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NOTE

The final name of the architecture had not been formalized at the first printing
of the Alpha Architecture Reference Manual. The final name has now been
determined and it is Alpha AXP. Therefore, all references in this manual to the
Alpha architecture mean the Alpha AXP architecture.

Further, the formalization of the of the architecture name is now reflected in
the operating system names, which are now OpenVMS AXP and DEC OSF/1
AXP.
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Foreword

In the foreword to the VAX Architecture Reference Manual, Sam Fuller, Digital’s Vice
President for Research and Architecture, wrote, “Computer design continues to be
a dynamic field; I expect we will see more rather than less change and innovation
in the decades ahead.” The Alpha Architecture Reference Manual demonstrates the
accuracy of that prediction.

Alpha follows VAX by about fifteen years. Those fifteen years have witnessed a torrent
of change in computer technology, one that shows no sign of abating:

* More than a 1000-fold increase in the performance of microprocessors

» More than a 1000-fold increase in the density of semiconductor memories
« More than a 500-fold increase in the density of magnetic storage devices
+ More than a 100-fold increase in the speed of network connections

During the same period, the internal organization of computer systems has changed
as well, based on developments such as RISC architecture, symmetric multipro-
cessing, and coherent distributed systems. Moreover, the fundamental paradigms
of computing have changed not once, but several times, with the introduction of
personal computers, graphics workstations, local area networks, and client/server
computing.

These developments present an enormous challenge for computing in the 21st cen-
tury. Future computers will be called upon to solve problems of great scale and
complexity, worldwide, in a distributed manner. They will have to provide unprece-
dented performance, flexibility, reliability, and scalability in order to implement a
global infrastructure of information, and to give users an untrammeled window on
the world.

Alpha is Digital’s response to the challenges of 21st-century computing. It represents
the culmination of the company’s knowledge and belief about how the next genera-
tions of computers should be built. Alpha is based on a decade’s experimental and
engineering work in RISC architecture, high-speed implementation, software com-
patibility and migration, and system serviceability. It provides the foundation for
implementations ranging from mobile computing units to massively parallel super-
computers.

Alpha is designed to handle the largest computing problems of today and tomorrow.
When the Alpha architecture is compared to its predecessor, the VAX architecture,
two differences stand out immediately. First, Alpha is a 64-bit architecture; VAX is
a 32-bit architecture. This means that Alpha’s virtual address extends to a 64-bit
linear range of bytes in memory. Supporting this extended virtual address space
are an extended maximum physical address range (up to 48 bits) and larger pages
(8KB to 64KB). Alpha’s extended virtual address range allows direct manipulation
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of the gigabytes and terabytes of data produced in electrical and mechanical design,
database and transaction processing, and imaging.

Second, Alpha is a RISC architecture; VAX is a CISC architecture. RISC stands for
Reduced Instruction Set Computer, CISC for Complex Instruction Set Computer.
RISC architectures are characterized by simple, fixed-length instruction formats;
a small number of addressing modes; large register files; a load-store instruction
set model; and direct hardware execution of instructions. CISC architectures are
characterized by variable-length instruction formats; a large number of addressing
modes; small-to-medium-sized register files; a full set of register-to-memory (or
even memory-to-memory) instructions; and microcoded execution of instructions.
Alpha’s streamlined organization facilitates high-speed implementation in a variety
of technologies, while providing strong compatibility with today’s programs and data.

The following tabulation contrasts the architectural differences between VAX and
Alpha:

VAX Alpha
Architecture CISC RISC
Virtual address range 32 bits Up to 64 bits
Physical address range Up to 32 bits Up to 48 bits
Page size 512 bytes 8KB—64KB
Instruction lengths 1-51 bytes 4 bytes
General registers 16 x 32 bits 64 x 64 bits
Addressing modes 21 3
Instruction set architecture General Load-store
Directly supported data types Integer, floating, bit Integer, floating

field, queue, character
string, decimal string

This book is the culmination of an effort begun three years ago. In that time, Alpha
has grown from a paper specification to a cohesive set of chips, systems, and software,
spanning the computer spectrum. This achievement is due to the efforts of many
hundreds of people in Engineering, Marketing, Sales, Service, and Manufacturing.
This book is documentation of, and a tribute to, the outstanding work they have
done.

Bob Supnik
Corporate Consultant,
Vice President

Foreword



Preface

The Alpha architecture is a RISC architecture that was designed for high per-
formance and longevity. Following Amdahl, Blaauw, and Brooks,! we distinguish
between architecture and implementation:

» Computer architecture is defined as the attributes of a computer seen by a machine-
language programmer. This definition includes the instruction set, instruction
formats, operation codes, addressing modes, and all registers and memory locations
that may be directly manipulated by a machine-language programmer.

« Implementation is defined as the actual hardware structure, logic design, and data-
path organization.

This architecture book describes the required behavior of all Alpha implementations,
as seen by the machine-language programmer. The architecture does not speak to
implementation considerations such has how fast a program runs, what specific
bit pattern is left in a hardware register after an unpredictable operation, how
to schedule code for a particular chip, or how to wire up a given chip; those
considerations are described in implementation-specific documents.

Various Alpha implementations are expected over the coming years, starting with
the Digital 21064 chip.

Goals

When we started the Alpha project in the fall of 1988, we had a small number of
goals:

1. High performance

2. Longevity

3. Run VMS and UNIX

4. Easy migration from VAX (and soon-to-be MIPS) customer base

As principal architects, Rich Witek and I made design decisions that were driven
directly by these goals.

We assumed that high performance was needed to make a new architecture attractive
in the marketplace, and to keep Digital competitive.

We set a 15-25 year design horizon (longevity) and tried to avoid any design elements
that we thought would become limitations during this time. The design horizon
led directly to the conclusion that Alpha could not be a 32-bit architecture: 32-
bit addresses will be too small within 10 years. We thus adopted a full 64-bit

1. Amdahl, G.M., G.A. Blaauw, and F.P. Brooks, Jr. “Architecture of the IBM System/360.” IBM
Journal of Research and Development, vol. 8, no. 2 (April 1964): 87-101.



architecture, with a minimal number of 32-bit operations for backward compatibility.
Wherever possible, 32-bit operands are put in registers in a 64-bit canonical form
and operated upon with 64-bit operations.

The longevity goal also caused us to examine how the performance of implementa-
tions would scale up over 25 years. Over the past 25 years, computers have become
about 1000 times faster. This suggested to us that Alpha implementations would
need to do the same, or we would have to bet that the industry would fall off the
historical performance curve. We were unwilling to bet against the industry, and
were unwilling to ignore the issue, so we seriously examined the consequences of
longevity.

We thought that it would be realistic for implementors to improve clock speeds by
a factor of 10 over 25 years, but not by a factor of 100 or 1000. (Clock speeds have
improved by about a factor of 100 over the past 25 years, but physical limits are now
slowing down the rate of increase.)

We concluded that the remaining factor of 100 would have to come from other
design dimensions. If you cannot make the clock faster, the next dimension is to
do more work per clock cycle. So the Alpha architecture is focused on allowing
implementations that issue many instructions every clock cycle. We thought that
it would be realistic for implementors to achieve about a factor of 10 over 25 years
by using multiple instruction issue, but not a factor of 100. Even a factor of 10 will
require perhaps a decade of compiler research.

We concluded that the remaining factor of 10 would have to come from some other
design dimension. If you cannot make the clock faster, and cannot do more work per
clock, the next dimension is to have multiple clocked instruction streams, that is,
multiple processors. So the Alpha architecture is focused on allowing implementa-
tions that apply multiple processors to a single problem. We thought that it would
be realistic for implementors to achieve the remaining factor of 10 over 25 years by
using multiple processors.

Overall, the factor-of-1000 increase in performance looked reasonable, but required
factor-of-10 increases in three different dimensions. These three dimensions therefore
formed part of our design framework:

 Gracefully allow fast cycle-time implementations
o Gracefully allow multiple-instruction-issue implementations

« Gracefully allow multiple-processor implementations

The cycle-time goal encouraged us to keep the instruction definitions very simple, and
to keep the interactions between instructions very simple. The multiple-instruction-
issue goal encouraged us to eliminate specialized registers, architected delay slots,
precise arithmetic traps, and byte writes (with their embedded read-modify-write
bottleneck). The multiple-processor goal encouraged us to consider the memory model
and atomic-update primitives carefully. We adopted load-locked/store-conditional
sequences as the atomic-update primitive, and eliminated strict read-write ordering
between processors.

All of the above design decisions were driven directly by the performance and
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longevity goals. The lack of byte writes, precise arithmetic traps, and multiprocessor
read/write ordering have been the most controversial decisions, so far.

Clean Sheet of Paper

To run both OpenVMS and UNIX without burdening the hardware implementa-
tions with elaborate (and sometimes conflicting) operating system underpinnings,
we adopted an idea from a previous Digital RISC design. Alpha places the under-
pinnings for interrupt delivery and return, exceptions, context switching, memory
management, and error handling in a set of privileged software subroutines called
PAlLcode (privileged architecture library code). PALcode subroutines have controlled
entries, run with interrupts turned off, and have access to real hardware (implemen-
tation) registers. By having different sets of PALcode for different operating systems,
the architecture itself is not biased toward a specific operating system or computing
style.

PALcode allowed us to design an architecture that could run OpenVMS gracefully
without elaborate hardware and without massively rewriting the VMS synchroniza-
tion and protection mechanisms. PALcode lets the Alpha architecture support some
complex VAX primitives (such as the interlocked queue instructions) that are heavily
used by OpenVMS, without burdening a UNIX implementation in any way.

Finally, we also considered how to move VAX and MIPS code to Alpha. We rejected
various forms of “compatibility mode” hardware, because they would have severely
compromised the performance and time-to-market of the first implementation. After
some experimentation, we adopted the strategy of running existing binary code by
building software translators. One translator converts OpenVMS VAX images to
functionally identical OpenVMS Alpha images. A second translator converts MIPS
ULTRIX images to functionally identical DEC OSF/1 Alpha images.

Fundamentally, PALcode gave us a migration path for existing operating systems,
and the translators (and native compilers) gave us a migration path for existing
user-mode code. PALcode and the translators provided a clean sheet of design paper
for the bulk of the Alpha architecture. Other than an extra set of VAX floating-point
formats (included for good business reasons, but subsettable later), no specific VAX
or MIPS features are carried directly into the Alpha architecture for compatibility
reasons.

These considerations substantially shaped the architecture described in the rest of
this book.

Organization

The first part of this book describes the instruction-set architecture, and is largely
self-contained for readers who are involved with compilers or with assembly language
programming. The second and third parts describe the supporting PALcode routines
for each operating system—the specific operating system PALcode architecture.
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A Note on the Structure of This Book

The Alpha Architecture Reference Manual is divided into three parts, three ap-
pendixes, and an index. Each part describes a major portion of the Alpha architecture.
Each contains its own table of contents.

The following tabulation outlines the book’s contents:

Name Contents

Part I Common Architecture

This part describes the instruction-set architecture that is common to
and required by all implementations.

Part I OpenVMS Alpha Software
This part describes how the OpenVMS operating system relates to the
Alpha architecture.

Part III DEC OSF/1 Alpha Software
This part describes how the DEC OSF/1 operating system relates to the
Alpha architecture.

Appendixes The appendixes describe implementation considerations, IEEE floating-
point conformance, and instruction encodings.

Index Index entries are called out by the symbol (I), (IT), or (III). Each symbol is
associated with the corresponding Part. Index entries for the appendixes
are called out by appendix name and page number.
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Part |

Common Architecture

This part describes the common Alpha architecture
and contains the following chapters:

1. Introduction

2. Basic Architecture

3. Instruction Formats

4. Instruction Descriptions

5

. System Architecture and Programming
Implications

6. Common PALcode Architecture

. Console Subsystem Overview

8. Input/Output
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Chapter 1
Introduction (I)

Alpha is a 64-bit load/store RISC architecture that is designed with particular
emphasis on the three elements that most affect performance: clock speed, multiple
instruction issue, and multiple processors.

The Alpha architects examined and analyzed current and theoretical RISC
architecture design elements and developed high-performance alternatives for the
Alpha architecture. The architects adopted only those design elements that appeared
valuable for a projected 25-year design horizon. Thus, Alpha becomes the first 21st
century computer architecture.

The Alpha architecture is designed to avoid bias toward any particular operating
system or programming language. Alpha initially supports the OpenVMS Alpha
and DEC OSF/1 operating systems, and supports simple software migration from
applications that run on those operating systems.

This manual describes in detail how Alpha is designed to be the leadership 64-bit
architecture of the computer industry.

1.1 The Alpha Approach to RISC Architecture

Alpha Is a True 64-Bit Architecture

Alpha was designed as a 64-bit architecture. All registers are 64 bits in length and
all operations are performed between 64-bit registers. It is not a 32-bit architecture
that was later expanded to 64 bits.

Alpha Is Designed for Very High-Speed Implementations
The instructions are very simple. All instructions are 32 bits in length. Memory

operations are either loads or stores. All data manipulation is done between
registers.

The Alpha architecture facilitates pipelining multiple instances of the same
operations because there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register
or memory and another instruction reading from the same place. That makes it
particularly easy to build implementations that issue multiple instructions every
CPU cycle. (The first implementation issues two instructions per cycle.)

Alpha makes it easy to maintain binary compatibility across multiple
implementations and easy to maintain full speed on multiple-issue implementations.
For example, there are no implementation-specific pipeline timing hazards, no load-
delay slots, and no branch-delay slots.
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Alpha’s Approach to Byte Manipulation
The Alpha architecture does byte shifting and masking with normal 64-bit register-
to-register instructions, crafted to keep instruction sequences short.

Alpha does not include single-byte store instructions. This has several advantages:

* Cache and memory implementations need not include byte shift-and-mask logic,
and sequencer logic need not perform read-modify-write on memory locations.
Such logic is awkward for high-speed implementation and tends to slow down
cache access to normal 32-bit or 64-bit aligned quantities.

* Alpha’s approach to byte manipulation makes it easier to build a high-speed
error-correcting write-back cache, which is often needed to keep a very fast RISC
implementation busy.

* Alpha’s approach can make it easier to pipeline multiple byte operations.

Alpha’s Approach to Arithmetic Traps

Alpha lets the software implementor determine the precision of arithmetic traps.
With the Alpha architecture, arithmetic traps (such as overflow and underflow)
are imprecise—they can be delivered an arbitrary number of instructions after the
instruction that triggered the trap. Also, traps from many different instructions can
be reported at once. That makes implementations that use pipelining and multiple
issue substantially easier to build.

However, if precise arithmetic exceptions are desired, trap barrier instructions can
be explicitly inserted in the program to force traps to be delivered at specific points.

Alpha’s Approach to Multiprocessor Shared Memory

As viewed from a second processor (including an I/O device), a sequence of reads and
writes issued by one processor may be arbitrarily reordered by an implementation.
This allows implementations to use multibank caches, bypassed write buffers, write
merging, pipelined writes with retry on error, and so forth. If strict ordering
between two accesses must be maintained, explicit memory barrier instructions can
be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify,
store_conditional sequence. If the sequence runs without interrupt, exception, or
an interfering write from another processor, then the conditional store succeeds.
Otherwise, the store fails and the program eventually must branch back and retry
the sequence. This style of interlocking scales well with very fast caches, and makes
Alpha an especially attractive architecture for building multiple-processor systems.

Alpha Instructions Include Hints for Achieving Higher Speed
A number of Alpha instructions include hints for implementations, all aimed at
achieving higher speed.

¢ Calculated jump instructions have a target hint that can allow much faster
subroutine calls and returns.

* There are prefetching hints for the memory system that can allow much higher
cache hit rates.
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¢ There are granularity hints for the virtual-address mapping that can allow much
more effective use of translation lookaside buffers for large contiguous structures.

PALcode—Alpha’s Very Flexible Privileged Software Library

A Privileged Architecture Library (PALcode) is a set of subroutines that are
specific to a particular Alpha operating system implementation. These subroutines
provide operating-system primitives for context switching, interrupts, exceptions,
and memory management. PALcode is similar to the BIOS libraries that are
provided in personal computers.

PALcode subroutines are invoked by implementation hardware or by software
CALL_PAL instructions.

PAlLcode is written in standard machine code with some implementation-specific
extensions to provide access to low-level hardware.

One version of PALcode lets Alpha implementations run the full OpenVMS operating
system by mirroring many of the OpenVMS VAX features. The OpenVMS PALcode
instructions let Alpha run OpenVMS with little more hardware than that found on
a conventional RISC machine: the PAL mode bit itself, plus 4 extra protection bits
in each Translation Buffer entry.

Another version of PALcode lets Alpha implementations run the OSF/1 operating
system by mirroring many of the RISC ULTRIX features. Other versions of PALcode
can be developed for real-time, teaching, and other applications.

PALcode makes Alpha an especially attractive architecture for multiple operating
systems.

Alpha and Programming Languages

Alpha is an attractive architecture for compiling a large variety of programming
languages. Alpha has been carefully designed to avoid bias toward one or two
programming languages. For example:

e Alpha does not contain a subroutine call instruction that moves a register window
by a fixed amount. Thus, Alpha is a good match for programming languages with
many parameters and programming languages with no parameters.

e Alpha does not contain a global integer overflow enable bit. Such a bit would
need to be changed at every subroutine boundary when a FORTRAN program
calls a C program.

1.2 Data Format Overview
Alpha is a load/store RISC architecture with the following data characteristics:
¢ All operations are done between 64-bit registers.
* Memory is accessed via 64-bit virtual little-endian byte addresses.
¢ There are 32 integer registers and 32 floating-point registers.

¢ Longword (32-bit) and quadword (64-bit) integers are supported.
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Four floating-point data types are supported:
— VAX F_floating (32-bit)

— VAX G_floating (64-bit)

— IEEE single (32-bit)

— IEEE double (64-bit)

1.3 Instruction Format Overview

As shown in Figure 1-1, Alpha instructions are all 32 bits in length. As represented
in Figure 1-1, there are four major instruction format classes that contain 0, 1, 2,
or 3 register fields. All formats have a 6-bit opcode.

Figure 1-1: Instruction Format Overview

31 2625 2120 1615 5 4 0
Opcode Number PALcode Format
Opcode RA Disp Branch Format
Opcode | RA RB Disp Memory Format
Opcode | RA RB Function l RC |Operate Format

PALcode instructions specify, in the function code field, one of a few dozen
complex operations to be performed.

Conditional branch instructions test register Ra and specify a signed 21-
bit PC-relative longword target displacement. Subroutine calls put the return
address in register Ra.

Load and store instructions move longwords or quadwords between register
Ra and memory, using Rb plus a signed 16-bit displacement as the memory
address.

Operate instructions for floating-point and integer operations are both
represented in Figure 1-1 by the operate format illustration and are as follows:

— Floating-point operations use Ra and Rb as source registers, and write the
result in register Rc. There is an 11-bit extended opcode in the function field.

— Integer operations use Ra and Rb or an 8-bit literal as the source operand,
and write the result in register Rec.

Integer operate instructions can use the Rb field and part of the function field
to specify an 8-bit literal. There is a 7-bit extended opcode in the function
field.
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1.4 Instruction Overview

PALcode Instructions

As described above, a Privileged Architecture Library (PALcode) is a set of
subroutines that is specific to a particular Alpha operating-system implementation.
These subroutines can be invoked by hardware or by software CALL_PAL
instructions, which use the function field to vector to the specified subroutine.

Branch Instructions

Conditional branch instructions can test a register for positive/negative or for zero
/monzero. They can also test integer registers for even/odd.

Unconditional branch instructions can write a return address into a register.

There is also a calculated jump instruction that branches to an arbitrary 64-bit
address in a register.

Load/Store Instructions
Load and store instructions move either 32-bit or 64-bit aligned quantities from

and to memory. Memory addresses are flat 64-bit virtual addresses, with no
segmentation.

The VAX floating-point load/store instructions swap words to give a consistent
register format for floating-point operations.

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies
of the high bit of the datum. A 32-bit floating-point datum is placed in a register in
a canonical form that extends the exponent by 3 bits and extends the fraction with
29 low-order zeros. The 32-bit operates preserve these canonical forms.

There are facilities for doing byte manipulation in registers, eliminating the need
for 8-bit or 16-bit load/store instructions.

Compilers, as directed by user declarations, can generate any mixture of 32-bit and
64-bit operations. The Alpha architecture has no 32/64 mode bit.

Integer Operate Instructions

The integer operate instructions manipulate full 64-bit values, and include the usual
assortment of arithmetic, compare, logical, and shift instructions.

There are just three 32-bit integer operates: add, subtract, and multiply. They
differ from their 64-bit counterparts only in overflow detection and in producing
32-bit canonical results.

There is no integer divide instruction.

The Alpha architecture also supports the following additional operations:

® Scaled add/subtract instructions for quick subscript calculation

* 128-bit multiply for division by a constant, and multiprecision arithmetic

* Conditional move instructions for avoiding branch instructions
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¢ An extensive set of in-register byte and word manipulation instructions

Integer overflow trap enable is encoded in the function field of each instruction,
rather than kept in a global state bit. Thus, for example, both ADDQ/V and ADDQ
opcodes exist for specifying 64-bit ADD with and without overflow checking. That
makes it easier to pipeline implementations.

Floating-Point Operate Instructions

The floating-point operate instructions include four complete sets of VAX and
IEEE arithmetic instructions, plus instructions for performing conversions between
floating-point and integer quantities.

In addition to the operations found in conventional RISC architectures, Alpha
includes conditional move instructions for avoiding branches and merge sign
/exponent instructions for simple field manipulation.

The arithmetic trap enables and rounding mode are encoded in the function field
of each instruction, rather then kept in global state bits. That makes it easier to
pipeline implementations.

1.5 Instruction Set Characteristics
Alpha instruction set characteristics are as follows:

¢ All instructions are 32 bits long and have a regular format.

* There are 32 integer registers (RO through R31), each 64 bits wide. R31 reads
as zero, and writes to R31 are ignored.

¢ There are 32 floating-point registers (FO through F31), each 64 bits wide. F31
reads as zero, and writes to F31 are ignored.

e All integer data manipulation is between integer registers, with up to two
variable register source operands (one may be an 8-bit literal), and one register
destination operand.

¢ All floating-point data manipulation is between floating-point registers, with up
to two register source operands and one register destination operand.

¢ All memory reference instructions are of the load/store type that move data
between registers and memory.

e There are no branch condition codes. Branch instructions test an integer or
floating-point register value, which may be the result of a previous compare.

¢ Integer and logical instructions operate on quadwords.

¢ Floating-point instructions operate on G_floating, F_floating, IEEE double, and
IEEE single operands. D_floating “format compatibility,” in which binary files
of D_floating numbers may be processed, but without the last 3 bits of fraction
precision, is also provided.

¢ A minimal number of VAX compatibility instructions are included.
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1.6 Terminology and Conventions
The following sections describe the terminology and conventions used in this book.

1.6.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity,
numbers other than decimal are indicated with the name of the base in subscript
form, for example, 10,¢.

1.6.2 Security Holes

A security hole is an error of commission, omission, or oversight in a system that
allows protection mechanisms to be bypassed.

Security holes exist when unprivileged software (that is, software running outside
of kernel mode) can:

¢ Affect the operation of another process without authorization from the operating
system,;

¢ Amplify its privilege without authorization from the operating system; or

¢ Communicate with another process, either overtly or covertly, without
authorization from the operating system.

The Alpha architecture has been designed to contain no architectural security holes.
Hardware (processors, buses, controllers, and so on) and software should likewise
be designed to avoid security holes.

1.6.3 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book.
Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (software running in kernel mode) can trigger
UNDEFINED operations. Unprivileged software cannot trigger UNDEFINED

operations. However, either privileged or unprivileged software can trigger
UNPREDICTABLE results or occurences.

UNPREDICTABLE results or occurences do not disrupt the basic operation of the
processor; it continues to execute instructions in its normal manner. In contrast,
UNDEFINED operation can halt the processor or cause it to lose information.

The terms UNPREDICTABLE and UNDEFINED can be further described as follows:

UNPREDICTABLE

¢ Results or occurrences specified as UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruction

within implementations. Software can never depend on results specified as
UNPREDICTABLE.

* An UNPREDICTABLE result may acquire an arbitrary value subject to a few
constraints. Such a result may be an arbitrary function of the input operands
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or of any state information that is accessible to the process in its current access
mode. UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

¢ An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
as are UNPREDICTABLE results and, in particular, must not constitute a
security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function
of, the contents of memory locations or registers which are inaccessible to the
current process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

— Write or modify the contents of memory locations or registers to which the
current process in the current access mode does not have access, or

— Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of
processor temporary registers left behind by some previously running process,
or on a sequence of actions of different processes.

UNDEFINED

* Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. The operation may vary in effect from nothing, to stopping
system operation.

¢ UNDEFINED operations may halt the processor or cause it to lose information.
However, UNDEFINED operations must not cause the processor to hang, that
is, reach an unhalted state from which there is no transition to a normal state
in which the machine executes instructions.

1.6.4 Ranges and Extents

Ranges are specified by a pair of numbers separated by a “..” and are inclusive. For
example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets separated by a colon
and are inclusive. For example, bits <7:3> specify an extent of bits including bits 7,
6, 5, 4, and 3.

1.6.5 ALIGNED and UNALIGNED

In this document the terms ALIGNED and NATURALLY ALIGNED are used
interchangeably to refer to data objects that are powers of two in size. An aligned
datum of size 2**N is stored in memory at a byte address that is a multiple of 2**N,
that is, one that has N low-order zeros. Thus, an aligned 64-byte stack frame has a
memory address that is a multiple of 64.
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If a datum of size 2**N is stored at a byte address that is not a multiple of 2**N, it
is called UNALIGNED.

1.6.6 Must Be Zero (MB2)

Fields specified as Must be Zero (MBZ) must never be filled by software with a non-
zero value. These fields may be used at some future time. If the processor encounters
a non-zero value in a field specified as MBZ, an Illegal Operand exception occurs.

1.6.7 Read As Zero (RAZ)

Fields specified as Read as Zero (RAZ) return a zero when read.

1.6.8 Should Be Zero (SBZ2)

Fields specified as Should be Zero (SBZ) should be filled by software with a zero
value. Non-zero values in SBZ fields produce UNPREDICTABLE results and may
produce extraneous instruction-issue delays.

1.6.9 Ignore (IGN)
Fields specified as Ignore (IGN) are ignored when written.

1.6.10 Implementation Dependent (IMP)

Fields specified as Implementation Dependent (IMP) may be used for implementation-
specific purposes. Each implementation must document fully the behavior of all
fields marked as IMP by the Alpha specification.

1.6.11 Figure Drawing Conventions

Figures that depict registers or memory follow the convention that increasing
addresses run right to left and top to bottom.

1.6.12 Macro Code Example Conventions

All instructions in macro code examples are either listed in Chapter 4 or OpenVMS
Section, Chapter 2, or are stylized code forms found in Appendix A.
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Chapter 2
Basic Architecture (l)

2.1 Addressing

The basic addressable unit in Alpha is the 8-bit byte. Virtual addresses are 64

bits long. An implementation may support a smaller virtual address space. The
minimum virtual address size is 43 bits.

Virtual addresses as seen by the program are translated into physical memory
addresses by the memory management mechanism.

2.2 Data Types

Following are descriptions of the Alpha architecture data types.
2.2.1 Byte

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are
numbered from right to left, 0 through 7, as shown in Figure 2-1.

Figure 2-1: Byte Format

A byte is specified by its address A. A byte is an 8-bit value. The byte is only
supported in Alpha by the extract, mask, insert, and zap instructions.

2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 15, as shown in Figure 2-2.
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Figure 2-2: Word Format

A word is specified by its address, the address of the byte containing bit 0.

A word is a 16-bit value. The word is only supported in Alpha by the extract, mask,
and insert instructions.

2.2.3 Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 31, as shown in Figure 2-3.

Figure 2-3: Longword Format

31 0

A longword is specified by its address A, the address of the byte containing bit 0. A
longword is a 32-bit value.

When interpreted arithmetically, a longword is a two’s-complement integer with bits
of increasing significance from 0 through 30. Bit 31 is the sign bit. The longword
is only supported in Alpha by sign-extended load and store instructions and by
longword arithmetic instructions.

NOTE
Alpha implementations will impose a significant
performance penalty when accessing longword operands
that are not naturally aligned. (A naturally aligned
longword has zero as the low-order two bits of its
address.)

2.2.4 Quadword

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 63, as shown in Figure 24.
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Figure 24: Quadword Format

63 0

A quadword is specified by its address A, the address of the byte containing bit 0. A
quadword is a 64-bit value. When interpreted arithmetically, a quadword is either
a two’s-complement integer with bits of increasing significance from 0 through 62
and bit 63 as the sign bit, or an unsigned integer with bits of increasing significance
from O through 63.

NOTE
Alpha implementations will impose a significant perfor-
mance penalty when accessing quadword operands that
are not naturally aligned. (A naturally aligned quad-
word has zero as the low-order three bits of its address.)

2.2.5 VAX Floating-Point Formats

2.2.5.1

VAX floating-point numbers are stored in one set of formats in memory and in a
second set of formats in registers. The floating-point load and store instructions
convert between these formats purely by rearranging bits; no rounding or range-
checking is done by the load and store instructions.

F_floating

An F_floating datum is 4 contiguous bytes in memory starting on an arbitrary
byte boundary. The bits are labeled from right to left, 0 through 31, as shown
in Figure 2-5.

Figure 2-5: F_floating Datum

1514 76 0
S Exp. Frac. Hi |:A

Fraction Lo ‘A+2

An F_floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-6.
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Figure 2-6: F_floating Register Format

63 62 52 51 4544 29 28 0

S Exp. Frac. Hi Fraction Lo 0 (Fx

The F_floating load instruction reorders bits on the way in from memory, expands the
exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces
in the register an equivalent G_floating number suitable for either F_floating or G_
floating operations. The mapping from 8-bit memory-format exponents to 11-bit
register-format exponents is shown in Table 2-1.

Table 2-1: F_floating Load Exponent Mapping
Memory <14:7>  Register <62:52>

11111111 1 000 1111111
1 XXXXXXX 1 000 xxxxxxx (xxxxxxx not all 1’s)
0 XXXXXXX 0 111 xxxxxxx (xxxxxxx not all 0’s)
0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values.

The F_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction.

An F_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of an F_floating datum is sign magnitude with bit 15 the
sign bit, bits <14:7> an excess-128 binary exponent, and bits <6:0> and <31:16>
a normalized 24-bit fraction with the redundant most significant fraction bit not
represented. Within the fraction, bits of increasing significance are from 16 through
31 and O through 6. The 8-bit exponent field encodes the values 0 through 255.
An exponent value of 0, together with a sign bit of 0, is taken to indicate that the
F_floating datum has a value of 0.

If the result of a VAX floating-point format instruction has a value of zero, the
instruction always produces a datum with a sign bit of 0, an exponent of 0, and
all fraction bits of 0. Exponent values of 1..255 indicate true binary exponents
of —-127..127. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take an
arithmetic exception. The value of an F_floating datum is in the approximate range
0.29+10+*—38..1.7*10**38. The precision of an F_floating datum is approximately
one part in 2**23, typically 7 decimal digits.
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NOTE
Alpha implementations will impose a significant per-
formance penalty when accessing F_floating operands
that are not naturally aligned. (A naturally aligned F_

floating datum has zero as the low-order two bits of its
address.)

2.2.5.2 G_floating

A G_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-7.

Figure 2-7: G_floating Datum

1514 43 0
S Exp. Frac.Hi|:A
Fraction Midh :A+2
Fraction Midl :A+4
Fraction Lo :A+6

A G_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-8.

Figure 2-8: G_floating Format

63 62 52 51 48 47 32 31 1615 0

S Exp. Frac. Hi Fraction Midh Fraction Midl Fraction Lo :Fx

A G_floating datum is specified by its address A, the address of the byte containing
bit 0. The form of a G_floating datum is sign magnitude with bit 15 the sign bit, bits
<14:4> an excess-1024 binary exponent, and bits <3:0> and <63:16> a normalized 53-
bit fraction with the redundant most significant fraction bit not represented. Within
the fraction, bits of increasing significance are from 48 through 63, 32 through 47, 16
through 31, and 0 through 3. The 11-bit exponent field encodes the values 0 through
2047. An exponent value of 0, together with a sign bit of 0, is taken to indicate that
the G_floating datum has a value of 0.

If the result of a floating-point instruction has a value of zero, the instruction
always produces a datum with a sign bit of 0, an exponent of 0, and all
fraction bits of 0. Exponent values of 1..2047 indicate true binary exponents of
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—1023..1023. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take
a user-visible arithmetic exception. The value of a G_floating datum is in the
approximate range 0.56*¥10**-308..0.9*10**308. The precision of a G_floating datum
is approximately one part in 2**52, typically 15 decimal digits.

NOTE
Alpha implementations will impose a significant per-
formance penalty when accessing G_floating operands
that are not naturally aligned. (A naturally aligned G_
floating datum has zero as the low-order three bits of its
address.)

2.2.5.3 D_floating

A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-9.

Figure 2-9: D_floating Datum

1514 76 0
S Exp. Frac.Hi |:A
Fraction Midh ‘A+2
Fraction Midl ‘A+4
Fraction Lo :A+6

A D_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-10.

Figure 2-10: D_floating Register Format

63 62 55 54 48 47 32 31 1615 0

S Exp. Frac. Hi Fraction Midh Fraction Midl Fraction Lo ‘Fx

The reordering of bits required for a D_floating load or store are identical to those
required for a G_floating load or store. The G_floating load and store instructions
are therefore used for loading or storing D_floating data.

A D_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of a D_floating datum is identical to an F_floating datum
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except for 32 additional low significance fraction bits. Within the fraction, bits of
increasing significance are from 48 through 63, 32 through 47, 16 through 31, and 0
through 6. The exponent conventions and approximate range of values is the same
for D_floating as F_floating. The precision of a D_floating datum is approximately
one part in 2**55, typically 16 decimal digits.

NOTE

D_floating is not a fully supported data type; no
D_floating arithmetic operations are provided in the
architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software
emulation. D_floating “format compatibility” in which
binary files of D_floating numbers may be processed,
but without the last 3 bits of fraction precision, can
be obtained via conversions to G_floating, G arithmetic
operations, then conversion back to D_floating.

NOTE
Alpha implementations will impose a significant
performance penalty on access to D_floating operands
that are not naturally aligned. (A naturally aligned D_
floating datum has zero as the low-order three bits of its
address.)
2.2.6 IEEE Floating-Point Formats

The IEEE standard for binary floating-point arithmetic, ANSI/IEEE 754-1985,
defines four floating-point formats in two groups, basic and extended, each having
two widths, single and double. The Alpha architecture supports the basic single
and double formats, with the basic double format serving as the extended single
format. The values representable within a format are specified by using three integer
parameters:

1. P—the number of fraction bits

2. Emax—the maximum exponent

3. Emin—the minimum exponent

Within each format, only the following entities are permitted:

1. Numbers of the form (-1)**S x 2**E x b(0).b(1)b(2)..b(P-1) where:
a. S=0orl
b. E = any integer between Emin and Emax, inclusive
c. bm=0orl

2. Two infinities—positive and negative
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2.26.1

3. At least one Signaling NaN
4. At least one Quiet NaN

NaN is an acronym for Not-a-Number. A NaN is an IEEE floating-point bit
pattern that represents something other than a number. NaNs come in two forms:
Signaling NaNs and Quiet NaNs. Signaling NaNs are used to provide values
for uninitialized variables and for arithmetic enhancements. Quiet NaNs provide
retrospective diagnostic information regarding previous invalid or unavailable data
and results. Signaling NaNs signal an invalid operation when they are an operand
to an arithmetic instruction, and may generate an arithmetic exception. Quiet
NaNs propagate through almost every operation without generating an arithmetic
exception.

Arithmetic with the infinities is handled as if the operands were of arbitrarily large
magnitude. Negative infinity is less than every finite number; positive infinity is
greater than every finite number.

S_Floating

An IEEE single-precision, or S_floating, datum occupies 4 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, O through 31, as shown in Figure 2-11.

Figure 2-11: S_floating Datum

1514 7 6 0

Fraction Lo A

Sl Exp. I Frac. Hi |:A+2

An S_floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-12.

Figure 2-12: S_floating Register Format

63 62 52 51 45 44 29 28 0

S Exp. Frac. Hi Fraction Lo 0 :Fx

The S_floating load instruction reorders bits on the way in from memory, expanding
the exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This
produces in the register an equivalent T floating number, suitable for either S_
floating or T_floating operations. The mapping from 8-bit memory-format exponents
to 11-bit register-format exponents is shown in Table 2-2.
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Table 2-2: S_floating Load Exponent Mapping
Memory <30:23> Register <62:52>

11111111 1111 1111111

1 xxxxxXX 1 000 xxxxxxx  (xxxxxxx not all 1’s)
0 xxXXXXXX 0 111 xxxxxxx  (xxxxxxx not all 0’s)
0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values. Note that the
mapping for all 1’s differs from that of F_floating load, since for S_floating all 1’s is
an exceptional value and for F_floating all 1’s is a normal value.

The S_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction. The S_floating load instruction does no checking of
the input.

The S_floating store instruction does no checking of the data; the preceding operation
should have specified an S_floating result.

An S_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of an S_floating datum is sign magnitude with bit 31 the sign
bit, bits <30:23> an excess-127 binary exponent, and bits <22:0> a 23-bit fraction.

The value (V) of an S_floating number is inferred from its constituent sign (S),
exponent (E), and fraction (F) fields as follows:

1. If E=255 and F<>0, then V is NaN, regardless of S.

2. If E=255 and F=0, then V = (-1)**S x Infinity.

3. If 0 < E < 255, then V = (-1)**S x 2**(E-127) x (1.F).
4. If E=0 and F<>0, then V = (-1)**S x 2*%(~126) x (0.F).
5. If E=0 and F=0, then V = (-1)**S x 0 (zero).

Floating-point operations on S_floating numbers may take an arithmetic exception
for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

NOTE
Alpha implementations will impose a significant per-
formance penalty when accessing S_floating operands
that are not naturally aligned. (A naturally aligned S_
floating datum has zero as the low-order two bits of its
address.)
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2.2.6.2 T_floating

An IEEE double-precision, or T_floating, datum occupies 8 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 through 63, as shown in Figure 2-13.

Figure 2-13: T_floating Datum

1514 43 0
Fraction Lo A

Fraction Mid! :A+2

Fraction Midh :A+d

S Exponent Frac.Hi|:A+6

A T floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-14.

Figure 2-14: T_floating Register Format

63 62 52 51 48 47 32 31 1615 0

S Exp. Frac. Hi Fraction Midh Fraction Midl Fraction Lo ‘Fx

The T_floating load instruction performs no bit reordering on input, nor does it
perform checking of the input data.

The T floating store instruction performs no bit reordering on output. This
instruction does no checking of the data; the preceding operation should have
specified a T_floating result.

A T _floating datum is specified by its address A, the address of the byte containing
bit 0. The form of a T_floating datum is sign magnitude with bit 63 the sign bit, bits
<62:52> an excess-1023 binary exponent, and bits <51:0> a 52-bit fraction.

The value (V) of a T _floating number is inferred from its constituent sign (S),
exponent (E), and fraction (F) fields as follows:

1. If E=2047 and F<>0, then V is NaN, regardless of S.

2. If E=2047 and F=0, then V = (-1)**S x Infinity.

3. If0 < E < 2047, then V = (-1)**S x 2**(E-1023) x (1.F).
4. If E=0 and F<>0, then V = (-1)**S x 2**%(-1022) x (0.F).
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5. If E=0 and F=0, then V = (-1)**S x 0 (zero).

Floating-point operations on T_floating numbers may take an arithmetic exception
for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

NOTE
Alpha implementations will impose a significant per-
formance penalty when accessing T_floating operands
that are not naturally aligned. (A naturally aligned T_
floating datum has zero as the low-order three bits of its
address.)

2.2.7 Longword Integer Format in Floating-Point Unit

A longword integer operand occupies 32 bits in memory, arranged as shown in
Figure 2-15.

Figure 2-15: Longword Integer Datum

1514 0

Integer Lo A

S Integer Hi ‘A+2

A longword integer operand occupies 64 bits in a floating register, arranged as shown
in Figure 2-16.

Figure 2-16: Longword Integer Floating-Register Format

63 62 61 59 58 45 44 2928

S| 1| xxx Integer Hi Integer Lo 0 ‘Fx

There is no explicit longword load or store instruction; the S_floating load/store
instructions are used to move longword data into or out of the floating registers.
The register bits <61:59> are set by the S_floating load exponent mapping. They are
ignored by S_floating store. They are also ignored in operands of a longword integer

operate instruction, and they are set to 000 in the result of a longword operate
instruction.

The register format bit <62>, “I”, in Figure 2-16 is part of the Integer Hi field
in Figure 2-15 and represents the high-order bit of that field. Bits <58:45> of
Figure 2-16 are the remaining bits of the Integer Hi field of Figure 2-15.
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NOTE
Alpha implementations will impose a significant
performance penalty when accessing longwords that are
not naturally aligned. (A naturally aligned longword
datum has zero as the low-order two bits of its address.)

2.2.8 Quadword Integer Format in Floating-Point Unit

A quadword integer operand occupies 64 bits in memory, arranged as shown in
Figure 2-17.

Figure 2-17: Quadword Integer Datum

1514 0
Integer Lo A
Integer Mid! :A+2
Integer Midh :A+d
S Integer Hi :A+6

A quadword integer operand occupies 64 bits in a floating register, arranged as
shown in Figure 2-18.

Figure 2-18: Quadword Integer Floating-Register Format

63 62 48 47 32 31 16 15 0

S Integer Hi Integer Midh Integer Midl Integer Lo ‘Fx

There is no explicit quadword load or store instruction; the T_floating load/store
instructions are used to move quadword data into or out of the floating registers.

The T_floating load instruction performs no bit reordering on input. The T_floating
store instruction performs no bit reordering on output. This instruction does no
checking of the data; when used to store quadwords, the preceding operation should
have specified a quadword result.

NOTE
Alpha implementations will impose a significant
performance penalty when accessing quadwords that
are not naturally aligned. (A naturally aligned
quadword datum has zero as the low-order three bits
of its address.)
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2.2.9 Data Types with No Hardware Support
The following VAX data types are not directly supported in Alpha hardware.

o QOctaword

e H_floating

° D_floating (except load/store and convert to/from G_floating)
¢ Variable-Length Bit Field

¢ Character String

¢ Trailing Numeric String

¢ Leading Separate Numeric String

* Packed Decimal String
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Chapter 3
Instruction Formats (1)

3.1 Alpha Registers

Each Alpha processor has a set of registers that hold the current processor state.
If an Alpha system contains multiple Alpha processors, there are multiple per-
processor sets of these registers.

3.1.1 Program Counter

The Program Counter (PC) is a special register that addresses the instruction stream.
As each instruction is decoded, the PC is advanced to the next sequential instruction.
This is referred to as the updated PC. Any instruction that uses the value of the PC
will use the updated PC. The PC includes only bits <63:2> with bits <1:0> treated as
RAZ/IGN. This quantity is a longword-aligned byte address. The PC is an implied
operand on conditional branch and subroutine jump instructions. The PC is not
accessible as an integer register.

3.1.2 Integer Registers
There are 32 integer registers (R0 through R31), each 64 bits wide.

Register R31 is assigned special meaning by the Alpha architecture. When R31 is
specified as a register source operand, a zero-valued operand is supplied.

For all cases except the Unconditional Branch and Jump instructions, results of
an instruction that specifies R31 as a destination operand are discarded. Also,
it is UNPREDICTABLE whether the other destination operands (implicit and
explicit) are changed by the instruction. It is implementation dependent to what
extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution of such
an instruction. Note, however, that exceptions associated with the instruction fetch
of such an instruction are always signaled.

There are some interesting cases involving R31 as a destination:
e STx_ C R31,disp(Rb)

Although this might seem like a good way to zero out a shared location and reset
the lock_flag, this instruction causes the lock_flag and virtual location {Rbv +
SEXT(disp)} to become UNPREDICTABLE.

* LDx_L R31,disp(Rb)

This instruction produces no useful result since it causes both lock_flag and
locked_physical_address to become UNPREDICTABLE.
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Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_
COROUTINE) instructions, when R31 is specified as the Ra operand, execute
normally and update the PC with the target virtual address. Of course, no PC
value can be saved in R31.

3.1.3 Floating-Point Registers

There are 32 floating-point registers (FO through F31), each 64 bits wide.

When F31 is specified as a register source operand, a true zero-valued operand is
supplied. See Section 4.7.2 for a definition of true zero.

Results of an instruction that specifies F31 as a destination operand are discarded
and it is UNPREDICTABLE whether the other destination operands (implicit and
explicit) are changed by the instruction. In this case, it is implementation-dependent
to what extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution of such an
instruction. Note, however, that exceptions associated with the instruction fetch of
such an instruction are always signaled.

A floating-point instruction that operates on single-precision data reads all bits
<63:0> of the source floating-point register. A floating-point instruction that
produces a single-precision result writes all bits <63:0> of the destination floating-
point register.

3.1.4 Lock Registers

There are two per-processor registers associated with the LDx_L and STx_C
instructions, the lock_flag and the locked_physical_address register. The use of these
registers is described in Section 4.2.

3.1.5 Optional Registers

3.1.5.1

Some Alpha implementations may include optional memory prefetch or VAX
compatibility processor registers.

Memory Prefetch Registers

If the prefetch instructions FETCH and FETCH_M are implemented, an
implementation will include two sets of state prefetch registers used by those
instructions. The use of these registers is described in Section 4.11. These registers
are not directly accessible by software and are listed for completeness.

3.1.5.2 VAX Compatibility Register

The VAX compatibility instructions RC and RS include the intr_flag register, as
described in Section 4.12.

3.2 Notation

The notation used to describe the operation of each instruction is given as a sequence
of control and assignment statements in an ALGOL-like syntax.
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3.2.1 Operand Notation

Tables 31,

3-2, and 3-3 list the notation for the operands, the operand values, and

the other expression operands.

Table 3—1: Operand Notation

Notation Meaning

Ra An integer register operand in the Ra field of the instruction.

Rb An integer register operand in the Rb field of the instruction.

#b An integer literal operand in the Rb field of the instruction.

Re An integer register operand in the Rc field of the instruction.

Fa A floating-point register operand in the Ra field of the instruction.

Fb A floating-point register operand in the Rb field of the instruction.

Fe A floating-point register operand in the Rc field of the instruction.

Table 3-2: Operand Value Notation

Notation Meaning

Rav The value of the Ra operand. This is the contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or a
zero-extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating point Fa operand. This is the contents of register Fa.

Fbv The value of the floating point Fb operand. This is the contents of register Fb.

Table 3-3: Expression Operand Notation

Notation Meaning

IPR_x Contents of Internal Processor Register x

IPR_SP[mode] Contents of the per-mode stack pointer selected by mode

PC Updated PC value

Rn Contents of integer register n

Fn Contents of floating-point register n

X[m] Element m of array X

Instruction Formats (I) 3-3



3.2.2 Instruction Operand Notation

The notation used to describe instruction operands follows from the operand specifier
notation used in the VAX Architecture Standard. Instruction operands are described
as follows:

<name>.<access type><data type>

<name>

Specifies the instruction field (Ra, Rb, Re, or disp) and register type of the operand
(integer or floating). It can be one of the following:

Name

Meaning

disp
fnc
Ra
Rb
#b
Re
Fa
Fb
Fe

The displacement field of the instruction.

The PAL function field of the instruction.

An integer register operand in the Ra field of the instruction.

An integer register operand in the Rb field of the instruction.

An integer literal operand in the Rb field of the instruction.

An integer register operand in the Rec field of the instruction.

A floating-point register operand in the Ra field of the instruction.
A floating-point register operand in the Rb field of the instruction.
A floating-point register operand in the Rc field of the instruction.

<access type>
Is a letter denoting the operand access type:

Access Type Meaning

a

The operand is used in an address calculation to form an effective
address. The data type code that follows indicates the units of
addressability (or scale factor) applied to this operand when the
instruction is decoded.

For example:

“.al” means scale by 4 (longwords) to get byte units (used in branch
displacements); “.ab” means the operand is already in byte units
(used in load/store instructions).

The operand is an immediate literal in the instruction.
The operand is read only.
The operand is both read and written.
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Access Type Meaning

w The operand is write only.

<data type>
Is a letter denoting the data type of the operand:

Data Type Meaning

b Byte

f F_floating

g G_floating

1 Longword

q Quadword

s IEEE single floating (S_floating)

t IEEE double floating (T_floating)

w Word

X The data type is specified by the instruction

3.2.3 Operators

The operators shown in Table 3—4 are used:

Table 3-4: Operators

Operator Meaning

! Comment delimiter
+ Addition
- Subtraction

*

Signed multiplication

*U Unsigned multiplication

** Exponentiation (left argument raised to right argument)
/ Division

— Replacement

1 Bit concatenation

{} Indicates explicit operator precedence
(x) Contents of memory location whose address is x
xX<m:n> Contents of bit field of x defined by bits n through m
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Table 3—4 (Cont.): Operators

Operator Meaning

X<m> M’th bit of x

ACCESS(x,y) Accessibility of the location whose address is x using the
access mode y. Returns a Boolean value TRUE if the address
is accessible, else FALSE.

AND Logical product

ARITH_RIGHT_SHIFT(x,y)

BYTE_ZAP(x,y)

CASE

DIV
LEFT_SHIFT(x,y)

LOAD_LOCKED

lg
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Arithmetic right shift of first operand by the second operand.
Y is an unsigned shift value. Bit 63, the sign bit, is copied
into vacated bit positions and shifted out bits are discarded.

X is a quadword, y is an 8-bit vector in which each bit
corresponds to a byte of the result. The y bit to x byte
correspondence is y<n> « x<8n+7:8n>. This correspondence
also exists between y and the result.

For each bit of y from n = 0 to 7, if y <n> is 0 then byte <n>
of x is copied to byte <n> of result, and if y <n> is 1 then byte
<n> of result is forced to all zeros.

The CASE construct selects one of several actions based on
the value of its argument. The form of a case is:

CASE argument OF
argvaluel: action 1
argvalue2: action_ 2

argvaluen action_n
[otherwise: default _action]
ENDCASE

If the value of argument is argvaluel then action_1l is
executed; if argument = argvalue2, then action_2 is executed,
and so forth.

Once a single action is executed, the code stream breaks
to the ENDCASE (there is an implicit break as in Pascal).
Each action may nonetheless bé a sequence of pseudocode
operations, one operation per line.

Optionally, the last argvalue may be the atom ’otherwise’. The
associated default action will be taken if none of the other
argvalues match the argument.

Integer division (truncates)
Logical left shift of first operand by the second operand.

Y is an unsigned shift value. Zeros are moved into the vacated
bit positions, and shifted out bits are discarded.

The processor records the target physical address in a per-
processor locked_physical_address register and sets the per-
processor lock_flag.

Log to the base 2



Table 3—4 (Cont.): Operators

Operator Meaning

NOT Logical (ones) complement
OR Logical sum

xMOD y x modulo y

Relational Operators

MINU(®x,y)

PHYSICAL_ADDRESS
PRIORITY_ENCODE

RIGHT_SHIFT(x,y)

SEXT(x)
STORE_CONDITIONAL

Operator Meaning

LT Less than signed

LTU Less than unsigned

LE Less or equal signed

LEU Less or equal unsigned

EQ Equal signed and unsigned
NE Not equal signed and unsigned
GE Greater or equal signed
GEU Greater or equal unsigned
GT Greater signed

GTU Greater unsigned

LBC Low bit clear

LBS Low bit set

Returns the smaller of x and y, with x and y interpreted as
unsigned integers

Translation of a virtual address

Returns the bit position of most significant set bit, interpret-
ing its argument as a positive integer ( = int( 1g( x ) ) ).

For example:
priority encode( 255 ) = 7

Logical right shift of first operand by the second operand. Y
is an unsigned shift value. Zeros are moved into vacated bit
positions, and shifted out bits are discarded.

X is sign-extended to the required size.

If the lock_flag is set, then do the indicated store and clear
the lock_flag.
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Table 34 (Cont.): Operators
Operator Meaning

TEST(x,cond) The contents of register x are tested for branch condition
(cond) true. TEST returns a Boolean value TRUE if x bears
the specified relation to 0, else FALSE is returned. Integer
and floating test conditions are drawn from the preceding list
of relational operators.

XOR Logical difference
ZEXT(x) X is zero-extended to the required size.

3.2.4 Notation Conventions
The following conventions are used:
1. Only operands that appear on the left side of a replacement operator are modified.

2. No operator precedence is assumed other than that replacement (—) has the
lowest precedence. Explicit precedence is indicated by the use of “{}”.

3. All arithmetic, logical, and relational operators are defined in the context of their
operands. For example, “+” applied to G_floating operands means a G_floating
add, whereas “+” applied to quadword operands is an integer add. Similarly, “LT”
is a G_floating comparison when applied to G_floating operands and an integer
comparison when applied to quadword operands.

3.3 Instruction Formats

There are five basic Alpha instruction formats:

e Memory
¢ Branch
¢ Operate

¢ Floating-point Operate
¢ PAlcode

All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31:26>
of the instruction.

Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to a value
of 31.
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SOFTWARE NOTE
There are several instructions, each formatted as a
memory instruction, that do not use the Ra and/or Rb
fields. These instructions are: Memory Barrier, Fetch,
Fetch_M, Read Process Cycle Counter, Read and Clear,
Read and Set, and Trap Barrier.

3.3.1 Memory Instruction Format

33.1.1

The Memory format is used to transfer data between registers and memory, to
load an effective address, and for subroutine jumps. It has the format shown in
Figure 3-1.

Figure 3-1: Memory Instruction Format

31 26 25 2120 16 15 0

Opcode | Ra Rb Memory_disp

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address
fields, Ra and Rb, and a 16-bit signed displacement field.

The displacement field is a byte offset. It is sign-extended and added to the contents
of register Rb to form a virtual address. Overflow is ignored in this calculation.

The virtual address is used as a memory load/store address or a result value,
depending on the specific instruction. The virtual address (va) is computed as follows
for all memory format instructions except the load address high (LDAH):

va < {Rbv + SEXT(Memory_disp)}

For LDAH the virtual address (va) is computed as follows:
va <« {Rbv + SEXT(Memory disp*65536)}

Memory Format Instructions with a Function Code

Memory format instructions with a function code replace the memory displacement
field in the memory instruction format with a function code that designates a set of
miscellaneous instructions. The format is shown in Figure 3-2.

Figure 3-2: Memory Instruction with Function Code Format

31 26 25 2120 16 15 0

Opcode | Ra Rb Function
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The memory instruction with function code format contains a 6-bit opcode field and
a 16-bit function field. Unused function encodings produce UNPREDICTABLE but
not UNDEFINED results; they are not security holes.

There are two fields, Ra and Rb. The usage of those fields depends on the instruction.
See Section 4.11.

3.3.1.2 Memory Format Jump Instructions

For computed branch instructions (CALL, RET, JMP, JSR_COROUTINE) the
displacement field is used to provide branch-prediction hints as described in
Section 4.3.

3.3.2 Branch Instruction Format

The Branch format is used for conditional branch instructions and for PC-relative
subroutine jumps. It has the format shown in Figure 3-3.

Figure 3-3: Branch Instruction Format

31 2625 2120 0

Opcode | Ra Branch_disp

A Branch format instruction contains a 6-bit opcode field, one 5-bit register address
field (Ra), and a 21-bit signed displacement field.

The displacement is treated as a longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits and added to the updated
PC to form the target virtual address. Overflow is ignored in this calculation. The
target virtual address (va) is computed as follows:

va +— PC + {4*SEXT(Branch disp)}

3.3.3 Operate Instruction Format

The Operate format is used for instructions that perform integer register to integer
register operations. The Operate format allows the specification of one destination
operand and two source operands. One of the source operands can be a literal
constant. The Operate format in Figure 3—4 shows the two cases when bit <12> of
the instruction is 0 and 1.
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Figure 3—4: Operate Instruction Format

31 26 25 2120 16151312 11 5 4 0

Opcode | Ra Rb |SBZ|0| Function Rc

31 26 25 2120 1312 11 5 4 0

Opcode Ra LIT Function Rc

-

An Operate format instruction contains a 6-bit opcode field and a 7-bit function
field. Unused function encodings produce UNPREDICTABLE but not UNDEFINED
results; they are not security holes.

There are three operand fields, Ra, Rb, and Rec.

The Ra field specifies a source operand. Symbolically, the integer Rav operand is
formed as follows:

IF inst<25:21> EQ 31 THEN
Rav «— 0

ELSE
Rav «— Ra

END

The Rb field specifies a source operand. Integer operands can specify a literal or an
integer register using bit <12> of the instruction.

If bit <12> of the instruction is 0, the Rb field specifies a source register operand.

If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is formed
by bits <20:13> of the instruction. The literal is interpreted as a positive integer
between 0 and 255 and is zero-extended to 64 bits. Symbolically, the integer Rbv
operand is formed as follows:

IF inst<12> EQ 1 THEN
Rbv « ZEXT(inst<20:13>)

ELSE
IF inst<20:16> EQ 31 THEN
Rbv « 0
ELSE
Rbv « Rb
END
END

The Rec field specifies a destination operand.

Instruction Formats (I) 3-11




3.3.4 Floating-Point Operate Instruction Format

3.3.4.1

The Floating-point Operate format is used for instructions that perform floating-
point register to floating-point register operations. The Floating-point Operate
format allows the specification of one destination operand and two source operands.
The Floating-point Operate format is shown in Figure 3-5.

Figure 3-5: Floating-Point Operate Instruction Format

31 26 25 2120 1615 5 4 0

Opcode Fa Fb Function Fc

A Floating-point Operate format instruction contains a 6-bit opcode field and an 11-
bit function field. Unused function encodings produce UNPREDICTABLE results,
as defined in Section 1.6.3.

There are three operand fields, Fa, Fb, and Fc. Each operand field specifies either
an integer or floating-point operand as defined by the instruction.

The Fa field specifies a source operand. Symbolically, the Fav operand is formed as
follows:

IF inst<25:21> EQ 31 THEN
Fav « 0

ELSE
Fav «— Fa

END

The Fb field specifies a source operand. Symbolically, the Fbv operand is formed as
follows:

IF inst<20:16> EQ 31 THEN
Fbv «— 0

ELSE
Fbv «— Fb

END

NOTE
Neither Fa nor Fb can be a literal in Floating-point
Operate instructions.

The Fc field specifies a destination operand.

Floating-Point Convert Instructions

Floating-point Convert instructions use a subset of the Floating-point Operate
format and perform register-to-register conversion operations. The Fb operand
specifies the source; the Fa field must be F31.
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3.3.5 PALcode Instruction Format

The Privileged Architecture Library (PALcode) format is used to specify extended
processor functions. It has the format shown in Figure 3-6.

Figure 3-6: PALcode Instruction Format

31 26 25

Opcode

PALcode Function

The 26-bit PALcode function field specifies the operation.

The source and destination operands for PALcode instructions are supplied in fixed
registers that are specified in the individual instruction descriptions.

An opcode of zero and a PALcode function of zero specify the HALT instruction.
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Chapter 4
Instruction Descriptions ()

4.1 Instruction Set Overview

This chapter describes the instructions implemented by the Alpha architecture. The
instruction set is divided into the following sections:

Instruction Type Section
Integer load and store 4.2
Integer control 4.3
Integer arithmetic 44
Logical and shift 4.5
Byte manipulation 4.6
Floating-point load and store 4.8
Floating-point control 49
Floating-point operate 410
Miscellaneous 411

Within each major section, closely related instructions are combined into groups and
described together. The instruction group description is composed of the following:

¢ The group name

¢ The format of each instruction in the group, which includes the name, access
type, and data type of each instruction operand

¢ The operation of the instruction

* Exceptions specific to the instruction

* The instruction mnemonic and name of each instruction in the group
* Qualifiers specific to the instructions in the group

* A description of the instruction operation

¢ Optional programming examples and optional notes on the instruction
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4.1.1 Subsetting Rules

4111

An instruction that is omitted in a subset implementation of the Alpha architecture
is not performed in either hardware or PALcode. System software may provide
emulation routines for subsetted instructions.

Floating-Point Subsets

Floating-point support is optional on an Alpha processor. An implementation that
supports floating-point must implement the 32 floating-point registers, the Floating-
point Control Register (FPCR) and the instructions to access it, floating-point
branch instructions, floating-point copy sign (CPYSx) instructions, floating-point
convert instructions, floating-point conditional move instruction (FCMOV), and the
S_floating and T_floating memory operations.

SOFTWARE NOTE

A system that will not support floating-point operations
is still required to provide the 32 floating-point
registers, the Floating-point Control Register (FPCR)
and the instructions to access it, and the T_floating
memory operations if the system intends to support the
OpenVMS Alpha operating system. This requirement
facilitates the implementation of a floating-point
emulator and simplifies context-switching.

In addition, floating-point support requires at least one of the following subset
groups:

1. VAX Floating-point Operate and Memory instructions (F_ and G_floating).

2. IEEE Floating-point Operate instructions (S_ and T_floating). Within this group,
an implementation can choose to include or omit separately the ability to perform
IEEE rounding to plus infinity and minus infinity.

Note: if one instruction in a group is provided, all other instructions in that group
must be provided. An implementation with full floating-point support includes
both groups; a subset floating-point implementation supports only one of these
groups. The individual instruction descriptions indicate whether an instruction can
be subsetted.

4.1.2 Software Emulation Rules

General-purpose layered and application software that executes in User mode may
assume that certain loads (LDL, LDQ, LDF, LDG, LDS, and LDT) and certain stores
(STL, STQ, STF, STG, STL and STT) of unaligned data are emulated by system
software. General-purpose layered and application software that executes in User
mode may assume that subsetted instructions are emulated by system software.
Frequent use of emulation may be significantly slower than using alternative code
sequences.
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Emulation of loads and stores of unaligned data and subsetted instructions need
not be provided in privileged access modes. System software that supports special-
purpose dedicated applications need not provide emulation in User mode if emulation
is not needed for correct execution of the special-purpose applications.

4.1.3 Opcode Qualifiers

Some Operate format and Floating-point Operate format instructions have several
variants. For example, for the VAX formats, Add F_floating (ADDF) is supported
with and without floating underflow enabled, and with either chopped or VAX
rounding. For IEEE formats, IEEE unbiased rounding, chopped, round toward plus
infinity, and round toward minus infinity can be selected.

The different variants of such instructions are denoted by opcode qualifiers, which
consist of a slash (/) followed by a string of selected qualifiers. Each qualifier is
denoted by a single character as shown in Table 4-1. The opcodes for each qualifier
are listed in Appendix C.

Table 4-1: Opcode Qualifiers
Qualifier Meaning

Chopped rounding
Rounding mode dynamic
Round toward minus infinity
Inexact result enable
Software completion enable

Floating underflow enable

< c®nvn+- gz U0aQ

Integer overflow enable

The default values are normal rounding, software completion disabled, inexact result
disabled, floating underflow disabled, and integer overflow disabled.
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4.2 Memory Integer Load/Store Instructions

The instructions in this section move data between the integer registers and memory.

They use the Memory instruction format. The instructions are summarized in
Table 4-2.

Table 4-2: Memory Integer Load/Store Instructions
Mnemonic Operation

LDA Load Address
LDAH Load Address High

LDL Load Sign-Extended Longword
LDL_L Load Sign-Extended Longword Locked
LDQ Load Quadword

LDQ L Load Quadword Locked
LDQ_U Load Quadword Unaligned

STL Store Longword
STL_C Store Longword Conditional
STQ Store Quadword

STQ C Store Quadword Conditional
STQ U Store Quadword Unaligned
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4.2.1 Load Address

Format:

LDAx Ra.wq,disp.ab(Rb.ab)

Operation:

Ra +— Rbv + SEXT(disp)
Ra «~ Rbv + SEXT(disp*65536)

Exceptions:

None

Instruction mnemonics:

LDA Load Address
LDAH Load Address High

Qualifiers:

None

Description:

!Memory format

1LDA
\LpaH &

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement for LDA, and 65536 times the sign-extended 16-bit displacement for
LDAH. The 64-bit result is written to register Ra.
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4.2.2 Load Memory Data into Integer Register

Format:

LDx Ra.wq,disp.ab(Rb.ab) !Memory format

Operation:

va « {Rbv + SEXT(disp)}

Ra + SEXT((va)<31:0>) {LDL
Ra «« (va)<63:0> ILDQ
Exceptions:

Access Violation
Alignment

Fault on Read
Translation Not Valid

Instruction mnemonics:

LDL Load Sign-Extended Longword from Memory to Register
LDQ Load Quadword from Memory to Register

Qualifiers:
None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from memory, sign-extended, and
written to register Ra. If the data is not naturally aligned, an alignment exception
is generated.

4-6 Common Architecture (1)



4.2.3 Load Unaligned Memory Data into Integer Register

Format:

LDQ_U  Ra.wq,disp.ab(Rb.ab) IMemory format

Operation:

va — {{Rbv + SEXT(disp)} AND NOT 7}

Ra « (va)<63:0>

Exceptions:

Access Violation
Fault on Read
Translation Not Valid

Instruction mnemonics:

LDQ_U  Load Unaligned Quadword from Memory to Register

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement, then the low-order three bits are cleared. The source operand is
fetched from memory and written to register Ra.

Instruction Descriptions (I) 4-7



4.2.4 Load Memory Data into Integer Register Locked

Format:

LDx_L Ra.wq,disp.ab(Rb.ab) IMemory format

Operation:

va «— {Rbv + SEXT(disp)}

lock_flag « 1
locked physical_address «+ PHYSICAL_ADDRESS(va)

Ra +« SEXT((va)<31:0>) !LDL L
Ra +« (va)<63:0> !LDQ L
Exceptions:

Access Violation
Alignment

Fault on Read
Translation Not Valid

Instruction mnemonics:

LDL_L Load Sign-Extended Longword from Memory to Register Locked
LDQ_L Load Quadword from Memory to Register Locked

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, sign-extended for LDL_
L, and written to register Ra.

When a LDx_L instruction is executed without faulting, the processor records the
target physical address in a per-processor locked_physical_address register and sets
the per-processor lock_flag.

If the per-processor lock_flag is (still) set when a STx_C instruction is executed, the
store occurs; otherwise, it does not occur, as described for the STx_C instructions.

If processor A’s lock_flag is set and processor B successfully does a store within A’s
locked range of physical addresses, then A’s lock_flag is cleared. A processor’s locked

4-8 Common Architecture (I)



range is the aligned block of 2**N bytes that includes the locked_physical_address.
The 2**N value is implementation dependent. It is at least 8 (minimum lock range
is an aligned quadword) and is at most the page size for that implementation
(maximum lock range is one physical page).

A processor’s lock_flag is also cleared if that processor encounters a CALL_PAL REI
instruction. It is UNPREDICTABLE whether or not a processor’s lock_flag is cleared
on any other CALL_PAL instruction. It is UNPREDICTABLE whether a processor’s
lock_flag is cleared by that processor’s executing a normal load or store instruction.
It is UNPREDICTABLE whether a processor’s lock_flag is cleared by that processor’s
executing a taken branch (including BR, BSR, and Jumps); conditional branches that
fall through do not clear the lock_flag.

The sequence LDx_L, modify, STx_C, BEQ xxx executed on a given processor does an
atomic read-modify-write of a datum in shared memory if the branch falls through;
if the branch is taken, the store did not modify memory and the sequence may be
repeated until it succeeds.

Notes:

e LDx_L instructions do not check for write access; hence a matching STx_C may
take an access-violation or fault-on-write exception.

Executing a LDx_ L instruction on one processor does not affect any
architecturally visible state on another processor, and in particular cannot cause
a STx_C on another processor to fail.

LDx_L and STx_C instructions need not be paired. In particular, an LDx_L may
be followed by a conditional branch: on the fall-through path an STx_C is done,
whereas on the taken path no matching STx_C is done.

If two LDx_L instructions execute with no intervening STx_C, the second one
overwrites the state of the first one. If two STx_C instructions execute with no
intervening LDx_L, the second one always fails because the first clears lock_flag.

¢ Software will not emulate unaligned LDx_L instructions.

e If any other memory access (LDx, LDQ_U, STx, STQ_U) is done on the given
processor between the LDx_L and the STx_C, the sequence above may always
fail on some implementations; hence, no useful program should do this.

e If a branch is taken between the LDx_L and the STx_C, the sequence above may
always fail on some implementations; hence, no useful program should do this.
(CMOVxx may be used to avoid branching.)

¢ If a subsetted instruction (for example, floating-point) is done between the LDx_L
and the STx_C, the sequence above may always fail on some implementations,
because of the Illegal Instruction Trap; hence, no useful program should do this.

¢ Ifalarge number of instructions are executed between the LDx_L and the STx_C,
the sequence above may always fail on some implementations, because of a timer
interrupt always clearing the lock_flag before the sequence completes; hence, no
useful program should do this.
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* Hardware implementations are encouraged to lock no more than 128 bytes.
Software implementations are encouraged to separate locked locations by at
least 128 bytes from other locations that could potentially be written by another
processor while the first location is locked.

IMPLEMENTATION NOTES
Implementations that impede the mobility of a cache
block on LDx_L, such as that which may occur in a Read
for Ownership cache coherency protocol, may release the
cache block and make the subsequent STx_C fail if a
branch-taken or memory instruction is executed on that
processor.

All implementations should guarantee that at least
40 non-subsetted operate instructions can be executed
between timer interrupts.
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4.2.5 Store Integer Register Data into Memory Conditional

Format:

STx_C Ra.mq,disp.ab(Rb.ab) IMemory format

Operation:

va « {Rbv + SEXT(disp)}

IF lock flag EQ 1 THEN
(va)<31:0> « Rav<31:0> ISTL C
(va) «~ Rav IsTQ C
Ra + lock_flag
lock_flag « 0

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STL_C Store Longword from Register to Memory Conditional
STQ_C Store Quadword from Register to Memory Conditional

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. If the lock_flag is set, the Ra operand is written to memory at this
address. (See the LDx_L description for conditions that clear the lock_flag.) The
lock_flag is returned in RA and then set to a zero.

Notes:

* Software will not emulate unaligned STx_C instructions.

* Each implementation must do the test and store atomically, so that if two

processors execute store conditionals within the same lock range, exactly one
of the stores succeeds.
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* The following sequence should not be used:

try_again: LDQ L Rl,x
<modify R1>
STQ C R1,x
BEQ R1l, try_ again

That sequence penalizes performance when the STQ_C succeeds, because the
sequence contains a backward branch, which is predicted to be taken in the
Alpha architecture. In the case where the STQ_C succeeds and the branch
will actually fall through, that sequence incurs unnecessary delay due to a
mispredicted backward branch. Instead, a forward branch should be used to
handle the failure case as shown in Section 5.5.2.

SOFTWARE NOTE
The address specified by a STx_C instruction need not
match that given in a preceding LDx_L. Specifying
unmatched addresses for those instructions requires an
MB in between to guarantee ordering.

IMPLEMENTATION NOTES
A STx_C must propagate to the point of coherency,
where it is guaranteed to prevent any other store from
changing the state of the lock bit, before its outcome can
be determined.

If an implementation could encounter a TB or cache miss
on the data reference of the STx_C in the sequence above
(as might occur in some shared I- and D-stream direct-
mapped TBs/caches), it must be able to resolve the miss
and complete the store without always failing.
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432.6 Store Integer Register Data into Memory

Format:

STx Ra.rq,disp.ab(Rb.ab) !Memory format
Operation:

va «— {Rbv + SEXT(disp)}

(va)<31:0> +— Rav<31l:0> {STL

(va) «~ Rav 1STQ
Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STL Store Longword from Register to Memory
STQ Store Quadword from Register to Memory
Qualifiers:
None
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The Ra operand is written to memory at this address. If the data is
not naturally aligned, an alignment exception is generated.
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4.2.7 Store Unaligned Integer Register Data into Memory

Format:

STQ U Ra.rq,disp.ab(Rb.ab) !Memory format

Operation:

va «— {{Rbv + SEXT(disp)} AND NOT 7}

(va)<63:0> «— Rav<63:0>

Exceptions:

Access Violation
Fault on Write
Translation Not Valid

Instruction mnemonics:

STQ U Store Unaligned Quadword from Register to Memory

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement, then clearing the low order three bits. The Ra operand is written to
memory at this address.
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4.3 Control Instructions

Alpha provides integer conditional branch, unconditional branch, branch to
subroutine, and jump instructions. The PC used in these instructions is the updated
PC, as described in Section 3.1.1.

To allow implementations to achieve high performance, the Alpha architecture
includes explicit hints based on a branch-prediction model:

1. For many implementations of computed branches (JSR/RET/JMP), there is a
substantial performance gain in forming a good guess of the expected target I-
cache address before register Rb is accessed.

2. For many implementations, the first-level (or only) I-cache is no bigger than a
page (8 KB to 64 KB).

3. Correctly predicting subroutine returns is important for good performance. Some
implementations will therefore keep a small stack of predicted subroutine return
I-cache addresses.

The Alpha architecture provides three kinds of branch-prediction hints: likely target
address, return-address stack action, and conditional branch-taken.

For computed branches, the otherwise unused displacement field contains a function
code (JMP/JSR/RET/JSR_COROUTINE), and, for JSR and JMP, a field that
statically specifies the 16 low bits of the most likely target address. The PC-
relative calculation using these bits can be exactly the PC-relative calculation used
in unconditional branches. The low 16 bits are enough to specify an I-cache block
within the largest possible Alpha page and hence are expected to be enough for
branch-prediction logic to start an early I-cache access for the most likely target.

For all branches, hint or opcode bits are used to distinguish simple branches,
subroutine calls, subroutine returns, and coroutine links. These distinctions allow
branch-predict logic to maintain an accurate stack of predicted return addresses.

For conditional branches, the sign of the target displacement is used as a taken
/fall-through hint. The instructions are summarized in Table 4-3.
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Table 4-3: Control Instructions Summary

Mnemonic Operation

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero
BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero
BLT Branch if Register Less Than Zero

BNE Branch if Register Not Equal to Zero

BR Unconditional Branch

BSR Branch to Subroutine

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return
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4.3.1 Conditional Branch

Format:

Bxx Ra.rq,disp.al 1Branch format

Operation:

{update PC}

va «— PC + {4*SEXT(disp)}

IF TEST(Rav, Condition based_on_Opcode) THEN
PC «~ va

Exceptions:

None

Instruction mnemonics:

BEQ Branch if Register Equal to Zero
BGE Branch if Register Greater Than or Equal to Zero
BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear
BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero
BLT Branch if Register Less Than Zero
BNE Branch if Register Not Equal to Zero

Qualifiers:

None

Description:

Register Ra is tested. If the specified relationship is true, the PC is loaded with
the target virtual address; otherwise, execution continues with the next sequential
instruction.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed
displacement gives a forward/backward branch distance of +/— 1M instructions.
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The test is on the signed quadword integer interpretation of the register contents;
all 64 bits are tested.

Notes:

* Forward conditional branches (positive displacement) are predicted to fall
through. Backward conditional branches (negative displacement) are predicted
to be taken. Conditional branches do not affect a predicted return address stack.
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4.3.2 Unconditional Branch

Format:
BxR Ra.wq,disp.al 1Branch format

Operation:

{update PC}
Ra «~ PC
PC «— PC + {4*SEXT(disp)}

Exceptions:

None

Instruction mnemonics:

BR Unconditional Branch
BSR Branch to Subroutine
Qualifiers:
None
Description:

The PC of the following instruction (the updated PC) is written to register Ra, and
then the PC is loaded with the target address.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The unconditional branch instructions are PC-relative. The 21-bit signed
displacement gives a forward/backward branch distance of +/— 1M instructions.

PC-relative addressability can be established by:

BR Rx,L1
Ll:

Notes:

* BR and BSR do identical operations. They only differ in hints to possible branch-
prediction logic. BSR is predicted as a subroutine call (pushes the return address
on a branch-prediction stack), whereas BR is predicted as a branch (no push).
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4.3.3 Jumps

Format:

mnemonic  Ra.wq,(Rb.ab),hint !Memory format

Operation:

{update PC}
va +— Rbv AND {NOT 3}

Ra «~ PC

PC «— va
Exceptions:

None

Instruction mnemonics:

JMP Jump
JSR Jump to Subroutine
RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

Qualifiers:

None

Description:

The PC of the instruction following the Jump instruction (the updated PC) is written
to register Ra, and then the PC is loaded with the target virtual address.

The new PC is supplied from register Rb. The low two bits of Rb are ignored. Ra
and Rb may specify the same register; the target calculation using the old value is
done before the new value is assigned.

All Jump instructions do identical operations. They only differ in hints to possible
branch-prediction logic. The displacement field of the instruction is used to pass this
information. The four different “opcodes” set different bit patterns in disp<15:14>,
and the hint operand sets disp<13:0>.
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These bits are intended to be used as shown in Table 4—4.

Table 4-4: Jump Instructions Branch Prediction

Predicted Prediction
disp<15:14> Meaning Target<15:0> Stack Action
00 JMP PC + {4*disp<13:0>} -

01 JSR PC + {4*disp<13:0>} Push PC
10 RET Prediction stack Pop
11 JSR_COROUTINE  Prediction stack Pop, push PC

The design in Table 44 allows specification of the low 16 bits of a likely longword
target address (enough bits to start a useful I-cache access early), and also allows
distinguishing call from return (and from the other two less frequent operations).

Note that the above information is used only as a hint; correct setting of these bits
can improve performance but is not needed for correct operation. See Appendix A
for more information on branch prediction.

An unconditional long jump can be performed by:
JMP R31, (Rb),hint

Coroutine linkage can be performed by specifying the same register in both the Ra
and Rb operands. When disp<15:14> equals ‘10’ (RET) or ‘11’ (JSR_COROUTINE)
(that is, the target address prediction, if any, would come from a predictor
implementation stack), then bits <13:0> are reserved for software and must be
ignored by all implementations. All encodings for bits <13:0> are used by Digital
software or Reserved to Digital, as follows:

Encoding Meaning

00006 Indicates non-procedure return
0001,¢ Indicates procedure return
All other encodings are reserved to Digital.
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4.4 Integer Arithmetic Instructions

The integer arithmetic instructions perform add, subtract, multiply, and signed and
unsigned compare operations.

The integer instructions are summarized in Table 4-5.

Table 4-5: Integer Arithmetic Instructions Summary
Mnemonic Operation '

ADD Add Quadword/Longword
S4ADD Scaled Add by 4
S8ADD Scaled Add by 8

CMPEQ Compare Signed Quadword Equal
CMPLT Compare Signed Quadword Less Than
CMPLE Compare Signed Quadword Less Than or Equal

CMPULT Compare Unsigned Quadword Less Than
CMPULE Compare Unsigned Quadword Less Than or Equal

MUL Multiply Quadword/Longword
UMULH  Multiply Quadword Unsigned High

SUB Subtract Quadword/Longword
S4SUB Scaled Subtract by 4
S8SUB Scaled Subtract by 8

There is no integer divide instruction. Division by a constant can be done via
UMULH,; division by a variable can be done via a subroutine. See Appendix A.

4-22 Common Architecture (1)



4.4.1 Longword Add

Format:
ADDL Ra.rq,Rb.rq,Rc.wq 10perate format
ADDL Ra.rq,#b.ib,Rc.wq !Operate format
Operation:

Rc «— SEXT( (Rav + Rbv)<31:0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDL Add Longword

Qualifiers:
Integer Overflow Enable (/V)

Description:

Register Ra is added to register Rb or a literal, and the sign-extended 32-bit sum is
written to Re.

The high order 32 bits of Ra and Rb are ignored. Rc is a proper sign extension
of the truncated 32-bit sum. Overflow detection is based on the longword
sum Rav<31:0> + Rbv<31:0>.
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4.4.2 Scaled Longword Add

Format:
SxADDL Ra.rq,Rb.rq,Rc.wq !Operate format
SxADDL Ra.rq,#b.ib,Rc.wq !0perate format
Operation:
CASE

S4ADDL: Rc « SEXT (((LEFT_SHIFT(Rav,2)) + Rbv)<31:0>)
S8ADDL: Rc « SEXT (((LEFT_SHIFT(Rav,3)) + Rbv)<31:0>)
ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDL  Scaled Add Longword by 4
SSADDL Scaled Add Longword by 8

Qualifiers:

None

Description:

Register Ra is scaled by 4 (for S4ADDL) or 8 (for SSADDL) and is added to register
RbD or a literal, and the sign-extended 32-bit sum is written to Rec.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit sum.
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4.4.3 Quadword Add

Format:
ADDQ Ra.rq,Rb.rq,Rc.wq 10Operate format
ADDQ Ra.rq,#b.ib,Rc.wq !Operate format
Operation:

Rc «— Rav + Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDQ Add Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:
Register Ra is added to register Rb or a literal, and the 64-bit sum is written to Re.

On overflow, the least significant 64 bits of the true result are written to the
destination register.

The unsigned compare instructions can be used to generate carry. After adding two
values, if the sum is less unsigned than either one of the inputs, there was a carry
out of the most significant bit.
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4.4.4 Scaled Quadword Add

Format:
SxADDQ Ra.rq,Rb.rq,Rc.wq !Operate format
SxADDQ Ra.rq,#b.ib,Rc.wq !Operate format
Operation:
CASE

S4ADDQ: Rc + LEFT SHIFT(Rav,2) + Rbv
S8ADDQ: Rc +« LEFT SHIFT(Rav,3) + Rbv
ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDQ Scaled Add Quadword by 4
S8ADDQ Scaled Add Quadword by 8

Qualifiers:

None

Description:

Register Ra is scaled by 4 (for S4ADDQ) or 8 (for SSADDQ) and is added to register
Rb or a literal, and the 64-bit sum is written to Re.

On overflow, the least significant 64 bits of the true result are written to the
destination register.
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4.4.5 Integer Signed Compare

Format:
CMPxx Ra.rq,Rb.rq,Rc.wq !Operate format
CMPxx Ra.rq,#b.ib,Rc.wq !Operate format
Operation:
IF Rav SIGNED_RELATION Rbv THEN
Rc «~ 1
ELSE
Rc «~ 0
Exceptions:
None

Instruction mnemonics:

CMPEQ Compare Signed Quadword Equal
CMPLE Compare Signed Quadword Less Than or Equal
CMPLT Compare Signed Quadword Less Than

Qualifiers:

None

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is
true, the value one is written to register Rc; otherwise, zero is written to Re.

Notes:

* Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.
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4.4.6 Integer Unsigned Compare

Format:
CMPUxx Ra.rq,Rb.rq,Rc.wq I0Operate format
CMPUxx Ra.rq,#b.ib,Rc.wq 10perate format
Operation:
IF Rav UNSIGNED RELATION Rbv THEN
Rc «~ 1
ELSE
Rc —~ 0
Exceptions:
None

Instruction mnemonics:

CMPULE Compare Unsigned Quadword Less Than or Equal
CMPULT Compare Unsigned Quadword Less Than

Qualifiers:

None

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is
true, the value one is written to register Re; otherwise, zero is written to Re.
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4.4.7 Longword Multiply

Format:
MULL Ra.rq,Rb.rq,Rec.wq !0Operate format
MULL Ra.Rq,#b.ib,Rc.wq !Operate format
Operation:

Rc «~ SEXT ((Rav * Rbv)<31:0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

MULL Multiply Longword

Qualifiers:
Integer Overflow Enable (/V)

Description:

Register Ra is multiplied by register Rb or a literal, and the sign-extended 32-bit
product is written to Re.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension
of the truncated 32-bit product. Overflow detection is based on the longword
product Rav<31:0> * Rbv<31:0>. On overflow, the proper sign extension of the least
significant 32 bits of the true result are written to the destination register.

The MULQ instruction can be used to return the full 64-bit product.
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4.4.8 Quadword Multiply

Format:
MULQ Ra.rq,Rb.rq,Rc.wq !0Operate format
MULQ Ra.Rq,#b.ib,Rc.wq !0Operate format
Operation:

Rc + Rav * Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

MULQ Multiply Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is multiplied by register Rb or a literal, and the 64-bit product is written
to register Re. Overflow detection is based on considering the operands and the result
as signed quantities. On overflow, the least significant 64 bits of the true result are
written to the destination register.

The UMULH instruction can be used to generate the upper 64 bits of the 128-bit
result when an overflow occurs.
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4.4.9 Unsigned Quadword Multiply High

Format:
UMULH Ra.rq,Rb.rq,Re.wq !Operate format
UMULH Ra.Rg,#b.ib,Rc.wq !Operate format

Operation:

Rc + ({Rav *U Rbv}<127:64>

Exceptions:

None

Instruction mnemonics:

UMULH  Unsigned Multiply Quadword High

Qualifiers:

None

Description:

Register Ra and Rb or a literal are multiplied as unsigned numbers to produce a
128-bit result. The high-order 64-bits are written to register Re.

The UMULH instruction can be used to generate the upper 64 bits of a 128-bit result
as follows:

Ra and Rb are unsigned: result of UMULH
Ra and Rb are signed:  (result of UMULH) — Ra<63>*Rb — Rb<63>*Ra

The MULQ instruction gives the low 64 bits of the result in either case.
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4.4.10 Longword Subtract

Format:
SUBL Ra.rq,Rb.rq,Rc.wq !Operate format
SUBL Ra.rq,#b.ib,Rc.wq !Operate format
Operation:

Rc « SEXT ((Rav - Rbv)<31:0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBL Subtract Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rb or a literal is subtracted from register Ra, and the sign-extended 32-bit
difference is written to Rec.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit difference. Overflow detection is based on the longword difference
Rav<31:0> — Rbv<31:0>.
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4.4.11 Scaled Longword Subtract

Format:
SxSUBL Ra.rq,Rb.rq,Rc.wq !Operate format
SxSUBL Ra.rq,#b.ib,Rc.wq 10Operate format

Operation:

CASE
S4SUBL: Rc + SEXT (((LEFT_SHIFT(Rav,2)) - Rbv)<31:0>)
S8SUBL: Rc + SEXT (((LEFT_SHIFT(Rav,3)) - Rbv)<31:0>)

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4SUBL  Scaled Subtract Longword by 4
S8SUBL  Scaled Subtract Longword by 8

Qualifiers:

None

Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is
scaled by 4 (for S4SUBL) or 8 (for SSSUBL), and the sign-extended 32-bit difference
is written to Rec.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit difference.
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4.4.12 Quadword Subtract

Format:
SUBQ Ra.rq,Rb.rq,Rc.wq !Operate format
SUBQ Ra.rq,#b.ib,Rc.wq !0Operate format
Operation:

Rc —~ Rav - Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBQ Subtract Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rb or a literal is subtracted from register Ra, and the 64-bit difference is
written to register Rc. On overflow, the least significant 64 bits of the true result
are written to the destination register.

The unsigned compare instructions can be used to generate borrow. If the minuend
(Rav) is less unsigned than the subtrahend (Rbv), there will be a borrow.
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4.4.13 Scaled Quadword Subtract

Format:
SxSUBQ Ra.rq,Rb.rq,Rc.wq 10perate format
SxSUBQ Ra.rq,#b.ib,Rc.wq |Operate format
Operation:
CASE

S4SUBQ: Rc « LEFT_SHIFT(Rav,2) - Rbv
S8SUBQ: Rc + LEFT_SHIFT(Rav,3) - Rbv
ENDCASE

Exceptions:

None

Instruction mnemonics:

S4SUBQ Scaled Subtract Quadword by 4
S8SUBQ Scaled Subtract Quadword by 8

Qualifiers:

None

Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is
scaled by 4 (for S4SUBQ) or 8 (for S8SUBQ), and the 64-bit difference is written to
Re.
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4.5 Logical and Shift Instructions

The logical instructions perform quadword Boolean operations. The conditional move
integer instructions perform conditionals without a branch. The shift instructions
perform left and right logical shift and right arithmetic shift. These are summarized
in Table 4-6.

Table 4-6: Logical and Shift Instructions Summary

Mnemonic Operation

AND Logical Product

BIC Logical Product with Complement
BIS Logical Sum (OR)

EQV Logical Equivalence (XORNOT)
ORNOT Logical Sum with Complement
XOR Logical Difference

CMOVxx Conditional Move Integer

SLL Shift Left Logical
SRA Shift Right Arithmetic
SRL Shift Right Logical

SOFTWARE NOTE
There is no arithmetic left shift instruction. Where an
arithmetic left shift would be used, a logical shift will
do. For multiplying by a small power of two in address
computations, logical left shift is acceptable.

Integer multiply should be used to perform an arithmetic left shift with overflow
checking.

Bit field extracts can be done with two logical shifts. Sign extension can be done
with left logical shift and a right arithmetic shift.
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4.5.1 Logical Functions

Format:
mnemonic
mnemonic

Operation:

Rc «— Rav
RC « Rav
RC + Rav
Rc «— Rav
Rc «— Rav
Rc Rav

Exceptions:

None

Ra.rq,Rb.rq,Rc.wq
Ra.rq,#b.ib,Rc.wq

AND Rbv
OR Rbv
XOR Rbv
AND {NOT Rbv}
OR {NOT Rbv}
XOR {NOT Rbv}

Instruction mnemonics:

AND
BIC
BIS
EQV

ORNOT

XOR

Qualifiers:

None

Description:

Logical Product

Logical Product with Complement
Logical Sum (OR)

Logical Equivalence (XORNOT)
Logical Sum with Complement
Logical Difference

10perate format
!Operate format

{AND
IBIS
! XOR
IBIC
{ORNOT
LEQV

These instructions perform the designated Boolean function between register Ra and
register Rb or a literal. The result is written to register Rec.

The “NOT” function can be performed by doing an ORNOT with zero (Ra = R31).
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4.5.2 Conditional Move Integer

Format:
CMOVxx Ra.rq,Rb.rq,Rc.wq !Operate format
CMOVxx Ra.rq,#b.ib,Rc.wq 10perate format
Operation:

IF TEST(Rav, Condition_ based on_Opcode) THEN
Rc «— Rbv

Exceptions:

None

Instruction mnemonics:

CMOVEQ CMOVE if Register Equal to Zero

CMOVGE CMOVE if Register Greater Than or Equal to Zero
CMOVGT CMOVE if Register Greater Than Zero

CMOVLBC CMOVE if Register Low Bit Clear

CMOVLBS CMOVE if Register Low Bit Set

CMOVLE CMOVE if Register Less Than or Equal to Zero
CMOVLT CMOVE if Register Less Than Zero

CMOVNE CMOVE if Register Not Equal to Zero

Qualifiers:

None

Description:

Register Ra is tested. If the specified relationship is true, the value Rbv is written
to register Rc.
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Notes:

Except that it is likely in many implementations to be substantially faster, the

instruction:
CMOVEQ Ra,Rb,Rc

is exactly equivalent to:

BNE Ra,label
OR Rb,Rb,Rc
label: ...

For example, a branchless sequence for:

R1=MAX (R1,R2)

is:

CMPLT R1,R2,R3 ! R3=1 if R1<R2
CMOVNE R3,R2,R1 ! Move R2 to R1 if R1<R2
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4.5.3 Shift Logical

Format:
SxL, Ra.rq,Rb.rq,Rc.wq
SxL Ra.rq,#b.ib,Rc.wq
Operation:

Rc + LEFT SHIFT(Rav, Rbv<5:0>)
Rc + RIGHT SHIFT(Rav, Rbv<5:0>)

Exceptions:

None

Instruction mnemonics:

SLL Shift Left Logical

SRL Shift Right Logical
Qualifiers:

None

Description:

!Operate format
!0Operate format

ISLL
{SRL

Register Ra is shifted logically left or right 0 to 63 bits by the count in register Rb
or a literal. The result is written to register Rc. Zero bits are propagated into the

vacated bit positions.
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4.5.4 Shift Arithmetic

Format:
SRA Ra.rq,Rb.rq,Rc.wq !0Operate format
SRA Ra.rb,#b.ib,Rc.wq 10perate format
Operation:

Rc < ARITH_RIGHT SHIFT(Rav, Rbv<5:0>)

Exceptions:

None

Instruction mnemonics:

SRA Shift Right Arithmetic

Qualifiers:

None

Description:

Register Ra is right shifted arithmetically 0 to 63 bits by the count in register Rb or
a literal. The result is written to register Re. The sign bit (Rav<63>) is propagated
into the vacated bit positions. .
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4.6 Byte-Manipulation Instructions

Alpha provides instructions for operating on byte operands within registers.
These instructions allow full-width memory accesses in the load/store instructions
combined with powerful in-register byte manipulation.

The instructions are summarized in Table 4-7.

Table 4-7: Byte-Manipulation Instructions Summary

Mnemonic Operation

CMPBGE Compare Byte

EXTBL Extract Byte Low
EXTWL Extract Word Low
EXTLL Extract Longword Low
EXTQL Extract Quadword Low
EXTWH Extract Word High
EXTLH Extract Longword High
EXTQH Extract Quadword High
INSBL Insert Byte Low
INSWL Insert Word Low
INSLL Insert Longword Low
INSQL Insert Quadword Low
INSWH Insert Word High
INSLH Insert Longword High
INSQH Insert Quadword High
MSKBL Mask Byte Low
MSKWL Mask Word Low
MSKLL Mask Longword Low
MSKQL Mask Quadword Low
MSKWH Mask Word High
MSKLH Mask Longword High
MSKQH Mask Quadword High
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Table 4-7 (Cont.): Byte-Manipulation Instructions Summary

Mnemonic Operation
ZAP Zero Bytes
ZAPNOT Zero Bytes Not
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4.6.1 Compare Byte

Format:
CMPBGE Ra.rq,Rb.rq,Rc.wq 10perate format
CMPBGE Ra.rq,#b.ib,Rc.wq 10perate format
Operation:

FOR i FROM 0 TO 7

temp<8:0> «— {0 || Rav<i*8+7:i*8>} +
{0|| NOT Rbv<i*8+7:i*8>} + 1
Rc<i> « temp<8>
END
Rc<63:8> «— 0

Exceptions:

None

Instruction mnemonics:

CMPBGE Compare Byte

Qualifiers:

None

Description:

CMPBGE does eight parallel unsigned byte comparisons between corresponding
bytes of Rav and Rbv, storing the eight results in the low eight bits of Rc. The
high 56 bits of Rc are set to zero. Bit 0 of Rc corresponds to byte 0, bit 1 of Re
corresponds to byte 1, and so forth. A result bit is set in Rc if the corresponding byte
of Rav is greater than or equal to Rbv (unsigned).
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Notes:
The result of CMPBGE can be used as an input to ZAP and ZAPNOT.

To scan for a byte of zeros in a character string:

<initialize Rl to aligned QW address of string>

At this point, R3 can be used to
determine which byte terminated

LOOP:
LDQ R2,0(R1) ; Pick up 8 bytes
LDA R1,8(R1) ; Increment string pointer
CMPBGE R31,R2,R3 ; If NO bytes of zero, R3<7:0>=0
BEQ R3,LOOP ; Loop if no terminator byte found
I
’

To compare two character strings for greater/less:

<initialize R1 to aligned QW address of stringl>
<initialize R2 to aligned QW address of string2>

LOOP:
LDQ R3,0(R1) Pick up 8 bytes of stringl
LDA R1,8(R1) Increment stringl pointer
LDQ R4,0(R2) Pick up 8 bytes of string2
LDA R2,8(R2) Increment string2 pointer
XOR R3,R4,R5 Test for all equal bytes
BEQ R5,LOOP Loop if all equal

CMPBGE R31,R5,R5
e At this point, R5 can be used to
determine the first not-equal

byte position.

~e¢ N6 No Ne Ne Ne e “e weo we

To range-check a string of characters in R1 for ‘0°..9”:

LDQ R2,1it0s Pick up 8 bytes of the character
BELOW ‘0’ “////////’
LDQ R3,1it9s Pick up 8 bytes of the character

ABOVE ‘9’ ‘iz’

Some R4<i>=1 if character is LT ‘0’
Some R5<i>=1 if character is GT ‘9’
Branch if some char too low

Branch if some char too high

CMPBGE R2,R1,R4
CMPBGE RI1,R3,R5
BNE R4 ,ERROR
BNE R5,ERROR

Ne Ne Neo wo wo we ~e ~we
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4.6.2 Extract Byte

Format:
EXTxx Ra.rq,Rb.rq,Rc.wq !Operate format
EXTxx Ra.rq,#b.ib,Rc.wq 10perate format
Operation:
CASE
EXTBL: byte mask « 0000 00013
EXTWx: byte _mask « 0000 0011
EXTLx: byte mask « 0000 1111;
EXTQx: byte mask « 1111 1111p
ENDCASE
CASE
EXTXL:
byte loc « Rbv<2:0>*8
temp « RIGHT SHIFT(Rav, byte loc<5:0>)
Rc «— BYTE_ZAP(temp, NOT(byte_mask) )
EXTxH:
byte_loc « 64 - Rbv<2:0>*8
temp < LEFT_SHIFT(Rav, byte loc<5:0>)
Rc + BYTE_ZAP(temp, NOT(byte mask) )
ENDCASE
Exceptions:
None

Instruction mnemonics:

EXTBL  Extract Byte Low
EXTWL  Extract Word Low
EXTLL Extract Longword Low
EXTQL  Extract Quadword Low
EXTWH  Extract Word High
EXTLH  Extract Longword High
EXTQH  Extract Quadword High
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Qualifiers:

None

Description:

EXTxL shifts register Ra right by 0 to 7 bytes, inserts zeros into vacated bit positions,
and then extracts 1, 2, 4, or 8 bytes into register Re. EXTxH shifts register Ra left
by 0 to 7 bytes, inserts zeros into vacated bit positions, and then extracts 2, 4, or 8
bytes into register Rc. The number of bytes to shift is specified by Rbv<2:0>. The
number of bytes to extract is specified in the function code. Remaining bytes are
filled with zeros.

Notes:
The comments in the examples below assume that the effective address (ea) of
X(R11) is such that (ea mod 8) = 5, the value of the aligned quadword containing
X(R11) is CBAx xxxx, and the value of the aligned quadword containing X+7(R11) is
yyyH GFED.

The examples below are the most general case unless otherwise noted; if more
information is known about the value or intended alignment of X, shorter sequences
can be used.

The intended sequence for loading a quadword from unaligned address X(R11) is:

LDQ U R1,X(R11) Ignores va<2:0>, Rl = CBAX XXXX
LDQ U R2,X+7(R11) Ignores va<2:0>, R2 = yyyH GFED
=5

EXTQL R1,R3,R1 R1 0000 OCBA
EXTQH R2,R3,R2 R2 HGFE D000
OR R2,R1,R1 ; R1 HGFE DCBA

;
B ;
LDA R3,X(R11) ; R3<2:0> = (X mod 8)
;
;

The intended sequence for loading and zero-extending a longword from unaligned
address X is:

LDQ U R1,X(R11) ; Ignores va<2:0>, Rl = CBAX XXXX
LDQ U R2,X+3(R11) ; Ignores va<2:0>, R2 = yyyy yyyD
LDA R3,X(R11) ; R3<2:0> = (X mod 8) =5

EXTLL R1,R3,R1 ; R1 = 0000 OCBA

EXTLH R2,R3,R2 ; R2 = 0000 DOOO

OR R2,R1,R1 ; Rl = 0000 DCBA

The intended sequence for loading and sign-extending a longword from unaligned
address X is:

LDQ U R1,X(R11) ; Ignores va<2:0>, Rl = CBAX XXXX
LDQ U R2,X+3(R11) ; Ignores va<2:0>, R2 = yyyy yyyD
LDA R3,X(R11) ; R3<2:0> = (X mod 8) = 5

EXTLL R1,R3,R1 ; R1 = 0000 OCBA
EXTLH R2,R3,R2 ; R2 = 0000 DOOO
OR R2,R1,R1 ; R1 = 0000 DCBA
SLL R1,#32,R1 ; R1 = DCBA 0000
SRA R1,#32,R1 s Rl = ssss DCBA
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The intended sequence for loading and zero-extending a word from unaligned address

X is:
LDQ U R1,X(R11) Ignores va<2:0>, Rl = yBAX XXXX
LDQ U R2,X+1(R11) Ignores va<2:0>, R2 = yBAX XXXX
LDA R3,X(R11) R3<2:0> = (X mod 8) =5

Ne Se Ne Ne wo we

EXTWL R1,R3,R1 R1 = 0000 00BA
EXTWH R2,R3,R2 R2 = 0000 0000
OR R2,R1,R1 R1 = 0000 00BA
The intended sequence for loading and sign-extending a word from unaligned address
X is:
LDQ U R1,X(R11) ; Ignores va<2:0>, Rl = yBAX XXXX
LDQ U R2,X+1(R11) ; Ignores va<2:0>, R2 = yBAX XXXX
LDA R3,X(R11) ; R3<2:0> = (X mod 8) = 5
EXTWL R1,R3,R1 ; R1 = 0000 00BA
EXTWH R2,R3,R2 ; R2 = 0000 0000
OR R2,R1,R1 ; R1 = 0000 00BA
SLL R1, #48,R1 ; R1 = BAOO 0000
SRA R1,#48,R1 ;s Rl = ssss ssBA

The intended sequence for loading and zero-extending a byte from address X is:

LDQ U R1,X(R11) ; Ignores va<2:0>, Rl
LDA R3,X(R11) ; R3<2:0> = (X mod 8)
EXTBL R1,R3,R1 ; R1 = 0000 000A

YYAX XXXX
5

The intended sequence for loading and sign-extending a byte from address X is:

LDQ U Rl, X(R1l)
LDA R3, X+1(R11)

Ignores va<2:0>, Rl = yyAx XXXX
R3<2:0> = (X + 1) mod 8, i.e.,
convert byte position within
quadword to one-origin based
Places the desired byte into byte 7
of Rl.final by left shifting
Rl.initial by ( 8 - R3<2:0> ) byte
positions

Arithmetic Shift of byte 7 down
into byte 0,

EXTQH R1l, R3, Rl

SRA R1, #56, Rl

Ne Ne Ne Ne Ne e we “e ~o ~e

Optimized examples:

Assume that a word fetch is needed from 10(R3), where R3 is intended to contain
a longword-aligned address. The optimized sequences below take advantage of the
known constant offset, and the longword alignment (hence a single aligned longword
contains the entire word). The sequences generate a Data Alignment Fault if R3 does
not contain a longword-aligned address.

The intended sequence for loading and zero-extending an aligned word from 10(R3)
is:

; Rl = ssss BAXX
; Faults if R3 is not longword aligned
; R1 = 0000 00BA

LDL R1,8(R3)

EXTWL R1,#2,R1
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The intended sequence for loading and sign-extending an aligned word from 10(R3)
is:

LDL R1,8(R3) ;7 Rl = ssss BAxXX
; Faults if R3 is not longword aligned
SRA R1,#16,R1 s Rl = ssss ssBA
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4.6.3 Byte Insert

!Operate format

10Operate format

0000 0000 00012
0000 0000 00115
0000 0000 11113
0000 1111 11113

temp + LEFT_ SHIFT(Rav, byte loc<5:0>)
Rc « BYTE_ZAP(temp, NOT(byte mask<7:0>))

temp « RIGHT_SHIFT(Rav, byte loc<5:0>)
Rc « BYTE_ZAP(temp, NOT(byte mask<15:8>))

Format:
INSxx Ra.rq,Rb.rq,Rec.wq
INSxx Ra.rq,#b.ib,Rc.wq
Operation:
CASE
INSBL: byte mask « 0000
INSWx: byte mask «~ 0000
INSLx: byte mask «— 0000
INSQx: byte_mask « 0000
ENDCASE
byte_mask « LEFT_SHIFT(byte mask, rbv<2:0>)
CASE
INSxL:
byte_loc + Rbv<2:0>*8
INSxH:
byte_loc < 64 - Rbv<2:0>*8
ENDCASE
Exceptions:
None

Instruction mnemonics:

INSBL
INSWL
INSLL
INSQL
INSWH
INSLH
INSQH

Insert Byte Low
Insert Word Low
Insert Longword Low
Insert Quadword Low
Insert Word High
Insert Longword High
Insert Quadword High
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Qualifiers:

None

Description:

INSxL and INSxH shift bytes from register Ra and insert them into a field of zeros,
storing the result in register Rc. Register Rb<2:0> selects the shift amount, and the
function code selects the maximum field width: 1, 2, 4, or 8 bytes. The instructions
can generate a byte, word, longword, or quadword datum that is spread across two
registers at an arbitrary byte alignment.
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4.6.4 Byte Mask

!Operate format
!0Operate format

0000 0000 00012
0000 0000 0011
0000 0000 1111
0000 1111 1111,

Rc «— BYTE_ZAP(Rav, byte mask<7:0>)

Rc + BYTE_ZAP(Rav, byte_mask<15:8>)

Format:
MSKxx  Ra.rq,Rb.rq,Rc.wq
MSKxx Ra.rq,#b.ib,Rc.wq
Operation:
CASE
MSKBL: byte mask «~ 0000
MSKWx: byte _mask « 0000
MSKLx: byte_mask « 0000
MSKQx: byte_mask « 0000
ENDCASE
byte mask + LEFT_SHIFT(byte_mask, rbv<2:0>)
CASE
MSKxL:
MSKxH:
ENDCASE
Exceptions:
None

Instruction mnemonics:

MSKBL
MSKWL
MSKLL
MSKQL
MSKWH
MSKLH
MSKQH

Qualifiers:

None

Mask Byte Low
Mask Word Low
Mask Longword Low
Mask Quadword Low
Mask Word High
Mask Longword High
Mask Quadword High
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Description:

MSKxL and MSKxH set selected bytes of register Ra to zero, storing the result
in register Rc. Register Rb<2:0> selects the starting position of the field of zero
bytes, and the function code selects the maximum width: 1, 2, 4, or 8 bytes. The
instructions generate a byte, word, longword, or quadword field of zeros that can
spread across two registers at an arbitrary byte alignment.

Notes:

The comments in the examples below assume that the effective address (ea) of X(R11)
is such that (ea mod 8) = 5, the value of the aligned quadword containing X(R11) is
CBAx xxxx, the value of the aligned quadword containing X+7(R11) is yyyH GFED,
and the value to be stored from R5 is hgfe dcba.

The examples below are the most general case; if more information is known about
the value or intended alignment of X, shorter sequences can be used.

The intended sequence for storing an unaligned quadword R5 at address X(R11) is:

LDA R6,X(R11) R6<2:0> = (X mod 8) =5
LDQ U R2,X+7(R11) Ignores va<2:0>, R2 = yyyH GFED
LDQ U R1,X(R11) Ignores va<2:0>, Rl = CBAX XXXX

INSQH R5,R6,R4 R4 = 000h gfed
INSQL R5,R6,R3 R3 = cbal 0000
MSKQH R2,R6,R2 R2 = yyy0 0000
MSKQL R1,R6,R1 Rl = 000x xxxx
OR R2,R4,R2 R2 = yyyh gfed
OR R1,R3,R1 R1 = cbax xxxx

STQ U R2,X+7(R11)

A Must store high then low for
STQ U R1,X(R11)

degenerate case of aligned QW

e Ne Ne Ne Ne we Ne we we we e

The intended sequence for storing an unaligned longword R5 at X is:

STQ U  R2,X+3(R11)
STQ U  R1,X(R11)

Must store high then low for
degenerate case of aligned

LDA R6,X(R11) ; R6<2:0> = (X mod 8) =5
LDQ U R2,X+3(R11) ; Ignores va<2:0>, R2 = yyyy yyyD
LDQ U R1,X(R11) ; Ignores va<2:0>, Rl = CBAX XXXX
INSLH R5,R6,R4 ; R4 = 0000 000d
INSLL R5,R6,R3 ; R3 = cba0 0000
MSKLH R2,R6,R2 ; R2 = yyyy yyyo0
MSKLL R1,R6,R1 s R1 = 000x xXxXxXX
OR R2,R4,R2 ; R2 = yyyy yyyd
OR R1,R3,R1 ; Rl = cbax xxxx
i
’
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The intended sequence for storing an unaligned word R5 at X is:

LDA
LDQ U
LDQ U
INSWH
INSWL
MSKWH
MSKWL
OR

OR

STQ U
STQ U

R6,X(R11)
R2,X+1(R11)
R1,X(R11)
R5,R6,R4
R5,R6,R3
R2,R6,R2
R1,R6,R1
R2,R4,R2
R1,R3,R1
R2,X+1(R11)
R1,X(R11)

e Ne Ne Ne Ne Ne Ne Ne we wo o

R6<2:0> = (X mod 8)
Ignores va<2:0>, R2
Ignores va<2:0>, Rl

R4
R3
R2
R1
R2
R1

Must

0000 0000
Oba0 0000
YBAX XxXxx
y00x xxxx
YBAX XXxx
ybax xxxx

Wonon

YBAX xXXxx
YBAX XXXX

store high then low for
degenerate case of aligned

The intended sequence for storing a byte R5 at X is:

LDA
LDQ_U
INSBL
MSKBL
OR

STQ U

R6,X(R11)
R1,X(R11)
R5,R6,R3
R1,R6,R1
R1,R3,R1
R1,X(R11)
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R6<2:0> = (X mod 8)
Ignores va<2:0>, Rl

R3
R1
R1

00a0 0000
YYOx xxxx
yyax XxXXx

5
YYAX XXXX



4.6.5 Zero Bytes

Format:
ZAPx Ra.rq,Rb.rq,Rec.wq !Operate format
ZAPx Ra.rq,#b.ib,Rc.wq I0Operate format
Operation:
CASE
ZAP:
Rc «— BYTE_ZAP(Rav, rbv<7:0>)
ZAPNOT:
Rc « BYTE_ZAP(Rav, NOT rbv<7:0>)
ENDCASE

Exceptions:

None

Instruction mnemonics:

ZAP Zero Bytes
ZAPNOT Zero Bytes Not

Qualifiers:

None

Description:

ZAP and ZAPNOT set selected bytes of register Ra to zero, and store the result in
register Rc. Register Rb<7:0> selects the bytes to be zeroed; bit 0 of Rbv corresponds
to byte 0, bit 1 of Rbv corresponds to byte 1, and so on. A result byte is set to zero
if the corresponding bit of Rbv is a one for ZAP and a zero for ZAPNOT.
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4.7 Floating-Point Instructions

Alpha provides instructions for operating on floating-point operands in each of four
data formats:

¢ F_floating (VAX single)

* G_floating (VAX double, 11-bit exponent)
¢ S_floating (IEEE single)

¢ T floating (IEEE double, 11-bit exponent)

Data conversion instructions are also provided to convert operands between floating-
point and quadword integer formats, between double and single floating, and
between quadword and longword integers.

NOTE

D_floating is a partially supported datatype; no D_
floating arithmetic operations are provided in the
architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software
emulation. D_floating “format compatibility,” in which
binary files of D_floating numbers may be processed
but without the last 3 bits of fraction precision, can
be obtained via conversions to G_floating, G arithmetic
operations, then conversion back to D_floating.

The choice of data formats is encoded in each instruction. Each instruction also
encodes the choice of rounding mode and the choice of trapping mode.

All floating-point operate instructions (that is, not including loads or stores) that
yield an F_ or G_floating zero result must materialize a true zero.
4.7.1 Floating Subsets and Floating Faults

All floating-point operations may take floating disabled faults. Any subsetted
floating-point instruction may take an Illegal Instruction Trap. These faults are
not explicitly listed in the description of each instruction.

All floating-point loads and stores may take memory management faults (access
control violation, translation not valid, fault on read/write, data alignment).

The Floating-point Enable (FEN) internal processor register (IPR) allows system
software to restrict access to the floating registers.

If a floating instruction is implemented and FEN = 0, attempts to execute the
instruction cause a floating disabled fault.

If a floating instruction is not implemented, attempts to execute the instruction
cause an Illegal Instruction Trap. This rule holds regardless of the value of FEN.

An Alpha implementation may provide both VAX and IEEE floating-point operations,
either, or none.
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Some floating-point instructions are common to the VAX and IEEE subsets, some
are VAX only, and some are IEEE only. These are designated in the descriptions
that follow. If either subset is implemented, all the common instructions must be
implemented.

An implementation including IEEE floating-point may subset the ability to perform
rounding to plus infinity and minus infinity. If not implemented, instructions
requesting these rounding modes take Illegal Instruction Trap.

4.7.2 Definitions
The following definitions apply to Alpha floating-point support.

true resuit

The mathematically correct result of an operation, assuming that the input operand
values are exact. The true result is typically rounded to the nearest representable
result.

representable result
a real number that can be represented exactly as a VAX or IEEE floating-point
number, with finite precision and bounded exponent range.

LSB

The least significant bit. For a positive representable number A whose fraction is
not all ones, A + 1 LSB is the next larger representable number, and A + 1/2 LSB
is exactly halfway between A and the next larger representable number.

true zero
The value +0, represented as exactly 64 zeros in a floating-point register.

Alpha finite number

A floating-point number with a definite, in-range value. Specifically, all numbers
in the inclusive ranges ~-MAX..-MIN, zero, +MIN..+MAX, where MAX is the largest
non-infinite representable floating-point number and MIN is the smallest non-zero
representable normalized floating-point number.

For VAX floating-point, finites do not include reserved operands or dirty zeros (this
differs from the usual VAX interpretation of dirty zeros as finite). For IEEE floating-
point, finites do not include infinites, NaNs, or denormals, but do include minus zero.

Not-a-Number

An IEEE floating-point bit pattern that represents something other than a number.
This comes in two forms: signaling NaNs (for Alpha, those with an initial fraction
bit of 1) and quiet NaNs (for Alpha, those with initial fraction bit of 0).

infinity
An IEEE floating-point bit pattern that represents plus or minus infinity.
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denormal

An IEEE floating-point bit pattern that represents a number whose magnitude lies
between zero and the smallest finite number.

dirty zero
A VAX floating-point bit pattern that represents a zero value, but not in true-zero
form.

reserved operand
A VAX floating-point bit pattern that represents an illegal value.

trap shadow

The set of instructions potentially executed after an instruction that signals an
arithmetic trap but before the trap is actually taken.

4.7.3 Encodings

Floating-point numbers are represented with three fields: sign, exponent, and
fraction. The sign is 1 bit; the exponent is 8 or 11 bits; and the fraction is 23,
52, or 55 bits. Some encodings represent special values:

 Vax VAX  IEEE IEEE
Sign Exponent Fraction Meaning Finite Meaning Finite
X All-1’s Non-zero Finite Yes +/~NaN No
X All-1’s 0 Finite Yes +/-Infinity No
0 0 Non-zero Dirty zero No +Denormal No
1 0 Non-zero Resv. operand No —Denormal No
0 0 0 True zero Yes +0 Yes
1 0 0 Resv. operand No -0 Yes
X Other X Finite Yes finite Yes

The values of MIN and MAX for each of the four floating-point data formats are:

Data Format MIN MAX

F_floating 2%%_127 * 0.5 2%%127 * (1.0 — 2*%*_24)
(0.294e-38) (1.70e38)

G_floating 2%*%-1023 * 0.5 2%%1023 * (1.0 — 2*%*-53)
(0.56e—-308) (0.899e308)

S_floating 2%%-126 * 1.0 2%%127 * (2.0 — 2*%*_23)
(1.175e-38) (3.40e38)
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Data Format MIN MAX

T_floating 2*%4-1022 *1.0  2**1023 * (2.0 — 2**-52)
(2.225e-308) (1.798e308)

4.7.4 Floating-Point Rounding Modes

All rounding modes map a true result that is exactly representable to that
representable value.

VAX Rounding Modes
For VAX floating-point operations, two rounding modes are provided and are
specified in each instruction: normal (biased) rounding and chopped rounding.

Normal VAX rounding maps the true result to the nearest of two representable
results, with true results exactly halfway between mapped to the larger in absolute
value (sometimes called biased rounding away from zero); maps true results
> MAX + 1/2 LSB in magnitude to an overflow; maps true results < MIN - 1/2 LSB
in magnitude to an underflow.

Chopped VAX rounding maps the true result to the smaller in magnitude of two
surrounding representable results; maps true results > MAX + 1 LSB in magnitude
to an overflow; maps true results < MIN in magnitude to an underflow.

IEEE Rounding Modes

For IEEE floating-point operations, four rounding modes are provided: normal
rounding (unbiased round to nearest), rounding toward minus infinity, round toward
zero, and rounding toward plus infinity. The first three can be specified in the
instruction. Rounding toward plus infinity can be obtained by setting the Floating-
point Control Register (FPCR) to select it and then specifying dynamic rounding
mode in the instruction (See Section 4.7.7). Alpha IEEE arithmetic does rounding
before detecting overflow/underflow.

Normal IEEE rounding maps the true result to the nearest of two representable
results, with true results exactly halfway between mapped to the one whose
fraction ends in O (sometimes called unbiased rounding to even); maps true results
> MAX + 1/2 LSB in magnitude to an overflow; maps true results < MIN - 1/2 LSB
in magnitude to an underflow.

Plus infinity IEEE rounding maps the true result to the larger of two surrounding
representable results; maps true results > MAX in magnitude to an overflow; maps
positive true results < +MIN — 1 LSB to an underflow; and maps negative true
results > -MIN to an underflow.

Minus infinity IEEE rounding maps the true result to the smaller of two surrounding
representable results; maps true results > MAX in magnitude to an overflow; maps
positive true results < +MIN to an underflow; and maps negative true results
> —MIN + 1 LSB to an underflow.
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Chopped IEEE rounding maps the true result to the smaller in magnitude of two
surrounding representable results; maps true results > MAX + 1 LSB in magnitude
to an overflow; and maps non-zero true results < MIN in magnitude to an underflow.

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register
and is described in more detail in Section 4.7.7.

The following tables summarize the floating-point rounding modes:

VAX Rounding Mode Instruction Notation

Normal rounding (No modifier)

Chopped /C

IEEE Rounding Mode Instruction Notation

Normal rounding (No modifier)

Dynamic rounding /D

Plus infinity /D and ensure that FPCR<DYN> = ‘11’
Minus infinity ™

Chopped /C

4.7.5 Floating-Point Trapping Modes

There are six exceptions that can be generated by floating-point operate instructions,
all signaled by an arithmetic exception trap. These exceptions are:

¢ Invalid operation

¢ Division by zero

¢  Overflow

¢ Underflow, may be disabled

¢ Inexact result, may be disabled

* Integer overflow (conversion to integer only), may be disabled

For more detail on the information passed to an arithmetic exception handler, see
Part II, Operating Systems.

VAX Trapping Modes

For VAX floating-point operations other than CVTxQ, four trapping modes are
provided. They specify software completion and whether traps are enabled for
underfiow.

For VAX conversions from floating-point to integer, four trapping modes are provided.
They specify software completion and whether traps are enabled for integer overflow.
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IEEE Trapping Modes

For IEEE floating-point operations other than CVTxQ, four trapping modes are
provided. They specify software completion and whether traps are enabled for
underflow and inexact results.

For IEEE conversions from floating-point to integer, four trapping modes are
provided. They specify software completion, and whether traps are enabled for

integer overflow and inexact results.

The modes and instruction notation are:

VAX Trap Mode Instruction Notation
Imprecise, underflow disabled (No modifier)
Imprecise, underflow enabled a

Software, underflow disabled /S

Software, underflow enabled /SU

VAX Convert-to-Integer Trap Mode

Instruction Notation

Imprecise, integer overflow disabled (No modifier)
Imprecise, integer overflow enabled N

Software, integer overflow disabled /S

Software, integer overflow enabled /SV

IEEE Trap Mode Instruction Notation
Imprecise, unfl disabled, inexact disabled (No modifier)
Imprecise, unfl enabled, inexact disabled g

Software, unfl enabled, inexact disabled /SU

Software, unfl enabled, inexact enabled /SUI

IEEE Convert-to-Integer Trap Mode

Instruction Notation

Imprecise, int.ovfl disabled, inexact disabled (No modifier)
Imprecise, int.ovfl enabled, inexact disabled N

Software, int.ovfl enabled, inexact disabled /SV
Software, int.ovfl enabled, inexact enabled /SVI1

Instruction Descriptions (1)

4-61



4.7.5.1 Imprecise /Software Completion Trap Modes

Floating-point instructions may be pipelined, and all exceptions are imprecise traps:

The trapping instruction may write an UNPREDICTABLE result value.

The trap PC is an arbitrary number of instructions past the one triggering
the trap. The trigger instruction plus all intervening executed instructions are
collectively referred to as the trap shadow of the trigger instruction.

The extent of the trap shadow is bounded only by a TRAPB instruction (or the
implicit TRAPB within a CALL_PAL instruction).

Input operand values may have been overwritten in the trap shadow.
Result values may have been overwritten in the trap shadow.

An UNPREDICTABLE result value may have been used as an input operand in
the trap shadow.

Additional traps may occur in the trap shadow.

In general, it is not feasible to fix up the result value or to continue from the
trap.

This behavior is ideal for operations on finite operands that give finite results. For
programs that deliberately operate outside the overflow/underflow range, or use
IEEE NaNs, software assistance is required to complete floating-point operations
correctly. This assistance can be provided by a software arithmetic trap handler,
plus constraints on the instructions surrounding the trap.

For a trap handler to complete non-finite arithmetic, the following conditions must
hold:

1.

On entry to the trap shadow, if any Alpha register or memory location contains
a value that is used as an operand value by some instruction in the trap shadow
(live on entry), then no instruction in the trap shadow may modify the register
or memory location.

Within the trap shadow, the computation of the base register for a memory load
or store instruction may not involve using the result of an instruction that might
generate an UNPREDICTABLE result.

Within the trap shadow, no register may be used more than once as a destination
register.

The trap shadow may not include any branch instructions.

Each floating instruction to be completed must be so marked, by specifying the
/S software completion modifier.

The first condition allows a software trap handler to emulate the trigger instruction
with its original input operand values and then to reexecute the rest of the trap
shadow.

The second condition prevents memory accesses at unpredictable addresses.
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4.75.2

4.7.5.3

4754

4.7.5.5

The remaining conditions make it possible for a software trap handler to find the
trigger instruction via a linear scan backwards from the trap PC.

NOTE

The /S modifier does not affect instruction operation
or trap behavior; it is an informational bit passed to
a software trap handler. It allows a trap handler to
test easily whether an instruction is intended to be
completed. (The /S bits of instructions signaling traps
are carried into the trap summary) The handler may
then assume that the other conditions are met without
examining the code stream.

If a software trap handler is provided, it must handle the completion of all floating-
point operations marked /S that follow the rules above. In effect, one TRAPB
instruction per basic block can be used.

Invalid Operation Arithmetic Trap

An invalid operation arithmetic trap is signaled if any operand of a floating
arithmetic-operate instruction is non-finite. (CMPTxy is an exception to the rule
and operates normally with plus and minus infinity and does not trap in this case.)
This trap is always enabled. If this trap occurs, an UNPREDICTABLE value is
stored in the result register. (IEEE-compliant system software must also supply an
invalid operation indication to the user for SQRT of a negative non-zero number,
0/0, x REM 0, and conversions to integer that take an integer overflow trap.)

Division by Zero Arithmetic Trap

A division by zero arithmetic trap is taken if the numerator does not cause an invalid
operation trap and the denominator is zero. This trap is always enabled. If this trap
occurs, an UNPREDICTABLE value is stored in the result register.

Overflow Arithmetic Trap

An overflow arithmetic trap is signaled if the rounded result exceeds in magnitude
the largest finite number of the destination format. This trap is always enabled. If
this trap occurs, an UNPREDICTABLE value is stored in the result register.

Underflow Arithmetic Trap

An underflow occurs if the rounded result is smaller in magnitude than the smallest
finite number of the destination format.

If an underflow occurs, a true zero (64 bits of zero) is always stored in the result
register, even if the proper IEEE result would have been —0 (underflow below the
negative denormal range).

If an underflow occurs and underflow traps are enabled by the instruction, an
underflow arithmetic trap is signaled.
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4.7.5.6 Inexact Result Arithmetic Trap

An inexact result occurs if the infinitely precise result differs from the rounded
result.

If an inexact result occurs, the normal rounded result is still stored in the result
register.

If an inexact result occurs and inexact result traps are enabled by the instruction,
an inexact result arithmetic trap is signaled.

4.7.5.7 Integer Overflow Arithmetic Trap

In conversions from floating to quadword integer, an integer overflow occurs if the
rounded result is outside the range —2*¥63..2**63—1. In conversions from quadword
integer to longword integer, an integer overflow occurs if the result is outside the
range —2**31..2%*%31-1.

If an integer overflow occurs in CVTxQ or CVTQL, the true result truncated to the
low-order 64 or 32 bits respectively is stored in the result register.

If an integer overflow occurs and integer overflow traps are enabled by the
instruction, an integer overflow arithmetic trap is signaled.

4.7.6 Floating-Point Single-Precision Operations

Single-precision values (F_floating or S_floating) are stored in the floating registers
in canonical form, as subsets of double-precision values, with 11-bit exponents
restricted to the corresponding single-precision range, and with the 29 low-order
fraction bits restricted to be all zero.

Single-precision operations applied to canonical single-precision values give single-
precision results. Single-precision operations applied to non-canonical operands give
UNPREDICTABLE results.

Longword integer values in floating registers are stored in bits <63:62,58:29>, with
bits <61:59> ignored and zeros in bits <28:0>.

4.7.7 FPCR Register and Dynamic Rounding Mode

When an IEEE floating-point operate instruction specifies dynamic mode (/D) in its
function field (function code bits <7:6> = 11), the rounding mode to be used for the
instruction is derived from the FPCR register. The layout of the rounding mode bits
and their assignments matches exactly the format used in the 11-bit function field
of the floating-point operate instructions.

In addition, the FPCR gives a summary for each exception type of the exceptions
conditions detected by all IEEE floating-point operates thus far as well as an
overall summary bit that indicates whether any of these exception conditions has
been detected. The individual exception bits match exactly in purpose and order
the exceptions bits found in the exception summary quadword that is pushed for
arithmetic traps. However, for each instruction, these exceptions bits are set
independent of the trapping mode specified for the instruction. Therefore, even
though trapping may be disabled for a certain exceptional condition, the fact that
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the exceptional condition was encountered by an instruction will still be recorded in
the FPCR.

Floating-point operates that belong to the IEEE subset and CVTQL, which belongs
to both VAX and IEEE subsets, appropriately set the FPCR exception bits. It is
UNPREDICTABLE whether floating-point operates that belong only to the VAX
floating-point subset set the FPCR exception bits.

Alpha floating-point hardware only transitions these exception bits from zero to one.
Once set to one, these exception bits are only cleared when software writes zero into
these bits by writing a new value into the FPCR.

The format of the FPCR is shown in Figure 4-1 and described in Table 4-8.

Figure 4-1: Floating-Point Control Register (FPCR) Format

6362 6059 58 57 56 55 54 53 52 51 0

o [1]1|ulolp]i
RAZ| v [o|N|N|V(z|N RAZ/IGN
N |V|E|F|F|E|V

=7

Table 4-8: Floating-Point Control Register (FPCR) Bit Descriptions
Bit Description

63 Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to
(FPCRI[57] | FPCR[56] | FPCR[55] | FPCR[54] | FPCR[53] | FPCR[52]).

62-60 Reserved. Read As Zero; Ignored when written.

59-58 Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by

an IEEE floating-point operate instruction when the instruction’s function field
specifies dynamic mode (/D). Assignments are:

DYN IEEE Rounding Mode Selected
00 Chopped rounding mode
01 Minus infinity
10 Normal rounding
11 Plus infinity
57 Integer Overflow (IOV). An integer arithmetic operation or a conversion from

floating to integer overflowed the destination precision.

56 Inexact Result (INE). A floating arithmetic or conversion operation gave a result
that differed from the mathematically exact result.
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4.7.71

Table 4-8 (Cont.): Floating-Point Control Register (FPCR) Bit Descriptions
Bit Description

55 Underflow (UNF). A floating arithmetic or conversion operation underflowed the
destination exponent.

54 Overflow (OVF). A floating arithmetic or conversion operation overflowed the
destination exponent.

53 Division by Zero (DZE). An attempt was made to perform a floating divide
operation with a divisor of zero.

52 Invalid Operation (INV). An attempt was made to perform a floating arithmetic,
conversion, or comparison operation, and one or more of the operand values were
illegal.

51-0 Reserved. Read As Zero; Ignored when written.

FPCR is read from and written to the floating-point registers by the MT_FPCR and
MF_FPCR instructions respectively, which are described in Section 4.7.7.1.

FPCR and the instructions to access it are required for an implementation that
supports floating-point (see Section 4.1.1.1). On implementations that do not support
floating-point, the instructions that access FPCR (MF_FPCR and MT_FPCR) take
an Illegal Instruction Trap.

SOFTWARE NOTE
As noted in Section 4.1.1.1, support for FPCR is
required on a system that supports the OpenVMS Alpha
operating system even if that system does not support
floating-point.

Accessing the FPCR

Because Alpha floating-point hardware can overlap the execution of a number of
floating-point instructions, accessing the FPCR must be synchronized with other
floating-point instructions. A TRAPB must be issued both prior to and after accessing
the FPCR to ensure that the FPCR access is synchronized with the execution of
previous and subsequent floating-point instructions; otherwise synchronization is
not ensured.

Issuing a TRAPB followed by an MT_FPCR followed by another TRAPB ensures
that only floating-point instructions issued after the second TRAPB are affected
by and affect the new value of the FPCR. Issuing a TRAPB followed by an MF_
FPCR followed by another TRAPB ensures that the value read from the FPCR only
records the exception information for floating-point instructions issued prior to the
first TRAPB.

Consider the following example:
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ADDT/D

TRAPB ;1
MT_FPCR F1,Fl1,Fl

TRAPB ;2
SUBT/D

Without the first TRAPB, it is possible in an implementation for the ADDT/D
to execute in parallel with the MT_FPCR. Thus, it would be UNPREDICTABLE
whether the ADDT/D was affected by the new rounding mode set by the MT_
FPCR and whether fields cleared by the MT_FPCR in the exception summary were
subsequently set by the ADDT/D.

Without the second TRAPB, it is possible in an implementation for the MT_FPCR to
execute in parallel with the SUBT/D. Thus, it would be UNPREDICTABLE whether
the SUBT/D was affected by the new rounding mode set by the MT FPCR and
whether fields cleared by the MT_FPCR in the exception summary field of FPCR
were previously set by the SUBT/D.

4.7.7.2 Default Values of the FPCR
Processor initialization leaves the value of FPCR UNPREDICTABLE.

SOFTWARE NOTE
Digital software should initialize FPCR<DYN> = 11
during program activation. Using this default, interval
arithmetic code can switch from plus to minus infinity
rounding with no penalty in performance by using /M
and /D qualifiers.

Program activation should clear all other fields of the
FPCR.

4.7.7.3 Saving and Restoring the FPCR

The FPCR must be saved and restored across context switches so that the FPCR
value of one process does not affect the rounding behavior and exception summary
of another process.

The dynamic rounding mode put into effect by the programmer (or initialized by
image activation) is valid for the entirety of the program and remains in effect until
subsequently changed by the programmer or until image run-down occurs.

SOFTWARE NOTE
The IEEE standard precludes saving and restoring the
FPCR across subroutine calls.

4.7.8 IEEE Standard

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-
1985) is included by reference.
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4.8 Memory Format Floating-Point Instructions

The instructions in this section move data between the floating-point registers and
memory. They use the Memory instruction format. They do not interpret the bits
moved in any way; specifically, they do not trap on non-finite values.

The instructions are summarized in Table 4-9.

Table 4-9: Memory Format Floating-Point Instructions Summary

Mnemonic Operation Subset
LDF Load F_floating VAX
LDG Load G_floating (Load D_floating) VAX
LDS Load S_floating (Load Longword Integer) Both
LDT Load T_floating (Load Quadword Integer) Both
STF Store F_floating VAX
STG Store G_floating (Store D_floating) VAX
STS Store S_floating (Store Longword Integer) Both
STT Store T_floating (Store Quadword Integer) Both
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4.8.1 Load F_floating

Format:

LDF Fa.wf,disp.ab(Rb.ab) !Memory format

Operation:
va « {Rbv + SEXT(disp)}

Fa « (va)<15> || MAP_F((va)<14:7>) ||
(va)<6:0> || (va)<31:16> || 0<28:0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDF Load F_floating

Qualifiers:

None

Description:

LDF fetches an F_floating datum from memory and writes it to register Fa. If the
data is not naturally aligned, an alignment exception is generated.

The 8-bit memory-format exponent is expanded to an 11-bit register-format exponent
according to Table 2-1.

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from memory and the bytes are
reordered to conform to the F_floating register format. The result is then zero-
extended in the low-order longword and written to register Fa.
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4.8.2 Load G_floating

Format:

LDG Fa.wg,disp.ab(Rb.ab) !Memory format

Operation:

va +— {Rbv + SEXT(disp)}

Fa « (va)<15:0> || (va)<31l:16> ||
(va)<47:32> || (va)<63:48>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDG Load G_floating (Load D_floating)

Qualifiers:

None

Description:

LDG fetches a G_floating (or D_floating) datum from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, the bytes are reordered to
conform to the G_floating register format (also conforming to the D_floating register
format), and the result is then written to register Fa.
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4.8.3 Load S_floating

Format:

LDS Fa.ws,disp.ab(Rb.ab) !Memory format

Operation:
va «— {Rbv + SEXT(disp)}

Fa «— (va)<31> || MAP_s((va)<30:23>) ||
(va)<22:0> || 0<28:0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDS Load S_floating (Load Longword Integer)

Qualifiers:

None

Description:

LDS fetches a longword (integer or S_floating) from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The 8-bit memory-format exponent is expanded to an 11-bit register-format exponent
according to Table 2-2.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, is zero-extended in the
low-order longword, and then written to register Fa.

Notes:

* Longword integers in floating registers are stored in bits <63:62,58:29>, with bits
<61:59> ignored and zeros in bits <28:0>.
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4.8.4 Load T_floating

Format:

LDT Fa.wt,disp.ab(Rb.ab) !Memory format

Operation:

va « {Rbv + SEXT(disp)}

Fa + (va)<63:0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDT Load T_floating (Load Quadword Integer)

Qualifiers:

None

Description:

LDT fetches a quadword (integer or T_floating) from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory and written to register
Fa.
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4.8.5 Store F_floating

Format:

STF Fa.rf,disp.ab(Rb.ab) !Memory format

Operation:

va +— {Rbv + SEXT(disp)}
(va)<31:0> «— Fav<44:29> || Fav<63:62>|| Fav<58:45>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STF Store F_floating

Qualifiers:

None

Description:

STF stores an F_floating datum from Fa to memory. If the data is not naturally
aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The bits of the source operand are fetched from register Fa, the bits
are reordered to conform to F_floating memory format, and the result is then written
to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking is done.
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4.8.6 Store G_floating

Format:

STG Fa.rg,disp.ab(Rb.ab) IMemory format

Operation:

va «~ {Rbv + SEXT(disp)}

(va)<63:0> « Fav<15:0> || Fav<31:16> ||
Fav<47:32> || Fav<63:48>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STG Store G_floating (Store D_floating)

Qualifiers:

None

Description:

STG stores a G_floating (or D_floating) datum from Fa to memory. If the data is not
naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from register Fa, the bytes are
reordered to conform to the G_floating memory format (also conforming to the D_
floating memory format), and the result is then written to memory.
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4.8.7 Store S_floating

Format:

STS Fa.rs,disp.ab(Rb.ab) !Memory format

Operation:

va «— {Rbv + SEXT(disp)}
(va)<31:0> « Fav<63:62>||Fav<58:29>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STS Store S_floating (Store Longword Integer)

Qualifiers:

None

Description:

STS stores a longword (integer or S_floating) datum from Fa to memory. If the data
is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The bits of the source operand are fetched from register Fa, the bits
are reordered to conform to S_floating memory format, and the result is then written
to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking is done.
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4.8.8 Store T_floating

Format:

STT Fa.rt,disp.ab(Rb.ab) !Memory format

Operation:

va ~— {Rbv + SEXT(disp)}

(va)<63:0> «~ Fav<63:0>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STT Store T_floating (Store Quadword Integer)

Qualifiers:

None

Description:

STT stores a quadword (integer or T_floating) datum from Fa to memory. If the data
is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from register Fa and written to memory.
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4.9 Branch Format Floating-Point Instructions

Alpha provides six floating conditional branch instructions. These branch-format
instructions test the value of a floating-point register and conditionally change the
PC.

They do not interpret the bits tested in any way; specifically, they do not trap on
non-finite values.

The test is based on the sign bit and whether the rest of the register is all zero bits.
All 64 bits of the register are tested. The test is independent of the format of the
operand in the register. Both plus and minus zero are equal to zero. A non-zero
value with a sign of zero is greater than zero. A non-zero value with a sign of one
is less than zero. No reserved operand or non-finite checking is done.

The floating-point branch operations are summarized in Table 4-10.

Table 4-10: Floating-Point Branch Instructions Summary

Mnemonic Operation Subset
FBEQ Floating Branch Equal Both
FBGE Floating Branch Greater Than or Equal Both
FBGT Floating Branch Greater Than Both
FBLE Floating Branch Less Than or Equal Both
FBLT Floating Branch Less Than Both
FBNE Floating Branch Not Equal Both
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4.9.1 Conditional Branch

Format:

FBxx Fa.rq,disp.al Branch format

Operation:

{update PC}

va «— PC + {4*SEXT(disp)}

IF TEST(Fav, Condition_based_on_Opcode) THEN
PC — va

Exceptions:

None

Instruction mnemonics:

FBEQ Floating Branch Equal

FBGE Floating Branch Greater Than or Equal
FBGT Floating Branch Greater Than

FBLE Floating Branch Less Than or Equal
FBLT Floating Branch Less Than

FBNE Floating Branch Not Equal

Qualifiers:

None

Description:

Register Fa is tested. If the specified relationship is true, the PC is loaded with
the target virtual address; otherwise, execution continues with the next sequential
instruction.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed
displacement gives a forward/backward branch distance of +/— 1M instructions.
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Notes:

e To branch properly on non-finite operands, compare to F31, then branch on the
result of the compare.

¢ The largest negative integer (8000 0000 0000 0000;¢) is the same bit pattern as
floating minus zero, so it is treated as equal to zero by the branch instructions.
To branch properly on the largest negative integer, convert it to floating or move
it to an integer register and do an integer branch.
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4.10 Floating-Point Operate Format Instructions

The floating-point bit-operate instructions perform copy and integer convert
operations on 64-bit register values. The bit-operate instructions do not interpret
the bits moved in any way; specifically, they do not trap on non-finite values.

The floating-point arithmetic-operate instructions perform add, subtract, multiply,
divide, compare, and floating convert operations on 64-bit register values in one of
the four specified floating formats.

Each instruction specifies the source and destination formats of the values, as well
as the rounding mode and trapping mode to be used. These instructions use the
Floating-point Operate format.

The floating-point operate instructions are summarized in Table 4-11.

Table 4-11: Floating-Point Operate Instructions Summary

Mnemonic Operation Subset
Bit and FPCR Operations

CPYS Copy Sign Both
CPYSE Copy Sign and Exponent Both
CPYSN Copy Sign Negate Both
CVTLQ Convert Longword to Quadword Both
CVTQL Convert Quadword to Longword Both
FCMOVxx Floating Conditional Move Both
MF_FPCR Move from Floating-point Control Register Both
MT_FPCR Move to Floating-point Control Register Both
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Table 4-11 (Cont.): Floating-Point Operate Instructions Summary
Mnemonic Operation Subset

Arithmetic Operations

ADDF Add F_floating VAX
ADDG Add G_floating VAX
ADDS Add S_floating IEEE
ADDT Add T_floating IEEE
CMPGxx Compare G_floating VAX
CMPTxx Compare T_floating IEEE
CVTDG Convert D_floating to G_floating VAX
CVTGD Convert G_floating to D_floating VAX
CVTGF Convert G_floating to F_floating VAX
CVTGQ Convert G_floating to Quadword VAX
CVTQF Convert Quadword to F_floating VAX
CVTQG Convert Quadword to G_floating VAX
CVTQS Convert Quadword to S_floating IEEE
CcvTQT Convert Quadword to T_floating IEEE
CVTTQ Convert T_floating to Quadword IEEE
CVTTS Convert T_floating to S_floating IEEE
DIVF Divide F_floating VAX
DIVG Divide G_floating VAX
DIVS Divide S_floating IEEE
DIVT Divide T_floating IEEE
MULF Multiply F_floating VAX
MULG Multiply G_floating VAX
MULS Multiply S_floating IEEE
MULT Multiply T_floating IEEE
SUBF Subtract F_floating VAX
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Table 4-11 (Cont.): Floating-Point Operate Instructions Summary

Mnemonic Operation Subset
Arithmetic Operations

SUBG Subtract G_floating VAX
SUBS Subtract S_floating IEEE
SUBT Subtract T_floating IEEE
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4.10.1 Copy Sign

Format:
CPYSy Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format
Operation:
CASE
CPYS: Fc « Fav<63> || Fbv<62:0>
CPYSN: Fc « NOT(Fav<63>) || Fbv<62:0>
CPYSE: Fc « Fav<63:52> || Fbv<51:0>
ENDCASE
Exceptions:
None

Instruction mnemonics:

CPYS Copy Sign
CPYSE Copy Sign and Exponent
CPYSN  Copy Sign Negate

Qualifiers:

None

Description:

For CPYS and CPYSN, the sign bit of Fa is fetched (and complemented in the case
of CPYSN) and concatenated with the exponent and fraction bits from Fb; the result
is stored in Fe.

For CPYSE, the sign and exponent bits from Fa are fetched and concatenated with
the fraction bits from Fb; the result is stored in Fe.

No checking of the operands is performed.
Notes:

* Register moves can be performed using CPYS Fx,Fx,Fy. Floating-point absolute
value can be done using CPYS F31 ,F'x,Fy. Floating-point negation can be done
using CPYSN Fx,Fx,Fy. Floating values can be scaled to a known range by using
CPYSE.
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4.10.2 Convert Integer to Integer

Format:
CVTxy Fb.rq,Fc.wx IFloating-point Operate format
Operation:
CASE
CVTQL: Fc «~ Fbv<31:30> || 0<2:0> ||
Fbv<29:0> || 0<28:0>
CVTLQ: Fc « SEXT(Fbv<63:62> || Fbv<58:29>)
ENDCASE
Exceptions:

Integer Overflow, CVTQL only

Instruction mnemonics:

CVTLQ Convert Longword to Quadword

CVTQL Convert Quadword to Longword
Qualifiers:

Trapping: Software (/S)

Integer Overflow Enable (/V) (CVTQL only)

Description:

The two’s-complement operand in register Fb is converted to a two’s-complement
result and written to register Fec.

The conversion from quadword to longword is a repositioning of the low 32 bits of
the operand, with zero fill and optional integer overflow checking. Integer overflow
ocecurs if Fb is outside the range —2**31..2**31-1. If integer overflow occurs, the
truncated result is stored in Fec, and an arithmetic trap is taken if enabled.

The conversion from longword to quadword is a repositioning of 32 bits of the
operand, with sign extension.
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4.10.3 Floating-Point Conditional Move

Format:

FCMOVxx Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format

Operation:

IF TEST(Fav, Condition_based on_Opcode) THEN

Fc « Fbv

Exceptions:

None

Instruction mnemonics:

FCMOVEQ
FCMOVGE
FCMOVGT
FCMOVLE
FCMOVLT
FCMOVNE

Qualifiers:

None

Description:

FCMOVE if Register Equal to Zero

FCMOVE if Register Greater Than or Equal to Zero
FCMOVE if Register Greater Than Zero

FCMOVE if Register Less Than or Equal to Zero
FCMOVE if Register Less Than Zero

FCMOVE if Register Not Equal to Zero

Register Fa is tested. If the specified relationsh<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>