18-35. The increment is a fixed point
number in twos complement notation, bit 6 being the sign, and
bit 17 corresponding to bit 35 of the memory word.

4 DATAO — do a DATAO for this device using the contents of
bits 18—-35 as the effective address.

5 DATAI — do a DATAI for this device using the contents of
bits 18-35 as the effective address.

Not used — reserved by DEC.
7 Not used — reserved by DEC.

Regardless of what mode the processor is in when an interrupt occurs, the
interrupt operations are performed in kernel mode.

An instruction executed in response to an interrupt request and not under
control of PC is referred to elsewhere in this manual as being “executed as an
interrupt instruction”. Some instructions, when so executed, have different
effects than they do when performed in other circumstances. And the dif-
ference is not due merely to being performed in an interrupt location or in
response (by the program) to an interrupt. To be an interrupt instruction,
an instruction must be executed in the first or second interrupt location for
a channel, in direct response by the hardware (rather than by the program)
to a request on that channel. §2.12 describes the two ways a BLKO is

performed. If a BLKO is contained in an interrupt routine called by a JSR,

it is not “executed as an interrupt instruction” even in the unlikely event the
routine is stored within the interrupt locations and the BLKO is executed by
an XCT. The special effects produced by different types of interrupt
instructions depend upon the processor.

KI10 Interrupt Instructions. Besides instructions, the KI10 can perform
other interrupt operations as described above. No interrupt operation can
set Overflow or either of the trap flags; hence an overflow trap can never
occur as a direct result of an interrupt. A page failure that occurs in an
interrupt operation is never trapped; instead it sets the In-out Page Failure
flag, which requests an interrupt on the channel assigned to the processor
[§2.14]. These considerations of course do not apply to a service routine
called by an interrupt instruction. The interrupt instructions executed in a
standard or dispatch interrupt fall into three categories.
¢ AOSX, SKIPX, SOSX, CONSX, BLKX. If the skip condition specified by
the instruction is satisfied, the processor dismisses the interrupt and returns
immediately to the interrupted program (ie it returns control to the un-

'SYSTEM REFERENCE

2-83

A device designed originally
for use with the KA10 will
work when connected to the
KI10 bus, where it always
requests a standard interrupt
by providing no response to
the grant. This means that
for simultaneous requests on
a given channel, all KI10 de-
vices have priority over KA10
devices.

At present, functions 6 and 7
produce standard interrupts.

SYSTEM REFERENCE

2-84

Satisfaction of the condition
does not change PC, as this
would skip the next instruc-
tion in the interrupted pro-
gram. In effect the instruction
skips back to the interrupted
program by skipping the ‘sec-
ond interrupt location.

Note that the interpreta-
tion of a BLKI or BLKO as a
skip instruction is consistent
with the description given in
§2.12, the condition being
that the count is not zero.

-106-

CENTRAL PROCESSOR §2.13
changed PC). If the skip condition is not satisfied, the processor executes
the instruction contained in the second interrupt location.

CauTtioN

In the second interrupt location, a skip instruction
whose condition is not satisfied hangs up the pro-
cessor, which will keep repeating the instruction
until the condition is satisfied.

¢ JSR, JSP, PUSHJ, MUUO. The processor holds an interrupt on the
channel, takes the next instruction from the location specified by the jump
(as indicated by the newly changed PC), and enters either kernel mode or the
mode specified by the new PC word of the MUUO. Hence the instruction is
usually a jump to a service routine handled by the Monitor.

¢ All Other Instructions. In general the processor simply executes the
instruction, dismisses the interrupt, and then returns to the interrupted
program. If the instruction is a jump (other than those mentioned above),
the processor jumps to the newly specified location; but it dismisses the
interrupt and returns to the mode it was already in when the interrupt
occurred. Hence it effectively returns to the interrupted program but in a
different place, and the original contents of PC are lost.

Since the interrupt operations are performed in kernel mode regardless of
the actual mode of the processor, an XCT is performed as an executive XCT
[§2.15]. The ultimate effect of the XCT depends of course on the instruc-
tion executed — and its effect is as described here for the various categories.

CautIon

Neither an LUUO nor a BLT will function in a
reasonable manner as an interrupt instruction.
Therefore do not use them.

KA10 Interrupt Instructions. In the KA10 the interrupt instructions fall
into two categories.
¢ Non-I0 Instructions. After executing a non-IO interrupt instruction, the
processor holds an interrupt on the channel and returns control to PC.
Hence the instruction is usually a jump to a service routine. If the processor
is in user mode and the interrupt instruction is a JSR, JSP, PUSHJ, JSA or
JRST, the processor leaves user mode (the Monitor thus handles all interrupt
routines [§2.16]). '

If the interrupt instruction is not a jump, the processor continues the
interrupted program while holding an interrupt — in other words it now
treats the interrupted program as an interrupt routine. Eg the instruction
might just move a word to a particular location. Such procedures are
usually reserved for maintenance routines or very sophisticated programs.

~# Block or Data 10 Instructions. One or the other of two actions can result

from executing one of these as an interrupt instruction.

If the instruc_tior{ in 40+ 2N is a BLKI or BLKO and the block is not
finished (fe the count does not cause the left half of the pointer to reach

-107-

§2.13 PRIORITY INTERRUPT

zero), the processor dismisses the interrupt and returns to the interrupted
program. The same action results if the instruction is a DATAI or DATAO.

If the instruction in 40 + 2N is a BLKI or BLKO and the count does reach
zero, the processor executes the instruction in location 41 + 2N. This
cannot be an 10 instruction and the actions that result from its execution
as an interrupt instruction are those given above for non-lO instructions.

CaurtioN

The execution, as an interrupt instruction, of a
CONO, CONI, CONSO or CONSZ in location
40 + 2N or any 10 instruction in location 41 + 2N
hangs up the processor.

Dismissing an Interrupt. Unless the interrupt operation dismisses the
interrupt automatically, the processor holds an interrupt until the program
dismisses it, even if the interrupt routine is itself interrupted by a higher
priority channel.” Thus interrupts can be held on a number of channels
simultaneously, but from the time an interrupt is started until it is dismissed,
no interrupt can be started on that channel or any channel of lower priority
(requests, however, can be accepted on lower priority channels).

A routine dismisses the interrupt by using a JEN (JRST 12)) to return to
the interrupted program (the interrupt system must be active when the JEN
is given). This instruction restores the channel on which the interrupt is
being held, so it can again accept requests, and interrupts can be started on
it and lower priority channels. JEN also restores the flags, whose states were
saved in the left half of the PC word if the routine was called by a JSR,
JSP, PUSHJ, or in the KI10, an MUUO. If flag restoration is not desired,
a JRST 10, can be used instead.

CaurIon

An interrupt routine must dismiss the interrupt
when it returns to the interrupted program, or its
channel and all. channels of lower priority will be
disabled, and the processor will treat the new
program as a continuation of the interrupt routine.

Priority Interrupt Conditions. The program can control the priority in-

terrupt system by means of condition 10 instructions. The device code is
004, mnemonic PI.

CONO PI, Conditions Out, Priority Interrupt

| 70060 1l x | Y B
] 121314 1718 35

Perform the functions specified by the effective conditions E as'shown (a 1
in a bit produces the indicated function, a 0 has no effect).

SYSTEM REFERENCE

2-85

SYSTEM REFERENCE

-108-

2-86 CENTRAL PROCESSOR §2.13
DROP PROGRAM INITIATE DEACTIVATE ACTIVATE
REQUESTS ON INTERRUPTS Pl Pl
SELECTED ON
CHANNELS
CLEAR [CLEAR 0ISABLE|ENABLE \ CLEAR | | RN | TuRN |\ /
Fi?wUERRE PEAng; PARITY ERROR Pl ON OFF SELECT CHANNELS FOR BITS 22, 24, 25,26
L RR .
INTERRUPT SYSTEM | SELECTED CHANNELS
FLAG | FLAG \ I | v |2 | 3] 45 |6 |7
18 19 20 I 21 2

Bits 18-21 are actually for
processor conditions [§2.14].

23 24 25 26 27 28 29 I 30 31 32 1 33 34 35

Notes.

20 Prevent the setting of the Parity Error flag from requesting an
interrupt on the channel assigned to the processor.

21 Enable the setting of the Parity Error flag to request an interrupt
on the channel assigned to the processor.

22 KI10 only: On channels selected by 1s in bits 29-35, turn off any
interrupt requests made previously by the program (via bit 24).

23 Deactivate the priority interrupt system, turn off all channels,
eliminate all interrupt requests that have already been accepted but
are still waiting, and dismiss all interrupts that are currently being
held.

24 Request interrupts on channels selected by 1s in bits 29-35, and
force the processor to accept them even on channels that are off. |
KA10: There is at most one interrupt on a given channel, and a
request is lost if it is made by this means to a channel on which an
interrupt is already being held.
KI110: The request remains indefinitely, so as soon as an interrupt
is completed on a given channel another is started, until the request
is turned off by a CONO that selects the same channel and has a
1 in bit 22.

25 Turn on the channels selected by 1ls in bits 29-35 so interrupt
requests can be accepted on them.

26 Turn off the channels selected by 1s in bits 29-35, so interrupt
requests cannot be accepted on them unless made by a CONO PI,
with a 1 in bit 24.

27 Deactivate the priority interrupt system. The processor can then still
accept requests, but it can neither start nor dismiss an interrupt.

28 Activate the priority interrupt system so the processor can accept
requests and can start, hold and dismiss interrupts.

CONI PI, k Conditions In, Priority Interrupt
70064 1] x] Y]
V] 121314 1718 . 35

Read the status of the priority interrupt (as well as several bits of KA10
processor conditions and nine KI10 console operating switches) into loca-
tion E as shown.

~109- | SYSTEM REFERENCE

§2.13 , PRIORITY INTERRUPT 2-87
INST | DATA wRiTe |ADORESS|ADDRESS| EXEC | USER PAR NXM PROGRAM REQUESTS ON CHANNELS
FETCH | FETCH STOP | BREAK | PAGING | PAGING | STOP | STOP

v | 2 | 3 | 4 | 5 | 6 | 7

0 1 2 3 4 5 6 7 8 9 10 TR 13 14 T 15 16 17

PARITY ERROR

INTERRUPT
ENABLED
/
POWER [PARITY / INTERRUPT IN PROGRESS ON CHANNELS PI CHANNELS ON
FAILURE| ERROR ACTIVE
, 1 | 2 | 3 |1 4 | 5] 6|7 |2 | 3] 4 | 5] 6|71
18 19 20 20 22 23 | 24 25 26 | 27 28 29 I 30 3 32 1 33 34 35

Notes.

Channels that are on are indicated by 1s in bits 29-35; 1s in bits 21-27
indicate channels on which interrupts are currently being held; ls in bits
11-17 (which are available only in the KI10) indicate channels that are
receiving interrupt requests generated by a CONO PI, with a 1 in bit 24.
A 1 in bit 28 means the priority interrupt system is active.

The remaining conditions read by this instruction have nothing to do with
the interrupt. Bits 0—8 are available only in the K110, where they reflect the
. settings of various console operating switches; for information on these
switches refer to §2.19. Bits 18-20 actually read KA10 processor status
conditions [§2.14] as follows.

18 Ac power has failed. The program should save PC, the flags and fast
memory in core, and halt the processor. '
The setting of this flag requests an interrupt on the channel
assigned to the processor. If the flag remains set for 5 ms, the
processor is cleared.

19 A word with even parity has been read from core memory. If bit 20
is set, the setting of the Parity Error flag requests an interrupt on the
channel assigned to the processor, at which time PC points to the
instruction being performed or to the one following it.

Timing. The time a device must wait for an interrupt to start depends on
the number of channels in use,.and how long the service routines are for
devices on higher priority channels. If only one device is using interrupts,
it never waits longer than 10 us with the KI10. With the KA10 it need never
wait longer than the time required for the processor to finish the instruction
that is being performed when the request is made. The maximum time can
be considered to be about 15 us for FDVL, but a ridiculously long shift
could take over 35 us.

Special Considerations. On a return to an interrupted program, the proc-
essor always starts the interrupted instruction over from the beginning. This
causes special problems in a BLT and in byte manipulation.

SYSTEM REFERENCE

2-88

-110-

CENTRAL PROCESSOR §2.13

An interrupt can start following any transfer in a BLT. When one does,
the BLT puts the pointer (which has counted off the number of transfers
already made) back in AC. Then when the instruction is restarted following
the interrupt, it actually starts with the next transfer. This means that if
interrupts are in use, the programmer cannot use the accumulator that holds
the pointer as an index register in the same BLT, he cannot have the BLT
load AC except by the final transfer, and he cannot expect AC to be the
same after the instruction as it was before.

An interrupt can also start in the second effective address calculation in a
two-part byte instruction.” When this happens, First Part Done is set. This
flag is saved as bit 4 of a PC word, and if it is restored by the interrupt
routine when the interrupt is dismissed, it prevents a restarted ILDB or
IDPB from incrementing the pointer a second time. This means that the
interrupt routine must check the flag before using the same pointer, as it
now points to the next byte. Giving an ILDB or IDPB would skip a byte.
And if the routine restores the flag, the interrupted ILDB or IDPB would
process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for user
programs. Even if the User In-out flag is set, a user program generally cannot
reference the interrupt locations to set them up. Procedures for informing
the Monitor of the interrupt requirements of a user program are discussed in-
the Monitor manual. '

For those who do program priority interrupt routines, there are several
rules to remember.
¢ No requests can be accepted, not even on higher prlonty channels, while
a break is starting. Therefore do not use lengthy effective address calcula-
tions in interrupt instructions. '
¢ Most in-out devices are designed to drop an interrupt request when the
program responds, usually with a DATAI or DATAO. If an interrupt is
handled neither by a BLKI or BLKO interrupt instruction nor by a service
routine, the programmer must make sure the device is configured to drop the
request on receipt of whatever response the program does give.

The interrupt instruction that calls the routine must save PC if there is to
be a return to the interrupted program. Generally a JSR is used as it saves
both PC and the flags, and it uses no accumulator.

4 The principal function of an interrupt routine is to respond to the situa-
tion that caused the interrupt. Eg computations that can be performed
outside the routine should not be included within it. ,

& If the routine uses a UUO it must first save the contents of the pair of
locations that will be changed by it in case the interrupted program was in
the process of handling a UUO of the same type. For a KI10 MUUO the
routine must save locations 424 and 425 of the user process table. In other
cases it is not the pair of consecutive locations that are relevant, as the
second contains the instruction to handle the UUO. Thus for a KA10 UUO
or a KI10 LUUO the routine must save location 40, unrelocated or in the
executive process table respectively, and the location used by the UUO
handler instruction to store the PC word. , ;

¢ The routine must dismiss the interrupt (with a JEN) when returning to the
interrupted program. The flags and UUO locations should be restored.

-111-

§2.14 TRAPPING

2.14 TRAPPING AND PROCESSOR CONDITIONS

In the performance of a program there are many events that cannot be fore-
seen and whose occurrence requires special action by the program. There are
instructions that test for various conditions, but in say a long string of com-
putations it would be both cumbersome and’ time consuming to test for
overflow at every step. It is far better simply to allow an event such as
overflow to break right into the normal program sequence.

For situations of this nature, various internal conditions can interrupt the
program. Both processors use condition IO instructions to control the
appropriate flags and to inspect other conditions of interest to the program.
The KI10 also has a trapping mechanism that allows conditions due directly
to the program, and which are often permitted to happen as a matter of
course, to interrupt the program sequence without recourse to the priority
interrupt system. Violation of instruction restrictions by a user or the super-
visor is handled by trapping as an MUUO); violation of memory restrictions
is handled as a processor condition in the KA10 (as explained here) but is
handled in the KI10 by trapping [§2.15].

Overflow Trapping (KI10 Only)

Overflow produced by an interrupt instruction cannot be detected. In any
_other circumstances, an instruction in which an arithmetic overflow condi-
tion occurs sets Overflow and Trap 1, and an instruction in which a
pushdown overflow occurs sets Trap 2. If overflow traps have been enabled
by the Mcnitor, then at the completion of an instruction in which either trap
flag is set, rather than going on to the next instruction as specified by PC,
the processor instead executes an instruction taken from a particular loca-
tion in the process table for the program (user or executive). The location
as a function of the trap flags set is as follows.

Trap Flags Set Trap Type Trap Number Location
Trap 1 only Arithmetic overflow 1 421
Trap 2 only Pushdown overflow 2 422
Trap 1 and 2 Not used by hardware 3 423

A trap instruction is executed in the same address space as the instruction
that caused it. Overflow in a user instruction traps to a location in the user
process table, and any addresses used in the instruction in that location are
interpreted in the user address space. Thus a user program can handle its
own traps, eg by requesting the Monitor to place a PUSHJ to a user routine
in the trap location. An MUUO must be used if the Monitor is to handle
a user-caused trap.

The trap instruction (the final instruction in an XCT and/or LUUQO string)
clears the trap flags, so the processor returns to the interrupted program
unless the trap instruction changes PC. Thus the trap instruction can be a
no-op (which ignores the trap), a skip, a jump, or anything else. However,

SYSTEM REFERENCE

2-89

Note that it is the overflow
condition that sets Trap 1 —
not the state of the Overflow
flag. Hence an overflow is
trapped even if Overflow is
already set.

A trap can be produced arti-
ficially simply by setting up
the trap flags with a JRSTF or
MUUO. In this way the pro-
gram can also use trap number
3, which at present cannot
result from any hardware-
detected condition (it is re-
served for future use by DEC).

SYSTEM REFERENCE

2-90

An arithmetic instruction that
overflows on every iteration
produces an infinite loop if
used as a trap instruction
for arithmetic overflow. A
pushdown instruction in a
pushdown overflow trap can
overflow only once. (The
memory allocated to a push-
down stack should have at
least one extra location to
handle this case — two extras
if the program and the trap
both use the same pointer.)

-112-

CENTRAL PROCESSOR §2.14
should the trap instruction itself set a trap flag (not necessarily the same
one), a second trap occurs.

An interrupt can occur between an instruction that overflows and the trap
instruction, but the latter will be performed correctly upon the return pro-
vided the interrupt is dismissed automatically or the interrupt routine
restores the flags properly. If a single instruction causes both overflow and a
page failure, the latter has preference; but the overflow trap will be taken
care of after the offending instruction has been restarted and completed
successfully. A trap instruction that causes a page failure does not clear the
trap flags; hence after the page failure is taken care of, the trap instruction
will correctly handle the trap when it is restarted.

KI10 Processor Conditions

In the KI10, page failures and overflow are handled by trapping, but there
are a number of other internal conditions that can signal the program by
requesting an interrupt on a channel assigned to the processor. The program
can actually assign two channels — one for error conditions and one
specifically for the clock. Control over the Power Failure and Parity Error
flags is exercised by a CONO that addresses the priority interrupt system
[82.13]. Inspection of other conditions and control over all are handled by
condition 10 instructions that address the processor; the CONI also reads
some console switches and maintenance functions. The processor also has
a data-out instruction through which the program can perform margin
checking of the system in both speed and voltage.

One of the features controlled by the CONO for the processor is the auto-
matic restart after power failure. This restart applies only when the levels on
the power mains go below specification while the processor is running, and
the power switch is on when power is restored — the machine never begins

_operation by itself when the operator turns the power switch on or off.

Inadequate power, over temperature, etc are indicated by the Power Failure
flag. The program must both enable the auto restart feature and respond to
the setting of Power Failure in order for the processor to restart itself. If the
program fails to clear Power Failure or enable the auto restart within 4 ms
after failure is detected, there is no restart. But if the auto restart is enabled
and Power Failure is clear, then when power levels are again adequate the
processor will restart itself by executing the instruction in location 70 in
kernel mode (provided the power switch is on).
The processor device code is 000, mnemonic APR.

Conditions Out, Arithmetic Processor

CONO APR,
70020 . [1] x | Y
o 121314 1718 35

Assign the interrupt channels specified by bits 30-35 of the effective condi-
tions £ and perform the functions specified by bits 18-29 as shown (a 1 in a
bit produces the indicated function, a 0 has no effect).

-113-

- SYSTEM REFERENCE

§2.14 PROCESSOR CONDITIONS 291
CLEAR
NONEXISTENT
MEMORY
7
reser | ChERR [pisasie | enasie isaie| enae D's“"(‘;folcf("““ CLEMR ear PRIORITY INTERRUPT | PRIORITY INTERRUPT
TIMER | IN-QUT | TIMER | TIMER | AUTO RESTART INTERRUPT | CLOCK PAGE ASSIGNMENT-ERROR | ASSIGNMENT-CLOCK
DEVICES | ') FAILURE | | |)
18 19 20 21 22 23 24 25 26 27 28 29 30 3 32 33 34 35

A 1 in bit 19 produces the 10 reset signal, which clears the control logic
in all of the peripheral equipment (but affects neither the priority interrupt
system nor the processor conditions).

CON! APR, Conditions In, Arithmetic Proﬁessor
70024 7] x | Y B
0 121314 1718 35

Read the status of the‘processor (as well as various console switches and
maintenance functions) into location E as shown.

MAINTENANCE
MODE
MEM MI |CONSOLE /
DISABLE DISABLE[LOCK 1,2 3 4 5 6
0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 T 45 16 17
PARITY CLOCK
ERROR INTERRUPT NONEXISTENT
INTERRUPT ENABLED EMORY
* ENABLED * / * * * /
e | pariTe Tives | power | AUTO / ook e out / PRIORITY INTERRUPT | PRIORITY INTERRUPT
OUT | ERROR ENABLED| FAILURE | oo o er FAILURE ASSIG'NMENT-:ERROR ASSIG:\lMENT—lCLOCK
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Notes. *These bits cause interrupts.

Interrupts are requested on' the error channel (assigned by bits 30-32 of
the CONO) by the setting of Power Failure, In-out Page Failure, Nonexistent
Memory, and if enabled, Parity Error. The setting of Clock Flag, if enabled,
requests an interrupt on the clock channel (assigned by bits 33-35 of the
CONO). -

Bits 12-17 reflect the states of the console sense switches, which are
specifically for operator communication with the program. Bits 1 -5 reflect
the settings of various console operating switches; for information on these
switches refer to §2.19. Bits 7—10 are maintenance functions for which the
reader should refer to Chapter 10 of the maintenance manual.

6 The system is operating on 50 Hz line power. This is important to
the program, not only because sonie IO devices run slower on 50 Hz,
but because the program must compensate for the time difference
when using the line frequency clock (bit 26).

The processor does not actu-
ally have a maintenance mode
— the bit is simply the or
function of a number of con-
sole switches, any one of
which being on implies that
the processor is being op-
erated for maintenance pur-
poses.

SYSTEM REFERENCE

2-92

The timer provides a restart
similar to that following power
failure. Running the machine
under margins may result in
significant logical errors. If
the timer is enabled, failure
of the program to reset it
about every second allows it
to time out.

PC bears no relation to the
unanswered reference if the
attempted access originated
from a console key function.

This instruction is for main-
tenance only. For further
information refer to Chapter
10 of the K/10 Maintenance
Manual.

-114-

CENTRAL PROCESSOR §2.14

18 Bit 21 is 1 and the program has not reset the timer (CONO APR,
bit 18) during the last 1.2 seconds (the period of the timer may vary
from 1.2 to 1.5 seconds). The setting of this flag clears the processor
and the peripheral equipment, and restarts the processor in kernel
mode at location 70.

19 A word with even parity has been read from core memory. If bit 20
is 1, the setting of Parity Error requests an interrupt on the error
channel, at which time PC points to the instruction being performed
or to the one following it.

22 Ac power has failed. The program should save PC, the flags, mode
information and fast memory in core, and halt the processor.
The setting of this flag requests an interrupt on the error channel.
After 4 ms the processor is cleared. But at that time, if Auto
Restart Enabled is set and the program has cleared Power Failure
(CONO PI,400000), then when adequate power levels are restored,
the processor will go back into normal operation in kernel mode at
location 70 (provided the power switch is on).

26 This flag is set at the ac power line frequency and can thus be used
for low resolution timing (the clock has high long term accuracy). If
bit 25 is 1, the setting of the Clock flag requests an interrupt on the
clock channel. . -

28 A page failure has occurred in an interrupt instruction. The setting
of this flag requests an interrupt on the error channel.
Note: A page failure in an interrupt instruction is regarded as a
fatal error, and it causes an interrupt instead of a page failure trap.
The kernel mode program is expected to set up the interrupt instruc-
tions so that a page failure simply cannot occur.

29 The processor attempted to access a memory that did not respond
within 100 us. The setting of this flag requests an interrupt on the
error channel, at which time PC points either to the instruction
containing the unanswered reference or to the one following it.

DATAO APR, Maintenance Data Out, Arithmetic Processor
70014 1l x] Y
o]

121314 1718 35

Supply diagnostic information and perform diagnostic functions according
to the contents of location £ as shown.

WRITE TURN OFF | TURN ON | TURN OFF | TURN ON
EVEN :
PARITY SPEED MARGINS VOLTAGE MARGINS
I 22 23 I 24 25 26 _
_______ . L
MARGIN ; MARGIN
ADDRESS FUNCTIONS MARGIY

13 17 21 26 30 35

-115- SYSTEM REFERENCE

- §2.14 PROCESSOR CONDITIONS 2-93
KA10 Processor Conditions

There are a number of internal conditions that can signal the program by

requesting an interrupt on a channel assigned to the processor. Flags for

power failure and parity error are handled by the condition IO instructions

that address the priority interrupt system [§2.13]. The remaining flags are

handled by condition instructions that address the processor. Its device code

is 000, mnemonic APR.

CONO APR, ‘Conditions Out, Arithmetic Processor
[70020 il x] Y]

0 121314 1718 35

Assign the interrupt channel specified by bits 33—35 of the effective condi-

tions £ and perform the functions specified by bits 18-32 as shown (a 1 in a

bit produces the indicated function, a 0 has no effect).

CLEAR CLEAR CLEAR | CLEAR CLEAR

PUSHDOWN MEMORY NONEXISTENT FLOATING OVERFLOW

OVERFLOW PROTECTION MEMORY OVERFLOW

\ Fiac, i 1 f
cLER CLEAR \ DISABLE | ENABLE clErn DISAFBLIE)EAIT‘E'I:QBLE l DISABLE| ENABLE f lmlt‘oRRRllTJ;T
ADDRESS OVERFLOW
out BREAK :IN%%%'J(PT cLocK I%YI'EE%;LUOPV% ; INTERRUPT ASISIGNMElNT
18 19 20 21 22 23 24 25 26 27 28 29 30 3 32 33 34 35

Notes.

Enabling a particular flag to interrupt means that henceforth the setting
of the flag will request an interrupt on the channel assigned (by bits 33-35)
to the processor. Disabling prevents the flag from triggering a request.

A 1in bit 19 produces the 1O reset signal, which clears the control logic in
all of the peripheral equipment (but affects neither the priority interrupt sys-
tem, nor the processor flags cleared by this instruction or CONO PL).

CONI APR, Conditions In, Arithmetic Processor
70024 1l x] Y |
0 121314 1718 35 -

Read the status of the processor into the right half of location E as shown

(all interrupt requests are made on the channel assigned to the processor). *These bits request interrupts.

PUSHDOWN MEMORY NONEXISTENT CLOCK FLOATING FLOATING OVERFLOW OVERFLOW
OVERFLOW PROTECTION MEMORY INTERRUPT OVERFLOW OVERFLOW INTERRUPT
FLAG ENABLED INTERRUPT ENABLED
* * \% * * ENABLED */ / *
\ \ / / \ / / / PRIORITY
USER |ADDRESS CLOCK TRAP INTERRUPT
IN-OUT | BREAK OFFSET ASSIGNMENT
! 1
18 19 20 21 22 23 24 25 26 27 28 29 30 3 32 33 34 35

SYSTEM REFERENCE

2-94

PC bears no relation to the
break if the access was re-
quested for a console key
function.

This flag can also be set by
an instruction executed from
the console while the USER
MODE light is on, in which
case PC bears no relation to
the violation.

PC bears no relation to the
unanswered reference if the
attempted access originated
from a console key function.

Notes.
19

20

22

23

26

29

30

32

-116-
CENTRAL PROCESSOR §2.14.

Pushdown Overflow — in a PUSH or PUSHJ the count in AC left
reached zero; or in a POP or POPJ the count reached —1. The setting
of this flag requests an interrupt.

User In-out — even if the processor is in user mode, there are no
instruction restrictions (but memory restrictions still apply) [§2.16].

Address Break — while the console address break switch was on, the
processor requested access to the memory location specified by the
address switches and the memory reference was for the purpose
selected by the address condition switches as follows:

The instruction switch was on and access was for retrieval of an
instruction (including an instruction executed by an XCT or con-
tained in an interrupt location or a trap for an unimplemented
operation) or an address word in an effective address calculation.

The data fetch switch was on and access was for retrieval of an
operand (other than in an XCT).

The write switch was on and access was for writing a word in
memory. '

The setting of this flag requests an interrupt, at which time PC points
to the instruction that was being executed or to the one following it. ~

Memory Protection — a user program attempted to access a memory
location outside of its area or to write in a write-protected part of its
area and the user instruction was terminated at that time. The setting
of this flag requests an interrupt, at which time PC points either to
the instruction that caused the violation or to the one following it.

Nonexistent Memory — the processor attempted to access a memory
that did not respond within 100 gs. The setting of this flag requests
an interrupt, at which time PC points either to the instruction con-
taining the unanswered reference or to the one following it.

Clock — this flag is set at the ac power line frequency and can thus
be used for low resolution timing (the clock has high long term
accuracy). If bit 25 is set, the setting of the Clock flag requests an
interrupt. :

Floating Overflow — this is one of the flags saved in a PC word, and
the conditions that set it are given at the beginning of §2.9. If bit 28
is set, the setting of Floating Overflow requests an interrupt, at which
time PC points to the instruction following that in which the over-
flow occurred. :

Trap Offset — the processor is using locations 140-161 for unimple-
mented operation traps and interrupt locations.

Overflow — this is one of the flags saved in a PC word, and the condi-
tions that set it are given at the beginning of §2.9. If bit 31 is set,
the setting of Overflow requests an interrupt, at which time PC
points to the instruction following that in which the overflow
occurred. ‘

- 117-

§2.15 KI10 MODES
2.15 KI10 MODES

General information about the machine modes and paging procedures is
given in Chapter 1, in particular at the end of the introductory remarks and
at the end of §1.3. Here we are concerned principally with the special
instructions the Monitor uses to operate the system, the special effects that
ordinary instructions have in executive mode, and certain hardware pro-
cedures, in particular paging and page failures, that are necessary for an
understanding of executive programming.

User Programming. As far as user programming is concerned, all of the
necessary information has already been presented. For convenience however
we list here the rules the user must observe. [Refer to the Monitor manual
for further information including use of the Monitor for input-output.
¢ If possible, limit your memory needs to 32K, using addresses 0-37777
and 400000-437777, to gain the savings afforded by having the status of a

“small user”. There are no restrictions of any kind on addresses 0—17 as
these are in fast memory and are available to all users (even though page 0
may otherwise be inaccessible).
¢ If an area of memory is write-protected, eg for a reentrant program shared
by several users, do not attempt to store anything in it. In pamcular do not
execute a JSR or JSA into a write-protected page.
¢ Use the MUUO codes 040-077 only in the manner prescribed in the
Monitor manual. In general, unless they are prescribed for special circum-
stances, code 000 and the unassigned codes should not be used.
¢ Unless User In-out is set do not give any IO instruction with device code
less than 740, HALT (JRST 4,) or JEN (JRST 12, (specifically JRST 10,)).
The program can determine if User In-out is set by examining bit 6 of the PC
word stored by JSR, JSP or PUSHJ.
¢ If your public program has the use of concealed programs, do not
reference a location in a concealed page for any purpose except to fetch an
instruction from a valid entry point, ie a location containing a JRST 1,.

The user can give a JRSTF (JRST 2,) but a 0 in bit 5 of the PC word does
not clear User (a program cannot leave user mode this way); and a 1 in bit 6
does not set User In-out, so the user cannot void any of the instruction
restrictions himself. Note that a O in bit 6 will clear User In-out, so a user
can discard his own special privileges. Similarly a 1 in bit 7 sets Public, but a
0 doesnot clear it, so a public program cannot enter concealed mode this way.

The above rules are the result of KI10 hardware characteristics. Butin a
real sense many of these rules are actually transparent to the user, in
particular the whole paging setup is invisible. Although the hardware allows
for user virtual address spaces that are scattered and/or very large (eg larger
than available physical core), the actual constraints will be dictated by the
particular Monitor and the system manager. It may be desirable (for com-
patible operation with KA10 systems) to enforce a two-segment virtual
address space that mimics the one imposed by the KA10 hardware. In any
case the user must write a sensible program, which can be handled easily and
cheaply by the system; if he uses addresses a few to a page all over memory,
his program can be run but will require a much larger amount of core than
necessary Or cause excessive page swapping.

SYSTEM REFERENCE

295

SYSTEM REFERENCE

2-96

Actually page 0 has only 496
locations using addresses 20—
777, as addresses 0—17 refer-
ence fast memory, which is
unrestricted and available to
all programs. (In general a
user cannot reference the first

sixteen core locations in his .

virtual page 0.) Throughout
this” discussion it is assumed
that all references are to core
and are not made by an
instruction executed by an
executive XCT [see below] .

Thus when “switching from
one user to another, the Moni-
tor need change only the user
process table. This single sub-
stitution can make whatever
change is necessary in the
executive address space for a
particular user.

~118-

CENTRAL PROCESSOR §2.15
Paging

All of memory both virtual and physical is divided into pages of 512 words
each. The virtual memory space addressable by a program is 512 pages; the
locations in virtual memory are specified by 18-bit addresses, where the left
nine bits specify the page number and the right nine the location within the
page. Physical memory can contain 8192 pages and requires 22-bit addresses,
where the left thirteen bits specify the page number. The hardware maps the
virtual address space into a part of the physical address space by trans-
forming the 18-bit addresses into 22-bit addresses. In this mapping the right
nine bits of the virtual address are not altered; in other words a given
location in a virtual page is the same location in the corresponding physical
page. The transformation maps a virtual page into a physical page by sub-
stituting a 13-bit physical page number for the 9-bit virtual page number.
The mapping procedure is carried out automatically by the hardware, but
the page map that supplies the necessary substitutions is set up by the kernel
mode program. Each word in the map provides information for mapping
two consecutive pages with the substitution for the even numbered page in
the left half, the odd numbered page in the right half. '

The paging hardware contains two 13-bit registers that the Monitor loads
to specify the physical page numbers of the user and executive process
tables. To retrieve a map word from a process table, the hardware uses the
appropriate base page number as the left thirteen bits of the physical address -
and some function of the virtual page number as the right nine bits. Eg the
entire user space of 512 virtual pages at two mappings per word requires a
page map of just half a page, and this is the first half page in the user process
table. Thus locations 0377 in the table hold the mappings for pages 0 and
1 to 776 and 777. To find the desired substitution from the 9-bit virtual
page number, the hardware uses the left eight bits to address the location
and the right bit to select the half word (0 for left, 1 for right). If the
Monitor specifies a program as being a small user, that program is limited to
two 16K blocks with addresses 0-37777 and 400000-437777. This is
pages 0—37 and 400-437, and the mappings are in locations 0—17 .and

200-217 in the page map.

The executive virtual address space is also 256K but the first 112K are not

paged — in other words any address under 340000 given in kernel mode

addresses one of the. first 112K locations in physical memory directly. The
other 144K is paged for supervisor or kernel mode anywhere into physical
memory. For this there are two maps. The map for the second half of the
virtual address space uses the same locations in the executive process table as

are used in the user process table for the user map (locations 200—377 for
pages 400-777). The map for the remaining 16K in the first half of the

executive virtual address space is in the user process table, the mappings for
pages 340-377 being in locations 400-417. Thus the Monitor can assign a
different set of thirty-two physical pages (the per-process area) for its own
use relative to each user.

The illustrations on the next two pages show the organization of the
virtual address spaces, the process tables and the mappings for both user and
executive. The first illustration gives the correspondence between the
various parts of each address space and the corresponding parts of the page

-119-

SYSTEM REFERENCE

Ki10 MODES 2-97
EXECUTIVE
VIRTUAL
ADDRESS
SPACE
0
oo ity
NOT PAGED
\\ TABLE (KERNAL MODE ONLY) TABLE
SMALL USER 0—37 |16 40, WORDS 12
INTERRUPT 16
40-377 112 / / /
120g WORDV 80
y SMALL USER 400-437 J1s // :
/// /
/ // 440~777 12 340/00/0 // 400-777 128
i e /
/ - 16K /
/ e /
/ 400000
-3717 |16 _ ———]
/ EXECUTIVE 340—377 |16 - 205 WORDS/ 16
/ / TRAP & MUUO 16 l’ TRAP 4
/ . /
i /
| /
| /
| /
/ /
/ 3405 WORDS 224 / 3545 WORDS 236
/ /
/ /
/ !
/ /
’l /
/
| 128K /
/ : |
/ I
/ /
!
i /
! /
! /
/ /
/ | SHADED AREAS
| i ARE NOT USED
/ / BY HARDWARE
/
/
/
{

.§2.15
USER
VIRTUAL
ADDRESS
SPACE
[¢]
\
16K \
hY
40000 \ \
\ \\
M
\
\A
\ \
\\
\
12K
/
400000
16K
440000
112K
777717

777717

VIRTUAL ADDRESS SPACE AND PAGE MAP LAYOUT

SYSTEM REFERENCE

-120-

2-98 CENTRAL PROCESSOR §2.15
USER PROCESS TABLE EXECUTIVE PROCESS TABLE
oluser pPaGe 0 I USER PAGE 1] of |
| [| I|AVAILABLE TO SOFTWARE |
17| USER PAGE 36 | USER PAGE 37 | 37
20| USER PAGE 40 | USER PAGE 41 [40 |[EXECUTIVE LUUO STORED HERE
| | | 41 [LUUO HANDLER INSTRUCTION
: : : 42
| , | _ ISTANDARD PRIORITY INTERRUPT INSTRUCTIONS i
| AVAILABLE TO SOFTWARE IF SMALL USER | 57 :
| | 60
| | |
I : l |AVAILABLE TO SOFTWARE :
177| USER PAGE 376 USER PAGE 377 177
200 | USER PAGE 400 USER PAGE 401 | 200 [EXECUTIVE PAGE 400 lexecunve PAGE 401
i | i Al I i
217| USER PAGE 436 USER PAGE 437 | i [
220 | USER PAGE 440 USER PAGE 441 | ! |
f [[| | |
| | | I |
| | o ' |
iAVA/LABLE 70 SOFTWAI'1|‘E IF SMALL USER : : : I
| | I I | |
| | | !
| | [| | j
377 | USER PAGE 776 | user PAGE 777 377 |EXECUTIVE PAGE 776 |EXECUTIVE PAGE 777
400 | EXECUTIVE PAGE 340 | EXECUTIVE PAGE 341 400
| | : |AVAILABLE TO SOFTWARE |
417 | EXECUTIVE PAGE 376 | EXECUTIVE PAGE 377 417
420 | USER PAGE FAILURE TRAP INSTRUCTION 420 [EXECUTIVE PAGE FAILURE TRAP INSTRUCTION
421 | USER ARITHMETIC OVERFLOW TRAP INSTRUCTION 421 [EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION
422 [USER PUSHDOWN OVERFLOW TRAP INSTRUCTION 422 [EXECUTIVE PUSHDOWN OVERFLOW TRAP INSTRUCTION
423{ USER TRAP 3 TRAP INSTRUCTION 423 [EXECUTIVE TRAP 3 TRAP INSTRUCTION
424 MUUO STORED HERE 424 ‘
425 |PC WORD OF MUUO STORED HERE | :
426 EXECUTIVE PAGE FAILURE WORD | |
427 | USER PAGE FAILURE WORD | |
430 | KERNEL NO TRAP NEW MUUO PC WORD ! |
431 [KERNEL TRAP NEW MUUO PC WORD | |
432 | SUPERVISOR NO TRAP NEW MUUO PC WORD I |
433[SUPERVISOR TRAP NEW MUUO PC WORD I |
434 | CONCEALED NO TRAP NEW MUUO PC WORD |AVAILABLE TO SOFTWARE |
435 | CONCEALED TRAP NEW MUUO PC WORD | |
436 | PUBLIC NO TRAP NEW MUUO PC WORD | |
437 |PUBLIC TRAP NEW MUUO PC WORD | |
440 | |
i : ! I
| AVAILABLE TO SOFTWARE | : :
| |
777 | 7] i

PROCESS TABLE CONFIGURATION

-121-

§2.15 KI10 MODES

map for it. The second illustration lists the detailed configuration of the
process tables. Any table locations not used by the hardware can be used by
the Monitor for software functions. Note that the numbers in the half
locations in the page map are the virtual pages for which the half words give
the physical substitutions. Hence location 217 in the user page map contains
the physical page numbers for virtual pages 436 and 437.

Although the virtual space is always 256K by virtue of the addressing
capability of the instruction format, the Monitor usually limits the actual
address space for a given program by defining only certain pages as accessible.
The Monitor also specifies whether each page is public or not and writeable
or not. Each word in the page map has this format to supply the necessary
information for two virtual pages.

DATA FOR EVEN VIRTUAL PAGE

APIWIS|X

012345

DATA TFOR ODD VIRTUAL PAGE

PHYSICAL PAGE
ADDRESS BITS 14-26

17181920212223 35

PHYSICAL PAGE
ADDRESS BITS 14-26 AlPIWIS|X

Bits 5-17 and 23-35 contain the physical page numbers for the even and
odd numbered virtual pages corresponding to the map location that holds
the word. The properties represented by ls in the remaining bits are as
follows.

Bit Meaning of a I in the Bit

A Access allowed

P Public

1% Writeable (not write-protected)

S Software (not interpreted by the hardware)
X Reserved for future use by DEC (do not use)

Associative Memory. If the complete mapping procedure described above
were actually carried out in every instance, the processor would require two
memory references for every reference by the program. To avoid this the
paging hardware contains a 32-word associative memory, in which it keeps
the more recently used mappings for both the executive and the current user.
Each word is divided into two parts with one part containing a virtual page
number specified by the program and the other containing the corresponding
physical page number as determined from the page map. Hence the
associative memory is a page table made up of a list of virtual pages and a list
of physical pages, each with thirty-two corresponding locations. In the
virtual list, each entry contains a 9-bit virtual page number, a single bit that
indicates whether the specified page is in the user or executive address space,
and a bit that indicates whether the entry is valid or not (it is not suitable to
clear a location as O is a perfectly valid page number). Each corresponding
entry in the physical list contains a 13-bit physical page number and the
P, W and S bits from the map half word for that page. The 4 bit is not
needed in the table as the mapping is not entered into the table at all if the
page is not accessible.

At each reference the hardware compares the page number supplied by

SYSTEM REFERENCE

2-99

There is no requirement that
the accessible space be con-
tinuous — it can be scattered
pages. The convention how-
ever is for the accessible space
to be in two continuous virtual
areas, low and high, beginning
respectively at locations Q and
400000. The low part is
generally unique to a given
user and can be used in any
way he wishes. The (perhaps
null) high part is a reentrant
area, which is shared by sev-
eral users and is therefore
write-protected. The small
user configuration is consist-
ent with this arrangement.

The program can inspect the
contents of the page table by
using the MAP instruction
and IO instructions that ad-
dress the paging hardware [see
below] .

SYSTEM REFERENCE

2-100

When a page failure trap in-
struction is performed, PC
points to the instruction that
failed (or to an XCT that
executed it), unless the failure
occurred in an overflow trap
instruction, in which case PC
points to the instruction that
overflowed. After taking care
of the failure, the processor
can always return to the inter-
rupted instruction. Either the
instruction did not change
anything, or the failure was in
the second part of a two-part
instruction, where First Part
Done being set prevents the
processor from repeating any
unwanted operatxons in the
first part.

Since a user page failure trap
instruction is executed in user
address space, the Monitor
should be careful not to have
the trap instruction do in-
direct addressing that might
cause another page failure.

Whether or not a comparison
can be made is a function of
the settings of the paging
switches [§2.19] and the state
of the User Address Compare
Enable flag [see below] .

~122-

CENTRAL PROCESSOR §2.15
the program with those in the virtual part of the page table. If there is a
match for the appropriate address space, the corresponding entry in the
physical list is used as the left thirteen bits in the physical address (provided
of course that the reference is allowable according to the P and W bits). If
there is no match, the hardware makes a memory reference to get the neces-
sary information from the page map and enters it into the page table at the
location specified by a reload counter. This counter is incremented when-
ever it is used to reload the table, and also whenever the location to which it
points is used for a mapping. Hence the counter tends to stay away from
locations containing the page numbers most frequently referenced.

Page Failure

A page failure that occurs during an interrupt instruction terminates the
instruction and sets the In-out Page Failure flag, requesting an interrupt on
the error channel assigned to the processor. In all other circumstances, if the
paging hardware cannot make the desired memory reference, it terminates
the instruction immediately without disturbing memory, the accumulators
or PC, places a page fail word in the user process table, and causes a page
failure trap. If the attempted reference is in user virtual address space, the
page fail word is placed in location 427 of the user process table, and the
processor executes the trap instruction in location 420 of the same table.,
If the attempted reference is in executive virtual address space, the page fail
word is placed in location 426 of the user process table, and the processor
executes the trap instruction in location 420 of the executive process table.
The trap instruction is executed in the same address space in which the
failure occurred. The page fail word supplies this information.

FAILURE
TYPE

89 17 . 31 35

IF BIT 31 IS 0, BITS 31-35
HAVE THIS FORMAT

3132333435

U| VIRTUAL PAGE

Whether the violation occurred in user or executive virtual address space is
indicated by a 1 or a 0 in bit 8. If bit 31 is 1, the number in bits 31— 35
(> 20) indicates the type of “hard” failure as follows

23 Address failure — this is a simulated page failure caused by the satis-
faction of an address condition selected from the console. It
indicates that while the console address break switch was on and the
Address Failure Inhibit flag was clear (bit 8 of the PC word), the
processor requested access to the memory location that was specified
by the paging and address switches and for which a comparison was
enabled, and the memory reference was for the purpose selected by
the address condition switches as follows:

The instruction fetch switch was on and access was for retrieval of
an instruction (including an instruction executed by an XCT or
contained in an interrupt location or a trap) or an address word in
an effective address calculation.

-123-

§2.15 KI10 MODES
The data fetch switch was on and access was for retrieval of an
operand (other than in an XCT).

The write switch was on and access was for writing a word in
memory.

The Address Failure Inhibit flag, which can be set only by a
JRSTF or MUUO, prevents an address failure during the next instruc-
tion — the completion of the next instruction automatically clears it.
If an interrupt or trap intervenes, the flag has no effect and it is saved
and cleared if the PC word is saved. If it is not saved, it affects the
instruction following the interrupt or trap. Otherwise it affects the
instruction following a return in which it is restored with the
PC word.

22 Page refill failure — this is a hardware malfunction. The paging hard-
ware did not find the virtual page listed in the page table, so it loaded
paging information from the page map into the table but still could
not find it.

20 Small user violation — a small user has attempted to reference a
location outside of the limited small user address space.

21 Proprietary violation — an instruction in a public page has attempted
to reference a concealed page or transfer control into a concealed
page at an invalid entry point (one not containing a JRST 1,).

If the violation is not one of these, then bits 31-35 have the format shown
above where A, W and S are simply the corresponding bits taken from the
map half word for the page, and T indicates the type of reference in which
the failure occurred — 0 for a read reference, 1 for a write or read-modify-
write reference. ,

The page fail trap instruction is set by the Monitor to transfer control to
kernel mode. After rectifying the situation, the Monitor returns to the inter-
rupted instruction, which starts over again from the beginning. Even a
two-part instruction that has been stopped by a failure in the second part is
redone properly, provided the Monitor restores the First Part Done flag.

Note that a failure does not necessarily imply that anything is “wrong”.
The virtual address space of even a small user is 32K words, which may well
be more than is needed in a given run. Hence the Monitor may have only ten
or twenty pages of the user program in core at any given time, and these
would be the virtual pages indicated as accessible. When the user attempts to
gain access to a page that is not there (a virtual page indicated in the page
map as inaccessible), the Monitor would respond to the page failure by
bringing in the needed page from the drum or disk, either adding to the user
space or swapping out a page the user no longer needs.

The same situation exists for writeability. When bringing in a user
program, the Monitor would ordinarily indicate as writeable only the buffer
area and other pages that will definitely be altered. Then in response to a
write failure, the Monitor makes the page writeable and indicates to itself
(perhaps by means of the software bit in the page map) that that page has in
fact been altered. When the user is done, the Monitor need write only the
altered pages back onto the drum.

SYSTEM REFERENCE

2-101

Tests for hard page failures
are actually made in the order
given here.

The type of reference implies
nothing about the cause of
failure — it indicates only the
reason the failed reference
was being made.

In any page failure, the map-
ping entry for the page is
removed from the page table
on the assumption that the
Monitor will change it. When
the instruction is restarted,
the hardware must go to the
page map to get a new entry
for the page table.

SYSTEM REFERENCE

2-102

If the Monitor shared block 0
with any users, it would have
to store the user accumulators
even when taking control only
temporarily.

The page failure and overflow
trap instructions are executed
in the user address space if

caused by the user.

-124-

CENTRAL PROCESSOR §2.15

Monitor Programming

The kernel mode program is responsible for the overall control of the system.
It is the only program that has access to any of physical core unpaged and
that has no instruction restrictions. The kernel program handles all in-out
for the system and must set up the page maps, trap locations, interrupt loca-
tions and the like. The supervisor program labors under the same instruction
restrictions as the user but has no way of bypassing them — they always
apply. Supervisor mode is limited to the 144K paged part of the executive
address space, although within that space it can read but not alter concealed
pages (the kernel program supplies data tables of all kinds to the supervisor
program, and the latter cannot affect them). The supervisor can give a
JRSTF that clears Public provided it is also setting User; in other words the
supervisor can return control to a concealed program but cannot enter kernel
mode by manipulating the flags. The PC words supplied by MUUOs can
manipulate the flags in any ‘way, switching arbitrarily from one mode to
another, but these are in the process table and assumed to be under control
solely of kernel mode. '

For accumulator, index register and fast memory references, the Monitor
automatically uses fast memory block 0. For each user, the kernel mode
program must assign a block. The usual procedure is to assign blocks 2 and 3
to individual user programs on a semipermanent basis for special applications .
and to assign block 1 to all other users. In this way the Monitor need not
store blocks 2 and 3 when the special users are not running, and it need not
store block 1 when it takes over control from an ordinary user temporarily.
When switching from one user to another, the Monitor usually stores the
first user’s accumulators in his shadow area — this is locations 0—17 in user
virtual page 0, an area not generally accessible to the user at all — and loads
the new user’s accumulators from his shadow area, where they were stored
after the last time the new user ran.

Even while User is set, the interrupt instructions are not part of the user
program and are thus subject only to executive restrictions. As interrupt in-
structions, JSR, JSP and PUSHJ automatically take the processor out of user
mode to jump to an executive service routine. An MUUO can also be used.

The paging hardware has one non-IO instruction and two condition 10
instructions primarily for diagnostic purposes. Otherwise control over the
system is exercised by data IO instructions. The device code for the paging
hardware is 010, mnemonic PAG.

DATAO PAG, Data Out, Paging

70114 [[] x | Y |

0 121314 1718 35

Set up the paging hardware according to the contents of location £ as shown.

USER

LOAD USER FAST | syai1 |ADORESS
o0 MEWORY MALL |ADORESS USER BASE ADDRESS
| ENABLE |] |] |] | |] 1 I 1
0 1 2 3 4 5 | ¢ 7 g | 9 10 11 13 14 1 15 18 17

~125-

SYSTEM REFERENCE

§2.15 KI10 MODES 2-103
LOAD TRAP
RIGHT ENABLE EXECUTIVE BASE ADDRESS
1] | |] | | | | | 1 {

18 19 20 21 22 23 | 2 25 26 | 27 28 29 1 30

Bits O and 18 are change bits. If bit 0 is 0, ignore the rest of the left half
word. But if bit 0 is 1, load bits 517 into the user base register to select the
user process table, select the fast memory block specified by bits 1 and 2 for
the user, limit the address space to that of a small user if bit 3 is 1, and
enable address comparison if bit 4 is 1.

Similarly if bit 18 is 0, ignore the rest of the right half word. Otherwise
load bits 23-35 into the executive base register to select the executive
process table, and enable overflow traps if bit 22 is 1.

If either bit O or 18 is 1, invalidate all data in the associative memory. In
other words set the Word Empty bit in each location to indicate that the rest
of the word is meaningless and should not be used.

DATAI PAG, Data In, Paging

[oo [x] v]

o 121314 17.18 35

Read the status of the paging hardware into location E. The information
read is the same as that supplied by a DATAO (bits 0 and 18 are 0).

CONO PAG, Conditions Out, Paging
| 70120 7] x] Y |
0 121314 1718 35

Load the executive stack pointer from bits 18—-22 and the page table reload
counter from bits 31~35 of the effective conditions £ as shown.

31 32 [33 34 35

The Address Compare Enable
bit functions in conjunction
with the console paging
switches, as explained in
§2.19.

EXECUTIVE AC
STACK POINTER
1 1 | 1 i 1 I | 1 i !

PAGE TABLE
RELOAD COUNTER
1 | { |

18 19 20 1 21 22 23 | 24 25 26 ! 27 28 29 | 30

The executive stack pointer specifies a block of sixteen locations in the user
process table by supplying the left five bits for a 9-bit address that references
a location in the table; this function is used only for accessing stacked fast
memory blocks in an instruction executed by an executive XCT [see below].
Loading the reload counter causes it to point to the specified location in the
page table.

31 32 1 33 34 35

SYSTEM REFERENCE

2-104

This instruction also reads the
processor serial number into
bits 0-9 of location E.

~126~-

‘CENTRAL PROCESSOR §2.15
CONt PAG, Conditions In, Paging
[70124 [l x | Y |
] 121314 1718) 35

Read the page table reload counter and the contents of the location in the
virtual page table specified by it into the right half of location £ as shown.

COMPLEMENT OF VIRTUAL PAGE NUMBER

{ { | L

EXECUTIVE]
WORD PAGE TABLE
“333533 EMPTY RELOAD COUNTER

| | | { | | | | 1

18 19 20 | 2 22

It is possible for the reload
counter to change between
the CONI and the CONO, so
the CONI might read a differ-
ent location than was selected
by the CONO.

23 | 24 25 26 27 28 29 30 3 32 1 33 34 35

Note that bits 18-26 contain the complement of the virtual page number in
the selected location. A 1 in bit 27 indicates the page is in the executive
address space; a 1 in bit 30 means the information in bits 18-27 is invalid.

MAP Map an Address
[257 [4 i x | Y
0 89 121314 1718 35

Map the virtual effective address E and place the resulting map data in AC
right in the same format as it is in the page map, ie bits P, W and S in
bits 19-21 and the physical page number in bits 23-35. Clear AC left.

PAGE
FAILURE P 4 §

MATCH

PHYSICAL PAGE
ADDRESS BITS 14-26
| 1 1] 1 1 ! 1 1 |] 1

18 19 20 21

These three instructions can
be used to inspect the contents
of the associative memory.
The CONO selects a location,
the CONI reads the contents
of the virtual-page part of
that location, and an MAP
that addresses the specified
virtual page reads the con-
tents of the physical-page part
of that location.

23 1 24 25 26 | 27 28 29 1 30 3 32 1 33 34 35

This instruction cannot produce a page failure, but if a page failure would
have resulted had an ordinary instruction in the same mode attempted to
write in location E, place a 1 in AC bit 18. If no match can be made by the
paging hardware, place a 1 in bit 22. This results in four possible situations
as a function of the states of bits 18 and 22.

Bit18 Bit22 Meaning

0 0 AC right contains valid map data.

0 1 There is no pége failure but also no match, so the
instruction must have made an unmapped reference —
perhaps to fast memory or to the unpaged area in
kernel mode.

1 0 There is a page failure but the map data is correct as
a match exists.

1 1 There is a page failure, and since there is no match,

the failure must have resulted from the instruction
referencing an inaccessible page or from some prior

~127-

§2.15 KI10 MODES

failure (such as a page refill malfunction). Hence AC
right contains invalid information.

Executive XCT

Ordinarily an instruction in a user program is performed entirely in user
address space and an instruction in the executive program is performed
entirely in executive address space. In order to facilitate communication
between Monitor and users, the XCT instruction allows the executive to
execute instructions whose memory operand references can cross over the
boundary between user and executive address spaces.

It is very important to note that the only difference between an instruc-

tion executed by an executive XCT and an instruction performed in normal
circumstances is in the way the memory operand references are made. There
is no difference in the XCT itself. Everything inthe XCT is done in executive
address space, and the instruction fetched by the XCT is fetched in executive
space. Moreover, in the executed instruction all effective address calculation
and accumulator references are in executive space. If the instruction makes
no memory operand references, as in a jump, shift or immediate mode in-
struction, its execution differs in no way from the normal case. The only
difference is in memory operand references.

Control over the special effects of the executed instructions is determined
by the User In-out flag (whose implied meaning is confined to user mode)
and bits 11 and 12 of the A portion of the XCT instruction word (in user
mode A is ignored). If the A bits are both 0, the XCT acts as described in
§2.9, and the executed instruction differs in no way from the normal case.

-But if these bits are not both 0, then some memory operand references are
made to user virtual address space, where the type of reference is determined
by the A bits and the type of memory is selected by User In-out. With this
flag set, the A bits affect both core memory and fast memory references,
whereas with User In-out clear, the A bits affect only fast memory references.
For the memory operand references selected by User In-out, the effect of 1s
in bits 11 and 12 is as follows: a 1 in bit 12 causes the executed instruction
to perform all selected read and read-modify-write memory operand refer-
ences to be performed in user virtual address space; a 1 in bit 11 causes all
selected memory operand write references to be performed in user space;
and Is in both bits cause all types of selected memory operand references in
the executed instruction to be performed in user space. :

The meaning of user space is obvious in terms of core memory references,
but not so for fast memory. When User In-out is set, the user space for fast
memory references depends on which fast memory block is currently
selected for the user. If block 0 is selected, fast memory operand references
of the types specified by bits 11 and 12 are made to the user shadow area. If
some other block is selected, the specified fast memory references are made
to the selected block.

If User In-out is clear, all core memory references are in executive
address space. Fast memory references of the types specified by bits 11
and 12 are made to the user process table, in particular to that set of

SYSTEM REFERENCE

2-105

Read the next four paragraphs
very carefully (reading them
two or three times is highly
recommended).

SYSTEM REFERENCE

2-106

~128-

CENTRAL PROCESSOR §2.15

sixteen locations specified by the executive stack pointer. The pointer is
given by a CONO PAG,.

User Space Fast Memory References
User Fast Memory Block Selected

User In-out Zero Nonzero
1 Shadow area Selected block
0 AC stack AC stack

There is another flag that plays a role in the execution of instructions by
an executive XCT. This is Disable Bypass, bit 0 of the PC word. When

‘Disable Bypass is clear, a bypass in the logic allows an executed instruction

to access the concealed user area from supervisor mode. With the flag set, an
attempt to do this results in a page failure. Generally the new MUUO PC
word would set this flag when the Monitor is being called from public mode,
so the concealed area can be accessed only when such access is requested by
the concealed program.

Individual Instruction Effects. The effects of execution by an executive
XCT on different types of instructions is as follows.
¢ Instructions without memory operand references are not affected. This
includes shifts, jumps, immediate mode instructions, CONSO, CONO, and -
even an XCT. In fact not only is an executive XCT not affected when
executed by an executive XCT, but the first destroys any effect the second
would otherwise have on a third instruction (in other words, a pair of
executive XCTs is equivalent to a pair of ordinary XCTs). -
¢ Instructions that refer to one memory location for reading only or reading
and writing are controlled by the read bit (MOVE, MOVES, ADDM, AOS).
The read bit controls writing when the write is done to the same location as
the read, whether the memory references are done as a single cycle including
both read and write or as separate read and write cycles.
¢ Instructions that refer to one memory location for writing only are con-
trolled by the write bit (MOVEM, MAP, HRLZM).
¢ Instructions that refer to two different memory locations are controlled
by the read bit in the read part of the instruction and by the write bit in the
write part (BLT, PUSH). ‘
¢ BLKI and BLKO are controlled by the write bit and the read bit respec-
tively. The pointer reference is done in the same address space as the
data transfer. : :
¢ In byte instructions all pointer calculations are done in executive address
space. The read and write bits affect only the second part, ie the load
or deposit.

Philosophy. The purpose of the executive XCT is to facilitate the
handling of user requirements by the Monitor, but the selection made by
User In-out of the references affected by the read and write bits is to allow
the Monitor to make recursive calls to itself, ie to perform MUUOQs in the
process of carrying out an MUUQ given by the user. Specifically the state of
User In-out differentiates between the Monitor response directly to the user
MUUO and its response to its own MUUOQs.

~129-

§2.16 KA10 MODES

The new PC word of an MUUO from the user would set User In-out so
that core memory references can be made across the user-executive
boundary, and fast memory references can be made to the user AC block.
The point in choosing between the shadow area and the selected block if not
block O is to reference the information that was held in the user AC block
before the Monitor took over. If the user shared block O with other users
and the Monitor, the Monitor will have saved his ACs in the shadow area of
his address space. The other AC blocks are not disturbed when the Monitor
takes over temporarily, so the Monitor need not save them and they will still
hold the user information.

If in the course of carrying out a user MUUO, the Monitor should itself
give an MUUO, the new PC word would clear -User In-out. Thus at this level
all core memory references are in the executive address ‘space and fast
memory references are to an AC block in the user process table as specified
by the executive stack pointer. MUUO calls by the Monitor to itself can be
nested to a number of levels, but in all cases User In-out is left clear. The
particular AC block used at any level is specified by the stack pointer. Hence
the AC stack in the user process table is effectively a pushdown list kept by
the stack pointer; at each level the program must change the pointer to
specify the appropriate block. Each user process table would contain the
blocks needed for carrying out MUUOs for that user. '

ExampLE. Suppose that the Monitor has been called by an MUUO from
the user (hence User In-out is set) and wishes to save the user’s ACs in the

- shadow area. Assume that every user runs with AC block 1, 2 or 3, and that
the Monitor always sets up executive virtual page 342 to point to the same
physical page as user page 0. Using accumulator T in block 0, the Monitor
saves the user ACs by giving these two instructions,

MOVEI T,342000 :Initialize pointer: from 0 to 342000
XCT 1,[BLT T,342000]}

and restores them with these two.

MOVSI T,342000 ;From 342000 to 0
XCT 2,[BLT T,17]

2.16 KA10 MODES

The KA10 has only user and executive modes and uses protection and
relocation hardware.

Every user is assigned a core area and the rest of core is protected from
him — he cannot gain access to the protected area for either storage or
retrieval of information. The assigned area is divided into two parts. The
low part is unique to a given user and can be used for any purpose. The
high part may be for a single user, or it may be shared by several users. The
Monitor can write-protect the high part so that the user cannot alter its
contents, ie he cannot write anything in it. The Monitor would do this when
the high part is to be a pure procedure to be used reentrantly by several

SYSTEM REFERENCE

2-107

This makes a different set of
sixteen words available at each
level using the same addresses.

SYSTEM REFERENCE

2-108

Note that the relocated low
part is actually in two sections
with the larger beginning at
R;+20. This is because ad-
dresses 0-17 are not relo-
cated, all users having access
to the accumulators. The
Monitor uses the first sixteen
locations in the low user
block to store the user’s accu-
mulators when his program is
not running.

Some systems have only the

low pair of protection and

relocation registers. In this
case the user program is
always nonreentrant and the
assigned area comprises only
the low part.

CENTRAL PROCESSOR §2.16
O ——----- 0
N m e 17
ow |\
\
P+ 1777 \\
: NN y Ry, + 400000
NN /| HiGH
\ .
NN Ry + Py + 1777
‘ /
ILLEGAL NA
N/ \/
A A
/NN
// /)\\ \\
N Rig, +20
400000 ! /,’ N | Low
HIGH | \ R, + P, + 1777
P, + 1777
I
: i I R, MUST BE NEGATIVE
]
ILLEGAL ' | UNLESS SYSTEM HAS A
| NON. ! MEMORY LARGER THAN
! Nr! 128K
| EXISTENT)
| MEMORY |
)]
] 1
| !
777777 . beeee 4

USER ADDRESSES
BEFORE RELOCATION

TYPICAL PHYSICAL ADDRESS
CONFIGURATION AFTER RELOCATION

users. One high pure segment may be used with any number of low impure
segments. The user can request that the Monitor write-protect the high part
of a single program, eg in order to debug a reentrant program. All users write
programs beginning at address O for the low part, and beginning usually at
400000 for the high part. The programmed addresses are retained in the
object program but are relocated by the hardware to the physical area
assigned to the user as each access is made while the program is running.

The size and position of the user area are defined by specifying protection
and relocation addresses for the low and high blocks. The protection address
determines the maximum address the user can give; any address larger than
the maximum is illegal. The relocation address is the address, as seen by the
Monitor and the hardware, of the first location in the block. The Monitor
defines these addresses by loading four 8-bit registers, each of which
corresponds to the left eight bits (18-25) of an address whose right ten bits
are all 0.

To determine whether an address is legal its left eight bits are compared
with the appropriate protection register, so the maximum user address
consists of the register contents in its left eight bits, 1777 in its right ten bits
(ie it is equal to the protection address plus 1777). Since the set of all
addresses begins at zero, a block is always an integral multiple of 1024,,
(20005) locations. Relocation is accomplished simply by adding the contents
of the appropriate relocation register to the user address, so the first address
in a block is a multiple of 2000. The relative user and relocated address

-131-

§2.16 KA10 MODES

configurations are therefore as illustrated here, where P, R;, P, and R, are
respectively the protection and relocation addresses for the low and high
parts as derived from the 8-bit registers loaded by the Monitor. If the low
part is larger than 128K locations, ie more than half the maximum memory
capacity (P, > 400000), the high part starts at the first location after the low
part (at location P; + 2000). The high part is limited to '128K. If the Monitor
defines two parts but does not write-protect the high part, the user has a.
two-part nonreentrant program.

If the user attempts to access a location outside of his assigned area, or
if the high part is write-protected and he attempts to alter its contents, the
current instruction terminates immediately, the Memory Protection flag is
set (status bit 22 read by CONI APR)), and an interrupt is requested on the
channel assigned to the processor [§2.14].

User Programming. The user must observe the following rules when pro-
gramming on a time shared basis. [Refer to the Monitor manual for further
information including use of the Monitor for input-output.}

Use addresses only within the assigned blocks for all purposes — retrieval

of instructions, retrieval of addresses, storage or retrieval of operands. The

low part contains locations with addresses from O to the maximum; the high

part contains from the greater of 400000 or P,+ 2000 to the maximum.
_ Either part can address the other.

If the high part is write-protected, do not attempt to store anything in it.

In particular do not execute a JSR or JSA into the high part.

& Use instruction codes 000 and 040-127 only in the manner prescnbed in

the Monitor manual.

& Unless User In-out is set do not give any IO instruction, HALT (JRST 4,)

or JEN (JRST 12, (specifically JRST 10,)). The program can determine if

User In-out is set by examining bit 6 of the PC word stored by JSR, JSP or

PUSH]J.

The user can give a JRSTF (JRST 2,) but a 0 in bit 5 of the PC word does
not clear User (a program cannot leave user mode this way); and a 1 in bit 6
does not set User In-out, so the user cannot void any of the restrictions
himself. Note that a O in bit 6 will clear User In-out, so a user can discard
his own special privileges.

LUUOs (001-037) function normally and are relocated to addresses 40
and 41 in the low block [§2.10].

Monitor Programming. The Monitor must assign the core area for each
user program, set up trap and interrupt locations, specify whether the user
can give IO instructions, transfer control to the user program, and respond
appropriately when an interrupt occurs or an instruction is executed in
unrelocated 41 or 61. Core assignment is made by this instruction.

DATAQ APR, Data Out, Arithmetic Processor

70014] x | Y |

0 121314 1718 35

Load the protection and relocation registers from the contents of location

SYSTEM REFERENCE

2-109

The user can actually write
any size program: the Monitor
will assign enough core for his
needs. Basically the user must
write a sensible program; if he
uses absolute addresses scat-
tered all over memory his
program cannot be run on a
time shared basis with others.

These instructions are illegal
unless User In-out is set.

SYSTEM REFERENCE

2-110

For a two part nonreentrant
program, set P = 0. For a one-
part nonreentrant program,
make P, < P;. If the hardware
has only one set of protection
and relocation registers, the
user area is defined by P, and
R;, the rest of the word is
ignored.

The trap locations are 140-
141 and 160-161 in a second
KA10 processor.

The clock referred to through-
out this section is the DK10
real time clock and should
not be confused with the
line frequency clock whose
flag is one of the processor
conditions [§2.14].

-132-

CENTRAL PROCESSOR §2.17

E as shown, where P;, P,, R, and R, are the protection and relocation

Phls-zs P

| U T TG A |
b

Rhs-zs
1 1 1 1 | 1 1] 1 1 1 1 i

1
252627 3435

P118-25
i 1 i 1 1 ; 1
[} 789

161718

addresses defined above. If write-protect bit P (bit 17) is 1, do not allow the
user to write in the high part of his area.

Giving a JRSTF with a 1 in bit 6 of the PC word allows the user to handle
his own input-output. The Monitor can also transfer control to the user with
this instruction by programming a 1 in bit 5 of the PC word, or it may jump
to the user program with a JRST 1, which automatically sets User. The set
state of this flag implements the user restrictions.

While User is set, certain instructions are not part of the user program and
are therefore completely unrestricted, namely those executed in the interrupt
locations (which are not relocated) and in unrelocated trap locations 41 and
61. Illegal instructions and UUO codes 000 and 040-077 are trapped in
unrelocated 40; codes 100-127 are trapped in unrelocated 60. BLKI and
BLKO can be used in the even interrupt locations, and if there is no over-
flow, the processor returns to the interrupted user program. JSR should .
ordinarily be used in the remaining even interrupt locations, in odd interrupt
locations following block IO instructions, and in 41 and 61. The JSR clears
User and should jump to the Monitor. JSP, PUSHJ, JSA and JRST are
acceptable in that they clear User, but the first two require an accumulator
(all accumulators should be available to the user) and the latter two do not
save the flags.

After taking appropriate action, the Monitor can return to the user program
with a JRSTF or JEN that restores the flags including User and User In-out.

2.17 REAL TIME CLOCK DK10

This processor option can be used to signal the end of a specified real time
interval or to measure the real time taken by an event. With appropriate
software the DK10 can easily be used to keep the time of day. The basic
element in the clock is an 18-bit binary counter that is incremented repeated-
ly by a clock source; a 100 kHz = .01% crystal-controlled source is available
internally, or a source of any frequency up to 400 kHz can be provided ex-
ternally. Operation is synchronized so that the program can read the counter
at any time without missing a count. Associated with the counter is an 18-bit
interval register, which can be loaded by the program. Each time the count
reaches the number held in the register, the clock requests an interrupt while
the counter clears and begins a new count. With the internal clock source,
whose period is 10 us, the total count is about 2.6 seconds.

The program turns the clock on and off by enabling and disabling the
counter. The clock has two modes of operation: with the User Time flag

-133-

§2.17 REAL TIME CLOCK DK10
clear, the counter operates continuously; with User Time set, the counter
stops while the processor is handling interrupts. Hence in the latter mode
the clock discounts interrupt time and can be used to time user programs.
In a system that contains two clocks, one can be used by the Monitor to
time user programs wkhile the other is used to keep the time of day.
Instructions. The clock device code is 070, mnemonic CLK. A second
clock would have device code 074.

Conditions Out, Clock

L 70720 1] x]

0 121314 1718

CONO CLK,

Y |

35

Assign the interrupt channel specified by bits 33-35 of the effective condi-
tions £ and perform the functions specified by bits 23—-32 as shown (a 1 in
a bit produces the indicated function, a O has no effect).

SET

COUNT
OVERFLOW

CLEAR
COUNT
OVERFLOW

SYSTEM REFERENCE

2-111

/ SET

COUNT
DONE

CLEAR
USER
TIME

SET
USER
TIME

TURN
CLOCK
OFF

TURN
CLOCK
ON

CLEAR

COUNT CLOCK

/

CLEAR
COUNT
DONE

PRIORITY
INTERRUPT
ASSIGNMENT
1 I

18 19 20 21 22 23 24 25 26 27 28 29 30

A 1 in bit 26 clears the clock counter and the Count Done, Count
Overflow and User Time flags, turns off the clock, and dismisses the PI
assignment (assigns zero). The effect of giving conflicting conditions

31

32

33 34 35

A 1 in bit 25 increments
the counter provided the clock
is off (this is for mainte-

is indeterminate. nance only).
CONI CLK, Conditions In, Clock
| 70724 1l x | Y
0 121314 1718 35
Read the contents of the interval register into the left half of location £ and
read the status of the clock into bits 26—35 as shown.
EXTERNAL COUNT
SOURCE OVERFLOW
* *
A\ \ PRIORITY
USER £LoCK COUNT INTERRUPT
TIME ON DONE ASSIGNMENT
L 1
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Notes. *These bits request interrupts.

Interrupts are requested on the assigned channel by the setting of Count
Overflow and Count Done.

QYSTEM REFERENCE

2-112

Note that to time a user prop-
erly, the Monitor must also
compensate for any noninter-
rupt time taken from the
user.

The comparison of the coun-
ter against the interval register
that follows every count is
inhibited while this instruc-
tion is loading the register.

The counter is always stable
while being read, and any
count held back is picked
up immediately afterward.

Following turnon the first
count may occur at any time
up to the full period of the
source.

Remember that although a
CONO need not affect the
mode or the clock state, every
CONO must renew the PI
assignment.

-134-

CENTRAL PROCESSOR §2.17

26 The counter is connected to an external source (0 indicates the
internal source is connected).

28 The counter cannot be incremented while an interrupt is being held

or a request has been accepted and the channel is waiting for an
interrupt to start.

Data Out, Clock

DATAO CLK,
[70714 |1[X | Y
0 121314 1718 35

Load the contents of the right half of location E into the interval register.

DATAI CLK, Data In, Clock
[70704 1] x] Y]
] 121314 1718 35r

Read the current contents of the clock counter into the right half of
location E. ‘

Initially the program should give a CONO CLK,1000 to clear the clock,
and then give a DATAO to select the interval and a CONO to turn on the
clock, select the mode, and assign the interrupt channel. When the count
reaches the specified interval, Count Done sets, requesting an interrupt on
the assigned channel. At the same time, the counter clears and a new count
begins with the next pulse. The program should respond with a CONO to
clear Count Done.

The interval can be changed at any time simply by giving a DATAO.
However, if the program does not clear the counter at the same time, then it
should make sure that the count has not yet reached the value of the new
interval. If the count is already beyond that point, the counter will con-
tinue until it overflows. When the counter overflows, either because the
count started too high, the program specified the maximum count (2'% is
selected by loading zero), or there is a malfunction of some sort, Count
Overflow sets, requesting an interrupt, and a new count begins.

To use the clock to time some operation, turn it on with the counter
at zero. For a counter reading of C, the elapsed time is

T(C + nl)

where T is the period of the source, n is the number of clock interrupts
since the clock was started, and 7 is the interval selected by the program. To
cause the clock to request an interrupt after T X n us, where n < 218 and 7 is

-135-

§2.18 KA10 OPERATION

the period of the source in microseconds, load the interval register with n
expressed in binary. There is an average indeterminacy of half a count every
time the counter starts and stops. Therefore, when the clock is keeping user
time, there is an average indeterminacy of one count for every group of
overlapping interrupts and requests (not for every interrupt, as the counter
is inhibited while there is any request or interrupt being held).

For keeping the time of day, the program can use a memory location to
maintain a count of the clock interrupts. The location should be cleared
at midnight, and the time can be determined by combining its contents with
the current contents of the clock counter. If the location itself is to be used
as a low resolution clock kept in hours, minutes and seconds, it is better to
use a more convenient interval than the full count. Using the internal source,
an interval of 2V seconds, which is octal 750220, is the most straightforward
interval with the fewest interrupts. To interrupt every second the interval
would be 303240. .

Operation. The KI10 clock, which is usually installed in a DECtape
cabinet, has a small control panel mounted directly on the logic behind the
cabinet -doors. In the lower part of the panel is a switch for selecting the
internal source or an external input from the BNC connector at the right.
The external input must be supplied through a 100 ohm coaxial cable and
must have a frequency no greater than 400 kHz; its triggering voltage change
must be from —3 volts to ground. If the input is a pulse train, the minimum
pulse width is 100 ns. If the input is a sequence of level changes, it must
have a minimum low level (—3 volts) duration of 400 ns before each positive-
going change, a rise time of 60 ns maximum, and a high level duration of
40 ns minimum.

The leftmost light in the upper row at the top of the panel indicates when
the clock is on (ie when the counter is enabled). The next two lights are the
Count Overflow and Count Done flags. TIME OUT indicates when the num-
bers in the interval register and the clock counter are identical — this light
goes out as soon as either changes state. The remaining lights in the upper
row are the PI assignment. The two lights at the left in the lower row display
signals that synchronize the DATAI and DATAO to the clock so that count-
~ ing is postponed while the counter is being read and there is no sampling
while the interval is being loaded. PIOKS8 is a processor-generated signal
which indicates that there is no interrupt being held and no channel waiting
for an interrupt; the next light is the User Time flag. The final two lights
indicate the origin of the clock source.

2.18 KAI10 OPERATION

Most of the controls and indicators used for normal operation of the proces-
sor and for program debugging are located on the console operator panel
shown here. The indicators are on the vertical part of the panel; in front of
them are two rows of two-position keys and switches (keys are momentary
contact, switches are alternate action). A key or switch is on or represents
a | when the front part is down.

SYSTEM REFERENCE

2-113

Note that an error of .01%
amounts to 8.64 seconds in
24 hours.

Clock Control Panel

SYSTEM REFERENCE =136~

2-114 CENTRAL PROCESSOR (§2.18

The thirty-six switches in the front row and the eighteen
at the right in the back row are respectively the data and
address switches through which the operator can supply
words and addresses for the program and for use in conjunc-
tion with the operating keys and switches. The correspond-
ence of switches to bit positions is indicated by the numbers
at the bottom row of lights. At the left end of the back row
are ten operating switches, which supply continuous control
levels to the processor. At their right are ten operating keys,
which initiate or terminate operations in the processor. The
names of the operating keys and switches appear on the ver-
tical part of the panel below the lights.

Also of interest to the operator is the small panel shown
opposite, which is located above the main panel at the left
of the tape reader. The upper section of this panel contains
a total hours meter and the margin-check controls. The lower
section contains the power switch, speed controls for slowing
down the program, switches to select the device for readin
mode (lower part in represents a 1), and four additional
operating switches. The normal position for these last four
is with the upper part in; in this position FM ENB (fast
memory enable) is on, the others are all off.

Indicators

When any indicator is lit the associated flipflop is 1 or the
associated function is true. Some indicators display useful
information while the processor is running, but many change
too frequently and can be discussed only in terms of the
information they display when the processor is stopped. The
program can stop the processor only at the completion of the
HALT instruction; the operator can stop it at the end of
every instruction or memory reference, or for maintenance
purposes, after every step in any operation that uses the shift
counter (shifting, multiplication, division, byte manipulation).

Of the long rows of lights at the right on the operator
panel, the top row displays the contents of PC, the middle
row displays the instruction being executed or just completed,
and the bottom row are the memory indicators. The right
half of the middle row displays MA, the left half displays IR
[see page 1-2]. In an IO instruction the left three instruction
lights are on, the remaining instruction lights and the left AC
light are the device code, and the remaining AC lights com-
plete the instruction code. The I, index and MA lights change
with each indirect reference in an effective address calcula-
tion; at the end of an instruction I is always off.

Above the memory indicators appear two pairs of words,
PROGRAM DATA and MEMORY DATA. If the triangular
light beside the former pair is on, the indicators display a

I
.
i

SR SR

PDP-10

-137- SYSTEM REFERENCE

§2.18 KA10 OPERATION 2-115

word supplied by a DATAO PL,; if any other data is
displayed the light beside MEMORY DATA is on
instead. While the processor is running the physical
addresses used for memory reference (the relocated
address whenever relpcation is in effect) are compared
with the contents of the address switches. Whenever
the two are equal the contents of the addressed
location are displayed in the memory indicators.
However, once the program loads the indicators, they
can be changed only by the program until the opera-
tor turns on the MI program disable switch, executes
a key function that references memory, or presses the
reset key (see below).

The four sets of seven lights at the left display the
state of the priority interrupt channels [see pages
2-81 to 2-85). The PI ACTIVE lights indicate which
channels are on. The IOB PI REQUEST lights
indicate which channels are receiving request signals
over the in-out bus; the PI REQUEST lights indicate
channels on which the processor has accepted re-
quests. Except in the case of a program-initiated Ty
-interrupt, a REQUEST light can go on only if the il
corresponding ACTIVE light is on. The PI IN . ,
PROGRESS lights indicate channels on which inter-
rupts are currently being held; the channel that is
actually being serviced is the lowest-numbered one
whose light is on. When a PROGRESS light goes on,
the corresponding REQUEST goes off and cannot go

on again until PROGRESS goes off when the interrupt is dismissed. Above: Margin Check and
At the left end of the panel are a power light and these control indicators. ~ Maintenance Panel
Opposite: Console Operator
Panel

Note: If a REQUEST light

RUN stays on indefinitely with the

The processor is in normal operation with one instruction following another. associated PROGRESS light

When the light goes off, the processor stops. off and PC is static, check the
PI CYC light on the indicator
panel at the top of bay 2. If
it is on, a faulty program has

PI ON hung up the processor. Press

The priority interrupt system is active so interrupts can be started (this STOP.

corresponds to CONI PI, bit 28).

PROGRAM STOP If RUN and PROGRAM

IR now contains a HALT instruction. If RUN is off, MA displays an STOP are both on, the proc-
address one greater than that of the location containing the instruction that Zsi:gt 'Sa d‘(’j:_z::bllg'o mn arfl,rgs';
caused the halt, and PC displays the jump address (the location from which STOP. p-

the next instruction will be taken if the operator presses the continue key).

SYSTEM REFERENCE

2-116

CAUTION

Never press two keys simul-
taneously as the processor
may attempt to perform both
functions at once.

If RUN is on, pressing this
key has no effect.

-138-

CENTRAL PROCESSOR §2.18

USER MODE
The processor is in user mode (this corresponds to bit 5 of a PC word).

MEMORY STOP

The processor has stopped at a memory reference. This can be due to single
cycle operation, satisfaction of an address condition selected at the console,
reference to a nonexistent memory location, or detection of a parity error.

The remaining processor lights are on the indicator panels at the tops of
the bays [illustrated on page F2]. Bay 2 displays AR, BR and MQ, the
output of the AR adder, and the parity buffer which receives every word
transmitted over the memory bus. The RL and PR lights at the lower right
display the relocation and protection registers for the low part of the area
assigned to a user program and the left eight bits of the relocated address
for that part. The remaining lights are for maintenance.

The upper four rows on the bay 1 panel include the indicators for reader,
punch and teletype, which are described in Chapter 3. The bottom row
displays the information on the data lines in the 10 bus. The AR lights at
the upper right are the flags — FXU is Floating (exponent) Underflow, DCK
is No Divide (divide check). OV COND is the condition that the 0 and 1
carries are different, ie the condition that indicates overflow. The First
Part Done flag is BYF6 in the MISC lights in the top row; User In-out is
IOT USER in the EX lights at the center of the panel. The CPA lights in
the top row and the five lights under them at the left are the processor
conditions — PDL OV is Pushdown (list) Overflow. The AS= lights in the
middle row indicate when the (relocated) core memory address or the fast
memory address is the same as the address switches. The remaining lights
are for maintenance.

The panels on the memories are shown in Appendix F. These are
almost exclusively for maintenance, and (as with most of the lights on
the processor bays) if the operator must use them he should consult the
maintenance manual and the flow charts. The ACTIVE lights indicate which
processor currently has access to the memory.

Operating Keys

Each key except STOP turns on one of the key indicators at the upper right
on the bay 2 panel. These are for flipflops that allow the key functions to be
repeated automatically and also allow certain of them to be synchronized to
the processor time chain so they can be performed while the processor is
running.

READ IN :
Clear all 10 devices and all processor flags including User; turn on the RIM
light in the upper right on bay 1 and the KEY RDI light in the upper right

-139-

§2.18 KA10 OPERATION
on bay 2. Execute DATAI D,0 where D is the device code specified by the
readin device switches on the small panel at the left of the reader. Then
execute a series of BLKI D,0 instructions until the left half of location 0
reaches zero, at which time turn off RIM and KEY RDI. Stop only if the
single instruction switch is on; otherwise turn on RUN and execute the last
word read as an instruction. [For information on the data format refer to
page 2-79.]

START
Load the contents of the address switches into PC, turn on RUN, and begin
normal operation by executing the instruction at the location specified by
PC. .

This key function does not disturb the flags or the 10 equipment; hence
if USER MODE is lit a user program can be started.

CONT (Continue)
Turn on RUN (if it is off) and begin normal operation in the state indicated
by the lights.

STOP .

Turn off RUN so the processor stops before beginning the next instruction.
Thus the processor usually stops at the end of the current instruction, which
is displayed in the lights. However, if a key function that can be performed
while RUN is on has been synchronized, the processor performs that func-
tion before stopping. In either case PC points to the next instruction.

If the processor does not reach the end of the instruction within 100 ps,
inhibit further effective address calculation — it is assumed the processor is
caught in an indirect addressing loop. Pressing CONT when the processor is
stopped in an address loop causes it to start the same instruction over.

RESET
Clear all 10 devices and clear the processor including all flags: Turn on the
triangular light besidle MEMORY DATA (turn off the light beside PRO-
GRAM DATA). If RUN is on duplicate the action of the STOP key before
clearing.

XCT
Execute the contents of the data switches as an instruction without incre-
menting PC. If RUN is on, insert this instruction between two instructions
in the program. Inhibit priority interrupts during its execution to guarantee
that it will be finished.

If USER MODE is lit all user restrictions apply to an instruction executed
from the console.

SYSTEM REFERENCE

2-117

The rightmost device switch
is for bit 9 of the instruction
and thus selects the least sig-
nificant octal digit (which is
always O or 4) in the device

code.

CAavurIoN
Do not initiate any other key
function while RIM is on. If
read in must be stopped (eg
because of a crumpled tape),
press RESET (see below).

If RUN is on, pressing this
key has no effect.

If STOP will not stop the
processor, pressing this key
will.

Note that an instruction exe-
cuted from the console can
alter the processor state just
like any instruction in the
program: it can change PC by
jumping or skipping, alter the
flags, or even cause a non-
existent-memory stop.

SYSTEM REFERENCE

2-118

If RUN is on, pressing this
key has no effect.

If RUN is on, pressing this
key has no effect.

~140-

CENTRAL PROCESSOR §2.18

Norte

The remaining key functions all reference memory.
They use an absolute address and all of memory is
available to them; in other words protection and
relocation are not in effect even if USER MODE is
lit. However they can set such flags as Address
Break and Nonexistent Memory.

EXAMINE THIS »
Display the contents of the address switches in the MA lights and the con-
tents of the location specified by the address switches in the memory indica-
tors. Turn on the triangular light beside MEMORY DATA (turn off the
light besidle PROGRAM DATA). If RUN is on, insert this function between
two instructions in the program.

EXAMINE NEXT ,

Add 1 to the address displayed in the MA lights and display the contents of
the location specified by the incremented address in the memory indicators.
Turn on the triangular light beside MEMORY DATA (turn off the light
beside PROGRAM DATA).

DEPOSIT . :
Deposit the contents of the data switches in the location specified by the
address switches. Display the address in the MA lights and the word
deposited in the memory indicators. Turn on the triangular light beside
MEMORY DATA (turn off the light besidle PROGRAM DATA). If RUN is
on, insert this function between two instructions in the program.

DEPOSIT NEXT

Add 1 to the address displayed in the MA lights and deposit the contents of
the data switches in the location specified by the incremented address. Dis-
play the word deposited in the memory indicators. Turn on the triangular
light beside MEMORY DATA (turn off the light besidle PROGRAM DATA).

Operating Switches

Whenever the processor references memory at the location specified by the
address switches (relocated if USER MODE is on), the contents of that loca-
tion are displayed in the memory indicators (unless the light beside
PROGRAM DATA is on). The group of five switches at the left of the keys
allows the operator to make the processor halt or request an interrupt when

-141-

'§2.18 "~ KA10 OPERATION

reference is made to the specified location in core memory for a particular
purpose (no action is produced by fast memory reference). The purpose is
selected by the three address condition switches. INST FETCH selects the
condition that access is for retrieval of an instruction (including an instruc-
tion executed by an XCT or contained in an interrupt location or a trap for
an unimplemented operation) or an address word in an effective address cal-
culation. DATA FETCH selects access for retrieval of an operand (other
than in an XCT). WRITE selects access for writing in memory. Whenever
reference to the specified location satisfies any selected address condition,
the processor performs the action selected by the other two switches. ADR
STOP halts the processor with MEMORY STOP on (PC points to the instruc-
tion that was being executed, or if the MC WR light on bay 2 is on, PC may
point to the one following it); ADR BREAK turns on the CPA ADR BRK
light (Address Break flag, CONI APR, bit 21) on bay 1, requesting an inter-
rupt on the processor channel.

The description of each switch relates the action it produces while it is on.

SING INST

Whenever the processor is placed in operation, clear RUN so that it stops at
the end of the first instruction. Hence the operator can step through a pro-
gram one instruction at a time, by pressing START for the first one and
CONT for subsequent ones. Each time the processor stops, the lights display
the same information as when STOP is pressed.

CLK FLAG (Clock flag) on bay 1 is held off to prevent clock interrupts
while SING INST is on. Otherwise interrupts would occur at a faster rate
than the instructions.

SING INST will not stop the processor if a hangup prevents it from getting
to the end of an instruction. Use STOP or RESET.

SING CYCLE

Whenever the processor is placed in operation, stop it with MEMORY STOP
on at the end of the first core memory reference. Hence the operator can
step through a program one memory reference at a time, by pressing START
for the first one and CONT for subsequent ones. To determine what infor-
mation is displayed in the lights, consult the flow charts.

PAR STOP

Stop with MEMORY STOP on at the end of any memory reference in which
even parity is detected in a word read. A parity stop is indicated by the fol-
lowing: CPA PAR ERR (Parity Error flag) on bay 1 is on; and among the
PAR lights in the bottom row on bay 2, IGN (ignore parity) and ODD are
off, STOP is on, and BIT displays the parity bit for the word in the parity
buffer at the left.

SYSTEM REFERENCE

2-119

AC and index register refer-
ences can be included by
turning off the FM ENB
switch (see below).

To stop at AC and index
register references, turn off
the FM ENB switch (see
below).

If IGN is on (it displays a sig-
nal from the memory), parity
errors are not detected and no
stop can occur.

SYSTEM REFERENCE

2-120

The key function is repeated
once after REPT is turned
off, but this is noticeable only
with very long repeat delays.

The end of a key function is
equivalent to completion of
all processor operations asso-
ciated with the function only
for read in, examine, examine
next, deposit, and deposit
next. In other cases the proc-
essor continues in operation.
Eg the execute function is
finished once the instruction
to be executed is set up
internally, but the processor
then executes that instruc-
tion. Hence when using speed
range 6, the operator must be
careful not to allow the key
function to restart before the
processor is really finished.

-142-

CENTRAL PROCESSOR §2.18
NXM STOP

Stop with MEMORY STOP on if a memory reference is attempted but the
memory does not respond within 100 us. This type of stop is indicated by
CPA NXM FLAG (Nonexistent Memory flag) on bay 1 being on.

REPT
If any key (except STOP) is pressed, then every time the key function is
finished, wait a period of time determined by the setting of the speed control
and repeat the given key function. If CONT is pressed and no switch is on
that would stop the program (eg SING INST, SING CYCLE), then continue
following the repeat delay whenever a HALT instruction is executed. Con-
tinue to repeat the key function until RESET is pressed or REPT is turned
off.

The speed control includes a six-position switch that selects the delay
range and a potentiometer for fine adjustment within the range. Delay
ranges are as follows.

Position Range
1 270 ms to 5.4 seconds
2 38 ms to 780 ms
3 3.9 msto 78 ms
4 390 us to 7.8 ms
5 27 us to 540 us
6 2.2 usto 44 us

MI PROG DIS

Turn on the triangular light besidle MEMORY DATA (turn off the light
besidle PROGRAM DATA) and inhibit the program from displaying any in-
formation in the memory indicators. The indicators will thus continually
display the contents of locations selected from the console.

REPT BYP
If REPT is on, trigger the repeat delay at the beginning of the key function.
Hence the function is repeated even if it does not run to completion.

FM ENB

This switch is left on for normal operation with a fast memory. Turning it
off (lower part in) substitutes the first sixteen core locations for the fast
memory. The switch is left off if there is no fast memory, and it can be used
to allow stopping or breaking at fast memory references.

-143-

§2.19 K110 OPERATION

SHIFT CNTR MAINT

Stop before each step in any shift operation. Pressing CONT resumes the
operation. Once a shift has been stopped, the processor will continue to
stop at each step throughout the rest of the given shift operation even if the
switch is turned off.

At the right end of panel 1J behind the bay doors are two toggle switches.
FP TRP causes the floating point and byte manipulation instructions (codes
130-177) to trap to locations 60-61. MA TRP OFFSET moves the trap
and interrupt locations to 140-161 for a second processor connected to the
same memory.

Inside each memory bay are switches for selecting the memory number
and interleaving memories. Also in the memory are a power switch, a restart
pushbutton, and a switch for single step operation (these three are located
on the indicator panel for the MB10 memory).

NOTE

Information on the KI10 operation is not available

at this time.

SYSTEM REFERENCE

2-121

-145- SYSTEM REFERENCE

Appendices

-147-

APPENDIX A

INSTRUCTION AND DEVICE MNEMONICS

The illustration on the next page shows the derivation of the instruction
mnemonics. The two tables following it list all instruction mnemonics and
their octal codes both numerically and alphabetically. When two mnemonics
are given for the same octal code, the first is the preferred form, but the
assembler does recognize the second. For completeness, the table includes
the MUUOs (indicated by an asterisk) that are recognized by Macro for com-
munication with the DECsystem—10 Time Sharing Monitor. A double dagger
(1) indicates a K110 instruction code that is unassigned in the KA10.

In-out device codes are included only in the alphabetic listing and are
indicated by a dagger (¥). Following the tables is a chart that lists the
devices with their mnemonic and octal codes and DEC option numbers for
both PDP-10 and PDP-6. A device mnemonic ending in the numeral 2 is
the recommended form for the second of a given device, but such codes are
_ not recognized by Macro — they must be defined by the user.

Beginning on page All is a list of all instructions showing their actions
in symbolic form. '

Al

SYSTEM REFERENCE

SYSTEM REFERENCE

-148-

A2 MNEMONICS
E ADD)
¢ Negative SUBtract
MoV, © e MULtiply {
€ S agnitude to AC Integer MULtiply | - ~
e Swapped Immediate to Ac DIVide Immediate
no effect to l;lemory Integer DIVide) to Memory
i i to Self
Half word]iR;gf.ht} to ﬁ%h t} gnes ° . and Round< ' t© Both
t tLett Eeros . Floating AdD ~
xtend sign } Floating SuBtract Long
BLock Transfer Floating MultiPly J to Memory
EXCHange ac and memory Floating DiVide to Both
Floating SCale
use present pointer} LoaD Byte into ac " Double Floating Negate
Increment pointer DePosit Byte in memory Unnormalized Floating Add
Increment Byte Pointer FIX
, ‘ FIX and Round
PUSH down} { ~ FLoaTand Round
POPup and Jump Double Floating AdD
Double Floating SuBtract
Zeros Double Floating MultiPty
Ones Double Floating DiVide
Ac
SET to — E ~
Memory Double MOV { e Negative } { to Memory
Complement of Ac
Complement of Memory AC . (1o SubRoutine
~ o] A€ Immediate and Save Pc
AND with Complement of Ac Memory and Save Ac
inclusive OR { | with Complement of Memory || Both and Restore Ac
Complements of Both if Find First One
Inclusive OR on Flag and ClLear it
eXclusive OR Jump4 O™ OVerflow (JFCL 10,)
EQuiValence PYon CaRrY 0 (JECL 4,)
on CaRrY 1 (JFCL 2)
. on CaRrY (JFCL 6,)
SKIP if memory Less on Floating OVerflow (JFCL 1,)
JUMP if ac Equal and ReSTore
Add One to memory and Skip .y Less or Equal [ang ER;S';OIC F;]a g8 (lJRS;S%[’) 12)
Subtract One from | | Ac and Jump Always an able Pl channe ’
C Ac Immediate d skip if AC Greater HALT (JRST4)
ompare AC . Memory and skip if AC](:;reater or Equal PORTAL (JRST1))
P (Not equal eXeCuTe
. ositive
Add One to Both halves of ac and Jump if {Negative DATA
i BLocK In
; ic SHi Out
Antb metic S Hift | [~ CONditions .
Logical SHift Combined ‘ in and Skip if all masked bits Zero
ROTate P some masked bit One
with Direct mask No modification never
Test Ac with Swapped mask |] set masked bits to Zeros, and ski if all masked bits Equal 0
SLACY Right with £ set masked bits to Ones ["% >} if Not all masked bits equal 0
Left with £ Complement masked bits Always

000
001

037

040

041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
062
063
064
065
066
067
070
071
072
. 073
074
075
076
077
100
101
102
103
104
105

ILLEGAL

LUUO’S

*CALL
*INIT

RESERVED
FOR
SPECIAL
MONITORS

*CALLI
*OPEN
*TTCALL

RESERVED
FOR DEC

*RENAME
*IN
*OUT
*SETSTS
*STATO
*STATUS
*GETSTS
*STATZ
*INBUF
*QUTBUF
*INPUT
*QUTPUT
*CLOSE
*RELEAS
*MTAPE
*UGETF
*USETI
*USETO
*LOOKUP
*ENTER
*UJEN

INSTRUCTION MNEMONICS

-149-

NUMERIC LISTING

NUMERIC LISTING

106
107
110

1

112

113 .

114
115
116
117
120
121

122

123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161

IDFAD
$DFSB
$DFMP
$DFDV

$DMOVE
£DMOVN
FIX

+DMOVEM
tDMOVNM
1FIXR
tFLTR
UFA
DFN
FSC
IBP
ILDB
LDB
IDPB
DPB
FAD
FADL
FADM
FADB
FADR
FADRI
FADRM
FADRB
FSB
FSBL
FSBM
FSBB
FSBR
FSBRI
FSBRM
FSBRB
FMP
FMPL

SYSTEM REFERENCE

162
163
164
165
166
167
170
171
172
173
174
175
176
177
200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235

FMPM
FMPB
FMPR
FMPRI
FMPRM
FMPRB
FDV
FDVL
FDVM
FDVB
FDVR
FDVRI
FDVRM
FDVRB
MOVE
MOVEI
MOVEM
MOVES
MOVS
MOVSI
MOVSM
MOVSS
MOVN
MOVNI
MOVNM
MOVNS
MOVM
MOVMI
MOVMM
MOVMS
IMUL
IMULI
IMULM
IMULB
MUL
MULI
MULM
MULB
IDIV
IDIVI

‘IDIVM

IDIVB
DIV
DIVI

A3

SYSTEM REFERENCE

A4

236
237
240
241
242
243
244
245
246
247
250
251
252
253
254
25404
25410
25420
25450
255
25504
25510
25520
25530
25540
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277
300
301
302
303
304
305

DIVM
DIVB
ASH
ROT
LSH
JFFO
ASHC
ROTC
LSHC

EXCH
BLT
AOBJP
AOBIN
JRST
PORTAL
JRSTF
HALT
JEN
JFCL
JFOV
JCRY!
JCRYO
JCRY
Jov
XCT
IMAP
PUSHJ
PUSH
POP
POPJ
JSR
JSP
ISA
JRA
ADD
ADDI
ADDM
ADDB
SUB
SUBI
SUBM
SUBB
CAI
CAIL
CAIE
CAILE
CAIA
CAIGE

306
307
310
311
312
313
314
315
316

S 317

320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337
340
341
342

343 .

344
345
346
347
350

351

352
353
354
355
356
357
360
361
362
363
364
365
366

-150-

MNEMONICS

CAIN
CAIG
CAM
CAML
CAME
CAMLE
CAMA
CAMGE
CAMN
CAMG
JUMP
JUMPL
JUMPE
JUMPLE
JUMPA
JUMPGE
JUMPN
JUMPG
SKIP
SKIPL
SKIPE
SKIPLE
SKIPA
SKIPGE
SKIPN
SKIPG
AOJ
AOJL
AOJE
AOJLE
AOJA
AOJGE
AOJIN
AOJG
AOS
AOSL
AOSE
AOSLE
AOSA
AOSGE
AOSN
AOSG.
SOJ
SOJL
SOJE
SOJLE
SOJA
SOJGE
SOJN

367
370
371
372
373
374
375
376
377
400
400
401
401
402
402
403
403
404

- 405

406
407
410
411
412
413
414
415
416
417
420
421
422
423
424
425
426
427
430
431
432
433
434
434
435
435
436
436
437
437

SOJG
SOS
SOSL
SOSE
SOSLE
SOSA
SOSGE
SOSN
SOSG
SETZ
CLEAR
SETZI
CLEARI
SETZM
CLEARM
SETZB
CLEARB
AND
ANDI
ANDM
ANDB
ANDCA
ANDCAI
ANDCAM
ANDCAB
SETM
SETMI
SETMM
SETMB
ANDCM
ANDCMI
ANDCMM
ANDCMB
SETA
SETAI
SETAM
SETAB
XOR
XORI
XORM
XORB
IOR

OR
IORI
ORI
IORM
ORM
IORB
ORB

440
441
442
443
444
445
446
447
450
451
452
453
454
455
456
457
460
461
462
463
464
465
466
467
470
471
472
473
474
475
476
477
500
501
502
503
504
505
506
507
510
511
512
513
514
515
516
517
520

ANDCB
ANDCBI

" ANDCBM

ANDCBB
EQV
EQVI
EQVM
EQVB
SETCA
SETCAI
SETCAM
SETCAB
ORCA
ORCAI
ORCAM
ORCAB
SETCM
SETCMI
SETCMM
SETCMB
ORCM
ORCMI
ORCMM
ORCMB
ORCB
ORCBI
ORCBM
ORCBB
SETO
SETOI
SETOM
SETOB
HLL
HLLI
HLLM
HLLS
HRL
HRLI
HRLM
HRLS
HLLZ
HLLZI
HLLZM
HLLZS
HRLZ
HRLZI
HRLZM
HRLZS
HLLO

-151-

NUMERIC LISTING

521
522
523
524
525
526
527
530
531
532
533
534
535
536
537
540
541
542
543
544
545
546
547
550
551
552
553
554
555
556
557
560
561
562
563
564
565
566
567
570
571
572
573
574
575
576
577
600
601

HLLOI
HLLOM
HLLOS
HRLO
HRLOI
HRLOM
HRLOS
HLLE
HLLEI
HLLEM
HLLES
HRLE
HRLEI
HRLEM
HRLES
HRR
HRRI
HRRM
HRRS
HLR
HLRI
HLRM
HLRS
HRRZ
HRRZI
HRRZM
HRRZS
HLRZ
HLRZI
HLRZM
HLRZS
HRRO
HRROI
HRROM
HRROS
HLRO
HLROI
HLROM
HLROS
HRRE
HRREI
HRREM
HRRES
HLRE
HLREI
HLREM
HLRES
TRN
TLN

SYSTEM REFERENCE

602
603
604
605
606
607

610 .

611
612
613
614
615
616
617
620
621
622
623
624
625
626
627
630
631
632
633
634
635
636
637
640
641
642
643
644
645
646
647
650
651
652
653
654
655
656
657
660
661
662

TRNE
TLNE
TRNA
TLNA
TRNN
TLNN
TDN
TSN
TDNE
TSNE
TDNA
TSNA
TDNN
TSNN
TRZ
TLZ
TRZE
TLZE
TRZA
TLZA
TRZN
TLZN
TDZ
TSZ
TDZE
TSZE
TDZA
TSZA
TDZN
TSZN
TRC
TLC
TRCE
TLCE
TRCA
TLCA
TRCN
TLCN
TDC
TSC
TDCE
TSCE
TDCA
TSCA
TDCN
TSCN
TRO
TLO
TROE

AS

SYSTEM REFERENCE

A6

663
664
665
666
667
670
671
672

+ADC
ADD
ADDB
ADDI
ADDM
AND
ANDB
ANDCA
ANDCAB
ANDCAI
ANDCAM
ANDCB
ANDCBB
ANDCBI
ANDCBM
ANDCM
ANDCMB
ANDCMI
ANDCMM
ANDI
ANDM
AOBIJN
AOBJP
AO]J
AOJA
AOJE
AOJG
AOJGE
AOJL
AOJLE
AOJN
AOS

TLOE
TROA
TLOA
TRON
TLON
TDO

TSO

TDOE

024
270
273
271
272
404
407
410
413
411
412
440
443
441
442
420
423
421
422
405
406
253
252
340
344
342
347
345
341
343
346
350

-152-

MNEMONICS

673
674
675
676
677
70000
70004
70004

INSTRUCTION MNEMONICS
ALPHABETIC LISTING

AOSA
AOSE
AOSG
AOSGE
AOSL
AOSLE
AOSN
+APR
ASH
ASHC
BLKI
BLKO
BLT
CAI
CAIA
CAIE
CAIG
CAIGE
CAIL
" CAILE
CAIN
*CALL
*CALLI
CAM
CAMA
CAME
CAMG
CAMGE
CAML
CAMLE
CAMN
+CCI

TSOE
TDOA
TSOA
TDON
TSON
BLKI
DATAI
RSW

354
352
357
355
351
353
356
000
240
244
70000
70010
251
300
304
302
307
305
301
303
306
040
047
310
314
312
317
315 -
311
313
316
014

70010
70014
70020
70024
70030
70034

+CDP
+CDR
CLEAR
CLEARB
CLEARI
CLEARM
+CLK
*CLOSE
CONI
CONO
CONSO
CONSZ
+CPA
+CR
DATAI
DATAO
+DC
+DCSA
+DCSB
IDFAD
£DFDV
£DFMP
DFN
£DFSB
+DIS
DIV
DIVB
DIVI
DIVM
#DLB
#DLC
+DLS

BLKO
DATAO
CONO
CONI
CONSZ
CONSO

110
114
400
403
401
402
070
070
70024
70020
70034
70030
000
150
70004
70014
200
300
304
110
113
112
131
111
130
234
237
235
236
060
064
240

-153- SYSTEM REFERENCE

ALPHABETIC LISTING A7
$DMOVE 120 FSBRB 157 HRLS 507
tDMOVEM 124 FSBRI 155 HRLZ 514
$DMOVN 121 FSBRM 156 HRLZI 515
iDMOVNM 125 FSC 132 HRLZM 516
DPB 137 * *GETSTS 062 HRLZS 517
+DPC 250 HALT 25420 HRR 540
+DSI 464 HLL 500 HRRE 570
+DSK 170 HLLE 530 HRREI 571
+DSS 460 HLLEI 531 HRREM 572
+DTC 320 HLLEM 532 HRRES 573
+DTS 324 HLLES 533 HRRI 541
*ENTER 077 HLLI 501 , HRRM 542
EQV 444 HLLM 502 HRRO 560
EQVB 447 HLLO 520 HRROI 561
EQVI 445 HLLOI 521 HRROM 562
EQVM 446 HLLOM 522 HRROS 563
EXCH 250 HLLOS 523 HRRS 543
FAD 140 HLLS 503 HRRZ 550
FADB 143 HLLZ 510 » HRRZI 551
FADL 141 HLLZI 511 HRRZM 552
FADM 142 HLLZM 512 HRRZS 553
FADR 144 © HLLZS 513 IBP 133
FADRB 147 HLR 544 IDIV 230
FADRI 145 HLRE 574 IDIVB 233
FADRM 146 HLREI 575 IDIVI 231
FDV 170 HLREM 576 IDIVM 232
FDVB 173 HLRES 577 IDPB 136
FDVL 171 HLRI 545 ILDB 134
FDVM 172 HLRM 546 IMUL 220
FDVR 174 HLRO 564 IMULB 223
FDVRB 177 HLROI 565 . IMULI 221
FDVRI 175 HLROM 566 IMULM 222
FDVRM 176 HLROS 567 *IN 056
$FIX 122 HLRS 547 *INBUF 064
1FIXR 126 HLRZ 554 *INIT 041
$FLTR 127 HLRZI 555 *INPUT 066
FMP 160 HLRZM 556 IOR 434
FMPB 163 HLRZS 557 IORB 437
FMPL 161 HRL 504 IORI 435
FMPM 162 - HRLE 534 IORM 436
FMPR 164 HRLEI 535 JCRY 25530
FMPRB 167 HRLEM 536 JCRYO 25520
FMPRI 165 HRLES 537 JCRY1 25510
FMPRM 166 HRLI 505 JEN 25460
FSB 150 HRLM 506 JFCL 255
FSBB 153 HRLO 524 JFFO 243
FSBL 151 HRLOI 525 JFOV 25504
FSBM 152 HRLOM 526 Jov 25540

FSBR 154 HRLOS 527 JRA 267

SYSTEM REFERENCE

A8

JRST
JRSTF
ISA
ISP
JSR
JUMP
JUMPA
JUMPE
JUMPG
JUMPGE
JUMPL
JUMPLE
JUMPN
LDB
*LOOKUP
$LPT
LSH
LSHC
IMAP
+MDF
MOVE
MOVEI
MOVEM
MOVES
MOVM
MOVMI
MOVMM
MOVMS
MOVN
MOVNI
MOVNM
MOVNS
MOVS
MOVSI
MOVSM
MOVSS
*MTAPE
$MTC
FMTM
FMTS
MUL
MULB
MULI
MULM
*OPEN
OR
ORB
ORCA
ORCAB

254
25410
266
265
264
320
324
322
327
325
321
323
326
135
076
124
242
246
257
260
200
201
202
203
214
215
216
217
210
211
212
213
204
205
206
207
072
220
230
224
224
227
225
226
050
434
437
454
457

-154-
MNEMONICS
ORCAI 455
ORCAM 456
ORCB 470
ORCBB 473
‘ORCBI 471
ORCBM 472
ORCM 464
ORCMB 467
ORCMI 465
ORCMM 466
ORI 435
ORM 436
*OUT 057
*OUTBUF 065
*OUTPUT 067
TPAG 010
TPI 004
TPLT 140
POP 262
POPJ 263
PORTAL 25404
TPTP 100
TPTR 104
PUSH 261
PUSHIJ 260
*RELEAS 071
*RENAME 055
ROT 241
ROTC 245
RSW 70004
SETA 424
SETAB 427
SETAI 425
SETAM 426
SETCA 450
SETCAB 453
SETCAI 451
SETCAM 452
SETCM 460
SETCMB 463
SETCMI 461
SETCMM 462
SETM 414
SETMB 417
SETMI 415
SETMM 416
SETO 474
SETOB 477
SETOI 475

SETOM
*SETSTS
SETZ
SETZB
SETZ1
SETZM
SKIP
SKIPA
SKIPE
SKIPG
SKIPGE
SKIPL
SKIPLE
SKIPN
SOJ
SOJA
SOJE

- S0JG

SOJGE
SOJL
SOJLE
SOJN
SOS
SOSA
SOSE
SOSG
SOSGE
SOSL
SOSLE
SOSN
*STATO
*STATUS
*STATZ
SUB
SUBB
SUBI
SUBM
TDC
TDCA
TDCE
TDCN
TDN
TDNA
TDNE
TDNN
TDO
TDOA
TDOE
TDON

476
060
400
403
401
402
330
334
332
337
335
331
333
336
360
364
362
367
365
361
363
366
370
374
372
377
375
371
373
376
061
062
063
274
277
275
276
650
654
652
656
610
614
612
616
670
674
672
676

TDZ
TDZA

TDZE -

TDZN
TLC
TLCA
TLCE
TLCN
TLN
TLNA
TLNE
TLNN
TLO
TLOA
TLOE
TLON
TLZ
TLZA
TLZE
TLZN

+TMC

+TMS
TRC

. 630

634
632
636
641
645
643
647
601
605
603
607
661
665
663
667
621
625
623
627
340
344
640

-155- SYSTEM REFERENCE

ALPHABETIC LISTING

TRCA 644 TSO
TRCE 642 TSOA
TRCN 646 TSOE
TRN 600 TSON
TRNA 604 TSZ
TRNE 602 TSZA
TRNN 606 TSZE
TRO 660 - TSZN
TROA 664 *I'TCALL
TROE 662 UFA
TRON 666 *UGETF
TRZ 620 *UJEN
TRZA 624 *USETI
TRZE 622 *USETO
TRZN 626 +UTC
TSC 651 TUTS
TSCA 655 XCT
TSCE 653 XOR
TSCN 657 XORB
TSN 611 ' XORI
TSNA 615 XORM
TSNE 613

TSNN 617

671
675
673
677
631
635
633
637
051
130
073
100
074
075
210
214
256
430
433
431
432

A9

-156-

SYSTEM REFERENCE

MNEMONICS

AlO

SOINOW3NW 301A30

_— a | u ot 6 | 8 L 9 s v £ 2 ' [
21 ¥p0I BIINRP 10} u_.s_._.._:/ ¥3iNibd 3NN [p2151 902 ISOYR 2143 | I (AIN0 QSH| [| | 1 ayom
(103522024 (03judd Jo 140d N 3009 1910 11916 V190 11910 V130 | 3 I |NOWINULSNI
$1391A9P 534031PU1 J3qunu ON) 1d1 | NOLLINGLSNI e N023S 1su14 100-N1
01-dad 203 saqunu votido— Lo 0" ol ——01-d0dwim pasn y
9-4d0d J0) 19qunu vondo —1 943 9 9-40d wie psn 3000 391A30
1£ 9-d0d NI 39VAUIINI 8'L-d 04}
9-d0d NI HOSSII0Nd -WANGH
930 404 03A¥3SIY SY3ISN 04 QINMISIY'
$3009 03121¥ISIUNN OFTH $3000 031014153 OLIX $391A30 71934S 438N ¥O4. GIAUISIH NOLLDIS SINL NI $300D
L
9
S
LINA 3NN 1IN 3NT
SNONO¥HONAS 319§ | SNONONHONAS 319KIS
2ISa 2SSO | ISa sS@ 17
0150 0ifossa ol .
33VL JILINOVR PETTETET 31330 V030 NOILYOINANNOD Viva
OSNL 2OWL | SAL DAL | 2810 2010 | SIO M0 8500 VvS) | €
oy 0 [omms atjoia o jowas | o4 089 9
JUESI0 | WILSAS | W3LSAS WALSAS Waishs | BINNVIS | BINNYOS |W3LNIMd INTY Vi ILINSYR 34¥1930 HINDI - | 104INOD
¥OVd ¥SI0 | NIVANSIO | XOduSia | wOvdNSio | INITVivG | 3INIT VI¥O viva viva
40 | $2d0 | €340 | 20d0 | 940 | 2SW | S0 | 2.d1 | WLN SIN OIN | SIn JIn | 200 W | ¢
ol 0
02 gloidd Oioidy Oifoidy ool . 040iad 01010 01| 9¥9 siois 9158 9forl 9sti 9
W510 TIVAS | X610 TIVWS | NI VIVQ 11—d0d | 430V3§ GBVD | 43QV38 qUYD | W3L10d | H3LL0H = RS | VN INT | SALTL | I0V3E UV | HONN QHVO [a3013N SdvI Hod 3wl
23S0 | ¥SQ | 2070 810 | ¥ ¥) | ed | Iid | 2SIQ | SIO | Ld1 | ALL | ¥GD | dOD | ¥ld | did ||
- . oidh oroldA Ol oy o o o o
oy oo ovfoing | ooy orjowd 04 |ouax olfoux_ oslove a'sfove oi'9jsws s]ozs 99 91010 oijos 9|1 9
5010 3INIL| W001)_3WIT| INITVIVG W -dad WILHIANDD | UILNIANDD | 30VIUIINI | JOVAUINI | ONIOVA | LdNNU3INI | MOSSIO0Nd
wad E] MUSIG-S0TYNY[WIBI0-30TYNY| 6'6-d0d | 6'8-d0d o Alldolud | TVHINIO
N0 | W0 | 910 & 200v | 9av | 200 | 100 |4ovd | 14 | Jd¥ |9,
ows _ aoma oijone | o oigy ooy oowa. oiowa o ot 019 ove] 1439
bl 0L ¥9 09 ¥s 0s 144)4 14 0¢ ve 0¢ bl ot 0 00 <im0
WL QHinL
GNY ONO335"

-157-

ALGEBRAIC REPRESENTATION

ALGEBRAIC REPRESENTATION

The remaining pages of this Appendix list, in symbolic form, the actual
operations performed by the instructions. The grouping, as given below, dif-
fers slightly from that used in Chapter 2.

Boolean Al13 In-out Al7
Byte manipulation Al4 Program control A17
Fixed point arithmetic Al4 Pushdown list Al17
Floating point arithmetic Al4 Shift and rotate Al7
Full word data transmission Al5 Test, arithmetic Al8
Half word data transmission Al6 Test, logical Al9

The terminology and notation used also vary somewhat from that in the
body of the manual, as follows.

AC

AC+1

E+1

X

(X
Xr
Xs

A.B

X.Y)

(09)

A->B

(AC) (B)
AV ¥~

The accumulator address in bits 9—12 of the instruction word
(represented by A in the instruction descriptions).

The address one greater than AC, except that AC+1 is 0 if AC is
17.

The result of the effective address calculation. F is eighteen bits
when used as an address, half word operand, mask or output con-
ditions, but is a signed 9-bit quantity when used as a scale factor
or a shift number.

The address one greater than E, except that E+1 is O if E is
7777717. .

The 18-bit program counter.

The word contained in register X.

The left half of (X).

The right half of (X).

The word contained in X with its left and right halves swapped.
The value of bit n of the quantity A.

A 36-bit word with the 18-bit quantity 4 in its left half and the
18-bit quantity B in its right half (either 4 or B may be 0).

The contents of registers X and Y concatenated into a double
word operand.

The word contained in the register addressed by (X), ie addressed
by the word in register X.

The quantity A replaces the quantity B (4 and B may be half
words, full words or double words). Eg

(AC) + (E) = (AC)
means the word in accumulator AC plus the word in memory lo-
cation E replaces the word in AC.
The word in AC and the word in E.

The Boolean operators anp, inclusive OR, exclusive or, and com-
plement (logical negation).

SYSTEM REFERENCE

All

SYSTEM REFERENCE -158-

Al2 MNEMONICS

+ — X + |l The arithmetic operators for addition, negation or subtraction,
multiplication, division, and absolute value (magnitude).

Square brackets are used occasionally for grouping. With respect to the
values of their terms, the equations for a given instruction are in chronolog-
ical order; eg in the pair of equations

(AC) + 1> (AO)

If (AC) =0: E— (PO)
the quantity tested in the second equation is the word in AC after it has been
incremented by one.

SETZ
SETZI
SETZM
SETZB

SETA
SETAI .
SETAM
SETAB

SETM
SETMI

SETMM
SETMB

AND

* ANDI

ANDM
- ANDB

ANDCM
ANDCMI
ANDCMM
ANDCMB

IOR
IORI

IORM
IORB

ORCM
ORCMI
ORCMM
ORCMB

XOR
XORI
XORM
XORB

400
401
402
403

424
425
426
427

414
415
416
417

404
405
406
407

4290
421
422
423

434
435
436

437

464
465
466
467

430
431
432
433

-159-

ALGEBRAIC REPRESENTATION

0-(AC)
0->(AQ)
0>@®
0- (AC) (E)

(AC) = (AC) [no-op]
(AC) = (AC) [no-op]
(AC) — (E)
(AC) ~>(E)

(E) > (AC)

0,E = (AC)

(E) = (E) [no-op]
(E) > (AC) (E)

(AC) A (E) = (AC)
(AC) A 0,E > (AC)
(AC) A (E) > (B)

(AC) A (B) - (AC) (E)

(AC) A ~ (E)> (AC)
(AC) A ~ [0,E] = (AQ)
(AC) A ~ (E) > (E)
(AC) A ~ (E) > (AC) (E)

(AC) v (B) > (AC)
(AC) v 0,E ~> (AC)
AQ)V (B)~>(B)

(AC) Vv (E) > (AC) (E)

(AC) v ~ (B) > (AC)
(ACQ)v ~ [0,E] = (AC)
(AC) v ~(E) > (E)
(AC) v ~ (E) > (AC) (E)

(AC) ¥ (E) > (AC)
(AC) ¥ 0,E = (AC)
(AC) ¥ (BE) > (BE)
(AC) ¥ (E) > (AC) (E)

Boolean
SETO
SETOI
SETOM
SETOB

SETCA
SETCAI
SETCAM
SETCAB

SETCM
SETCMI
SETCMM
SETCMB

ANDCA
ANDCAI
ANDCAM
ANDCAB

ANDCB
ANDCBI
ANDCBM
ANDCBB

ORCA
ORCAI

ORCAM
ORCAB

ORCB
ORCBI
ORCBM
ORCBB
EQV
EQVI
EQVM
EQVB

474
475
476
477

450
451
452
453

460
461
462
463

410
411
412
413

440
441
442
443

454
455
456
457

470
471
472
473

444
445
$ 446

447

- SYSTEM REFERENCE

Al3

777777777777 = (AC)
777777777777 = (AC)
777777777777 — (E)
777777777777 ~ (AC) (E)

~ (AC) = (AC)
~(AC) = (AC)

~ (AC) > (E)

~ (AC) > (AC) (B)

~ (E) > (AC)
~[0,E] = (AC)
~ (E)~>(E)

~ (B) > (AC) (B)

~ (AC) A (E) = (AC)

~ (AC) A 0,E > (AC)

~ (AC) A (E) > (E)

~ (AC) A (E) > (AC) (E)

~(AC) A ~ (E) > (AC)
~(AC) A ~ [0,E] = (AC)
~(AQ) A~ (E)~> (BE)

~ (AC) A ~ (E) = (AC) (E)

~ (AC) V (E) ~ (AC)

~ (AC) V 0,E - (AC)
~(AC)V (E) - (E)

~ (AC) V (E) = (AC) (E)

~(AC) V ~ (E) > (AC)
~(AC)v ~ [0,E] = (AC)
~(AC)V ~ (E)~> (E)

~ (AC) V ~ (E) > (AC) (E)

~ [(AC) ¥ (B)] = (AC)

~ [(AC) ¥ 0,E] = (AC)

~ [(AC) ¥ (B)] > (E)

~ [(AC) ¥ (B)] = (AC) (E)

FSBRB

36 -S—>P

(AC) - (BE) > (AC)
(AC) - 0,E > (AC)
(AC) - (B) > (B)
(AC) — (E) > (AC) (B)

(AC) X (E) > (AC,AC+1])
(AC) X 0,E = (AC,AC+1)
(AC) X (E) > (B)t

(AC) X (E) > (AC,AC+1) (E)
(AC,AC+1) + (E) > (AC)
REMAINDER —> (AC+1)

(AC,AC+1) + 0,E —» (AC)
REMAINDER = (AC+1)

(AC,AC+1) + (E)—> (BE)

(AC,AC+1) = (E) = (AC) (E)
REMAINDER > (AC+1)

(AC) + (E) =~ (AC)
(AC) + E, 0~ (AC)
(AC) + (E) > (E)
(AC) + (E) = (AC) (E)

(AC) — (E) > (AC)
(AC) — E, 0~ (AC)
(AC) — (E) > (E)
(AC) — (E) = (AC) (E)

SYSTEM REFERENCE -160-
Ald MNEMONICS
Byte Manipulation
IBP 133 Operations on (E) [see page 2-16]
IfP-S=20. P-S->P
IfP-8S<0: Y+1->Y

LDB 135 BYTemN ((E)) ~ (AC) [see page 2-16]

DPB 137 BYTEIN (AC) = BYTE IN ((E)) [see page 2-16]

ILDB 134 IBPand LDB

IDPB 136 IBPand DPB

Fixed Point Arithmetic

ADD 270 (AC) + (E) ~ (AC) SUB 274
ADDI 271 (AC) + 0,E - (AC) SUBI 275
ADDM 272 (AC)+ (E)= (E) SUBM 276
ADDB 273 (AC) + (E) = (AC) (E) SUBB 277
IMUL 220 (AC) X (E) > (AC)* MUL 224
IMULI 221 (AC) X 0,E =~ (AC)* MULI 225
IMULM 222 (AC) X (E)—> (E)* MULM 226
IMULB 223 (AC) X (E) =~ (AC) (E)* MULB 227
IDIV 230 (AC) + (E)—=>(AO) DIV 234

REMAINDER = (AC+1)
IDIVI 231 (AO)+ 0,E~»(AO) DIVI 235

REMAINDER > (AC+1)
IDIVM 232 (AC) +~(E)—>(E) DIVM 236
IDIVB 233 (AC) + (E)— (AO) (B) DIVB 237

REMAINDER > (AC+1)
*The high order word of the product is discarded.
1The low order word of the product is discarded.

Floating Point Arithmetic
FAD 140 (AC) + (E)—> (AO) FADR 144
FADL 141 (AC) + (E) » (AC,AC+1) FADRI 145
. FADM 142 (AC) + (E)— (E) FADRM 146

FADB 143 (AC) + (E) = (AC) (E) FADRB 147
FSB 150 (AC) - (E)—~ (AO) FSBR 154
FSBL 151 (AC) — (E) > (AC,AC+1) FSBRI 155
FSBM 152 (AC)- (B)~ (BE) FSBRM 156
FSBB 153 (AC) = (E)~> (AC) (E) 157

FMP

FMPL
FMPM
FMPB

FDV
FDVL

FDVM
" FDVB

FIX

DMOVE

DMOVN-

EXCH
BLT

MOVE
MOVEI
MOVEM
MOVES

MOVN
MOVNI
MOVNM

MOVNS -

160
161
162
163

170
171

172
173

122

120
121

250
251

200
201
202
203

210
211
212
213

-161- SYSTEM REFERENCE

ALGEBRAIC REPRESENTATION AlS

(AC) X (E) > (AC) FMPR 164 (AC) X (E) » (ACO)

(AC) X (E) > (AC,AC+1) FMPRI 165 (AC) X E,0—>(AC)

(AC) X (E) > (E) - FMPRM 166 (AC) X(E)—~(E)

(AC) X (E) > (AC) (E) FMPRB 167 (AC) X (E) = (AC) (E)

(AC) ~ (E) = (AC) FDVR 174 (AC) + (E)»> (AO)

(AC) + (E) » (AC) FDVRI 175 (AC) ~ E,0~> (AC)
REMAINDER > (AC+1) ’

(AC) = (E)—~>(E) FDVRM 176 (AC) + (E)—>(E)

(AC) ~ (E) > (AC) (E) FDVRB 177 (AC) ~ (E)~ (AC) (E)

UFA 130 (AQ) + (E) = (AC+1) without normalization

DFN 131 - (ACE)—~> (AC,E)

FSC 132 (AC) X 2E>(AQ)

FLTR 127 (E) floated, rounded — (AC)

(E) fixed =~ (AC) FIXR 126 (E) fixed, rounded — (AC)

DFAD 110 (ACAC+1) + (EE+1) »> (AC,AC+1)
DFSB 111 (AC,AC+1) — (E,E+1) = (AC,AC+1)
DFMP 112 (AC,AC+1) X (E,E+1) = (AC,AC+1)
DFDV 113 (AC,AC+1) + (E,E+1) > (AC,AC+1)

(E,E+1) > (AC,AC+1) DMOVEM 124 (AC,AC+1)~ (E,E+1)

— (E,E+1) > (AC,AC+1) . DMOVNM 125 —(AC,AC+1)~ (EE+1)

Full Word Data Transmission

(AC) < (E)
Move E — (AC)g + 1 words starting with ((AC).) > ((AC)R) [see page 2-10]
(E) > (AC) MOVS 204 (E)s— (AC)
0,E = (AC) MOVSI 205 E,0— (AC)
(AC)~ (E) MOVSM 206 (AC)s— (E)
If AC#0: (E)—~ (AQ) MOVSS 207 (E)s—>(E)
If AC#0: (E)—> (AQ)
- (E) > (AO) MOVM 214 [(BE)I— (AC)
- [0,E] = (AC) MOVMI 215 0,E—(AQ)
— (AC) > (E) MOVMM 216 |(AC)|—>(E)
- (E)~>(E) MOVMS 217 |(BE)|=(E)

IfAC#0: (E) > (AC) If AC#0: (E)— (AC)

SYSTEM REFERENCE

-162-

Al6 MNEMONICS
Half Word Data Transmission
HLL 500 (E).—(AC), HLLZ 510
HLLI 501 0->(AC), HLLZI 511
HLLM 502 (AC)y. —~>(Ex HLLZM 512
HLLS 503 IfAC+#0: (E)—>(AC) HLLZS 513
HLLO 520 (E),,777777 = (AC) HLLE 530
HLLOI 521 0,777777 = (AC) HLLEI 531
HLLOM 522 (AC).,777777 -~ (E) HLLEM 532
HLLOS 523 777777 > (E)x HLLES 533
If AC#0: (E)—~ (AC)
HLR 544 (Ex~ (ACR HLRZ 554
HLRI 545 0->(ACkx HLRZI 555
HLRM 546 (AC) —> (E)x HLRZM 556
HLRS 547 (E)}— (B HLRZS 557
If AC#0: (E) > (AO)
HLRO 564 777777 (E), > (AC) HLRE 574
HLROI 565 777777,0~ (AC) HLREI 575
HLROM 566 777777,(AC)y. ~ (E) HLREM 576
HLROS 567 777777 ,(E)x.~>(E) HLRES 577
If AC+#0: (E)—(AO)
HRR 540 (B}~ (ACx HRRZ 550
HRRI 541 E-—-(ACxy HRRZI 551
HRRM 542 (ACORr—~>(Ex HRRZM 552
HRRS 543 IfAC+#0: (E) > (ACQ) HRRZS 553
HRRO 560 777777,(E)r = (AC) HRRE 570
HRROI 561 777771,E = (AC) HRREI 571
HRROM 562 777777,(AC)g = (E) HRREM 572
HRROS 563 777777 - (Ep HRRES 573
IfAC#0: (E)~> (AO)
HRL 504 (B~ (AC) HRLZ 514
HRLI 505 E- k(AC)L HRLZI 515
HRLM 506 (AC)R - (E), HRLZM 516
HRLS 507 (Ex~(E)x HRLZS 517

IfAC#0: (E)~» (AO)

(Ex,0~>(AC)
0> (AC)
(AC),0 > (E)

0- (E)
If AC # 0: (E) - (AC)

()., [(E) X 777777} = (AC)
0~ (AC)
(AC),,[(AC), X 777777] = (E)

(E)o X 777777 - (E)x
If AC#0: (E)~ (AC)

0,(E), > (AC)
0—-(AO)
0,(AC). ~> (E)

0,(E). > (E)
If AC+#0: (E)—>(ACQ)

[(E) X 7777771 (E), ~> (AC)
0-(ACQ)
[(AC) X 777777] (AC). ~> (E)

[(E) X 7777771 ,(Ex, > (E)
If AC#0: (E)—>(AO)

0,(E)x ~> (AC)
0,E ~> (AC)
0,(AC)g ~ (E)

0->(E),
If AC#0: (E)~> (AC)

[(E)1s X 7777771 (E)r = (AC)
[Eis X 777777] ,E - (AC)
[(AC)ys X 777777] (AC)g = (E)

(E)ys X 777777 > (B
If AC#0: (E)— (AC)

(E)r,0~> (AC)
E,0 - (AC)
(AC),0~ (E)

(E)r,0 > (E)
If AC#0: (E)~ (AC)

-163- SYSTEM REFERENCE

ALGEBRAIC REPRESENTATION Al7
HRLO 524 (E),777777 = (AC) HRLE 534 (E),[(E);s X 777777) = (AC)
HRLOI 525 E, 777777 = (AC) HRLEI 535 E,[E;s X 7777771 - (AC)
HRLOM 526 (AQ),777777 —~ (E) HRLEM 536 (AC),[(AC) s X 777777] = (E)
HRLOS 527 (Ew,777777 - (E) HRLES 537 (Eg,[(E)s X 7777771 = (E)

If AC+#0: (E)~> (AC) If AC#0: (E)- (AC)
In-out

CONO 70020 E - commanD CONSZ 70030 If statusg A E = 0: skip
CONI 70024 status —> (E) CONSO . 70034 Ifstatrusg A E#0: skip
DATAO 70014 (E) >pata | DATAI 70004 parta— (E)

BLKO 70010 (E) + 1000001 = (E)* ((E)r) = pATA [see page 2-77]
BLKI 70000 (E) + 1000001 = (E)* para = ((E)R) [see page 2-77]

Program Control

JSR 264 rLacs,(PC)— (E) E+1->(PC)
- JSP 265 FLags,(PC) > (AC) E - (PC)
JRST 254 E->(PC) [IfAC+#0,see page 2-63]
JSA 266 (AC)- (E) E,(PC) - (AC) E+1->(POC)
JRA 267 E-(PC) ((AC)) = (AO)
JFCL 255 IfAC A rLacs #0: E - (PC) ~ AC A FLAGS = FLAGS
XCT 256 Execute (E)
JFFO 243 If(AC)=0: 0> (AC+ 1)
If (AC) # 0: E - (PC) [see page 2-61]

MAP 257 PHYSICAL MAP DATA ~> (AC)

Pushdown List

PUSH 261 (AC) + 1000001 - (AC)* (E) = ((AC)p)

POP 262 ((AQ))~ (E) (AC) — 1000001 - (AC)*

PUSHI ~ 260 (AC)+ 1000001 = (AC)* rLAGSs,(PC) > ((AC)R) E — (PC)
POPJ 263 ((AC))r ~ (PC) (AC) — 1000001 »> (AC)*

Shift and Rotate

ASH 240 (AC) X 22> (AQ) ASHC 245 (AC,AC+1) X 22> (AC,AC+1)
ROT 241 Rotate (AC) E places ROTC 246 Rotate (AC,AC+1) E places
LSH 242 Shift (AC) E places LSHC 247 Shift (AC,AC+1) E places

*In the KI10, 1 is added to or subtracted from each half separately.

SYSTEM REFERENCE | -164-

Al8 MNEMONICS

Arithmetic Testing
AOBJP 252 (AC) + 1000001 - (AC)* If(AC)=0: E - (PC)
AOBIN 253 (AC) + 1000001 - (AC)* If(AC)<O0: E—(PC)

CAI 300 No-op CAM 310 No-op
CAIL 301 If(AC)E: skip CAML 311 If(AC) <(E): skip
CAIE 302 If(AC) = E: skip CAME 312 If (AC) = (E): skip
CAILE 303 If(AC)<E: skip CAMLE 313 If(AC) < (E): skip
CAIA 304 Skip CAMA 314 Skip
CAIGE 305 If(AC)=E: skip CAMGE 315 If(AC) = (E): skip
CAIN 306 If(AC)+#E: skip CAMN 316 If(AC) #(E): skip
CAIG 307 If(AC) > E: skip - CAMG 317 If(AC) > (E): skip
JUMP 320 No-op SKIP 330 ' IfAC+#0: (E)~>(AO)
JUMPL 321 If(AC)<0: E—>(PC) SKIPL 331 IfAC+#0: (E)— (AC)
. If (E)<0: skip
JUMPE 322 If(AC)=0: E— (PC) SKIPE 332 IfAC+#0: (E)—~> (AC)
If (E) = 0: skip
JUMPLE 323 If(AC)<0: E-> (PC) SKIPLE 333 IfAC+#0: (E)~>(AC)
A If(E)<0: skip
JUMPA 324 E->(PC) SKIPA 334 IfAC+#0: (E)—> (AC)
: Skip
JUMPGE 325 | If(AC)=0: E~— (PC) SKIPGE 335 IfAC+#0: (E)— (AC)
- If (E) = 0: skip
JUMPN 326 If(AC)#0: E - (PC) SKIPN 336 IfAC#0: (E)— (AC)
If (B) # 0: skip
JUMPG 327 If(AC)>0: E-= (PC) SKIPG 337 IfAC+#0: (E)— (AC)
If (E) > 0: skip
AOJ 340 (AC)+1—->(AO) SOJ 360 (AC)—1->(ACQ)
AOJL 341 (AC)+1->(AC) SOJL 361 (AC)—1->(AC)
If (AC)<0: E~>(PC) If (AC) <0: E—>(PC)
AOJE 342 (AC)+ 1> (AC) SOJE 362 (AC) - 1->(AC)
If (AC) = 0: E—- (PC) If (AC)=0: E-(PC)
AOJLE 343 (AC)+ 1-(AC) SOJLE 363 (AC) - 1> (AC)
If (AC)< 0: E—~>(PC) If (AC)<0: E~(PC)
AOJA 344 (AC)+ 1~ (AC) SOJA 364 (AC) - 1- (AQ)
E- (PC) E—- (PC)
AOJGE 345 (AC)+1-(AO) SOJGE 365 (AC)— 1—-(ACQ)
If (AC) =2 0: E—>4(PC) If (AC) = 0: E— (PC)

*In the K110, 1 is added to or subtracted from each half separately.

AOJN

AOJG

AOS

AOSL

AOSE
AOSLE
AOSA
AOSGE
AOSN

AOSG

TLN

TLNE
TLNA
TLNN

TLZ
TLZE

TLZA
TLZN

346

347

350

351

352

353

354

355

356

357

601
603
605
607

621
623

625
627

ALGEBRAIC REPRESENTATION

(AC) + 1 - (AC)
If (AC)#0: E— (PC)

(AC) + 1 - (AC)
If (AC)>0: E—(PC)

(E) +1-(E)

If (AC) #0: (E) > (AQ)

(E)+ 1~ (E)
If AC#0: (E) - (AC)
If (E) <0: skip

(E)+ 1~ (B)

IfAC#0: (E)~> (ACQ) -

If (E)=0: skip

(E) + 1> (E)
If AC #0: (E)~ (AC)

If(E)O0: skip

(E) + 1~ (E)

If AC+#0: (E)~> (AQ)
Skip

(E)+ 1->(E) ‘
If AC+#0: (E)~ (AC)
If (E)=>0: skip

(B) +1~(E)

If AC#0: (E) - (AC)
If (E) #0: skip

E)+ 1->(E)

If AC#0: (E)~> (AQ)
If (E)>0: skip

-165-

SOIN
SOJIG
SOS
SOSL
SOSE
SOSLE
SOSA
SOSGE

SOSN

SOSG

366

367

370

371

372

373

374

375

376

377

Logical Testing and Modification

No-op
If (ACy,ANE=0: skip
Skip
If (AC), AE #0: skip

(ACy A ~E = (AC),

If (AC)y, AE = 0: skip
(ACy, A~ E~(AC),

(AC), A~E - (AC),

If (AC)y, AE #0: skip
(AC), A~E~> (AC)

skip

TRN

TRNE
TRNA
TRNN

TRZ
TRZE

TRZA
TRZN

600
602
604
606

620
622

624
626

SYSTEM REFERENCE

(AC) - 1 (AC)
If (AC) #0: E~ (PC)

(AC) - 1> (AC)
If (AC)>0: E—~ (PO)

(E) - 1~>(B)
If AC # 0: (E)~ (AC)

(E) —1~>(E)
If AC #0: (E)~ (AC)
If (B)<0: skip

(B)-1->(E)

If AC+#0: (E)~> (AO)
If (E) = 0: skip

(E) - 1->(B)

If AC#0: (E)—> (AC)
If (E)<0: skip
(B)-1->(BE)

If AC#0: (E)~ (AQ)
Skip

" (B)- 1~ (E)

IfAC#0: (E)~ (AO)
If (E) = 0: skip

(E) - 1->(B)

Al9

IfAC#0: (E)~>(AC)

If (BE) # Q: skip

(E) = 1>(E)
If AC#0: (E)~ (AC)
If (E)> 0: skip

No-op

If (AC) AE =0: skip
Skip

If (AC)r ANE#0: skip

(AC)g A ~E > (AC)

If (AC)x AE =0: skip
(AC)x A ~E = (AC)

(AC)g A ~ E - (AC)x

If (AC)r AE #0: skip
(AC)r A~ E = (AC)

skip

SYSTEM REFERENCE

A20

TLC
TLCE

TLCA
TLCN

TLO
TLOE

TLOA
TLON

TDN
TDNE
TDNA
TDNN

TDZ
TDZE

TDZA

TDZN

TDC
TDCE

TDCA
TDCN

TDO

TDOE

TDOA
TDON

641
643

645
647

661
663

- 665
667

610
612
614
616

630
632

634
636

650
652

654
656

670
672

674
676

-166-

MNEMONICS

(AC)y. ¥ E— (AC),

If (AC), AE = 0: skip
(AC). vE = (AC),

(AC), VE~— (AC), skip
If (ACy. AE#0: skip

(AC), ¥ E~ (AC),

(AC) V E - (AC),

If (ACy, ANE = 0: skip
(AC), VE - (AC),

(AC)L VE > (AC), skip
If (ACy A E#0: skip

(AC), VE— (AC),
No-op

If (AC)A (E) = 0: skip-
Skip

If (AC)A (E) # 0: skip

(AO) A~ (E)~> (AO)

If (AC)A (E) = 0; skip
(AC)A ~ (E) = (AC)

(AC)A ~ (E) > (AO) skip

If (AC)A (E) #0: skip
(AC)A~ (E) = (AC)

(AC) ¥ (E) > (AC)

If (AC)A (E) = 0: skip
(AC)¥ (E) > (AQ)

(AC)¥ (E)~> (AC) skip

If (AC)A (B) #0: skip
(AC) ¥ (E) = (AC)

(AC)v (B) > (AO)

If (AC)A (E) = 0: skip
(AC)V (E) = (AC)

(AC)V (E) > (AC) skip

If (AC)A(E) #0: skip
(AQ)V (E)= (AO)

TRC
TRCE

TRCA
TRCN

TRO
TROE

TROA
TRON

TSN

TSNE
TSNA
TSNN

TSZ
TSZE
TSZA
TSZN

TSC
TSCE

TSCA
TSCN

TSO
TSOE

TSOA
TSON

640

642

644
646

660
662

664
666

611
613
615
617

631
633
635
637
651
653
655
657

671
673

675
677

(AC)g ¥ E - (AC)g

If (AC)x AE = 0: skip
(AC)k ¥ E = (AC)g

(AC)r ¥ E » (AC)z skip

If (AC)R AE #0: skip
(AC)g ¥ E — (AQ)g

(AC)gr V E—> (AC)

If(AC)R AE = 0: skip
(ACR V E= (AC)g

If (AC)g AE #0: skip
(AC)z V E~ (AC)

No-op

If (AC)A (E)g = 0: skip
Skip

If (ACQ)A (E)g# 0: skip

(AC) A~ (E)s > (AC)

If (AC) A (E)s= 0: skip
(AC)A ~ (E)s > (AC)

(ACO)A~ (E)s— (AC) skip

If (AC)A (E)s #0: skip
(AC)A ~(E)s > (AC)

(AC) ¥ (E)s = (AC)

If (AC)A (E)s = 0: skip
(AC) ¥ (E)s > (AC)

(AC) ¥ (E)s > (AC) skip

If (AC) A (E)g # 0: skip
(AC) ¥ (E)s = (AC)

(AC)V (BE)s > (AC)

If (AC) A (E)s = 0: ‘skip
(AC) v (E)s > (AC)

(AQ)V (E)s—> (AC) skip

If (AC)N (E)g #0: skip
(AC)V (E)s = (AC)

-167-

APPENDIX B

INPUT-OUTPUT CODES

The table beginning on the next page lists the complete teletype code. The
lower case character set (codes 140~176) is not available on the Model 35,
but giving one of these codes causes the teletype to print the corresponding
upper case character. Other differences between the 35 and 37 are men-
tioned in the table. The definitions of the control codes are those given by
ASCIIL. Most control codes, however, have no effect on the console teletype,
and the definitions bear no necessary relation to the use of the codes in con-
junction with the DECsystem~10 software.

The line printer has the same codes and characters as the teletype. The
64-character printer has the figure and upper case sets, codes 040-137
(again, giving a lower case code prints the upper case character). The “96”-
character printer has these plus the lower case set, codes 040-176. The
latter printer actually has only ninety-five characters unless a special charac-
ter is “hidden” under the delete code, 177. A hidden character is printed by
sending its code prefixed by the delete code. Hence a character hidden under
DEL is printed by sending the printer two 177s in a row.

Besides printing characters, the line printer responds to ten control charac-
ters, HT, CR, LF, VT, FF, DLE and DC1-4. The 128-character printer uses
the entire set of 7-bit codes for printable characters, with characters hidden

under the ten control characters that affect the printer and also under null .

and delete. In all cases, prefixing DEL causes the hidden character to be
printed. The extra thirty-three characters that complete the set are ordered
special for each installation.

The first page of the table of card codes [pages B6-8] lists the column
punch required to represent any character in the two DEC codes. The octal
codes listed are those used by the DECsystem—10 software. In other words,
when reading cards, the Monitor translates the column punch into the octal
code shown; when punching cards, it produces the listed column punch when
given the corresponding code. The remaining pages of the table show the
relationship between the DEC card codes and several IBM card punches.
Each of the column punches is produced by a single key on any punch for
which a character is listed, the character being that which is printed at the
top of the card.

Bl

SYSTEM REFERENCE

SYSTEM REFERENCE

B2

Even
Parity
Bit

o O = O = - O

O = = O O = = o O O m O = = O o

[y

7-Bit
Octal
Code

000
001
002
003
004
005

006
007
010

011
012

013
014
015
016
017
020
021
022

023
024

025
026
027
030
031
032
033

034
035

Character

NUL
SOH
STX
ETX
EOT
ENQ

ACK
BEL
BS

HT
LF

vT
FF
CR

NAK
SYN
ETB
CAN
EM
SUB
ESC

FS
GS

-168-

INPUT-OUTPUT CODES

TELETYPE CODE

Remarks

Null, tape feed. Repeats on Model 37. Control shift P on Model 35.
Start of heading; also SOM, start of message. Control A.

Start of text; also EOA, end of address. Control B.

End of text; also EOM, end of message. Control C.

End of transmission (END); shuts off TWX machines. Control D.

Enquiry (ENQRY); also WRU, “Who are you?” Triggers identification
(“Here is . . . ”) at remote station if so equipped. Control E.

Acknowledge; also RU, “Are you ... ?” Control F.
Rings the bell. Control G. '

Backspace; also FEO, format effector. Backspaces some machines.
Repeats on Model 37. Control H on Model 35.

Horizontal tab. Control I on Model 35.

Line feed or line space (NEW LINE); advances paper to next line. Repeats .
on Model 37. Duplicated by control J on Model 35.

Vertical tab (VTAB). Control K on Model 35.

Form feed to top of next page (PAGE). Control L.

Carriage return to beginning of line. Control M on Model 35.

Shift out; changes ribbon color to red. Control N.

Shift in; changes ribbon color to black. Control O.

Data link escape. Control P (DCO). :

Device control 1, turns transmitter (reader) on. Control Q (X ON).
Device control 2, turns punch or auxiliary on. Control R (TAPE,
AUX ON). ‘

Device control 3, turns transmitter (reader) off. Control S (X OFF).

. Device control 4, turns punch or auxiliary off. Control T (FARE, -
. AUX OFF). -

Negative acknowledge; also ERR, error. Controi U.

Synchronous idle (SYNC). Control V.

End of transmission block; also LEM, logical end of medium. Control W.
Cancel (CANCL). Control X.

End of medium. Control Y.

Substitute. Control Z.

Escape, prefix. This code is generated by control shift K on Model 35,
but the Monitor translates it to 175. ‘

File separator. Control shift L on Model 35.
Group separator. Control shift M on Model 35.

Even
Parity
Bit

OO OO~ OO0 =00 MmO =0~ 00 =0 m~, OO0 =00Q~= -0

-169- SYSTEM REFERENCE

TELETYPE CODE B3

7-Bit
Octal
Code Character Remarks -

036 RS Record separator. Control shift N on Model 35.
037 uUs Unit separator. Control shift O on Model 35.
040 SP Space.

041 !

042 "

043 #

044 $

045 %

046 &

047 ’ Accent acute or apostrophe.

050 (
051)
052 *
053 +
054 ,
055 - Repeats on Model 37.
056 . Repeats on Model 37.
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102

Repeats on Model 37.

O 00 IO DA W =S T

A v

Repeats on Model 37.

@ ® VY

SYSTEM REFERENCE ' ~170-

B4 INPUT-OUTPUT CODES

Even 7-Bit
Parity Octal
Bit Code Character ' Remarks

103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137 Repeats on Model 37.
140 ' Accent grave.

141

142

143
144

145

146

147

Repeats on Model 37.

Shift K on Model 35.
Shift L. on Model 35.
Shift M on Model 35.

P 2= TN XE<AHLIOTWOZEONR "I QTmWOO

— 0 O = O OO = O O00 = =00 =0~ 0,00 —~0~ 00— m—=0 —

" - 0O o

Even 7-Bit
Parity Octal
Bit Code Character

1 150 h
0 151 i
0 152 j
1 153 k
0 154 1
1 155 m
1 156 n
0 157 o
1 160 P
0 161 q
0 162 r
1 163 s
0 164 t
1 165 u

1 166 v
0 167 w
0 170 X
1 171 y
1 172 z
0o 173 {
1 174 |
0 175 }
0 176 ~
1 177 DEL

REPT

PAPER ADVANCE

- LOCAL RETURN
LOCLF
LOCCR

INTERRUPT, BREAK
PROCEED, BRK RLS

HERE IS

~171~ SYSTEM REFERENCE

TELETYPE CODE BS

Remarks

Repeats on Model 37.

This code generated by ALT MODE on Model 35.

This code generated by ESC key (if present) on Model 35, but the
Monitor translates it to 175.

Delete, rub out. Repeats on Model 37.

Keys That Generate No Codes

Model 35 only: causes any other key that is struck to repeat continuously
until REPT is released.

Model 37 local line feed.

Model 37 local carriage return.

Model 35 local line feed.

Model 35 local carriage return. ’

Opens the line (machine sends a continuous string of null characters).
Break release (not applicable).

Transmits predetermined 21-character message.

SYSTEM REFERENCE -172-

B6 INPUT-OUTPUT CODES
CARD CODES
PDP-10 PDP-10
Character ASCII DEC 029 DEC 026 Character ASCII DEC 029 DEC 026
Space 040 None None @ 100 84 84
! 041 1182 1287 A 101 121 12 1
" 042 87 085 B 102 122 122
043 83 086 C 103 12 3 123
$ 044 1183 1183 D 104 12 4 12 4
% 045 084 087 E 105 125 125
046 12 1187 F 106 126 126
047 85 86 G 107 127 127
(050 1285 084 H 110 128 12 8
) 051 1185 128 4 I 111 129 129
* 052 1184 11 8 4 J 112 111 111
+ 053 1286 12 K 113 112 112
054 083 083 L 114 113 113
055 11 11 M 115 11 4 114
. 056 1283 1283 N 116 115 115
/ 057 01 01 0 117 116 116
0 060 0 0 P 120 117 117
1 061 1 1 Q 121 118 118
2 062 2 2 R 122 119 119
3 063 3 3 S 123 02 02
4 064 4 4 T 124 03 03
5 065 5 5 U 125 04 04
6 066 6 6 \% 126 05 05
7 067 7 7 w 127 06 06
8 070 8 8 X 130 07 07
9 071 9 9 Y 131 08 08
: 072 82 11820r110 Z 132 09 09
: 073 1186 082 [133 1282 1185
< 074 128 4 1286 \ 134 11 87 87
= 075 86 83 1 135 082 1285
> 076 086 1186 0 136 1287 85
? 077 087 12820r 120 « 137 085 82
Binary 79
Mode Switch 1202468
End of File 121101,6789,1211016789

The octal codes given above are those generated by the Monitor from the column punches. The card
reader interface actually supplies a direct binary equivalent of the column punch, as listed in the following
two pages.

The first end-of-file punch is not recognized by Card Reader Stacker (CDRSTK); the other two are
recognized only by Card Reader Stacker.

~173- SYSTEM REFERENCE

CARD CODES : B7
Column Column
Punch Character Octal Punch Character Octal
None Space 0000 129 I 4001
0 0 1000 111 J 2400
1 1 0400 112 K 2200
2 2 0200 113 L 2100
3 3 0100 114 M 2040
4 4 0040 115 N 2020
5 5 0020 116 (o} 2010
6 6 0010 117 P 2004
7 7 0004 , 118 Q 2002
8 8 0002 119 R 2001
9 9 0001 01 / 1400
12 1 A 4400 02 S 1200
122 B 4200 03 T 1100
123 C 4100 : 04 U 1040
12 4 D 4040 05 \Y 1020
125 E 4020 06 w 1010
12 6 F 4010 07 X 1004
127 G 4004 08 Y 1002
12 8 H 4002 09 z 1001
Column 026 Data 026
Punch Processing Fortran 029 DEC 026 DEC 029 Octal
12 & + & + & 4000
11 - - - - - 2000
120 ? 5000
110 : 3000
82 : « : 0202
83 # = # = # 0102
84 @ - @ @ @ 0042
85 ’ 0 ’ 0022
86 = ’ = 0012
87 & \ " 0006
1282 ¢ ? [4202
1283 . .)) . 4102
1284 o) <) < 4042
1285 (] (4022

1286 + < + 4012

SYSTEM REFERENCE

B8

Column 026 Data
Punch Processing

1287

1182

1183 $
1184 *
1185

1186

11 87

082

083 ’ ,
084 %
085

086

087

121101
1202468

79
6789
1211016789

~174-

INPUT-OUTPUT CODES

026
Fortran 029

[
!

$ $

* *
)
-

See note

(%
<
>

DEC 026 DEC 029

! 0
: !
$ $
* *
[)
> ;
& \
;]
(%
rr” <«
>
% ?

End of File* End of File*
Mode Switch Mode Switch
Binary Binary
End of File; End of Filet
End of Filet End of Filet

NotE: There isa single key for the 0 8 2 punch on the 029 but printing is suppressed.
The Monitor translates the octal code for the 12 0 punch in DEC 026 to 4202 (which corresponds to a
12 8 2 punch), and the code for 11 0 to 2202 (11 8 2).

*Not recognized as end of file by Card Reader Stacker (CDRSTK).
tRecognized only by Card Reader Stacker (CDRSTK).

Octal

4006
2202
2102
2042

2022

2012
2006
1202
1102
1042
1022

1012

1006 -
7400 -
5252
xx05

175 SYSTEM REFERENCE

APPENDIX C

TIMING

The chart on the next two pages- shows the detailed timing for the KA10. A
similar chart for the KI10 and timing tables for both processors will be
added later.

Cl

SYSTEM REFERENCE -176-

C2 ' TIMING

DATA FETCH

I START '

]

y

y

MEMORY OPERAND
READ

A7+ RO

MEMORY OPERAND
READ /MODIFY

FLOATING POINT
IMMEDIATE

OTHER IMMEDIATES
OR NO
MEMORY OPERAND

*IF IN USER_MODE

a7+ 2 l [

MEMORY READ

26+ %)

*1F IN_USER MODE

12

INSTRUCTION »
9 STRL IF IN_USER MODE

ACCESS (CHART 1)

|, ADDRESS
CALCULATION

MEMORY
ACCESS

READ
(CHART 1)

[uoueorrnzs:l I
el

ASHC, ROTC, Lsnil I

FOVL, DIV

POP, -POPJ] L JRA, BLT

INDIRECT
BT ’SQT

YES

KA10
INSTRUCTION TIMING
FLOW CHART

FAST
REGISTERS
?

INSTRUCTIONS THAT USE READ/MODIFY

All-Boolean in Memory and Both modes except SETZ, SETA, SETCA, SETO
ADDM, ADDB8, SUBM, suss

HRRM, HRLM, HLRM, HLLM and alt half words in Self mode

MOVES, MOVNS, MOVMS, MOVSS

ILDB, IDPB (first time only) *

1BP, BLKI, BLKO, DFN, EXCH

AOS, SOS in all modes

=R

-177-

KA10 TIMING

SYSTEM REFERENCE

C3

Average except FMPRI

DIv. 10V

FSC

FAD. UFA
Average

FSB

Rounding (u.fem divide) only when actually done

Long mode (except divide)

FOVR, FOV (except FOVL)

FOVL with fast ACs

FOVL without fast ACs

CONO, CONI. CONSO, CONSZ, DATAQ, DATAI
CONO, CONI, DATAQ, DATAI
CONSO. Consz

BLKO, BLKI

821 (14 ransitions for 1.82)

Note' lmmediate mode multsphcation has only half the average number of transitions

13.78
152 + .25 per shift to normalize
238 { + 15 per shift to unnormalize
e + .25 per shift 1o normalize
Same as FAD + .18
+.96
+.69

12.00

13.28

1232

12 Then wait until 4.50 has passed since last here
+2.69
+2.90

60 Then turn into DATAO, DATA! and go to C2

(+ 1141 User) * memory read access + .89

MEMORY TIMING

MEMORY MAIO | MBIO | MBIO | FaST | D10 | wEMW0
: SINGLE SINGLE | SINGLE | SINGLE
PROCESSORS | g "pyLTi| SINGLE | MULTI | gy T in){OR MULTI[OR MULTI
cveLe 1.00 165 175 — 18 1.00
READ ACCESS 61 60 70 21 83 61
WRITE ACCESS 20 20 30 21 33 | 20
MODIFY
e TioN 57 97 .97 — 1.23 65
NOTES

MEMORY ACCESS TIMES INCLUDE DELAY
INTRODUCED BY 10 FEET OF CABLE

ALL TIMES ARE NOMINAL MAXIMUMS

INSTRUCTION EXECUTION DATA STORE
AL A —
s ~
Boolean (except ANDCA, ANDCB, ORCA, ORCB),
Hall Words (except HLR, HLRI, HRL, HRLI), MOVE,
MOVS, EXCH, JFCL, JRST, JSP, XCT, UUO 27
ANDCA. ANDCB. ORCA, ORCB, HLR, HLRI,
HRL, HRLI, JSR, JSA, JRA, Test class 62
MOVN, MOVM, ADD. SUB, AOBJP, ADBJN,
CAM, CAL, SKIP, JUMP, ADJ, ADS, SOJ, SOS a5
PUSH, PUSHJ, POP, POPJ, DFN .80
JFFO 80+ .19 umes number of leading Os mod 18
BLT 69 (+.11.t User) + memory write access + .52
I not done + 09 and go to C3
18P 38+ 26 overflow word houndary
L08B, DPB‘ First time 61 + .15 per size count GotoC1 MEM‘O*V WRITE
1LDB. 10PB Furst time 37 { ! -5 per size count } GotoC) ACCESS _(CHART 1)
+.26 1t overflow
~ ILDB, LDB Second time 45 + 15 per position count
10PB, DPB Second time .95+ 15 per position count
y 39 Left } N \
Shift group { 23 Right 215 per shift
MUL 6.02 +.13 per transition
Average except MULI 8.36 (18 wransitions for 2.34)
MUL 634 ¢+ .13 per transition NO MEMORY READ/MODIFY RESULT TO
Average except IMULI 151 {9 transitions for 1.17) I uss‘uu’] [Ac/czss l I . MEMORY
FmP 6.39 + .13 per transttion .

)
L=]

A7+ *n)
*|F IN USER MODE

SEE MEMORY
TIMING CHART
FOR CYCLE
COMPLETION TIME

MEMORY WRITE
ACCESS ,(CHART 1)

17+ %)
* IF IN_USER MODE

MEMORY WRITE
ACCESS (CHART 1)

-179-
APPENDIX D

KA10 ALGORITHMS

All arithmetic operations on full and half words are performed in the 36-bit
parallel adder. There are two sets of summand inputs to the adder, each set
of 36 supplying one input to each adder stage. One set supplies the contents
of AR, its complement, or zero; the other set supplies the contents of BR, its
complement, or zero. Each stage also has a carry input, which is generated
by the next less significant stage. Every stage has two outputs; the carry
already mentioned, and a sum. The 36 sum outputs together form the sum
of the two input words. The least significant stage has a carry input from the
logic for performing twos complement arithmetic and incrementing by one.
The negative of a number is formed at the sum outputs simply by supplying
the complement of the number at one set of inputs and asserting the carry
into stage 35. Adder stage 17 has extra input gating so that 1 can be added
to or subtracted from both halves of AR simultaneously.

The adder produces a sum in the same way that one adds binary numbers
using pencil and paper. Each adder stage has three inputs, two summand bits
and a carry, and two outputs, sum and carry. The sum output of a given
stage is 1 if any one or all three of the inputs are 1. The carry out is 1 if two
or three of the inputs are 1. Calculations are performed as though the words
represented 36-bit unsigned numbers, ie the signs are treated just like magni-
tude bits. In the absence of a carry into the sign stage, adding two numbers
with the same sign produces a plus sign in the result. The presence of a carry
gives a positive answer when the summands have different signs. The result
has a minus sign when there is a carry into the sign bit and the summands
have the same sign, or the summands have different signs and there is no
carry.

Thus the program can interpret the numbers processed in fixed point
arithmetic as signed numbers with 35 magnitude bits or as unsigned 36-bit
numbers. A computation on signed numbers produces a result which is
correct as an unsigned 36-bit number even if overflow occurs, but the hard-
ware interprets the result as a signed number to detect overflow. Adding
two positive numbers whose sum is greater than or equal to 23 gives a nega-
tive result, indicating overflow; but that result, which has a 1 in the sign bit,
is the correct answer interpreted as a 36-bit unsigned number in positive
form. Similarly adding two negatives gives a result which is always correct
as an unsigned number in negative form.

All operations discussed below have two operands, one of which is
supplied to the adder from BR, which acts simply as a buffer and has no
special input gating. MQ has shift gating so it can function as a low order
extension of AR for handling double length operands. All actual computa-
tions take place in the single 36-bit adder, but the sum output can be placed
in either AR or MQ, and all transfers to MQ from AR or BR are made
through the adder. In multiplication MQ holds the multiplier and thus

D1

SYSTEM REFERENCE

This appendix treats only the
algorithms used in the KA10;
for information on the KI10
algorithms refer to the main-
tenance manual.

SYSTEM REFERENCE
D2

-180-

ALGORITHMS

controls the summation of partial products; as the multiplier is shifted out,
the low order word of the product is shifted in. In division MQ supplies the
low order part of the dividend to AR as the quotient is being constructed in
MQ.

In any extended arithmetic operation, the requisite number of steps is
counted in the 9-bit shift counter SC, which has a carry network for this
purpose. SC also has a 9-bit adder for use in computations on floating point
exponents and size and position calculations in byte manipulation.

FIXED POINT ALGORITHMS

Fixed point numbers are explained in detail in §1.1. For convenience let us
take the computer representation of the positive number x as +{x] where
the brackets enclose the number in bits 1-35. Similarly the representation
of —x is —[23% —x]} or —[1 — x] depending on whether we are regarding num-
bers as integers or as proper fractions. The most negative number, —23°, has
the form —[0], which is equivalent to the unsigned integer 23°.

Addition. There are four cases of addition of two positive 35-bit numbers
xand y.

L x+y A

IL =x)+(»)

III. x+ (=), x=y
V. x+ (=), x<y

The operands are held in AR and BR, but it makes no difference which one
is in which register. The result appears in AR. For convenience in the
exposition we shall regard the numbers as proper fractions; to view them as
integers, simply substitute 235" for each occurrence of ““1”. Since the twos
complement format allows a representation for — 1 either x or y may be 1 in
II, and y may be 1 in IV, ‘

I. If x+y <1 the adder output placed in AR is +[x+y]. If x+y =1
the carry out of stage 1 changes the sign. Consequently if the addition of
two positive numbers gives a negative result, it is apparent that the sum
exceeds the capacity of the register. The processor detects the overflow by
checking the sign carries: there is a carry into the sign stage but none out of*
it. AR then contains

—[x+y-1]

II. Ignoring the carry into the sign b1t in the addition of two negatives
would give
—[1-x]
=[1-y]
+[1+1—-x-y]

If x + y < 1 the carry changes the sign and the result is

-181-

FIXED POINT

=[l1-x-y]

which is the representation of —(x +y). If x+ y > 1 there is no carry into
the sign, and its absence in the presence of a carry out indicates overflow.
AR contains

tl=-(x+y-1)]

] HI. Ignoring the carry into the sign in an addition where the signs are
different would give

+ [x]
—[1~yl
—[1+x—-y]

Since x >y, it follows that 1+ x — y = 1. Hence the carry changes the sign
and the result is

+ [x -yl

When the operand signs are different, the magnitude of the result cannot
exceed the larger operand magnitude and there can be no overflow. Since
in this case the positive number is at least as large in magnitude as the
negative, there is always a carry into the sign, and this added to the operand
minus sign produces a carry out.

IV. The addition of numbers of differing signs where the negative has the
" larger magnitude gives

+ [x]
=-[1-y]
= [T +x—y]

Since x <y, then 1 +x —y <1. Hence there are no carries associated with
the sign and no overflow. The above result is the twos complement represen-
tation of x — y, ie —(y —x).

Subtraction. The minuend from AC is in AR, and the subtrahend, which
is either 0,E or the word from location E, is in BR. Subtraction is done
directly by adding the twos complement of BR to AR. The logic supplies
the complement of BR to the adder and a carry into the adder LSB.

Let x be the absolute value of the number in AR, and y the absolute value
of the number in BR. There are four cases.

L x=(y)
11 (—x)—-y
n. x-y, x=y; =x)—-(»), =x<y

IV. x-y, x<y; =x)=(=y), x>y

These correspond respectively to the four cases of addition discussed
previously.

Multiplication. The multiplier, 0, £ or the contents of location E, isin
MQ, and the multiplicand from AC is in BR. AR is clear. The 36-step
procedure is as follows.

SYSTEM REFERENCE
D3

SYSTEM REFERENCE
D4 ..

-182-

ALGORITHMS

If MQ35 (the multiplier LSB) is 1, subtract BR algebraically from AR, but
put the result in AR shifted one place to the right, with the LSB of the result
going into MQO, and shift MQ right so a bit of the multiplier is dropped from
MQ35. Put the sign of the result in ARO and ARI (as though the shift
followed the subtraction and did not affect the sign but did move it to
ARI1). If MQ35 is O, s1mp1y shift AR and MQ right one, with AR35 gomg
into MQO.

In each subsequent step perform only the shift if the bits moved in and
out of MQ35 on the previous step were the same. If they were different, add
or subtract along with the shift: if the shift moved a 0 in and a 1 out, add
BR to AR;ifa l inand a O out, subtract BR from AR.

Thus the low order bits of the running sum of partial products are shifted
into. MQ as the multlpher is shifted out. At each step the effect of the multi-
plicand in BR on the partial sum in AR is one bmary order of magnitude
greater than'i in the precedmg step because the partial sum was shifted right.
Therefore BR can be combined directly with AR. If MQ35 is initially O,
there is no subtraction until a 1 is shifted into it. Simple shifting then
oontmues until. the next transmon (from 1 to 0), following which BR is
added..

The process continues in thls way, subtracting at every O-l transition,
adding at every 1-O transition. After 35 steps MQO-34 contains the low
half of the product magnltude and MQ35 contains the sign of the multiplier.
At the final step, add or subtract as required but put the result directly into
AR; shift only MQ to move the low magnitude into the correct position and
make MQO equal to the sign of the wholeé product.

If the original operands. were both negative and the result is also negative,
set Overflow; this can occur only when —2% is squared. In IMUL, if the high
word is not null (ie if AR is neither clear nor all 1s), set Overflow; move MQ
to AR for storage of the low word.

To see that this procedure results in a correct product, consider the posi-
tive bmary mteger

100111011

876543210

where the decimal digits below the binary digits are the powers of 2 corres-
ponding to the bit positions. “This number is obviously equal to

100000000
+ 111000
+ V 11

Now an n-bit string of 1s whose rightmost bit corresponds to 2% is equal to
2k+n_ 2k or equivalently 2%(27 — 29), je 2" — 2° is a string of n 1s and the 2*
shifts the strmg left k places. Hence

s = oo

100000000 =
111000 = 233-23 = 26-23
) 11 = 22¥0_20 = 922_90
100111011 = C2°-28420-23+422-20

In this last representation, each power of 2 that is subtracted corresponds to

-183-

FIXED POINT

a transition from O to 1 (scanning right to left), whereas each that is added
corresponds to a 1-0 transition. The largest term corresponds to the transi-
tion to the sign bit, which is O for a positive number. The multiplication
algorithm interprets the multiplier in this manner, alternately subtracting
and adding the multiplicand to the partial sum in the order-of-magnitude
positions corresponding to the transitions. If a multiplier of the same magni-
tude were negative, it would have the form

1011000101

-876543210

in which the extra bit at the left represents the sign. The number is now
equivalent to '

—294+28 - 26423 - 2242120

wherein opposite signs correspond to opposite transitions. The algorithm
may thus use exactly the same sequence for a negative multiplier: this time
the subtraction of greatest magnitude is detected by the ‘transition to the
sign bit, which is now 1. : :

Division. The divisor, 0,E or the contents of location E,is in BR. In
DIV the high and low halves of the dividend from two accumulators are in
AR and MQ respectively. In IDIV the one-word dividend from AC is in AR.
The two types of division differ mainly in setting up the dividend; in both
cases the algorithm processes a positive dividend to get a positive quotient.

In DIV if the dividend is negative (ARO = 1), make it positive and set the
negative dividend flag. To negate the dividend, move the low word to AR
and the complement of the high word to MQ. Then move the negative of
the low word back to MQ and the complement of the high word back to AR.
Now the ‘double length negative of the original dividend is in AR and MQ
unless MQ is clear; in this event add 1 to AR to give the twos complement
negative of the high word. Once the dividend is in positive form shift MQ
left one place to close the hole between the two halves; in other words drop
the low sign and get the 70-bit magnitude into AR1 -35, MQ0-34.

If the IDIV dividend in AR is negative, negate it and set the negative
dividend flag. Move the one word dividend in positive form to MQ and clear
AR. Shift MQ left, as the algorithm operates on a double length dividend in
both types of division although the high part is null in this case.

After the dividend is set up, compare the divisor with it to determine
whether the division can be performed. Subtract the absolute value of the
divisor from the high half of the dividend (if the divisor is positive, subtract
it; if negative, add it). Since the dividend is positive, the result is also
positive if the magnitude of the divisor is less than or equal to the number in
AR. For a fixed fraction, the divisor is subtracted from the actual dividend
and no overflow is allowed. For a fixed integer, AR is clear and the result is
positive only for a zero divisor; the worst possible case is the division of
2% -1 by 1, whose integral result can be accommodated. (Placing the one
word dividend in MQ effectively multiplies it by 273, making it the frac-
tional part of a two word dividend with the binary point in the middle. The
quotient is then a proper fraction, which is multiplied by 2% simply by
interpreting it as an integer.) Thus if the result of this initial subtraction is

SYSTEM REFERENCE
D5

SYSTEM REFERENCE
D6

-184-

ALGORITHMS

positive, set Overflow and No Divide, and terminate the procedure so the
processor goes on to the next instruction. Dividing by zero is of course
meaningless. The reason for prohibiting a fractional division where the result
would be greater than 1 is that it is impossible to determine the position of
the binary point in the quotient. So it is up to the programmer to shift the
dividend to the correct position beforehand. If the result of the initial sub-
traction is negative, the division can be performed and the processor goes
into the division loop. ‘

In division on paper, one subtracts out the divisor the number of times it
goes into the dividend, then shifts the dividend one place to the left (or the
divisor to the right) and again subtracts out. In binary computations the
divisor goes into the dividend either once or not at all. Each subtraction of
the divisor thus generates a single bit of the quotient. If the subtraction
leaves a positive difference, ie if the dividend is larger than the divisor, a 1 is
entered into the quotient. If the difference is negative, a O is entered. To
compensate for subtracting too much, the hardware could add the divisor
back into the dividend before going to the next subtraction step. But the
PDP-10 algorithm instead shifts first and adds the divisor back in at the new
position. It then continues to shift and add putting Os into the quotient
until the result again becomes positive. This procedure generates the same
quotient without ever going back a step.

The hardware procedure is as follows. As each addition or subtraction is
formed in the adder, put the result in AR shifted one place to the left with
AR35 receiving a new bit of the dividend from MQO, and shift MQ left
bringing in a bit of the quotient at MQ35. The bit brought in is the comple-
ment of the sign from the adder: if the divisor does not go into the dividend,
the resulting minus sign (1) produces a 0 quotient bit; if the divisor does go
in, the plus sign gives a 1. Each step loads one bit of the quotient into MQ35,
and the low half of the dividend is shifted out of MQ as the quotient is
shifted in.

The first step is the test subtraction. In each subsequent step, subtract
the absolute value of the divisor if the quotient bit generated in the previous
step is 1, but add it back in if the quotient bit is 0. Since the divisor may
have either sign, subtract it algebraically if its sign differs from the quotient
bit, add it if its sign is the same.

The hardware executes 36 steps to generate 35 magnitude bits. The initial
test step must give a 0, which serves as the sign since we are producing a
positive quotient. In the final step put the result of the addition or subtrac-
tion directly in AR without shifting so the remainder is in the correct
position, but shift MQ left putting the sign from the first step in- MQO and
bringing in the last quotient bit. (The bit dropped out of MQO is superfluous;
it was brought into MQ35 when the hole was closed between the dividend
halves.) '

To complete the division we must make sure the remainder is correct and
determine the correct signs of the resuits. Since the operations were per-
formed on positive operands, the remainder should also be positive. A
negative remainder indicates that too much has been subtracted. To correct
this add the absolute value of the divisor back in. If the negative dividend
flag is set, negate AR so the remainder has the sign of the original dividend.

-185_

FLOATING POINT

Now move the corrected remainder to MQ and move the quotient to AR.
If the negative dividend flag and the divisor sign are of opposite states,

negate AR to produce the correct quotient sign. The correct quotient and

remainder are now in AR and MQ ready for stdrage.

As an example of the way this algorithm operates, consider a division of
3-bit fixed fractions with a dividend of +.100100 and a divisor of +.101.
By paper computation we obtain the quotient this way.

d11

101/100.100
101

1000
101

110
101

1

Taking the processor registers to be four bits in length, AR contains 0.100,
MQ has 0.100, and BR has 0.101. Before starting we close the hole changing
MQ to 1.000. The sequence has four steps.

0.100 1.000
-0.101

: 1.111
1 « 1.111 0.000
+0.101
0.100
2« 1.000 0.001
—0.101
0.011
3« 0.110 0.011
=-0.101

0.001
4 ~0.001 <0.111

The quotient is in MQ at the right, the remainder in AR at the left.

FLOATING POINT ALGORITHMS

§1.1 explains floating point numbers and §2.6 discusses the general charac-
teristics of floating point arithmetic. Exponent computations are done in
the SC adder using the exponents and signs from the floating point operands.
Remember, the sign is that of the whole number, not of the exponent.
Although bits 1-8 of a floating point number represent an exponent in the
range —128 to +127, the discussion is entirely in terms of the excess 128
exponents in positive form, e the set of numbers 0-255. Computations
generally use twos complement operations even though the exponent in a

SYSTEM REFERENCE
D7

SEYSTEM REFERENCE

-136-

ALGORITHMS

negative number is a ones complement. The SC sign bit is used to detect
exponent overflow and underflow.

" After exponent calculations are complete, operations on the fractions are
done by the fixed point logic in AR, BR and MQ. Bits 1-8 of AR and BR
are filled with null bits, Os in a positive number, 1s in a negative. Double
length operands are in AR and MQ with MQ8-35 forming a magnitude
extension of AR. In almost all circumstances the logic treats AR0O-35 and
MQ8-35 as a single 64-bit register; in all two-word shifting AR35 is con-
nected to MQ8 and MQO-7 is ignored. Except in division the fixed point
calculation generates a double length fraction, which is shifted arithmetically
(in right shifting the sign goes into AR1; in left shifting the sign is unaffected
and Os enter MQ35). Almost all floating point instructions normalize the
result, thus making use of the low order part even though the instruction
may store only the high order word.

Addition, Subtraction. E,0 or the word from location E is in BR, and AC

~is in AR. For subtraction move the negative of the subtrahend from BR to

AR and move the minuend from AR to BR. This reduces subtraction to
addition, so the rest of the algorithm is the same for both.

The initial objective is to determine the difference between the exponents
and to determine which exponent is the larger. If the signs of the operands
differ, add the exponents into SC. If the signs are the same, subtract the BR
exponent from the AR exponent by adding the twos complement. Let x

~and y be the AR and BR exponents in positive form. The table below shows

the calculations as a function of the operand signs, and the sign of the result
in SC as a function both of the operand signs and the relative values of x
and y.

AR+, BR+ AR+, BR- AR—, BR+ AR—-, BR—-
+{x] _ +[x] —[255 —x] —[255 —x]
—[256 -yl —[255 -yl +y] +[1+y]
-[256 +x —y] —{255+x -yl —[255—x+yl —[256 —x +y]

SC+ SC- SC+ SC- SC+ SC- - 8C+ SC—
x=zy x<y x>y xSy x<y x=2y x<y x>y

As can be seen from the above, if AR already contains the number with the
smaller exponent, the SC and AR signs differ. Hence if the SC and AR signs
are the same, switch BR and AR so the number with the smaller exponent
can be shifted. If the exponents are equal, the signs may or may not be the
same but it matters not whether the transfer takes placc.

To control the shifting we must now get the negative of the difference
between the exponents. Let d be [x —y|. There are four cases as a function
of the SC sign and whether the AR and BR signs are equal. The second
column lists the present contents of SC, the third tells what must be done to
arrive at —[256 — d] in SC.

SC+, ARO = BRO +{d] Negate SC
SC+, ARO # BRO +[d—1] . Complement SC

-187-

FLOATING POINT

SC—, ARO = BRO —[256 —d] Do nothing
SC—, ARO # BRO —[255—-d] Add 1 to SC

If d < 64 (indicated by a negative SC with a 0 in either SC1 or SC2) nullify
AR1-8 and shift AR and MQ right d places so its bits correctly match the
BR bits in order of magnitude. If d > 64 clear AR for its contents are of
no significance. ,

Now move the larger exponent from BR to SC in positive form, nullify
BR1-8, and add BR and AR into AR as fixed fractions. Finally enter the
normalizing sequence.

This sequence first tests for a zero result. If AR and MQ8-35 are clear,
bypass the rest of the procedure. If the fractional result has overflowed into
ARS8 (indicated by ARO # ARS8 or AR8 = 1 and AR9-35 = 0), shift right
and increase the exponent by one. The number is now normalized.

Complement the exponent in SC. If the instruction is not UFA and the
number is not normalized go into the normalizing loop. In each step shift
the double length fraction left and add 1 to the negative exponent
(decreasing its magnitude by 1). Terminate the loop when the fraction is
normalized, indicated by the sign and the MSB of the fraction being different
(ARO # AR9) or the magnitude being % (AR9 = 1 and AR10-35 = 0).

If the instruction specifies rounding, adjust the high fraction so it is
rounded and is in twos complement form if negative. The rounding is away
from zero. For a positive result the high fraction must be increased if the
- low fraction is greater than half the value of the high fraction LSB. In a
negative result the high fraction is a ones complement, which is one greater
in magnitude than the twos complement. Hence it is already rounded and
should be decreased in magnitude if the low fraction is < 4LSB. In either
case add 27?7 into AR if MQS8 is 1 unless MQ9-35 is clear in a negative
number. A 1 in MQ8 indicates a low fraction > 4LSB in a positive number,
< %2LSB in a negative number. The condition that MQ9-35 not be zero in
a negative number is the case where the low fraction is exactly LSB. If the
high fraction is actually changed, renormalize it. A single normalizing shift
is all that is required and it occurs in only two cases: a right shift when
1 =27 is rounded, a left shift when —% is changed to a correct twos
complement.

Once the number has been normalized (and rounded if necessary) the
exponent is in negative form. Thus if the SC sign bit is 0, set Overflow and

Floating Overflow. If SCI is also 0, the sign bit must have been changed by

decreasing the exponent, so also set Floating Underflow (the maximum
possible exponent overflow is 128 giving an SC contents of 777g, and this
can occur only in division). Insert the exponent in correct form into AR1-8.

The result is now ready to store from AR unless the instruction is in long
mode. To ready the double length result subtract 27 from the positive expo-
nent in SC. Save the high word in MQ, and move the low word to AR, but
only if the decreased exponent is still positive. If the sign is 1, the true
exponent of the low word is less than —128, so clear AR. (Note that this
condition is also true if the low exponent is > 127, which can occur only if
the high exponent is > 154.) If the low word is nonzero, shift AR right
one place to put the fraction in bits 9-35 (remember that all shift operations

SYSTEM REFERENCE
D9

SYSTEM REFERENCE
D10

-188-
ALGORITHMS
use MQ8-35), clear ARO so the low word has a positive sign even if the

double length fraction is negative, and insert the low exponent in positive
form in bits 1-8. Finally switch AR and MQ so the high and low words are

-in correct position for storage.

Scaling. The 9-bit signed scale factor from bits 18 and 28-35 of E is in
SC, and AC is in AR and BR. If the floating point number being scaled is
positive, simply add the sign and exponent from BRO-8 to SC; if the number
is negative, add the complement of BRO-8 to SC. Let x be the exponent in
positive form and let y be the absolute value of the scale factor. There are
only two cases, '

+{x] +{x]
+y] -[256 —y]
+[x +y] +[x —y]

and in either the result is in positive form in SC.

Now enter the normalizing sequence described under floating addition.
Only left shifting can occur bringing Os in from MQ. The result can be zero,
and exponent overflow or underflow can occur; but there is no rounding,

“and at the end the one-word result is in AR ready for storage.

Multiplication. E,0 or the word from location E is in BR, and AC is in
AR. Place the AR exponent in positive form in SC, and add the positive
form of the BR exponent to it. Since both are in excess-128 code, subtract
128. Save the result in the floating exponent register FE so SC can be used
to control the multiplication of the fractions.

Nullify the exponent parts of AR and BR. Move the multiplier from BR
to MQ and the multiplicand from AR to BR. Clear AR. Now multiply the
fractions by the same procedure given for fixed point multiplication with
the following differences:
¢ There are only 28 steps instead of 36.
¢ The shift register extension of AR for the construction of the product is
MQ8-35. As the multiplier is shifted out, bits of the product come in
at MQS.
¢ In the final step place the adder output directly into AR but do not shift
MQ - the low fraction is in MQ8-34, the correct position for normalization.

Clear MQ35, move the exponent back to SC, and enter the normalizing
sequence described under floating addition. If the operands are normalized,
at most one left shift is needed to normalize the result.

Division. The divisor, E,0 or the contents of location E, is in BR. The
dividend from AC is in AR. In long mode the low half of the dividend from
the second accumulator is in MQ; otherwise MQ is clear.

If the dividend is negative, make it positive and set the negatlve dividend
flag. Except in long mode, negate the dividend simply by negating AR. For
long mode follow the procedure given for DIV in the second paragraph of
the fixed division algorithm. With a floating point operand the left MQ shift
puts the low fraction in MQ8-34.
~ Place the AR exponent in positive form in SC. Subtract the magnitude of
the BR exponent from it by adding the negative form of the exponent (ones
complement) plus 1. Since the excess-128 factors cancel in the subtraction,
add 128. Save the result in the floating exponent register FE so SC can be

-189-

FLOATING POINT

used to control the division of the fractions.

Nullify the exponent parts of AR and BR. Subtract the absolute value of
the divisor from the high half of the dividend. If the. result is positive,
indicating the divisor is less than or equal to the dividend, shift AR and MQ
right and increase the exponent in SC by 1. Save the adjusted exponent in
FE. The shift divides by 2, so if the operands are normalized, the dividend
must now be less than the divisor. - A

Now divide the fractions by the same procedure given for fixed point
fractional division with the following differences:
¢ Since the dividend has already been adjusted, the test in the first step
stops the division only if the divisor is zero, or is unnormalized and less than
the dividend. A normalized divisor cannot cause the quotient to overflow.
If the result of the initial subtraction is positive, terminate the procedure
and set Floating Overflow as well as Overflow and No Divide.
¢ Instead of 36 steps there are only 29 if the instruction specifies rounding,
otherwise 28.
¢ The shift register extension of AR is MQ8-35. As quotient bits are
brought in at MQ35, dividend bits are supplied to AR35 from MQS8. The
shifting clears MQO-7.
¢ The MQ shift in the final step places a 27-bit quotient fraction in MQ9-35
or a 28-bit fraction in MQ8-35.
¢ As in the fixed point algorithm generate the correct signed remainder, put
it in MQ, and move the quotient to AR but leave it positive.

If the instruction specifies rounding, shift AR right placing the 27-bit
fraction in the correct position, and if the bit shifted out of AR35 is 1, add
it back into AR35 to round the positive quotient. If the quotient is zero
bypass the rest of the procedure. The reaminder will also be zero except in
an FDVL where the double length dividend is unnormalized and its high
fraction is zero.

Complement the exponent in SC. If the instruction uses normalized
operands the initial dividend adjustment guarantees that the quotient will be
normalized. If it is not, shift AR left (bringing Os into AR35) until a 1
appears in AR9, each time increasing the negative exponent by 1 (decreasing
its magnitude). _

Since the exponent is in negative form, if SCO is 0, set Overflow and
Floating Overflow. If SC1 is also 0, the sign bit must have been changed by
decreasing the exponent, so also set Floating Underflow. Insert the exponent
in correct form into AR1-8. If the negative dividend flag and the divisor
sign (BRO) are of opposite states, negate AR to produce the correct quotient
sign.

The quotient is now ready for storage from AR and the remaining opera-
tions are performed only for long mode. Save the quotient in BR and bring
the high half of the original dividend from AC to AR. Put the dividend
exponent in SC. Decrease its magnitude by 26 if the dividend was shifted
right at the beginning to allow the division to be performed; otherwise
decrease it by 27. Move the remainder to AR and insert the exponent in it
provided the remainder is not zero and the exponent is within the proper
range, —128 to 127 (the test is that the sign resulting from the exponent
calculation is the same as the sign of the remainder). If the exponent is

SYSTEM REFERENCE
D11

SYSTEM REFERENCE
D12

-190-

ALGORITHMS

outside that range clear AR; the assumption is that the remainder is of no
significance (ie the exponent is too small). Move the remainder with its
correct exponent from AR to MQ and put the quotient back in AR. The
two words are now ready for storage.

Double Precision Division. The software routine that performs double
precision floating point division and the algorithm it utilizes are given at
the end of §2.11. FDVL performs the d1v151on

Alb = q+r2'27/la

where g and r are the quotient and remainder. In a double precision
division the divisor is of the form

B = b+d27
Using the expansion(
2 3
Lo l[1—X+y——y—+...] 02 < x)
x+y x x x? x?

and letting x = b and y = d27? gives

f =27 =27 2~ -54 3581
A _ (q+r2)[1_d2 L2 P2 +]

B b b b? b3
Multiplying out and gathering like terms gives

A 1 d d?
= = qH+-0—qD2T - =(—qd)2*+ = (r—qd)2¥ — ...
3 q b(qd) B2 4D 5o ¢ qd)

where the first two terms on the right are those in the equation at the
bottom of page 2-67.
The ratio Qf adjacent terms is

Tn +1 = _d 2 -27
T, b

In an alternating convergent series, the error due to truncation 1s smaller
than the first term dropped. Therefore

-27
|Error] < 2

T,

Since the maximum value of d is less than 1 and the minimum value of b
(normalized) is %,

\Error] < T,27%

-191- SYSTEM REFERENCE

APPENDIX G

BIT ASSIGNMENTS

The drawing on pages G2 and G3 shows the formats of the various types of
words used by the processor. Bit assignments in the condition and data words
for the IO instructions will be added later.

Gl

SYSTEM REFERENCE

G2

-192-

BIT ASSIGNMENTS

BASIC INSTRUCTIONS

BLT POINTER {XWD]

INSTRUCTION CODE
{INCLUDING MODE) AF ! X Y
0 89 12 13 14 17 118 35
IN-OUT INSTRUCTIONS
tr DEVICE CODE INSToDEToN) 7 X Y
0 23 9 10 12 13 14 17 18 35
PC WORD
FLAGS 00 | 0 | 0.0 PC
12; 13 17 18 35
* CARRY | CARRY |FLOATING| FIRST USER ADDRESS FLOATING | no WDISABLE BYPASS IN
OVERFLOW| "¢ 1 |overFLow 83'& USER | \wour | PUBLIC FAILURE | TRAP 2 | TRAP 1 UNDER- | o ipE X110 EXECUTIVE, MODE
0 1 2 3 4 5 6 7 8 9 !0 " 12

SOURCE ADDRESS

DESTINATION ADDRESS

17 18

BLKI/BLKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD {10WD]

— WORD COUNT

ADDRESS-1
0 17 18 35
BYTE POINTER
POSITION P SIZE § 7 X Y
56 1012 13 14 17 18 35
BYTE STORAGE
- $ BiTs te P BITs -
BYTE NEXT BYTE
4] 35-P-5-1 35-P 35-P+1 35
PAGE MAP WORD
DATA FOR EVEN NUMBERED VIRTUAL PAGE DATA FOR ODD NUMBERED VIRTUAL PAGE
PHYSICAL PAGE - PHYSICAL PAGE
ALP\W|S|X ADDRESS BITS 14-26 A\P|S|\W|X ADDRESS BITS 14-26
0 1 2 3 4 5 17 18 19 20 21 22 23 . 35

PAGE FAIL WORD

VIRTUAL PAGE
4 ADDRESS BITS 1826 FAILURE TYPE
[8 9 17 A 35
20 SMALL USER VIOLATION 22 PAGE REFILL FAILURE

21 PROPRIETARY VIOLATION 23 ADDRESS FAILURE

IF BIT 3115 0, BITS 31-35 HAVE THIS FORMAT

014 W

~193- SYSTEM REFERENCE

WORD FORMATS

FIXED POINT OPERANDS

SIGN
1-

BINARY NUMBER (TWOS COMPLEMENT)

(U]

LOW ORDER WORD IN DOUBLE LENGTH FIXED POINT OPERANDS

35

0 LOW ORDER HALF OF BINARY NUMBER (TWOS COMPLEMENT)

FLOATING POINT OPERANDS

35

s;)s;'l EXCESS 128 EXPONENT

1~ (ONES COMPLEMENT) FRACTION (TWOS COMPLEMENT)

0’ 1 89 ’ 35
LOW ORDER WORD IN SOFTWARE DOUBLE LENGTH FLOATING POINT OPERANDS

0 Excﬁﬁsgggﬁ)&o}t‘é&-ﬂ | LOW ORDER HALF OF FRACTION (T_WOS COMPLEMENT)

(U} 89 . 35

LOW ORDER WORD IN HARDWARE DOUBLE LENGTH FLOATING POINT OPERANDS

0 ' . LOW ORDER EXTENSION OF FRACTION (TWOS COMPLEMENT}

35

G3

O N

18

36

73
147
295
590

1 180
2 361
4 722

SYSTEM REFERENCE

G4

—
0O SN~

36

72
144
288
576
152
305
611
223
446
893
786
573
147
295
591
183
366

—
N0 PN

35

70
140
281
562
125
251
503
007
014
028
057
115
230
460
921
843
686
372
744
488
976
952
905
810
620
241
482

419
838
676
352
705
411
822
645

—
oW AN

32
65
131
262
524

097
194
388
777
554
108
217
435
870
741
483
967
934
869
738
476
953
906
813
627
255
511
022
044
088
177
355
710
421
842
685
370
740
481
963
927
855
711
423
846
693
387
775
551
103
206
412
825
651
303
606
213

:ZIV

RGN~

128
256
512
024
048
096
192
384
768
536
072
144
288
576
152
304
608
216
432
864
728
456
912
824
648
296
592
184
368
736
472
944

776
552
104
208
416
832
664
328
656
312
624
248
496
992
984
968
936
872
744
488
976
952
904
808
616
232
464
928
856
712
424
848
696

=

VONOOLWN~O

1.0
0.5
0.25
0.125
0.062
0.031
0.015
0.007
0.003
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000.

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

-+ 0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

25

625
812
906
953
976
488
244
122
061
030
015
007
003
001
000

000
000
000
000
000

000
000
000

000
000
000

000
000
000
000
000
000
000
000

000
000

000
‘000
000
000
000
000
000
000
000
000
000
000

000

000
000
000

000
000
000

25

125
562
281
140
070
035
517
258

629
697

814
907
953
476
238
119
059
029
014
007
003
001
000

000

000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000

25

625
312
156
578
789
394

348
674

25
125
062
531
265
632
316

837 158

418
209
604
802
901
450
725
862
931
465
232
116
058
029
014
007
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000

579
289
644
322
161
580
290
645
322
661
830
415
207
103
551
275
637
818
909
454
227
113
056
028
014
007
003
001
Q00
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

000

000
000
000
000
000
000

~194-

BIT ASSIGNMENTS

POWERS OF TWO

25

125
562
781
390
695
847
923
461
230
615
307
653
826
913
456
228
614
807
403
701
350
675
837
418
709
854
427
713
356
178
089

022
511
755
877
938
469
734
867
433
216
108
054
027
013
006
003
001
000
000
000

25

625
312
656
828
914
957
478
739
869
934
467
733
366
183
091
545
772
886
443
721
860
430
715
357
678
839
419
209
604
302
151
575
787
893
446
723
361
680
840
420
210
105
552
776
388
694
847
423
211

25

125
062
031
515
257
628
814
407
703
851
425
712
856
928
464
232
616
808
404
202
601
800
400
700
850
925
462
231
615
807
903
951
475
737
868
434
217
108
054
527
263
131
065
032
516
758

25

625
812
906
453
226
613
806
903
951
475
237
118
059
029
014
007
003
001
500
250
125
062
031
515
257
628
814
907
953
976
988
994
497
248
624
312
156
578
789
894
947
473
236

25

125
562
281
640
320
660
830
915
957
478
739
869
434
717
858
929
464
232
616
308
654
827
913
456
228
614
807
403
201
100
550
275
137
068
034
017
508
254
627
813

25

625
312
156
078
039
519
759
379
689
844
422
711
355
677
338
169
084
042
021
510
755
377
188
094
547
773
886
443
221
610
805
402
201
600
300
150
575

25

128
062
531
765
882
941
970
485
242
621
810
905
452
726
363
181
590
295
647
823
411
205
602
801
400
700
850
425
712
356
678
339
169
084

25

625
812
406
703
351
675
337
668
334
667
333
166
583
791
395
697
848
924
962
981
490
745
372
186
093
546
273
136
068
534
767

25

125
562
781
890
945
472
236
618
809
404
702
851
925
962
481
240
120
560
280
640
320
160
580
290
645
322
161
080

25

625
312
656
328
164
082
541
270
135
567
783
391
695
347
173
086
043
021
o010
005
002
001
500
250
625

25

125
062
031
015
507
253
626
813
906
953
976
988
994
497
748
874
437
718
359
679
339
169

625
812
906
953
476
738
369
684
342
171
085
542
271
135
567
283
641
820
910

25
125
562
281
140
570
285
142
571
785
392
696
848
924
962
981
490

25

625
312
156
578
289
644
822
411
205
102
051
025
512

5

25

125

062 5

531 25

265 625

132 812 5

566 406 25

783 203 125
391 601 562 5
695 800 781 25
847 900 390 625

SYSTEM REFERENCE

-195-
THIS IS A TEMPORARY PAGE

G5

6 g < ° < > £ 2 I 2 Iz 27 Teuba
mox | Moy | mox | moxy | mox | mox | moay | mox | mox | mox | MO | mox
TBTS | 4T | 065 = 2 GoNT (Bra)
4l OISEIW|TIN0AL| T | &¥INOLL gaLs 203
Ee)) Qs NI NOLLOW| 770 Agv3y | I | IMOD | BS &0
i UST | gns | N | aoeme | T o202 PP (G205 | alors | YR |Smave | seten 4
LS OFEETH]
I8V Naews| oo o0
2] 6.6 | 20 anz| 0 ova b6 I avod
2770 6770| Fezrc | ATHTY| ez [IrEON| TUFRY ({75 770| 3¥TTD
& o N | asmor| ssiver
2 2 o e N 2T otusa
Z - + 7
X) .
o7y NO INOD oI (& A
o1 voT | A58 | yopon P <79
ore S| asng oneo
| XIFLOCAOMHD MHLATS i DZILOGBUMHO MHLBNOS 1 IFLOG D .
Q&IHL | XTLOGIOND _ONODTS AILOCAMS SIS
(X GA [24 o1y FoMO | D
oo A oG | A8 o7 ‘o6 | ‘®2: wod| ver @ren
1a
ol orer o677
o 2oz 3nog | 4578 237> onved
OAVOGATH WORS ILOUDOHD LIS 8 Teuea
FIALIIIL QU HIUOGIOHD LIS 8 oceura
o677 | Asne | o7 | 4snE o077 pes ALt
&4
iahd Osz | “oud | iz | 141 1532 Inod
135 Z rEL) PELE R CEAN] RS IECERR) ol o6,
(22 g7z | Aie | o677 | asng| Stz | ASnS| ou7x| Asng| 9% onod
Oss | oug | suu Ziz) oxa] oysd “rug| " ruz
ABUNIE LON II (SE-88) SUIG & ‘AJUNIE IJI TIOM LIS OF — || reUGO
o1
(2 o | 4sne | senrs] _ _WMM.N INOD | DBF L%
vIo 5903 | asne | azeomm owod
A
] 2 £ & B)
wd!_ .wqol_ Frow | 370w | mT0m| 3700 | SST N0 ST oeuea
67 U
(257 swvog | AEme |4zenre| a0 mwod| opf 7]
£
oro 62| asne | azonig onvoo
(@rav)
620 | &318@N00
a-¢
oay
SACULDIONT ANOWIW FHL QL §UI18 Of ouiva
b IAZLOL TINNOND EX L7 SITND F783| sy |omermed| 1n0o) P
4-F I g NO SETAOONS NI L/ TFITINI ALr2et| 3o rmens| momon: 4
o2 52 92 5418 ¥ox AL TA NI 1 IGHON WIL ERLOE EACCE R A
PR KB S - S NO 270 | 370 o 1o o e et v
SIHILIMS UU6O OF & ————m Touea
(S2-81 HY) DILSIOIFY NOILYDOTITY
(L-DHT) ITLSIOTY NOILOFLONS outea
-
o017 | 3780NT| LFEAr0| D07 | FTENT 27 | 378613 ooy | 9027 Sx T S5 T 8677 [-4
(2] Aoy | a0 | obis| Aoz 70z 0072 | #0075 WXN klo.w!n‘ vﬂNﬂW kao.w\w 4®W INGD
R R E T B AR BT RG] B AE R EA R E X E P T R A R icd 15533]| A9
[oz [Ao |~ ncaw | Aoz noF |~ Aoz | #3075| ¥2070 o070 LN | “waw | “aoe % || onvod
22| £ 270 o] yasl 270 | ¥ g5c| 95 721 a7 o | 37
se/r| ve/o [ce/sr [2esmor | 1eser) pesar| e2pr | eesor| <ass | 9am | sai | b2/ | €2/5 | 2am | zse | 2z | er | Si/e s 3000 Somise

SLINANNODISSV LI IDIAAA LNO-NI

-196-
THIS IS A TEMPORARY PAGE

SYSTEM REFERENCE

G6

05) 7IAE & o0 ove

(&) 3448 6 9O _ust

e — oo
S8 2€ T64Q
x| € owusa
() 2148 & cod ave (F) 348 8 a9 N2 (&) 31A8 @ o0 IST e pro
7 ¢ 7) 7 T JoQ
o | T AR % P o> (efes)
I.%4
Gl oraLl or et s\ou orasl orwz| @Im=z| Srwa| @rwz| 2735|2735 oo
L35)| 70| uss | 7l usel| 5| uws| 5| “ums 2
. ug)M
e ESIIOTY THOM TOMINDO TINNGMHD THILINT ouea
2
&za | szwm| zau| 307] zoews A0 Invog | Botu| e gosers | Faei | T3 | yowe3| oo | untog| owr h ownr [|He
- 20 e |eemoo| 70 £
g LT | XN | MO | uzom)| el BT | O | o | wea | KGR0l 20| GS | e | 0971| “ae07 [onmze| svedx| 1Moo Sz
HILNNOD INOT (80T 26| MG [erF | 538
w.wvutN&k.u e MO IM) U | FMON| W MO e
AINC
- onod Crion
—— Qs su8
— 5% mon> S T —————— S3/0M0HO Hi b — = | >5.06aM> 05 € oG 20 o
NTLOCMND _aNZ I HILOGAIHD LS T ————————w || e SDINL
- y3motewmo b] >5L060HD TN € Ao -6 v 119
MILOKIGHD ONZ [DTFLOGIMD 1S T ———— e || 1046T
———————— NTIOHMND ML D e | JTLOUIHD ML G EETE L T R —— L)
~—————————— XF.O0YMHD TN E | EE2 P HILOOSGHD LS | —————mm || JEUET ,
CIaoNOT [———— Y3io0atm i EEVEI e R N —— YO (#rw1)
HILOVITD ONS P77 e RO e— "7 74
NF 56 $I3L IS K18 T WHD Z)
geom 118 o€ oy
2 eve
LTINS LXIN INCD
T s by X wk&}lw_
. S v (e
U bL6T Yl Stz Aurs™aa 4IND | 205 onoIM oM o T Sllem D AdrStt INOD|
i e gﬂ“&!ﬁ&“w\\gﬁ.m 2400 Lmn
R] - 65 - 0 =
5 : AONIIfO-ON s OF aNIM3 s T| aWna
;e wea bl St77 |owssz aaz.p| Lmm Dl 0 O+ O o 5| Shos |12 =2 LINn onod|
E= 3
(s
175 3 54) EY) Z g &isc ! s
- ku@ﬁ” N1y o o750
< <. b4, . <4 93] il \Q‘\UQ
S ouLea .
>FannN EVal Fon vy ooz
ot | o7 parewsi]
ot 2o | oot | &1G 1nod (2roq)
579
rammenas])
ola 2353 .WMM;Q B) onod
50 ON3 S ~
A7 o w| w8 an| e _ 2IUSIONY FirIM SOUTY 345709 Zeuso)
LON. LON LN
MT
Zouta)
ISRJ [~
TS| otuta
T v —— ves sua
20335 NO NO ~
a0 o awssirv| oz [rouesed svoa | azssm| osas
207735 | MU i A el B R B 7 B B
— TN | TTGNT | FITWT | TIRONT | TIENT| 7
| Mqﬁ_{ﬁa.fu_ vl WL I CEd b I et N ELTTEN] g R A o0 |ozssrw|” @asz | 1nvoo
azg | yoore | oy |meyrl eof | weo | e
TIGNI | TIRNT | FTOONT | TIRNT | TSN T| T IONT
aassIm| INOE pout oo |ozssin|” ¥z | onvod
>079 | ‘ony |woITr| ear | eyed |sutsver
e Ny — reuea
. ozoM LI OF osura (@r0s)
SUT T L eubKd oy - £ | HISNOIN “N £ auag
7 a2 g Gla U |xdﬂun.wnvnﬂwﬁnw L30T SWoAL 779530 203735) =) oOLS || INOO
Wi U D ONFION = P) 3N L7
ol §OU7 ble tiba FZINOIN MOLLONZ PRS- :wunwmds. 0773 L e 09 | oausf onod
S F ! SF 9ILOTI IS 3/5703 Touea)
- (J08) &FIMIOO HOLOFS ———itm 24D 2QUO3S ALIdS
AT
2] £SI200. CHOM TOZUNCD TINMIMD WLLINT _ Buraw | Z2E oo au ol Sy obutc
IM talci2
sF T s.or 214 Y 74 T PrTTE xo«ﬁs
-——————— (008) 204035 (0&) xooE ¥SIT o
L ppay SO [)
=4 INOQ | ASNE |am UND u w 5 qux VOO BLT ¥so
_ 5| - @910 2.
S e . Noweus noo
- (TOE) SIHIUIMS A k? Z1 ’
mo‘uqu -a3d0 | wo3T| WX 1703uM0 !oﬁ % .3253 24D 204338
] @E@E&E R e R
mM\Q_Vm,\Q_n»\&._wn\!Tn\Q ges2r| e2/i | sesor| <2/6 | 22m | sai | ve/o | s2f5 [2ep | sz [w2 [s | mire pau 301130

	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196

