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Foreword

In the foreword to the VAX Architecture Reference Manual, Sam Fuller, Digital's Vice
President for Research and Architecture, wrote, "Computer design continues to be
a dynamic field; I expect we will see more rather than less change and innovation
in the decades ahead." The Alpha Architecture Reference Manual demonstrates the
accuracy of that prediction.

Alpha follows VAX by about fifteen years. Those fifteen years have witnessed a torrent
of change in computer technology, one that shows no sign of abating:

• More than a 1000-fold increase in the performance of microprocessors

• More than a 1000-fold increase in the density of semiconductor memories

• More than a 500-fold increase in the density of magnetic storage devices

• More than a 100-fold increase in the speed of network connections

During the same period, the internal organization of computer systems has changed
as well, based on developments such as RISC architecture, symmetric multipro­
cessing, and coherent distributed systems. Moreover, the fundamental paradigms
of computing have changed not once, but several times, with the introduction of
personal computers, graphics workstations, local area networks, and client/server
computing.

These developments present an enormous challenge for computing in the 21st cen­
tury. Future computers will be called upon to solve problems of great scale and
complexity, worldwide, in a distributed manner. They will have to provide unprece­
dented performance, flexibility, reliability, and scalability in order to implement a
global infrastructure of information, and to give users an untrammeled window on
the world.

Alpha is Digital's response to the challenges of 21st-century computing. It represents
the culmination of the company's knowledge and belief about how the next genera­
tions of computers should be built. Alpha is based on a decade's experimental and
engineering work in RISe architecture, high-speed implementation, software com­
patibility and migration, and system serviceability. It provides the foundation for
implementations ranging from mobile computing units to massively parallel super­
computers.

Alpha is designed to handle the largest computing problems of today and tomorrow.
When the Alpha architecture is compared to its predecessor, the VAX architecture,
two differences stand out immediately. First, Alpha is a 64-bit architecture; VAX is
a 32-bit architecture. This means that Alpha's virtual address extends to a 64-bit
linear range of bytes in memory. Supporting this extended virtual address space
are an extended maximum physical address range (up to 48 bits) and larger pages
(8KB to 64KB). Alpha's extended virtual address range allows direct manipulation
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of the gigabytes and terabytes of data produced in electrical and mechanical design,
database and transaction processing, and imaging.

Second, Alpha is a RISe architecture; VAX is a CISC architecture. RISC stands for
Reduced Instruction Set Computer, CISC for Complex Instruction Set Computer.
RISC architectures are characterized by simple, fixed-length instruction formats;
a small number of addressing modes; large register files; a load-store instruction
set model; and direct hardware execution of instructions. CISC architectures are
characterized by variable-length instruction formats; a large number of addressing
modes; small-to-medium-sized register files; a full set of register-to-memory (or
even memory-to-memory) instructions; and microcoded execution of instructions.
Alpha's streamlined organization facilitates high-speed implementation in a variety
of technologies, while providing strong compatibility with today's programs and data.

The following tabulation contrasts the architectural differences between VAX and
Alpha:

Architecture
Virtual address range
Physical address range
Page size

Instruction lengths
General registers
Addressing modes
Instruction set architecture
Directly supported data types

VAX

CISC

32 bits
Up to 32 bits
512 bytes

1-51 bytes
16 x 32 bits

21
General
Integer, floating, bit
field, queue, character
string, decimal string

Alpha

RISC

Up to 64 bits
Up to 48 bits
8KB--64KB

4 bytes

64 x 64 bits

3

Load-store
Integer, floating

This book is the culmination of an effort begun three years ago. In that time, Alpha
has grown from a paper specification to a cohesive set ofchips, systems, and software,
spanning the computer spectrum. This achievement is due to the efforts of many
hundreds of people in Engineering, Marketing, Sales, Service, and Manufacturing.
This book is documentation of, and a tribute to, the outstanding work they have
done.

Bob Supnik
Corporate Consultant,
Vice President
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Preface

The Alpha architecture is a RISC architecture that was designed for high per­
formance and longevity. Following Amdahl, Blaauw, and Brooks,! we distinguish
between architecture and implementation:

• Computer architecture is defined as the attributes ofa computer seen by a machine­
language programmer. This definition includes the instruction set, instruction
formats, operation codes, addressing modes, and all registers and memory locations
that may be directly manipulated by a machine-language programmer.

• Implementation is defined as the actual hardware structure, logic design, and data-
path organization.

This architecture book describes the required behavior of all Alpha implementations,
as seen by the machine-language programmer. The architecture does not speak to
implementation considerations such has how fast a program runs, what specific
bit pattern is left in a hardware register after an unpredictable operation, how
to schedule code for a particular chip, or how to wire up a given chip; those
considerations are described in implementation-specific documents.

Various Alpha implementations are expected over the coming years, starting with
the Digital 21064 chip.

Goals

When we started the Alpha project in the fall of 1988, we had a small number of
goals:

1. High performance

2. Longevity

3. Run VMS and UNIX

4. Easy migration from VAX (and soon-to-be MIPS) customer base

As principal architects, Rich Witek and I made design decisions that were driven
directly by these goals.

We assumed that high performance was needed to make a new architecture attractive
in the marketplace, and to keep Digital competitive.

We set a 15-25 year design horizon (longevity) and tried to avoid any design elements
that we thought would become limitations during this time. The design horizon
led directly to the conclusion that Alpha could not be a 32-bit architecture: 32­
bit addresses will be too small within 10 years. We thus adopted a full 64-bit

1. Amdahl, G.M., G.A. Blaauw, and F.P. Brooks, Jr. "Architecture of the IBM System/360." IBM
Journal ofResearch and Development, vol. 8, no. 2 (April 1964): 87-101.
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architecture, with a minimal number of 32-bit operations for backward compatibility.
Wherever possible, 32-bit operands are put in registers in a 64-bit canonical form
and operated upon with 64-bit operations.

The longevity goal also caused us to examine how the performance of implementa­
tions would scale up over 25 years. Over the past 25 years, computers have become
about 1000 times faster. This suggested to us that Alpha implementations would
need to do the same, or we would have to bet that the industry would falloff the
historical performance curve. We were unwilling to bet against the industry, and
were unwilling to ignore the issue, so we seriously examined the consequences of
longevity.

We thought that it would be realistic for implementors to improve clock speeds by
a factor of 10 over 25 years, but not by a factor of 100 or 1000. (Clock speeds have
improved by about a factor of100 over the past 25 years, but physical limits are now
slowing down the rate of increase.)

We concluded that the remaining factor of 100 would have to come from other
design dimensions. If you cannot make the clock faster, the next dimension is to
do more work per clock cycle. So the Alpha architecture is focused on allowing
implementations that issue many instructions every clock cycle. We thought that
it would be realistic for implementors to achieve about a factor of 10 over 25 years
by using multiple instruction issue, but not a factor of 100. Even a factor of 10 will
require perhaps a decade of compiler research.

We concluded that the remaining factor of 10 would have to come from some other
design dimension. If you cannot make the clock faster, and cannot do more work per
clock, the next dimension is to have multiple clocked instruction streams, that is,
multiple processors. So the Alpha architecture is focused on allowing implementa­
tions that apply multiple processors to a single problem. We thought that it would
be realistic for implementors to achieve the remaining factor of 10 over 25 years by
using multiple processors.

Overall, the factor-of-l000 increase in performance looked reasonable, but required
factor-of-10 increases in three different dimensions. These three dimensions therefore
formed part of our design framework:

• Gracefully allow fast cycle-time implementations

• Gracefully allow multiple-instruction-issue implementations

• Gracefully allow multiple-processor implementations

The cycle-time goal encouraged us to keep the instruction definitions very simple, and
to keep the interactions between instructions very simple. The multiple-instruction­
issue goal encouraged us to eliminate specialized registers, architected delay slots,
precise arithmetic traps, and byte writes (with their embedded read-modify-write
bottleneck). The multiple-processor goal encouraged us to consider the memory model
and atomic-update primitives carefully. We adopted load-Iockedlstore-conditional
sequences as the atomic-update primitive, and eliminated strict read-write ordering
between processors.

All of the above design decisions were driven directly by the performance and
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longevity goals. The lack of byte writes, precise arithmetic traps, and multiprocessor
read/write ordering have been the most controversial decisions, so far.

Clean Sheet of Paper

To run both OpenVMS and UNIX without burdening the hardware implementa­
tions with elaborate (and sometimes conflicting) operating system underpinnings,
we adopted an idea from a previous Digital RISC design. Alpha places the under­
pinnings for interrupt delivery and return, exceptions, context switching, memory
management, and error handling in a set of privileged software subroutines called
PALcode (privileged architecture library code). PALcode subroutines have controlled
entries, run with interrupts turned off, and have access to real hardware (implemen­
tation) registers. By having different sets of PALcode for different operating systems,
the architecture itself is not biased toward a specific operating system or computing
style.

PALcode allowed us to design an architecture that could run OpenVMS gracefully
without elaborate hardware and without massively rewriting the VMS synchroniza­
tion and protection mechanisms. PALcode lets the Alpha architecture support some
complex VAX primitives (such as the interlocked queue instructions) that are heavily
used by OpenVMS, without burdening a UNIX implementation in any way.

Finally, we also considered how to move VAX and MIPS code to Alpha. We rejected
various forms of "compatibility mode" hardware, because they would have severely
compromised the performance and time-to-market of the first implementation. After
some experimentation, we adopted the strategy of running existing binary code by
building software translators. One translator converts OpenVMS VAX images to
functionally identical OpenVMS Alpha images. A second translator converts MIPS
ULTRIX images to functionally identical DEC OSF/l Alpha images.

Fundamentally, PALcode gave us a migration path for existing operating systems,
and the translators (and native compilers) gave us a migration path for existing
user-mode code. PALcode and the translators provided a clean sheet of design paper
for the bulk of the Alpha architecture. Other than an extra set of VAX floating-point
formats (included for good business reasons, but subsettable later), no specific VAX
or MIPS features are carried directly into the Alpha architecture for compatibility
reasons.

These considerations substantially shaped the architecture described in the rest of
this book.

Organization

The first part of this book describes the instruction-set architecture, and is largely
self-contained for readers who are involved with compilers or with assembly language
programming. The second and third parts describe the supporting PALcode routines
for each operating system-the specific operating system PALcode architecture.
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A Note on the Structure of This Book

The Alpha Architecture Reference Manual is divided into three parts, three ap­
pendixes, and an index. Each part describes a major portion ofthe Alpha architecture.
Each contains its own table of contents.

The following tabulation outlines the book's contents:

Name

Part I

Part II

Part III

Appendixes

Index

Contents

Common Architecture

This part describes the instruction-set architecture that is common to
and required by all implementations.

OpenVMS Alpha Software

This part describes how the OpenVMS operating system relates to the
Alpha architecture.

DEC OSF/l Alpha Software

This part describes how the DEC OSF/l operating system relates to the
Alpha architecture.

The appendixes describe implementation considerations, IEEE floating­
point conformance, and instruction encodings.

Index entries are called out by the symbol (I), (II), or (III). Each symbol is
associated with the corresponding Part. Index entries for the appendixes
are called out by appendix name and page number.
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Part I Common Architecture

This part describes the common Alpha architecture
and contains the following chapters:

1. Introduction

2. Basic Architecture

3. Instruction Formats

4. Instruction Descriptions

5. System Architecture and Programming
Implications

6. Common PALcode Architecture

7. Console Subsystem Overview

8. Input/Output

a ...
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Chapter 1

Introduction (I)

Alpha is a 64-bit load/store RISC architecture that is designed with particular
emphasis on the three elements that most affect performance: clock speed, multiple
instruction issue, and multiple processors.

The Alpha architects examined and analyzed current and theoretical RISC
architecture design elements and developed high-performance alternatives for the
Alpha architecture. The architects adopted only those design elements that appeared
valuable for a projected 25-year design horizon. Thus, Alpha becomes the first 21st
century computer architecture.

The Alpha architecture is designed to avoid bias toward any particular operating
system or programming language. Alpha initially supports the OpenVMS Alpha
and DEC OSF/1 operating systems, and supports simple software migration from
applications that run on those operating systems.

This manual describes in detail how Alpha is designed to be the leadership 64-bit
architecture of the computer industry.

1.1 The Alpha Approach to RISC Architecture

Alpha Is a True 54-Bit Architecture
Alpha was designed as a 64-bit architecture. All registers are 64 bits in length and
all operations are performed between 64-bit registers. It is not a 32-bit architecture
that was later expanded to 64 bits.

Alpha Is Designed for Very High-Speed Implementations
The instructions are very simple. All instructions are 32 bits in length. Memory
operations are either loads or stores. All data manipulation is done between
registers.

The Alpha architecture facilitates pipelining multiple instances of the same
operations because there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register
or memory and another instruction reading from the same place. That makes it
particularly easy to build implementations that issue multiple instructions every
CPU cycle. (The first implementation issues two instructions per cycle.)

Alpha makes it easy to maintain binary compatibility across multiple
implementations and easy to maintain full speed on multiple-issue implementations.
For example, there are no implementation-specific pipeline timing hazards, no load­
delay slots, and no branch-delay slots.
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Alpha's Approach to Byte Manipulation
The Alpha architecture does byte shifting and masking with normal 64-bit register­
to-register instructions, crafted to keep instruction sequences short.

Alpha does not include single-byte store instructions. This has several advantages:

• Cache and memory implementations need not include byte shift-and-mask logic,
and sequencer logic need not perform read-modify-write on memory locations.
Such logic is awkward for high-speed implementation and tends to slow down
cache access to normal 32-bit or 64-bit aligned quantities.

• Alpha's approach to byte manipulation makes it easier to build a high-speed
error-correcting write-back cache, which is often needed to keep a very fast RISC
implementation busy.

• Alpha's approach can make it easier to pipeline multiple byte operations.

Alpha's Approach to Arithmetic Traps
Alpha lets the software implementor determine the precision of arithmetic traps.
With the Alpha architecture, arithmetic traps (such as overflow and underflow)
are imprecise-they can be delivered an arbitrary number of instructions after the
instruction that triggered the trap. Also, traps from many different instructions can
be reported at once. That makes implementations that use pipelining and multiple
issue substantially easier to build.

However, if precise arithmetic exceptions are desired, trap barrier instructions can
be explicitly inserted in the program to force traps to be delivered at specific points.

Alpha's Approach to Multiprocessor Shared Memory
As viewed from a second processor (including an I/O device), a sequence of reads and
writes issued by one processor may be -arbitrarily reordered by an implementation.
This allows implementations to use multibank caches, bypassed write buffers, write
merging, pipelined writes with retry on error, and so forth. If strict ordering
between two accesses must be maintained, explicit memory barrier instructions can
be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify,
store_conditional sequence. If the sequence runs without interrupt, exception, or
an interfering write from another processor, then the conditional store succeeds.
Otherwise, the store fails and the program eventually must branch back and retry
the sequence. This style of interlocking scales well with very fast caches, and makes
Alpha an especially attractive architecture for building multiple-processor systems.

Alpha Instructions Include Hints for Achieving Higher Speed
A number of Alpha instructions include hints for implementations, all aimed at
achieving higher speed.

• Calculated jump instructions have a target hint that can allow much faster
subroutine calls and returns.

• There are prefetching hints for the memory system that can allow much higher
cache hit rates.
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• There are granularity hints for the virtual-address mapping that can allow much
more effective use of translation lookaside buffers for large contiguous structures.

PALcode-Alpha's Very Flexible Privileged Software Library
A Privileged Architecture Library (PALcode) is a set of subroutines that are
specific to a particular Alpha operating system implementation. These subroutines
provide operating-system primitives for context switching, interrupts, exceptions,
and memory management. PALcode is similar to the BIOS libraries that are
provided in personal computers.

PALcode subroutines are invoked by implementation hardware or by software
CALL_PAL instructions.

PALcode is written in standard machine code with some implementation-specific
extensions to provide access to low-level hardware.

One version ofPALcode lets Alpha implementations run the full OpenVMS operating
system by mirroring many of the OpenVMS VAX. features. The OpenVMS PALcode
instructions let Alpha run OpenVMS with little more hardware than that found on
a conventional RISC machine: the PAL mode bit itself, plus 4 extra protection bits
in each Translation Buffer entry.

Another version of PALcode lets Alpha implementations run the OSF/l operating
system by mirroring many of the RISC ULTRIX features. Other versions of PALcode
can be developed for real-time, teaching, and other applications.

PALcode makes Alpha an especially attractive architecture for multiple operating
systems.

Alpha and Programming Languages
Alpha is an attractive architecture for compiling a large variety of programming
languages. Alpha has been carefully designed to avoid bias toward one or two
programming languages. For example:

• Alpha does not contain a subroutine call instruction that moves a register window
by a fixed amount. Thus, Alpha is a good match for programming languages with
many parameters and programming languages with no parameters.

• Alpha does not contain a global integer overflow enable bit. Such a bit would
need to be changed at every subroutine boundary when a FORTRAN program
calls a C program.

1.2 Data Format Overview

Alpha is a load/store RISe architecture with the following data characteristics:

• All operations are done between 64-bit registers.

• Memory is accessed via 64-bit virtual little-endian byte addresses.

• There are 32 integer registers and 32 floating-point registers.

• Longword (32-bit) and quadword (64-bit) integers are supported.
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• Four floating-point data types are supported:

- VAX F_floating (32-bit)

- VAX G_floating (64-bit)

IEEE single (32-bit)

IEEE double (64-bit)

1.3 Instruction Format Overview

As shown in Figure 1-1, Alpha instructions are all 32 bits in length. As represented
in Figure 1-1, there are four major instruction format classes that contain 0, 1, 2,
or 3 register fields. All formats have a 6-bit opcode.

Figure 1-1: Instruction Format Overview

31 2625 2120 1615 5 4

Opcode Number

Opcode RA Disp

Opcode RA RB Disp

Opcode RA RB Function I RC

PALcode Format

Branch Format

Memory Format

Operate Format

• PALcode instructions specify, in the function code field, one of a few dozen
complex operations to be performed.

• Conditional branch instructions test register Ra and specify a signed 21­
bit PC-relative longword target displacement. Subroutine calls put the return
address in register Ra.

• Load and store instructions move longwords or quadwords between register
Ra and memory, using Rb plus a signed 16-bit displacement as the memory
address.

• Operate instructions for flo~ting-point and integer operations are both
represented in Figure 1-1 by the operate format illustration and are as follows:

Floating-point operations use Ra and Rb as source registers, and write the
result in register Rc. There is an 11-bit extended opcode in the function field.

Integer operations use Ra and Rb or an 8-bit literal as the source operand,
and write the result in register Rc.

Integer operate instructions can use the Rb field and part of the function field
to specify an 8-bit literal. There is a 7-bit extended opcode in the function
field.
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1.4 Instruction Overview
PALcode Instructions
As described above, a Privileged Architecture Library (PALcode) is a set of
subroutines that is specific to a particular Alpha operating-system implementation.
These subroutines can be invoked by hardware or by software CALL_PAL
instructions, which use the function field to vector to the specified subroutine.

Branch Instructions
Conditional branch instructions can test a register for positive/negative or for zero
/nonzero. They can also test integer registers for even/odd.

Unconditional branch instructions can write a return address into a register.

There is also a calculated jump instruction that branches to an arbitrary 64-bit
address in a register.

Load/Store Instructions
Load and store instructions move either 32-bit or 64-bit aligned quantities from
and to memory. Memory addresses are flat 64-bit virtual addresses, with no
segmentation.

The VAX floating-point load/store instructions swap words to give a consistent
register format for floating-point operations.

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies
of the high bit of the datum. A 32-bit floating-point datum is placed in a register in
a canonical form that extends the exponent by 3 bits and extends the fraction with
29 low-order zeros. The 32-bit operates preserve these canonical forms.

There are facilities for doing byte manipulation in registers, eliminating the need
for 8-bit or 16-bit load/store instructions.

Compilers, as directed by user declarations, can generate any mixture of 32-bit and
64-bit operations. The Alpha architecture has no 32/64 mode bit.

Integer Operate Instructions
The integer operate instructions manipulate full 64-bit values, and include the usual
assortment of arithmetic, compare, logical, and shift instructions.

There are just three 32-bit integer operates: add, subtract, and multiply. They
differ from their 64-bit counterparts only in overflow detection and in producing
32-bit canonical results.

There is no integer divide instruction.

The Alpha architecture also supports the following additional operations:

• Scaled add/subtract instructions for quick subscript calculation

• 128-bit multiply for division by a constant, and multiprecision arithmetic

• Conditional move instructions for avoiding branch instructions
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• An extensive set of in-register byte and word manipulation instructions

Integer overflow trap enable is encoded in the function field of each instruction,
rather than kept in a global state bit. Thus, for example, both ADDQN and ADDQ
opcodes exist for specifying 64-bit ADD with and without overflow checking. That
makes it easier to pipeline implementations.

Floating-Point Operate Instructions
The floating-point operate instructions include four complete sets of VAX. and
IEEE arithmetic instructions, plus instructions for performing conversions between
floating-point and integer quantities.

In addition to the operations found in conventional RISe architectures, Alpha
includes conditional move instructions for avoiding branches and merge sign
/exponent instructions for simple field manipulation.

The arithmetic trap enables and rounding mode are encoded in the function field
of each instruction, rather then kept in global state bits. That makes it easier to
pipeline implementations.

1.5 Instruction Set Characteristics

Alpha instruction set characteristics are as follows:

• All instructions are 32 bits long and have a regular format.

• There are 32 integer registers (RO through R31), each 64 bits wide. R31 reads
as zero, and writes to R31 are ignored.

• There are 32 floating-point registers (FO through F31), each 64 bits wide. F31
reads as zero, and writes to F31 are ignored.

• All integer data manipulation is between integer registers, with up to two
variable register source operands (one may be an 8-bit literal), and one register
destination operand.

• All floating-point data manipulation is between floating-point registers, with up
to two register source operands and one register destination operand.

• All memory reference instructions are of the load/store type that move data
between registers and memory.

• There are no branch condition codes. Branch instructions test an integer or
floating-point register value, which may be the result of a previous compare.

• Integer and logical instructions operate on quadwords.

• Floating-point instructions operate on G_floating, F_floating, IEEE double, and
IEEE single operands. D_floating "format compatibility," in which binary files
of D_floating numbers may be processed, but without the last 3 bits of fraction
precision, is also provided.

• A minimal number of VAX compatibility instructions are included.
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1.6 Terminology and Conventions

The following sections describe the terminology and conventions used in this book.

1.6.1 Numbering
All numbers are decimal unless otherwise indicated. Where there is ambiguity,
numbers other than decimal are indicated with the name of the base in subscript
form, for example, 1016'

1.6.2 Security Holes
A security hole is an error of commission, omission, or oversight in a system that
allows protection mechanisms to be bypassed.

Security holes exist when unprivileged software (that is, software running outside
of kernel mode) can:

• Affect the operation of another process without authorization from the operating
system;

• Amplify its privilege without authorization from the operating system; or

• Communicate with another process, either overtly or covertly, without
authorization from the operating system.

The Alpha architecture has been designed to contain no architectural security holes.
Hardware (processors, buses, controllers, and so on) and software should likewise
be designed to avoid security holes.

1.6.3 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book.
Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (software running in kernel mode) can trigger
UNDEFINED operations. Unprivileged software cannot trigger UNDEFINED
operations. However, either privileged or unprivileged software can trigger
UNPREDICTABLE results or occurences.

UNPREDICTABLE results or occurences do not disrupt the basic operation of the
processor; it continues to execute instructions in its normal manner. In contrast,
UNDEFINED operation can halt the processor or cause it to lose information.

The terms UNPREDICTABLE and UNDEFINED can be further described as follows:

UNPREDICTABLE

• Results or occurrences specified as UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruction
within implementations. Software can never depend on results specified as
UNPREDICTABLE.

• An UNPREDICTABLE result may acquire an arbitrary value subject to a few
constraints. Such a result may be an arbitrary function of the input operands
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or of any state information that is accessible to the process in its current access
mode. UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

• An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
as are UNPREDICTABLE results and, in particular, must not constitute a
security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function
of, the contents of memory locations or registers which are inaccessible to the
current process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

Write or modify the contents of memory locations or registers to which the
current process in the current access mode does not have access, or

Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of
processor temporary registers left behind by some previously running process,
or on a sequence of actions of different processes.

UNDEFINED

• Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. The operation may vary in effect from nothing, to stopping
system operation.

• UNDEFINED operations may halt the processor or cause it to lose information.
However, UNDEFINED operations must not cause the processor to hang, that
is, reach an unhalted state from which there is no transition to a normal state
in which the machine executes instructions.

1.6.4 Ranges and Extents
Ranges are specified by a pair of numbers separated by a "u" and are inclusive. For
example, a range of integers 0..4 includes the integers 0,1,2,3, and 4.

Extents are specified by a pair of numbers in angle brackets separated by a colon
and are inclusive. For example, bits <7:3> specify an extent of bits including bits 7,
6, 5, 4, and 3.

1.6.5 ALIGNED and UNALIGNED

In this document the terms ALIGNED and NATURALLY ALIGNED are used
interchangeably to refer to data objects that are powers of two in size. An aligned
datum of size 2**N is stored in memory at a byte address that is a multiple of 2**N,
that is, one that has N low-order zeros. Thus, an aligned 64-byte stack frame has a
memory address that is a multiple of 64.
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If a datum of size 2**N is stored at a byte address that is not a multiple of 2**N, it
is called UNALIGNED.

1.6.6 Must Be Zero (MBZ)
Fields specified as Must be Zero (MBZ) must never be filled by software with a non­
zero value. These fields may be used at some future time. If the processor encounters
a non-zero value in a field specified as MBZ, an Illegal Operand exception occurs.

1.6.7 Read As Zero (RAZ)
Fields specified as Read as Zero (RAZ) return a zero when read.

1.6.8 Should Be Zero (SBZ)
Fields specified as Should be Zero (SBZ) should be filled by software with a zero
value. Non-zero values in SBZ fields produce UNPREDICTABLE results and may
produce extraneous instruction-issue delays.

1.6.9 Ignore (IGN)
Fields specified as Ignore (IGN) are ignored when written.

1.6.10 Implementation Dependent (IMP)

Fields specified as Implementation Dependent (IMP) may be used for implementation­
specific purposes. Each implementation must document fully the behavior of all
fields marked as IMP by the Alpha specification.

1.6.11 Figure Drawing Conventions

Figures that depict registers or memory follow the convention that increasing
addresses run right to left and top to bottom.

1.6.12 Macro Code Example Conventions
All instructions in macro code examples are either listed in Chapter 4 or OpenVMS
Section, Chapter 2, or are stylized code forms found in Appendix A.
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Chapter 2

Basic Architecture (I)

2.1 Addressing

The basic addressable unit in Alpha is the 8-bit byte. Virtual addresses are 64
bits long. An implementation may support a smaller virtual address space. The
minimum virtual address size is 43 bits.

Virtual addresses as seen by the program are translated into physical memory
addresses by the memory management mechanism.

2.2 Data Types

Following are descriptions of the Alpha architecture data types.

2.2.1 Byte

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are
numbered from right to left, 0 through 7, as shown in Figure 2-1.

Figure 2-1 : Byte Format

7 0D:A
A byte is specified by its address A. A byte is an 8-bit value. The byte is only
supported in Alpha by the extract, mask, insert, and zap instructions.

2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 15, as shown in Figure 2-2.
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Figure 2-2: Word Format

15 0

I ------..jl :A

A word is specified by its address, the address of the byte containing bit o.
A word is a 16-bit value. The word is only supported in Alpha by the extract, mask,
and insert instructions.

2.2.3 Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 31, as shown in Figure 2-3.

Figure 2-3: Longword Format

31 0

I I:A

A longword is specified by its address A, the address of the byte containing bit o. A
longword is a 32-bit value.

When interpreted arithmetically, a longword is a two's-complement integer with bits
of increasing significance from 0 through 30. Bit 31 is the sign bit. The longword
is only supported in Alpha by sign-extended load and store instructions and by
longword arithmetic instructions.

NOTE
Alpha implementations will impose a significant
performance penalty when accessing longword operands
that are not naturally aligned. (A naturally aligned
longword has zero as the low-order two bits of its
address.)

2.2.4 Quadword
A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 63, as shown in Figure 2-4.
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Figure 2-4: Quadword Format

~ 0

I~ I:A

A quadword is specified by its address A, the address of the byte containing bit o. A
quadword is a 64-bit value. When interpreted arithmetically, a quadword is either
a two's-complement integer with bits of increasing significance from 0 through 62
and bit 63 as the sign bit, or an unsigned integer with bits of increasing significance
from 0 through 63.

NOTE
Alpha implementations will impose a significant perfor­
mance penalty when accessing quadword operands that
are not naturally aligned. (A naturally aligned quad­
word has zero as the low-order three bits of its address.)

2.2.5 VAX Floating-Point Formats

VAX floating-point numbers are stored in one set of formats in memory and in a
second set of formats in registers. The floating-point load and store instructions
convert between these formats purely by rearranging bits; no rounding or range­
checking is done by the load and store instructions.

2.2.5.1 F_floating

An F_floating datum is 4 contiguous bytes in memory starting on an arbitrary
byte boundary. The bits are labeled from right to left, 0 through 31, as shown
in Figure 2-5.

Figure 2-5: F_floating Datum

1514 7 6 0

51 Exp. I Frac. Hi :A

Fraction Lo :A+2

An F_floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-6.
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Figure 2-6: F_floating Register Format

6362 5251 4544 2928 0Br---Ex-P
. ~IF-rac.-Hir--I-F-ract-ionL-O~I---o-----....;;.I:FX

The F_floating load instruction reorders bits on the way in from memory, expands the
exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces
in the register an equivalent G_floating number suitable for either F_floating or G_
floating operations. The mapping from 8-bit memory-format exponents to I1-bit
register-format exponents is shown in Table 2-1.

Table 2-1: F_floating Load Exponent Mapping
Memory <14:7> Register <62:52>

1 1111111

1 xxxxxxx

oxxxxxxx

00000000

1 000 1111111

1000xxxxxxx

o111 xxxxxxx

o000 0000000

(xxxxxxx not alII's)

(xxxxxxx not all O's)

This mapping preserves both normal values and exceptional values.

The F_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61 :59> and <28:0> are
ignored by the store instruction.

An F_floating datum is specified by its address A, the address of the byte containing
bit o. The memory form of an F_floating datum is sign magnitude with bit 15 the
sign bit, bits <14:7> an excess-128 binary exponent, and bits <6:0> and <31:16>
a normalized 24-bit fraction with the redundant most significant fraction bit not
represented. Within the fraction, bits of increasing significance are from 16 through
31 and 0 through 6. The 8-bit exponent field encodes the values 0 through 255.
An exponent value of 0, together with a sign bit of 0, is taken to indicate that the
F_floating datum has a value of o.
If the result of a VAX floating-point format instruction has a value of zero, the
instruction always produces a datum with a sign bit of 0, an exponent of 0, and
all fraction bits of o. Exponent values of 1..255 indicate true binary exponents
of -127..127. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take an
arithmetic exception. The value of an F_floating datum is in the approximate range
0.29*10**-38..1.7*10**38. The precision of an F_floating datum is approximately
one part in 2**23, typically 7 decimal digits.
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NOTE
Alpha implementations will impose a significant per­
formance penalty when accessing F_floating operands
that are not naturally aligned. (A naturally aligned F_
floating datum has zero as the low-order two bits of its
address.)

2.2.5.2 G_floating

A G_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-7.

Figure 2-7: G_floating Datum

1514 4 3

81 Exp. !Frac.Hi

Fraction Midh

Fraction Midi

Fraction Lo

:A

:A+2

:A+4

:A+6

A G_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-8.

8 Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo

Figure 2-8: G_floatlng Format

63 62 52 51 48 47 3231 1615

:Fx •
A G_floating datum is specified by its address A, the address of the byte containing
bit o. The form of a G_floating datum is sign magnitude with bit 15 the sign bit, bits
<14:4> an excess-1024 binary exponent, and bits <3:0> and <63:16> a normalized 53­
bit fraction with the redundant most significant fraction bit not represented. Within
the fraction, bits of increasing significance are from 48 through 63, 32 through 47, 16
through 31, and 0 through 3. The II-bit exponent field encodes the values 0 through
2047. An exponent value of 0, together with a sign bit of 0, is taken to indicate that
the G_floating datum has a value of o.
If the result of a floating-point instruction has a value of zero, the instruction
always produces a datum with a sign bit of 0, an exponent of 0, and all
fraction bits of o. Exponent values of 1..2047 indicate true binary exponents of
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-1023..1023. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take
a user-visible arithmetic exception. The value of a G_floating datum is in the
approximate range 0.56*10**--308..0.9*10**308. The precision of a G_floating datum
is approximately one part in 2**52, typically 15 decimal digits.

NOTE
Alpha implementations will impose a significant per­
formance penalty when accessing G_floating operands
that are not naturally aligned. (A naturally aligned G_
floating datum has zero as the low-order three bits of its
address.)

2.2.5.3 D_floating

A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-9.

Figure 2-9: D_floating Datum

1514 7 6

sl Exp. I Frac.Hi

Fraction Midh

Fraction Midi

Fraction Lo

:A

:A+2

:A+4

:A+6

A D_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-10.

Figure 2-10: D_floating Register Format

6362 5554 4847 3231 1615

S Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo :Fx

The reordering of bits required for a D_floating load or store are identical to those
required for a G_floating load or store. The G_floating load and store instructions
are therefore used for loading or storing D_floating data.

A D_floating datum is specified by its address A, the address of the byte containing
bit o. The memory form of a D_floating datum is identical to an F_floating datum
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except for 32 additional low significance fraction bits. Within the fraction, bits of
increasing significance are from 48 through 63,32 through 47,16 through 31, and 0
through 6. The exponent conventions and approximate range of values is the same
for D_floating as F_floating. The precision of a D_floating datum is approximately
one part in 2**55, typically 16 decimal digits.

NOTE
D_floating is not a fully supported data type; no
D_floating arithmetic operations are provided in the
architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software
emulation. D_floating "format compatibility" in which
binary files of D_floating numbers may be processed,
but without the last 3 bits of fraction precision, can
be obtained via conversions to G_floating, G arithmetic
operations, then conversion back to D_floating.

NOTE
Alpha implementations will impose a significant
performance penalty on access to D_floating operands
that are not naturally aligned. (A naturally aligned D_
floating datum has zero as the low-order three bits of its
address.)

2.2.6 IEEE Floating-Point Formats
The IEEE standard for binary floating-point arithmetic, ANSIJIEEE 754-1985,
defines four floating-point formats in two groups, basic and extended, each having
two widths, single and double. The Alpha architecture supports the basic single
and double formats, with the basic double format serving as the extended single
format. The values representable within a format are specified by using three integer
parameters:

1. P-the number of fraction bits

2. Emax-the maximum exponent

3. Emin-the minimum exponent

Within each format, only the following entities are permitted:

1. Numbers of the form (-1)**8 x 2**E x b(O).b(1)b(2)..b(P-1) where:

a. S = 0 or 1

b. E = any integer between Emin and Emax, inclusive

c. b(n) =0 or 1

2. Two infinities-positive and negative
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3. At least one Signaling NaN

4. At least one Quiet NaN

NaN is an acronym for Not-a-Number. A NaN is an IEEE floating-point bit
pattern that represents something other than a number. NaNs come in two forms:
Signaling NaNs and Quiet NaNs. Signaling NaNs are used to provide values
for uninitialized variables and for arithmetic enhancements. Quiet NaNs provide
retrospective diagnostic information regarding previous invalid or unavailable data
and results. Signaling NaNs signal an invalid operation when they are an operand
to an arithmetic instruction, and may generate an arithmetic exception. Quiet
NaNs propagate through almost every operation without generating an arithmetic
exception.

Arithmetic with the infinities is handled as if the operands were of arbitrarily large
magnitude. Negative infinity is less than every finite number; positive infinity is
greater than every finite number.

2.2.6~1 S_Floating

An IEEE single-precision, or S_floating, datum occupies 4 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 through 31, as shown in Figure 2-11.

Figure 2-11: S_floating Datum

1514 7 6

Fraction La :A

SI Exp. I Frac. Hi :A+2

An S_floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-12.

Figure 2-12: S_floating Register Format

63 62

B Exp.

5251 4544

I Frac. Hi I Fraction La

2928

I
o

o

!:FX

The S_floating load instruction reorders bits on the way in from memory, expanding
the exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This
produces in the register an equivalent T_floating number, suitable for either S_
floating or T_floating operations. The mapping from 8-bit memory-format exponents
to II-bit register-format exponents is shown in Table 2-2.
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Table 2-2: S_floating Load Exponent Mapping

Memory <30:23> Register <62:52>

1 1111111

1 xxxxxxx

oxxxxxxx

o0000000

1 111 1111111

1 000 xxxxxxx (xxxxxxx not alII's)

o111 xxxxxxx (xxxxxxx not all O's)

o000 0000000

This mapping preserves both normal values and exceptional values. Note that the
mapping for alII's differs from that of F_floating load, since for 8_floating alII's is
an exceptional value and for F_floating all 1's is a normal value.

The S_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction. The 8_floating load instruction does no checking of
the input.

The 8_floating store instruction does no checking of the data; the preceding operation
should have specified an 8_floating result.

An 8_floating datum is specified by its address A, the address of the byte containing
bit o. The memory form ofan S_floating datum is sign magnitude with bit 31 the sign
bit, bits <30:23> an excess-127 binary exponent, and bits <22:0> a 23-bit fraction.

The value (V) of an 8_floating number is inferred from its constituent sign (8),
exponent (E), and fraction (F) fields as follows:

1. If E=255 and F<>O, then V is NaN, regardless of 8.

2. IfE=255 and F=O, then V = {-1)**8 x Infinity.

3. If 0 < E < 255, then V = (-1)**8 x 2**(E-127) x (l.F).

4. If E=O and F<>O, then V = (-1)**8 x 2**{-126) x (O.F).

5. If E=O and F=O, then V = (-1)**8 x 0 (zero).

Floating-point operations on 8_floating numbers may take an arithmetic exception
for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

NOTE
Alpha implementations will impose a significant per­
formance penalty when accessing S_floating operands
that are not naturally aligned. (A naturally aligned 8_
floating datum has zero as the low-order two bits of its
address.)
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2.2.6.2 T_floating

An IEEE double-precision, or T_floating, datum occupies 8 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 through 63, as shown in Figure 2-13.

Figure 2-13: T_floating Datum

1514 4 3 0

Fraction Lo

Fraction Midi

Fraction Midh

81 Exponent IFrac.Hi

:A

:A+2

:A+4

:A+6

A T_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-14.

Figure 2-14: T_floating Register Format

6362 5251 4847 3231 1615

8 Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo :Fx

The T_floating load instruction performs no bit reordering on input, nor does it
perform checking of the input data.

The T_floating store instruction performs no bit reordering on output. This
instruction does no checking of the data; the preceding operation should have
specified a T_floating result.

A T_floating datum is specified by its address A, the address of the byte containing
bit o. The form of a T_floating datum is sign magnitude with bit 63 the sign bit, bits
<62:52> an excess-l023 binary exponent, and bits <51:0> a 52-bit fraction.

The value (V) of a T_floating number is inferred from its constituent sign (8),
exponent (E), and fraction (F) fields as follows:

1. IfE=2047 and F<>O, then V is NaN, regardless of 8.

2. If E=2047 and F=O, then V = (-1)**8 x Infinity.

3. If 0 < E < 2047, then V = (-1)**8 x 2**(E-1023) x (I.F).

4. IfE=O and F<>O, then V = (-1)**8 x 2**(-1022) x (O.F).
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5. If E=O and F=O, then V = (-1)**8 x 0 (zero).

Floating-point operations on T_floating numbers may take an arithmetic exception
for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

NOTE
Alpha implementations will impose a significant per­
formance penalty when accessing T_floating operands
that are not naturally aligned. (A naturally aligned T_
floating datum has zero as the low-order three bits of its
address.)

2.2.7 Longword Integer Format in Floating-Point Unit
A longword integer operand occupies 32 bits in memory, arranged as shown in
Figure 2-15.

Figure 2-15: Longword Integer Datum

1514

Figure 2-16: Longword Integer Floating-Register Format

A longword integer operand occupies 64 bits in a floating register, arranged as shown
in Figure 2-16.

6362 61 59~58 4_5_44 29~2_8 ~o

EtEI Integer Hi I Integer La I 0 I:Fx

Integer La :A

•
:A+2Integer Hi81

There is no explicit longword load or store instruction; the S_floating load/store
instructions are used to move longword data into or out of the floating registers.
The register bits <61 :59> are set by the 8_floating load exponent mapping. They are
ignored by S_floating store. They are also ignored in operands of a longword integer
operate instruction, and they are set to 000 in the result of a longword operate
instruction.

The register format bit <62>, "I", in Figure 2-16 is part of the Integer Hi field
in Figure 2-15 and represents the high-order bit of that field. Bits <58:45> of
Figure 2-16 are the remaining bits of the Integer Hi field of Figure 2-15.
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NOTE
Alpha implementations will impose a significant
performance penalty when accessing longwords that are
not naturally aligned. (A naturally aligned longword
datum has zero as the low-order two bits of its address.)

2.2.8 Quadword Integer Format in Floating-Point Unit

A quadword integer operand occupies 64 bits in memory, arranged as shown in
Figure 2-17.

Figure 2-17: Quadword Integer Datum

1514

Integer La

Integer Midi

Integer Midh

sl Integer Hi

:A

:A+2

:A+4

:A+6

A quadword integer operand occupies 64 bits in a floating register, arranged as
shown in Figure 2-18.

Figure 2-18: Quadword Integer Floating-Register Format

6362

s Integer Hi

4847

Integer Midh

3231

Integer Midi

1615

Integer La :Fx

There is no explicit quadword load or store instruction; the T_floating load/store
instructions are used to move quadword data into or out of the floating registers.

The T_floating load instruction performs no bit reordering on input. The T_floating
store instruction performs no bit reordering on output. This instruction does no
checking of the data; when used to store quadwords, the preceding operation should
have specified a quadword result.

NOTE
Alpha implementations will impose a significant
performance penalty when accessing quadwords that
are not naturally aligned. (A naturally aligned
quadword datum has zero as the low-order three bits
of its address.)
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2.2.9 Data Types with No Hardware Support
The following VAX. data types are not directly supported in Alpha hardware.

• Octaword

• H_floating

• D_floating (except load/store and convert to/from G_floating)

• Variable-Length Bit Field

• Character String

• Trailing Numeric String

• Leading Separate Numeric String

• Packed Decimal String
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Chapter 3

Instruction Formats (I)

3.1 Alpha Registers

Each Alpha processor has a set of registers that hold the current processor state.
If an Alpha system contains multiple Alpha processors, there are multiple per­
processor sets of these registers.

3.1.1 Program Counter
The Program Counter (PC) is a special register that addresses the instruction stream.
As each instruction is decoded, the PC is advanced to the next sequential instruction.
This is referred to as the updated PC. Any instruction that uses the value of the PC
will use the updated PC. The PC includes only bits <63:2> with bits <1 :0> treated as
RAZ/IGN. This quantity is a longword-aligned byte address. The PC is an implied
operand on conditional branch and subroutine jump instructions. The PC is not
accessible as an integer register.

3.1.2 Integer Registers
There are 32 integer registers (RO through R31), each 64 bits wide.

Register R31 is assigned special meaning by the Alpha architecture. When R31 is
specified as a register source operand, a zero-valued operand is supplied.

For all cases except the Unconditional Branch and Jump instructions, results of
an instruction that specifies R31 as a destination operand are discarded. Also,
it is UNPREDICTABLE whether the other destination operands (implicit and
explicit) are changed by the instruction. It is implementation dependent to what
extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution of such
an instruction. Note, however, that exceptions associated with the instruction fetch
of such an instruction are always signaled.

There are some interesting cases involving R31 as a destination:

• STx_C R31,disp(Rb)

Although this might seem like a good way to zero out a shared location and reset
the lock_flag, this instruction causes the lock_flag and virtual location {Rbv +
SEXT(disp)} to become UNPREDICTABLE.

• LDx_L R31,disp(Rb)

This instruction produces no useful result since it causes both lock_flag and
locked_physical_address to become UNPREDICTABLE.
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Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_
COROUTINE) instructions, when R31 is specified as the Ra operand, execute
normally and update the PC with the target virtual address. Of course, no PC
value can be saved in R31.

3.1.3 Floating-Point Registers
There are 32 floating-point registers (FO through F31), each 64 bits wide.

When F31 is specified as a register source operand, a true zero-valued operand is
supplied. See Section 4.7.2 for a definition of true zero.

Results of an instruction that specifies F31 as a destination operand are discarded
and it is UNPREDICTABLE whether the other destination operands (implicit and
explicit) are changed by the instruction. In this case, it is implementation-dependent
to what extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution of such an
instruction. Note, however, that exceptions associated with the instruction fetch of
such an instruction are always signaled.

A floating-point instruction that operates on single-precision data reads all bits
<63:0> of the source floating-point register. A floating-point instruction that
produces a single-precision result writes all bits <63:0> of the destination floating­
point register.

3.1.4 Lock Registers
There are two per-processor registers associated with the LDx_L and STx_C
instructions, the lock_flag and the locked_physical_address register. The use of these
registers is described in Section 4.2.

3.1.5 Optional Registers
Some Alpha implementations may include optional memory prefetch or VAX
compatibility processor registers.

3.1.5.1 Memory Prefetch Registers

If the prefetch instructions FETCH and FETCH_M are implemented, an
implementation will include two sets of state prefetch registers used by those
instructions. The use of these registers is described in Section 4.11. These registers
are not directly accessible by software and are listed for completeness.

3.1.5.2 VAX Compatibility Register

The VAX compatibility instructions RC and RS include the intr_flag register, as
described in Section 4.12.

3.2 Notation

The notation used to describe the operation of each instruction is given as a sequence
of control and assignment statements in an ALGOL-like syntax.
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3.2.1 Operand Notation
Tables 3-1,3-2, and 3-3 list the notation for the operands, the operand values, and
the other expression operands.

Table 3-1 : Operand Notation
Notation Meaning

Ra An integer register operand in the Ra field of the instruction.

Rb An integer register operand in the Rb field of the instruction.

#b An integer literal operand in the Rb field of the instruction.

Rc An integer register operand in the Rc field of the instruction.

Fa A floating-point register operand in the Ra field of the instruction.

Fb A floating-point register operand in the Rb field of the instruction.

Fc A floating-point register operand in the Rc field of the instruction.

Table 3-2: Operand Value Notation
Notation Meaning

Rav The value of the Ra operand. This is the contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or a
zero-extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating point Fa operand. This is the contents of register Fa.

Fbv The value of the floating point Fb operand. This is the contents of register Fb.

Table 3-3: Expression Operand Notation
Notation Meaning •
IPR_x

IPR_SP[mode]

PC

Rn

Fn

X[m]

Contents of Internal Processor Register x

Contents of the per-mode stack pointer selected by mode

Updated PC value

Contents of integer register n

Contents of floating-point register n

Element m of array X
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3.2.2 Instruction Operand Notation

The notation used to describe instruction operands follows from the operand specifier
notation used in the VAX Architecture Standard. Instruction operands are described
as follows:

<name>.<access type><data type>

<name>
Specifies the instruction field (Ra, Rb, Rc, or disp) and register type of the operand
(integer or floating). It can be one of the following:

Name

disp

fnc

Ra

Rb

#b

Rc

Fa

Fb

Fc

Meaning

The displacement field of the instruction.

The PAL function field of the instruction.

An integer register operand in the Ra field of the instruction.

An integer register operand in the Rb field of the instruction.

An integer literal operand in the Rb field of the instruction.

An integer register operand in the Rc field of the instruction.

A floating-point register operand in the Ra field of the instruction.

A floating-point register operand in the Rb field of the instruction.

A floating-point register operand in the Rc field of the instruction.

<access type>
Is a letter denoting the operand access type:

Access Type

a

r

m

Meaning

The operand is used in an address calculation to form an effective
address. The data type code that follows indicates the units of
addressability (or scale factor) applied to this operand when the
instruction is decoded.
For example:
".al" means scale by 4 (longwords) to get byte units (used in branch
displacements); ".ab" means the operand is already in byte units
(used in load/store instructions).

The operand is an immediate literal in the instruction.

The operand is read only.

The operand is both read and written.
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Access Type

w

Meaning

The operand is write only.

<data type>
Is a letter denoting the data type of the operand:

3.2.3 Operators
The operators shown in Table 3-4 are used:

Table 3-4: Operators

Data Type

b

f

g

I

q

s

t

w

x

Operator

+

*
*U

**
/

I

{}

(x)

x<m:n>

Meaning

Byte

F_floating

G_floating

Longword

Quadword

IEEE single floating (S_floating)

IEEE double floating (T_floating)

Word

The data type is specified by the instruction

Meaning

Comment delimiter

Addition

Subtraction

Signed multiplication

Unsigned multiplication

Exponentiation (left argument raised to right argument)

Division

Replacement

Bit concatenation

Indicates explicit operator precedence

Contents of memory location whose address is x

Contents of bit field of x defined by bits n through m
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Table 3-4 (Cont.): Operators
Operator Meaning

x<m>

ACCESS(x,y)

AND

ARITH_RIGHT_SHIFT(x,y)

CASE

DIY

LEFT_SHIFT(x,y)

19

3-6 Common Architecture (I)

M'th bit ofx

Accessibility of the location whose address is x using the
access mode y. Returns a Boolean value TRUE if the address
is accessible, else FALSE.

Logical product

Arithmetic right shift of first operand by the second operand.
Y is an unsigned shift value. Bit 63, the sign bit, is copied
into vacated bit positions and shifted out bits are discarded.

X is a quadword, y is an 8-bit vector in which each bit
corresponds to a byte of the result. The y bit to x byte
correspondence is y<n> ...... x<8n+7:8n>. This correspondence
also exists between y and the result.

For each bit of y from n = 0 to 7, if y <n> is 0 then byte <n>
of x is copied to byte <n> of result, and if y <n> is 1 then byte
<n> of result is forced to all zeros.

The CASE construct selects one of several actions based on
the value of its argument. The form of a case is:

CASE argument OF
argvaluel: action 1
argvalue2: action-2

argvaluen: action n
[otherwise: default_action]

ENDCASE

If the value of argument is argvaluel then action_l is
executed; if argument =argvalue2, then action_2 is executed,
and so forth.

Once a single action is executed, the code stream breaks
to the ENDCASE (there is an implicit break as in Pascal).
Each action may nonetheless be a sequence of pseudocode
operations, one operation per line.

Optionally, the last argvalue may be the atom 'otherwise'. The
associated default action will be taken if none of the other
argvalues match the argument.

Integer division (truncates)

Logical left shift of first operand by the second operand.

Y is an unsigned shift value. Zeros are moved into the vacated
bit positions, and shifted out bits are discarded.

The processor records the target physical address in a per­
processor locked_physical_address register and sets the per­
processor lock_flag.

Log to the base 2



Table 3-4 (Cont.): Operators
Operator Meaning

NOT

OR

xMODy

Relational Operators

Logical (ones) complement

Logical sum

x modulo y

Operator Meaning

LT
LTU
LE

LEU
EQ
NE

GE

GEU
GT
GTU
LBC
LBS

Less than signed

Less than unsigned

Less or equal signed

Less or equal unsigned

Equal signed and unsigned

Not equal signed and unsigned

Greater or equal signed

Greater or equal unsigned

Greater signed

Greater unsigned

Low bit clear

Low bit set •MINU(x,y)

PHYSICAL_ADDRESS

PRIORITY_ENCODE

RIGHT_SHIFT(x,y)

SEXT(x)

STORE_CONDITIONAL

Returns the smaller of x and y, with x and y interpreted as
unsigned integers

Translation of a virtual address

Returns the bit position of most significant set bit, interpret­
ing its argument as a positive integer ( = int( 19( x ) ) ).

For example:

priority_encode ( 255 ) = 7

Logical right shift of first operand by the second operand. Y
is an unsigned shift value. Zeros are moved into vacated bit
positions, and shifted out bits are discarded.

X is sign-extended to the required size.

If the lock_flag is set, then do the indicated store and clear
the lock_flag.
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Table 3-4 (Cont.): Operators
Operator Meaning

TEST(x,cond)

XOR

ZEXT(x)

The contents of register x are tested for branch condition
(cond) true. TEST returns a Boolean value TRUE if x bears
the specified relation to 0, else FALSE is returned. Integer
and floating test conditions are drawn from the preceding list
of relational operators.

Logical difference

X is zero-extended to the required size.

3.2.4 Notation Conventions
The following conventions are used:

1. Only operands that appear on the left side ofa replacement operator are modified.

2. No operator precedence is assumed other than that replacement (+-) has the
lowest precedence. Explicit precedence is indicated by the use of "0".

3. All arithmetic, logical, and relational operators are defined in the context of their
operands. For example, "+" applied to G_floating operands means a G_floating
add, whereas "+" applied to quadword operands is an integer add. Similarly, "LT"
is a G_floating comparison when applied to G_floating operands and an integer
comparison when applied to quadword operands.

3.3 Instruction Formats

There are five basic Alpha instruction formats:

• Memory

• Branch

• Operate

• Floating-point Operate

• PALcode

All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31 :26>
of the instruction.

Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to a value
of31.
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SOFTWARE NOTE
There are several instructions, each formatted as a
memory instruction, that do not use the Ra and/or Rb
fields. These instructions are: Memory Barrier, Fetch,
Fetch_M, Read Process Cycle Counter, Read and Clear,
Read and Set, and Trap Barrier.

3.3.1 Memory Instruction Format
The Memory format is used to transfer data between registers and memory, to
load an effective address, and for subroutine jumps. It has the format shown in
Figure 3-1.

Figure 3-1: Memory Instruction Format

31 2625 2120 1615 0

I Opcodern Memory-disp I

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address
fields, Ra and Rb, and a 16-bit signed displacement field.

The displacement field is a byte offset. It is sign-extended and added to the contents
of register Rb to form a virtual address. Overflow is ignored in this calculation.

The virtual address is used as a memory load/store address or a result value,
depending on the specific instruction. The virtual address (va) is computed as follows
for all memory format instructions except the load address high (LDAH):

va +- {Rbv + SEXT(Memory_disp)}

For LDAH the virtual address (va) is computed as follows:

va +- {Rbv + SEXT(Memory_disp*65536)}

3.3.1.1 Memory Format Instructions with a Function Code

Memory format instructions with a function code replace the memory displacement
field in the memory instruction format with a function code that designates a set of
miscellaneous instructions. The format is shown in Figure 3-2.

Figure 3-2: Memory Instruction with Function Code Format

31 2625 2120 1615 0

I Opcodern F_u_nc_ti_on 1
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The memory instruction with function code format contains a 6-bit opcode field and
a 16-bit function field. Unused function encodings produce UNPREDICTABLE but
not UNDEFINED results; they are not security holes.

There are two fields, Ra and Rb. The usage of those fields depends on the instruction.
See Section 4.11.

3.3.1.2 Memory Format Jump Instructions

For computed branch instructions (CALL, RET, JMP, JSR_COROUTINE) the
displacement field is used to provide branch-prediction hints as described in
Section 4.3.

3.3.2 Branch Instruction Format
The Branch format is used for conditional branch instructions and for PC-relative
subroutine jumps. It has the format shown in Figure 3-3.

Figure 3-3: Branch Instruction Format

31 2625 2120 0

[ Opcode Gr----s-ra-nC-h-_d-iS-P---1

A Branch format instruction contains a 6-bit opcode field, one 5-bit register address
field (Ra), and a 21-bit signed displacement field.

The displacement is treated as a longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits and added to the updated
PC to form the target virtual address. Overflow is ignored in this calculation. The
target virtual address (va) is computed as follows:

va +- PC + {4*SEXT(Branch_disp)}

3.3.3 Operate Instruction Format
The Operate format is used for instructions that perform integer register to integer
register operations. The Operate format allows the specification of one destination
operand and two source operands. One of the source operands can be a literal
constant. The Operate format in Figure 3--4 shows the two cases when bit <12> of
the instruction is 0 and 1.
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Figure 3-4: Operate Instruction Format

31 26 25 21 20 16 15 13 12 11 5 4

Opcode Ra Rb saz 0 Function Rc

31 26 25 21 20 13 12 11 5 4 0IOpcode Gr---UT-fj Function G
An Operate format instruction contains a 6-bit opcode field and a 7-bit function
field. Unused function encodings produce UNPREDICTABLE but not UNDEFINED
results; they are not security holes.

There are three operand fields, Ra, Rb, and Rc.

The Ra field specifies a source operand. Symbolically, the integer Rav operand is
formed as follows:

IF inst<25:21> EQ 31 THEN
Rav +- 0

ELSE
Rav +- Ra

END

The Rb field specifies a source operand. Integer operands can specify a literal or an
integer register using bit <12> of the instruction.

If bit <12> of the instruction is 0, the Rb field specifies a source register operand.

If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is formed
by bits <20:13> of the instruction. The literal is interpreted as a positive integer
between 0 and 255 and is zero-extended to 64 bits. Symbolically, the integer Rbv
operand is formed as follows:

IF inst<12> EQ 1 THEN
Rbv +- ZEXT(inst<20:13»

ELSE
IF inst<20:16> EQ 31 THEN

Rbv +- 0
ELSE

Rbv +- Rb
END

END

The Rc field specifies a destination operand.
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3.3.4 Floating-Point Operate Instruction Format
The Floating-point Operate format is used for instructions that perform floating­
point register to floating-point register operations. The Floating-point Operate
format allows the specification of one destination operand and two source operands.
The Floating-point Operate format is shown in Figure 3-5.

Figure 3-5: Floating-Point Operate Instruction Format

31 2625 2120 1615 5 4 0

I Opcode rn--F-u-nc-ti-on--G
A Floating-point Operate format instruction contains a 6-bit opcode field and an 11­
bit function field. Unused function encodings produce UNPREDICTABLE results,
as defined in Section 1.6.3.

There are three operand fields, Fa, Fb, and Fc. Each operand field specifies either
an integer or floating-point operand as defined by the instruction.

The Fa field specifies a source operand. Symbolically, the Fav operand is formed as
follows:

IF inst<25:21> EQ 31 THEN
Fav +- 0

ELSE
Fav +- Fa

END

The Fb field specifies a source operand. Symbolically, the Fbv operand is formed as
follows:

IF inst<20:16> EQ 31 THEN
Fbv +- 0

ELSE
Fbv +- Fb

END

NOTE
Neither Fa nor Fb can be a literal in Floating-point
Operate instructions.

The Fc field specifies a destination operand.

3.3.4.1 Floating-Point Convert Instructions

Floating-point Convert instructions use a subset of the Floating-point Operate
format and perform register-to-register conversion operations. The Fb operand
specifies the source; the Fa field must be F3!.
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3.3.5 PALcode Instruction Format
The Privileged Architecture Library (PALcode) format is used to specify extended
processor functions. It has the format shown in Figure 3-6.

Figure 3-6: PALcode Instruction Format

31 2625 0

l_o_p_co_d_e.......I p_A_Lc_o_de_F_u_n_ct_io_n I

The 26-bit PALcode function field specifies the operation.

The source and destination operands for PALcode instructions are supplied in fixed
registers that are specified in the individual instruction descriptions.

An opcode of zero and a PALcode function of zero specify the HALT instruction.
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Chapter 4

Instruction Descriptions (I)

4.1 Instruction Set Overview

This chapter describes the instructions implemented by the Alpha architecture. The
instruction set is divided into the following sections:

Instruction Type Section

Integer load and store 4.2

Integer control 4.3

Integer arithmetic 4.4

Logical and shift 4.5

Byte manipulation 4.6

Floating-point load and store 4.8

Floating-point control 4.9

Floating-point operate 4.10

Miscellaneous 4.11

Within each major section, closely related instructions are combined into groups and
described together. The instruction group description is composed of the following:

• The group name

• The format of each instruction in the group, which includes the name, access
type, and data type of each instruction operand

• The operation of the instruction

• Exceptions specific to the instruction

• The instruction mnemonic and name of each instruction in the group

• Qualifiers specific to the instructions in the group

• A description of the instruction operation

• Optional programming examples and optional notes on the instruction
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4.1.1 Subsetting Rules

An instruction that is omitted in a subset implementation of the Alpha architecture
is not performed in either hardware or PALcode. System software may provide
emulation routines for subsetted instructions.

4.1.1.1 Floating-Point Subsets

Floating-point support is optional on an Alpha processor. An implementation that
supports floating-point must implement the 32 floating-point registers, the Floating­
point Control Register (FPCR) and the instructions to access it, floating-point
branch instructions, floating-point copy sign (CPYSx) instructions, floating-point
convert instructions, floating-point conditional move instruction (FCMOV), and the
S_floating and T_floating memory operations.

SOFTWARE NOTE
A system that will not support floating-point operations
is still required to provide the 32 floating-point
registers, the Floating-point Control Register (FPCR)
and the instructions to access it, and the T_floating
memory operations if the system intends to support the
OpenVMS Alpha operating system. This requirement
facilitates the implementation of a floating-point
emulator and simplifies context-switching.

In addition, floating-point support requires at least one of the following subset
groups:

1. VAX Floating-point Operate and Memory instructions (F_ and G_floating).

2. IEEE Floating-point Operate instructions (S_ and T_floating). Within this group,
an implementation can choose to include or omit separately the ability to perform
IEEE rounding to plus infinity and minus infinity.

Note: if one instruction in a group is provided, all other instructions in that group
must be provided. An implementation with full floating-point support includes
both groups; a subset floating-point implementation supports only one of these
groups. The individual instruction descriptions indicate whether an instruction can
be subsetted.

4.1.2 Software Emulation Rules
General-purpose layered and application software that executes in User mode may
assume that certain loads (LOL, LOQ, LOF, LOG, LOS, and LOT) and certain stores
(STL, STQ, STF, STG, STL and STT) of unaligned data are emulated by system
software. General-purpose layered and application software that executes in User
mode may assume that subsetted instructions are emulated by system software.
Frequent use of emulation may be significantly slower than using alternative code
sequences.
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Emulation of loads and stores of unaligned data and subsetted instructions need
not be provided in privileged access modes. System software that supports special­
purpose dedicated applications need not provide emulation in User mode ifemulation
is not needed for correct execution of the special-purpose applications.

4.1.3 Opcode Qualifiers
Some Operate format and Floating-point Operate format instructions have several
variants. For example, for the VAX formats, Add F_floating (ADDF) is supported
with and without floating underflow enabled, and with either chopped or VAX
rounding. For IEEE formats, IEEE unbiased rounding, chopped, round toward plus
infinity, and round toward minus infinity can be selected.

The different variants of such instructions are denoted by opcode qualifiers, which
consist of a slash (I) followed by a string of selected qualifiers. Each qualifier is
denoted by a single character as shown in Table 4-1. The opcodes for each qualifier
are listed in Appendix C.

Table 4-1 : Opcode Qualifiers
Qualifier Meaning

C

D

M

I

S

U

V

Chopped rounding

Rounding mode dynamic

Round toward minus infinity

Inexact result enable

Software completion enable

Floating underflow enable

Integer overflow enable •The default values are normal rounding, software completion disabled, inexact result
disabled, floating underflow disabled, and integer overflow disabled.
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4.2 Memory Integer Load/Store Instructions

The instructions in this section move data between the integer registers and memory.

They use the Memory instruction format. The instructions are summarized in
Table 4-2.

Table 4-2: Memory Integer Load/Store Instructions
Mnemonic Operation

LDA

LDAH

LDL

LDL_L

LDQ

LD~L

LD~U

STL

STL_C

STQ

ST~C

ST~U

Load Address

Load Address High

Load Sign-Extended Longword

Load Sign-Extended Longword Locked

Load Quadword

Load Quadword Locked

Load Quadword Unaligned

Store Longword

Store Longword Conditional

Store Quadword

Store Quadword Conditional

Store Quadword Unaligned
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4.2.1 Load Address

Format:

LDAx

Operation:

Ra.wq,disp.ab(Rb.ab) !Memory format

Ra +- Rbv + SEXT(disp)

Ra +- Rbv + SEXT(disp*65536)

Exceptions:

None

Instruction mnemonics:

!LDA

1LDAH t:.=-

LDA

LDAH

Load Address

Load Address High

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement for LDA, and 65536 times the sign-extended 16-bit displacement for
LDAH. The 64-bit result is written to register Ra.
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4.2.2 Load Memory Data into Integer Register

Format:

LDx

Operation:

Ra.wq,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

Ra +- SEXT((va)<31:0»
Ra +- (va)<63:0>

Exceptions:

Access Violation

Alignment

Fault on Read

Translation Not Valid

Instruction mnemonics:

!LDL
!LDQ

LDL Load Sign-Extended Longword from Memory to Register

LDQ Load Quadword from Memory to Register

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16­
bit displacement. The source operand is fetched from memory, sign-extended, and
written to register Ra. If the data is not naturally aligned, an alignment exception
is generated.
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4.2.3 Load Unaligned Memory Data into Integer Register

Format:

LD'LU

Operation:

Ra.wq,disp.ab(Rb.ab) !Memory format

va +- {{Rbv + SEXT(disp)} AND NOT 7}

Ra +- (va)<63:0>

Exceptions:

Access Violation

Fault on Read

Translation Not Valid

Instruction mnemonics:

LD'LU Load Unaligned Quadword from Memory to Register

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16­
bit displacement, then the low-order three bits are cleared. The source operand is
fetched from memory and written to register Ra.
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4.2.4 Load Memory Data into Integer Register Locked

Format:

Operation:

Ra.wq,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

lock flag +- 1
locked physical address +­
Ra +- - SEXT( (va)<31:0»
Ra +- (va)<63:0>

Exceptions:

Access Violation

Alignment

Fault on Read

Translation Not Valid

Instruction mnemonics:

PHYSICAL ADDRESS(va)
- !LDL L

!LDQ:=L

Load Sign-Extended Longword from Memory to Register Locked

Load Quadword from Memory to Register Locked

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, sign-extended for LDL_
L, and written to register Ra.

When a LDx_L instruction is executed without faulting, the processor records the
target physical address in a per-processor locked_physical_address register and sets
the per-processor lock_flag.

If the per-processor lock_flag is (still) set when a STx_C instruction is executed, the
store occurs; otherwise, it does not occur, as described for the STx_C instructions.

If processor Ns lock_flag is set and processor B successfully does a store within Ns
locked range of physical addresses, then Ns lock_flag is cleared. A processor's locked
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range is the aligned block of 2**N bytes that includes the locked_physical_address.
The 2**N value is implementation dependent. It is at least 8 (minimum lock range
is an aligned quadword) and is at most the page size for that implementation
(maximum lock range is one physical page).

A processor's lock_flag is also cleared if that processor encounters a CALL_PAL REI
instruction. It is UNPREDICTABLE whether or not a processor's lock_flag is cleared
on any other CALL_PAL instruction. It is UNPREDICTABLE whether a processor's
lock_flag is cleared by that processor's executing a normal load or store instruction.
It is UNPREDICTABLE whether a processor's lock_flag is cleared by that processor's
executing a taken branch (including BR, BSR, and Jumps); conditional branches that
fall through do not clear the lock_flag.

The sequence LDx_L, modify, STx_C, BEQ xxx executed on a given processor does an
atomic read-modify-write of a datum in shared memory if the branch falls through;
if the branch is taken, the store did not modify memory and the sequence may be
repeated until it succeeds.

Notes:

• LDx_L instructions do not check for write access; hence a matching STx_C may
take an access-violation or fault-on-write exception.

Executing a LDx_L instruction on one processor does not affect any
architecturally visible state on another processor, and in particular cannot cause
a STx_C on another processor to fail.

LDx_L and STx_C instructions need not be paired. In particular, an LDx_L may
be followed by a conditional branch: on the fall-through path an STx_C is done,
whereas on the taken path no matching STx_C is done.

If two LDx_L instructions execute with no intervening STx_C, the second one
overwrites the state of the first one. If two STx_C instructions execute with no
intervening LDx_L, the second one always fails because the first clears lock_flag.

• Software will not emulate unaligned LDx_L instructions.

• If any other memory access (LDx, LD(LU, STx, ST(LU) is done on the given
processor between the LDx_L and the STx_C, the sequence above may always
fail on some implementations; hence, no useful program should do this.

• If a branch is taken between the LDx_L and the STx_C, the sequence above may
always fail on some implementations; hence, no useful program should do this.
(CMOVxx may be used to avoid branching.)

• Ifa subsetted instruction (for example, floating-point) is done between the LDx_L
and the STx_C, the sequence above may always fail on some implementations,
because of the Illegal Instruction Trap; hence, no useful program should do this.

• Ifa large number of instructions are executed between the LDx_L and the STx_C,
the sequence above may always fail on some implementations, because of a timer
interrupt always clearing the lock_flag before the sequence completes; hence, no
useful program should do this.
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• Hardware implementations are encouraged to lock no more than 128 bytes.
Software implementations are encouraged to separate locked locations by at
least 128 bytes from other locations that could potentially be written by another
processor while the first location is locked.

IMPLEMENTATION NOTES
Implementations that impede the mobility of a cache
block on LDx_L, such as that which may occur in a Read
for Ownership cache coherency protocol, may release the
cache block and make the subsequent STx_C fail if a
branch-taken or memory instruction is executed on that
processor.

All implementations should guarantee that at least
40 non-subsetted operate instructions can be executed
between timer interrupts.
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4.2.5 Store Integer Register Data into Memory Conditional

Format:

Ra.mq,disp.ab(Rb.ab)

Operation:

va +- {Rbv + SEXT(disp)}

IF lock flag EQ 1 THEN
(va)<31:0> +- Rav<31:0>
(va) +- Rav

Ra +- lock flag
lock_flag ~ 0

Exceptions:

!Memory format

Instruction mnemonics:

Access Violation

Fault on Write

Alignment

Translation Not Valid

STL_C

ST<LC

Qualifiers:

None

Store Longword from Register to Memory Conditional

Store Quadword from Register to Memory Conditional •
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. If the lock_flag is set, the Ra operand is written to memory at this
address. (See the LDx_L description for conditions that clear the lock_flag.) The
lock_flag is returned in RA. and then set to a zero.

Notes:

• Software will not emulate unaligned STx_C instructions.

• Each implementation must do the test and store atomically, so that if two
processors execute store conditionals within the same lock range, exactly one
of the stores succeeds.
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• The following sequence should not be used:

try_again: LDQ L Rl,x
<modify Rl>
STQ C Rl,x
BEQ- Rl, try_again

That sequence penalizes performance when the ST(LC succeeds, because the
sequence contains a backward branch, which is predicted to be taken in the
Alpha architecture. In the case where the ST(LC succeeds and the branch
will actually fall through, that sequence incurs unnecessary delay due to a
mispredicted backward branch. Instead, a forward branch should be used to
handle the failure case as shown in Section 5.5.2.

SOFTWARE NOTE
The address specified by a STx_C instruction need not
match that given in a preceding LDx_L. Specifying
unmatched addresses for those instructions requires an
MB in between to guarantee ordering.

IMPLEMENTATION NOTES
A STx_C must propagate to the point of coherency,
where it is guaranteed to prevent any other store from
changing the state of the lock bit, before its outcome can
be determined.

Ifan implementation could encounter a TB or cache miss
on the data reference ofthe STx_C in the sequence above
(as might occur in some shared I- and D-stream direct­
mapped TBs/caches), it must be able to resolve the miss
and complete the store without always failing.

4-12 Common Architecture (I)



4;2.6 Store Integer Register Data into Memory

Format:

STx

Operation:

Ra.rq,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}
(va)<31:0> +- Rav<31:0>
(va) +- Rav

Exceptions:

Access Violation

Fault on Write

Alignment

Translation Not Valid

lSTL
lSTQ

Instruction mnemonics:

STL

STQ

Qualifiers:

None

Store Longword from Register to Memory

Store Quadword from Register to Memory

•
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The Ra operand is written to memory at this address. If the data is
not naturally aligned, an alignment exception is generated.
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4.2.7 Store Unaligned Integer Register Data into Memory

Format:

ST(LU

Operation:

Ra.rq,disp.ab(Rb.ab) !Memory format

va +- {{Rbv + SEXT(disp)} AND NOT 7}

(va)<63:0> +- Rav<63:0>

Exceptions:

Access Violation

Fault on Write

Translation Not Valid

Instruction mnemonics:

ST(LU

Qualifiers:

None

Store Unaligned Quadword from Register to Memory

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement, then clearing the low order three bits. The Ra operand is written to
memory at this address.
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4.3 Control Instructions

Alpha provides integer conditional branch, unconditional branch, branch to
subroutine, and jump instructions. The PC used in these instructions is the updated
PC, as described in Section 3.1.1.

To allow implementations to achieve high performance, the Alpha architecture
includes explicit hints based on a branch-prediction model:

1. For many implementations of computed branches (JSRlRET/JMP), there is a
substantial performance gain in forming a good guess of the expected target 1­
cache address before register Rb is accessed.

2. For many implementations, the first-level (or only) I-cache is no bigger than a
page (8 KB to 64 KB).

3. Correctly predicting subroutine returns is important for good performance. Some
implementations will therefore keep a small stack of predicted subroutine return
I-cache addresses.

The Alpha architecture provides three kinds ofbranch-prediction hints: likely target
address, return-address stack action, and conditional branch-taken.

For computed branches, the otherwise unused displacement field contains a function
code (JMP/JSRlRET/JSR_COROUTINE), and, for JSR and JMP, a field that
statically specifies the 16 low bits of the most likely target address. The PC­
relative calculation using these bits can be exactly the PC-relative calculation used
in unconditional branches. The low 16 bits are enough to specify an I-cache block
within the largest possible Alpha page and hence are expected to be enough for
branch-prediction logic to start an early I-cache access for the most likely target.

For all branches, hint or opcode bits are used to distinguish simple branches,
subroutine calls, subroutine returns, and coroutine links. These distinctions allow
branch-predict logic to maintain an accurate stack of predicted return addresses.

For conditional branches, the sign of the target displacement is used as a taken
Ifail-through hint. The instructions are summarized in Table 4-3.
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Table 4-3: Control Instructions Summary
Mnemonic Operation

BEQ

BGE

BGT

BLBC

BLBS

BLE

BLT

BNE

BR

BSR

Branch if Register Equal to Zero

Branch if Register Greater Than or Equal to Zero

Branch if Register Greater Than Zero

Branch if Register Low Bit Is Clear

Branch if Register Low Bit Is Set

Branch if Register Less Than or Equal to Zero

Branch if Register Less Than Zero

Branch if Register Not Equal to Zero

Unconditional Branch

Branch to Subroutine

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

4-16 Common Architecture (I)



4.3.1 Conditional Branch

Format:

Bxx

Operation:

Ra.rq,disp.al !Branch format

{update PC}
va +- PC + {4*SEXT(disp)}
IF TEST(Rav, Condition_based_on_Opcode) THEN

PC +- va

Exceptions:

None

Instruction mnemonics:

BEQ

BGE

BGT

BLBC

BLBS

BLE

BLT

BNE

Qualifiers:

None

Branch if Register Equal to Zero

Branch if Register Greater Than or Equal to Zero

Branch if Register Greater Than Zero

Branch if Register Low Bit Is Clear

Branch if Register Low Bit Is Set

Branch if Register Less Than or Equal to Zero

Branch if Register Less Than Zero

Branch if Register Not Equal to Zero •
Description:

Register Ra is tested. If the specified relationship is true, the PC is loaded with
the target virtual address; otherwise, execution continues with the next sequential
instruction.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed
displacement gives a forward/backward branch distance of +/-lM instructions.
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The test is on the signed quadword integer interpretation of the register contents;
all 64 bits are tested.

Notes:

• Forward conditional branches (positive displacement) are predicted to fall
through. Backward conditional branches (negative displacement) are predicted
to be taken. Conditional branches do not affect a predicted return address stack.
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4.3.2 Unconditional Branch

Format:

BxR

Operation:

Ra.wq,disp.al !Branch format

{update PC}
Ra 4- PC
PC 4- PC + {4*SEXT(disp)}

Exceptions:

None

Instruction mnemonics:

BR Unconditional Branch

BSR Branch to Subroutine

Qualifiers:

None

Description:

The PC of the following instruction (the updated PC) is written to register Ra, and
then the PC is loaded with the target address.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The unconditional branch instructions are PC-relative. The 21-bit signed
displacement gives a forward/backward branch distance of +/-lM instructions.

PC-relative addressability can be established by:

BR Rx,Ll
Ll:

Notes:

• BR and BSR do identical operations. They only differ in hints to possible branch­
prediction logic. BSR is predicted as a subroutine call (pushes the return address
on a branch-prediction stack), whereas BR is predicted as a branch (no push).
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4.3.3 Jumps

Format:

mnemonic Ra.wq,(Rb.ab),hint

Operation:

{update PC}
va +- Rbv AND {NOT 3}
Ra +- PC
PC +- va

Exceptions:

None

Instruction mnemonics:

!Memory format

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTlNE Jump to Subroutine Return

Qualifiers:

None

Description:

The PC of the instruction following the Jump instruction (the updated PC) is written
to register Ra, and then the PC is loaded with the target virtual address.

The new PC is supplied from register Rb. The low two bits of Rb are ignored. Ra
and Rb may specify the same register; the target calculation using the old value is
done before the new value is assigned.

All Jump instructions do identical operations. They only differ in hints to possible
branch-prediction logic. The displacement field of the instruction is used to pass this
information. The four different "opcodes" set different bit patterns in disp<15:14>,
and the hint operand sets disp<13:0>.
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These bits are intended to be used as shown in Table 4-4.

Table 4-4: Jump Instructions Branch Prediction
Predicted

disp<15:14> Meaning Target<15:0>
Prediction
Stack Action

00

01

10

11

JMP

JSR

RET

JSR_COROUTINE

PC + {4*disp<13:0>l

PC + {4*disp<13:0>l

Prediction stack

Prediction stack

Push PC

Pop

Pop, push PC

The design in Table 4-4 allows specification of the low 16 bits of a likely longword
target address (enough bits to start a useful I-cache access early), and also allows
distinguishing call from return (and from the other two less frequent operations).

Note that the above information is used only as a hint; correct setting of these bits
can improve performance but is not needed for correct operation. See Appendix A
for more information on branch prediction.

An unconditional long jump can be performed by:

JMP R31,(Rb),hint

Coroutine linkage can be performed by specifying the same register in both the Ra
and Rb operands. When disp<15:14> equals '10' (RET) or '11' (JSR_COROUTINE)
(that is, the target address prediction, if any, would come from a predictor
implementation stack), then bits <13:0> are reserved for software and must be
ignored by all implementations. All encodings for bits <13:0> are used by Digital
software or Reserved to Digital, as follows:

Encoding Meaning •
000016

000116

Indicates non-procedure return

Indicates procedure return

All other encodings are reserved to Digital.
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4.4 Integer Arithmetic Instructions

The integer arithmetic instructions perform add, subtract, multiply, and signed and
unsigned compare operations.

The integer instructions are summarized in Table 4-5.

Table 4-5: Integer Arithmetic Instructions Summary
Mnemonic Operation

ADD

S4ADD

S8ADD

CMPEQ

CMPLT

CMPLE

CMPULT

CMPULE

MUL

UMULH

SUB

S4SUB

S8SUB

Add QuadwordILongword

Scaled Add by 4

Scaled Add by 8

Compare Signed Quadword Equal

Compare Signed Quadword Less Than

Compare Signed Quadword Less Than or Equal

Compare Unsigned Quadword Less Than

Compare Unsigned Quadword Less Than or Equal

Multiply QuadwordILongword

Multiply Quadword Unsigned High

Subtract QuadwordILongword

Scaled Subtract by 4

Scaled Subtract by 8

There is no integer divide instruction. Division by a constant can be done via
UMULH; division by a variable can be done via a subroutine. See Appendix A.
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4.4.1 Longword Add

Format:

ADDL
ADDL

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

IOperate format

Rc +- SEXT( (Rav + Rbv)<31:0»

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDL Add Longword

Qualifiers:

Integer Overflow Enable (N)

Description:

Register Ra is added to register Rb or a literal, and the sign-extended 32-bit sum is
written to Rc.

The high order 32 bits of Ra and Rb are ignored. Rc is a proper sign extension
of the truncated 32-bit sum. Overflow detection is based on the longword
sum Rav<31 :0> + Rbv<31 :0>.

Instruction Descriptions (I) 4-23

•



4.4.2 Scaled Longword Add

Format:

SxADDL

SxADDL

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

CASE
S4ADDL: Rc +- SEXT «(LEFT SHIFT(Rav,2» + Rbv)<31:0»
S8ADDL: Rc +- SEXT «(LEFT=SHIFT(RaV,3» + Rbv)<31:0»

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDL

S8ADDL

Qualifiers:

None

Scaled Add Longword by 4

Scaled Add Longword by 8

Description:

Register Ra is scaled by 4 (for S4ADDL) or 8 (for S8ADDL) and is added to register
Rb or a literal, and the sign-extended 32-bit sum is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit sum.
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4.4.3 Quadword Add

Format:

ADDQ
ADDQ

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- Rav + Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDQ Add Quadword

Qualifiers:

Integer Overflow Enable (N)

Description:

Register Ra is added to register Rb or a literal, and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the
destination register.

The unsigned compare instructions can be used to generate carry. Mer adding two
values, if the sum is less unsigned than either one of the inputs, there was a carry
out of the most significant bit.
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4.4.4 Scaled Quadword Add

Format:

SxADDQ Ra.rq,Rb.rq,Rc.wq

SxADDQ Ra.rq,#b.ib,Rc.wq

Operation:

!Operate format

!Operate format

CASE
S4ADDQ: Rc +- LEFT SHIFT(Rav,2) + Rbv
S8ADDQ: Rc +- LEFT:SHIFT(RaV,3) + Rbv

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDQ Scaled Add Quadword by 4

S8ADDQ Scaled Add Quadword by 8

Qualifiers:

None

Description:

Register Ra is scaled by 4 (for S4ADDQ) or 8 (for S8ADDQ) and is added to register
Rb or a literal, and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the
destination register.
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4.4.5 Integer Signed Compare

Format:

CMPxx

CMPxx

Operation:

Ra.rq,Rb.rq,Re.wq

Ra.rq,#b.ib,Re.wq

!Operate format

!Operate format

IF Rav SIGNED RELATION Rbv THEN
Rc ~ 1 -

ELSE
Rc ~ 0

Exceptions:

None

Instruction mnemonics:

CMPEQ

CMPLE

CMPLT

Qualifiers:

None

Compare Signed Quadword Equal

Compare Signed Quadword Less Than or Equal

Compare Signed Quadword Less Than

•
Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is
true, the value one is written to register Re; otherwise, zero is written to Re.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.
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4.4.6 Integer Unsigned Compare

Format:

CMPUxx Ra.rq,Rb.rq,Rc.wq

CMPUxx Ra.rq,#b.ib,Rc.wq

Operation:

IF Rav UNSIGNED RELATION Rbv THEN
Rc +- 1 -

ELSE
Rc +- 0

Exceptions:

None

Instruction mnemonics:

!Operate format

!Operate format

CMPULE Compare Unsigned Quadword Less Than or Equal

CMPULT Compare Unsigned Quadword Less Than

Qualifiers:

None

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is
true, the value one is written to register Rc; otherwise, zero is written to Rc.
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4.4.7 Longword Multiply

Format:

MULL

MULL

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.Rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc ~ SEXT «Rav * Rbv)<31: 0»

Exceptions:

Integer Overflow

Instruction mnemonics:

MULL Multiply Longword

Qualifiers:

Integer Overflow Enable (N)

Description:

Register Ra is multiplied by register Rb or a literal, and the sign-extended 32-bit
product is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension
of the truncated 32-bit product. Overflow detection is based on the longword
product Rav<31 :0> * Rbv<31 :0>. On overflow, the proper sign extension of the least
significant 32 bits of the true result are written to the destination register.

The MULQ instruction can be used to return the full 64-bit product.
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4.4.8 Quadword Multiply

Format:

MULQ

MULQ

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.Rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- Rav * Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

MULQ

Qualifiers:

Multiply Quadword

Integer Overflow Enable (N)

Description:

Register Ra is multiplied by register Rb or a literal, and the 64-bit product is written
to register Re. Overflow detection is based on considering the operands and the result
as signed quantities. On overflow, the least significant 64 bits of the true result are
written to the destination register.

The UMULH instruction can be used to generate the upper 64 bits of the 128-bit
result when an overflow occurs.
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4.4.9 Unsigned Quadword Multiply High

Format:

UMULH

UMULH

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.Rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- {Rav *u Rbv}<127:64>

Exceptions:

None

Instruction mnemonics:

UMULH Unsigned Multiply Quadword High

Qualifiers:

None

Description:

Register Ra and Rb or a literal are multiplied as unsigned numbers to produce a
128-bit result. The high-order 64-bits are written to register Rc.

The UMULH instruction can be used to generate the upper 64 bits of a 128-bit result
as follows:

Ra and Rb are unsigned: result of UMULH

Ra and Rb are signed: (result of UMULH) - Ra<63>*Rb - Rb<63>*Ra

The MULQ instruction gives the low 64 bits of the result in either case.
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4.4.10 Longword Subtract

Format:

SUBL
SUBL

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- SEXT «Rav - Rbv)<31:0»

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBL

Qualifiers:

Subtract Longword

Integer Overflow Enable (IV)

Description:

Register Rb or a literal is subtracted from register Ra, and the sign-extended 32-bit
difference is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit difference. Overflow detection is based on the longword difference
Rav<31 :0> - Rbv<31 :0>.
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4.4.11 Scaled Longword Subtract

Format:

SxSUBL

SxSUBL

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

CASE
S4SUBL:
S8SUBL:

ENDCASE

Exceptions:

None

Rc +- SEXT «(LEFT SHIFT(Rav,2» - Rbv)<31:0»
Rc +- SEXT «(LEFT=SHIFT(RaV,3» - Rbv)<31:0»

Instruction mnemonics:

S4SUBL

SBSUBL

Qualifiers:

None

Scaled Subtract Longword by 4

Scaled Subtract Longword by B

•Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is
scaled by 4 (for S4SUBL) or B (for S8SUBL), and the sign-extended 32-bit difference
is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit difference.
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4.4.12 Quadword Subtract

Format:

SUBQ

SUBQ

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- Rav - Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBQ

Qualifiers:

Subtract Quadword

Integer Overflow Enable (IV)

Description:

Register Rb or a literal is subtracted from register Ra, and the 64-bit difference is
written to register Rc. On overflow, the least significant 64 bits of the true result
are written to the destination register.

The unsigned compare instructions can be used to generate borrow. If the minuend
(Rav) is less unsigned than the subtrahend (Rbv), there will be a borrow.
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4.4.13 Scaled Quadword Subtract

Format:

SxSUBQ

SxSUBQ

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

CASE
S4SUBQ: Rc +- LEFT SHIFT(Rav,2) - Rbv
S8SUBQ: Rc +- LEFT=SHIFT(RaV,3) - Rbv

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4SUBQ

S8SUBQ

Qualifiers:

None

Scaled Subtract Quadword by 4

Scaled Subtract Quadword by 8

•Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is
scaled by 4 (for S4SUBQ) or 8 (for S8SUBQ), and the 64-bit difference is written to
Rc.
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4.5 Logical and Shift Instructions

The logical instructions perform quadword Boolean operations. The conditional move
integer instructions perform conditionals without a branch. The shift instructions
perform left and right logical shift and right arithmetic shift. These are summarized
in Table 4-6.

Table 4-6: Logical and Shift Instructions Summary

Mnemonic Operation

AND

BIC

BIS

EQV

ORNOT

XOR

CMOVxx

SLL

SRA

SRL

Logical Product

Logical Product with Complement

Logical Sum (OR)

Logical Equivalence (XORNOT)

Logical Sum with Complement

Logical Difference

Conditional Move Integer

Shift Left Logical

Shift Right Arithmetic

Shift Right Logical

SOFTWARE NOTE
There is no arithmetic left shift instruction. Where an
arithmetic left shift would be used, a logical shift will
do. For multiplying by a small power of two in address
computations, logical left shift is acceptable.

Integer multiply should be used to perform an arithmetic left shift with overflow
checking.

Bit field extracts can be done with two logical shifts. Sign extension can be done
with left logical shift and a right arithmetic shift.
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4.5.1 Logical Functions

Format:

mnemonic Ra.rq,Rb.rq,Rc.wq

mnemonic Ra.rq,#b.ib,Rc.wq

Operation:

Rc ~ Rav AND Rbv
Rc ~ Rav OR Rbv
Rc ~ Rav XOR Rbv
Rc ~ Rav AND {NOT Rbv}
Rc ~ Rav OR {NOT Rbv}
Rc ~ Rav XOR {NOT Rbv}

Exceptions:

None

!Operate format

!Operate format

lAND
IBIS
IXOR
IBIC
IORNOT
lEQV

Instruction mnemonics:

AND

BIC

BIS

EQV

ORNOT

XOR

Qualifiers:

None

Logical Product

Logical Product with Complement

Logical Sum (OR)

Logical Equivalence (XORNOT)

Logical Sum with Complement

Logical Difference •
Description:

These instructions perform the designated Boolean function between register Ra and
register Rb or a literal. The result is written to register Rc.

The "NOT" function can be performed by doing an ORNOT with zero (Ra =R31).
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4.5.2 Conditional Move Integer

Format:

CMOVxx Ra.rq,Rb.rq,Rc.wq

CMOVxx Ra.rq,#b.ib,Rc.wq

Operation:

!Operate format

!Operate format

IF TEST(Rav, Condition_based_on_Opcode) THEN

Rc ~ Rbv

Exceptions:

None

Instruction mnemonics:

CMOVEQ

CMOVGE

CMOVGT

CMOVLBC

CMOVLBS

CMOVLE

CMOVLT

CMOVNE

Qualifiers:

None

CMOVE if Register Equal to Zero

CMOVE if Register Greater Than or Equal to Zero

CMOVE if Register Greater Than Zero

CMOVE if Register Low Bit Clear

CMOVE if Register Low Bit Set

CMOVE if Register Less Than or Equal to Zero

CMOVE if Register Less Than Zero

CMOVE if Register Not Equal to Zero

Description:

Register Ra is tested. If the specified relationship is true, the value Rbv is written
to register Rc.
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Notes:
Except that it is likely in many implementations to be substantially faster, the
instruction:

CMOVEQ Ra,Rb,Rc

is exactly equivalent to:

BNE Ra,label
OR Rb,Rb,Rc

label:

For example, a branchless sequence for:

Rl=MAX(Rl,R2)

is:

CMPLT Rl,R2,R3
CMOVNE R3,R2,Rl

R3=1 if Rl<R2
Move R2 to Rl if Rl<R2
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4.5.3 Shift Logical

Format:

SxL

SxL

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- LEFT_SHIFT (Rav , Rbv<5 : 0» 1SLL
Rc +- RIGHT_SHIFT (Rav, Rbv<5:0» lSRL

Exceptions:

None

Instruction mnemonics:

SLL Shift Left Logical

SRL Shift Right Logical

Qualifiers:

None

Description:

Register Ra is shifted logically left or right 0 to 63 bits by the count in register Rb
or a literal. The result is written to register Rc. Zero bits are propagated into the
vacated bit positions.
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4.5.4 Shift Arithmetic

Format:

SRA

SRA

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rb,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- ARITH_RIGHT_SHIFT(Rav, Rbv<5:0»

Exceptions:

None

Instruction mnemonics:

SRA Shift Right Arithmetic

Qualifiers:

None

Description:

Register Ra is right shifted arithmetically 0 to 63 bits by the count in register Rb or
a literal. The result is written to register Rc. The sign bit (Rav<63» is propagated
into the vacated bit positions. .
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4.6 Byte-Manipulation Instructions

Alpha provides instructions for operating on byte operands within registers.
These instructions allow full-width memory accesses in the load/store instructions
combined with powerful in-register byte manipulation.

The instructions are summarized in Table 4-7.

Table 4-7: Byte-Manipulation Instructions Summary
Mnemonic Operation

CMPBGE Compare Byte

EXTBL Extract Byte Low

EXTWL Extract Word Low

EXTLL Extract Longword Low

EXTQL Extract Quadword Low

EXTWH Extract Word High

EXTLH Extract Longword High

EXTQH Extract Quadword High

INSBL Insert Byte Low

INSWL Insert Word Low

INSLL Insert Longword Low

INSQL Insert Quadword Low

INSWH Insert Word High

INSLH Insert Longword High

INSQH Insert Quadword High

MSKBL Mask Byte Low

MSKWL Mask Word Low

MSKLL Mask Longword Low

MSKQL Mask Quadword Low

MSKWH Mask Word High

MSKLH Mask Longword High

MSKQH Mask Quadword High
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Table 4-7 (Cont.): Byte-Manipulation Instructions Summary
Mnemonic Operation

ZAP

ZAPNOT

Zero Bytes

Zero Bytes Not
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4.6.1 Compare Byte

Format:

CMPBGE Ra.rq,Rb.rq,Rc.wq

CMPBGE Ra.rq,#b.ib,Rc.wq

Operation:

!Operate format

!Operate format

FOR i FROM 0 TO 7

temp<8:0> +- {O I I Rav<i*8+7:i*8>} +
{oj I NOT Rbv<i*8+7:i*8>} + 1

Rc<i> +- temp<8>
END
Rc<63: 8> +- 0

Exceptions:

None

Instruction mnemonics:

CMPBGE Compare Byte

Qualifiers:

None

Description:

CMPBGE does eight parallel unsigned byte comparisons between corresponding
bytes of Rav and Rbv, storing the eight results in the low eight bits of Rc. The
high 56 bits of Rc are set to zero. Bit 0 of Rc corresponds to byte 0, bit 1 of Rc
corresponds to byte 1,-,and so forth. A result bit is set in Rc if the corresponding byte
of Rav is greater than or equal to Rbv (unsigned).
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Notes:
The result of CMPBGE can be used as an input to ZAP and ZAPNOT.

To scan for a byte of zeros in a character string:

<initialize Rl to aligned QW address of string>
LOOP:

R2,0(Rl)
Rl,8(Rl)
R31,R2,R3
R3,LOOP

LDQ
LDA
CMPBGE
BEQ

pick up 8 bytes
Increment string pointer
If NO bytes of zero, R3<7:0>=0
Loop if no terminator byte found
At this point, R3 can be used to
determine which byte terminated

To compare two character strings for greater/less:

<initialize Rl to aligned QW address of stringl>
<initialize R2 to aligned QW address of string2>

At this point, RS can be used to
determine the first not-equal
byte position.

To range-check a string of characters in Rl for '0'..'9':

LDQ R2,litOs Pick up 8 bytes of the character
BELOW 1O' 1////////,

LDQ R3,lit9s pick up 8 bytes of the character
ABOVE 19 ' ':::::::: '

CMPBGE R2,Rl,R4 Some R4<i>=1 if character is LT '0'
CMPBGE Rl,R3,RS Some RS<i>=l if character is GT 19 '
BNE R4,ERROR Branch if some char too low
BNE RS,ERROR Branch if some char too high

LOOP:
LDQ
LDA
LDQ
LDA
XOR
BEQ
CMPBGE

R3,0(Rl)
Rl,8(Rl)
R4,0(R2)
R2,8(R2)
R3,R4,RS
R5,LOOP
R31,RS,RS

Pick up 8 bytes of stringl
Increment stringl pointer
pick up 8 bytes of string2
Increment string2 pointer
Test for all equal bytes
Loop if all equal

•
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4.6.2 Extract Byte

Format:

EXTxx

EXTxx

Operation:

CASE

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

EXTBL: byte mask ~
EXTWx: byte-mask ~

EXTLx: byte-mask ~

EXTQx: byte=mask ~
ENDCASE

CASE

0000 00012
0000 00112
0000 11112
1111 11112

EXTxL:
byte lac +- Rbv<2:0>*8
temp-~ RIGHT SHIFT(Rav, byte lac<5:0»
Rc ~ BYTE_ZAP(temp, NOT(byte=mask)

EXTxH:
byte lac ~ 64 - Rbv<2:0>*8
temp-~ LEFT SHIFT(Rav, byte lac<5:0»
Rc +- BYTE_ZAP (temp, NOT (byte_mask) )

ENDCASE

Exceptions:

None

Instruction mnemonics:

EXTBL

EXTWL

EXTLL

EXTQL

EXTWH

EXTLH

EXTQH

Extract Byte Low

Extract Word Low

Extract Longword Low

Extract Quadword Low

Extract Word High

Extract Longword High

Extract Quadword High
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Qualifiers:

None

Description:

EXTxL shifts register Ra right by 0 to 7 bytes, inserts zeros into vacated bit positions,
and then extracts 1, 2, 4, or 8 bytes into register Rc. EXTxH shifts register Ra left
by 0 to 7 bytes, inserts zeros into vacated bit positions, and then extracts 2, 4, or 8
bytes into register Rc. The number of bytes to shift is specified by Rbv<2:0>. The
number of bytes to extract is specified in the function code. Remaining bytes are
filled with zeros.

Notes:
The comments in the examples below assume that the effective address (ea) of
X(R11) is such that (ea mod 8) =5, the value of the aligned quadword containing
X(Rl1) is CBAx xxxx, and the value of the aligned quadword containing X+7(R11) is
yyyH GFED.

The examples below are the most general case unless otherwise noted; if more
information is known about the value or intended alignment of X, shorter sequences
can be used.

The intended sequence for loading a quadword from unaligned address X(R11) is:

LDQ_U Rl,X(Rll) Ignores va<2:0>, Rl CBAx xxxx
LDQ_U R2,X+7(Rll) Ignores va<2:0>, R2 yyyH GFED

ILDA R3,X(Rll) R3<2:0> = (X mod 8) 5
EXTQL Rl,R3,Rl Rl 0000 OCBA
EXTQH R2 ,R3 ,R2 R2 = HGFE DODO
OR R2,Rl,Rl Rl = HGFE DCBA

The intended sequence for loading and zero-extending a longword from unaligned
address X is:

LDQ_U
LDQ_U
LDA
EXTLL
EXTLH
OR

Rl,X(Rll)
R2,X+3(Rll)
R3,X(Rll)
Rl,R3,Rl
R2,R3,R2
R2,Rl,Rl

Ignores va<2:0>, Rl
Ignores va<2:0>, R2
R3<2:0> = (X mod 8)
Rl 0000 OCBA
R2 = 0000 DODO
Rl = 0000 DCBA

CBAx xxxx
YYYY yyyD
5

The intended sequence for loading and sign-extending a longword from unaligned
address X is:

LDQ_U
LDQ_U
LDA
EXTLL
EXTLH
OR
SLL
SRA

Rl,X(Rll)
R2,X+3(Rll)
R3,X(Rll)
Rl,R3,Rl
R2,R3,R2
R2,Rl,Rl
Rl,#32,Rl
Rl,#32,Rl

Ignores va<2:0>, Rl
Ignores va<2:0>, R2
R3<2:0> = (X mod 8)
Rl 0000 OCBA
R2 0000 0000
Rl 0000 OCBA
Rl DCBA 0000
Rl ssss OCBA

CBAx xxxx
YYYY yyyD
5
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The intended sequence for loading and zero-extending a word from unaligned address
X is:

LOQ_U R1,X(R11) Ignores va<2:0>, R1 yBAx xxxx
LOQ_U R2,X+1(R11) Ignores va<2:0>, R2 yBAx xxxx
LOA R3,X(R11) R3<2:0> = (X mod 8) 5
EXTWL R1,R3,R1 R1 0000 OOBA
EXTWH R2,R3,R2 R2 = 0000 0000
OR R2,R1,R1 R1 = 0000 OOBA

The intended sequence for loading and sign-extending a word from unaligned address
X is:

LOQ_U R1,X(R11) Ignores va<2:0>, R1 yBAx xxxx
LOQ_U R2,X+1(R11) Ignores va<2:0>, R2 yBAx xxxx
LOA R3,X(R11) R3<2:0> = (X mod 8) 5
EXTWL R1,R3,R1 R1 0000 OOBA
EXTWH R2 ,R3 ,R2 R2 0000 0000
OR R2,R1,R1 R1 0000 OOBA
SLL R1,#48,R1 R1 BAOO 0000
SRA R1,#48,R1 R1 ssss ssBA

The intended sequence for loading and zero-extending a byte from address X is:

LOQ_U
LOA
EXTBL

R1,X(R11)
R3,X(R11)
R1,R3,R1

Ignores va<2:0>, R1
R3<2:0> = (X mod 8)
R1 = 0000 OOOA

yyAx xxxx
5

The intended sequence for loading and sign-extending a byte from address X is:

LOQ_U R1, X(R11)
LOA R3, X+1(R11)

EXTQH R1, R3, R1

SRA Rl, #56, Rl

Ignores va<2:0>, Rl = yyAx xxxx
R3<2:0> = (X + 1) mod 8, i.e.,
convert byte position within
quadword to one-origin based
Places the desired byte into byte 7
of Rl.final by left shifting
Rl.initial by ( 8 - R3<2:0> ) byte
positions
Arithmetic Shift of byte 7 down
into byte 0,

Optimized examples:

Assume that a word fetch is needed from lO(R3), where R3 is intended to contain
a longword-aligned address. The optimized sequences below take advantage of the
known constant offset, and the longword alignment (hence a single aligned longword
contains the entire word). The sequences generate a Data Alignment Fault ifR3 does
not contain a longword-aligned address.

The intended sequence for loading and zero-extending an aligned word from lO(R3)
is:

LDL R1,8(R3)

EXTWL R1,#2,R1
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The intended sequence for loading and sign-extending an aligned word from lO(R3)
is:

LDL

SRA

Rl,8(R3)

Rl,#16,Rl

Rl = ssss BAxx
Faults if R3 is not lonqword aligned
Rl = ssss ssBA
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4.6.3 Byte Insert

Format:

INSxx

INSxx

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

CASE
INSBL: byte mask +- 0000 0000 0000 00012
INSWx: byte-mask +- 0000 0000 0000 00112
INSLx: byte-mask +- 0000 0000 0000 11112
INSQx: byte=mask +- 0000 0000 1111 11112

ENDCASE
byte_mask +- LEFT_SHIFT (byte_mask, rbv<2:0»

CASE

INSxL:
byte loe +- Rbv<2:0>*8
temp-+- LEFT SHIFT(Rav, byte loe<5:0»
Re +- BYTE ZAP (temp, NOT(byte mask<7:0»)

INSxH: - -
byte loe +- 64 - Rbv<2:0>*8
temp-+- RIGHT SHIFT(Rav, byte loe<5:0»
Re +- BYTE_ZAP(temp, NOT(byte=mask<15:8»)

ENDCASE

Exceptions:

None

Instruction mnemonics:

INSBL

INSWL

INSLL

INSQL

INSWH

INSLH

INSQH

Insert Byte Low

Insert Word Low

Insert Longword Low

Insert Quadword Low

Insert Word High

Insert Longword High

Insert Quadword High
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Qualifiers:

None

Description:

INSxL and INSxH shift bytes from register Ra and insert them into a field of zeros,
storing the result in register Rc. Register Rb<2:0> selects the shift amount, and the
function code selects the maximum field width: 1, 2, 4, or 8 bytes. The instructions
can generate a byte, word, longword, or quadword datum that is spread across two
registers at an arbitrary byte alignment.
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4.6.4 Byte Mask

Format:

MSKxx

MSKxx

Operation:

CASE

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

MSKBL: byte mask +- 0000 0000 0000 00012
MSKWx: byte-mask +- 0000 0000 0000 00112
MSKLx: byte-mask +- 0000 0000 0000 11112
MSKQx: byte=mask +- 0000 0000 1111 11112

ENDCASE
byte_mask +- LEFT_SHIFT(byte_mask, rbv<2:0»

CASE

MSKxL:
Rc +- BYTE_ZAP (Rav, byte_mask<7:0»

MSKxH:
Rc +- BYTE_ZAP (Rav, byte_mask<15:8»

ENDCASE

Exceptions:

None

Instruction mnemonics:

MSKBL

MSKWL

MSKLL

MSKQL

MSKWH

MSKLH

MSKQH

Qualifiers:

None

Mask Byte Low

Mask Word Low

Mask Longword Low

Mask Quadword Low

Mask Word High

Mask Longword High

Mask Quadword High

4-52 Common Architecture (I)



Description:

MSKxL and MSKxH set selected bytes of register Ra to zero, storing the result
in register Rc. Register Rb<2:0> selects the starting position of the field of zero
bytes, and the function code selects the maximum width: 1, 2, 4, or 8 bytes. The
instructions generate a byte, word, longword, or quadword field of zeros that can
spread across two registers at an arbitrary byte alignment.

Notes:
The comments in the examples below assume that the effective address (ea) ofX(Rll)
is such that (ea mod 8) =5, the value of the aligned quadword containing X(Rll) is
CBAx XXXX, the value of the aligned quadword containing X+7(Rll) is yyyH GFED,
and the value to be stored from R5 is hgfe dcba.

The examples below are the most general case; if more information is known about
the value or intended alignment of X, shorter sequences can be used.

The intended sequence for storing an unaligned quadword R5 at address X(Rll) is:

LDA R6,X(Rll) R6<2:0> = (X mod 8) 5
LDQ_U R2,X+7(Rll) Ignores va<2:0>, R2 yyyH GFED
LDQ_U Rl,X(Rll) Ignores va<2:0>, Rl CBAx xxxx
INSQH R5,R6,R4 R4 OOOh gfed
INSQL RS,R6,R3 R3 cbaO 0000
MSKQH R2,R6,R2 R2 yyyO 0000
MSKQL Rl,R6,Rl Rl OOOx xxxx
OR R2,R4,R2 R2 yyyh gfed
OR Rl,R3,Rl Rl cbax xxxx
STQ_U R2,X+7(Rll) Must store high then low for
STQ_U Rl,X(Rll) degenerate case of aligned QW

The intended sequence for storing an unaligned longword R5 at X is:

LDA R6,X(Rll) R6<2:0> = (X mod 8) 5
LDQ_U R2,X+3(Rll) Ignores va<2:0>, R2 yyyy yyyD
LDQ U Rl,X(Rll) Ignores va<2:0>, Rl CBAx xxxx
INSLH R5,R6,R4 R4 0000 OOOd
INSLL R5,R6,R3 R3 cbaO 0000
MSKLH R2,R6,R2 R2 yyyy yyyO
MSKLL Rl,R6,Rl Rl OOOx xxxx
OR R2,R4,R2 R2 yyyy yyyd
OR Rl,R3,Rl Rl cbax xxxx
STQ_U R2,X+3(Rll) Must store high then low for
STQ_U Rl,X(Rll) degenerate case of aligned

I
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The intended sequence for storing an unaligned word R5 at X is:

then low for
of aligned

LOA
LOQ_U
LOQ_U
INSWH
INSWL
MSKWH
MSKWL
OR
OR
STQ_U
STQ_U

R6,X(Rll)
R2,X+l(Rll)
Rl,X(Rll)
RS,R6,R4
RS,R6,R3
R2,R6,R2
Rl,R6,Rl
R2,R4,R2
Rl,R3,Rl
R2,X+l(Rll)
Rl,X(Rll)

R6<2:0> = (X mod 8)
Ignores va<2:0>, R2
Ignores va<2:0>, Rl
R4 0000 0000
R3 ObaO 0000
R2 yBAx xxxx
Rl yOOx xxxx
R2 yBAx xxxx
Rl ybax xxxx
Must store high
degenerate case

5
yBAx xxxx
yBAx xxxx

The intended sequence for storing a byte R5 at X is:

LOA R6,X(Rll) R6<2:0> = (X mod 8) 5
LDQ_U Rl,X(Rll) Ignores va<2:0>, Rl yyAx xxxx
INSBL RS,R6,R3 R3 OOaO 0000
MSKBL Rl,R6,Rl Rl yyOx xxxx
OR Rl,R3,Rl Rl yyax xxxx
STQ_U Rl,X(Rll)
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4.6.5 Zero Bytes

Format:

ZAPx

ZAPx

Operation:

CASE

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

ZAP:
Rc +- BYTE_ZAP (Rav, rbv<7:0»

ZAPNOT:
Rc +- BYTE_ZAP (Rav, NOT rbv<7:0»

ENDCASE

Exceptions:

None

Instruction mnemonics:

ZAP Zero Bytes

ZAPNOT Zero Bytes Not

Qualifiers:

None

Description:

ZAP and ZAPNOT set selected bytes of register Ra to zero, and store the result in
register Rc. Register Rb<7:0> selects the bytes to be zeroed; bit 0 ofRbv corresponds
to byte 0, bit 1 of Rbv corresponds to byte 1, and so on. A result byte is set to zero
if the corresponding bit of Rbv is a one for ZAP and a zero for ZAPNOT.
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4.7 Floating-Point Instructions

Alpha provides instructions for operating on floating-point operands in each of four
data formats:

• F_floating (VAX single)

• G_floating (VAX double, 11-bit exponent)

• S_floating (IEEE single)

• T_floating (IEEE double, 11-bit exponent)

Data conversion instructions are also provided to convert operands between floating­
point and quadword integer formats, between double and single floating, and
between quadword and longword integers.

NOTE
D_floating is a partially supported datatype; no D_
floating arithmetic operations are provided in the
architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software
emulation. D_floating "format compatibility," in which
binary files of D_floating numbers may be processed
but without the last 3 bits of fraction precision, can
be obtained via conversions to G_floating, G arithmetic
operations, then conversion back to D_floating.

The choice of data formats is encoded in each instruction. Each instruction also
encodes the choice of rounding mode and the choice of trapping mode.

All floating-point operate instructions (that is, not including loads or stores) that
yield an F_ or G_fioating zero result must materialize a true zero.

4.7.1 Floating Subsets and Floating Faults

All floating-point operations may take floating disabled faults. Any subsetted
floating-point instruction may take an Illegal Instruction Trap. These faults are
not explicitly listed in the description of each instruction.

All floating-point loads and stores may take memory management faults (access
control violation, translation not valid, fault on read/write, data alignment).

The Floating-point Enable (FEN) internal processor register (IPR) allows system
software to restrict access to the floating registers.

If a floating instruction is implemented and FEN = 0, attempts to execute the
instruction cause a floating disabled fault.

If a floating instruction is not implemented, attempts to execute the instruction
cause an Illegal Instruction Trap. This rule holds regardless of the value of FEN.

An Alpha implementation may provide both VAX and IEEE floating-point operations,
either, or none.
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Some floating-point instructions are common to the VAX. and IEEE subsets, some
are VAX. only, and some are IEEE only. These are designated in the descriptions
that follow. If either subset is implemented, all the common instructions must be
implemented.

An implementation including IEEE floating-point may subset the ability to perform
rounding to plus infinity and minus infinity. If not implemented, instructions
requesting these rounding modes take Illegal Instruction Trap.

4.7.2 Definitions
The following definitions apply to Alpha floating-point support.

true result
The mathematically correct result of an operation, assuming that the input operand
values are exact. The true result is typically rounded to the nearest representable
result.

representable result
a real number that can be represented exactly as a VAX. or IEEE floating-point
number, with finite precision and bounded exponent range.

LSB
The least significant bit. For a positive representable number A whose fraction is
not all ones, A + 1 LSB is the next larger representable number, and A + 1/2 LSB
is exactly halfway between A and the next larger representable number.

true zero
The value +0, represented as exactly 64 zeros in a floating-point register.

Alpha finite number
A floating-point number with a definite, in-range value. Specifically, all numbers
in the inclusive ranges -MAX...-MIN, zero, +MIN..+MAX., where MAX. is the largest
non-infinite representable floating-point number and MIN is the smallest non-zero
representable normalized floating-point number.

For VAX. floating-point, finites do not include reserved operands or dirty zeros (this
differs from the usual VAX. interpretation of dirty zeros as finite). For IEEE floating­
point, finites do not include infinites, NaNs, or denormals, but do include minus zero.

Not-a-Number
An IEEE floating-point bit pattern that represents something other than a number.
This comes in two forms: signaling NaNs (for Alpha, those with an initial fraction
bit of 1) and quiet NaNs (for Alpha, those with initial fraction bit of 0).

infinity
An IEEE floating-point bit pattern that represents plus or minus infinity.
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denormal
An IEEE floating-point bit pattern that represents a number whose magnitude lies
between zero and the smallest finite number.

dirty zero
A VAX floating-point bit pattern that represents a zero value, but not in true-zero
form.

reserved operand
A VAX floating-point bit pattern that represents an illegal value.

trap shadow
The set of instructions potentially executed after an instruction that signals an
arithmetic trap but before the trap is actually taken.

4.7.3 Encodings
Floating-point numbers are represented with three fields: sign, exponent, and
fraction. The sign is 1 bit; the exponent is 8 or 11 bits; and the fraction is 23,
52, or 55 bits. Some encodings represent special values:

Vax: VAX IEEE IEEE
Sign Exponent Fraction Meaning Finite Meaning Finite

x AlI-1's Non-zero Finite Yes +/-NaN No

x AlI-1's 0 Finite Yes +/-Infinity No

0 0 Non-zero Dirty zero No +Denormal No

1 0 Non-zero Resv. operand No -Denormal No

0 0 0 True zero Yes +0 Yes

1 0 0 Resv. operand No -0 Yes

x Other x Finite Yes finite Yes

The values of MIN and MAX for each of the four floating-point data formats are:

Data Format MIN MAX

F_floating 2**-127 * 0.5 2**127 * (1.0 - 2**-24)
(0.294e-38) (1.70e38)

G_floating 2**-1023 * 0.5 2**1023 * (1.0 - 2**-53)
(O.56e-308) (O.89ge308)

S_floating 2**-126 * 1.0 2**127 * (2.0 - 2**-23)
(1.175e-38) (3.40e38)
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Data Format MIN

2**-1022 * 1.0
(2.225e-30B)

MAX

2**1023 * (2.0 - 2**-52)
(1.79Be30B)

4.7.4 Floating-Point Rounding Modes

All rounding modes map a true result that is exactly representable to that
representable value.

VAX Rounding Modes
For VAX floating-point operations, two rounding modes are provided and are
specified in each instruction: normal (biased) rounding and chopped rounding.

Normal VAX rounding maps the true result to the nearest of two representable
results, with true results exactly halfway between mapped to the larger in absolute
value (sometimes called biased rounding away from zero); maps true results
~ MAX + 1/2 LSB in magnitude to an overflow; maps true results < MIN - 1/2 LSB
in magnitude to an underflow.

Chopped VAX rounding maps the true result to the smaller in magnitude of two
surrounding representable results; maps true results ~ MAX + 1 LSB in magnitude
to an overflow; maps true results < MIN in magnitude to an underflow.

IEEE Rounding Modes
For IEEE floating-point operations, four rounding modes are provided: normal
rounding (unbiased round to nearest), rounding toward minus infinity, round toward
zero, and rounding toward plus infinity. The first three can be specified in the
instruction. Rounding toward plus infinity can be obtained by setting the Floating­
point Control Register (FPCR) to select it and then specifying dynamic rounding
mode in the instruction (See Section 4.7.7). Alpha IEEE arithmetic does rounding
before detecting overflow/underflow.

Normal IEEE rounding maps the true result to the nearest of two representable
results, with true results exactly halfway between mapped to the one whose
fraction ends in 0 (sometimes called unbiased rounding to even); maps true results
~ MAX + 1/2 LSB in magnitude to an overflow; maps true results < MIN - 1/2 LSB
in magnitude to an underflow.

Plus infinity IEEE rounding maps the true result to the larger of two surrounding
representable results; maps true results> MAX in magnitude to an overflow; maps
positive true results ~ +MIN - 1 LSB to an underflow; and maps negative true
results > -MIN to an underflow.

Minus infinity IEEE rounding maps the true result to the smaller of two surrounding
representable results; maps true results> MAX in magnitude to an overflow; maps
positive true results < +MIN to an underflow; and maps negative true results
~ -MIN + 1 LSB to an underflow.
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Chopped IEEE rounding maps the true result to the smaller in magnitude of two
surrounding representable results; maps true results ~ MAX. + 1 LSB in magnitude
to an overflow; and maps non-zero true results < MIN in magnitude to an underflow.

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register
and is described in more detail in Section 4.7.7.

The following tables summarize the floating-point rounding modes:

VAX Rounding Mode

Nonnal rounding

Chopped

IEEE Rounding Mode

Nonnal rounding

Dynamic rounding

Plus infinity

Minus infinity

Chopped

Instruction Notation

(No modifier)

IC

Instruction Notation

(No modifier)

/D

/D and ensure that FPCR<DYN> = '11'

1M

IC

4.7.5 Floating-Point Trapping Modes

There are six exceptions that can be generated by floating-point operate instructions,
all signaled by an arithmetic exception trap. These exceptions are:

• Invalid operation

• Division by zero

• Overflow

• Underflow, may be disabled

• Inexact result, may be disabled

• Integer overflow (conversion to integer only), may be disabled

For more detail on the information passed to an arithmetic exception handler, see
Part II, Operating Systems.

VAX Trapping Modes
For VAX floating-point operations other than CVTxQ, four trapping modes are
provided. They specify software completion and whether traps are enabled for
underflow.

For VAX conversions from floating-point to integer, four trapping modes are provided.
They specify software completion and whether traps are enabled for integer overflow.
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IEEE Trapping Modes
For IEEE floating-point operations other than CVTxQ, four trapping modes are
provided. They specify software completion and whether traps are enabled for
underflow and inexact results.

For IEEE conversions from floating-point to integer, four trapping modes are
provided. They specify software completion, and whether traps are enabled for
integer overflow and inexact results.

The modes and instruction notation are:

VAX Trap Mode

Imprecise, underflow disabled

Imprecise, underflow enabled

Software, underflow disabled

Software, underflow enabled

VAX Convert-to-Integer Trap Mode

Imprecise, integer overflow disabled

Imprecise, integer overflow enabled

Software, integer overflow disabled

Software, integer overflow enabled

IEEE Trap Mode

Imprecise, unfl disabled, inexact disabled

Imprecise, unfl enabled, inexact disabled

Software, unfl enabled, inexact disabled

Software, unfl enabled, inexact enabled

IEEE Convert-to-Integer Trap Mode

Imprecise, int.ovfl disabled, inexact disabled

Imprecise, int.ovfl enabled, inexact disabled

Software, int.ovfl enabled, inexact disabled

Software, int.ovfl enabled, inexact enabled

Instruction Notation

(No modifier)

/U

IS

ISU

Instruction Notation

(No modifier)

N

IS

ISV

Instruction Notation

(No modifier)

/U

ISU

ISUI

Instruction Notation

(No modifier)

N

ISV

ISVI
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4.7.5.1 Imprecise ISoftware Completion Trap Modes

Floating-point instructions may be pipelined, and all exceptions are imprecise traps:

• The trapping instruction may write an UNPREDICTABLE result value.

• The trap PC is an arbitrary number of instructions past the one triggering
the trap. The trigger instruction plus all intervening executed instructions are
collectively referred to as the trap shadow of the trigger instruction.

• The extent of the trap shadow is bounded only by a TRAPB instruction (or the
implicit TRAPB within a CALL_PAL instruction).

• Input operand values may have been overwritten in the trap shadow.

• Result values may have been overwritten in the trap shadow.

• An UNPREDICTABLE result value may have been used as an input operand in
the trap shadow.

• Additional traps may occur in the trap shadow.

• In general, it is not feasible to fix up the result value or to continue from the
trap.

This behavior is ideal for operations on finite operands that give finite results. For
programs that deliberately operate outside the overflow/underflow range, or use
IEEE NaNs, software assistance is required to complete floating-point operations
correctly. This assistance can be provided by a software arithmetic trap handler,
plus constraints on the instructions surrounding the trap.

For a trap handler to complete non-finite arithmetic, the following conditions must
hold:

1. On entry to the trap shadow, if any Alpha register or memory location contains
a value that is used as an operand value by some instruction in the trap shadow
(live on entry), then no instruction in the trap shadow may modify the register
or memory location.

2. Within the trap shadow, the computation of the base register for a memory load
or store instruction may not involve using the result of an instruction that might
generate an UNPREDICTABLE result.

3. Within the trap shadow, no register may be used more than once as a destination
register.

4. The trap shadow may not include any branch instructions.

5. Each floating instruction to be completed must be so marked, by specifying the
/S software completion modifier.

The first condition allows a software trap handler to emulate the trigger instruction
with its original input operand values and then to reexecute the rest of the trap
shadow.

The second condition prevents memory accesses at unpredictable addresses.
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The remaining conditions make it possible for a software trap handler to find the
trigger instruction via a linear scan backwards from the trap pc.

NOTE
The /S modifier does not affect instruction operation
or trap behavior; it is an informational bit passed to
a software trap handler. It allows a trap handler to
test easily whether an instruction is intended to be
completed. (The /S bits of instructions signaling traps
are carried into the trap summary.) The handler may
then assume that the other conditions are met without
examining the code stream.

If a software trap handler is provided, it must handle the completion of all floating­
point operations marked /S that follow the rules above. In effect, one TRAPB
instruction per basic block can be used.

4.7.5.2 Invalid Operation Arithmetic Trap

An invalid operation arithmetic trap is signaled if any operand of a floating
arithmetic-operate instruction is non-finite. (CMPTxy is an exception to the rule
and operates normally with plus and minus infinity and does not trap in this case.)
This trap is always enabled. If this trap occurs, an UNPREDICTABLE value is
stored in the result register. (IEEE-compliant system software must also supply an
invalid operation indication to the user for SQRT of a negative non-zero number,
0/0, x REM 0, and conversions to integer that take an integer overflow trap.)

4.7.5.3 Division by Zero Arithmet,ic Trap

A division by zero arithmetic trap is taken if the numerator does not cause an invalid
operation trap and the denominator is zero. This trap is always enabled. If this trap
occurs, an UNPREDICTABLE value is stored in the result register.

4.7.5.4 Overflow Arithmetic Trap

An overflow arithmetic trap is signaled if the rounded result exceeds in magnitude
the largest finite number of the destination format. This trap is always enabled. If
this trap occurs, an UNPREDICTABLE value is stored in the result register.

4.7.5.5 Underflow Arithmetic Trap

An underflow occurs if the rounded result is smaller in magnitude than the smallest
finite number of the destination format.

If an underflow occurs, a true zero (64 bits of zero) is always stored in the result
register, even if the proper IEEE result would have been -0 (underflow below the
negative denormal range).

If an underflow occurs and underflow traps are enabled by the instruction, an
underflow arithmetic trap is signaled.
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4.7.5.6 Inexact Result Arithmetic Trap

An inexact result occurs if the infinitely precise result differs from the rounded
result.

If an inexact result occurs, the normal rounded result is still stored in the result
register.

If an inexact result occurs and inexact result traps are enabled by the instruction,
an inexact result arithmetic trap is signaled.

4.7.5.7 Integer Overflow Arithmetic Trap

In conversions from floating to quadword integer, an integer overflow occurs if the
rounded result is outside the range -2**63..2**63-1. In conversions from quadword
integer to longword integer, an integer overflow occurs if the result is outside the
range -2**31 ..2**31-1.

If an integer overflow occurs in CVTxQ or CVTQL, the true result truncated to the
low-order 64 or 32 bits respectively is stored in the result register.

If an integer overflow occurs and integer overflow traps are enabled by the
instruction, an integer overflow arithmetic trap is signaled.

4.7.6 Floating-Point Single-Precision Operations

Single-precision values (F_floating or S_floating) are stored in the floating registers
in canonical form, as subsets of double-precision values, with II-bit exponents
restricted to the corresponding single-precision range, and with the 29 low-order
fraction bits restricted to be all zero.

Single-precision operations applied to canonical single-precision values give single­
precision results. Single-precision operations applied to non-canonical operands give
UNPREDICTABLE results.

Longword integer values in floating registers are stored in bits <63:62,58:29>, with
bits <61:59> ignored and zeros in bits <28:0>.

4.7.7 FPCR Register and Dynamic Rounding Mode

When an IEEE floating-point operate instruction specifies dynamic mode (/D) in its
function field (function code bits <7:6> = 11), the rounding mode to be used for the
instruction is derived from the FPCR register. The layout of the rounding mode bits
and their assignments matches exactly the format used in the II-bit function field
of the floating-point operate instructions.

In addition, the FPCR gives a summary for each exception type of the exceptions
conditions detected by all IEEE floating-point operates thus far as well as an
overall summary bit that indicates whether any of these exception conditions has
been detected. The individual exception bits match exactly in purpose and order
the exceptions bits found in the exception summary quadword that is pushed for
arithmetic traps. However, for each instruction, these exceptions bits are set
independent of the trapping mode specified for the instruction. Therefore, even
though trapping may be disabled for a certain exceptional condition, the fact that
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the exceptional condition was encountered by an instruction will still be recorded in
the FPCR.

Floating-point operates that belong to the IEEE subset and CVTQL, which belongs
to both VAX. and IEEE subsets, appropriately set the FPCR exception bits. It is
UNPREDICTABLE whether floating-point operates that belong only to the VAX
floating-point subset set the FPCR exception bits.

Alpha floating-point hardware only transitions these exception bits from zero to one.
Once set to one, these exception bits are only cleared when software writes zero into
these bits by writing a new value into the FPCR.

The format of the FPCR is shown in Figure 4-1 and described in Table 4-8.

Figure 4-1: Floating-Point Control Register (FPCR) Format

63 62 60 59 58 57 56 55 54 53 52 51

~ RAZ/ 0 1 1 UO 01
Y ON NV ZN RAZ/IGN

M IGN N VE F F EV

Table 4-8: Floating-Point Control Register (FPCR) Bit Descriptions
Bit Description

63 Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to
(FPCR[57] I FPCR[56] I FPCR[55] I FPCR[54] I FPCR[53] I FPCR[52]).

62-60

59-58

Reserved. Read As Zero; Ignored when written.

Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by
an IEEE floating-point operate instruction when the instruction's function field
specifies dynamic mode (ID). Assignments are:

DYN IEEE Rounding Mode Selected

00 Chopped rounding mode

01 Minus infinity

IONonnal rounding

11 Plus infinity

•

57 Integer Overflow (IOV). An integer arithmetic operation or a conversion from
floating to integer overflowed the destination precision.

56 Inexact Result (INE). A floating arithmetic or conversion operation gave a result
that differed from the mathematically exact result.
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Table 4-8 (Cont.): Floating-Point Control Register (FPCR) Bit Descriptions
Bit Description

55 Underflow (UNF). A floating arithmetic or conversion operation underflowed the
destination exponent.

54 Overflow (OVF). A floating arithmetic or conversion operation overflowed the
destination exponent.

53 Division by Zero (DZE). An attempt was made to perform a floating divide
operation with a divisor of zero.

52 Invalid Operation (INV). An attempt was made to perform a floating arithmetic,
conversion, or comparison operation, and one or more ofthe operand values were
illegal.

51-0 Reserved. Read As Zero; Ignored when written.

FPCR is read from and written to the floating-point registers by the MT_FPCR and
MF_FPCR instructions respectively, which are described in Section 4.7.7.1.

FPCR and the instructions to access it are required for an implementation that
supports floating-point (see Section 4.1.1.1). On implementations that do not support
floating-point, the instructions that access FPCR (MF_FPCR and MT_FPCR) take
an Illegal Instruction Trap.

SOFTWARE NOTE
As noted in Section 4.1.1.1, support for FPCR is
required on a system that supports the OpenVMS Alpha
operating system even if that system does not support
floating-point.

4.7.7.1 Accessing the FPCR

Because Alpha floating-point hardware can overlap the execution of a number of
floating-point instructions, accessing the FPCR must be synchronized with other
floating-point instructions. A TRAPB must be issued both prior to and after accessing
the FPCR to ensure that the FPCR access is synchronized with the execution of
previous and subsequent floating-point instructions; otherwise synchronization is
not ensured.

Issuing a TRAPB followed by an MT_FPCR followed by another TRAPB ensures
that only floating-point instructions issued after the second TRAPB are affected
by and affect the new value of the FPCR. Issuing a TRAPB followed by an MF_
FPCR followed by another TRAPB ensures that the value read from the FPCR only
records the exception information for floating-point instructions issued prior to the
first TRAPB.

Consider the following example:
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ADDT/D
TRAPB ;1
MT_FPCR Fl,F1,Fl
TRAPB ;2
SUBT/D

Without the first TRAPB, it is possible in an implementation for the ADDTID
to execute in parallel with the MT_FPCR. Thus, it would be UNPREDICTABLE
whether the ADDT/D was affected by the new rounding mode set by the MT_
FPCR and whether fields cleared by the MT_FPCR in the exception summary were
subsequently set by the ADDT/D.

Without the second TRAPB, it is possible in an implementation for the MT_FPCR to
execute in parallel with the SUBT/D. Thus, it would be UNPREDICTABLE whether
the SUBT/D was affected by the new rounding mode set by the MT_FPCR and
whether fields cleared by the MT_FPCR in the exception summary field of FPCR
were previously set by the SUBT/D.

4.7.7.2 Default Values of the FPCR

Processor initialization leaves the value of FPCR UNPREDICTABLE.

SOFTWARE NOTE
Digital software should initialize FPCR<DYN> = 11
during program activation. Using this default, interval
arithmetic code can switch from plus to minus infinity
rounding with no penalty in performance by using 1M
and /D qualifiers.

Program activation should clear all other fields of the
FPCR.

4.7.7.3 Saving and Restoring the FPCR

The FPCR must be saved and restored across context switches so that the FPCR
value of one process does not affect the rounding behavior and exception summary
of another process.

The dynamic rounding mode put into effect by the programmer (or initialized by
image activation) is valid for the entirety of the program and remains in effect until
subsequently changed by the programmer or until image run-down occurs.

SOFTWARE NOTE
The IEEE standard precludes saving and restoring the
FPCR across subroutine calls.

4.7.8 IEEE Standard

The IEEE Standard for Binary Floating-Point Arithmetic (ANSIIIEEE Standard 754­
1985) is included by reference.
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4.8 Memory Format Floating-Point Instructions

The instructions in this section move data between the floating-point registers and
memory. They use the Memory instruction format. They do not interpret the bits
moved in any way; specifically, they do not trap on non-finite values.

The instructions are summarized in Table 4-9.

Table 4-9: Memory Format Floating-Point Instructions Summary
Mnemonic Operation Subset

LDF

LDG

LDS

LDT

STF

STG

STS

STT

Load F_floating

Load G_floating (Load D_floating)

Load S_floating (Load Longword Integer)

Load T_floating (Load Quadword Integer)

Store F_floating

Store G_floating (Store D_floating)

Store S_floating (Store Longword Integer)

Store T_floating (Store Quadword Integer)

VAX
VAX
Both

Both

VAX
VAX
Both

Both
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4.8.1 Load F_floating

Format:

LDF

Operation:

Fa.wf,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

Fa +- (va)<15> II MAP_F( (va)<14:7» II
(va)<6:0> II (va)<31:16> II 0<28:0>

Exceptions:

Access Violation

Fault on Read

Alignment

Translation Not Valid

Instruction mnemonics:

LDF

Qualifiers:

None

Load F_floating

•
Description:

LDF fetches an F_floating datum from memory and writes it to register Fa. If the
data is not naturally aligned, an alignment exception is generated.

The 8-bit memory-format exponent is expanded to an 11-bit register-format exponent
according to Table 2-1.

The virtual address is computed by adding register Rb to the sign-extended 16­
bit displacement. The source operand is fetched from memory and the bytes are
reordered to conform to the F_floating register format. The result is then zero­
extended in the low-order longword and written to register Fa.
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4.8.2 Load G_floating

Format:

LDG

Operation:

Fa.wg,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

Fa +- (va)<15:0> II (va)<31:16> II
(va)<47: 32> II (va)<63: 48>

Exceptions:

Access Violation

Fault on Read

Alignment

Translation Not Valid

Instruction mnemonics:

LDG Load G_ftoating (Load D_ftoating)

Qualifiers:

None

Description:

LDG fetches a G_ftoating (or D_ftoating) datum from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, the bytes are reordered to
conform to the G_floating register format (also conforming to the D_floating register
format), and the result is then written to register Fa.
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4.8.3 Load S_floating

Format:

LDS

Operation:

Fa.ws,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

Fa +- (va)<31> II MAP_S( (va)<30:23» II
(va)<22:0> I I 0<28:0>

Exceptions:

Access Violation

Fault on Read

Alignment

Translation Not Valid

Instruction mnemonics:

LDS

Qualifiers:

None

Load S_floating (Load Longword Integer)

•
Description:

LDS fetches a longword (integer or S_floating) from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The 8-bit memory-format exponent is expanded to an 11-bit register-format exponent
according to Table 2-2.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, is zero-extended in the
low-order longword, and then written to register Fa.

Notes:

• Longword integers in floating registers are stored in bits <63:62,58:29>, with bits
<61 :59> ignored and zeros in bits <28:0>.
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4.8.4 Load T_floating

Format:

LDT

Operation:

Fa.wt,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

Fa +- (va)<63:0>

Exceptions:

Access Violation

Fault on Read

Alignment

Translation Not Valid

Instruction mnemonics:

LDT Load T_floating (Load Quadword Integer)

Qualifiers:

None

Description:

LDT fetches a quadword (integer or T_floating) from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory and written to register
Fa.
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4.8.5 Store F_floating

Format:

STF

Operation:

Fa.rf,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

(va)<31:0> +- Fav<44:29> I I Fav<63:62>1 I Fav<58:45>

Exceptions:

Access Violation

Fault on Write

Alignment

Translation Not Valid

Instruction mnemonics:

STF

Qualifiers:

None

Store F_floating

•Description:

STF stores an F_floating datum from Fa to memory. If the data is not naturally
aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The bits of the source operand are fetched from register Fa, the bits
are reordered to conform to F_floating memory format, and the result is then written
to memory. Bits <61 :59> and <28:0> of Fa are ignored. No checking is done.
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4.8.6 Store G_floating

Format:

STG

Operation:

Fa.rg,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

(va)<63:0> +- Fav<15:0> III
I

Fav<31:16> II
Fav<47:32> Fav<63:48>

Exceptions:

Access Violation

Fault on Write

Alignment

Translation Not Valid

Instruction mnemonics:

STG Store G_floating (Store D_floating)

Qualifiers:

None

Description:

STG stores a G_floating (or D_floating) datum from Fa to memory. If the data is not
naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16­
bit displacement. The source operand is fetched from register Fa, the bytes are
reordered to conform to the G_floating memory format (also conforming to the D_
floating memory format), and the result is then written to memory.
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4.8.7 Store S_floating

Format:

STS

Operation:

Fa.rs,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

(va)<31:0> +- Fav<63:62>IIFav<58:29>

Exceptions:

Access Violation

Fault on Write

Alignment

Translation Not Valid

Instruction mnemonics:

STS

Qualifiers:

None

Store S_floating (Store Longword Integer)

•Description:

STS stores a longword (integer or S_floating) datum from Fa to memory. If the data
is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The bits of the source operand are fetched from register Fa, the bits
are reordered to conform to S_floating memory format, and the result is then written
to memory. Bits <61:59> and <28:0> of Fa are ignored. No checking is done.
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4.8.8 Store T_floating

Format:

STT

Operation:

Fa.rt,disp.ab(Rb.ab) . !Memory format

va +- {Rbv + SEXT(disp)}

(va)<63:0> +- Fav<63:0>

Exceptions:

Access Violation

Fault on Write

Alignment

Translation Not Valid

Instruction mnemonics:

STT Store T_floating (Store Quadword Integer)

Qualifiers:

None

Description:

STT stores a quadword (integer or T_floating) datum from Fa to memory. If the data
is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from register Fa and written to memory.

4-76 . Common Architecture (I)



4.9 Branch Format Floating-Point Instructions

Alpha provides six floating conditional branch instructions. These branch-format
instructions test the value of a floating-point register and conditionally change the
PC.

They do not interpret the bits tested in any way; specifically, they do not trap on
non-finite values.

The test is based on the sign bit and whether the rest of the register is all zero bits.
All 64 bits of the register are tested. The test is independent of the format of the
operand in the register. Both plus and minus zero are equal to zero. A non-zero
value with a sign of zero is greater than zero. A non-zero value with a sign of one
is less than zero. No reserved operand or non-finite checking is done.

The floating-point branch operations are summarized in Table 4-10.

Table 4-10: Floating-Point Branch Instructions Summary
Mnemonic Operation Subset

FBEQ

FBGE

FBGT

FBLE

FBLT

FBNE

Floating Branch Equal

Floating Branch Greater Than or Equal

Floating Branch Greater Than

Floating Branch Less Than or Equal

Floating Branch Less Than

Floating Branch Not Equal

Both

Both

Both

Both

Both

Both
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4.9.1 Conditional Branch

Format:

FBxx

Operation:

Fa.rq,disp.al !Branch format

{update PC}
va +- PC + {4*SEXT(disp)}
IF TEST(Fav, Condition based on Opcode) THEN

PC +- va - --

Exceptions:

None

Instruction mnemonics:

FBEQ

FBGE

FBGT

FBLE

FBLT

FBNE

Qualifiers:

None

Floating Branch Equal

Floating Branch Greater Than or Equal

Floating Branch Greater Than

Floating Branch Less Than or Equal

Floating Branch Less Than

Floating Branch Not Equal

Description:

Register Fa is tested. If the specified relationship is true, the PC is loaded with
the target virtual address; otherwise, execution continues with the next sequential
instruction.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed
displacement gives a forward/backward branch distance of +/- 1M instructions.
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Notes:

• To branch properly on non-finite operands, compare to F31, then branch on the
result of the compare.

• The largest negative integer (8000 0000 0000 000016) is the same bit pattern as
floating minus zero, so it is treated as equal to zero by the branch instructions.
To branch properly on the largest negative integer, convert it to floating or move
it to an integer register and do an integer branch.

Instruction Descriptions (I) 4-79

•



4.10 Floating-Point Operate Format Instructions

The floating-point bit-operate instructions perform copy and integer convert
operations on 64-bit register values. The bit-operate instructions do not interpret
the bits moved in any way; specifically, they do not trap on non-finite values.

The floating-point arithmetic-operate instructions perform add, subtract, multiply,
divide, compare, and floating convert operations on 64-bit register values in one of
the four specified floating formats.

Each instruction specifies the source and destination formats of the values, as well
as the rounding mode and trapping mode to be used. These instructions use the
Floating-point Operate format.

The floating-point operate instructions are summarized in Table 4-11.

Table 4-11: Floating-Point Operate Instructions Summary
Mnemonic Operation Subset

Bit and FPCR Operations

CPYS Copy Sign Both

CPYSE Copy Sign and Exponent Both

CPYSN Copy Sign Negate Both

CVTLQ Convert Longword to Quadword Both

CVTQL Convert Quadword to Longword Both

FCMOVxx Floating Conditional Move Both

MF_FPCR Move from Floating-point Control Register Both

MT_FPCR Move to Floating-point Control Register Both
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Table 4-11 (Cont.): Floating-Point Operate Instructions Summary

Mnemonic Operation Subset

Arithmetic Operations

ADDF Add F_floating VAX
ADDG Add G_floating VAX
ADDS Add S_floating IEEE

ADDT Add T_floating IEEE

CMPGxx Compare G_floating VAX
CMPTxx Compare T_floating IEEE

CVTDG Convert D_floating to G_floating VAX
CVTGD Convert G_floating to D_floating VAX
CVTGF Convert G_floating to F_floating VAX
CVTGQ Convert G_floating to Quadword VAX
CVTQF Convert Quadword to F_floating VAX
CVTQG Convert Quadword to G_floating VAX
CVTQS Convert Quadword to S_floating IEEE

CVTQT Convert Quadword to T_floating IEEE

•CVTTQ Convert T_floating to Quadword IEEE

CVTTS Convert T_floating to S_floating IEEE

DIVF Divide F_floating VAX
DIVG Divide G_floating VAX
DIVS Divide S_floating IEEE

DIVT Divide T_floating IEEE

MULF Multiply F_floating VAX
MULG Multiply G_floating VAX
MULS Multiply S_floating IEEE

MULT Multiply T_floating IEEE

SUBF Subtract F_floating VAX
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Table 4-11 (Cont.): Floating-Point Operate Instructions Summary
Mnemonic Operation Subset

Arithmetic Operations

SUBG

SUBS

SUBT

Subtract G_floating

Subtract S_floating

Subtract T_floating

VAX
IEEE

IEEE
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4.10.1 Copy Sign

Format:

CPYSy

Operation:

Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format

CASE
CPYS:
CPYSN:
CPYSE:

ENDCASE

Exceptions:

None

Fe +-- Fav<63> II Fbv<62: 0>
Fe +-- NOT(Fav<63» I I Fbv<62:0>
Fe +- Fav<63:52> I I Fbv<51:0>

Instruction mnemonics:

CPYS

CPYSE

CPYSN

Qualifiers:

None

Copy Sign

Copy Sign and Exponent

Copy Sign Negate

•
Description:

For CPYS and CPYSN, the sign bit of Fa is fetched (and complemented in the case
of CPYSN) and concatenated with the exponent and fraction bits from Fb; the result
is stored in Fc.

For CPYSE, the sign and exponent bits from Fa are fetched and concatenated with
the fraction bits from Fb; the result is stored in Fc.

No checking of the operands is performed.

Notes:

• Register moves can be performed using CPYS Fx,Fx,Fy. Floating-point absolute
value can be done using CPYS F31,Fx,Fy. Floating-point negation can be done
using CPYSN Fx,Fx,Fy. Floating values can be scaled to a known range by using
CPYSE.
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4.10.2 Convert Integer to Integer

Format:

CVTxy

Operation:

CASE

Fb.rq,Fc.wx !Floating-point Operate format

CVTQL: Fe +- Fbv<31:30> I I 0<2:0> I I
Fbv<29:0> I I 0<28:0>

CVTLQ: Fe +- SEXT(Fbv<63:62> I I Fbv<58:29»
ENDCASE

Exceptions:

Integer Overflow, CVTQL only

Instruction mnemonics:

CVTLQ

CVTQL

Qualifiers:

Trapping:

Description:

Convert Longword to Quadword

Convert Quadword to Longword

Software (IS)

Integer Overflow Enable (N) (CVTQL only)

The two's-complement operand in register Fb is converted to a two's-complement
result and written to register Fc.

The conversion from quadwo:rd to longword is a repositioning of the low 32 bits of
the operand, with zero fill and optional integer overflow checking. Integer overflow
occurs if Fb is outside the range -2**31 ..2**31-1. If integer overflow occurs, the
truncated result is stored in Fc, and an arithmetic trap is taken if enabled.

The conversion from longword to quadword is a repositioning of 32 bits of the
operand, with sign extension.
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4.10.3 Floating-Point Conditional Move

Format:

FCMOVxx Fa.rq,Fb.rq,Fc.wq

Operation:

!Floating-point Operate format

IF TEST(Fav, Condition_based_on_Opeode) THEN

Fe ~ Fbv

Exceptions:

None

Instruction mnemonics:

FCMOVEQ

FCMOVGE

FCMOVGT

FCMOVLE

FCMOVLT

FCMOVNE

Qualifiers:

None

FCMOVE if Register Equal to Zero

FCMOVE if Register Greater Than or Equal to Zero

FCMOVE if Register Greater Than Zero

FCMOVE if Register Less Than or Equal to Zero

FCMOVE if Register Less Than Zero

FCMOVE if Register Not Equal to Zero

•
Description:

Register Fa is tested. If the specified relationship is true, register Fb is written to
register Fc; otherwise, the move is suppressed and register Fc is unchanged. The
test is based on the sign bit and whether the rest of the register is all zero bits, as
described for floating branches in Section 4.9.
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Notes:
Except that it is likely in many implementations to be substantially faster, the
instruction:

FCMOVxx Fa,Fb,Fc

is exactly equivalent to:

FByy Fa,label
CPYS Fb,Fb,Fc

yy NOT xx

label:

For example, a branchless sequence for:

Fl=MAX(Fl,F2)

is:

CMPxLT Fl,F2,F3
FCMOVNE F3,F2,Fl
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4.10.4 Move from/to Floating-Point Control Register

Format:

Mx_FPCR Fa.rq,Fa.rq,Fa.wq

Operation:

CASE
MT FPCR: FPCR ~ Fav
MF FPCR: Fa ~ FPCR

ENDCASE

Exceptions:

None

Instruction mnemonics:

!Floating-point Operate format

MF_FPCR Move from Floating-point Control Register

MT_FPCR Move to Floating-point Control Register

Qualifiers:

None

Description:

The Floating-point Control Register (FPCR) is read from (MF_FPCR) or written
to (MT_FPCR), a floating-point register. The floating-point register to be used is
specified by the Fa, Fb, and Fc fields all pointing to the same floating-point register.
If the Fa, Fb, and Fc fields do not all point to the same floating-point register, then
it is UNPREDICTABLE which register is used.

The use of these instructions and the FPCR are described in Section 4.7.7.
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4.10.5 VAX Floating Add

Format:

ADDx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe +- Fav + Fbv

Exceptions:

Invalid Operation

Overflow

Underflow

Instruction mnemonics:

ADDF

ADDG

Qualifiers:

Rounding:

Trapping:

Add F_floating

Add G_floating

Chopped (/C)

Software (IS)

Underflow Enable (/U)

Description:

Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded or chopped to the specified precision, and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical
single-precision values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=O and is not a true
zero (that is, VAX. reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs. See Section 4.7.5 for details of the stored result
on overflow or underflow.
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4.10.6 IEEE Floating Add

Format:

ADDx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe +- Fav + Fbv

Exceptions:

Invalid Operation

Overflow

Underflow

Inexact Result

Instruction mnemonics:

ADDS
ADDT

Qualifiers:

Rounding:

Trapping:

Add S_floating

Add T_floating

Dynamic (/D)

Minus infinity (1M)

Chopped (/C)

Software (/S)

Underflow Enable (IU)

Inexact Enable (/I)

•
Description:

Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded to the specified precision, and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single­
precision values produces a canonical single-precision result.
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An invalid operation trap is signaled if either operand has exp=O and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of Fc are UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow, underflow, or inexact
result.
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4.10.7 VAX Floating Compare

Format:

CMPGyy Fa.rg,Fb.rg,Fc.wq

Operation:

IF Fav SIGNED RELATION Fbv THEN
Fe +- 4000 0000 0000 000016

ELSE
Fe +- 0000 0000 0000 000016

Exceptions:

Invalid Operation

Instruction mnemonics:

!Floating-point Operate format

CMPGEQ

CMPGLE

CMPGLT

Qualifiers:

Trapping:

Compare G_floating Equal
Compare G_floating Less Than or Equal
Compare G_floating Less Than

Software (IS) •Description:

The two operands in Fa and Fb are compared. If the relationship specified by thequalifier is true, a non-zero floating value (0.5) is written to register Fc; otherwise,a true zero is written to Fc.

Comparisons are exact and never overflow or underflow. Three mutually exclusiverelations are possible: less than, equal, and greater than.
An invalid operation trap is signaled if either operand has exp=O and is not a truezero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc areUNPREDICTABLE if this occurs.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; CompareLess Than or Equal A,B is the same as Compare Greater Than or Equal B,A.Therefore, only the less-than operations are included.
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4.10.8 IEEE Floating Compare

Format:

CMPTyy Fa.rx,Fb.rx,Fc.wq

Operation:

IF Fav SIGNED RELATION Fbv THEN
Fe +- 4000 0000 0000 000016

ELSE
Fe +- 0000 0000 0000 000016

Exceptions:

Invalid Operation

Instruction mnemonics:

!Floating-point Operate format

CMPTEQ

CMPTLE

CMPTLT

CMPTUN

Qualifiers:

Trapping:

Compare T_floating Equal

Compare T_floating Less Than or Equal

Compare T_floating Less Than

Compare T_floating Unordered

Software (IS)

Description:

The two operands in Fa and Fb are compared. If the relationship specified by the
qualifier is true, a non-zero floating value (2.0) is written to register Fc; otherwise,
a true zero is written to Fc.

Comparisons are exact and never overflow or underflow. Four mutually exclusive
relations are possible: less than, equal, greater than, and unordered. The unordered
relation is true if one or both operands are NaN. (This behavior must be provided
by a software trap handler, since NaNs trap.) Comparisons ignore the sign of zero,
so +0 =-0.

An invalid operation trap is signaled if either operand has exp=O and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones and a non-zero fraction (IEEE
NaNs). The contents of Fc are UNPREDICTABLE if this occurs.

Comparisons with plus and minus infinity execute normally and do not take an
invalid operation trap.
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Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.
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4.10.9 Convert VAX Floating to Integer

Format:

CVTGQ Fb.rx,Fc.wq

Operation:

Fc +- {conversion of Fbv}

Exceptions:

Invalid Operation

Integer Overflow

Instruction mnemonics:

!Floating-point Operate format

CVTGQ

Qualifiers:

Rounding:

Trapping:

Convert G_floating to Quadword

Chopped (/C)

Software (IS)

Integer Overflow Enable (N)

Description:

The floating operand in register Fb is converted to a two's-complement quadword
number and written to register Fc. The conversion aligns the operand fraction with
the binary point just to the right of bit zero, rounds as specified, and complements
the result if negative.

An invalid operation trap is signaled if the operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on integer overflow.
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4.10.10 Convert Integer to VAX Floating

Format:

CVTQy

Operation:

Fb.rq,Fc.wx !Floating-point Operate format

Fc +- {conversion of Fbv<63:0>}

Exceptions:

None

Instruction mnemonics:

The two's-complement quadword operand in register Fb is converted to a single­
or double-precision floating result and written to register Fc. The conversion
complements a number if negative, normalizes it, rounds to the target precision,
and packs the result with an appropriate sign and exponent field.

CVTQF

CVTQG

Qualifiers:

Rounding:

Description:

Convert Quadword to F_floating

Convert Quadword to G_floating

Chopped (/C)

•
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4.10.11 Convert VAX Floating to VAX Floating

Format:

CVTxy

Operation:

Fb.rx,Fc.wx !Floating-point Operate format

Fc +- {conversion of Fbv}

Exceptions:

Invalid Operation

Overflow

Underflow

Instruction mnemonics:

CVTDG

CVTGD

CVTGF

Qualifiers:

Rounding:

Trapping:

Convert D_floating to G_floating

Convert G_floating to D_floating

Convert G_floating to F_floating

Chopped (/C)

Software (IS)

Underflow Enable (/U)

Description:

The floating operand in register Fb is converted to the specified alternate floating
format and written to register Fc.

An invalid operation trap is signaled if the operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow or underflow.
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Notes:

• The only arithmetic operations on D_floating values are conversions to and from
G_floating. The conversion to G_floating rounds or chops as specified, removing
three fraction bits. The conversion from G_floating to D_floating adds three low­
order zeros as fraction bits, then the 8-bit exponent range is checked for overflow
/underflow.

• The conversion from G_floating to F_floating rounds or chops to single precision,
then the 8-bit exponent range is checked for overflow/underflow.

• No conversion from F_floating to G_floating is required, since F_floating values
are always stored in registers as equivalent G_floating values.
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4.10.12 Convert IEEE Floating to Integer

Format:

CVTTQ

Operation:

Fb.rx,Fc.wq !Floating-point Operate format

Fc +- {conversion of Fbv}

Exceptions:

Invalid Operation

Inexact Result

Integer Overflow

Instruction mnemonics:

CVTTQ

Qualifiers:

Rounding:

Trapping:

Description:

Convert T_floating to Quadword

Dynamic (/D)

Minus infinity (1M)

Chopped (/C)

Software (IS)

Integer Overflow Enable (N)

Inexact Enable (II)

The floating operand in register Fb is converted to a two's-complement number and
written to register Fc. The conversion aligns the operand fraction with the binary
point just to the right of bit zero, rounds as specified, and complements the result if
negative.

An invalid operation trap is signaled if either operand has exp=O and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of Fc are UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on integer overflow and inexact
result.
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4.10.13 Convert Integer to IEEE Floating

Format:

CVTQy

Operation:

Fb.rq,Fc.wx !Floating-point Operate format

Fc +- {conversion of Fbv<63:0>}

Exceptions:

Inexact Result

Instruction mnemonics:

CVTQS

CVTQT

Qualifiers:

Rounding:

Trapping:

Description:

Convert Quadword to S_floating

Convert Quadword to T_floating

Dynamic (/D)

Minus infinity (1M)

Chopped (/C)

Software (IS)

Inexact Enable (/I) •
The two's-complement operand in register Fb is converted to a single- or double­
precision floating result and written to register Fc. The conversion complements
a number if negative, normalizes it, rounds to the target precision, and packs the
result with an appropriate sign and exponent field.

See Section 4.7.5 for details of the stored result on inexact result.
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4.10.14 Convert IEEE Floating to IEEE Floating

Format:

CVTTS

Operation:

Fb.rx,Fc.wx !Floating-point Operate format

Fe +- {conversion of Fbv}

Exceptions:

Invalid Operation

Overflow

Underflow

Inexact Result

Instruction mnemonics:

CVTTS

Qualifiers:

Rounding:

Trapping:

Convert T_floating to S_floating

Dynamic (ID)

Minus infinity (1M)

Chopped (/C)

Software (IS)

Underflow Enable (/U)

Inexact Enable (/I)

Description:

The floating operand in register Fb is converted to the specified alternate floating
format and written to register Fc.

An invalid operation trap is signaled if either operand has exp=O and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of Fc are UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow, underflow, or inexact
result.
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Notes:

• No conversion from S_ftoating to T_floating is required, since S_ftoating values
are always stored in registers as equivalent T_floating values.
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4.10.15 VAX Floating Divide

Format:

DIVx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe +- Fav / Fbv

Exceptions:

Invalid Operation

Division by Zero

Overflow

Underflow

Instruction mnemonics:

DIVF

DIVG

Qualifiers:

Rounding:

Trapping:

Divide F_floating

Divide G_floating

Chopped (/C)

Software (/S)

Underflow Enable (IU)

Description:

The dividend operand in register Fa is divided by the divisor operand in register Fb,
and the quotient is written to register Fe.

The quotient is rounded or chopped to the specified precision and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.
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An invalid operation trap is signaled if either operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow or underflow.
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4.10.16 IEEE Floating Divide

Format:

DIVx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe +- Fav / Fbv

Exceptions:

Invalid Operation

Division by Zero

Overflow

Underflow

Inexact Result

Instruction mnemonics:

DIVS

DIVT

Qualifiers:

Rounding:

Trapping:

Divide S_floating

Divide T_floating

Dynamic (/D)

Minus infinity (1M)

Chopped (/C)

Software (IS)

Underflow Enable (IU)

Inexact Enable (/I)

Description:

The dividend operand in register Fa is divided by the divisor operand in register Fb,
and the quotient is written to register Fc.

The quotient is rounded to the specified precision, and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single­
precision values produces a canonical single-precision result.
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An invalid operation trap is signaled if either operand has exp=O and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of Fc are UNPREDICTABLE if this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow, underflow, or inexact
result.
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4.10.17 VAX Floating Multiply

Format:

MULx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe +- Fav * Fbv

Exceptions:

Invalid Operation

Overflow

Underflow

Instruction mnemonics:

MULF

MULG

Qualifiers:

Rounding:

Trapping:

Multiply F_floating

Multiply G_floating

Chopped (/C)

Software (IS)

Underflow Enable (/U)

Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in
register Fa, and the product is written to register Fc.

The product is rounded or chopped to the specified precision, and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.

An invalid operation trap is signaled if either operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow or underflow.
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4.10.18 IEEE Floating Multiply

Format:

MULx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe ~ Fav * Fbv

Exceptions:

Invalid Operation

Overflow

Underflow

Inexact Result

Instruction mnemonics:

MULS

MULT

Qualifiers:

Rounding:

Trapping:

Description:

Multiply S_floating

Multiply T_floating

Dynamic (/D)

Minus infinity (1M)

Chopped (/C)

Software (/S)

Underflow Eenable (/U)

Inexact Enable (/I)

•
The multiplicand operand in register Fb is multiplied by the multiplier operand in
register Fa, and the product is written to register Fc.

The product is rounded to the specified precision, and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single­
precision values produces a canonical single-precision result.
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An invalid operation trap is signaled if either operand has exp=O and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).

The contents of Fe are UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow, underflow, or inexact
result.
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4.10.19 VAX Floating Subtract

Format:

SUBx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe ~ Fav - Fbv

Exceptions:

Invalid Operation

Overflow

Underflow

Instruction mnemonics:

SUBF

SUBG

Qualifiers:

Rounding:

Trapping:

Subtract F_floating

Subtract G_floating

Chopped (/C)

Software (IS)

Underflow Enable (/U) •
Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in
register Fa, and the difference is written to register Fe.

The difference is rounded or chopped to the specified precision, and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.
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An invalid operation trap is signaled if either operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow or underflow.
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4.10.20 IEEE Floating Subtract

Format:

SUBx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe ~ Fav - Fbv

Exceptions:

Invalid Operation

Overflow

Underflow

Inexact Result

Instruction mnemonics:

SUBS

SUBT

Qualifiers:

Rounding:

Trapping:

Description:

Subtract S_floating

Subtract T_floating

Dynamic (/D)

Minus infinity (1M)

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Inexact Enable (/I)

•
The subtrahend operand in register Fb is subtracted from the minuend operand in
register Fa, and the difference is written to register Fc.

The difference is rounded to the specified precision, and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical
single-precision values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=O and a non-zero
fraction (IEEE denormals trap), or if exp=all-ones (IEEE NaNs and infinities trap).
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The contents of Fc are UNPREDICTABLE if this occurs.

See Section 4.7.5 for details of the stored result on overflow, underflow, or inexact
result.
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4.11 Miscellaneous Instructions
Alpha provides the miscellaneous instructions shown in Table 4-12.

Table 4-12: Miscellaneous Instructions Summary

Mnemonic Operation

CALL_PAL

FETCH

FETCH_M

MB

RPCC

TRAPB

Call Privileged Architecture Library Routine

Prefetch Data

Prefetch Data, Modify Intent

Memory Barrier

Read Process Cycle Counter

Trap Barrier
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4.11.1 Call Privileged Architecture Library

Format:

Operation:

{Stall instruction issuing until all
prior instructions are guaranteed to
complete without incurring exceptions.}
{Trap to PALcode.}

Exceptions:

None

Instruction mnemonics:

IPAL format

CALL_PAL Call Privileged Architecture Library

Qualifiers:

None

Description:

The CALL_PAL instruction is not issued until all previous instructions are
guaranteed to complete without exceptions. If an exception occurs, the continuation
PC in the exception stack frame points to the CALL_PAL instruction. The CALL_
PAL instruction causes a trap to PALcode.
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4.11.2 Prefetch Data

Format:

FETCHx O(Rb.ab)

Operation:

!Memory format

va ~ {Rbv}
{Optionally prefetch aligned 512-byte block surrounding va.}

Exceptions:

None

Instruction mnemonics:

FETCH

FETCH_M

Prefetch Data

Prefetch Data, Modify Intent

Qualifiers:

None

Description:

The virtual address is given by Rbv. This address is used to designate an aligned
512-byte block of data. An implementation may optionally attempt to move all or
part of this block (or a larger surrounding block) of data to a faster-access part of
the memory hierarchy, in anticipation of subsequent Load or Store instructions that
access that data.

The FETCH instruction is a hint to the implementation that may allow faster
execution. An implementation is free to ignore the hint. If prefetching is
done in an implementation, the order of fetch within the designated block is
UNPREDICTABLE.

The FETCH_M instruction gives the additional hint that modifications (stores) to
some or all of the data block are anticipated.

No exceptions are generated by FETCHx. If a Load (or Store in the case of FETCH_
M) that uses the same address would fault, the prefetch request is ignored. It is
UNPREDICTABLE whether a TB-miss fault is ever taken by FETCHx.
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IMPLEMENTATION NOTE
Implementations are encouraged to take the TB-miss
fault, then continue the prefetch.

The programming model for effective use of FETCH and FETCH_M is given in
AppendixA.

SOFTWARE NOTE
FETCH is intended to help software overlap memory
latencies on the order of 100 cycles. FETCH is unlikely
to help (or be implemented) for memory latencies on the
order of 10 cycles. Code scheduling should be used to
overlap such short latencies.
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4.11.3 Memory Barrier

Format:

MB

Operation:

!Memory format

{Guarantee that all subsequent loads or stores
will not access memory until after all previous
loads and stores have accessed memory, as
observed by other processors.}

Exceptions:

None

Instruction mnemonics:

MB Memory Barrier

Qualifiers:

None

Description:

The use of the Memory Barrier (MB) instruction is required only in multiprocessor
systems.

In the absence of an MB instruction, loads and stores to different physical locations
are allowed to complete o~t of order on the issuing processor as observed by other
processors. The MB instruction allows memory accesses to be serialized on the
issuing processor as observed by other processors. See Chapter 5 for details on using
the MB instruction to serialize these accesses. Chapter 5 also details coordinating
memory accesses across processors.

Note that MB ensures serialization only; it does not necessarily accelerate the
progress of memory operations.
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4.11.4 Read Process Cycle Counter

Format:

RPCC

Operation :.

Ra.wq !Memory format

Ra +- {cycle counter}

Exceptions:

None

Instruction mnemonics:

RPCC

Qualifiers:

None

Read Process Cycle Counter

Description:

Register Ra is written with the process cycle counter (PCC).

The low-order 32 bits of the process cycle counter is an unsigned 32-bit integer that
increments once per N CPU cycles, where N is an implementation-specific integer in
the range 1..16. The cycle counter frequency is the number of times the process cycle
counter gets incremented per second, rounded to a 64-bit integer. The integer count
wraps to 0 from a count ofFFFF FFFF16• The counter wraps no more frequently than
1.5 times the implementation's interval clock interrupt period (which is two thirds
of the interval clock interrupt frequency). The high-order 32 bits of the process cycle
counter are an offset that when added to the low-order 32 bits gives the cycle count
for this process.

The process cycle counter is suitable for timing intervals on the order of nanoseconds
and may be used for detailed performance characterization. It is required on all
implementations. PCC is required for every processor, and each processor in a
multiprocessor system has its own private, independent PCC.
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As an example, consider the following code that returns in RO the current cycle count
MOD 2**32.

RPCC
SLL
ADDQ
SRL

RO
RO, #32, Rl
RO, Rl, RO
RO, #32, RO

Read the process cycle counter
line up the offset and count fields
do add
zero extend the cycle count to 64 bits
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4.11.5 Trap Barrier

Format:

TRAPB

Operation:

!Memory format

{Stall instruction issuing until all prior instructions are
guaranteed to complete without incurring arithmetic traps.}

Exceptions:

None

Instruction mnemonics:

TRAPB

Qualifiers:

None

Trap Barrier

Description:

The TRAPB instruction allows software to guarantee that in a pipelined
implementation, all previous arithmetic instructions will complete without incurring
any arithmetic traps before any instructions after the TRAPB are issued. For
example, TRAPB should be used before changing an exception handler to ensure
that all exceptions on previous instructions are processed in the current exception­
handling environment.
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4.12 VAX Compatibility Instructions

Alpha provides the instructions shown in Table 4-13 for use in translated VAX. code.
These instructions are not a permanent part of the architecture and will not be
available in some future implementations. They are intended to preserve customer
assumptions about VAX. instruction atomicity in porting code from VAX. to Alpha.

These instructions should be generated only by the VAX.-to-Alpha software
translator; they should never be used in native Alpha code. Any native code that
uses them may cease to work.

Table 4-13: VAX Compatibility Instructions Summary
Mnemonic Operation

RC

RS

Read and Clear

Read and Set
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4.12.1 VAX Compatibility Instructions

Format:

Rx

Operation:

Ra.wq !Memory format

Ra +- intr flag
intr flag;::' 0
intr=flag +- 1

Exceptions:

None

Instruction mnemonics:

RC Read and Clear

RS Read and Set

Qualifiers:

None

/

!Re
!RS

Description:

The intr_:flag is returned in Ra and then cleared to zero (RC) or set to one (RS).

These instructions may be used to determine whether the sequence of Alpha
instructions between RS and RC (corresponding to a single VAX instruction) was
executed without interruption or exception.

Intr_:flag is a per-processor state bit. The intr_:flag is cleared if that processor
encounters a CALL_PAL REI instruction.

It is UNPREDICTABLE whether a processor's intr_flag is affected when that
processor executes an LDx_L or STx_C instruction. A processor's intr_flag is not
affected when that processor executes a normal load or store instruction.

A processor's intr_:flag is not affected when that processor executes a taken branch.

NOTE
These instructions are intended only for use by the VAX­
to-Alpha software translator; they should never be used
by native code.
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Chapter 5

System Architecture and Programming Implications
(I)

5.1 Introduction

Portions of the Alpha architecture have implications for programming, and
the system structure, of both uniprocessor and multiprocessor implementations.
Architectural implications considered in the following sections are:

• Physical memory behavior

• Caches and write buffers

• Translation buffers and virtual caches

• Data sharing

• Read/write ordering

• Stacks

• Arithmetic traps

To meet the requirements of the Alpha architecture, software and hardware
implementors need to take these issues into consideration.

5.2 Physical Memory Behavior

Alpha physical memory space is divided into four regions, based on the two most
significant, implemented, physical address bits. Each region's behavior can be
described in tenns of its coherency, granularity, width, and memory-like behavior.

5.2.1 Coherency of Memory Access
Alpha implementations must provide a coherent view ofmemory, in which each write
by a processor or I/O device (hereafter, called "processor") becomes visible to all other
processors. No distinction is made between coherency of "memory space" and "I/O
space".

Memory coherency may be provided in different ways, for each of the four physical
address regions.

Possible per-region policies include, but are not restricted to:

1. No caching

No copies are kept of data in a region; all reads and writes access the actual data
location (memory or I/O register).
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2. Write-through caching

Copies are kept of any data in the region; reads may use the copies, but writes
update the actual data location and either update or invalidate all copies.

3. Write-back caching

Copies are kept of any data in the region; reads and writes may use the copies,
and writes use additional state to determine whether there are other copies to
invalidate or update.

Part of the coherency policy implemented for a given physical address region may
include restrictions on excess data transfers (performing more accesses to a location
than is necessary to acquire or change the location's value), or may specify data
transfer widths (the granularity used to access a location).

Independent of coherency policy, a processor may use different hardware or different
hardware resource policies for caching or buffering different physical address
regions.

5.2.2 Granularity of Memory Access
For each region, an implementation must support aligned quadword access and may
optionally support aligned longword access.

For a quadword access region, accesses to physical memory must be implemented
such that independent accesses to adjacent aligned quadwords produce the same
results regardless of the order of execution. Further, an access to an aligned
quadword must be done in a single atomic operation.

For a longword access region, accesses to physical memory must be implemented
such that independent accesses to adjacent aligned longwords produce the same
results regardless of the order of execution. Further, an access to an aligned
longword must be done in a single atomic operation, and an access to an aligned
quadword must also be done in a single atomic operation.

In this context, "atomic" means that if different processors do simultaneous reads
and writes of the same data, it must not be possible to observe a partial write of the
subject longword or quadword.

5.2.3 Width of Memory Access
Subject to the granularity, ordering, and coherency constraints given in Sections
5.2.1, 5.2.2, and 5.6, accesses to physical memory may be freely cached, buffered,
and prefetched.

A processor may read more physical memory data (such as a full cache block) than
is actually accessed, writes may trigger reads, and writes may write back more data
than is actually updated. A processor may elide multiple reads and/or writes to the
same data.

5-2 Common Architecture (I)



5.2.4 Memory-Like Behavior

A memory-like region obeys the following rules:

• Each page frame in the region either exists in its entirety or does not exist in its
entirety; there are no holes within a page frame.

• All locations that exist are read/write.

• A write to a location followed by a read from that location returns precisely the
bits written; all bits act as memory.

• A write to one location does not change any other location.

• Reads have no side effects.

• Longword access granularity is provided.

• Instruction-fetch is supported.

• Load-locked and store-conditional are supported.

Non-memory-like regions may have much more arbitrary behavior:

• Unimplemented locations or bits may exist anywhere.

• Some locations or bits may be read-only and others write-only.

• Address ranges may overlap, such that a write to one location changes the bits
read from a different location.

• Reads may have side effects, although this is strongly discouraged.

• Longword granularity need not be supported.

• Instruction-fetch need not be supported.

• Load-locked and store-conditional need not be supported.

HARDWARE/SOFTWARE COORDINATION NOTE
The details of such behavior are outside the scope
of the Alpha architecture. Specific processor and
I/O device implementations may choose and document
whatever behavior they need. It is the responsibility of
system designers to impose enough consistency to allow
processors successfully to access matching non-memory
devices in a coherent way.

5.3 Translation Buffers and Virtual Caches

A system may choose to include a a virtual instruction cache (virtual I-cache) or a
virtual data cache (virtual D-cache). A system may also choose to include either
a combined data and instruction Translation Buffer (TB) or separate data and
instruction TBs (DTB and ITB). The contents of these caches and/or translation
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buffers may become invalid, depending on what operating system activity is being
performed.

Whenever a nonsoftware field of a valid Page Table Entry (PTE) is modified, copies
of that PTE must be made coherent. PALcode mechanisms are available to clear all
TBs, both DTB and ITB entries for a given VA, either DTB or ITB entries for a given
VA, or all entries with the Address Space Match (ASM) bit clear. Virtual D-cache
entries are made coherent whenever the corresponding DTB entry is requested to
be cleared by any of the appropriate PALcode mechanisms. Virtual I-cache entries
can be made coherent via the CALL_PALL 1MB instruction.

If a processor implements address space numbers (ASNs), and the old PTE has
the address space match (ASM) bit clear (ASNs in use) and the valid bit set, then
entries can also effectively be made coherent by assigning a new, unused ASN to
the currently running process and not reusing the previous ASN before calling the
appropriate PALcode routine to invalidate the Translation Buffer (TB).

In a multiprocessor environment, making the TBs and/or caches coherent on only
one processor is not always sufficient. An operating system must arrange to perform
the above actions on each processor that could possibly have copies of the PTE or
data for any affected page.

5.4 Caches and Write Buffers

A hardware implementation may include mechanisms to reduce memory access time
by making local copies of recently used memory contents (or those expected to be
used) or by buffering writes to complete at a later time. Caches and write buffers are
examples of these mechanisms. They must be implemented so that their existence
is transparent to software (except for timing, error reporting/control/recovery, and
modification to the I-stream).

The following requirements must be met by all cache/write-buffer implementations.
All processors must provide a coherent view of memory.

1. Write buffers may be used to delay and aggregate writes. From the viewpoint
of another processor, buffered writes appear not to have happened yet. (Write
buffers must not delay writes indefinitely. See Section 5.6.1.9.)

2. Write-back caches must be able to detect a later write from another processor
and invalidate or update the cache contents.

3. A processor must guarantee that a data store to a location followed by a data
load from the same location must read the updated value.

4. Cache prefetching is allowed, but virtual caches must not prefetch from invalid
pages.

5. A processor must guarantee that all of its previous writes are visible to all other
processors before a HALT instruction completes. A processor must guarantee
that its caches are coherent with the rest of the system before continuing from
a HALT.

5-4 Common Architecture (I)



6. If battery backup is supplied, a processor must guarantee that the memory
system remains coherent across a powerfaillrecovery sequence. Data that was
written by the processor before the powerfail may not be lost, and any caches
must be in a valid state before (and if) normal instruction processing is continued
after power is restored.

7. Virtual instruction caches are not required to notice modifications of the virtual
I-stream (they need not be coherent with the rest of memory). Software that
creates or modifies the instruction stream must execute a CALL_PAL 1MB before
trying to execute the new instructions.

For example, if two different virtual addresses, VAl and VA2, map to the same
page frame, a store to VAl modifies the virtual I-stream fetched via VA2.

However, the sequence:

1. Change the mapping of an I-stream page from valid to invalid, then

2. Copy the corresponding page frame to a new page frame, then

3. Change the original mapping to be valid and point to the new page frame

does not modify the virtual I-stream (this might happen in soft page faults).

8. Physical instruction caches are not required to notice modifications of the
physical I-stream (they need not be coherent with the rest of memory), except for
certain paging activity. (See Section 5.6.1.9.) Software that creates or modifies
the instruction stream must execute a CALL_PAL 1MB before trying to execute
the new instructions.

In this context, to "modify the physical I-stream" means any Store to the same
physical address that is subsequently fetched as an instruction.

In this context, to "modify the virtual I-stream" means any Store to the same physical
address that is subsequently fetched as an instruction via some corresponding
(virtual address, ASN) pair, or to change the virtual-to-physical address mapping
so that different values are fetched.

5.5 Data Sharing

In a multiprocessor environment, writes to shared data must be synchronized by the
programmer.

5.5.1 Atomic Change of a Single Datum
The ordinary STL and STQ instructions can be used to perform an atomic change
of a shared aligned longword or quadword. ("Change" means that the new value is
not a function of the old value.) In particular, an ordinary STL or STQ instruction
can be used to change a variable that could be simultaneously accessed via an LDx_
USTx_C sequence.
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5.5.2 Atomic Update of a Single Datum

The load-Iockedlstore-conditional instructions may be used to perform an atomic
update of a shared aligned longword or quadword. ("Update" means that the new
value is a function of the old value.)

The following sequence performs a read-modify-write operation on location x. Only
register-to-register operate instructions and branch fall-throughs may occur in the
sequence:

try again:
- LDQ L Rl,x

<modify Rl>
STQ C Rl,x
BEQ- Rl,no_store

no store:
<code to check for excessive iterations>
BR try_again

If this sequence runs with no exceptions or interrupts, and no other processor writes
to location x (more precisely, the locked range including x) between the LDeLL and
STeLC instructions, then the STeLe shown in the example stores the modified value
in x and sets R1 to 1. If, however, the sequence encounters exceptions or interrupts
that eventually continue the sequence, or another processor writes to x, then the
STeLC does not store and sets R1 to O. In this case, the sequence is repeated via
the branches to no_store and try_again. This repetition continues until the reasons
for exceptions or interrupts are removed, and no interfering store is encountered.

To be useful, the sequence must be constructed so that it can be replayed an arbitrary
number of times, giving the same result values each time. A sufficient (but not
necessary) condition is that, within the sequence, the set of operand destinations
and the set of operand sources are disjoint.

NOTE
A sufficiently long instruction sequence between LDeL
L and STeLe will never complete, because periodic
timer interrupts will always occur before the sequence
completes. The rules in Appendix A describe
sequences that will eventually complete in all Alpha
implementations.

This load-Iockedlstore-conditional paradigm may be used whenever an atomic update
of a shared aligned quadword is desired, including getting the effect of atomic byte
writes.

5.5.3 Atomic Update of Data Structures
Before accessing shared writable data structures (those that are not a single aligned
longword or quadword), the programmer can acquire control of the data structure
by using an atomic update to set a software lock variable. Such a software lock can
be cleared with an ordinary store instruction.
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\
\

> Set lock bit
/

/

A software-critical section, therefore, may look like the sequence:

stq c loop:
spin loop:

- LDQ_L Rl,lock variable
BLBS Rl,already set
OR Rl,#1,R2-
STQ_C R2,lock variable
BEQ R2,stq_c_fail

~~ritical section: updates various data stru~res> ~ ~~
MB I 1 \" ~~.
STQ R3l,lock_variable i Clear lock bit V\.1 \J\..,\

already set:
-<code to block or reschedule or test for too many iterations>

BR spin_loop
st~c_fail:

<code to test for too many iterations>
BR stq_c_loop

This code has a number of subtleties:

1. If the lock_variable is already set, the spin loop is done without doing any stores.
This avoidance of stores improves memory subsystem performance and avoids
the deadlock described below.

2. If the lock_variable is actually being changed from 0 to 1, and the ST'LC fails
(due to an interrupt, or because another processor simultaneously changed lock_
variable), the entire process starts over by reading the lock_variable again.

3. Only the fall-through path of the BLBS does a STx_C; some implementations
may not allow a successful STx_C after a branch-taken.

4. Only register-to-register operate instructions are used to do the modify.

5. Both conditional branches are forward branches, so they are properly predicted
not to be taken (to match the common case of no contention for the lock).

6. The OR writes its result to a second register; this allows the OR and the BLBS
to be interchanged if that would give a faster instruction schedule.

7. Other operate instructions (from the critical section) may be scheduled into
the LD'LL..ST'LC sequence, so long as they do not fault or trap, and they
give correct results if repeated; other memory or operate instructions may be
scheduled between the ST'LC and BEQ.

8. The MB instructions are discussed in Section 5.5.4.

9. An ordinary STQ instruction is used to clear the lock_variable.

It would be a performance mistake to spin-wait by repeating the full LDQ_L..STQ_C
sequence (to move the BLBS after the BEQ) because that sequence may repeatedly
change the software lock_variable from "locked" to "locked," with each write causing
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extra access delays in all other caches that contain the lock_variable. In the extreme,
spin-waits that contain writes may deadlock as follows:

If, when one processor spins with writes, another processor is modifying (not
changing) the lock_variable, then the writes on the first processor may cause the
STx_C of the modify on the second processor always to fail.

This deadlock situation is avoided by:

• Having only one processor do a store (no STx_C), or

• Having no write in the spin loop, or

• Doing a write only if the shared variable actually changes state (1 -+ 1 does not
change state).

5.5.4 Ordering Considerations for Shared Data Structures

A critical section sequence, such as shown in Section 5.5.3, is conceptually only three
steps:

1. Acquire software lock

2. Critical section-read/write shared data

3. Clear software lock

In the absence of explicit instructions to the contrary, the Alpha architecture allows
reads and writes to be reordered. While this may allow more implementation speed
and overlap, it can also create undesired side effects on shared data structures.
Normally, the critical section just described would have two instructions added to it:

<acquire software lock>
MB (memory barrier #1)
<critical section -- read/write shared data>
MB (memory barrier #2)
<clear software lock>

The first memory barrier prevents any reads (from within the critical section) from
being prefetched before the software lock is acquired; such prefetched reads would
potentially contain stale data.

The second memory barrier prevents any reads or writes (from within the critical
section) from being delayed past the clearing of the software lock; such delayed
accesses could interact with the next user of the shared data, defeating the purpose
of the software lock entirely.

SOFTWARE NOTE
In the VAX architecture, many instructions provide non­
interruptable read-modify-write sequences to memory
variables. Most programmers never regard data sharing
as an issue.

In the Alpha architecture, programmers must pay more
attention to synchronizing access to shared data; for
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example, to AST routines. In the VAX, a programmer
can use an ADDL2 to update a variable that is shared
between a "MAIN" routine and an AST routine, if
running on a single processor. In the Alpha architecture,
a programmer must deal with AST shared data by using
multiprocessor shared data sequences.

5.6 ReadlWrite Ordering

This section does not apply to programs that run on a single processor and do not
write to the instruction stream. On a single processor, all memory accesses appear
to happen in the order specified by the programmer. This section deals entirely with
predictable read/write ordering across multiple processors.

The order of reads and writes done in an Alpha implementation may differ from that
specified by the programmer.

For any two memory references A and B, either A must occur before B in all Alpha
implementations, B must occur before A, or they are UNORDERED. In the last
case, software cannot depend upon one occurring first: the order may vary from
implementation to implementation, and even from run to run or moment to moment
on a single implementation.

If two references cannot be shown to be ordered by the rules given, they are
UNORDERED and implementations are free to do them in any order that is
convenient. Implementations may take advantage of this freedom to deliver
substantially higher performance.

The discussion that follows first defines the architectural issue sequence of memory
references on a single processor, then defines the (partial) ordering on this issue
sequence that all Alpha implementations are required to maintain.

The individual issue sequences on multiple processors are merged into access
sequences at each shared memory location. The discussion defines the (partial)
ordering on the individual access sequences that all Alpha implementations are
required to maintain.

The net result is that for any code that executes on multiple processors, one can
determine which memory accesses are required to occur before others on all Alpha
implementations and hence can write useful shared-variable software.

Software writers can force one reference to occur before another by inserting a
memory barrier instruction (MB or 1MB) between the references.

5.6.1 Alpha Shared Memory Model

An Alpha system consists of a collection ofprocessors and shared coherent memories
that are accessible by all processors. (There may also be unshared memories, but
they are outside the scope of this section.)

A processor is an Alpha CPU or an I/O device (or anything else that gets added).

A shared memory is the primary storage place for one or more locations.
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A location is an aligned quadword, specified by its physical address. Multiple virtual
addresses may map to the same physical address. Ordering considerations are based
only on the physical address.

IMPLEMENTATION NOTE
An implementation may allow a location to have
multiple physical addresses, but the rules for accesses
via mixtures of the addresses are implementation­
specific and outside the scope of this section. Accesses
via exactly one of the physical addresses follow the rules
described next.

Each processor may generate accesses to shared memory locations. There are five
types of accesses:

1. Instruction fetch by processor i to location x, returning value a, denoted Pi:I(x,a).

2. Data read by processor i to location x, returning value a, denoted Pi:R(x,a).

3. Data write by processor i to location x, storing value a, denoted Pi:W(x,a).

4. Memory barrier instruction issued by processor i, denoted Pi:MB.

5. I-stream memory barrier instruction issued by processor i, denoted Pi:IMB.

The first access type is also called an I-stream access or I-fetch. The next two are
also called D-stream accesses. The first three types collectively are called read/write
accesses, denoted Pi:*(x,a). The last two types collectively are called barriers.

During actual execution in an Alpha system, each processor has a time-ordered issue
sequence of all the memory references presented by that processor (to all memory
locations), and each location has a time-ordered access sequence of all the accesses
presented to that location (from all processors).

5.6.1.1 Architectural Definition of Processor Issue Sequence

The issue sequence for a processor is architecturally defined with respect to a
hypothetical simple implementation that contains one processor and a single shared
memory, with no caches or buffers. This is the instruction execution model:

1. I-fetch: An Alpha instruction is fetched from memory.

2. Read/Write: That instruction is executed and runs to completion, including a
single data read from memory for a Load instruction or a single data write to
memory for a Store instruction.

3. Update: The PC for the processor is updated.

4. Loop: Repeat the above sequence indefinitely.

If the instruction fetch step gets a memory management fault, the I-fetch is not done
and the PC is updated to point to a PALcode fault handler. If the read/write step
gets a memory management fault, the read/write is not done and the PC is updated
to point to a PALcode fault handler.
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All memory references are aligned quadwords. For the purpose of defining ordering,
aligned longword references are modeled as quadword references to the containing
aligned quadword.

5.6.1.2 Definition of Processor Issue Order

A partial ordering, called processor issue order, is imposed on the issue sequence
defined in Section 5.6.1.1.

For two accesses u and v issued by processor Pi, u is said to PRECEDE v IN ISSUE
ORDER «) if u occurs earlier than v in the issue sequence for Pi, and either of the
following applies:

1. The access types are of the following issue order:

Table 5-1: Processor Issue Order
lst!/2nd-. Pi:I(y,b) Pi:R(y,b) Pi:W(y,b) Pi:MB Pi:IMB

Pi:I(x,a) < if x=y
Pi:R(x,a)
Pi:W(x,a)
Pi:MB
Pi:IMB <

< ifx=y < <
< ifx=y < ifx=y < <
< ifx=y < ifx=y < <
< < < <
< < < <

2. Or, u is a TB fill, for example, a PTE read in order to satisfy a TB miss, and v is
an 1- or D-stream access using that PTE (see Section 5.6.2).

Issue order is thus a partial order imposed on the architecturally specified issue
sequence. Implementations are free to do memory accesses from a single processor
in any sequence that is consistent with this partial order.

Note that accesses to different locations are ordered only with respect to barriers
and TB fill. The table asymmetry for I-fetch allows writes to the I-stream to be
incoherent until an 1MB is executed.

5.6.1.3 Definition of Memory Access Sequence

The access sequence for a location cannot be observed directly, nor fully
predicted before an actual execution, nor reproduced exactly from one execution
to another. Nonetheless, some useful ordering properties must hold in all Alpha
implementations.

5.6.1.4 Definition of Location Access Order

A partial ordering, called location access order, is imposed on the memory access
sequence defined above.

For two accesses u and v to location x, U is said to PRECEDE v IN ACCESS ORDER
(<<) if u occurs earlier than v in the access sequence for x, and at least one of them
is a write:
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Table 5-2: Location Access Order
1st !/2nd-+ Pi:I(x,b) Pi:R(x,b) Pi:W(x,b)

Pi:I(x,a)
Pi:R(x,a)
Pi:W(x,a) «

Access order is thus a partial order imposed on the actual access sequence for a
given location. Each location has a separate access order. There is no direct ordering
relationship between accesses to different locations.

Note that reads and I-fetches are ordered only with respect to writes.

5.6.1.5 Definition of Storage

If u is Pi:W(x,a), and v is either Pj:I(x,b) or Pj:R(x,b), and u«v, and no w Pk:W(x,c)
exists such that u«w«v, then the value b returned by v is exactly the value a
written by u.

Conversely, if u is Pi:W(x,a), and v is either Pj:I(x,b) or Pj:R(x,b), and b=a (and a is
distinguishable from values written by accesses other than u), then u«v and for any
other w Pk:W(x,c) either w«u or v«w.

The only way to communicate information between different processors is for one to
write a shared location and the other to read the shared location and receive the
newly written value. (In this context, the sending of an interrupt from processor
Pi to processor Pj is modeled as Pi writing to a location INTij, and Pj reading from
INTij.)

5.6.1.6 Relationship Between Issue Order and Access Order

Ifu is Pi:*(x,a), and v is Pi:*(x,b), one of which is a write, and u<v in the issue order
for processor Pi, then u«v in the access order for location x.

In other words, if two accesses to the same location are ordered on a given processor,
they are ordered in the same way at the location.

5.6.1.7 Definition of Before

For two accesses u and v, u is said to be BEFORE v (<=) if:

u < vor
u « v or
there exists an access w such that:

(u < wand w <= v) or
(u « wand w <= v).

In other words, ''before'' is the transitive closure over issue order and access order.
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5.6.1.8 Definition of After

If u <= v, then v is said to be AFTER u.

At most one of u <= v and v <= u is true.

5.6.1.9 Timeliness

Even in the absence of a barrier after the write, a write by one processor to a given
location may not be delayed indefinitely in the access order for that location.

5.6.2 Litmus Tests
Many issues about writing and reading shared data can be cast into questions about
whether a write is before or after a read. These questions can be answered by
rigorously applying the ordering rules described previously to demonstrate whether
the accesses in question are ordered at all.

Assume, in the litmus tests below, that initially all memory locations contain 1.

5.6.2.1 Litmus Test 1 (Impossible Sequence)

Pi Pj

[Dl] Pi:W(x,2) [VI] Pj:R(x,2)

[V2] Pj:R(x,l)

VI reading 2 implies UI « VI, by the definition of storage
V2 reading 1 implies V2 « Ul, by the definition of storage
Vl < V2, by the definition of issue order

The first two orderings imply that V2 <= Vl, whereas the last implies that Vl <= V2.

Both implications cannot be true. Thus, once a processor reads a new value from a
location, it must never see an old value-time must not go backward. V2 must read
2.

5.6.2.2 Litmus Test 2 (Impossible Sequence)

Pi Pj

[Ul] Pi:W(x,2) [Vl] Pj:W(x,3)

[V2] Pj:R(x,2)

[V3] Pj:R(x,3)

V2 reading 2 implies Vl <= Ul
V3 reading 3 implies UI <= VI

Both implications cannot be true. Thus, once a processor reads a new value written
by UI, any other writes that must precede the read must also precede Ul. V3 must
read 2.
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5.6.2.3 Litmus Test 3 (Impossible Sequence)

Pi ~ Pk

[Ul] Pi:W(x,2) [VI] Pj:W(x,3) [WI] Pk:R(x,3)

[U2] Pi:R(x,3) [W2] Pk:R(x,2)

U2 reading 3 implies Ul <= V1
W2 reading 2 implies VI <= Ul

Both implications cannot be true. Again, time cannot go backward. If U2 reads 3
then W2 must read 3. Alternately, if W2 reads 2, then U2 must read 2.

5.6.2.4 Litmus Test 4 (Sequence Okay)

Pi Pj

[Ul] Pi:W(x,2) [VI] Pj:R(y,2)

[U2] Pi:W(y,2) [V2] Pj:R(x,l)

There are no conflicts in this sequence. U2 <= VI and V2 <= U1. UI and U2 are not
ordered with respect to each other. V1 and V2 are not ordered with respect to each
other. There is no conflicting implication that U1 <= V2.

5.6.2.5 Litmus Test 5 (Sequence Okay)

Pi Pj

[U1] Pi:W(x,2) [V1] Pj:R(y,2)

[V2] Pj:MB

[U2] Pi:W(y,2) [V3] Pj:R(x,l)

There are no conflicts in this sequence. U2 <= V1 <= V3 <= U1. There is no conflicting
implication that Ul <= U2.

5.6.2.6 Litmus Test 6 (Sequence Okay)

Pi Pj

[Ul] Pi:W(x,2) [VI] Pj:R(y,2)

[U2] Pi:MB

[U3] Pi:W(y,2) [V2] Pj:R(x,l)

There are no conflicts in this sequence. V2 <= Ul <= U3 <= VI. There is no conflicting
implication that VI <= V2.

In scenarios 4, 5, and 6, writes to two different locations x and yare observed
(by another processor) to occur in the opposite order than that in which they were
performed. An update to y propagates quickly to Pj, but the update to x is delayed,
and Pi and Pj do not both have MBs.
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5.6.2.7 Litmus Test 7 (Impossible Sequence)

Pi Pi

[Ul] Pi:W(x,2) [Vl] Pj:R(y,2)

[U2] Pi:MB [V2] Pj:MB

[U3] Pi:W(y,2) [V3] Pj:R(x,l)

Vl reading 2 implies U3 <= VI
V3 reading I implies V3 <= UI
But, by transitivity, UI <= U3 <= VI <= V3

Both cannot be true, so if VI reads 2, then V3 must also read 2.

5.6.2.8 Litmus Test 8 (Impossible Sequence)

Pi Pi

[Ul] Pi:W(x,2) [VI] Pj:W(y,2)

[U2] Pi:MB [V2] Pj:MB

[U3] Pi:R(y,l) [V3] Pj:R(x,l)

U3 reading I implies U3 <= VI
V3 reading I implies V3 <= UI
But, by transitivity, Ul <= U3 <= VI <= V3

Both cannot be true, so ifU3 reads 1, then V3 must read 2, and vice versa.

5.6.2.9 Litmus Test 9 (Impossible Sequence)

Pi Pj

[Ul] Pi:W(x,2) [Vl] Pj:W(x,3)

[U2] Pi:R(x,2) [V2] Pj:R(x,3)

[U3] Pi:R(x,3) [V3] Pj:R(x,2)

V3 reading 2 implies Ul <= V3
V2 <= V3 and V2 reading 3 implies V2 <= Ul
VI <= V2 and V2 <= Ul implies VI <= Ul

U3 reading 3 implies VI <= U3
U2 <= U3 and U2 reading 2 implies U2 <= Vl
Ul <= U2 and U2 <= Vl implies UI <= VI

Both VI <= Ul and Ul <= VI cannot be true. Time cannot go backwards. IfV3 reads
2, then U3 must read 2. Alternatively, If U3 reads 3, then V3 must read 3.
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5.6.3 Implied Barriers

In Alpha, there are no implied barriers. If an implied barrier is needed for
functionally correct access to shared data, it must be written as an explicit
instruction. (Software must explicitly include any needed MB or 1MB instructions.)

Alpha transitions such as the following have no built-in implied memory barriers:

• Entry to PALcode

• Sending and receiving interrupts

• Returning from exceptions, interrupts, or machine checks

• Swapping context

• Invalidating the Translation Buffer (TB)

Depending on implementation choices for maintaining cache coherency, some PAL
/cache implementations may have an implied 1MB in the I-stream TB fill routine,
but this is transparent to the non-PAL programmer.

5.6.4 Implications for Software
Software must explicitly include MB or 1MB instructions in the following
circumstances.

5.6.4.1 Single-Processor Data Stream

No barriers are ever needed. A read to physical address x will always return
the value written by the immediately preceding write to x in the processor issue
sequence.

5.6.4.2 Single-Processor Instruction Stream

An I-fetch from virtual or physical address x does not necessarily return the value
written by the immediately preceding write to x in the issue sequence. To make
the I-fetch reliably get the newly written instruction, an 1MB is needed between the
write and the I-fetch.

5.6.4.3 Multiple-Processor Data Stream (Including Single Processor with DMA I/O)

The only way to communicate shared data reliably is to write the shared data on one
processor, then do an MB on that processor, then write a Hag (equivalently, send an
interrupt) signaling the other processor that the shared data is ready. Each receiving
processor must read the new flag (equivalently, receive the interrupt), then do an
MB, then read or update the shared data.

Leaving out the first MB removes the assurance that the shared data is written
before the Hag is.

Leaving out the second MB removes the assurance that the shared data is read or
updated only after the Hag is seen to change; in this case, an early read could see
an old value, and an early update could be overwritten.

This implies that after a CPU has prepared some data buffer to be read from memory
by a DMA I/O device (such as writing a buffer to disk), it must do an MB before
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starting the I/O, and the I/O device after receiving the start signal must logically do
an MB before reading the data buffer.

This also implies that after a DMA I/O device has written some data to memory
(such as paging in a page from disk), the DMA device must logically do an MB
before posting a completion interrupt, and the interrupt handler software must do
an MB before the data is guaranteed to be visible to the interrupted processor. Other
processors must also do MBs before they are guaranteed to see the new data.

An important special case occurs when a write is done (perhaps by an I/O device) to
some physical page frame, then an MB, then a previously invalid PTE is changed to
be a valid mapping of the physical page frame that was just written. In this case,
all processors that access using the newly valid PTE must guarantee to deliver the
newly written data after the TB miss, for both I-stream and D-stream accesses.

5.6.4.4 Multiple-Processor Instruction Stream (Including Single Processor with DMA I/O)

The only way to update the I-stream reliably is to write the shared I-stream on one
processor, then do an 1MB (MB if the writing processor is not going to execute the
new I-stream) on that processor, then write a flag (equivalently, send an interrupt)
signaling the other processor that the shared I-stream is ready. Each receiving
processor must read the new flag (equivalently, receive the interrupt), then do an
1MB, then fetch the shared I-stream.

Leaving out the first IMB(MB) removes the assurance that the shared I-stream is
written before the flag is.

Leaving out the second 1MB removes the assurance that the shared I-stream is read
only after the flag is seen to change; in this case, an early read could see an old
value.

This implies that after a DMA I/O device has written some I-stream to memory (such
as paging in a page from disk), the DMA device must logically do an IMB(MB) before
posting a completion interrupt, and the interrupt handler software must do an 1MB
before the I-stream is guaranteed to be visible to the interrupted processor. Other
processors must also do IMBs before they are guaranteed to see the new I-stream.

An important special case occurs when a write is done (perhaps by an I/O device)
to some physical page frame, then an IMB(MB), then a previously invalid PTE is
changed to be a valid mapping of the physical page frame that was just written. In
this case, all processors that access using the newly valid PTE must guarantee to
deliver the newly written I-stream after the TB miss.

5.6.4.5 Multiple-Processor Context Switch

If a process migrates from executing on one processor to executing on another, the
context switch operating system code must include a number of barriers.

A process migrates by having its context stored into memory, then eventually having
that context reloaded on another processor. In between, some shared mechanism
must be used to communicate that the context saved in memory by the first processor
is available to the second processor. This could be done by using an interrupt, by
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using a flag bit associated with the saved context, or by using a shared-memory
multiprocessor data structure, as follows:

First Processor

Save state of current process.
MB [1]
Pass ownership of process context ~

data structure memory.

Second Processor

Pick up ownership of process context
data structure memory.
MB [2]
Restore state of new process context data
structure memory.
Make I-stream coherent [3].
Make TB coherent [4].

Execute code for new process that
accesses memory that is not common to
all processes.

MB [1] ensures that the writes done to save the state of the current process happen
before the ownership is passed.

MB [2] ensures that the reads done to load the state of the new process happen
after the ownership is picked up and hence are reliably the values written by the
processor saving the old state. Leaving this MB out makes the code fail if an old
value of the context remains in the second processor's cache and invalidates from
the writes done on the first processor are not delivered soon enough.

The TB on the second processor must be made coherent with any write to the page
tables that may have occurred on the first processor just before the save ofthe process
state. This must be done with a series of TB invalidate instructions to remove any
nonglobal page mapping for this process, or by assigning an ASN that is unused on
the second processor to the process. One of these actions must occur sometime before
starting execution of the code for the new process that accesses memory (instruction
or data) that is not common to all processes. A common method is to assign a new
ASN after gaining ownership ofthe new process and before loading its context, which
includes its ASN.

The D-cache on the second processor must be made coherent with any write to the D­
stream that may have occurred on the first processor just before the save of process
state. This is ensured by MB [2] and does not require any additional instructions.
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The I-cache on the second processor must be made coherent with any write to the
I-stream that may have occurred on the first processor just before the save of process
state. This can be done with an 1MB PAL call sometime before the execution of any
code that is not common to all processes, More commonly, this can be done by forcing
a TB miss (via the new ASN or via TB invalidate instructions) and using the TB­
fill rule (see Section 5.6.4.3). This latter approach does not require any additional
instruction.

Combining all these considerations gives:

First Processor

Pick up ownership of process
context data structure memory.
ME
Assign new ASN or invalidate TBs.
Save state of current process.
Restore state of new process.
MB
Pass ownership of process context =>
data structure memory.

Second Processor

Pickup ownership of new process context
data structure memory.
MB
Assign new ASN or invalidate TBs.
Save state of current process.
Restore state of new process.
MB
Pass ownership of old process context
data structure memory.

Execute code for new process that
accesses memory that is not common to
all processes.

•
Note that on a single processor there is no need for the barriers.
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5.6.4.6 Multiple-Processor Send/Receive Interrupt

If one processor writes some shared data, then sends an interrupt to a second
processor, and that processor receives the interrupt, then accesses the shared data,
the sequence from Section 5.6.4.3 must be used:

First Processor

Write data
MB
Send into =>

Second Processor

Receive into
MB
Access data

Leaving out the MB at the beginning of the interrupt-receipt routine makes the
code fail if an old value of the context remains in the second processor's cache and
invalidates from the writes done on the first processor are not delivered soon enough.

5.6.5 Implications for Hardware
The coherency point for physical address x is the place in the memory subsystem at
which accesses to x are ordered. It may be at a main memory board, or at a cache
containing x exclusively, or at the point of winning a common bus arbitration.

The coherency point for x may move with time, as exclusive access to x migrates
between main memory and various caches.

MB and 1MB force all preceding writes to at least reach their respective coherency
points. This does not mean that main-memory writes have been done, just that the
order of the eventual writes is committed. For example, on the XMI with retry, this
means getting the writes acknowledged as received with good parity at the inputs
to memory board queues; the actual RAM write happens later.

MB and 1MB also force all queued cache invalidates to be delivered to the local
caches before starting any subsequent reads (that may otherwise cache hit on stale
data) or writes (that may otherwise write the cache, only to have the write effectively
overwritten by a late-delivered invalidate).

Implementations may allow reads ofx to hit (by physical address) on pending writes
in a write buffer, even before the writes to x reach the coherency point for X. If this
is done, it is still true that no earlier value of x may subsequently be delivered to
the processor that took the hit on the write buffer value.

Virtual data caches are allowed to deliver data before doing address translation, but
only if there cannot be a pending write under a synonym virtual address. Lack of a
write-buffer match on untranslated address bits is sufficient to guarantee this.

Virtual data caches must invalidate or otherwise become coherent with the new value
whenever a PALcode routine is executed that affects the validity, fault behavior,

5-20 Common Architecture (I)



protection behavior, or virtual-to-physical mapping specified for one or more pages.
Becoming coherent can be delayed until the next subsequent MB instruction or TB
fill (using the new mapping), if the implementation of the PALcode routine always
forces a subsequent TB fill.

5.7 Arithmetic Traps

Alpha implementations are allowed to execute multiple instructions concurrently
and to forward results from one instruction to another. Thus, when an arithmetic
trap is detected, the PC may have advanced an arbitrarily large number of
instructions past the instruction T (calculating result R) whose execution triggered
the trap.

When the trap is detected, any or all of these subsequent instructions may run to
completion before the trap is actually taken. Instruction T and the set of instructions
subsequent to T that complete before the trap is taken are collectively called the trap
shadow of T. The PC pushed on the stack when the trap is taken is the PC of the
first instruction past the trap shadow.

The instructions in the trap shadow of T may use the undefined result R of T, they
may generate additional traps, and they may completely change the PC (branches,
JSR).

Thus, by the time a trap is taken, the PC pushed on the stack may bear no useful
relationship to the PC of the trigger instruction T, and the state visible to the
programmer may have been updated using the undefined result R. If an instruction
in the trap shadow ofT uses R to calculate a subsequent register value, that register
value is undefined, even though there may be no trap associated with the subsequent
calculation. Similarly:

• If an instruction in the trap shadow of T stores R or any subsequent undefined
result, the stored value is undefined.

• If an instruction in the trap shadow of T uses R or any subsequent undefined
result as the basis of a conditional or calculated branch, the branch target is
undefined.

• If an instruction in the trap shadow of T uses R or any subsequent undefined
result as the basis of an address calculation, the memory address actually
accessed is undefined.

Software that is intended to bound how far the PC may advance before taking a trap,
or how far an undefined result may propagate, must insert TRAPB instructions at
appropriate points.

Software that is intended to continue from a trap by supplying a well-defined result
R within an arithmetic trap handler, can do so reliably by following the rules for
software completion code sequences given in Section 4.7.5.
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Chapter 6

Common PALcode Architecture (I)

6.1 PALcode

In a family of machines, both users and operating system implementors require
functions to be implemented consistently. When functions conform to a common
interface, the code that uses those functions can be used on several different
implementations without modification.

These functions range from the binary encoding of the instruction and data to the
exception mechanisms and synchronization primitives. Some of these functions can
be implemented cost effectively in hardware, but others are impractical to implement
directly in hardware. These functions include low-level hardware support functions
such as Translation Buffer miss fill routines, interrupt acknowledge, and vector
dispatch. They also include support for privileged and atomic operations that require
long instruction sequences.

In the VAX, these functions are generally provided by microcode. This is not seen as
a problem because the VAX architecture lends itself to a microcoded implementation.

One of the goals of Alpha is that microcode will not be necessary for practical
implementation. However, it is still desirable to provide an architected interface
to these functions that will be consistent across the entire family of machines. The
Privileged Architecture Library (PALcode) provides a mechanism to implement these
functions without resorting to a microcoded machine.

6.2 PALcode Instructions and Functions

PALcode is used to implement the following functions:

• Instructions that require complex sequencing as an atomic operation

• Instructions that require VAX-style interlocked memory access

• Privileged instructions

• Memory management control (including translation buffer (TB) management)

• Context swapping

• Interrupt and exception dispatching

• Power-up initialization and booting

• Console functions

• Emulation of instructions with no hardware support.

Common PALcode Architecture (I) 6-1

•



The Alpha architecture lets these functions be implemented in standard machine
code that is resident in main memory. PALcode is written in standard machine
code with some implementation-specific extensions to provide access to low-level
hardware. This lets an Alpha implementation make various design trade-offs based
on the hardware technology being used to implement the machine. The PALcode
can abstract these differences and make them invisible to system software.

For example, in aMOS VLSI implementation, a small (32 entry) fully associative
TB can be the right match to the media, given that chip area is a costly resource.
In an ECL version, a large (1024 entry) direct-mapped TB can be used because it
will use RAM chips and does not have fast associative memories available. This
difference would be handled by implementation-specific versions of the PALcode on
the two systems, both versions providing transparent TB miss service routines. The
operating system code would not need to know there were any differences.

Part II, Operating Systems describes the Digital-supplied Alpha Privileged
Architecture Library (PALcode) routines and environment. Other systems may use
the Digital-supplied PALcode library or architect and implement a different library of
routines. Alpha systems are required to support the replacement of Digital-defined
PALcode with an operating system-specific version.

6.3 PALcode Environment

The PALcode environment differs from the normal environment in the following
ways:

• Complete control of the machine state.

• Interrupts are disabled.

• Implementation-specific hardware functions are enabled, as described below.

• I-stream memory management traps are prevented (by disabling I-stream
mapping, mapping PALcode with a permanent TB entry, or by other
mechanisms).

Complete control of the machine state allows all functions of the machine to be
controlled. Disabling interrupts allows the system to provide multi-instruction
sequences as atomic operations. Enabling implementation-specific hardware
functions allows access to low-level system hardware. Preventing I-stream memory
management traps allows PALcode to implement memory management functions
such as translation buffer fill.

6.4 Special Functions Required for PALcode

PALcode uses the Alpha instruction set for most of its operations. A small number
of additional functions are needed to implement the PALcode. There are five
opcodes reserved to implement PALcode functions: PALRESO, PALRES1, PALRES2,
PALRES3 and PALRES4. These instructions produce an Illegal Instruction Trap if
executed outside the PALcode environment.
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• PALcode needs a mechanism to save the current state of the machine and
dispatch into PALcode.

• PALcode needs a set of instructions to access hardware control registers.

• PALcode needs a hardware mechanism to transition the machine from the
PALcode environment to the non-PALcode environment. This mechanism loads
the PC, enables interrupts, enables mapping, and disables PALcode privileges.

An Alpha implementation may also choose to provide additional functions to simplify
or improve performance of some PALcode functions. The following are some
examples:

• An Alpha implementation may include a read/write virtual function that allows
PALcode to perform mapped memory accesses using the mapping hardware
rather than providing the virtual-to-physical translation in PALcode routines.
PALcode may provide a special function to do physical reads and writes and
have the Alpha loads and stores continue to operate on virtual address in the
PALcode environment.

• An Alpha implementation may include hardware assists for various functions­
for example, saving the virtual address of a reference on a memory management
error rather than having to generate it by simulating the effective address
calculation in PALcode.

• An Alpha implementation may include private registers so it can function without
having to save and restore the native general registers.

6.5 PALcode Effects on System Code

PALcode will have one effect on system code. Because PALcode may be resident
in main memory and maintain privileged data structures in main memory, the
operating system code that allocates physical memory cannot use all of physical
memory.

The amount of memory PALcode requires is small, so the loss to the system is
negligible.

6.6 PALcode Replacement

Alpha systems are required to support the replacement of Digital-supplied PALcode
with an operating system-specific version. The following functions must be
implemented in PALcode, not directly in hardware, to facilitate replacement with
different versions.

1. Translation Buffer fill. Different operating systems will want to replace the
Translation Buffer (TB) fill routines. The replacement routines will use different
data structures. The page tables documented in Part II, Operating Systems will
not be present in these systems. Therefore, no portion of the TB fill flow that
would change with a change in page tables may be placed in hardware, unless
it is placed in a manner that can be overridden by PALcode.
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2. Process structure. Different operating systems might want to replace the process
context switch routines. The replacement routines will use different data
structures. The HWPCB or PCB documented in Part II, Operating Systems will
not be present in these systems. Therefore, no portion of the context switching
flows that would change with a change in process structure may be placed in
hardware.

PALcode must be written in a modular manner that facilitates easy replacement of
major subsections. The subsections that need to be simple to replace are:

• Translation Buffer fill

• Process structure and context switch

• Interrupt and exception frame format and routine dispatch

• Privileged PALcode instructions

6.7 Required PALcode Instructions

The PALcode instructions listed in Table 6-1 and Appendix C must be recognized by
mnemonic and opcode in all operating system implementations, but the effect ofeach
instruction is dependent on the implementation. The operation of these PALcode
instructions for Digital-supplied operating system implementations is described in
Part II, Operating Systems.

Table 6-1: PALcode Instructions that Require Recognition

Mnemonic Name

BPT

BUGCHK

GENTRAP

RDUNIQUE

WRUNIQUE

Breakpoint trap

Bugcheck trap

Generate trap

Read unique value

Write unique value

The PALcode instructions listed in Table 6-2 and described in the following sections
must be supported by all Alpha implementations:

Table 6-2: Required PALcode Instructions
Mnemonic Type Operation

DRAINA

HALT

1MB

Privileged

Privileged

Unprivileged

Drain aborts

Halt processor

I-stream memory barrier
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6.7.1 Drain Aborts

Format:

!PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{Stall instruction issuing until all prior
instructions are guaranteed to complete
without incurring aborts.}

Exceptions:

Privileged Instruction

Instruction Mnemonics:

Drain Aborts

Description:

If aborts are deliberately generated and handled (such as non-existent-memory
aborts while sizing memory or searching for 110 devices), the DRAINA instruction
forces any outstanding aborts to be taken before continuing.

Aborts are necessarily implementation-dependent. DRAINA stalls instruction issue
at least until all previously-issued instructions have completed and any associated
aborts have been signaled. For operate instructions, this will usually mean stalling
until the result register has been written. For branch instructions, this will
usually mean stalling until the result register and PC have been written. For
load instructions, this will usually mean stalling until the result register has been
written. For store instructions, this will usually mean stalling until at least the first
level in a potentially multi-level memory hierarchy has been written.

For load instructions, DRAINA does not necessarily guarantee that the unaccessed
portions of a cache block have been transferred error-free before continuing.

For store instructions, DRAINA does not necessarily guarantee that the ultimate
target location of the store has received error-free data before continuing.
An implementation-specific technique must be used to guarantee the ultimate
completion of a write in implementations that have multi-level memory hierarchies
or store-and-forward bus adapters.

Common PALcode Architecture (I) 6-5

I



6.7.2 Halt

Format:

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

CASE {halt action} OF
halt: - {halt}
restart/halt: {restart/halt}
restart/boot/halt: {restart/boot/halt}
boot/halt: {boot/halt}

ENDCASE

Exceptions:

Privileged Instruction

Instruction mnemonics:

!PALcode fonnat

Halt Processor

Description:

The HALT instruction stops normal instruction processing, and depending on the
HALT action setting, the processor may either enter console mode or the restart
sequence.
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6.7.3 Instruction Memory Barrier

Format:

!PALcode format

Operation:

{Make instruction stream coherent with Data stream}

Exceptions:

None

Instruction mnemonics:

I-stream Memory Barrier

Description:

An 1MB instruction must be executed after software or I/O devices write into the
instruction stream or modify the instruction stream virtual address mapping, and
before the new value is fetched as an instruction. An implementation may contain
an instruction cache that does not track either processor or I/O writes into the
instruction stream. The instruction cache and memory are made coherent by an
1MB instruction.

If the instruction stream is modified and an 1MB is not executed before fetching an
instruction from the modified location, it is UNPREDICTABLE whether the old or
new value is fetched.

The cache coherency and sharing rules are described in Chapter 5.
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Chapter 7

Console Subsystem Overview (I)

On an Alpha system, underlying control of the system platform hardware is provided
by a console. The console:

1. Initializes, tests, and prepares the system platform hardware for Alpha system
software.

2. Bootstraps (loads into memory and starts the execution of) system software.

3. Controls and monitors the state and state transitions of each processor in a
multiprocessor system.

4. Provides services to system software that simplify system software control of and
access to platform hardware.

5. Provides a means for a console operator to monitor and control the system.

The console interacts with system platform hardware to accomplish the first three
tasks. The actual mechanisms of these interactions are specific to the platform
hardware; however, the net effects are common to all systems.

The console interacts with system software once control of the system platform
hardware has been transferred to that software.

The console interacts with the console operator through a virtual display device or
console terminal. The console operator may be a human being or a management
application.
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Chapter 8

Input/Output (I)

8.1 Introduction

Conceptually, Alpha systems consist of processors, memory, processor-memory
interconnect (PMI), I/O buses, bridges, and I/O devices.

Figure 8-1 shows the Alpha system overview.

Figure 8-1: Alpha System Overview

Processor-Memory Interconnect

Bridge

•
As shown in Figure 8-1, processors and memory are connected by the PMI.

A bridge connects a tightly coupled I/O bus to the system, either directly to the PMI
or through another tightly coupled I/O bus. A tightly coupled I/O bus is one whose
address space is accessible to the processor either directly or through an I/O mailbox.

A bridge has at least a local side and a remote side, connected by a hose. The local
side is electrically closer to the PMI; the remote side is electrically further.

I/O devices can be connected to the PMI or to an I/O bus. A local device connects to
the PMI; a remote device connects to an I/O bus.

The following sections discuss Alpha I/O operations:

• Accesses to local I/O space are discussed in Section 8.2.

• Accesses to remote I/O space are discussed in Section 8.3.

InpuVQutput (I) 8-1



• Reads and writes to processor memory-like regions initiated by I/O devices, or
"DMAs", are discussed in Section 8.4.

• Processor interrupts requested by devices are discussed in Section 8.5.

• Bus-specific I/O accesses are discussed in Section 8.6.

8.2 Local I/O Space Access

Local I/O space locations may appear in either memory or non-memory-like regions.
Local I/O space locations which appear in memory regions may be cached subject to
the platform cache coherency scheme. See Chapter 5.

An Alpha platform need only support atomic quadword accesses. The
Alpha instruction architecture requires only quadword accesses. Processor
implementations may further restrict the access granularity of local I/O space. For
example, a given implementation could permit addressing of only cache blocks. To
support byte or word accesses to a local device, the device must be mapped into
a non-memory-like region with a sparse address space. The necessary mapping is
dependent on the implementation of the processor, cache, and PMI protocol. For
example, the four individual bytes of a longword device control register could be
mapped into the low order byte of each of four contiguous quadwords.

8.2.1 ReadlWrite Ordering

Access to local I/O space does not cause any implicit read/write ordering; explicit
barrier instructions must be used to ensure any desired ordering. Barrier
instructions must be used:

• Mter updating a memory-resident data structure and before writing a local I/O
space location to notify the device of the updates.

• Between multiple consecutive direct accesses to local I/O space, e.g. device control
registers, if those accesses are expected to be ordered at the device.

Again, note that implementations may cache not only memory-resident data
structures, but also local I/O space locations.

8.3 Remote I/O Space Access

Remote I/O space locations are accessed indirectly through a memory-resident
"mailbox" data structure. To post an access, the physical address of the mailbox is
written into a MailBox Pointer Register (MBPR) on a local bridge side. For remote
I/O space writes, the command and data are posted in the mailbox, and status is
returned. For remote I/O space reads, the command is posted in the mailbox, and
status and data are returned.

An Alpha system may have any number of local bridge sides. Each local side may
provide connections for up to 256 hoses. Each hose may connect to a single remote
side or may connect to multiple remote sides. A single remote side may connect to
one or more hoses. A bridge need not include a hose; the local and remote sides
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may be implemented as a single entity. A local side or an entire bridge may be
incorporated into a processor board.

8.3.1 Mailbox Posting
A remote I/O space access is defined by the contents of the mailbox structure. A
remote I/O space access is invoked by writing the base physical address of the
mailbox structure into the appropriate bridge MailBox Pointer Register (MBPR).
Each I/O bus may be associated with one and only one MBPR. A single MBPR may
be associated with one or more remote I/O buses and a single bridge may have
multiple MBPR registers. The MBPR appears in local I/O space.

The MBPR is accessed only with the ST(LC instruction. Flow control is achieved
by the associated (per-processor) lock_Hag as follows:

post_mbX:

<derive PA of mailbox and load Rl>
<derive VA of MBPR and load RO>
STQ C Rl,RO
BEQ- Rl,wait_post_mbx

wait post mbx:
- <hackoff delay>

BR post_mbx

If the ST(LC lock_flag is set, the mailbox has been posted to the bridge. If the
ST(LC lock_flag is clear, all MBPR resources are occupied; the MBPR write must be
retried. In multi-processor configurations, this use of the ST(LC instruction affects
only the local per-processor lock_Hag. The state of the per-processor lock_flag of
other processors is unchanged.

HARDWARE/SOFTWARE IMPLEMENTATION NOTE
The use above of the ST(LC instruction is specific to the
first Alpha implementations. Future implementations
may use a different access mechanism.

A given remote I/O space location is uniformly accessible to all processors in a multi­
processor configuration. A given hose, hence a given remote I/O bus, may be accessed
via an MBPR at the same physical address from any processor. A software thread
need have no knowledge of the specific processor on which it is executing.

A FIFO structure may be implemented behind each MBPR register to permit the
posting of multiple outstanding mailbox operations. A set of processor-specific
request queues may be implemented behind each MBPR register to ensure fair access
to all processors. Any such FIFO or queue is invisible to software.

Bridge implementations must protect against lockout and ensure fair MBPR access
to all processors in a multi-processor configuration. Multiple writes to an MBPR by
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a single processor must not be able to cause the starvation or timeout of competing
writes to the same MBPR by other processors.

Multiple software threads executing at different IPLs on a single processor may
cause starvation or timeout of the lower IPL threads. IPL levels are inherently
unfair.

Bridge implementations must gua~antee forward progress on mailbox operations
regardless of direct memory access ,or interrupt load.

8.3.2 Mailbox Pointer Register (MBPR)
The MBPR format is shown in Figure 8-2 and described in Table 8-1.

Figure 8-2: Mailbox Pointer Register Format

1 S_BZ .........I M_ai_lb_OX_A_d_dr_e_ss_<4_7_:a_> ----'-I_S_BZ_I

Table 8-1: Mailbox Pointer Regi~ter Format
Bit(s) Description

<5:0>

<47:6>

<63:48>

SBZ
Physical address of the mailbox structure. The mailbox structure must be at
least 64-byte aligned.

SBZ
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8.3.3 Mailbox Structure
The mailbox is a 64-byte, naturally aligned, data structure. The format is shown in
Figure 8-3 and described in Table 8-2.

Figure 8-3: Mailbox Data Structure Format

63 5655 4849 4039 32313029 2 1 0

SBZ I HOSE
I

SBZ
I

MASK I~BI CMD

RBADR

WDATA

UNPREDICTABLE

UNPREDICTABLE I RDATA

ED
Status RO

RN

UNPREDICTABLE

UNPREDICTABLE

:A

:A+8

:A+16

:A+24

:A+32

:A+40

:A+48

:A+56

:A+64

Table 8-2: Mailbox Data Structure Format
Offset Bit(s) Name Description

o <29:0>

<30>

<31>

<39:32>

<47:40>

<55:48>

CMD

B

W

MASK

SBZ

HOSE

Remote bus command. Controls the actual remote bus
operation and can include fields such as address only,
address width, and data width. See Section 8.6.2.

Remote bridge access. If set, the command is a special
or diagnostic command directed to the remote side. See
Section 8.6.3.

Write access. If set, the remote bus operation is a write.

Disable Byte Mask. Disables bytes within the remote bus
address. Mask bit <i> set causes the byte to be disabled;
e.g. data byte <i> will NOT be written to the remote
address. See Section 8.6.2.

Hose. Specifies the remote bus to be accessed. Bridges may
directly connect to up to 256 remote buses per hose.

•

8

<63:56>

<63:0>

SBZ

RBADR Remote Bus Address. Contains the target address of the
device on the remote bus. See Section 8.6.2.
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Table 8-2 (Cont.): Mailbox Data Structure Format
Offset Bit(s) Name Description

DON

ERR

16

24

32

40

48

56

<63:0>

<63:0>

<31:0>

<63:32>

<0>

<1>

<63:2>

<63:0>

<63:0>

WDATA Write Data. For write commands, contains the data to be
written. For read commands, the field is not used by the
bridge.

UNPREDICTABLE.

RDATA Read, Data. For read commands, contains the data
returned. For write data commands, the field is
UNPREDICTABLE.

UNPREDICTABLE.

Done. Indicates that the ERR, STATUS, and RDATA fields
are valid; that the mailbox structure may be safely modified
by host software.

Error. If set, indicates that an error was encountered
and that the STATUS field contains additional information.
Valid only when DON is set. See Sections 8.3.7 and 8.3.8.

STATUS Operation completion status. Contains information specific
to the bridge implementation. Valid only when DON is set.

The bridge specification must include a definition of this
field. See Sections 8.3.7 and 8.3.8.

UNPREDICTABLE.

UNPREDICTABLE.

8.3.4 Mailbox Access Synchronization
The ownership of the mailbox structure is exchanged between the posting software
and the servicing bridge. The first 3 quadwords must be initialized by the software
prior to posting the mailbox to the bridge. Once posted, the contents of the mailbox
are owned by the bridge and are UNPREDICTABLE until the DON bit is set by
the bridge. If the mailbox contents are altered by software prior to the DON
bit becoming set, the action of the bridge and the resulting mailbox contents are
UNPREDICTABLE. Once the DON bit has been set by the bridge, the mailbox
contents are again owned by the software and must not be altered by the bridge.

Software use of the DON bit for synchronization is encouraged. If the DON bit is set
in the mailbox at the time that the mailbox is posted, it is not possible to determine
when the mailbox structure may be safely altered nor is it possible to determine
when any returned information (RDATA or STATUS or ERR) becomes valid. Use of
a static, not dynamically altered, mailbox structure is recommended only for true
write-and-run of static data such as setting a "go" bit in a device control register.

Note that the DON bit set does NOT guarantee that a remote I/O space write has
actually completed at the device. The DON bit may be set by any intervening bridge.
See Section 8.3.8.
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The servicing bridge ignores the contents of the DON, ERR, and STATUS fields;
these fields are treated as write only.

8.3.5 Mailbox ReadlWrite Ordering

Mailbox accesses to a given remote bus are ordered by the MBPR and bus bridge.
After posting in the MBPR, the ordering must be retained by the bridge. The bridge
may reorder operations only across different hoses. Mailboxes targeted to different
buses connected to the same local bridge side may occur in a sequence different from
the posting order.

Mailbox operations are implicitly ordered when one and only one MBPR is used to
access a given remote I/O bus. In general, there is only one path to a given remote
I/O bus via a unique hose and remote side. In such configurations, the hardware
must retain the ordering of mailbox accesses. In configurations in which there are
multiple paths, software should order mailbox operations by using one and only one
MBPR to access a given remote bus.

8.3.6 Remote I/O Space Access Granularity
The granularity of remote I/O space accesses is not symmetric:

• Mailbox reads are defined to bytes, words, and longwords.

• Mailbox writes are defined to bytes, words, longwords and quadwords.

Mailbox writes were optimized to permit efficient and atomic writes of a full 48-bit
Alpha physical address.

Not all bus bridges will support all possible remote I/O space access granularities.
The supported granularity will be determined by the capabilities of the remote bus
and the remote bus side.

The MASK and RBADR fields are determined by the addressing and masking modes
of the remote I/O bus. Invalid MASK fields, or invalid combinations of MASK and
RBADR fields, will not cause ERR to be set. Error checking (if any) is done on
the remote (I/O bus) side of the bridge; the local (PMI) side of the bridge employs
disconnected writes. If error checking is done by the remote side of the bridge, the
error is reported by an error interrupt.

On mailbox write accesses, bridges (and chains of bridges) deliver the valid WDATA,
RBADR, and MASK information to the remote I/O device. The valid data may be
encapsulated, along with invalid data, into larger data packets; the invalid data may
simply be invalid fields from the WDATA quadword. For some remote I/O buses, the
RBADR and MASK fields may be truncated or otherwise mapped.

On mailbox read accesses, bridges (and chains of bridges) deliver the valid RBADR,
MASK, and command information to the remote I/O device. The bridge has no
knowledge of the intended size of the read data - this is known only to the requesting
software and the device, which are assumed to agree. The valid data may be
encapsulated, along with invalid data, into larger data packets. Again, for some
remote I/O buses, the RBADR and MASK fields may be truncated or otherwise
mapped.
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8.3.7 Remote 1/0 Space Read Accesses

The bridge must return status and data for remote 110 space reads. When the
mailbox DON bit is set by the bridge, the operation has completed, and the ERR
and STATUS fields may be examined. If the ERR bit is not set, the requested
remote bus operation was successful and valid data was returned. If the ERR bit is
set, an error was encountered and the STATUS field contains information as to the
nature of the error.

Errors encountered on remote I/O space read accesses may also be reported by bridge
error interrupts. The bridge side which encounters the error requests the interrupt.
Thus, a non-existent hose error may be reported by the local (PMI) side of the bridge,
while a non-existent remote bus address error is reported by the remote (I/O bus)
side of the bridge.

Remote 110 space read accesses may be performed as follows:

remote read:

<load Rm with VA of mailbox>
<ensure mailbox no longer in use by bridge>
<derive and load mailbox CMD, MASK, HOSE, and RBADR fields>

; Clear DON/ERR/STATUS fieldsR31, 40(Rm)STQ

MB

post_mbx:
<derive PA of mailbox and load Rl>
<derive VA of MBPR and load RO>
STQ C R1,RO
BEQ- R1,wait_post_mbx

RO, #1, RO
RO, read err

wait mbxdone:
LDQ RO, 40(Rm)
BLBS RO, check err
<backoff delay>
BR wait mbxdone

check err:
SRL
BLBS

Fetch STATUS/DON
Branch on DON set

MB

LDQ RO, 32(Rm) Fetch RDATA

read err:
<handle error>

wait post mbx:
- <hackoff delay>

BR postytbx
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Notes:

1. The mailbox is no longer in use by a bridge whenever the DON bit has been set
by the servicing bridge or is newly allocated.

2. The first barrier is required to ensure that the bridge will read the mailbox
contents as updated by the processor. Any pending processor writes to the
mailbox will have completed by the time that the load of the MBPR has
completed.

3. The second barrier is required to ensure that the processor will read the mailbox
contents as updated by the bridge. The returned data is accessed only after the
DON bit is observed to be set by the servicing bridge.

4. Software need not wait for the DON bit to become set.

5. The mailbox RDATA is valid only when DON is set and ERR is clear.

8.3.8 Remote I/O Space Write Accesses
The bridge need not return status for remote I/O space writes. When the mailbox
DON bit is set by the bridge, the bridge has completed access to the mailbox
structure. The ERR bit and STATUS fields are testable. The actual write operation
need NOT have completed at the device and the ERR bit and STATUS fields can
indicate success (be cleared) even though success is not ensured. However, the ERR
bit and STATUS fields, if set, do accurately report an error condition.

The actual completion of a remote I/O space write access can only be observed
indirectly. Either the appropriate device state must be read hack, or the device must
update a memory-resident data structure and/or request an interrupt. Remote I/O
space read access(es) may be posted anytime after posting the write access. Because
mailbox operations to the same remote bus are guaranteed to be ordered, the read
is guaranteed to occur after the write.

Errors encountered on remote 110 space write accesses are reported by bridge error
interrupts. The bridge side which encounters the error requests the interrupt. Thus,
a non-existent hose error may be reported by the local (PMI) side of the bridge, while
a non-existent remote bus address error is reported by the remote (110 bus) side of
the bridge.

Remote 110 space write accesses may be performed as follows:

remote write:

<load Rm with VA of mailbox>
<ensure mailbox no longer in use by bridge>
<derive and load mailbox CMD, MASK, HOSE, and RBADR fields>
STQ R31, 40(RM) ; Clear DON/ERR/STATUS

MB

post_mbx:
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<derive PA of mailbox and load Rl>
<derive VA of MBPR and load RO>
STQ C Rl,RO
BEQ- Rl,wait_post_mbx

wait_post_mbx:

<backoff delay>
BR post_mbx

Notes:

1. The mailbox is no longer in use by a bridge whenever the DON bit has been set
by the servicing bridge or is newly allocated.

2. The barrier is required to ensure that the bridge will read the mailbox contents
as updated by the processor. Any pending processor writes to the mailbox will
have completed by the time that the load of the MBPR has completed.

3. If the mailbox data is static, e.g. used to set a "go" bit in a device control
register, the mailbox may be posted without regard to the state of the DON
bit. Barriers are not required each time a static mailbox is posted, however a
barrier is required after the mailbox contents are initialized and prior to its first
use.

8.4 Direct Memory Accesss (DMA)

8.4.1 Access Granularity

A device or bridge side access to a memory-like region, or "DMA", is taken to be
atomic when:

• It is not possible for a single device read DMA of a data structure which is
updated by a single processor write to observe a partial update of that structure.

• It is not possible for a processor reading a data structure which is updated by a
single device write DMA to observe a partial update of that structure.

A processor treats any memory-resident data structures which are shared with
an I/O device as though the structures were shared with another processor. The
processor must follow the guidelines given in Common Architecture, Chapter 5.
Specifically, barrier instructions must be used:

1. Mer updating a shared memory-resident data structure and before setting an
associated flag indicating that the data structure is valid.

2. Mer observing a newly updated flag, and prior to accessing the associated shared
memory-resident data structure.

The atomic DMA size guaranteed to a local device is a function of the PMI protocol.
The minimum size is an aligned hexword. Locally connected devices must obey the
PMI protocol and may participate in the memory cache coherency policy. See the
guidelines in Common Architecture, Chapter 5.
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The atomic DMA size guaranteed to a remote device is a function of the remote I/O
bus protocol. Remote devices are guaranteed atomic access to aligned hexwords or
the remote I/O bus transfer burst size, whichever is smaller. It is the responsibility
of the local bridge side to ensure the atomicity of the device DMA.

Larger atomic DMA granularity permits optimization of device control protocols.
When a data structure and the associated flag are contained within a single aligned
hexword, the device can update both simultaneously with a single write DMA.
Similarly, the device may access both the data structure and the associated flag with
a single read DMA. If the flag is valid, the data structure contains valid information;
an additional read DMA is not necessary to obtain the valid data.

HARDWARE/SOFTWARE IMPLEMENTATION NOTE
The hexword write DMA size was chosen as the smallest
cache block size of the first Alpha implementations.

8.4.2 ReadlWrite Ordering

DMAs may be divided into the "control" stream and the "data" stream. These
streams differ in their ordering properties.

• Control stream accesses are guaranteed to be ordered. An implicit barrier occurs
before and after each access. Control stream ordering must be preserved by all
bridges between a given remote I/O device and processor memory.

• Data stream DMAs may be arbitrarily reordered if permitted by the protocol of
that I/O bus. No implicit barriers are associated with this stream.

A device may use control stream DMAs to ensure ordering of the data stream DMAs
and of interrupt requests as seen by a processor or other device sharing the same
memory-resident structures. Data stream DMAs must not be reordered with respect
to control stream DMAs. Interrupt requests must not be reordered with respect to
control stream DMAs.

Control stream DMAs must be used:

• As the last DMA issued to update a memory-resident data structure before
requesting a processor interrupt to notify the processor of the update. This DMA
ensures that any previously issued data stream DMAs become visible to the
processor prior to the interrupt.

• To update any pointer or other linkage between memory-resident data structures.
Consider a status buffer which is located by a status ring pointer. The status
buffer may be updated with either a control or data stream DMA. The ring pointer
must be updated with a control stream DMA which is issued after the last DMA
used to update the status buffer.

A bridge must preserve the ordering of control stream DMAs regardless of whether
the accesses are reads or writes.

The division of direct memory accesses into the control stream and the data stream is
the responsibility of the device. I/O bus protocols which do not permit the separation
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of control and data stream DMAs must preserve the ordering of all DMAs and
interrupt requests; all DMAs are considered to be control stream DMAs. Similarly,
hose protocols which do not permit the separation of control and data stream DMAs
must preserve the ordering of all DMAs and interrupt requests.

Bridge implementations must guarantee forward progress on all DMA operations.

8.4.3 Device Address Translation

110 devices use only physical addresses; devices must not access page tables for
the purpose of address translation. Devices are independent of any virtual memory
translation scheme and processor page size.

8.5 Interrupts

An interrupt request from an 110 device consists of an interrupt priority level and
an interrupt vector. Device interrupt requests are defined to be priorities 20 to 23.
The interrupt vector identifies the appropriate interrupt service routine; the starting
address of the interrupt service routine is obtained by using the vector as an offset
from the base of the System Control.Block (SCB).

All bridge implementations must maintain both the temporal order and relative
priority of device interrupts. A bridge must not expedite a lower priority request if
a higher priority request has been received. With one exception, a bridge must not
reorder two interrupt requests at the same priority level. A bridge is permitted to
expedite delivery of a fatal bridge error interrupt; this interrupt must be at IPL 23
and may take precedence over any IPL 23 device interrupts.

A bridge may prefetch the interrupt vector from an 110 device to reduce the processor
overhead associated with interrupt dispatch. Vector prefetch reduces the processor
latency necessary to dispatch to the interrupt service routine by reducing the delay
associated with the delivery of the interrupt vector to the processor.

When a bridge delivers an interrupt from an 110 device, any pending control stream
DMA writes issued by the device must have become visible to the processors. Note
that due to the ordering of control stream DMAs, any data stream DMAs writes
prior to the last pending control stream DMA must also have become visible to the
processors.

In multi-processor configurations, interrupts may be directed to a subset of the
processors in the configuration. Such targetting is implementation specific.

8.6 I/O Bus-Specific Mailbox Usage

The following sections pertain to 110 bus-specific mailbox usage.

8.6.1 Mailbox Field Checking
Bridge sides check only implemented functions. It is the responsibility of the posting
software to ensure that the mailbox data structure fields are valid and that the
structure is posted correctly.
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1. Local sides need not check the MASK, B, CMD, RBADR, or WDATA fields.

2. Local sides which connect to a single hose need not check the HOSE field.

3. Local sides need not pass the HOSE or W fields to the remote bridge side.

4. Remote bridge sides which do not implement masking need not check the MASK
field.

5. There is no consistency checking between the Wand CMD fields. If the W
bit is set and the CMD field indicates a read, the result is UNPREDICTABLE.
Similarly, if the W bit is clear and the CMD field indicates a write, the result is
UNPREDICTABLE.

6. Remote bridge sides check only implemented CMD and RBADR bits.

8.6.2 CMD Field

The CMD field consists of two subfields:

• A remote I/O bus specific subfield.

This subfield is common to all Alpha systems and contains the controls for a given
remote bus. The common subfield must be backward compatible; all systems
which connect to a given I/O bus share this subfield.

• A system-specific subfield.

This subfield is specific to each Alpha system and contains the controls for a
given bridge implementation or system-specific diagnostic functions.

The size of each is specific to the remote I/O bus. The bridge specification must
include the definitions of all valid commands. This partition promotes software
portability. A given device driver uses the same CMD for a given type of device
access, regardless of the platform. Diagnostic software can also interpret the
common field without regard to the platform on which the mailbox was posted.

8.6.3 Special Commands

The special "WHO_ARE_YOU" command (W=O, B=l, CMD=O) is common to all
bridge implementations. WHO_ARE_YOU is used to determine the type of remote
bridge side. In response to a mailbox operation with a WHO_ARE_YOU command
and RBADR of 0, the remote bridge side returns a unique remote bus side identifier.
All other commands are specific to the type of remote bus and independent of the
bridge implementation.
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Part II OpenVMS Alpha Software

This section describes how the OpenVMS operating
system relates to the Alpha architecture and
contains the following chapters:

1. Introduction to OpenVMS Alpha

2. OpenVMS PALcode Instruction Descriptions

3. OpenVMS Memory Management

4. OpenVMS Process Structure

5. OpenVMS Internal Processor Registers

6. OpenVMS Exceptions, Interrupts, and Machine
Checks
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Chapter 1

Introduction to OpenVMS Alpha (II)

The goals of this design are to provide a hardware implementation independent
interface between OpenVMS and the hardware. Further, the design provides the
needed abstractions to minimize the impact between OpenVMS and the different
hardware implementations. Finally, the design must contain only that overhead
necessary to satisfy those requirements, while still supporting high-performance
systems.

1.1 Register Usage

Besides those registers described in Part I, Common Architecture, OpenVMS defines
the registers described in the following sections.

1.1.1 Processor Status
The Processor Status (PS) is a special register that contains the current status of the
processor. It can be read by the CALL_PAL RD_PS instruction. The software field
(PS<SW» can be written by the CALL_PAL WR_PS_SW routine. See Chapter 6 for
a description of the PS register. )

1.1.2 Stack Pointer (SP)
Integer register R30 is the Stack Pointer (SP).

The SP contains the address of the top of the stack in the current mode.

Certain PALcode instructions, such as CALL_PAL REI, use R30 as an implicit
operand. During such operations, the address value in R30, interpreted as an
unsigned 64-bit integer, decreases (predecrements) when items are pushed onto the
stack, and increases (postincrements) when they are popped from the stack. After
pushing (writing) an item to the stack, SP points to that item.

1.1.3 Internal Processor Registers (IPRs)

The IPRs provide an architected mapping to internal hardware or provide other
specialized uses. They are available only to privileged software through PALcode
routines and allow OpenVMS to interrogate or modify system state. The IPRs are
described in Chapter 5.
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Chapter 2

OpenVMS PALcode Instruction Descriptions (II)

This chapter describes the PALcode instructions that are implemented for the
OpenVMS Alpha environment. The PALcode instructions are a set of unprivileged
and privileged CALL_PAL instructions that are used to match specific operating
system requirements to the underlying hardware implementation.

For example, privileged PALcode instructions switch the hardware context
of a process structure. Unprivileged PALcode instructions implement the
uninterruptable queue operations. Also, PALcode instructions provide standard
interrupt and exception reporting mechanisms that are independent of the
underlying hardware implementation.

Table 2-1 lists all the unprivileged and privileged OpenVMS PALcode instructions
and the section in this chapter in which they are described.

Table 2-1: OpenVMS PALcode Instructions

Unprivileged OpenVMS PALcode Instructions

Mnemonic Operation Section

AMOVRM Atomic move register/memory Section 2.4

AMOVRR Atomic move register/register Section 2.4

BPT Breakpoint Section 2.1

BUGCHK Bugcheck Section 2.1

CHME Change mode to executive Section 2.1

•CHMK Change mode to kernel Section 2.1

CHMS Change mode to supervisor Section 2.1

CHMU Change mode to user Section 2.1

GENTRAP Generate software trap Section 2.1

1MB I-stream memory barrier Common Architecture, Chap-
ter 6

INSQxxx Insert in specified queue Section 2.3

PROBER Probe read access Section 2.1

PROBEW Probe write access Section 2.1

RD_PS Read processor status Section 2.1
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Table 2-1 (Cont.): OpenVMS PALcode Instructions

Unprivileged OpenVMS PALcode Instructions

Mnemonic Operation Section

READ_UNQ

REI

REMQxxx

RSCC

SWASTEN

WRITE_UNQ

WR_PS_SW

Read unique context

Return from exception or interrupt

Remove from specified queue

Read system cycle counter

Swap AST enable

Write unique context

Write processor status software field

Section 2.5

Section 2.1

Section 2.3

Section 2.1

Section 2.1

Section 2.5

Section 2.1

Privileged OpenVMS PALcode Instructions

Mnemonic Operation Section

CFLUSH

DRAINA

HALT

LDQP

MFPR

MTPR

STQP

SWPCTX

Cache flush

Drain aborts

Halt processor

Load quadword physical

Move from processor register

Move to processor register

Store quadword physical

Swap privileged context

Section 2.6

Common Architecture, Chap­
ter 6

Common Architecture, Chap­
ter 6

Section 2.6

Section 2.6

Section 2.6

Section 2.6

Section 2.6
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2.1 Unprivileged General OpenVMS PALcode Instructions

The general unprivileged instructions in this section, together with those in Sections
2.3, 2.4, and 2.5, provide support for the underlying OpenVMS Alpha model.

Table 2-2: Unprivileged General OpenVMS PALcode Instruction Summary
Mnemonic Operation

BPT

BUGCHK

CHME

CHMK

CHMS

CHMU

GENTRAP

1MB

PROBER

PROBEW

RD_PS

REI

RSCC

SWASTEN

WR_PS_SW

Breakpoint

Bugcheck

Change mode to executive

Change mode to kernel

Change mode to supervisor

Change mode to user

Generate software trap

I-stream memory barrier

See Common Architecture, Chapter 6

Probe read access

Probe write access

Read processor status

Return from exception or interrupt

Read system cycle counter

Swap AST enable

Write processor status software field
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2.1.1 Breakpoint

Format:

Operation:

!PALcode format

{initiate BPT exception with new_mode=kernel}

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

Breakpoint

Description:

The BPT instruction is provided for program debugging. It switches to Kernel mode
and pushes R2..R7, the updated PC, and PS on the Kernel stack. It then dispatches
to the address in the Breakpoint SCB vector. See Section 6.3.3.2.1.
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2.1.2 Bugcheck

Format:

Operation:

!PALcode format

{initiate BUGCHK exception with new_mode=kernel}

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

CALL_PAL BUGCHK Bugcheck

Description:

The BUGCHK instruction is provided for error reporting. It switches to Kernel mode
and pushes R2..R7, the updated PC, and PS on the Kernel stack. It then dispatches
to the address in the Bugcheck SCB vector. See Section 6.3.3.2.2.
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2.1.3 Change Mode Executive

Format:

Operation:

!PALcode format

tmpl +- MINU( 1, PS<CM»
{initiate CHME exception with new_mode=tmpl}

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

Change Mode to Executive

Description:

The CHME instruction lets a process change its mode in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved,
the new pointer is loaded. R2..R7, PC and PS are pushed onto the selected stack.
The saved PC addresses the instruction following the CHME instruction. Registers
R22, R23, R24, and R27 are available for use by PALcode as scratch registers. The
contents of these registers are not preserved across a CHME.
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2.1.4 Change Mode to Kernel

Format:

!PALcode format

Operation:

{initiate CHMK exception with new_mode=kernel}

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

Change Mode to Kernel

Description:

The CHMK instruction lets a process change its mode to kernel in a controlled
manner.

A change in mode also results in a change of stack pointers: the old pointer is saved,
the new pointer is loaded. R2..R7, PC, and PS are pushed onto the kernel stack.
The saved PC addresses the instruction following the CHMK instruction. Registers
R22, R23, R24, and R27 are available for use by PALcode as scratch registers. The
contents of these registers are not preserved across a CHMK.
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2.1.5 Change Mode Supervisor

Format:

Operation:

!PALcode format

tmpl +- MINU( 2, PS<CM»
{initiate CHMS exception with new_mode=tmpl}

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

Change Mode to Supervisor

Description:

The CHMS instruction lets a process change its mode in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved,
the new pointer is loaded. R2..R7, PC, and PS are pushed onto the selected stack.
The saved PC addresses the instruction following the CHMS instruction.
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2.1.6 Change Mode User

Format:

Operation:

!PALcode format

{initiate CHMU exception with new_mode=PS<CM>}

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

Description:

Change Mode to User

The CHMU instruction lets a process call a routine via the change mode mechanism.

R2..R7, PC, and PS are pushed onto the current stack. The saved PC addresses the
instruction following the CHMU instruction.

The CALL_PAL CHMU instruction is provided for VAX compatibility only.
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2.1.7 Generate Software Trap

Format:

!PALcode format

Operation:

{initiate GENTRAP exception with new mode=kernel}
! R16 contains the value encoding of-the software trap

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

CALL_PAL GENTRAP Generate Software Trap

Description:

The GENTRAP instruction is provided for reporting runtime software conditions. It
switches to Kernel mode, and pushes R2...R7, the updated PC and PS on the Kernel
stack. It then dispatches to the address in the GENTRAP SCB Vector. See Section
Section 6.6.

The value in RI6 identifies the particular software condition that has occurred. The
encoding for the software trap values is given in the software calling standard for
the system.
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2.1.8 Probe Memory Access

Format:

!PALcode format

Operation:

RI6 contains the base address
RI7 contains the signed offset
RI8 contains the access mode
RO receives the completion status

+- 1 if success
+- 0 if failure

first +- RI6
last +- {RI6+RI7}

IF RI8<1:0> GTU PS<CM> THEN
probe_mode +- RI8<1:0>

ELSE
probe_mode +- PS<CM»

IF ACCESS(first, probe_mode) AND ACCESS(last, probe_mode) THEN
RO +- 1

ELSE
RO +- 0

Exceptions:

Translation Not Valid

Instruction mnemonics:

PROBER

PROBEW

Probe for Read Access

Probe for Write Access I
Description:

The PROBE instruction checks the read or write accessibility of the first and last
byte specified by the base address and the signed offset; the bytes in between are
not checked.

System software must check all pages between the two bytes if they are to be
accessed. If both bytes are accessible, PROBE returns the value 1 in RO; otherwise,
PROBE returns o. The Fault On Read and Fault On Write PTE bits are not checked.
A Translation Not Valid exception is signaled only if the the mapping structures can
not be accessed. A Translation Not Valid exception is signaled only if the first or
second level PTE is invalid.
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The protection is checked against the less privileged of the modes specified by
R18<1:0> and the Current Mode (PS<CM». See Section 6.2 for access mode
encodings.

PROBE is only intended to check a single datum for accessibility. It does not check
all intervening pages because this could result in excessive interrupt latency.
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2.1.9 Read Processor Status

Format:

Operation:

RO +- PS

Exceptions:

None

Instruction mnemonics:

Read Processor Status

!PALcode format

Description:

The RD_PS instruction returns the Processor Status (PS) in register RO. The
Processor Status is described in Section 6.2. The PS<SP_ALIGN> field is always
a zero on a RD_PS.

OpenVMS PALcode Instruction Descriptions (II) 2-13

I



2.1.10 Return from Exception or Interrupt

Format:

!PALcode format

Operation:

! See Chapter 6
for information on interrupted registers

Copy new ps
Clear cm field
Clear sp align field
Clear Software Field
Clear except/inter/mcheck flag

saved R2
saved R3
saved R4
saved RS
saved R6
saved R7
new PC
new PS

Get
Get
Get
Get
Get
Get
Get
Get

IF SP<S:O> NE 0 THEN
{illegal operand }

tmp1.- (SP)
tmp2.- (SP+8)
tmp3.- (SP+16)
tmp4.- (SP+24)
tmpS +-- (SP+32)
tmp6.- (SP+4 0 )
tmp7.- (SP+48)
tmp8.- (SP+S6)

ps chk.- tmp8
ps- chk<cm>.- 0
ps-chk<sp align>.- 0
ps- chk<sw>.- 0
intr flag +-- 0
{ clear lock_flag}

! If current mode is not kernel check the new ps is valid.
IF {ps<cm> NE O} AND

{{tmp8<cm> LT ps<cm>} OR {ps_chk NE O}} THEN
BEGIN
{illegal operand}

END

sp +- {sp + 8*8} OR tmp8<sp align>
IF {internal registers for stack pointers} THEN

CASE ps<cm> BEGIN
[ 0 ]: ipr ksp +- sp
[ 1 ]: ipr- esp +-- sp
[ 2 ]: ipr- ssp.- sp
[3]: ipr=usp +-- sp

ENDCASE
CASE tmp8<cm> BEGIN

[0]: sp.- ipr ksp
[1]: sp.- ipr-esp
[ 2 ]: sp.- ipr-ssp
[3]: sp +-- ipr=usp

ENDCASE
ELSE

(pcbb + 8*ps<cm» +-- sp
sp +-- (pcbb + 8*tmp8<cm»

ENDIF
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R2 +- tmp1
R3 +- tmp2
R4 +- tmp3
R5 +- tmp4
R6 +- tmp5
R7 +- tmp6
PC +- tmp7
PS +- tmp8 <12:00>

{Initiate interrupts or AST interrupts that are now pending}

Exceptions:

Access Violation

Fault on Read

Illegal Operand

Kernel Stack Not Valid Halt

Translation Not Valid

Instruction mnemonics:

Return from Exception or Interrupt

Description:

The REI instruction pops the PS, PC, and saved R2...R7 from the current stack and
holds them in temporary registers.

The new PS is checked for validity and consistency. If it is invalid or inconsistent,
an illegal operand exception occurs; otherwise the operation continues. A kernel
to nonkernel REI with a new PS<IPL> not equal to zero may yield UNDEFINED
results.

The current stack pointer is then saved and a new stack pointer is selected according
to the new PS<CM> field. R2 through R7 are restored using the saved values held in
the temporary registers. A check is made to determine if an AST or other interrupt
is pending (see Section 6.7.6).

If the enabling conditions are present for an interrupt or AST interrupt at the
completion of this instruction, the interrupt or AST interrupt occurs before the next
instruction.
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When an REI is issued, the current stack must be writable from the current mode
or an Access Violation may occur.

IMPLEMENTATION NOTE
This is necessary so that an implementation can choose
to clear the lock_flag by doing a STx_C to above the top­
of-stack after popping PS, PC, and saved R2..R7 off the
the current stack.
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2.1.11 Read System Cycle Counter

Format:

!PALcode format

Operation:

RO +- {System Cycle Counter}

Exceptions:

None

Instruction mnemonics:

Read System Cycle Counter

Description:

The RSCC instruction writes register RO with the value of the system cycle counter.
This counter is an unsigned 64-bit integer that increments at the same rate as the
process cycle counter. The cycle counter frequency, which is the number of times
the system cycle counter gets incremented per second rounded to a 64-bit integer, is
given in the HWRPB.

The system cycle counter is suitable for timing a general range of intervals to within
10% error and may be used for detailed performance characterization. It is required
on all implementations. SCC is required for every processor, and each processor in
a multiprocessor system has its own private, independent sec.

Notes:

1. Processor initialization starts the SCC at O.

2. SCC is required for every processor and each processor in a multiprocessor system
has its own private, independent SCC.

3. SCC is monotonically increasing. On the same processor, the values returned
by two successive reads of sec must either be equal or the value of the second
must be greater (unsigned) than the first.

4. SCC ticks are never lost so long as the SCC is accessed at least once per each PCC
overflow period (2**32 PCC increments) during periods when the hardware clock
interrupt remains blocked. The hardware clock interrupt is blocked whenever
the IPL is at or above CLOCK_IPL or whenever the processor enters console I/O
mode from program I/O mode.
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5. The 64-bit SCC may be constructed from the 32-bit PCC hardware counter and
a 32-bit PALcode software counter. As part of the hardware clock interrupt
processing, PALcode increments the software counter whenever a PCC wrap is
detected. Thus, SCC ticks may be lost only when PALcode fails to detect PCC
wraps. In a machine where the PCC is incremented at a 1 nsec rate, this may
occur when hardware clock interrupts are blocked for greater than 4 seconds.

6. An implementation-dependent mechanism must exist to, when enabled, cause
the RSCC instruction, as implemented by standard PALcode, to always return
a zero in RO. This mechanism must be usable by privileged system software. A
similar mechanism must exist for RPCC. Implementations are allowed to have
just a single mechanism which when enabled causes both RSCC and RPCC to
return zero.
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2.1.12 Swap AST Enable

Format:

CALL_PAL SWASTEN

Operation:

RO +- ZEXT(ASTEN<PS<CM»)
ASTEN<PS<CM» +- R16<O>

{check for pending ASTs}

Exceptions:

None

Instruction mnemonics:

!PALcode format

CALL_PAL SWASTEN Swap AST Enable for Current Mode

Description:

The SWASTEN instruction swaps the AST enable bit for the current mode. The
new state for the enable bit is supplied in register R16<O> and previous state of the
enable bit is returned, zero extended, in RO.

A check is made to determine if an AST interrupt is pending (see Section 6.7.6.6).

If the enabling conditions are present for an AST interrupt at the completion of this
instruction, the AST occurs before the next instruction.
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2.1.13 Write Processor Status Software Field

Format:

Operation:

PS<SW> +- R16<1: 0>

Exceptions:

None

Instruction mnemonics:

!PALcode format

CALL_PAL WR_PS_SW Write Processor Status Software Field

Description:

The WR_PS_SW instruction writes the Processor Status software field (PS<SW»
with the low order two bits ofR16. The Processor Status is described in Section 6.2.
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2.2 OpenVMS Alpha Queue Data Types

The following sections describe the queue data types that are manipulated by the
OpenVMS queue PALcode. Section 2.3 describes the PALcode instructions that
perform the manipulation.

2.2.1 Absolute Longword Queues
A longword queue is a circular, doubly linked list. A longword queue entry is specified
by its address. Each longword queue entry is linked to the next with a pair of
longwords. A queue is classified by the type of link it uses. Absolute longword
queues use absolute addresses as links.

The first (lowest addressed) longword is the forward link; it specifies the address of
the succeeding longword queue entry. The second (highest addressed) longword is
the backward link; it specifies the address of the preceding longword queue entry.

A longword queue is specified by a longword queue header which is identical to a
pair of longword queue linkage longwords. The forward link of the header is the
address of the entry termed the head of the longword queue. The backward link of
the header is the address of the entry termed the tail of the longword queue. The
forward link of the tail points to the header.

An empty longword queue is specified by its header at address H, as shown in
Figure 2-1 If an entry at address B is inserted into an empty longword queue (at
either the head or tail), the longword queue shown in Figure 2-2 results. Figures
2-3, 2-4, and 2-5, respectively, illustrate the results of subsequent insertion of an
entry at address A at the head, insertion of an entry at address C at the tail, and
removal of the entry at address B.

2.2.2 Self-Relative Longword Queues
Self-relative longword queues use displacements from longword queue entries as
links. Longword queue entries are linked by a pair of longwords. The first longword
(lowest addressed) is the forward link; it is a displacement of the succeeding longword
queue entry from the present entry. The second longword (highest addressed) is the
backward link; it is the displacement of the preceding longword queue entry from
the present entry. A longword queue is specified by a longword queue header, which
also consists of two longword links.

An empty longword queue is specified by its header at address H. Since the longword
queue is empty, the self-relative links are zero, as shown in Figure 2-6.

Four types of operations can be performed on self-relative queues: insert at head,
insert at tail, remove from head, and remove from tail. Furthermore, these
operations are interlocked to allow cooperating processes in a multiprocessor system
to access a shared list without additional synchronization. A hardware-supported,
interlocked memory access mechanism is used to modify the queue header. Bit <0>
of the queue header is used as a secondary interlock and is set when the queue is
being accessed.
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If an interlocked queue CALL_PAL instruction encounters the secondary interlock
set, then, in the absence of exceptions, it terminates after setting RO to -1 to indicate
failure to gain access to the queue. If the secondary interlock bit is not set, then
it is set during the interlocked queue operation and is cleared upon completion of
the operation. This prevents other interlocked queue CALL_PAL instructions from
operating on the same queue.

If both the secondary interlock is set and an exception condition occurs, it is
UNPREDICTABLE whether the exception will be reported.

Figures 2-7, 2-8, and 2-9, respectively, illustrate the results of subsequent insertion
of an entry at address B at the head, insertion of an entry at address A at the tail,
and insertion of an entry at address C at the tail.

Figures 2-9, 2-8, and 2-7 (in that order) illustrate the effect of removal at the tail
and removal at the head.

Figure 2-1: Empty Absolute Longword Queue
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Figure 2-2: Absolute Longword Queue with One Entry
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Figure 2-3: Absolute Longword Queue with Two Entries
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Figure 2-4: Absolute Longword Queue with Three Entries

31 0

A

1::+4c

B

1::+4H

c

1

08
A :8+4

H

1:~+4B

OpenVMS PALcode Instruction Descriptions (II) 2-23

•



Figure 2-5: Absolute Longword Queue with Three Entries After Removing the Second
Entry
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Figure 2-6: Empty Self-Relative Longword Queue
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Figure 2-7: Self-Relative Longword Queue with One Entry
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Figure 2-8: Self-Relative Longword Queue with Two Entries
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Figure 2-9: self-Relative Longword Queue with Three Entries
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2.2.3 Absolute Quadword Queues
A quadword queue is a circular, doubly linked list. A quadword queue entry is
specified by its address. Each quadword queue entry is linked to the next with
a pair of quadwords. A queue is classified by the type of link it uses. Absolute
quadword queues use absolute addresses as links.

The first (lowest addressed) quadword is the forward link; it specifies the address of
the succeeding quadword queue entry. The second (highest addressed) quadword is
the backward link; it specifies the address of the preceding quadword queue entry.

A quadword queue is specified by a quadword queue header which is identical to a
pair of quadword queue linkage quadwords. The forward link of the header is the
address of the entry termed the head of the quadword queue. The backward link of
the header is the address of the entry termed the tail of the quadword queue. The
forward link of the tail points to the header.

OpenVMS PALcode Instruction Descriptions (II) 2-25

•



An empty quadword queue is specified by its header at address H, as shown in
Figure 2-10. If an entry at address B is inserted into an empty quadword queue (at
either the head or tail), the quadword queue shown in Figure 2-11 results. Figures
2-12, 2-13, and 2-14, respectively, illustrate the results of subsequent insertion of
an entry at address A at the head, insertion of an entry at address C at the tail, and
removal of the entry at address B.

2.2.4 Self-Relative Quadword Queues
Self-relative quadword queues use displacements from quadword queue entries
as links. Quadword queue entries are linked by a pair of quadwords. The
first quadword (lowest addressed) is the forward link; it is a displacement of the
succeeding quadword queue entry from the present entry. The second quadword
(highest addressed). is the backward link; it is the displacement of the preceding
quadword queue entry from the present entry. A quadword queue is specified by a
quadword queue header, which also consists of two quadword links.

An empty quadword queue is specified by its header at address H. Since the
quadword queue is empty, the self-relative links are zero, as shown in Figure 2-15.

Four types of operations can be performed on self-relative queues: insert at head,
insert at tail, remove from head, and remove from tail. Furthermore, these
operations are interlocked to allow cooperating processes in a multiprocessor system
to access a shared list without additional synchronization. A hardware-supported,
interlocked memory access mechanism is used to modify the queue header. Bit <0>
of the queue header is used as a secondary interlock and is set when the queue is
being accessed.

If an interlocked queue CALL_PAL instruction encounters the secondary interlock
set, then, in the absence of exceptions, it terminates after setting RO to -1 to indicate
failure to gain access to the queue. If the secondary interlock bit is not set, then
it is set during the interlocked queue operation and is cleared upon completion of
the operation. This prevents other interlocked queue CALL_PAL instructions from
operating on the same queue.

If both the secondary interlock is set and an exception condition occurs, it is
UNPREDICTABLE whether the exception will be reported.

Figures 2-16, 2-17, and 2-18, respectively, illustrate the results of subsequent
insertion of an entry at address B at the head, insertion of an entry at address
A at the tail, and insertion of an entry at address C at the tail.

Figures 2-18, 2-17, and 2-16, (in that order) illustrate the effect of removal at the
tail and removal at the head.
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Figure 2-10: Empty Absolute Quadword Queue
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Figure 2-11: Absolute Quadword Queue with One Entry
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Figure 2-12: Absolute Quadword Queue with Two Entries
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Figure 2-13: Absolute Quadword Queue with Three Entries
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Figure 2-15: Empty Self-Relative Quadword Queue

~ 0

I~-------:---------11::+8

2-28 OpenVMS Alpha Software (II)



Figure 2-16: Absolute Quadword Queue with One Entry
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Figure 2-17: Self-Relative Quadword Queue with Two Entries
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Figure 2-18: Self-Relative Quadword Queue with Three Entries
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2.3 Unprivileged OpenVMS Queue PALcode Instructions

The following unprivileged PALcode instructions perform atomic modification of the
queue data types that are described in Section 2.2.

Table 2-3: VAX Queue Palcode Instruction Summary
Mnemonic Operation

INSQHIL

INSQHILR

INSQHIQ

INSQHIQR

INSQTIL

INSQTILR

INSQTIQ

INSQTIQR

INSQUEL

INSQUEQ

REMQHIL

REMQHILR

REMQHIQ

REMQHIQR

REl\JIQTIL

REMQTILR

REMQTIQ

REMQTIQR

REMQUEL

REMQUEQ

Insert into longword queue at head, interlocked

Insert into longword queue at head, interlocked, resident

Insert into quadword queue at head, interlocked

Insert into quadword queue at head, interlocked, resident

Insert into longword queue at tail, interlocked

Insert into longword queue at tail, interlocked, resident

Insert into quadword queue at tail, interlocked

Insert into quadword queue at tail, interlocked, resident

Insert into longword queue

Insert into quadword queue

Remove from longword queue at head, interlocked

Remove from longword queue at head, interlocked, resident

Remove from quadword queue at head, interlocked

Remove from quadword queue at head, interlocked, resident

Remove from longword queue at tail, interlocked

Remove from longword queue at tail, interlocked, resident

Remove from quadword queue at tail, interlocked

Remove from quadword queue at tail, interlocked, resident

Remove from longword queue

Remove from quadword queue
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2.3.1 Insert Entry into Longword Queue at Head Interlocked

Format:

CALL_PAL INSQHIL

Operation:

!PALcode format

Check alignment
Release secondary interlock.

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location and
that the header and entry are valid 32 bit addresses

IF {R16<2:0> NE O} OR {R17<2:0> NE O} OR {R16 EQ R17} OR
{SEXT(R16<31:0» NE R16} OR {SEXT(R17<31:0» NE R17} THEN
BEGIN

{illegal operand exception}
END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (R16» Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} ! Already set
done +- STORE CONDITIONAL «R16) +- {TMPO OR Rl} )
N+- N-l

UNTIL {done EQ I} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} ! Retry exceeded

MB
tmpl +- SEXT(tmpO<31:0»
IF {tmpl<2:1> NE O} THEN BEGIN

BEGIN
(R16) +- tmpO
{illegal operand exception}

END

Check if following addresses can be written
without causing a memory management exception:

entry
header + tmpl

IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock.

(R16) +- tmpO
{initiate memory management fault}

END
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Forward link
Backward link
Successor back link

! All accesses can be done so enqueue the entry

tmp2 +- SEXT({RI6 - RI7}<31:0»
(RI7)<31:0> +- tmpl + tmp2
(R17 + 4)<31:0> +- tmp2
(R16 + tmpl + 4)<31:0> +- -tmpl - tmp2

MB

(RI6)<31:0> +- -tmp2

IF tmpl EQ 0 THEN
RO +- 1

ELSE
RO +- 0

END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

CALL_PAL INSQHIL

Forward link of header
Release lock

Queue was empty

Queue was not empty

Insert into Longword Queue at Head Interlocked

Description:

If the secondary interlock is clear, INSQHIL inserts the entry specified in Rl 7 into
the self-relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to a 1; else it is set to
a O. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. Before the insertion, the
processor validates that the entire operation can be completed. This ensures that if
a memory management exception occurs, the queue is left in a consistent state (see
Chapters 3 and 6). If the instruction fails to acquire the secondary interlock after
"N" retry attempts, then (in the absence of exceptions) R< 0> is set to a -1. The
value "N" is implementation dependent.
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2.3.2 Insert Entry into Longword Queue at Head Interlocked Resident

Format:

CALL_PAL INSQHILR !PALcode format

Operation:

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

•Queue was empty

Queue was not empty

Enqueue the entry
Forward link of entry.
Backward link of entry.
Successor back link

Forward link of header
! Release the lock

IF tmpl EQ 0 THEN
RO +- 1

ELSE
RO +- 0

END

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (RI6» Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE CONDITIONAL «RI6) +- {TMPO OR Rl} )
N+- N-l-

UNTIL {done EQ I} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmpl +- SEXT(tmpO<31:0»
tmp2 +- SEXT({RI6 - RI7}<31:0»
(RI7)<31:0> +- tmpl + tmp2
(R17 + 4)<31:0> +- tmp2
(R16 + tmpl + 4)<31:0> +- -tmpl - tmp2

MB
(RI6)<31:0> +- -tmp2

Exceptions:

Illegal Operand
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Instruction mnemonics:

CALL_PAL INSQHILR Insert Entry into Longword Queue
at Head Interlocked Resident

Description:

If the secondary interlock is clear, INSQHILR inserts the entry specified in Rl 7 into
the self-relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to a 1; else it is set to
a o. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of
exceptions) R< 0> is set to a -1. The value "N" is implementation dependent.

This instruction requires that the queue be memory resident and that the queue
header and elements are quadword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.
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2.3.3 Insert Entry into Quadword Queue at Head Interlocked

Format:

CALL_PAL INSQHIQ

Operation:

!PALcode format

Check Alignment
Release secondary interlock

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location

IF {RI6<3:0> NE O} OR {RI7<3:0> NE O} OR {R16 EQ R17} THEN
BEGIN
{illegal operand exception}

END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (RI6» Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE CONDITIONAL «R16) +- {TMPO OR Rl} )
N+- N-l-

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

IF {tmpl<3:1> NE O} THEN BEGIN
BEGIN

(RI6) +- tmpl
{illegal operand exception}

END

Check if following addresses can be written
without causing a memory management exception:

entry
1 header + tmpl
IF {all memory accesses can NOT be completed} THEN

BEGIN 1 Release secondary interlock
(R16) ~ tmpl
{initiate memory management fault}

END
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Forward link
Backward link
Successor back link

! All accesses can be done so enqueue the entry
tmp2 +- R16 - R17
(R17) +- tmpl + tmp2
(R17 + 8) +- tmp2
(R16 + tmpl + 8) +- -tmpl - tmp2

MB

(R16) +- -tmp2

IF tmpl EQ 0 THEN
RO +- 1

ELSE
RO +- 0

END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

CALL_PAL INSQHIQ

! Forward link of header
! Release the lock.

Queue was empty

Queue was not empty

Insert into Quadword Queue at Head Interlocked

Description:

If the secondary interlock is clear, INSQHIQ inserts the entry specified in R1 7 into
the self-relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to a 1; else it is set to
a O. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. Before the insertion, the
processor validates that the entire operation can be completed. This ensures that if
a memory management exception occurs, the queue is left in a consistent state (see
Chapters 3 and 6). If the instruction fails to acquire the secondary interlock after
"N" retry attempts, then (in the absence of exceptions) R< 0> is set to a -1. The
value "N" is implementation dependent.
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2.3.4 Insert Entry into Quadword Queue at Head Interlocked Resident

Format:

CALL_PAL INSQHIQR

Operation:

!PALcode format

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (RI6» 1 Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN 1 Try to set secondary interlock.

RO +- -1, {return} 1 Already set
done +- STORE CONDITIONAL ((RI6) +- {TMPO OR Rl} )
N+- N-l

UNTIL {done EQ I} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp2 +- R16 - R17
(R17) +- tmpl + tmp2
(R17 + 8) +- tmp2
(R16 + tmpl + 8) +- -tmpl - tmp2

MB
(RI6) +- -tmp2

IF tmpl EQ 0 THEN
RO +- 1

ELSE
RO +- 0

END

Exceptions:

Illegal Operand

Enqueue the entry
Forward link of entry.
Backward link of entry.
Successor back link

1 Forward link of header,
1 Release the lock

Queue was empty

Queue was not empty
•
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Instruction mnemonics:

CALL_PAL INSQHIQR Insert Entry into Quadword Queue
at Head Interlocked Resident

Description:

If the secondary interlock is clear, INSQHIQR inserts the entry specified in R17 into
the self_relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to a 1; else it is set to
a o. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of
exceptions) R< 0> is set to a -1. The value "N" is implementation dependent.

This instruction requires that the queue be memory resident and that the queue
header and elements are octaword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.
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2.3.5 Insert Entry into Longword Queue at Tail Interlocked

Format:

CALL_PAL INSQTIL

Operation:

!PALcode format

NE O} THEN ! Check Alignment
! Release secondary interlock

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location and
that the header and entry are valid 32 bit addresses

IF {RI6<2:0> NE O} OR {RI7<2:0> NE O} OR {R16 EQ R17} OR
{SEXT(RI6<31:0» NE R16} OR {SEXT(RI7<31:0» NE R16} THEN
BEGIN
{illegal operand exception}

END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (RI6» Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE CONDITIONAL «R16) +- {TMPO OR R1} )
N+- N-1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp1 +- SEXT(tmpO<31:0»
tmp2 +- SEXT(tmpO<63:32»

IF {tmpl<2:1> NE O} OR {tmp2<2:0>
BEGIN

(R16) +- tmpO
{illegal operand exception}

END
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Check if following addresses can be written
without causing a memory management exception:

entry
header + (header + 4)

IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock

(R16) +- tmpO
{initiate memory management fault}

END

All Accesses can be done so enqueue entry
tmp3 +- SEXT( {R16 - R17}<31:0»
(R17)<31:0> +- tmp3 Forward link
(R17 + 4)<31:0> +- tmp2 + tmp3 Backward link
IF {tmp2 NE O} THEN ! Forward link of predecessor

(R16+tmp2)<31:0> +- -tmp3 - tmp2
ELSE

tmpl +- SEXT({-tmp3 - tmp2}<31:0»
(R16+4)<31:0> ~ -tmp3 1 Backward link of header

MB

(R16)<31:0> +- tmpl
IF tmpl EQ -tmp3 THEN

RO +- 1
ELSE

RO +- 0
END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

CALL_PAL INSQTIL

Forward link, release lock

Queue was empty

Queue was not empty

Insert into Longword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, INSQTIL inserts the entry specified in RI 7 into
the self-relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to a I; else it is set to
a o. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. Before performing any
part of the operation, the processor validates that the insertion can be completed.
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This ensures that if a memory management exception occurs, the queue is left in
a consistent state (see Chapters 3 and 6). If the instruction fails to acquire the
secondary interlock after "N" retry attempts, then (in the absence of exceptions) R<
0> is set to a -1. The value "N" is implementation dependent.
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2.3.6 Insert Entry into Longword Queue at Tail Interlocked Resident

Format:

CALL_PAL INSQTILR

Operation:

!PALcode format

Forward link
Backward link
Forward link of predecessor

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.
All parts of the Queue must be memory resident

N <- {retry_amount} 1 Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (RI6» 1 Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN 1 Try to set secondary interlock.

RO +- -1, {return} ! Already set
done +- STORE CONDITIONAL «RI6) +- {TMPO OR Rl} )
N+- N-l-

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmpl +- SEXT(tmpO<31:0»
tmp2 +- SEXT(tmpO<63:32»
tmp3 +- SEXT( {R16 - RI7}<31:0»
(R17)<31:0> +- tmp3
(R17 + 4)<31:0> +- tmp2 + tmp3
IF {tmp2 NE O} THEN

(R16+tmp2)<31:0> +- -tmp3 - tmp2
ELSE

tmpl +- <- SEXT({-tmp3 - tmp2}<31:0»

(RI6+4)<31:0> +- -tmp3 1 Backward link of header

MB

(R16)<31:0> +- tmpl

IF tmpl EQ -tmp3 THEN
RO +- 1

ELSE
RO +- 0

END

2-42 OpenVMS Alpha Software (II)

! Forward link
! Release the lock

Queue was empty

Queue was not empty



Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL INSQTILR Insert Entry into Longword Queue
at Tail Interlocked Resident

Description:

If the secondary interlock is clear, INSQTILR inserts the entry specified in R1 7 into
the self-relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to a 1; else it is set to
a o. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of
exceptions) R< 0> is set to a -1. The value "N" is implementation dependent.

This instruction requires that the queue be memory resident and that the queue
header and elements are quadword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.
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2.3.7 Insert Entry into Quadword Queue at Tail Interlocked

Format:

CALL_PAL INSQTIQ

Operation:

!PALcode format

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location

IF {RI6<3:0> NE O} OR {RI7<3:0> NE O} OR {R16 EQ R17} THEN
BEGIN
{illegal operand exception}

END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (RI6» Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN 1 Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE CONDITIONAL «RI6) +- {TMPO OR Rl} )
N+- N-l

UNTIL {done EQ I} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp2 +- (RI6+8)
IF {tmpl<3:1> NE O} OR {tmp2<3:0> NE O} THEN 1 Check Alignment.

BEGIN 1 Release secondary interlock.
(RI6) +- tmpl
{illegal operand exception}

END

Check if following addresses can be written
without causing a memory management exception:

entry
header + (header + 8)

IF {all memory accesses can NOT be completed} THEN
BEGIN 1 Release secondary interlock.

(R16) +- tmpl
{initiate memory management fault}

END
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Backward link of header

! Forward link
! Backward link

! Forward link of predecessor

! All accesses can be done so enqueue the entry
tmp3 +- R16 - R17
(R17) +- tmp3
(R17 + 8) +- tmp2 + tmp3
IF {tmp2 NE O} THEN

(R16+tmp2) +- -tmp3 - tmp2
ELSE

tmpl +- {-tmp3 - tmp2}
(R16+8) +- -tmp3

Description:

If the secondary interlock is clear, INSQTIQ inserts the entry specified in RI 7 into
the self-relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to a 1 else it is set to
a O. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. Before performing any
part of the operation, the processor validates that the insertion can be completed.
This ensures that if a memory management exception occurs, the queue is left in
a consistent state (see Chapters 3 and 6). If the instruction fails to acquire the
secondary interlock after "N" retry attempts, then (in the absence of exceptions) R<
0> is set to a -1. The value "N" is implementation dependent.

MB

(R16) +- tmpl

IF tmpl EQ -tmp3 THEN
RO +- 1

ELSE
RO +- 0

END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

CALL_PAL INSQTIQ

! Forward link
! Release the lock

Queue was empty

Queue was not empty

Insert into Quadword Queue at Tail Interlocked

•
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2.3.8 Insert Entry into Quadword Queue at Tail Interlocked Resident

Format:

!PALcode format

Operation:

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (R16» Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN ! Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE CONDITIONAL «R16) +- {TMPO OR Rl} )
N+- N-l-

UNTIL {done EQ I} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp2 +- (R16+8)
tmp3 +- R16 - R17
(R17) +- tmp3 ! Forward link
(R17 + 8) +- tmp2 + tmp3 ! Backward link
IF {tmp2 NE O} THEN ! Forward link of predecessor

(R16+tmp2) +- -tmp3 - tmp2
ELSE

tmpl +- {-tmp3 - tmp2}
(R16+8) +- -tmp3 ! Backward link of header

MB

(R16) +- tmpl
IF tmpl EQ -tmp3 THEN

RO +- 1
ELSE

RO +- 0
END
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Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL INSQTIQR Insert Entry into Quadword Queue
at Tail Interlocked Resident

Description:

If the secondary interlock is clear, INSQTIQR inserts the entry specified in R1 7 into
the self_relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to a 1 else it is set to
a o. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of
exceptions) R< 0> is set to a -1. The value "N" is implementation dependent.

This instruction requires that the queue be memory resident and that the queue
header and elements are octaword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.

OpenVMS PALcode Instruction Descriptions (II) 2-47

•



2.3.9 Insert Entry into Longword Queue

Format:

!PALcode format

Operation:

R16 contains the address of the predecessor entry
or the 32 bit address of the 32 bit address of the
predecessor entry for INSQUEL/D

R17 contains the address of the new entry
RO receives status:

o if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

1 Must have write access to header and queue entries
IF opcode EQ INSQUEL/D THEN

tmp2 ~ SEXT«R16)<31:0» 1 Address of predecessor
ELSE

tmp2.- R16

! Get Forward Link
! Set forward link
1 Backward link

R17
1 Backward link of Successor
1 Forward link of Predecessor(tmp2)<31:0> ~ R17

IF tmp EQ tmp2 THEN
RO ~ 1

ELSE
RO ~ 0

END
ELSE

BEGIN
{initiate fault}

END
END

IF {all memory accesses can be completed} THEN
BEGIN
tmp<31:0>.- SEXT«tmp2)<31:0»
(R17)<31:0>.- tmp
(R17 + 4)<31:0> ~ tmp2
(SEXT«tmp2)<31:0» + 4)<31:0> ~

Exceptions:

Access Violation

Fault on Read

Fault on Write

Translation Not Valid
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Instruction mnemonics:

INSQUEL Insert Entry into Longword Queue

INSQUELID Insert Entry into Longword Queue Deferred

Description:

INSQUEL inserts the entry specified in Rl 7 into the absolute queue following the
entry specified by the predecessor addressed by R16. INSQUELID performs the
same operation on the entry specified by the contents of the longword addressed by
R16.

In either case, if the entry inserted was the first one in the queue, a 1 is returned in
RO; otherwise a 0 is returned in RO. The insertion is a non-interruptible operation.
Before performing any part of the insertion, the processor validates that the entire
operation can be completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 3 and 6).
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2.3.10 Insert Entry into Quadword Queue

Format:

!PALcode format

Operation:

RI6 contains the address of the predecessor entry
or the address of the address of the
predecessor entry for INSQUEQ/D

RI7 contains the address of the new entry
RO receives status:

o if the queue was not empty before adding this entry
I if the queue was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned

Set forward link of entry
Backward link of entry
Backward link of successor
Forward link of predecessor

! Address of predecessor

o

IF opcode EQ INSQUEQ/D THEN
IF {rI6<3:0> NE O} THEN

BEGIN
{illegal operand exception}

END
tmp2 +- (RI6)

ELSE
tmp2 +- RI6

END
IF {tmp2<3:0> NE O} OR {RI7<3:0> NE O} THEN

BEGIN
{illegal operand exception}

END
IF {all memory accesses can be completed} THEN

BEGIN
tmp +- (tmp2) ! Get forward link of entry
IF {tmp<3:0> NE O} THEN

BEGIN ! Check alignment
{illegal operand exception}

END
(RI7) +- tmp
(RI 7 + 8) +- tmp2
(tmp + 8) +- Rl 7
(tmp2) +- RI7
IF tmp EQ tmp2 THEN

RO +- I
ELSE

RO +­
END

ELSE
BEGIN
{initiate fault}

END
END
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Exceptions:

Access Violation

Fault on Read

Fault on Write

Translation Not Valid

Illegal Operand

Instruction mnemonics:

INSQUEQ Insert Entry into Quadword Queue

INSQUEQID Insert Entry into Quadword Queue Deferred

Description:

INSQUEQ inserts the entry specified in RI 7 into the absolute queue following the
entry specified by the predecessor addressed by R16. INSQUEQID performs the
same operation on the entry specified by the contents of the quadword addressed by
R16.

In either case, if the entry inserted was the first one in the queue, a I is returned
in RO; otherwise a 0 is returned in RO. The insertion is a non-interruptible
operation. Before performing any part of the insertion, the processor validates that
the entire operation can be completed. This ensures that if a memory management
exception occurs, the queue is left in a consistent state (see Chapters 3 and 6). RO
is unpredictable if an exception occurs. The relative order of reporting memory
management and illegal operand exceptions is unpredictable.
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2.3.11 Remove Entry from Longword Queue at Head Interlocked

Format:

CALL_PAL REMQHIL

Operation:

!PALcode format

Check Alignment
Release secondary interlock

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.

Check header alignment and
that the header is a valid 32 bit address

IF {R16<2:0> NE O} OR {SEXT(RI6<31:0» NE R16} THEN
BEGIN
{illegal operand exception}

END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (R16» Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN ! Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE CONDITIONAL «RI6) +- {TMPO OR Rl} )
N+- N-l

UNTIL {done EQ I} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmpl +- SEXT(tmpO<31:0»
IF tmpl<2:0> NE 0 THEN

BEGIN
(R16) +- tmpO
{illegal operand exception}

END

Check if the following can be done without
causing a memory management exception:
read contents of header + tmpl {if tmpl NE O}
write into header + tmpl + (header + tmpl) {if tmpl NE O}

IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock

(R16) +- tmpO
{initiate memory management fault}

END
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Backward link of successor

tmp2 +- SEXT({R1G + tmp1}<31:0»
IF {tmpl EQL O} THEN

tmp3 +- RlG
ELSE

tmp3 +- SEXT({tmp2 + SEXT«tmp2)<3l:0»})

IF tmp3<2:0> NE 0 THEN Check Alignment
BEGIN ! Release secondary interlock

(RlG) +- tmpO
{illegal operand exception}

END

(tmp3 + 4)<31:0> +- R1G - tmp3

MB

(R1G)<3l:0> +- tmp3 - RlG

IF tmpl EQ 0 THEN
RO +- 0

ELSE
BEGIN

IF {tmp3 - RlG} EQ 0 THEN
RO +- 2

ELSE
RO +- 1

END
END
Rl +- tmp2

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

Forward link of header
Release lock

Queue was empty

Queue now empty

Queue not empty

Address of removed entry

•
CALL_PAL REMQHIL Remove from Longword Queue at Head Interlocked

Description:

If the secondary interlock is clear, REMQHIL removes from the self-relative queue
the entry following the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal and the queue is empty after the removal, a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
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attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation. Before performing
any part of the removal, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 3 and 6).
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2.3.12 Remove Entry from Longword Queue at Head Interlocked Resident

Format:

CALL_PAL REMQHILR

Operation:

!PALcode format

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

R1 receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (R16» Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE CONDITIONAL «R16) +- {TMPO OR R1} )
N+- N-1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp1 +- SEXT(tmpO<31:0»
tmp2 +- SEXT({R16 + tmp1}<31:0»
IF {tmp1 EQL O} THEN

tmp3 +- R16
ELSE

tmp3 +- SEXT({tmp2 + SEXT«tmp2)<31:0»})
END

(tmp3 + 4)<31:0> +- R16 - tmp3

MB
(R16)<31:0> +- tmp3 - R16

IF tmp1 EQ 0 THEN
RO +- 0

ELSE
BEGIN

IF {tmp3 - R16} EQ 0 THEN
RO +- 2

ELSE
RO +- 1

END
END
R1 +- tmp2

Backward link of successor

Forward link of header
Release lock

Queue was empty

Queue now empty

Queue not empty

Address of removed entry

•
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Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL REMQHILR Remove Entry from Longword Queue
at Head Interlocked Resident

Description:

If the secondary interlock is clear, REMQHILR removes from the self-relative queue
the entry following the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal and the queue is empty after the removal, a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after ''N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue
header and elements are quadword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.
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2.3.13 Remove Entry from Quadword Queue at Head Interlocked

Format:

!PALcode format

Check Alignment
Release secondary interlock

Operation:

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.

Check header alignment
IF {RI6<3:0> NE O} THEN

BEGIN
{illegal operand exception}

END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO ~ (RI6» 1 Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN 1 Try to set secondary interlock.

RO ~ -1, {return} 1 Already set
done ~ STORE CONDITIONAL ((RI6) ~ {TMPO OR Rl} )
N+- N-l

UNTIL {done EQ I} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} 1 Retry exceeded

MB

IF tmpl<3:0> NE 0 THEN
BEGIN

(RI6) +- tmpl
{illegal operand exception}

END

Check if the following can be done without
causing a memory management exception:

1 read contents of header + tmpl {if tmpl NE O}
1 write into header + tmpl + (header + tmpl) {if tmpl NE O}
IF {all memory accesses can NOT be completed} THEN

BEGIN ! Release secondary interlock
(R16) ~ tmpO
{initiate memory management fault}

END
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! Check Alignment
! Release secondary interlock

tmp2 ~ R16 + tmpl
IF {tmpl EQL O} THEN

tmp3.- R16
ELSE

tmp3.- tmp2 + (tmp2)

IF tmp3<3:0> NE 0 THEN
BEGIN

(R16).- tmpl
{illegal operand exception}

END

(tmp3 + 8) ~ R16 - tmp3

MB

(R16) +- tmp3 - R16

! Backward link of successor

! Forward link of header
! Release lock

IF tmpl EQ 0 THEN
RO.- 0 ! Queue was empty

ELSE
BEGIN

IF {tmp3 - R16} EQ 0 THEN
RO +- 2 ! Queue now empty

ELSE
RO.- 1 Queue not empty

END
END
Rl ~ tmp2

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

Address of removed entry

CALL_PAL REMQHIQ Remove from Quadword Queue at Head
Interlocked

Description:

If the secondary interlock is clear, REMQHIQ removes from the self-relative queue
the entry following the header, pointed to by Rl6, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
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the start of the removal, and the queue is empty after the removal a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation. Before performing
any part of the removal, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 3 and 6).
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2.3.14 Remove Entry from Quadword Queue at Head Interlocked Resident

Format:

CALL_PAL REMQHIQR

Operation:

!PALcode format

Backward link of successor

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (RI6» 1 Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN ! Try to set secondary interlock.

RO +- -1, {return} ! Already set
done +- STORE CONDITIONAL «RI6) +- {TMPO OR Rl} )
N+- N-l

UNTIL {done EQ I} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} 1 Retry exceeded

MB

tmp2 +- R16 + tmpl
IF {tmpl EQL O} THEN

tmp3 +- R16
ELSE

tmp3 +- tmp2 + (tmp2)
END
(tmp3 + 8) +- R16 - tmp3

MB

(R16) +- tmp3 - R16

IF tmpl EQ 0 THEN
RO +- 0

ELSE
IF {tmp3 - R16} EQ 0 THEN

RO +- 2
ELSE

RO +- 1
END
Rl +- tmp2
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Release lock

Queue was empty

Queue now empty

Queue not empty

Address of removed entry



Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL REMQHIQR Remove Entry from Quadword Queue
at Head Interlocked Resident

Description:

If the secondary interlock is clear, REMQHIQR removes from the self-relative queue
the entry following the header, pointed to by R16, and the address of the removed
entry is returned in R1.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue
header and elements are octaword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.
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2.3.15 Remove Entry from Longword Queue at Tail Interlocked

Format:

CALL_PAL REMQTIL

Operation:

!PALcode format

1 Check alignment
1 Release secondary interlock

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was s~t

o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.

Check header alignment and
that the header is a valid 32 bit address

IF {RI6<2:0> NE O} OR {SEXT(RI6<31:0» NE R16} THEN
BEGIN
{illegal operand exception}

END

N <- {retry_amount} 1 Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (RI6)) 1 Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN 1 Try to set secondary interlock.

RO +- -1, {return} 1 Already set
done +- STORE CONDITIONAL «RI6) +- {TMPO OR Rl} )
N+- N-l-

UNTIL {done EQ I} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} 1 Retry exceeded

MB

tmpl +- SEXT(tmpO<31:0»
tmpS +- SEXT(tmpO<63:32»
IF tmpS<2:0> NE 0 THEN

BEGIN
(RI6) +- tmpO
{illegal operand exception}

END

lCheck if the following can be done without
1 causing a memory management exception:

read contents of header + (header + 4) {if tmpl NE O}
write into header + (header + 4)

1 + (header + 4 + (header + 4)){if tmpl NE O}
IF {all memory accesses can NOT be completed} THEN

BEGIN 1 Release secondary interlock
(RI6) +- tmpO
{initiate memory management fault}

END
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addr +- SEXT( {R16 + tmpS}<31:0> )
tmp2 +- SEXT( {addr + SEXT( (addr+4)<31:0»}<31:0>
IF tmp2<2:0> NE 0 THEN ! Check alignment

BEGIN 1 Release secondary interlock
(R16) +- tmpO
{illegal operand exception}

END

(R16 + 4)<31:0> +- tmp2 - R16 Backward link of header
IF {tmp2 EQL R16} THEN

(R16)<31:0> +- 0 Forward link, release lock
ELSE

BEGIN
(tmp2)<31:0> +- R16 - tmp2 Forward link of predecessor

MB
(R16)<31:0> +- tmp1 Release lock

END
IF tmp1 EQ 0 THEN

RO +- 0 ! Queue was empty
ELSE

BEGIN
IF {tmp2 - R16} EQ 0 THEN

RO +- 2 Queue now empty
ELSE

RO +- 1 Queue not empty
END

R1 +- addr Address of removed entry

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

CALL_PAL REMQTIL Remove from Longword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, REMQTIL removes from the self-relative queue
the entry preceding the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
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attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation. Before performing
any part of the removal, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 3 and 6).
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2.3.16 Remove Entry from Longword Queue at Tail Interlocked Resident

Format:

CALL_PAL REMQTILR

Operation:

!PALcode format

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO +- (RI6» Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN ! Try to set secondary interlock.

RO +- -1, {return} ! Already set
done +- STORE CONDITIONAL «RI6) +- {TMPO OR Rl} )
N+- N-l

UNTIL {done EQ I} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmpl +- SEXT(tmpO<31:0»
tmp5 +- SEXT(tmpO<63:32»
addr +- SEXT( {R16 + tmp5}<31:0> )
tmp2 +- SEXT( {addr + SEXT( (addr+4)<31:0»}<31:0> )
(R16 + 4)<31:0> +- tmp2 - R16 ! Backward link of header
IF {tmp2 EQL R16} THEN

(RI6)<31:0> +- 0 Forward link, release lock
ELSE

BEGIN
(tmp2)<31:0> +- R16 - tmp2 Forward link of predecessor
MB
(RI6)<31:0> +- tmpl Release lock

END
IF tmpl EQ 0 THEN

RO +- 0 Queue was empty
ELSE

IF {tmp2 - R16} EQ 0 THEN
RO +- 2 Queue now empty

ELSE
RO +- 1 Queue not empty

•

END
END
Rl +- addr Address of removed entry
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Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL REMQTILR Remove Entry from Longword Queue
at Tail Interlocked Resident

Description:

If the secondary interlock is clear, REMQTILR removes from the self-relative queue
the entry preceding the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue
header and elements are quadword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.
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2.3.17 Remove Entry from Quadword Queue at Tail Interlocked

Format:

CALL_PAL REMQTIQ

Operation:

!PALcode format

1 Check Alignment
1 Release secondary interlock

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

1 Must have write access to header and queue entries
1 Header and entries must be octaword aligned.
1
1 Check header alignment
IF {RI6<3:0> NE O} THEN

BEGIN
{illegal operand exception}

END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD LOCKED (tmpO ~ (RI6» 1 Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN ! Try to set secondary interlock.

RO ~ -1, {return} 1 Already set
done ~ STORE CONDITIONAL «RI6) +- {TMPO OR Rl} )
N+- N-l

UNTIL {done EQ I} OR {N EQ O}
IF done NEQ 1, RO ~ -1, {return} Retry exceeded

MB

tmp5 +- (RI6+8)
IF tmp5<3:0> NE 0 THEN

BEGIN
(RI6) ~ tmpl
{illegal operand exception}

END
Check if the following can be done without
causing a memory management exception:
read contents of header + (header + 8) {if tmpl NE O}
write into header + (header + 8)
+ (header + 8 + (header + 8»{if tmpl NE O}

IF {all memory accesses can NOT be completed} THEN
BEGIN 1 Release secondary interlock

(RI6) +- tmpl
{initiate memory management fault}

END

•
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1 Check alignment
1 Release secondary interlock

addr +- R16 + tmp5
tmp2 +- addr + (addr + 8)
IF tmp2<3:0> NE 0 THEN

BEGIN
(R16) +- tmpl
{illegal operand exception}

END

(R16 + 8) +- tmp2 - R16 Backward link of header
IF {tmp2 EQL R16} THEN

(R16) +- 0 Forward link, release lock
ELSE

BEGIN
(tmp2) +- R16 - tmp2 Forward link of predecessor
MB
(R16) +- tmpl Release lock

END
END
IF tmpl EQ 0 THEN

RO +- 0 1 Queue was empty
ELSE

BEGIN
IF {tmp2 - R16} EQ 0 THEN

RO +- 2 ! Queue now empty
ELSE

RO +- 1 Queue not empty
END

END
Rl +- addr 1 Address of removed entry

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

CALL_PAL REMQTIQ Remove from Quadword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, REMQTIQ removes from the self-relative queue
the entry preceding the header, pointed to by Rl6, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
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the start of the removal, and the queue is empty after the removal a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation. Before performing
any part of the removal, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 3 and 6).
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2.3.18 Remove Entry from Quadword Queue at Tail Interlocked Resident

Format:

CALL_PAL REMQTIQR !PALcode format

Operation:

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

R1 receives the address of the removed entry

Address of removed entry

Queue not empty

Release lock

Queue now empty

Queue was empty

Backward link of header

Forward link, release lock

Forward link of predecessor

END
RI ~ addr

Must have write access to header and queue entries
Header and entries must be octaword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount} 1 Implementation-specific
REPEAT

LOAD LOCKED (tmpO ~ (R16» 1 Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN 1 Try to set secondary interlock.

RO ~ -1, {return} 1 Already set
done ~ STORE CONDITIONAL «R16) +- {TMPO OR R1} )
N~ N-1-

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO ~ -1, {return} 1 Retry exceeded

MB

tmp5 ~ (R16+8)
addr ~ R16 + tmp5
tmp2 ~ addr + (addr + 8)
(R16 + 8) ~ tmp2 - R16
IF {tmp2 EQL R16} THEN

(R16) ~ 0
ELSE

BEGIN
(tmp2) +- R16 - tmp2

MB
(R16) ~ tmp1

END
END
IF tmp1 EQ 0 THEN

RO ~ 0
ELSE

IF {tmp2 - R16} EQ 0 THEN
RO ~ 2

ELSE
RO +- 1
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Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL REMQTIQR Remove Entry from Quadword Queue
at Tail Interlocked Resident

Description:

If the secondary interlock is clear, REMQTIQR removes from the self-relative queue
the entry preceding the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R< 0> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue
header and elements are octaword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, should any of these requirements not be met, the queue may be left in
an unpredictable state and an illegal operand fault may be reported.
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2.3.19 Remove Entry from Longword Queue

Format:

CALL_PAL REMQUEL

Operation:

!PALcode format

R16 contains the address of the entry to remove
or the address of the 32 bit address of the
entry for REMQUEL/D

RO receives status:
-1 if the queue was empty
o if the queue is empty after removing an entry
1 if the queue is not empty after removing an entry

R1 receives the address of the removed entry

Must have write access to header and queue entries
IF opcode EQ REMQUEL/D THEN

R1 +- SEXT((R16)<31:0»
ELSE

R1 +- SEXT(R16<31:0»

IF {all memory accesses can be completed} THEN
BEGIN

tmp1 +- (R1)<31:0> Forward Link of Predecessor
((R1+4)<31:0»<31:0> +- tmp1
tmp2 +- (R1+4)<31:0> Backward Link of Successor
((R1)<31:0>+4)<31:0> +- tmp2
RO +- 1 Queue not empty
IF {tmpl EQ tmp2} THEN

RO +- 0 Queue now empty
IF {R1 EQ tmp2} THEN

RO +- -1 Queue was empty
END

ELSE
BEGIN
{initiate fault}

END
END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Translation Not Valid
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Instruction mnemonics:

REMQUEL

REMQUELJD

Remove Entry from Longword Queue

Remove Entry from Longword Queue Deferred

Description:

REMQUEL removes the entry addressed by R16 from the longword absolute queue.
The address of the removed entry is returned in Rl. REMQUELJD performs the
same operation on the queue entry addressed by the longword addressed by R16.

In either case, if there was no entry in the queue to be removed, RO is set to -1. If
there was an entry to remove and the queue is empty at the end of this instruction,
RO is set to o. If there was an entry to remove and the queue is not empty at the
end of this instruction, RO is set to 1. The removal is a non-interruptible operation.
Before performing any part of the removal, the processor validates that the entire
operation can be completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state '(see Chapters 3 and 6).
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2.3.20 Remove Entry from Quadword Queue

Format:

CALL_PAL REMQUEQ

Operation:

!PALcode format

R16 contains the address of the entry to remove
or address of address of entry for REMQUEQ/D

RO receives status:
-1 if the queue was empty
o if the queue is empty after removing an entry
1 if the queue is not empty after removing an entry

R1 receives the address of the removed entry
Must have write access to header and queue entries
Header and entries must be octaword aligned

IF opcode EQ REMQUEQ/D THEN
IF {r16<3:0> NE O} THEN

BEGIN
{illegal operand exception}

END
R1 +- (R16)

ELSE
R1 +- R16

IF {R1<3:0> NE O} THEN ! Check alignment
BEGIN
{illegal operand exception}

END
IF {all memory accesses can be completed} THEN

BEGIN
tmpl +- (R1) ! Forward link of Predecessor
IF {tmpl<3:0> NE O} THEN

BEGIN ! Check alignment
{illegal operand exception}

END
tmp2 +- (R1+8) ! Find predecessor
IF {tmp2<3:0> NE O} THEN

BEGIN ! Check alignment
{illegal operand exception}

END
(tmp2) +- tmp1 Update Forward link of predecessor
( (Rl )+8) +- tmp2
RO +- 1 Queue not empty
IF {tmp1 EQ tmp2} THEN

RO +- 0 Queue now empty
IF {R1 EQ tmp2} THEN

RO +- -1 ! Queue was empty
END

ELSE
BEGIN
{initiate fault}

END
END
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Exceptions:

Access Violation

Fault on Read

Fault on Write

Translation Not Valid

Illegal Operand

Instruction mnemonics:

REMQUEQ Remove Entry from Quadword Queue

REMQUEQID Remove Entry from Quadword Queue Deferred

Description:

REMQUEQ removes the queue entry addressed by RI6 from the quadword absolute
queue. The address of the removed entry is returned in RI. REMQUEUD performs
the same operation on the queue entry addressed by the quadword addressed by
R16.

In either case, if there was no entry in the queue to be removed, RO is set to -1. If
there was an entry to remove and the queue is empty at the end of this instruction,
RO is set to o. If there was an entry to remove and the queue is not empty at the
end of this instruction, RO is set to 1. The removal is a non-interruptible operation.
Before performing any part of the removal, the processor validates that the entire
operation can be completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 3 and 6). RO and Rl
are unpredictable if an exception occurs. The relative order of reporting memory
management and illegal operand exceptions is unpredictable.
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2.4 Unprivileged VAX Compatibility PALcode Instructions

The Alpha architecture provides the following PALcode instructions for use in
translated VAX. code. These instructions are not a permanent part ofthe architecture
and will not be available in some future implementations. They are provided to help
customers preserve VAX. instruction atomicity assumptions in porting code from VAX.
to Alpha. These calls should be user mode. They must not be used by any code other
than that generated by the VEST software translator and its supporting runtime
code (TIE).
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2.4.1 Atomic Move Operation

Format:

AMOVRR

AMOVRM

Operation:

!PALcode format

!PALcode format

RI6 contains the first source
RI7 contains the first destination address
RI8 contains the first length
RI9 contains the second source
R20 contains the second destination address
R2I contains the second length

CASE
AMOVRR:

IF intr flag EQ 0 THEN
RI8-+- 0
{return}

END

intr flag +- 0
(RI7) +- RI6 ! length specified by RI8<1:0>
(R20) +- RI9 length specified by R21<1:0>
IF {both moves successful} THEN

RI8 +- 1
ELSE

RI8 +- 0
END

AMOVRM:
IF intr flag EQ 0 THEN

R18;:" 0
{return}

END

intr flag +- 0
(RI7) +- RI6 length specified by RI8<1:0>
IF R2I<5:0> NE 0 THEN

BEGIN
IF RI9<1:0> NE 00 OR R20<1:0> NE 00

{Illegal operand exception}
ELSE

(R20) +- (RI9) 1 length specified by R2I<5:0>
END

IF {both moves successful} THEN
RI8 +- 1

ELSE
RI8 +- 0

END
ENDCASE
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Exceptions:

AMOVRR: Access Violation

Fault On Write

Translation Not Valid

AMOVRM: Access Violation

Fault On Read

Fault On Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

AMOVRR

AMOVRM

Atomic Move Register/Register

Atomic Move Register/Memory

Description:

NOTE
The CALL_PAL AMOVxx instructions are only for the
support of translated VAX. code. They will disappear
from the architecture at some time in the future. They
must be used only in translated VAX. code and its
support routines (TIE).

CALL_PAL AMOVRR
The CALL_PAL AMOVRR instruction specifies two multiprocessor safe register
stores to arbitrary byte addresses. Either both stores are done or neither store is
done. R1B is set to one if both stores are done, and zero otherwise. The two source
registers are R16 and R19. The two destination byte addresses are in R17 and R20.
The two lengths are specified in RIB<I:0> and R21<1:0>. The length encoding is:
00 - store byte, 01 - store word, 10 - store longword, 11 - store quadword. The low
1, 2, 4, or 8 bytes of the source register are used, respectively. The unused bytes of
the source registers are ignored. The unused bits of the length registers (R18<63:2>
and R21<63:2» should be zero (SBZ).

If, upon entry to the PALcode routine, the intr_flag is clear then the instruction
sets RIB to zero and exits, doing no stores. Otherwise, intr_flag is cleared and the
PALcode routine proceeds. This is the same per-processor intr_flag used by the RS
and RC instructions.

The AMOVRR memory addresses may be unaligned. If either store would result in
a Translation Not Valid fault, Fault on Write, or Access Violation fault, neither store
is done and the corresponding fault is taken. If both stores would result in faults, it
is UNPREDICTABLE which one is taken.
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NOTE
A fault does not set R18, since the instruction has not
been completed.

If both stores can be completed without faulting, they are both attempted
using multiprocessor-safe LD(LL..ST(LC sequences. If all the sequences store
successfully with no interruption, the PALcode routine completes with RI8 set to
one. Otherwise, the PALcode routine completes with RI8 set to zero. In addition,
R16, R17, R19, R20 and R2I are UNPREDICTABLE upon return from the PALcode
routine, even if an exception has occurred.

If the destinations overlap, the stores must appear be done in the order specified.

CALL_PAL AMOVRM
The CALL_PAL AMOVRM instruction specifies one multiprocessor safe register
store to an arbitrary byte address, plus an atomic memory-to-memory move of 0
to 63 aligned longwords. Either the store and the move are both done in their
entirety or neither is done. RI8 is set to one if both are done, and zero otherwise.

The first source register is R16, the first destination address is in RI 7, and the first
length is in RIB. These three are specified exactly as in AMOVRR.

The second source address is in R19, the second destination address is in R20,
and the second length is in R2I<5:0>. The length is a longword length, in the
range 0 to 63 longwords (0 to 252 bytes). The unused bytes of the source register
RI6 are ignored. The unused bits of the length registers registers (RI8<63:2> and
R2I<63:6» should be zero (SBZ).

If, upon entry to the PALcode routine, the intr_flag is clear then the instruction
sets RI8 to zero and exits, doing no stores. Otherwise, intr_flag is cleared and the
PALcode routine proceeds. This is the same per-processor intr_flag used by the RS
and RC instructions.

The memory address in RI 7 may be unaligned.

If the length for the move is zero, no move is done, no memory accesses are made
via RI9 and R20, and no fault checking of these addresses is done. In this case, the
move is always considered to have succeeded in determining the setting of R18.

If the length in R2I is non-zero, the two addresses in RI9 and R20 must be aligned
longword addresses, otherwise an Illegal Operand exception is taken.

Ifeither the store or the move would result in a Translation Not Valid, Fault on Read,
Fault on Write, or Access Violation fault, neither is done and the corresponding fault
is taken. If both would result in faults, it is UNPREDICTABLE which one is taken.

NOTE
A fault does not set R18, since the instruction has not
been completed.

If both the store and the move can be completed without faulting, they are both
attempted, using multiprocessor-safe LD(LL..ST(LC sequences for the store. If
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all the operations store successfully with no interruption, the PALcode routine
completes with RIB set to one. Otherwise, the PALcode routine completes with
RIB set to zero. In addition, R16, R17, R19, R20 and R2I are UNPREDICTABLE
upon return from the PALcode routine, even if an exception has occurred.

If the memory fields overlap, the store must appear be done first, followed by the
move. The ordering of the reads and writes of the move is unspecified. Thus, if the
move destination overlaps the move source, the move results are UNPREDICTABLE.

These instructions contain no implicit MB.

Notes:

• Typical use of these instructions would be a sequence starting with CALL_PAL
RS and ending with CALL_PAL AMOVxx, Bxx RIB,label. The failure path from
the conditional branch would eventually go back to the RS instruction. When
such a sequence succeeds, it has done everything from the RS up to and including
the CALL_PAL AMOVxx completely with no interrupts or exceptions.

• The CALL_PAL AMOVxx instruction is typically be followed by a conditional
branch on RIB. If the CALL_PAL AMOVxx is likely to succeed, the conditional
branch should be a FORWARD branch on failure (BEQ RIB,forward_label)
or backward branch on success (BNE RIB, backward_label), to match the
architected branch-prediction rule.
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2.5 Unprivileged PALcode Thread Instructions

The PALcode thread instructions provide support for multithread implementations,
which require that a given thread be able to generate a reproducable unique value in
a "timely" fashion. This value can then be used to index into a structure or otherwise
generate further thread unique data.

The two instructions in Table 2-4 are provided to read and write a process unique
value from the process's hardware context.

Table 2-4: Unprivileged PALcode Thread Instructions

Mnemonic Operation

READ_UNQ Read unique context

WRITE_UNQ Write unique Context

The process unique value is stored in the HWPCB at [HWPCB+72] when the process
is not active. When the process is active, the process unique value can be cached in
hardware internal storage or resident in the HWPCB only.
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2.5.1 Read Unique Context

Format:

!PALcode format

Operation:

IF {internal storage for process unique context} THEN
RO +- {process unique context}

ELSE
RO +- (HWPCB+72)

Exceptions:

None

Instruction mnemonics:

Read Unique Context

Description:

The READ_UNQ instruction causes the hardware process (thread) unique context
value to be placed in RO. If this value has not previously been written using a CALL_
PAL WRITE_UNQ or stored into the quadword in the HWPCB at [HWPCB+72]
while the thread was inactive then the result returned in RO is UNPREDICTABLE.
Implementations can cache this unique context value while the hardware process is
active. The unique context may be thought of as a "slow register". Typically, this
value will be used by software to establish a unique context for a given thread of
execution.

2-82 OpenVMS Alpha Software (II)



2.5.2 Write Unique Context

Format:

!PALcode format

Operation:

!R16 contains value to be written to the hardware process
! unique context

IF {internal storage for process unique context} THEN
{process unique context} +- R16

ELSE
(HWPCB+72) +- R16

Exceptions:

None

Instruction mnemonics:

Write Unique Context

Description:

The WRITE_UNQ instruction causes the value of R16 to be stored in internal
storage for hardware process (thread) unique context, if implemented, or in the
HWPCB at [HWPCB+72], if the internal storage is not implemented. When the
process is context switched, SWPCTX ensures this value is stored in the HWPCB
at [HWPCB+72]. Implementations can cache this unique context value in internal
storage while the hardware process is active. The unique context may be thought
of as a "slow register". Typically, this value will be used by software to establish a
unique context for a given thread of execution.
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2.6 Privileged PALcode Instructions

Privileged instructions can be called in Kernel mode only; otherwise, a privileged
instruction exception occurs. The following privileged instructions are provided:

Table 2-5: PALcode Privileged Instructions Summary
Mnemonic Operation

CFLUSH

DRAINA

HALT

LDQP

MFPR

MTPR

STQP

SWPCTX

Cache flush

Drain aborts

See Common Architecture, Chapter 6

Halt processor

See Common Architecture, Chapter 6

Load quadword physical

Move from processor register

Move to processor register

Store quadword physical

Swap privileged context
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2.6.1 Cache Flush

Format:

!PALcode format

Operation:

! R1G contains the Page Frame Number (PFN)
! of the page to be flushed

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{Flush page out of cache(s)}

Exceptions:

Privileged Instruction

Instruction mnemonics:

Cache Flush

Description:

The CFLUSH instruction may be used to flush an entire physical page specified by
the PFN in R16 from any data caches associated with the current processor. All
processors must implement this instruction.

On processors which implement a backup power option which maintains only the
contents of memory in the event of a powerfail, this instruction is used by the
powerfail interrupt handler to force data written by the handler to the battery backed
up main memory. Mer a CFLUSH, the first subsequent load (on the same processor)
to an arbitrary address in the target page is either fetched from physical memory or
from the data cache of another processor.

Note that in some multiprocessor systems, CFLUSH is not sufficient to ensure that
the data are actually written to memory and not exchanged between processor
caches. Additional platform-specific cooperation between the powerfail interrupt
handlers executing on each processor may be required.

On systems which implement other backup power options (including none), CFLUSH
may return without affecting the data cache contents.

To order CFLUSH properly with respect to preceding writes, an MB instruction is
needed before the CFLUSH; to order CFLUSH properly with respect to subsequent
reads, an MB instruction is needed after the CFLUSH.
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2.6.2 Load Quadword Physical

Format:

!PALcode format

Operation:

! RI6 contains the quadword aligned physical address
! RO receives the data from memory

IF PS<CM> NE 0 THEN
{Privileged Instruction exception}

RO +- (RI6) {physical access}

Exceptions:

Privileged Instruction

Instruction mnemonics:

Load Quadword Physical

Description:

The LDQP instruction fetches and writes to RO the quadword aligned memory
operand, whose physical address is in R16.

If the operand address in R16 is not quadword aligned, the result is
UNPREDICTABLE.
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2.6.3 Move From Processor Register

Format:

!PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

! R16 may contain an IPR specific source operand
{RO +- result of IPR specific function}

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL MFPR_xxx Move from Processor Register xxx

Description:

The MFPR_xxx instruction reads the internal processor register specified by the
PALcode function field and \vrites it to RO.

Registers RI, R16, and Rl7 contain unpredictable results after an MFPR.

See Chapter 5 for a description of each IPR.
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2.6.4 Move to Processor Register

Format:

!PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

! RI6 may contain an IPR specific source operand

{RO +- result of IPR specific function}
{IPR +- result of IPR specific function}

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL MTPR_xxx Move to Processor Register xxx

Description:

The MTPR_xxx instruction writes the IPR-specific source operands in integ~r

registers Rl6 and Rl7 (Rl7 reserved for future use) to the internal processor register
specified by the PALcode function field. The effect of loading a processor register is
guaranteed to be active on the next instruction.

Registers Rl, Rl6, and Rl7 contain unpredictable results after an MTPR. The MTPR
may return results in RO. If the specific IPR being accessed does not return results
in RO, then RO contains an unpredictable result after an MTPR.

See Chapter 5 for a description of each IPR.
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2.6.5 Store Quadword Physical

Format:

!PALcode format

Operation:

! RI6 contains the quadword aligned physical address
1 RI7 contains the data to be written

IF PS<CM> NE 0 then
{Privileged Instruction exception}

(RI6) +- RI7 {physical access}

Exceptions:

Privileged Instruction

Instruction mnemonics:

Store Quadword Physical

Description:

The STQP instruction writes the quadword contents of Rl 7 to the memory location
whose physical address is in R16.

If the operand address in R16 is not quadword aligned, the result is
UNPREDICTABLE.
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2.6.6 Swap Privileged Context

Format:

CALL_PAL SWPCTX

Operation:

!PALcode format

RI6 contains the physical address of the new HWPCB.

check HWPCB alignment

IF RI6<6:0> NE 0 THEN
{reserved operand exception}

IF {PS<CM> NE O} THEN
{privileged instruction exception}

! Store old HWPCB contents

(IPR PCBB + HWPCB KSP) +- SP
IF {Internal registers for stack pointers} THEN

BEGIN
(IPR PCBB + HWPCB ESP) +- IPR ESP
(IPR-PCBB + HWPCB-SSP).+- IPR-SSP
(IPR=PCBB + HWPCB=USP) +- IPR-USP

END

IF {internal registers for ASTxx} THEN
BEGIN

(IPR PCBB + HWPCB ASTSR) +- IPR ASTSR
(IPR=PCBB + HWPCB=ASTEN) +- IPR-ASTEN

END
tmpl +- PCC
tmp2 +- ZEXT(tmpl<31:0»
tmp3 +- ZEXT(tmpl<63:32»
(IPR PCBB + HWPCB PCC) +- {tmp2 + tmp3}<31:0>
IF {Internal storage for process unique value} THEN

BEGIN
(IPR_PCBB + HWPCB_UNQ) +- process unique value

END

Load new HWPCB contents

IPR PCBB +- RI6

IF {ASNs not implemented in virtual instruction cache} THEN
{flush instruction cache}

IF {ASNs not implemented in TB} THEN
IF {IPR PTBR NE (IPR PCBB + HWPCB PTBR)} THEN

{invalidate trans.-buffer entries with PTE<ASM> EQ O}
ELSE

IPR ASN +- (IPR_PCBB + HWPCB_ASN)
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SP +- (IPR PCBB + HWPCB KSP)
IF {internal registers for stack pointers} THEN

BEGIN
IPR ESP +- (IPR PCBB + HWPCB ESP)
IPR-SSP +- (IPR:PCBB + HWPCB:SSP)
IPR USP +- (IPR_PCBB + HWPCB_USP)

END

IPR PTBR +- (IPR_PCBB + HWPCB_PTBR)

IF {internal registers for ASTxx} THEN
BEGIN

IPR ASTSR +- (IPR_PCBB + HWPCB_ASTSR)
IPR-ASTEN +- (IPR_PCBB + HWPCB_ASTEN)

END

IPR FEN +- (IPR PCBB + HWPCB FEN)
tmp4 +- ZEXT«IPR PCBB + HWPCB PCC)<31:0»
tmp4 +- tmp4 - tmp2 -
PCC<63:32> +- tmp4<31:0>

IF {internal storage for process unique value} THEN
BEGIN

process unique value +- (IPR_PCBB + HWPCB_UNQ)
END

IF {internal storage for Data Alignment trap setting} THEN
BEGIN

DAT +- (IPR_PCBB + HWPCB_DAT)
END

Exceptions:

Reserved Operand

Privileged Instruction

Instruction mnemonics:

Swap Privileged Context

Description:

The SWPCTX instruction returns ownership of the current Hardware Privileged
Context Block (HWPCB) to the operating system and passes ownership of the new
HWPCB to the processor. The HWPCB is described in Chapter 4.

SWPCTX saves the privileged context from the internal processor registers into the
HWPCB specified by the physical address in the PCBB internal processor register.
It then loads the privileged context from the new HWPCB specified by the physical
address in R16. Note that the actual sequence of the save and restore operation is
not specified so any overlap of the current and new HWPCB storage areas produces
UNDEFINED results.

The privileged context includes the four stack pointers, the Page Table Base Register
(PTBR), the Address Space Number (ASN), the AST enable and summary registers,
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the Floating-point enable register (FEN), the Performance monitor (PME) register,
the Data alignment trap (DAT) register, and the process cycle counter (PCC).
However, PTBR is never saved in the HWPCB and it is UNPREDICTABLE whether
or not ASN is saved. These values cannot be changed for a running process. The
process integer and floating registers are saved and restored by the operating system.
See Figure 4-1 for the HWPCB format.

Any change to the current HWPCB while the processor has ownership results in
UNDEFINED operation. All the values in the current HWPCB can be read through
IPRs.

If the HWPCB is read while ownership resides with the processor, it is
UNPREDICTABLE whether the original or an updated value of a field is read. The
processor is free to update an HWPCB field at any time. The decision as to whether
or not a field is updated is made individually for each field.

If the enabling conditions are present for an interrupt at the completion of this
instruction, the interrupt occurs before the next instruction.

PALcode sets up the PCBB at boot time to point to the HWPCB storage area in the
Hardware Restart Parameter Block (HWRPB).

The operation is UNDEFINED if SWPCTX accesses a non-memory region.

A reference to non-existent memory causes a machine check. Unimplemented
physical address bits are SBZ. The operation is UNDEFINED if any of these bits
are set.

NOTE
Processors may keep a copy of each of the per-process
stack pointers in internal registers. In those processors,
SWPCTX stores the internal registers into the HWPCB.
Processors that do not keep a copy of the stack pointers
in internal registers, keep only the stack pointer for
the current access mode in SP and switch this with
the HWPCB contents whenever the current access mode
changes.
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Chapter 3

OpenVMS Memory Management (II)

3.1 Int.roduction

Memory management consists of the hardware and software which control the
allocation and use of physical memory. Typically, in a multiprogramming system,
several processes may reside in physical memory at the same time; see Chapter 4.
OpenVMS Alpha uses memory protection and multiple address spaces to ensure that
one process will not affect either other processes or the operating system.

To improve further software reliability, four hierarchical access modes provide
memory access control. They are, from most to least privileged: kernel, executive,
supervisor, and user. Protection is specified at the individual page level, where a
page may be inaccessible, read-only, or read/write for each of the four access modes.
Accessible pages can be restricted to have only data or instruction access.

A program uses virtual addresses to access its data and instructions. However, before
these virtual addresses can be used to access memory, they must be translated into
physical addresses. Memory management software maintains tables of mapping
information (page tables) that keep track of where each virtual page is located in
physical memory. The processor utilizes this mapping information when it translates
virtual addresses to physical addresses.

Therefore, memory management provides both memory protection and memory
mapping mechanisms. The OpenVMS Alpha memory management architecture is
designed to meet several goals:

• Provide a large address space for instructions and data.

• Allow programs to run on hardware with physical memory smaller than the
virtual memory used.

• Provide convenient and efficient sharing of instructions and data.

• Allow sparse use of a large address space without excessive page table overhead.

• Contribute to software reliability.

• Provide independent read and write access protection.

3.2 Virtual Address Space

A virtual address is a 64-bit unsigned integer specifying a byte location within the
virtual address space. Implementations subset the address space supported to one
of four sizes (43, 47, 51, or 55 bits) as a function of page size. The minimal virtual
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address size supported is 43 bits. If an implementation supports less than 64­
bit virtual addresses it must check that all the VA<63:VA_SIZE> bits are equal
to VA<VA_SIZE-1>. This gives two disjoint ranges for valid virtual addresses.
For example, for a 43-bit virtual address space valid virtual addresses ranges
are 0..3FF FFFF FFFF16 and FFFF FCOO 0000 000016..FFFF FFFF FFFF FFFF16.
Accesses to virtual addresses outside of the valid virtual address ranges for an
implementation cause an access violation exception.

The virtual address space is broken into pages, which are the units of relocation,
sharing, and protection. The page size ranges from BK bytes to 64K bytes.
System software should, therefore, allocate regions with differing protection on 64­
Kbyte virtual address boundaries to ensure image compatibility across all Alpha
implementations.

Memory management provides the mechanism to map the active part of the virtual
address space to the available physical address space. The operating system controls
the virtual-to-physical address mapping tables, and saves the inactive parts of the
virtual address space on external storage media.

3.2.1 Virtual Address Format
The processor generates a 64-bit virtual address for each instruction and operand
in memory. The virtual address consists of three level-number fields, and a byte_
within_page field.

Figure 3-1 : Virtual Address Format

63

Sext(Level1 <Level Size-1 » Level1 Level2 Level3

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a
particular implementation. Thus, the allowable page sizes are BK bytes, 16K bytes,
32K bytes, and 64K bytes. Each level-number field contains O-n bits, where n is, for
example, 9 with an BK-byte page size. The level-number fields are the same size for
a given implementation.

The level number fields are a function of the page size; all page table entries at any
given level do not exceed one page. The PFN field in the PTE is always 32 bits wide.
Thus, as the page size grows the virtual and physical address size also grows.
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Table 3-1: Virtual Address Options
Page Byte Level
Size Offset Size
(bytes) (bits) (bits)

Virtual
Address
(bits)

Physical
Address
(bits)

8K

16K

32K

64K

13

14

15

16

10

11

12

13

43

47

51

55

45

46

47

48

3.3 Physical Address Space

Physical addresses are at most 48 bits. A processor may choose to implement a
smaller physical address space by not implementing some number of high order
bits. The two most significant implemented physical address bits select a caching
policy or implementation dependent type of address space. Implementations will use
these bits as appropriate for their systems. For example, in a workstation with a 30­
bit physical address space, bit <29> might select between memory and non-memory
like regions, and bit <28> could enable or disable caching; see Common Architecture,
Chapter 5.

3.4 Memory Management Control

Memory management is always enabled. Implementations must provide an
environment for PALcode to service exceptions and to initialize and boot the
processor. For example PALcode might run with I-stream mapping disabled and
use the privileged CALL_PAL LDQP and STQP instructions to access data stored in
physical addresses.

3.5 Page Table Entries

The processor uses a quadword Page Table Entry (PTE) to translate virtual addresses
to physical addresses. A PTE contains hardware and software control information
and the physical Page Frame Number. •
Figure 3-2: Page Table Entry
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Fields in the page table entry are interpreted as shown in Table 3-2.

Table 3-2: Page Table Entry
Bits Description

o Valid (V)

Indicates the validity of the the PFN field. When V is set the PFN field is valid for
use by hardware. When V is clear, the PFN field is reserved for use by software.
The V bit does not affect the validity of PTE<15:1> bits.

1 Fault On Read (FOR)

When set, a Fault On Read exception occurs on an attempt to read any location in
the page.

2 Fault On Write (FOW)

When set, a Fault On Write exception occurs on an attempt to write any location
in the page.

3 Fault On Execute (FOE)

When set, a Fault On Execute exception occurs on an attempt to execute an
instruction in the page.

4 Address Space Match (ASM)

When set, this PTE matches all Address Space Numbers. For a given VA,
ASM must be set consistently in all processes, otherwise the address mapping
is UNPREDICTABLE.
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Table 3-2 (Cant.): Page Table Entry
Bits Description

6:5 Granularity hint (GH)

Software may set these bits to a non-zero value to supply a hint to translation
buffer implementations that a block of pages can be treated as a single larger
page:

1. The block is an aligned group of8**N pages, where N is the value ofPTE<6:5>,
e.g. a group of 1, 8, 64, or 512 pages starting at a virtual address with page_
size + 3*N low-order zeros.

2. The block is a group of physically contiguous pages that are aligned both
virtually and physically. Within the block, the low 3*N bits of the PFNs
describe the identity mapping and the high 32-3*N PFN bits are all equal.

3. Within the block, all PTEs have the same values for bits <15:0>, i.e. protection,
fault, granularity, and valid bits.

Hardware may use this hint to map the entire block with a single TB entry, instead
of 8, 64, or 512 separate TB entries.

Note that it is UNPREDICTABLE which PTE values within the block are used if
the granularity bits are set inconsistently.

PROGRAMMING NOTE
A granularity hint might be appropri­
ate for a large memory structure such
as a frame buffer or nonpaged pool that
in fact is mapped into contiguous vir­
tual pages with identical protection, fault,
and valid bits.

7 Reserved for future use by Digital.

PROGRAMMING NOTE
The reserved bit will be used by future
hardware systems and should not be
used by software even if PTE<V> is
clear.

8 Kernel Read Enable (KRE)

This bit enables reads from kernel mode. If this bit is a 0 and a LOAD or
instruction fetch is attempted while in kernel mode, an Access Violation occurs.
This bit is valid even when V=O.

9 Executive Read Enable (ERE)

This bit enables reads from executive mode. If this bit is a 0 and a LOAD or
instruction fetch is attempted while in executive mode, an Access Violation occurs.
This bit is valid even when v=o.
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Table 3-2 (Cont.): Page Table Entry
Bits Description

10 Supervisor Read Enable (SRE)

This bit enables reads from supervisor mode. If this bit is a 0 and a LOAD or
instruction fetch is attempted while in supervisor mode, an Access Violation occurs.
This bit is valid even when V=O.

11 User Read Enable (URE)

This bit enables reads from user mode. If this bit is a 0 and a LOAD or instruction
fetch is attempted while in user mode, an Access Violation occurs. This bit is valid
even when V=O.

12 Kernel Write Enable (KWE)

This bit enables writes from kernel mode. If this bit is a 0 and a STORE is
attempted while in kernel mode, an Access Violation occurs. This bit is valid even
when V=O.

13 Executive Write Enable (EWE)

This bit enables writes from executive mode. If this bit is a 0 and a STORE is
attempted while in executive mode, an Access Violation occurs. This bit is valid
even when V=O.

14 Supervisor Write Enable (SWE)

This bit enables writes from supervisor mode. If this bit is a 0 and a STORE is
attempted while in supervisor mode, an Access Violation occurs. This bit is valid
even when V=O.

15 User Write Enable (UWE)

This bit enables writes from user mode. If this bit is a 0 and a STORE is attempted
while in user mode, an Access Violation occurs. This bit is valid even when v=o.

NOTE
If a write enable bit is set and
the corresponding read enable bit is
not, the operation of the processor is
UNDEFINED.

31:16 Reserved for software.

63:32 Page Frame Number (PFN)

The PFN field always points to a page boundary. If V is set, the PFN is
concatenated with the byte_within_page bits of the virtual address to obtain the
physical address; see Section 3.7. If V is clear, this field may be used by software.

3.5.1 Changes to Page Table Entries
The operating system changes PTEs as part of its memory management functions.
For example, the operating system may set or clear the valid bit, change the PFN
field as pages are moved to and from external storage media, or modify the software
bits. The processor hardware never changes PTEs.
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Software must guarantee that each PTE is always consistent within itself. Changing
a PTE one field at a time may give incorrect system operation, e.g., setting PTE<V>
with one instruction before establishing PTE<PFN> with another. Execution of an
interrupt service routine between the two instructions could use an address that
would map using the inconsistent PTE. Software can solve this problem by building
a complete new PTE in a register and then moving the new PTE to the page table
using a Store Quadword instruction (STQ).

Multiprocessing makes the problem more complicated. Another processor could be
reading (or even changing) the same PTE that the first processor is changing. Such
concurrent access must produce consistent results. Software must use some form of
software synchronization to modify PTEs that are already valid. Once a processor
has modified a valid PTE, it is possible that other processors in a multiprocessor
system may have old copies of that PTE in their Translation Buffer. Software must
inform other processors of changes to PTEs.

Software may write new values into invalid PTEs using quadword store instructions
(i.e., STQ). Hardware must ensure that aligned quadword reads and writes are
atomic operations. The following procedure must be used to change any of the PTE
bits <15:0> of a shared valid PTE (PTE<O>=l) such that an access that was allowed
before the change is not allowed after the change.

1. The PTE<O> is cleared without changing any ofthe PTE bits <63:32> and <15:1>.

2. All processors do a TBIS for the VA mapped by the PTE that changed. The VA
used in the TBIS must assume that the PTE Granularity hint bits are zero.

3. Mter all processors have done the TBIS, the new PTE may be written changing
any or all fields.

PROGRAMMING NOTE
The procedure above allows the QUEUE instructions
that have probed to check that all can complete, to
service a TB miss. The QUEUE instruction will use the
PTE even though the V bit is clear, if during its initial
probe flow the V bit was set.

3.6 Memory Protection

Memory protection is the function of validating whether a particular type of access
is allowed to a specific page from a particular access mode. Access to each page is
controlled by a protection code that specifies, for each access mode, whether read or
write references are allowed.

The processor uses the following to determine whether an intended access is allowed:

• The virtual address, which is used to index page tables.

• The intended access type (read data, write data, or instruction fetch).

• The current access mode from the Processor Status.
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If the access is allowed and the address can be mapped (the Page Table Entry
is valid), the result is the physical address corresponding to the specified virtual
address.

For protection checks, the intended access is read for data loads and instruction
fetch, and write for data stores.

If an operand is an address operand, then no reference is made to memory. Hence,
the page need not be accessible nor map to a physical page.

3.6.1 Processor Access Modes
There are four processor modes:

• Kernel

• Executive

• Supervisor

• User

The access mode of a running process is stored in the Current Mode bits of the
Processor Status (PS); see Section 6.2.

3.6.2 Protection Code
Every page in the virtual address space is protected according to its use. A program
may be prevented from reading or writing portions of its address space. Associated
with each page is a protection code that describes the accessibility of the page for
each processor mode. The code allows a choice of read or write protection for each
processor mode.

• Each mode's access can be read/write, read-only, or no-access.

• Read and write accessibility are specified independently.

• The protection of each mode can be specified independently.

The protection code is specified by 8 bits in the PTE; see Table 3-2.

The OpenVMS Alpha architecture allows a page to be designated as execute only by
setting the read enable bit for the access mode and by setting the fault on read and
write bits in the PTE.

3.6.3 Access Violation Fault

An Access Violation fault occurs if an illegal access is attempted, as determined by
the current processor mode and the page's protection field.

3.7 Address Translation

The page tables can be accessed from physical memory, or (to reduce overhead)
through a mapping to a linear region of the virtual address space. All
implementations must support the virtual access method and are expected to use it
as the primary access method to enhance performance.
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The following sections describe both access methods.

3.7.1 Physical Access for Page Table Entries
Physical address translation is performed by accessing entries in a three-level page
table structure. The Page Table Base Register (PTBR) contains the physical Page
Frame Number of the highest level (Levell) page table. Bits <level1> of the virtual
address are used to index into the first level page table to obtain the physical page
frame number of the base of the second level (Level 2) page table. Bits <leveI2> of
the virtual address are used to index into the second level page table to obtain the
physical page frame number of the base of the third level (Level 3) page table. Bits
<leveI3> of the virtual address are used to index the third level page table to obtain
the physical Page Frame Number (PFN) of the page being referenced. The PFN is
concatenated with virtual address bits <byte_within_page> to obtain the physical
address of the location being accessed.

Ifpart of any page table resides in I/O space, or in nonexistent memory, the operation
of the processor is UNDEFINED.

If the first-level or second-level PTE is valid, the. protection bits are ignored; the
protection code in the third-level PTE is used to determine accessibility. If a first­
level or second-level PTE is invalid, an Access Violation occurs if the PTE<KRE>
equals zero. An Access Violation on a first-level or second-level PTE implies that all
lower-level page tables mapped by that PTE do not exist.

PROGRAMMING NOTE
This mapping scheme does not require multiple
contiguous physical pages. There are no length
registers. With a page size of 8K bytes, 3 pages (24K
bytes) map 8M bytes of virtual address space; 1026
pages (approximately 8M bytes) map an 8-Gbyte address
space; and 1,049,601 pages (approximately 8G bytes)
map the entire 8T byte 2**43 byte address space.

The algorithm to generate a physical address from a virtual address follows:

IF {SEXT(VA<63:VA SIZE» NEQ SEXT(VA<VA SIZE-I>} THEN
{initiate Access Violation fault} -

1 Read physical

levell_pte +- ({PTBR * page_size} + {8 * VA<levell_number>})

IF levell pte<V> EQ 0 THEN
IF levell pte<KRE> EQ 0 THEN

{initiate Access Violation fault}
ELSE

{initiate Translation Not Valid fault}

Read Physical

level2 pte +-

({levell_pte<PFN> * page_size} + {8 * VA<level2_number>})
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* VA<leve13_number>})

access} AND {PS<CM> EQ 3}} OR
access} AND {PS<CM> EQ 3}} OR
access} AND {PS<CM> EQ 2}} OR
access} AND {PS<CM> EQ 2}} OR
access} AND {PS<CM> EQ I}} OR
access} AND {PS<CM> EQ I}} OR
access} AND {PS<CM> EQ O}} OR
access} AND {PS<CM> EQ O}}}

IF leve12 pte<V> EQ 0 THEN
IF leve12 pte<KRE> EQ 0 THEN

{initiate Access Violation fault}
ELSE

{initiate Translation Not Valid fault}

Read Physical

leve13 pte +-

({leve12_pte<PFN> * page_size} + {8

IF {{{leve13 pte<UWE> EQ O} AND {write
{{leve13-pte<URE> EQ O} AND {read
{{leve13-pte<SWE> EQ O} AND {write
{{leve13-pte<SRE> EQ O} AND {read
{{leve13-pte<EWE> EQ O} AND {write
{{leve13-pte<ERE> EQ O} AND {read
{{leve13-pte<KWE> EQ O} AND {write
{{leve13=pte<KRE> EQ O} AND {read

THEN
{initiate Access Violation fault}

ELSE
IF leve13 pte<V> EQ 0 THEN

{initiate Translation Not Valid fault}

IF {leve13 pte<FOW> EQ I} AND {write access} THEN
{initiate Fault On Write fault}

IF {leve13 pte<FOR> EQ I} AND {read access} THEN
{initiate Fault On Read fault}

IF {leve13 pte<FOE> EQ I} AND { execute access} THEN
{initiate Fault On Execute fault}

physical Address +-

{leveI3_pte<PFN> * page_size} OR VA<byte_within_page>

3.7.2 Virtual Access for Page Table Entries
To reduce the overhead associated with the address translation in a three-level page
table structure', the page tables are mapped into a linear region of the virtual address
space. The virtual address of the base of the page table structure is set on a system
wide basis and is contained in the VPTB IPR.

When a native mode DTB or ITB Miss occurs, the TBMISS flows attempt to load
the level three page table entry using a single virtual mode load instruction.

The algorithm involving the manipulation of the missing VA is:

tmp +- left_shift (VA, {64 - {{lg(PageSize) *4} -9 }} )
tmp +-

right_shift(tmp,{64 - {{lg(PageSize)*4} -9} + 19(PageSize) -3})
tmp +- VPTB OR tmp
tmp<2 : 0> +- 0

At this point, tmp contains the VA of the level 3 page table entry. A LDQ from that
VA will result in the acquistion of the PTE needed to satisfy the initial TBMISS
condition.
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1+-

+-Levell PTE<8>
Levell-PTE<O>

However, in the PALcode environment, if a TBMISS occurs during an attempt
to fetch the level3 PTE, then it is necessary to use the longer sequence of three
dependent loads described in Section 3.7.

Chapter 5 contains the description of the VPTB IPR used to contain the virtual
address of the base of the page table structure.

The mapping of the page tables necessary for the correct function of the algorithm
is done as follows:

1. Select a 2(3*1g(page_size/B»+3) byte-aligned region (an address with 3*Ig(page_size
/8)+3 low order zeros) in the virtual address space. This value will be written
into the VPTB register.

2. Create a level! PTE to map the page tables as follows:

Levell PTE ~ 0 ! Init all fields to 0
Levell-PTE<63:32> ~ PFN of Levell Pagetable

! Set PFN to PFN of levell pagetable
! Kernel Read Enable (KRE)
! Valid bit

3. Write the created level! PTE into the Levell page table entry that corresponds
to the VPTB value.

4. Set all Levell and Level2 Valid PTEs to allow kernel read access.

5. Write the VPTB register with the selected base value.

NOTE
No validity checks need be made on the value stored
in the VPTB in a running system. Therefore, if the
VPTB contains an invalid address, the operation is
UNDEFINED.

3.8 Translation Buffer

In order to save actual memory references when repeatedly referencing the
same pages, hardware implementations include a translation buffer to remember
successful virtual address translations and page states.

When the process context is changed, a new value is loaded into the Address
Space Number (ASN) internal processor register with a Swap Privileged Context
instruction (CALL_PAL SWPCTX); see Section 2.6 and Chapter 4. This causes
address translations for pages with PTE<ASM> clear to be invalidated on a processor
that does not implement address space numbers. Additionally, when the software
changes any part (except for the Software field) of a valid Page Table Entry, it must
also move a virtual address within the corresponding page to the Translation Buffer
Invalidate Single (TBIS) internal processor register with the MTPR instruction; see
Chapter 5.

•
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IMPLEMENTATION NOTE
Some implementations may invalidate the entire
Translation Buffer on an MTPR to TBIS. In general,
implementations may invalidate more than the required
translations in the TB.

The entire Translation Buffer can be invalidated by doing a write to Translation
Buffer Invalidate All register (CALL_PAL MTPR_TBIA), and all ASM=O entries can
be invalidated by doing a write to Translation Buffer Invalidate All Process register
(CALL_PAL MTPR_TBIAP); see Chapter 5.

The Translation Buffer must not store invalid PTEs. Therefore, the software is not
required to invalidate Translation Buffer entries when making changes for PTEs
that are already invalid.

The TBCHK internal processor register is available for interrogating the presence
of a valid translation in the Translation Buffer; see Chapter 5.

IMPLEMENTATION NOTE
Hardware implementors should be aware that a single,
direct mapped TB has a potential problem when a load
/store instruction and its data map to the same TB
location. If TB misses are handled in PALcode, there
could be an endless loop unless the instruction is held
in an instruction buffer or a translated physical PC is
maintained by the hardware.

3.9 Address Space Numbers

The Alpha architecture allows a processor to optionally implement address space
numbers (process tags) to reduce the need for invalidation of cached address
translations for process specific addresses when a context switch occurs. The
supported ASN range is O..MAX_ASN.

NOTE
If an ASN outside of the range O..MAX_ASN is
assigned to a process, the operation of the processor is
UNDEFINED.

The address space number for the current process is loaded by software in the
Address Space Number (ASN) internal processor register with a Swap Privileged
Context instruction. ASNs are processor specific and the hardware makes no attempt
to maintain coherency across multiple processors. In a multiprocessor system,
software is responsible for ensuring the consistency of TB entries for processes that
might be rescheduled on different processors.

PROGRAMMING NOTE
System software should not assume that the number
of ASNs is a power of two. This allows, for example,
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hardware to use N TB tag bits to encode (2**N)-3 ASN
values, one value for ASM=l PTEs, and one for invalid.

There are several possible ways of using ASNs. There
are several complications in a multiprocessor system.
Consider the case where a process that executed on
processor-l is rescheduled on processor-2. If a page
is deleted or its protection is changed, the TB in
processor-l has stale data. One solution would be to
send an interprocessor interrupt to all the processors on
which this process could have run and cause them to
invalidate the changed PTE. This results in significant
overhead in a system with several processors. Another
solution would be to have software invalidate all TB
entries for a process on a new processor before it can
begin execution, if the process executed on another
processor during its previous execution. This ensures
the deletion of possibly stale TB entries on the new
processor. A third solution would assign a new ASN
whenever a process is run on a processor that is not the
same as the last processor on which it ran.

3.10 Memory Management Faults

Five types of faults are associated with memory access and protection:

• Access Control Violation (ACV)

Taken when the protection field of the third-level PTE that maps the data
indicates that the intended page reference would be illegal in the specified access
mode. An Access Control Violation fault is also taken if the KRE bit is zero in
an invalid first or second level PTE.

• Fault On Read (FOR)

Occurs when a read is attempted with PTE<FOR> set.

• Fault On Write (FOW)

Occurs when a write is attempted with PTE<FOW> set.

• Fault On Execute (FOE)

Occurs wh.en instruction execution is attempted with PTE<FOE> set.

• Translation Not Valid (TNV)

Taken when a read or write reference is attempted through an invalid PTE in a
first-, second-, or third-level page table.

See Chapter 6 for a detailed description of these faults.

Note that these five faults have distinct vectors in the System Control Block. The
Access Violation (ACV) fault takes precedence over the faults T~ FOR, FOW, and

OpenVMS Memory Management (II) 3-13

•



FOE. The Translation Not Valid (TNV) fault takes precedence over the faults FOR,
FOW, and FOE.

The faults FOR and FOW can occur simultaneously in the CALL_PAL queue
instructions, in which case the order that the exceptions are taken is
UNPREDICTABLE; see Section 2.1.
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Chapter 4

OpenVMS Process Structure (II)

4.1 Process Definition

A process is the basic entity that is scheduled for execution by the processor. A
process represents a single thread of execution and consists of an address space and
both hardware and software context.

The hardware context of a process is defined by:

• 31 Integer registers and 31 Floating-point registers

• Processor Status (PS)

• Program Counter (PC)

• 4 stack pointers

• Asynchronous System Trap Enable and summary registers CASTEN, ASTSR)

• Process Page Table Base Register (PTBR)

• Address Space Number (ASN)

• Floating Enable Register (FEN)

• Process Cycle counter (PCC)

• Process Unique value

• Data Alignment Trap (DAT)

• Performance Monitoring Enable Register (PME)

The software context of a process is defined by operating system software and is
system dependent.

A process may share the same address space with other processes or have an address
space of its own. There is, however, no separate address space for system software,
and therefore, the operating system must be mapped into the address space of each
process; see Chapter 3.

In order for a process to execute, its hardware context must be loaded into the integer
registers, Floating-point registers, and internal processor registers. While a process
is executing, its hardware context is continuously updated. When a process is not
being executed, its hardware context is stored in memory.

Saving the hardware context of the current process in memory, followed by loading
the hardware context for a new process, is termed context switching. Context
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switching occurs as one process after another is scheduled by the operating system
for execution.

4.2 Hardware Privileged Process Context

The hardware context of a process is defined by a privileged part which is context
switched with the Swap Privileged Context instruction (SWPCTX) (see Section 2.6),
and a non-privileged part which is context switched by operating system software.

When a process is not executing, its privileged context is stored in a 128 byte
naturally aligned memory structure called the Hardware Privileged Context Block
(HWPCB).

Figure 4-1 : Hardware Privileged Context Block
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The Hardware Privileged Context Block (HWPCB) for the current process is specified
by the Privileged Context Block Base register (PCBB); see Chapter 5.

The Swap Privileged Context instruction (SWPCTX) saves the privileged context of
the current process into the HWPCB specified by PCBB, loads a new value into
PCBB, and then loads the privileged context of the new process into the appropriate
hardware registers.

The new value loaded into PCBB, as well as the contents of the Privileged Context
Block, must satisfy certain constraints or an UNDEFINED operation results:
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1. The physical address loaded into PCBB must be 128 byte aligned and describes
sixteen contiguous quadwords that are in a memory-like region; see Common
Architecture, Chapter 5.

2. The value of PTBR must be the Page Frame Number of an existent page that is
in a memory-like region.

It is the responsibility of the operating system to save and load the non-privileged
part of the hardware context.

The SWPCTX instruction returns ownership of the current HWPCB to operating
system software and passes ownership of the new HWPCB from the operating system
to the processor. Any attempt to write a HWPCB while ownership resides with the
processor has UNDEFINED results. If the HWPCB is read while ownership resides
with the processor, it is UNPREDICTABLE whether the original or an updated value
of a field is read. The processor is free to update an HWPCB field at any time. The
decision as to whether or not a field is updated is made individually for each field.

If ASNs are not implemented, the ASN field is not read or written by PALcode.

The FEN bit reflects the setting of the FEN IPR.

The DAT bit controls whether data alignment traps that are fixed up in PALcode
are reported to the operating system. If the bit is clear, the trap is reported. If the
bit is set, after the fixup, return is to the user. See Section 6.6.

Setting the PME bit alerts any performance hardware or software in the system to
monitor the performance of this process.

The Process Unique value is that value used in support of multithread
implementations. The value is stored in the HWPCB when the process is not active.
When the process is active, the value may be cached in hardware internal storage
or kept in the HWPCB only.

4.3 Asynchronous System Traps (AST)

Asynchronous System Traps CASTs) are a means of notifying a process of events that
are not synchronized with its execution but which must be dealt with in the context
of the process with minimum delay.

Asynchronous System Traps CASTs) interrupt process execution and are controlled by
the AST Enable (ASTEN) and AST Summary (ASTSR) internal processor registers;
see Chapter 5.

The AST Enable register (ASTEN) contains an enable bit for each of the four
processor access modes. When the bit corresponding to an access mode is set,
ASTs for that mode are enabled. The AST enable bit for an access mode may be
changed by executing a Swap AST Enable instruction (SWASTEN; see Section 2.6),
or by executing a Move To Processor Register instruction specifying ASTEN (MTPR
ASTEN; see Chapter 5).
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The AST Summary Register (ASTSR) contains a pending bit for each of the four
processor access modes. When the bit corresponding to an access mode is set, an
AST is pending for that mode.

Kernel mode software may request an AST for a particular access mode by executing
a Move To Processor Register instruction specifying ASTSR (MTPR ASTSR); see
Chapter 5).

Hardware or PALcode monitors the state of ASTEN, ASTSR, PS<CM>, and
PS<IPL>. If PS<IPL> is less than 2, and there is an AST pending and enabled
for an access mode that is less than or equal to PS<CM> (i.e. an equal or more
privileged access mode), an AST is initiated at IPL 2.

ASTs that are pending and enabled for a less privileged access mode are not allowed
to interrupt execution in a more privileged access mode.

4.4 Process Context Switching
Process context switching occurs as one process after another is scheduled for
execution by operating system software. Context switching requires the hardware
context of one process to be saved in memory followed by the loading of the hardware
context for another process into the hardware registers.

The privileged hardware context is swapped with the CALL_PAL Swap Privileged
Context instruction (SWPCTX). Other hardware context must be saved and restored
by operating system software.

The sequence in which process context is changed is important since the SWPCTX
instruction changes the environment in which the context switching software itself
is executing. Also, although not enforced by hardware, it is advisable to execute
the actual context switching software in an environment which cannot be context
switched (i.e. at an IPL high enough that rescheduling cannot occur).

The SWPCTX instruction is the only method provided for loading certain internal
processor registers. The SWPCTX instruction always saves the privileged context of
the old process and loads the privileged context of a new process. Therefore, a valid
HWPCB must be available to save the privileged context of the old process as well
as load the privileged context of the new process.
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Chapter 5

OpenVMS Internal Processor Registers (II)

5.1 Internal Processor Registers

This chapter describes the OpenVMS Alpha Internal Processor Registers (IPRs).
These registers are read and written with Move From Processor Register (MFPR)
and Move To Processor Register (MTPR) instructions; see Section 2.6.

These instructions accept an input operand in R16 and return a result, if any, in
RO. Registers Rl, R16, and R17 are UNPREDICTABLE after a CALL_PAL MxPR
routines. If a CALL_PAL MxPR routine does not return a result in RO, then RO is
also UNPREDICTABLE on return.

Some IPRs (for example, ASTSR, ASTEN, IPL) may be both read and written in a
combined operation by performing an MTPR instruction.

Internal Processor Registers mayor may not be implemented as actual hardware
registers. An implementation may choose any combination ofPALcode and hardware
to produce the architecturally specified function.

Internal Processor Registers are only accessible from Kernel mode.

5.2 Stack Pointer Internal Processor Registers

The stack pointers for User, Supervisor, and Executive stacks are accessible as IPRs
through the CALL_PAL MTPR and MFPR instructions. An implementation may
retain some or all of these stack pointers only in the HWPCB. In this case, MTPR and
MFPR for these registers must access the corresponding PCB locations. However,
implementations that have these stack pointers in internal hardware registers are
not required to access the corresponding HWPCB locations for MTPR and MFPR.
The HWPCB locations get updated when a SWPCTX instruction is executed.

An implementation may also choose to keep the Kernel Stack Pointer (KSP) in an
internal hardware register (labelled IPR_KSP); however, this register is not directly
accessible through MTPR and MFPR instructions. Because access to the KSP
requires Kernel mode, the actual KSP is the current mode stack pointer (R30); thus
access to KSP is provided through R30 and no MTPR or MFPR access is required.
PALcode routines can directly access IPR_KSP as needed.

At system initialization, the value of the KSP is taken from the initial HWPCB (see
Chapter 4).
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5.3 IPR Summary

Table 5-1: Internal Processor Register (IPR) Summary

Input Output Context
Register Name MnemonicAccess1 R1G RO Switched

Address Space Number ASN R number Yes

AST Enable ASTEN RIW* mask mask Yes

AST Summary Register ASTSR RIW* mask mask Yes

Data Align Trap Fixup DATFX W value Yes

Floating-point Enable FEN RIW value value Yes

Interprocessor Int. Request IPIR W number No

Interrupt Priority Level IPL RIW* value value No

Machine Check Error Summary MCES RIW value value No

Performance Monitor PERFMON w* IMP IMP No

Privileged Context Block Base PCBB R address No

Processor Base Register PRBR RIW value value No

Page Table Base Register PTBR R frame Yes

System Control Block Base SCBB RIW frame frame No

Software Int. Request Register SIRR W level No

Software Int. Summary Register SISR R mask No

TB Check TBCHK R number status No

TB Invalid. All TBIA W No

TB Invalid. All Process TBIAP W No

TB Invalid. Single TBIS W address No

TB Invalid. Single Data TBISD W address No

TB Invalid. Single Instruct. TBISI W address No

Kernel Stack Pointer KSP None Yes

Exec Stack Pointer ESP RIW address address Yes

Supervisor Stack Pointer SSP RIW address address Yes

User Stack Pointer USP RIW address address Yes

Virtual Page Table Base VPTB RIW address address No

Who-Am-I WHAMI R number No

1Access symbols are defined in Table 5-2.
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Table 5-2: Internal Processor Register (IPR) Access Summary

Access
Type Meaning

R Access by MFPR only.

W Access by MTPR only.

RJW Access by MFPR or MTPR.

W* Read and Write access accomplished by MTPR; see Section 5.1 for details.

RJW* Access by MFPR or MTPR. Read and Write access accomplished by MTPR; see Section 5.1 for details.

None Not accessible by MTPR or MFPR; accessed by PALcode routines as needed.
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5.3.1 Address Space Number (ASN)

Access:

Read

Operation:

IF {ASN are implemented} THEN
RO +- ZEXT(ASN)

ELSE
RO +- 0

Value at System Initialization:

Zero

Format:

Figure 5-1 : Address Space Number Register (ASN)

~ 0

1 Ad_d_re_ss_s_p_ac_e_N_u_mb_e_r 1

RO

Description:

Address Space Numbers (ASNs) are used to further qualify Translation Buffer
references; see Chapter 3. If ASNs are implemented, the current ASN may be read
by executing an MFPR instruction specifying ASN.

As processes are scheduled for execution, the ASN for the next process to execute
is loaded using the Swap Privileged Context (SWPCTX) instruction; see Chapters 2
and 4.

The ASN register is an implicit operand to the CALL_PAL MFPR_IPR, TBCHK,
and TBISx PALcode instructions, in which it is used to qualify the virtual address
supplied in R16.

5-4 OpenVMS Alpha Software (II)



5.3.2 AST Enable (ASTEN)

Access:

Read

Write*

Operation:

RO +- ZEXT (ASTEN<3:0» 1 Read (MFPR)
RO +- ZEXT(ASTEN<3:0» ! Write* (MTPR)
ASTEN<3:0> +- {{ASTEN<3:0> AND R16<3:0>} OR R16<7:4>}
{check for pending ASTs}

Value at System Initialization:

Zero

Format:

Figure 5-2: AST Enable Register (ASTEN)

63 8 7 6 5 4 3 2 1 0

I
--------------------------_uS E K USE K

IGN 0 0 0 0 C C C C
NNNNLLLL

Format of RO

63 4 3 2 1 0

I~--------------R-AZ--------------_

Description:

The AST Enable Register records the AST enable state for each of the modes:
Kernel (KEN), Executive (EEN), Supervisor (SEN) and User (UEN). By writing RI6
appropriately and then executing an MTPR instruction specifying ASTEN, the value
of ASTEN may be simultaneously read and modified. RI6 contains bit masks used
to determine the new value of ASTEN:

• Bits RI6<O> and RI6<4> control the new state of Kernel enable.

• Bits RI6<1> and RI6<5> control the new state of Executive enable.
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• Bits R16<2> and R16<6> control the new state of Supervisor enable.

• Bits R16<3> and R16<7> control the new state of User enable.

An MFPR to ASTEN reads the current value of the ASTEN and returns this value
inRO.

An MTPR to ASTEN begins by reading the current value of ASTEN and returning
this value in RO. The current value of ASTEN is then ANDed with bits R16<3:0>;
these bits preserve (if set to '1') or clear (if equal to '0') the current state of their
corresponding enable modes. The value produced by this operation is then ORed
with bits R16<7:4>; these bits turn on (if set to '1') or do not affect (if equal to
'0') their corresponding enable modes. The resulting value is then written to the
ASTEN.

NOTE
All AST enables can be cleared by loading a zero into
R16 and executing an MTPR instruction specifying
ASTEN. To enable an AST for a given mode, load R16
with a mask that has bits <3:0> set and one of the bits
<7:4> corresponding to the AST mode to be set. Then
execute an MTPR instruction specifying ASTEN.

As processes are scheduled for execution, the state of the AST enables for the
next process to execute is loaded using the Swap Privileged Context (SWPCTX)
instruction. The Swap AST Enable (SWASTEN) instruction can be used to change
the enable state for the current access mode; See Chapters 2 and 4.
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5.3.3 AST Summary Register (ASTSR)

Access:

Read

Write*

Operation:

RO +- ZEXT(ASTSR<3:0» ! Read (MFPR)
RO +- ZEXT(ASTSR<3:0» ! write* (MTPR)
ASTSR<3:0> +- {{ASTSR<3:0> AND R16<3:0>} OR R16<7:4>}
{check for pending ASTs}

Value at System Initialization:

Zero

Format:

Figure 5-3: AST Summary Register (ASTSR)

63 876543210

I
-------------------------_uS E K USE K

IGN 0 0 0 0 C C C C
NNNNLLLL

A16
63 43210

I~-------------A-A-Z--------------~

AD

Description:

The AST Summary Register records the AST pending state for each of the modes:
Kernel (KPD), Executive (EPD), Supervisor (SPD), and User (UPD).
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By writing R16 appropriately and then executing an MTPR instruction specifying
ASTSR, the value ofASTSR may be simultaneously read and modified. R16 contains
bit masks used to determine the new value of ASTSR:

• Bits R16<0> and R16<4> control the new state of Kernel pending.

• Bits R16<1> and R16<5> control the new state of Executive pending.

• Bits R16<2> and R16<6> control the new state of Supervisor pending.

• Bits R16<3> and R16<7> control the new state of User pending.

An MFPR reads the current value of ASTSR and returns this value in RO.

An MTPR to ASTSR begins by reading the current value of ASTSR and returning
this value in RO. The current value of ASTSR is then ANDed with bits R16<3:0>;
these bits preserve (if set to '1') or clear (if equal to '0') the current state of their
corresponding pending modes. The value produced by this operation is then ORed
with bits R16<7:4>; these bits turn on (if set to '1') or do not affect (if equal to
'0') their corresponding pending modes. The resulting value is then written to the
ASTSR.

NOTE
All AST requests can be cleared by loading a zero in R16
and executing an MTPR instruction specifying ASTSR.
To request an AST for a given mode, load R16 with a
mask that has bits <3:0> set and one of the bits <7:4>
corresponding to the AST mode to be set. Then execute
an MTPR instruction specifying ASTSR.

As processes are scheduled for execution, the pending AST state for the next process
to execute is loaded using the Swap Privileged Context (SWPCTX) instruction; see
Chapters 2 and 4.

When the processor IPL is less than 2, and proper enabling conditions are present,
an AST interrupt is initiated at IPL 2 and the corresponding access mode bit in
ASTSR is cleared; see Section 6.7.6.
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5.3.4 Data Alignment Trap Fixup (DATFX)

Access:

Write

Operation:

DATFX +- R16<O>
(HWPCB+56)<63> +- DATFX

Value at System Initialization:

Zero

Format:

Figure 5-4: Data Alignment Trap Fixup (DATFX)

63 2 1 0

11..---- 00

Description:

Data Alignment traps are fixed up in PALcode and are reported to the operating
system under the control of the DAT bit. If the bit is zero, the trap is reported.
For the LDx_L and STx_C instructions, no fixup is possible and an illegal operand
exception is generated. For the description of the data alignment traps, see
Section 6.6.
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5.3.5 Floating Enable (FEN)

Access:

Read/Write

Operation:

RO.- ZEXT ( FEN)

FEN.- R16<O>
(HWPCB+56)<O>.- FEN

Value at System Initialization:

Zero

Format:

1 Read

Write
Update PCB on Write

Figure 5-5: Floating Enable (FEN) Register

63 2 1 0

10.......--- ---...00
Description:

The Floating-point unit can be disabled. If the Floating Enable Register (FEN) is
zero, all instructions that have floating registers as operands cause a Floating-point
disabled fault; see Section 6.3.1.1.
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5.3.6 Interprocessor Interrupt Request (IPIR)

Access:

Write

Operation:

IPIR +- R16

Value at System Initialization:

Not applicable

Format:

Figure 5-6: Interprocessor Interrupt Request Register (IPIR)

~ 0

1 p_ro_ce_s_so_r_Nu_rn_b_er 1

R16

Description:

An interprocessor interrupt can be requested on a specified processor by writing
that processor's number into the IPIR register through an MTPR instruction. The
interrupt request is recorded on the target processor and is initiated when proper
enabling conditions are present.

PROGRAMMING NOTE
The interrupt need not be initiated before the next
instruction is executed on the requesting processor, even
if the requesting processor is also the target processor
for the request.

For additional infonnation on interprocessor interrupts, see Section 6.4.5.1.
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5.3.7 Interrupt Priority Level (IPL)

Access:

Read/Write*

Operation:

RO +- ZEXT(PS<IPL» Read
RO +- ZEXT(PS<IPL» write*
PS<IPL> +- R16<4:0> write
{check for pending ASTs or interrupts}

Value at System Initialization:

31

Format:

Figure 5-7: Interrupt Priority Level (IPL)

63 5 4 0

I~--SB-Z--8
Description:

An MFPR IPL returns the current interrupt priority level in RO. An MTPR IPL
returns the current interrupt priority level in RO and sets the interrupt priority
level to the value in R16. If proper enabling conditions are present, an interrupt or
AST is initiated prior to issuing the next instruction; see Sections 6.4.1 and 6.7.6.
R16<63:5> are defined as RAZISBZ. Therefore, the presence of non-zero bits upon
write in R16<63:5> may cause UNDEFINED results.
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5.3.8 Machine Check Error Summary Register (MCES)

Access:

ReadlWrite

Operation:

RO 4- ZEXT(MCES)

IF {R16<O> EQ I} THEN MCES<O> +- 0
IF {R16<1> EQ I} THEN MCES<l> +- 0
IF {R16<2> EQ I} THEN MCES<2> 4- 0
MCES<3> +- R16<3>
MCES<4> +- R16<4>

Value at System Initialization:

Zero

Format:

Read

Write

Figure 5-8: Machine Check Error Summary Register (MCES)

63 32 31 5 4 3 2 1 0I--------,-M-p----------rl------Re-s-er-ve-d-----II

Description:

The use of the MCES IPR is described in Section 6.5.

MCES<O> is set by the hardware or PALcode when a processor or system machine
check occurs. MCES<l> is set by the hardware or PALcode when a system
correctable error occurs. MCES<2> is set by the hardware or PALcode when a
processor correctable error occurs. Writing a 1 to any of these three bits clears that
bit.

MCES<O> is cleared by the operating system machine check error handler and
used by the hardware or PALcode to detect double machine checks. MCES<l>
and MCES<2> are cleared by the operating system system or processor system
correctable error handlers; these bits are used to indicate that the associated
correctable error logout area may be reused by hardware or PALcode. In the event
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of double correctable errors, PALcode does not overwrite the logout area and does
not force the processor to enter console 110 mode; see Section 6.5.1.

MCES<4:3> are used to disable reporting ofcorrectable errors. When set, the error is
corrected, but no system correctable error interrupt or processor correctable machine
check is generated.

Implementation dependent (IMP) bits may be used to report implementation specific
errors.
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5.3.9 Performance Monitoring Register (PERFMON)

Access:

Write*

Operation:

R<16> contains implementation specific input values
R<O> may return implementation specific values
Operations and actions taken are implementation specific

Value at System Initialization:

Implementation Dependent

Format:

Figure 5-9: Performance Monitoring Register (PERFMON)

~ 0

I'---- ,MP __-----....1

Description:

The arguments and actions of this performance monitoring function are platform
and chip dependent.

R<16> contains implementation dependent input values. Implementation specific
values may be returned in R<O>.
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5.3.10 Privileged Context Block Base (PCBB)

Access:

Read

Operation:

RO +- ZEXT(PCBB)

Value at System Initialization:

Address of processor's bootstrap HWPCB

Format:

Figure 5-10: Privileged Context Block Base Register (PCBB)

63 4847 0

1 R_A_z .....I p_h_ys_ic_a,_A_dd_re_s_s I

RO

Description:

The Privileged Context Block Base Register contains the physical address of the
privileged context block for the current process. It may be read by executing an
MFPR instruction specifying PCBB.

PCBB is written by the Swap Privileged Context (SWPCTX) instruction; see
Chapters 2 and 4.

5-16 OpenVMS Alpha Software (II)



5.3.11 Processor Base Register (PRBR)

Access:

ReadIWrite

Operation:

RO +- PRBR

PRBR +- R16

Value at System Initialization:

UNPREDICTABLE

Format:

Read

1 Write

Figure 5-11: Processor Base Register (PRBR)

~ 0

1 o_p_er_a_tin_9_s_Ys_te_m_-o_e_
p

_en_d_en_t_va_lu_e 1

Description:

In a multiprocessor system, it is desirable for the operating system to be able to
locate a processor-specific data structure in a simple and straightforward manner.
The Processor Base Register provides a quadword of operating system-dependent
state that can be read and written via MFPR and MTPR instructions that specify
PRBR.
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5.3.12 Page Table Base Register (PTBR)

Access:

Read

Operation:

RO +- PTBR

Value at System Initialization:

Value in the bootstrap HWPCB

Format:

Figure 5-12: Page Table Base Register (PTBR)

63 3231 0

11- R_AZ ....I pa_g_e_Fr_am_e_N_u_rn_b_er .....I1

RO

Description:

The Page Table Base Register contains the page frame number of the first-level page
table for the current process. It may be read by executing an MFPR instruction
specifying PTBR; see Chapter 3.

As processes are scheduled for execution, the PTBR for the next process to execute
is loaded using the Swap Privileged Context (SWPCTX) instruction; see Chapters 2
and 4.
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5.3.13 System Control Block Base (SCBB)

Access:

ReadIWrite

Operation:

RO +- ZEXT(SCBB)

SCBB +- R16

Value at System Initialization:

UNPREDICTABLE

Format:

Read

write

Figure 5-13: System Control Block Base Register (SCBB)

63 3231 0

1L-... I_G_N/_R_AZ -"-I p_a_ge_F_ra_rn_e_N_u_rn_be_r 1

Description:

The System Control Block Base Register holds the Page Frame Number (PFN) of
the System Control Block, which is used to dispatch exceptions and interrupts, and
may be read and written by executing MFPR and MTPR instructions that specify
SCBB; see Section 6.6.

When SCBB is written, the specified physical address must be the PFN of a page
which is neither in I/O space nor non-existent memory, or UNDEFINED operation
will result.
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5.3.14 Software Interrupt Request Register (SIRR)

Access:

Write

Operation:

IF R16<3:0> NE 0 THEN
SISR<R16<3:0» ~ 1

Value at System Initialization:

Not applicable

Format:

Figure 5-14: Software Interrupt Request Register (SIRR)

63 4 3 0

I~--I-GN--8
R16

Description:

A software interrupt may be requested for a particular Interrupt Priority Level
(IPL) by executing an MTPR instruction specifying SIRR. Software interrupts may
be requested at levels 0 through 15 (requests at level 0 are ignored).

An MTPR BIRR sets the bit corresponding to the specified interrupt level in the
Software Interrupt Summary Register (SISR).

If proper enabling conditions are present, a software interrupt is initiated prior to
issuing the next instruction; see Sections 6.4.1 and 6.7.6.
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5.3.15 Software Interrupt Summary Register (SISR)

Access:

Read

Operation:

RO +- ZEXT(SISR<15:0»

Value at System Initialization:

Zero

Format:

Figure 5-15: Software Interrupt Summary Register (SISR)

63 161514131211109 876 543 2 1 0

I I I I I I I I I I I I I I IR
RAZ RR RR RR RR RR RR RR RA

F E DC SA 9 8 7 6 5 4 3 2 1 Z

RD

Description:

The Software Interrupt Summary Register records the interrupt pending state for
each of the interrupt levels 1 through 15. The current interrupt pending state may
be read by executing an MFPR instruction specifying SISR.

MTPR SIRR (see SIRR) requests an interrupt at a particular interrupt level and
sets the corresponding pending bit in SISR.

When the processor IPL falls below the level of a pending request, an interrupt is
initiated and the corresponding bit in SISR is cleared; see Sections 6.4.1 and 6.7.6.
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5.3.16 Translation Buffer Check (TBCHK)

Access:

Read

Operation:

RO +- 0
IF {implemented} THEN

RO<O> +- {entry in TB for VA in R16}
ELSE

RO<63> +- 1

Value at System Initialization:

Correct results are always returned

Format:

Figure 5-16: Translation Buffer Check Register (TBCHK)

~ 0

1--. V_irt_u_al_A_dd_r_es_s 1

R16
6362 2 1 0

~--------------R-AZ---------------OO

RO

Description:

The Translation Buffer Check Register provides the capability to determine if
a virtual address is present in the Translation Buffer by executing an MFPR
instruction specifying TBCHK; see Chapter 3.

The virtual address to be checked is specified in R16 and may be any address within
the desired page. If ASNs are implemented, only those Translation Buffer entries
which are associated with the current value of the ASN IPR will be checked for the
virtual address. The value read contains an indication of whether the function is
implemented and whether the virtual address is present in the Translation Buffer.
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If the function is not implemented, a value is returned with bit <63> set and bit <0>
clear. Otherwise, a value is returned with bit <63> clear, and with bit <0> indicating
whether the virtual address is present in (1) or absent from (0) the Translation
Buffer.

The TBCHK Register can be used by system software for working set management.
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5.3.17 Translation Buffer Invalidate All (TBIA)

Access:

Write

Operation:

{Invalidate all TB entries}

Value at System Initialization:

Not applicable

Format:

Figure 5-17: Translation Buffer Invalidate All Register (TBIA)

~ 0

1 unused 1

R16

Description:

The Translation Buffer Invalidate All Register provides the capability to invalidate
all entries in the Translation Buffer by executing an MTPR instruction specifying
TBIA; see Chapter 3.
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5.3.18 Translation Buffer Invalidate All Process (TBIAP)

Access:

Write

Operation:

{Invalidate all TB entries with PTE<ASM> clear}

Value at System Initialization:

Not applicable

Format:

Figure 5-18: Translation Buffer Invalidate All Process Register (TBIAP)

~ 0

11..------__unus8d I
R16

Description:

The Translation Buffer Invalidate All Process Register provides the capability to
invalidate all entries in the Translation Buffer that do not have the ASM bit set by
executing an MTPR instruction specifying TBIAP; see Chapter 3.

Notes:
More entries may be invalidated by this operation.
implementations may flush the entire TB on a TBIAP.

For example, some •
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5.3.19 Translation Buffer Invalidate Single (TBISx)

Access:

Write

Operation:

TBIS:
{Invalidate single Data TB entry using R16}
{Invalidate single Instruction TB entry using R16}

TBISD:
{Invalidate single Data TB entry using R16}

TBISI:
{Invalidate single Instruction TB entry using R16}

Value at System Initialization:

Not applicable

Format:

Figure 5-19: Translation Buffer Invalidate Single (TBIS)

~ 0

1 V_irt_u_al_A_dd_r_es_s 1

R16

Description:

The Translation Buffer Invalidate Single Registers provide the capability to
invalidate a single entry in the Instruction Translation Buffer (TBISI), the Data
Translation Buffer (TBISD), or both translation buffers (TBIS). The virtual address
to be invalidated is passed in R16 and may be any address within the desired page.

Notes:
More than the single entry may be invalidated by this operation. For example
some implementations may flush the entire TB on a TBIS. As a result, if the
specified address does not match any entry in the Translation Buffer, then it is
implementation-dependent whether the state of the Translation Buffer is affected
by the operation.
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5.3.20 Executive Stack Pointer (ESP)

Access:

ReadIWrite

Operation:

IF {internal registers for stack pointers} THEN
RO ~ ESP

ELSE
RO +- (IPR_PCBB + HWPCB_ESP)

IF {internal registers for stack pointers} THEN
ESP ~ R16

ELSE
(IPR_PCBB + HWPCB_ESP) ~ R16

Value at System Initialization:

Value in the initial HWPCB

Format:

Figure 5-20: Executive Stack Pointer (ESP)

1 Read

Write

~ 0

I
Stack Address I

_________---...1

Description:

This register allows the stack pointer for Executive mode (ESP) to be read and
written via MFPR and MTPR instructions that specify ESP.

The current stack pointer may be read and written directly by specifying scalar
register SP (R30).

As processes are scheduled for execution, the stack pointers for the next process to
execute are loaded using the Swap Privileged Context (SWPCTX) instruction; see
Section 2.6 and Chapter 4.
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5.3.21 Supervisor Stack Pointer (SSP)

Access:

ReadlWrite

Operation:

IF {internal registers for stack pointers} THEN
RO ~ SSP

ELSE
RO ~ (IPR_PCBB + HWPCB_SSP)

IF {internal registers for stack pointers} THEN
SSP ~ R16

ELSE
(IPR_PCBB + HWPCB_SSP) ~ R16

Value at System Initialization:

Value in the initial HWPCB

Format:

Figure 5-21 : Supervisor Stack Pointer (SSP)

Read

write

~ 0

1 s_t_ac_k_A_dd_r_es_s 1

Description:

This register allows the stack pointer for Supervisor mode (SSP) to be read and
written via MFPR and MTPR instructions that specify SSP.

The current stack pointer may be read and written directly by specifying scalar
register SP (R30).

As processes are scheduled for execution, the stack pointers for the next process to
execute are loaded using the Swap Privileged Context (SWPCTX) instruction; see
Section 2.6 and Chapter 4.
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5.3.22 User Stack Pointer (USP)

Access:

Read/Write

Operation:

IF {internal registers for stack pointers} THEN
RO +- USP

ELSE
RO +- (IPR_PCBB + HWPCB_USP)

IF {internal registers for stack pointers} THEN
USP +- RI6

ELSE
(IPR_PCBB + HWPCB_USP) +- RIG

Value at System Initialization:

Value in the initial HWPCB

Format:

Figure 5-22: User Stack Pointer (USP)

Read

Write

~ 0

1...... S_ta_ck_A_d_dr_e_ss 1

Description:

This register allows the stack pointer for User mode (USP) to be read and written
via MFPR and MTPR instructions that specify USP.

The current stack pointer may be read and written directly by specifying scalar
register SP (R30).

As processes are scheduled for execution, the two stack pointers for the next process
to execute are loaded using the Swap Privileged Context (SWPCTX) instruction; see
Section 2.6 and Chapter 4.
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5.3.23 Virtual Page Table Base (VPTB)

Access:

ReadIWrite

Operation:

RO +- VPTB

VPTB +- R16

Value at System Initialization:

1 Read

1 write

Initialized by the console in the bootstrap address space.

Format:

Figure 5-23: Virtual Page Table Base Register (VPTB)

~ 0

1 VA_of_p_ag_e_T_ab_'e_S_tr_uc_tu_re --11
RO

Description:

The Virtual Page Table Base Register contains the virtual address of the base of
the entire three-level Page table structure. It may be read by executing an MFPR
instruction specifying VPTB. It is written at system initialization using an MTPR
instruction specifying VPTB. See Section 3.7.2 for initialization considerations.
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5.3.24 Who-Am-I (WHAMI)

Access:

Read

Operation:

RO.- WHAMI

Value at System Initialization:

Processor number

Format:

Figure 5-24: Who-Am-I Register (WHAMI)

~ 0

11o... p_ro_c_8s_so_r_N_um_b_8_r I

RO

Description:

The Who-Am-I Register provides the capability to read the current processor number
by executing an MFPR instruction specifying WHAMI. The processor number
returned is in the range 0 to the number of processors minus one that can be
configured in the system. Processor number FFFF FFFF FFFF FFFF16 is reserved.

The current processor number is useful in a multiprocessing system to index
arrays that store per processor information. Such information is operating system
dependent.
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Chapter 6

OpenVMS Exceptions, Interrupts, and Machine
Checks (II)

6.1 Introduction

At certain times during the operation of a system, events within the system require
the execution of software outside the explicit flow of control. When such an
exceptional event occurs, an Alpha processor forces a change in control flow from
that indicated by the current instruction stream. The notification process for such
events is of one of three types:

• Exceptions

These events are relevant primarily to the currently executing process and
normally invoke software in the context of the current process. The three types
of exceptions are faults, arithmetic traps, and synchronous traps. Exceptions are
described in Section 6.3.

• Interrupts

These events are primarily relevant to other processes, or to the system as a
whole, and are typically serviced in a system-wide context.

Some interrupts are of such urgency that they require high-priority service, while
others must be synchronized with independent events. To meet these needs, each
processor has priority logic that grants interrupt service to the highest priority
event at any point in time. Interrupts are described in Section 6.4.

• Machine Checks

These events are generally the result of serious hardware failure. The registers
and memory are potentially in an indeterminate state such that the instruction
execution cannot necessarily be correctly restarted, completed, simulated, or
undone. Machine checks are described in Section 6.5.

For all such events, the change in flow of control involves changing the Program
Counter (PC), possibly changing the execution mode (current mode) and/or interrupt
priority level (IPL) in the Processor Status (PS), and saving the old values of the
PC and PS. The old values are saved on the target stack as part of an Exception,
Interrupt, or Machine Check Stack Frame. Collectively, those elements are described
in Section 6.2.

The service routines that handle exceptions, interrupts, and machine checks are
specified by entry points in the System Control Block (SCB), described in Section 6.6.
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Return from an exception, interrupt, or machine check, is done via the CALL_PAL
REI instruction. As part of its work, CALL_PAL REI restores the saved values of
PC and PS and pops them off the stack.

6.1.1 Contrast Between Exceptions, Interrupts, and Machine Checks
Generally, exceptions, interrupts, and machine checks are similar. However, there
are four important differences:

1. An exception condition is caused by the execution of an instruction. An interrupt
is caused by some activity in the system that may be independent of any
instruction. A machine check is associated with a hardware error condition.

2. The IPL of the processor is not changed when the processor initiates an exception.
The IPL is always raised when an interrupt is initiated. The IPL is always
raised when a machine check is initiated, and for all machine checks other than
system correctable, is raised to 31 (highest priority level). (For system correctable
machine checks, the IPL is raised to 20.)

3. Exceptions are always initiated immediately, no matter what the processor IPL
is. Interrupts are deferred until the processor IPL drops below the IPL of the
requesting source. Machine checks can be initiated immediately or deferred,
depending on error conditions.

4. Some exceptions can be selectively disabled by selecting instructions that do
not check for exception conditions. If an exception condition occurs in such an
instruction, the condition is totally ignored and no state is saved to signal that
condition at a later time.

If an interrupt request occurs while the processor IPL is equal to or greater than
that of the interrupting source, the condition will eventually initiate an interrupt
if the interrupt request is still present and the processor IPL is lowered below
that of the interrupting source.

Machine checks cannot be disabled. Machine checks can be initiated immediately
or deferred, depending on the error condition. Also, they can be deliberately
generated by software.

6.1.2 Exceptions, Interrupts, and Machine Checks Summary
The table below summarizes the actions taken on an exception, interrupt, or machine
check. The remaining sections in this chapter describe these in greater detail.

• The "SavedPC" column describes what is saved in the "PC" field of the exception
or interrupt or machine check stack frame. Here,

1. "Current" indicates the PC of the instruction at which the exception or
interrupt or machine check was taken, while

2. "Next" indicates the PC of the successor instruction.

• The "NewMode" column specifies the mode and stack that the exception or
interrupt or machine check routine will start with. For change mode traps,
"MostPrv" indicates the more privileged of the current and new modes.

6-2 OpenVMS Alpha Software (II)



• The "R2" column specifies the value with which R2 is loaded, after its original
value has been saved in the exception or interrupt or machine check stack frame.
The SCB vector quadword, "SCBv", is loaded into R2 for all interrupts and
exceptions and machine checks.

• The "R3" column specifies the value with which R3 is loaded, after its original
value has been saved in the exception or interrupt or machine check stack frame.
The SCB parameter quadword, "SCBp", is loaded into R3 for all interrupts and
exceptions and machine checks.

• The "R4" column specifies the value with which R4 is loaded, after its original
value has been saved in the exception or interrupt or machine check stack frame.
If the "R4" column is blank the value in R4 is UNPREDICTABLE on entry to an
interrupt or exception. Here,

1. "VA" indicates the exact virtual address which triggered a memory
management fault or data alignment trap.

2. "Mask" indicates the Register Write Mask.

3. "LAOff' indicates the offset from the base of the logout area in the HWRPB;
see Section 6.5.2.

• The "R5" column specifies the value with which R5 is loaded, after its original
value has been saved in the exception or interrupt or machine check stack frame.
If the "R5" column is blank the value in R5 is UNPREDICTABLE on entry to an
interrupt or exception or machine check. Here,

1. "MMF" indicates the Memory Management Flags.

2. "Exc" indicates the Exception Summary parameter.

3. "RW" indicates Read/Load =0 Write/Store =1 for data align traps

Table 6-1 : Exceptions, Interrupts, and Machine Checks Summary
SavedPC NewMode R2 R3 R4 R5

Exceptions • Faults

Floating Disabled Fault Current Kernel SCBv SCBp

Memory Management Faults

Access Control Violation Current Kernel SCBv SCBp VA MMF

Translation Not Valid Current Kernel SCBv SCBp VA MMF

Fault on Read Current Kernel SCBv SCBp VA MMF

Fault on Write Current Kernel SCBv SCBp VA MMF

Fault on Execute Current Kernel SCBv SCBp VA MMF

•
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Table 6-1 (Cont.): Exceptions, Interrupts, and Machine Checks Summary

SavedPC NewMode R2 R3 R4 R5

Exceptions • Arithmetic Traps

Arithmetic Traps Next Kernel SCBv SCBp Mask Exc

Exceptions • Synchronous Traps

Breakpoint Trap Next Kernel SCBv SCBp

Bugcheck Trap Next Kernel SCBv SCBp

Change Mode to KIE/SIU Next MostPrv SCBv SCBp

Illegal Instruction Next Kernel SCBv SCBp

Illegal Operand Next Kernel SCBv SCBp

Data Alignment Trap Next Kernel SCBv SCBp VA RW

Interrupts

Asynch System Trap (4) Current Kernel SCBv SCBp

Interval Clock Current Kernel SCBv SCBp

Interprocessor Interrupt Current Kernel SCBv SCBp

Software Interrupts Current Kernel SCBv SCBp

Performance Current Kernel SCBv SCBp IMP IMP
monitor

Passive Release Current Kernel SCBv SCBp

Powerfail Current Kernel SCBv SCBp

I/O Device Current Kernel SCBv SCBp

Machine Checks

Processor Correctable Current Kernel SCBv SCBp LAOff

System Correctable Current Kernel SCBv SCBp LAOff

System Current Kernel SCBv SCBp LAOff

Processor Current Kernel SCBv SCBp LAOff
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6.2 Processor State and Exception/Interrupt/Machine Check Stack
Frame

Processor state consists of a quadword of privileged information called the Processor
Status (PS) and a quadword containing the Program Counter (PC), which is the
virtual address of the next instruction.

When an exception, interrupt, or machine check is initiated, the current processor
state during the exception, interrupt, or machine check must be preserved. This is
accomplished by automatically pushing the PS and the PC on the target stack.

Subsequently, instruction execution can be continued at the point of the exception,
interrupt, or machine check by executing a CALL_PAL REI instruction; see
Chapter 2.

Process context such as memory mapping information is not saved or restored on
each exception, interrupt, or machine check. Instead, it is saved and restored when
process context switching is performed. Other processor status is changed even less
frequently; see Chapter 4.

6.2.1 Processor Status
The PS can be explicitly read with the CALL_PAL RD_PS instruction. The PS<SW>
field can be explicitly written with the CALL_PAL WR_PS_SW instruction. See
Section 2.1.

The terms current PS and saved PS are used to distinguish between this status
information when it is stored internal to the processor and when copies of it are
materialized in memory.

Figure 6-1: Current Processor Status (PS Register)

63 1312 8 7 6 5 43 2 1 0

I"-- M_B_Z EIDHB
Figure 6-2: Saved Processor Status (PS on Stack) •
63 62 5655

~Isp_ALIGNI MBZ

1312876543210

8l!HB
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Table 6-2: Processor Status Register Summary

Bits Description

1:0 Reserved for Software (SW). These bits are reserved for software use and can be
read and written at any time by the software, regardless of the current mode. The
value of these bits is ignored by the hardware. The software field is set to zero at
the initiation of either an exception or an interrupt.

2 Interrupt pending (IP). Set when an interrupt (software or hardware but NOT AST)
is initiated; indicates an interrupt is in progress.

4:3 Current mode (CM). The access mode of the currently executing process as follows:

o- Kernel

1 - Executive

2 - Supervisor

3 - User

6:5 Reserved to Digital, MBZ.

7 Virtual machine monitor (VMM) - When set, the processor is executing in a virtual
machine monitor. When clear, the processor is running in either real or virtual
machine mode.

PROGRAMMING NOTE
This bit is only meaningful when
running with PALcode that implements
virtual machine capabilities.

12:8 Interrupt priority level (IPL) - The current processor priority, in the range 0 to 31.

55:13 Reserved to Digital, MBZ.

61 :56 Stack alignment (SP_ALIGN) - The previous stack byte alignment within a 64 byte
aligned area, in the range 0 to 63. This field is set in the saved PS during the act
of taking an exception or interrupt; it is used by the CALL_PAL REI instruction to
restore the previous stack byte alignment.

63:62 Reserved to Digitial, MBZ.

At bootstrap, the initial value of PS is set to 1F0016. Previous stack alignment is
zero, IPL is 31, VMM is clear, CM is Kernel, and the SW and IP fields are zero.

6.2.2 Program Counter
The PC is a 64-bit virtual address. All instructions are aligned on longword
boundaries and, therefore, hardware can assume zero for the two low-order PC bits.

The PC can be explicitly read with the Unconditional Branch (BR) instruction. All
branching instructions also load a new value into the PC.
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Figure 6-3: Program Counter (PC)

63 2 1 0

I
----------,W~I

Instruction Virtual Address <63:2> ~

6.2.3 Processor Interrupt Priority Level (IPL)
Each processor has 32 interrupt priority levels (IPLs) divided into 16 software levels
(numbered 0 to 15), and 16 hardware levels (numbered 16 to 31). User applications
and most operating system software run at IPL 0, which may be thought of as process
level. Higher numbered interrupt levels have higher priority; i.e., any request at an
interrupt level higher than the processor's current IPL will interrupt immediately,
but requests at lower or equal levels are deferred.

Interrupt levels 0 to 15 exist solely for use by software. No hardware event can
request an interrupt on these levels. Conversely, interrupt levels 16 to 31 exist
solely for use by hardware. Serious system failures, such as a machine check abort,
however, raise the IPL to the highest level (31), to minimize processor interruption
until the problem is corrected, and execute in Kernel mode on the Kernel stack.

6.2.4 Protection Modes
Each processor has four protection modes. The modes are Kernel, Executive,
Supervisor, and User. Per-page memory protection varies as a function of mode (for
example, a page can be made read-only in User mode, but read-write in Supervisor,
Executive, or Kernel mode).

For each process, there is a separate stack associated with each mode. Corruption
of one stack does not affect use of the other stacks.

Some instructions, termed privileged instructions, may only be executed in Kernel
mode.

6.2.5 Processor Stacks
Each processor has four stacks. There are four process-specific stacks associated
with the four modes of the current process. At any given time, only one of these
stacks is actively used as the current stack.

6.2.6 Stack Frames
When an exception, interrupt, or machine check occurs, a stack frame is pushed
on the target stack. Regardless of the type of event notification, this stack frame
consists of a 64 byte-aligned structure containing the saved contents of registers
R2..R7, the Program Counter (PC), and the Processor Status (PS). Registers R2 and
R3 are then loaded with vector and parameter from the SCB for the exception,
interrupt, or machine check. Registers R4 and R5 may be loaded with data
pertaining to the exception, interrupt, or machine check. The specific data loaded is
described below in conjunction with each exception, interrupt, or machine check; if
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no specific data is specified, the contents ofR4 and R5 are UNPREDICTABLE. Mer
the stack is built, the contents of registers R6 and R7 are UNPREDICTABLE.

The Program Counter value saved is that of the instruction encountering the
exception in the case of faults, that of the next instruction in the case of traps
and interrupts, and, on a best-effort basis, and that of the next instruction in the
case of machine checks. Return from an exception, interrupt, or machine check is
done via the CALL_PAL REI instruction, which restores the saved values of PC, PS,
and R2..R7, thus re-executing the instruction in the case of faults, and proceeding
to the next instruction in the case of traps, interrupts, and machine checks.

Figure 6-4: Stack Frame

63

R2

R3

R4

RS

R6

R7

Program Counter (PC)

Processor Status (PS)

:SP

:+08

:+16

:+24

:+32

:+40

:+48

:+S6

6.3 Exceptions

Exception service routines execute in response to exception conditions caused by
software. Most exception service routines execute in Kernel mode, on the Kernel
stack; all exception service routines execute at the current processor IPL. Change
Mode exception routines for CHMU/CHMS/CHME execute in the more privileged
of the current mode or the target mode (U/SIE), on the matching stack. Exception
service routines are usually coded to avoid exceptions; however, nested exceptions
can occur.

There are three types of exceptions:

• A fault is an exception condition that occurs during an instruction and leaves
the registers and memory in a consistent state such that elimination of the fault
condition and subsequent re-execution of the instruction will give correct results.
Faults are not guaranteed to leave the machine in exactly the same state it was
in immediately prior to the fault, but rather in a state such that the instruction
can be correctly executed if the fault condition is removed. The PC saved in the
exception stack frame is the address of the faulting instruction. A CALL_PAL
REI instruction to this PC will reexecute the faulting instruction.
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• An arithmetic trap is an exception condition that occurs at the completion of
the operation that caused the exception. Since several instructions may be
in various stages of execution at any point in time, it is possible for multiple
arithmetic traps to occur simultaneously. The PC that is saved in the exception
frame on traps is that of the next instruction that would have been issued if the
trapping condition(s) had not occurred. This is not necessarily the address of the
instruction immediately following the one(s) encountering the trap condition, and
intervening instructions may have changed operands or other state used by the
instruction(s) encountering the trap condition(s). A CALL_PAL REI instruction
to this PC will not reexecute the trapping instruction(s), nor will it reexecute
any intervening instructions; it will simply continue execution from the point at
which the trap was taken.

In general, it is difficult to fixup results and continue program execution at the
point of an arithmetic trap. Software can force a trap to be continued more easily
without the need for complicated fixup code. This is accomplished by following
a set of code-generation restrictions in code that could cause arithmetic traps
which are to be completed by a software trap handler (see Common Architecture,
Chapter 4), including specifying the /S software completion modifier in each such
instruction.

The AND of all the software completion modifiers for trapping instructions is
provided to the arithmetic trap handler in the exception summary SWC bit. If
SWC is set, a trap handler may find the trigger instruction by scanning backward
from the trap PC until each register in the register write mask has been an
instruction destination. The trigger instruction is the first instruction in I-stream
order to get a trap within a trap shadow (see Common Architecture, Chapter 4
for definition of trap shadow). If the SWC bit is clear, no fixup is possible (the
trigger instruction may have been followed by a taken branch, so the trap PC
cannot be used to find it).

• A synchronous trap is an exception condition that occurs at the completion of
the operation that caused the exception (or, if the operation can only be partially
carried out, at the completion of that part of the operation), and no subsequent
instruction is issued before the trap occurs.

Synchrono1;ls traps are divided into data alignment traps and all other
synchronous traps.

6.3.1 Faults

The six types of faults signal that an instruction or its operands are in some way
illegal. These faults are all initiated in Kernel mode and push an exception stack
frame onto the stack. Upon entry to the exception routine, the saved PC (in the
exception stack frame) is the virtual address of the faulting instruction.

The six faults include the Floating Disable Fault described in the next subsection
and five memory management faults.
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Memory management faults occur when a virtual address translation encounters an
exception condition. This can occur as the result of instruction fetch or during a load
or store operation.

Immediately following a memory management fault, register R4 contains the exact
virtual address encountering the fault condition.

The register R5 contains the "MM Flag" quadword.

"MM Flag" is set as follows:

0000 0000 0000 000016 for a faulting data read

0000 0000 0000 000116 for a faulting I-fetch operation

8000 0000 0000 000016 for a faulting write operation

The faulting instruction is the instruction whose fetch faulted, or the load, store, or
PALcode instruction that encountered the fault condition.

Chapter 3 describes the memory management architecture of Alpha in more detail.

6.3.1.1 Floating Disabled Fault

A Floating Disabled Fault is an exception that occurs when an attempt is made to
execute a floating-point instruction and the floating enable (FEN) bit in the HWPCB
is not set.

6.3.1.2 Access Control Violation (ACV) Fault

An ACV fault is a memory management fault indicating that an attempted access
to a virtual address was not allowed in the current mode.

ACV faults usually indicate program errors, but in some cases, such as automatic
stack expansion, can mean implicit operating system functions.

ACV faults take precedence over Translation Not Valid, Fault on Read, Fault on
Write, and Fault on Execute faults.

ACV faults take precedence over Translation Not Valid faults so that a malicious
user could not degrade system performance by causing spurious page faults to pages
for which no access is allowed.

6.3.1.3 Translation Not Valid (TNV)

A TNV fault is a memory management fault that indicates that an attempted access
was made to a virtual address whose Page Table Entry (PTE) was not valid.

Software may use TNV faults to implement virtual memory capabilities.

6.3.1.4 Fault On Read (FOR)

An FOR fault is a memory management fault that indicates that an attempted data
read access was made to a virtual address whose Page Table Entry (PTE) had the
Fault on Read bit set.

As a part of initiating the FOR fault, the processor invalidates the Translation Buffer
entry that caused the fault to be generated.
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IMPLEMENTATION NOTE
This allows an implementation only to invalidate entries
from the Data-stream Translation Buffer on Fault On
Read faults.

Note that the Translation Buffer may reload and cache the old PTE value between
the time when the FOR fault invalidates the old value from the Translation Buffer
and the time when software updates the PTE in memory. Software that depends on
the processor-provided invalidate must thus be prepared to take another FOR fault
on a page after clearing the page's PTE<FOR> bit. The second fault will invalidate
the stale PTE from the Translation Buffer, and the processor cannot load another
stale copy. Thus in the worst case, a multiprocessor system will take an initial FOR
fault and then an additional FOR fault on each processor. In practice, even a single
repetition is unlikely.

Software may use FOR faults to implement watchpoints, to collect page usage
statistics, and to implement execute-only pages.

6.3.1.5 Fault On Write (FOW)

A FOW fault is a memory management fault that indicates that an attempted data
write access was made to a virtual address whose Page Table Entry (PTE) had the
Fault On Write bit set.

As a part of initiating the FOW fault, the processor invalidates the Translation
Buffer entry that caused the fault to be generated.

IMPLEMENTATION NOTE
This allows an implementation only to invalidate entries
from the Data-stream Translation Buffer on Fault On
Write faults.

Note that the Translation Buffer may reload and cache the old PTE value between
the time when the FOW fault invalidates the old value from the Translation Buffer
and the time when software updates the PTE in memory. Software that depends on
the processor-provided invalidate must thus be prepared to take another FOW fault
on a page after clearing the page's PTE<FOW> bit. The second fault will invalidate
the stale PTE from the Translation Buffer, and the processor cannot load another
stale copy. Thus in the worst case, a multiprocessor system will take an initial FOW
fault and then an additional FOW fault on each processor. In practice, even a single
repetition is unlikely.

Software may use FOW faults to maintain modified page information, to implement
copy on write and watchpoint capabilities, and to collect page usage statistics.

6.3.1.6 Fault On Execute (FOE)

An FOE fault is a memory management fault indicating that an attempted
instruction stream access was made to a virtual address whose Page Table Entry
(PTE) had the Fault On Execute bit set.
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As a part of initiating the FOE fault, the processor invalidates the Translation Buffer
entry that caused the fault to be generated.

IMPLEMENTATION NOTE
This allows an implementation only to invalidate entries
from the Instruction-stream Translation Buffer on Fault
On Execute faults.

Note that the Translation Buffer may reload and cache the old PTE value between
the time when the FOE fault invalidates the old value from the Translation Buffer
and the time when software updates the PTE in memory. Software that depends on
the processor-provided invalidate must thus be prepared to take another FOE fault
on a page after clearing the page's PTE<FOE> bit. The second fault will invalidate
the stale PTE from the Translation Buffer, and the processor cannot load another
stale copy. Thus in the worst case, a multiprocessor system will take an initial FOE
fault and then an additional FOE fault on each processor. In practice, even a single
repetition is unlikely.

Software may use FOE faults to implement access mode changes and protected entry
to Kernel mode, to collect page usage statistics, and to detect programming errors
that try to execute data.

6.3.2 Arithmetic Traps
An arithmetic trap is an exception that occurs as the result of performing an
arithmetic or conversion operation.

If integer register R31 or floating register F31 is specified as the destination of an
operation that can cause an arithmetic trap, it is UNPREDICTABLE whether the
trap will actually occur, even if the operation would definitely produce an exceptional
result.

Arithmetic traps are initiated in Kernel mode and push the exception stack frame
on the Kernel stack. The Register Write Mask is saved in R4, and the Exception
Summary parameter is saved in R5. These are described below.

When an arithmetic exception condition is detected, several instructions may be
in various stages of execution. These instructions are allowed to complete before
the arithmetic trap can be initiated. Some of these instructions may themselves
cause further arithmetic traps. Thus it is possible for several arithmetic traps to be
reported simultaneously.

It is also possible for the result of an instruction that causes an arithmetic trap to
be used as an operand in a subsequent instruction before the trap is taken. If this
would produce undesired behavior, software is responsible for inserting appropriate
TRAPB instructions to cause the trap to be recognized before the result is used.

Integer exceptional results (integer overflow) can be forwarded to the address
calculation for load and store instructions, to the address calculation for jump
instructions, as the source data for a store instruction, or as the source data for a
conditional branch instruction. This can result in the generation of an inappropriate
address, the storing of exceptional results in memory, or an unintended branch.
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If this would produce undesired behavior, software is responsible for inserting
appropriate TRAPB instructions to cause the trap to be recognized before the result
is used.

6.3.2.1 Exception Summary Parameter

The Exception Summary parameter records the various types of arithmetic traps
that can occur together. These types of traps are described in subsections below.

Figure 6-5: Exception Summary
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Table 6-3: Exception Summary

Bit Description

o Software Completion (SWC)

Is set when all of the other arithmetic exception bits were set by floating-operate
instructions with the /S software completion trap modifier set. See Common
Architecture, Chapter 4 for rules about setting the /S modifier in code that may cause
an arithmetic trap, and Section 6.3 for rules about using the SWC bit in a trap handler.

1 Invalid Operation (INV)

An attempt was made to perform a floating arithmetic, conversion, or comparison
operation, and one or more of the operand values were illegal.

2 Division by Zero (DZE)

An attempt was made to perform a floating divide operation with a divisor of zero.

3 Overflow (OVF)

A floating arithmetic or conversion operation overflowed the destination exponent.

Underflow (UNF)

A floating arithmetic or conversion operation underflowed the destination exponent.

5 Inexact Result (INE)

A floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.

6 Integer Overflow (IOV)

An integer arithmetic operation or a conversion from floating to integer overflowed the
destination precision.
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6.3.2.2 Register Write Mask

The Register Write Mask parameter records all registers that were targets of
instructions that set the bits in the exception summary register. There is a one­
to-one correspondence between bits in the Register Write Mask quadword and the
register numbers. The quadword records, starting at bit 0 and proceeding right
to left, which of the registers RO through R31, then FO through F31, received an
exceptional result.

NOTE
For a sequence such as:

ADDF Fl,F2,F3
MULF F4,F5,F3

if the add overflows and the multiply does not, the OVF
bit is set in the exception summary, and the F3 bit is
set in the register mask, even though the overflowed
sum in F3 can be overwritten with an in-range product
by the time the trap is taken. (This code violates the
destination reuse rule for software completion. See
Common Architecture, Chapter 4 for the destination
reuse rules.)

The PC value saved in the exception stack frame is the virtual address of the next
instruction. This is defined as the virtual address of the first instruction not executed
after the trap condition was recognized.

6.3.2.3 Invalid Operation (INV) Trap

An INV trap is reported for most floating-point operate instructions with an input
operand that is a VAX. reserved operand, VAX. dirty zero, IEEE NaN, IEEE infinity,
or IEEE denormal.

Floating INV traps are always enabled. If this trap occurs, the result register is
written with an UNPREDICTABLE value.

6.3.2.4 Division by Zero (DZE) Trap

A DZE trap is reported when a finite number is divided by zero. Floating DZE
traps are always enabled. If this trap occurs, the result register is written with an
UNPREDICTABLE value.

6.3.2.5 Overflow (OVF) Trap

An OVF trap is reported when the destination's largest finite number is exceeded in
magnitude by the rounded true result. Floating OVF traps are always enabled. If
this trap occurs, the result register is written with an UNPREDICTABLE value.
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6.3.2.6 Underflow (UNF) Trap

A UNF trap is reported when the destination's smallest finite number exceeds in
magnitude the non-zero rounded true result. Floating UNF trap enable can be
specified in each floating-point operate instruction. If underflow occurs, the result
register is written with a true zero.

6.3.2.7 Inexact Result (INE) Trap

An INE trap is reported if the rounded result of an IEEE operation is not exact.
INE trap enable can be specified in each IEEE floating-point operate instruction.
The unchanged result value is stored in all cases.

6.3.2.8 Integer Overflow (IOV) Trap

An IOV trap is reported for any integer operation whose true result exceeds the
destination register size. IOV trap enable can be specified in each arithmetic integer
operate instruction and each floating-point convert-to-integer instruction. If integer
overflow occurs, the result register is written with the truncated true result.

6.3.3 Synchronous Traps
A synchronous trap is an exception condition that occurs at the completion of the
operation that caused the exception (or, if the operation can only be partially carried
out, at the completion of that part of the operation), but no successor instruction is
allowed to start. All traps that are not arithmetic traps are synchronous traps.

Some synchronous traps are caused by PALcode instructions: BPT, BUGCHK,
CHMU, CHMS, CHME, and CHMK. For synchronous traps, the PC saved in the
exception stack frame is the address of the instruction immediately following the one
causing the trap condition. A CALL_PAL REI instruction to this PC will continue
without reexecuting the trapping instruction. The following subsections describe the
synchronous traps in detail.

6.3.3.1 Data Alignment Trap

All data must be naturally aligned or an alignment trap may be generated. Natural
alignment means that data bytes are on byte boundaries, data words are on word
boundaries, data longwords are on longword boundaries, and data quadwords are
on quadword boundaries.

A Data Alignment trap is generated by the hardware when an attempt is made to
load or store a longword or quadword to/from a register using an address that does
not have the natural alignment of the particular data reference.

Data alignment traps are fixed up by the PALcode and are optionally reported to the
operating system under the control of the DAT bit. If the bit is zero, the trap will
be reported. If the bit is set, after the alignment is corrected, control is returned to
the user. In either case, if the PALcode detects a LDx_L or STx_C instruction, no
correction is possible and an illegal operand exception is generated.

The system software is notified via the generation of a Kernel mode exception
through the Unaligned_Access SCB vector (28016) The virtual address of the
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unaligned data being accessed is stored in R4. R5 indicates whether the operation
was a read or a write ( 0 =readlload 1 =write/store).

PALcode may write partial results to memory without probing to make sure all
writes will succeed when dealing with unaligned store operations.

If a memory management exception condition occurs while reading or writing part
of the unaligned data, the appropriate memory management fault is generated.

Software should avoid data misalignment whenever possible since the emulation
performance penalty may be as large as 100 to 1.

The Data Alignment trap control bit is included in the HWPCB at offset +56 bit 63.
In order to change this bit for the currently executing process, the DATFX IPR may
be written via a CALL_PAL MTPR_DATFX instruction. This operation will also
update the value in the HWPCB.

6.3.3.2 Other Synchronous Traps

With the traps described in this subsection, the SCB vector quadword is saved in
R2 and the SCB parameter quadword is saved in R3. The change mode traps are
initiated in the more privileged of the current mode and the target mode, while the
other traps are initiated in Kernel mode.

6.3.3.2.1 Breakpoint Trap

A Breakpoint trap is an exception that occurs when a CALL_PAL BPT instruction
is executed; see Chapter 2. Breakpoint traps are intended for use by debuggers and
can be used to place breakpoints in a program.

Breakpoint traps are initiated in Kernel mode so that system debuggers can capture
breakpoint traps that occur while the user is executing system code.

6.3.3.2.2 Bugcheck Trap

A Bugcheck trap is an exception that occurs when a CALL_PAL BUGCHK
instruction is executed; see Chapter 2. Bugchecks are used to log errors detected by
software.

6.3.3.2.3 Illegal Instruction Trap

An Illegal instruction Trap is an exception that occurs when an attempt is made
to execute' an instruction whose opcode is reserved to Digital, is a subsetted opcode
that requires emulation on the host implementation, or is a privileged instruction
and the current mode is not Kernel.

6.3.3.2.4 Illegal Operand Trap

An Illegal Operand Trap occurs when an attempt is made to execute PALcode with
operand values that are illegal or reserved for future use by Digital.

Illegal operands include:

• An invalid combination of bits in the PS restored by the CALL_PAL REI
instruction.
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• An unaligned operand passed to PALcode.

6.3.3.2.5 Generate Software Trap

A Generate Software Trap is an exception that occurs when a CALL_PAL GENTRAP
instruction is executed; see Chapter 2. The intended use is for low-level compiler­
generated code that detects conditions such as divide-by-zero, range errors, subscript
bounds and negative string lengths.

6.3.3.2.6 Change Mode to Kernel Trap

A Change Mode to Kernel trap is an exception that occurs when a CALL_PAL CHMK
instruction is executed; see Chapter 2. Change Mode to Kernel traps are initiated
in Kernel mode and push the exception frame on the Kernel stack.

6.3.3.2.7 Change Mode to Executive Trap

A Change Mode to Executive trap is an exception that occurs when a CALL_PAL
CHME instruction is executed; see Chapter 2. Change Mode to Executive traps are
initiated in the more privileged of the current mode and Executive mode, and push
the exception frame on the target stack.

6.3.3.2.8 Change Mode to Supervisor Trap

A Change Mode to Supervisor trap is an exception that occurs when a CALL_PAL
CHMS instruction is executed; see Chapter 2. Change Mode to Supervisor traps are
initiated in the more privileged of the current mode and Supervisor mode, and push
the exception frame on the target stack.

6.3.3.2.9 Change Mode to User Trap

A Change Mode to User trap is an exception that occurs when a CALL_PAL CHMU
instruction is executed; see Chapter 2. Change Mode to User traps are initiated
in the more privileged of the current mode and User mode, and push the exception
frame on the target stack.

6.4 Interrupts

The processor arbitrates interrupt requests according to priority. When the priority
of an interrupt request is higher than the current processor IPL, the processor will
raise the IPL and service the interrupt request. The interrupt service routine is
entered at the IPL of the interrupting source, in Kernel mode, and on the Kernel
stack. Interrupt requests can come from I/O devices, memory controllers, other
processors, or the processor itself.

The priority level of one processor does not affect the priority level of other
processors. Thus, in a multiprocessor system, interrupt levels alone cannot be used
to synchronize access to shared resources.

Synchronization with other processors in a multiprocessor system involves a
combination of raising the IPL and executing an interlocking instruction sequence.
Raising the IPL prevents the synchronization sequence itself from being interrupted
on a single processor while the interlock sequence guarantees mutual exclusion
with other processors. Alternately, one processor can issue explicit interprocessor
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interrupts (and wait for acknowledgment) to put other processors in a known
software state, thus achieving mutual exclusion.

In some implementations, several instructions may be in various stages of execution
simultaneously. Before the processor can service an interrupt request, all active
instructions must be allowed to complete without exception. Thus, when an
exception occurs in a currently active instruction, the exception is initiated and
the exception stack frame built immediately before the interrupt is initiated and its
stack frame built.

The following events will cause an interrupt:

• Software interrupts - IPL 1 to 15

• Asynchronous System Traps - IPL 2

• Passive Release interrupts - IPL 20 to 23

• I/O Device interrupts - IPL 20 to 23

• Interval Clock interrupt - IPL 22

• Interprocessor interrupt - IPL 22

• Performance Monitor interrupt - IPL 29

• Powerfail interrupt - IPL 30

Interrupts are initiated in Kernel mode and push the interrupt stack frame of eight
quadwords onto the Kernel stack. The PC saved in the interrupt stack frame is
the virtual address of the first instruction not executed after the interrupt condition
was recognized. A CALL_PAL REI instruction to the saved PCIPS will continue
execution at the point of interrupt.

Each interrupt source has a separate vector location (offset) within the System
Control Block (SCB); see Section 6.6. With the exception of I/O device interrupts,
each of the above events has a unique fixed vector. I/O device interrupts occupy a
range of vectors that can be both statically and dynamically assigned. Upon entry to
the interrupt service routine, R2 contains the SCB vector quadword and R3 contains
the.SCB parameter quadword. For Corrected Error interrupts, R4 optionally locates
additional information; see Section 6.5.2.

In order to reduce interrupt overhead, no memory mapping information is changed
when an interrupt occurs. Therefore, the instructions, data, and the contents of the
interrupt vector for the interrupt service routine must be present in every process
at the same virtual address.

Interrupt service routines should follow the discipline of not lowering IPL below
their initial level. Lowering IPL in this way could result in an interrupt at an
intermediate level which would cause the stack nesting to be incorrect.

Kernel mode software may need to raise and lower IPL during certain instruction
sequences that must synchronize with possible interrupt conditions (such as
powerfail). This can be accomplished by specifying the desired IPL and executing
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a CALL_PAL MTPR_IPL instruction or by executing a CALL_PAL REI instruction
that restores a PS that contains the desired IPL; see Chapter 2.

6.4.1 Software Interrupts - IPLs 1 to 15
6.4.1.1 Software Interrupt Summary Register

The architecture provides fifteen priority interrupt levels for use by software (level
ois also available for use by software but interrupts can never occur at this level).
The Software Interrupt Summary Register (SISR) stores a mask of pending software
interrupts. Bit positions in this mask which contain a 1 correspond to the levels on
which software interrupts are pending.

When the processor IPL drops below that of the highest requested software interrupt,
a software interrupt is initiated and the corresponding bit in the SISR is cleared.

The SISR is a read-only internal processor register which may be read by Kernel
mode software by executing a CALL_PAL MFPR_SISR instruction; see Section 5.3.

6.4.1.2 Software Interrupt Request Register

The Software Interrupt Request Register (SIRR) is a write-only internal processor
register used for making software interrupt requests.

Kernel mode software may request a software interrupt at a particular level by
executing a CALL_PAL MTPR_SIRR instruction; see Section 5.3.

If the requested interrupt level is greater than the current IPL, the interrupt will
occur before the execution of the next instruction. If, however, the requested level is
equal to or less than the current processor IPL, the interrupt request will be recorded
in the Software Interrupt Summary Register (SISR) and deferred until the processor
IPL drops to the appropriate level.

Note that no indication is given if there is already a request at the specified level.
Therefore, the respective interrupt service routine must not assume that there is a
one-to-one correspondence between interrupts requested and interrupts generated.
A valid protocol for generating this correspondence is:

1. The requester places information in a control block and then inserts the control
block in a queue associated with the respective software interrupt level.

2. The requester uses CALL_PAL MTPR_SIRR to request an interrupt at the
appropriate level.

3. When enabling conditions arise, processor HW clears the appropriate SISR bit
as part of initiating the software interrupt.

4. The interrupt service routine attempts to remove a control block from the request
queue. If there are no control blocks in the queue, the interrupt is dismissed with
a CALL_PAL REI instruction.

5. If a valid control block is removed from the queue, the requested service is
performed and Step 3 is repeated.
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6.4.2 Asynchronous System Trap - IPL 2

Asynchronous System Traps (ASTs) are a means of notifying a process of events that
are not synchronized with its execution, but which must be dealt with in the context
of the process. An AST is initiated in Kernel mode at IPL 2 when the current mode
is less privileged than or equal to a mode for which an AST is pending and not
disabled, with PS<IPL> less than 2; see Sections 6.7.6 and 4.3.

There are four separate per-mode SCB vectors, one for each of Kernel, Executive,
Supervisor, and User modes.

On encountering an AST, the interrupt stack frame is pushed on the Kernel stack;
the value of the PC saved in this stack frame is the address of the next instruction
to have been executed if the interrupt had not occurred. The SCB vector quadword
is saved in R2 and the SCB parameter quadword in R3.

6.4.3 Passive Release Interrupts - IPLs 20 to 23

Passive releases occur when the source of an interrupt granted by a processor cannot
be determined. This can happen when the requesting I/O device determines that it
no longer requires an interrupt after requesting one, or when a previously requested
interrupt has already been serviced by another processor in some multiprocessor
configurations. The interrupt handler for passive releases executes at the priority
level of the interrupt request.

6.4.4 I/O Device Interrupts - IPLs 20 to 23

The architecture provides four priority levels for use by I/O devices. I/O device
interrupts are requested when the device encounters a completion, attention, or
error condition and the respective interrupt is enabled.

6.4.5 Interval Clock Interrupt - IPL 22

The Interval Clock requests an interrupt periodically.

At least 1000 interval clock interrupts occur per second. An entry in the HWRPB
contains the number of interval clock interrupts per second that occur in an actual
Alpha implementation, scaled up by 4096, and rounded to a 64-bit integer.

The accuracy of the interval clock must be at least 50 parts per million (ppm).

HARDWARE/SOFTWARE NOTE
For example, an interval of819.2 usee derived from a 10
MHz Ethernet clock and a 13-bit counter is acceptable.

To guarantee software progress, the interval clock
interrupt should be no more frequent than the time it
takes to do 500 main memory accesses. Over the life of
the architecture, this interval may well decrease much
more slowly than CPU cycle time decreases.

Other constraints may apply to Secure Kernel systems.
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6.4.5.1 Interprocessor Interrupt - IPL 22

Interprocessor interrupts are provided to enable operating system software running
on one processor to interrupt activity on another processor and cause operating
system dependent actions to be performed.

6.4.5.1.1 Interprocessor Interrupt Request Register

The Interprocessor Interrupt Request Register (IPIR) is a write-only internal
processor register used for making a request to interrupt a specific processor.

Kernel mode software may request to interrupt a particular processor by executing
a CALL_PAL MTPR_IPIR instruction; see Section 5.3.

If the specified processor is the same as the current processor and the current IPL is
less than 22, then the interrupt may be delayed and not initiated before the execution
of the next instruction.

Note that, like software interrupts, no indication is given as to whether there is
already an interprocessor interrupt pending when one is requested. Therefore,
the interprocessor interrupt service routine must not assume there is a one-to-one
correspondence between interrupts requested and interrupts generated. A valid
protocol similar to the one for software interrupts for generating this correspondence
is:

1. The requester places information in a control block and then inserts the control
block in a queue associated with the target processor.

2. The requester uses CALL_PAL MTPR_IPIR to request an interprocessor
interrupt on the target processor.

3. The interprocessor interrupt service routine on the target processor attempts to
remove a control block from its request queue. If there are no control blocks
remaining, the interrupt is dismissed with a CALL_PAL REI instruction.

4. If a valid control block is removed from the queue, the specified action is
performed and Step 3 is repeated.

6.4.6 Performance Monitor Interrupts -IPL 29
These interrupts provide some of the support for processor or system performance
measurements. The implementation is processor or system specific.

6.4.7 Powerfaillnterrupt - IPL 30

If the system power supply backup option permits powerfail recovery, a Powerfail
interrupt is generated to each processor when power is about to fail.

In systems in which the backup option maintains only the contents of memory and
keeps system time with the BB_WATCH, the power supply requests a powerfail
interrupt to permit volatile system state to be saved. Prior to dispatching to the
powerfail interrupt service routine, PALcode is responsible for saving all system
state which is not visible to system software. Such state includes, but is not limited
to, processor internal registers and PALcode temporary variables.
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PALcode is also responsible for saving the contents of any writeback caches
or buffers, including the powerfail interrupt stack frame. System software is
responsible for saving all other system state. Such state includes, but is not limited
to, processor registers and writeback cache contents. State can be saved by forcing
all written data to a backed-up part of the memory subsystem; software may use
the CALL_PAL CFLUSH instruction.

The Powerfail interrupt will not be initiated until the processor IPL drops below
30. Thus, critical code sequences can block the power-down sequence by raising the
IPL to 31. Software, however, must take extra care not to lock out the power-down
sequence for an extended period of time.

Explicit state is not provided by the architecture for software to directly determine
whether there were outstanding interrupts when powerfail occurred. It is the
responsibility of software to leave sufficient information in memory so that it may
determine the proper action on power-up.

6.5 Machine Checks

A Machine Check, or mcheck, indicates that a hardware error condition was detected
and mayor may not be successfully corrected by hardware or PALcode. Such
error conditions can occur either synchronously or asynchronously with respect to
instruction execution. There are four types:

1. System Machine Check (IPL 31)

These machine checks are generated by error conditions which are detected
asynchronously to processor execution but are not successfully corrected by
hardware or PALcode. Examples of system machine check conditions include
protocol errors on the processor-memory-interconnect and unrecoverable memory
errors.

System machine checks are always maskable and deferred until processor IPL
drops below IPL 31.

2. Processor Machine Check (IPL 31)

These machine checks indicate that a processor internal error was detected
and not successfully corrected by hardware or PALcode. Examples of processor
machine check conditions include processor internal cache errors, translation
buffer parity errors, or read access to a non-existent local I/O space location
(NXM).

Processor machine checks may be nonmaskable or maskable. If nonmaskable,
they are initiated immediately, even if the processor IPL is 31. If maskable, they
are deferred until processor IPL drops below IPL 31.

3. System Correctable Machine Check (IPL 20)

These machine checks are generated by error conditions that are detected
asynchronously to processor execution and are successfully corrected by
hardware or PALcode. Examples of system correctable machine check conditions
include single bit errors within the memory subsystem.
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System correctable machine checks are always maskable and deferred until
processor IPL drops below IPL 20.

4. Processor Correctable Machine Check (IPL 31)

These machine checks indicate that a processor internal error was detected
and successfully corrected by hardware or PALcode. Examples of processor
correctable machine check conditions include corrected processor internal cache
errors and corrected translation buffer tab errors.

Processor correctable machine checks may be nonmaskable or maskable. If
nonmaskable, they are initiated immediately, even if the processor IPL is 31.
If maskable, they are deferred until processor IPL drops below IPL 31.

Machine Checks are initiated in Kernel mode, on the Kernel stack, and cannot be
disabled.

Correctable machine checks permit the pattern and frequency of certain errors to be
captured. The delivery of these machine checks to system software can be disabled
by setting IPR MCES<4:3>, as described in Chapter 5. Note that setting IPR
MCES<4:3> does not disable the generation of the machine check or the correction of
the error, but rather suppresses the reporting of that correction to system software.

The PC in the machine check stack frame is that of the next instruction that would
have issued if the machine check condition had not occurred. This is not necessarily
the address of the instruction immediately following the one encountering the error,
and intervening instructions may have changed operands or other state used by the
instruction encountering the error condition. A CALL_PAL REI instruction to this
PC will simply continue execution from the point at which the machine check was
taken.

NOTE
On machine checks, a meaningful PC is delivered on a
best-effort basis. The machine state, processor registers,
memory, and I/O devices may be indeterminate.

Machine checks may be deliberately generated by software, such as by probing non­
existent-memory during memory sizing or searching for local I/O devices. In such
a case, the DRAINA PALcode instruction can be called to force any outstanding
machine checks to be taken before continuing.

6.5.1 Software Response
The reaction of system software to machine checks is specific to the characteristics
of the processor, platform, and system software. System software must determine if
operation should be discontinued on an implementation-specific basis.

To assist system software, PALcode provides a retry flag in the machine check logout
frame (see Figure 6-6. If set, the state of the processor and platform hardware has
not been compromised; system software operation should be able to continue.
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If the retry flag is clear, the state of the processor is either unknown or is known to
have been updated during partial execution of one or more instructions. System
software operation can continue only after system software determines that the
hardware state change permits and/or takes corrective action.

PALcode should take appropriate implementation-specific actions prior to setting
the retry flag. PALcode should also attempt to ensure that each encountered error
condition generates only one machine check.

IMPLEMENTATION NOTE
An important example of using the retry flag is read
NXM.

Also, a read NXM should not generate both a Processor
Machine Check and a System Machine Check.

PALcode sets an internal Machine-Check-In-Progress flag in the Machine Check
Error Summary (MCES) register prior to initiating a system or processor machine
check. System software must clear that flag to dismiss the machine check If a second
uncorrectable machine check hardware error condition is detected while the flag is
set, or if PALcode cannot deliver the machine check, PALcode forces the processor to
enter console I/O mode, and subsequent actions, such as processor restart, are taken
by the console. The REASON FOR HALT code is "double error abort encountered".

Similiarly, PALcode sets an internal correctable Machine-Check-In-Progress flag in
the Machine Check Error Summary (MCES) register prior to initiating a system
correctable error interrupt or processor correctable machine check. System software
must clear that flag to dismiss the condition and permit the reuse of the logout area.
If a second correctable hardware error condition is detected while the flag is set, the
error is corrected, but not reported. PALcode does not overwrite the logout area and
the processor remains in program I/O mode.

6.5.2 Logout Areas

When a hardware error condition is encountered, PALcode optionally builds a logout
frame prior to passing control to the machine check service routine.

Figure 6-6: Corrected Error and Machine Check Logout Frame
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Table 6-4: Corrected Error and Machine Check Logout Frame Fields

Offset Description

FRAME

+04

FRAME SIZE - Size in bytes of the logout frame including the FRAME SIZE
longword.

FRAME FLAGS - Informational flags.

Bit Description

31 RETRY FLAG - Indicates whether execution can be resumed
after dismissing this machine check. Set on Corrected Error
interrupts; may be set on Machine Checks.

30 SECOND ERROR FLAG - Indicates that a second correctable
error was encountered. Set on Corrected Error interrupts
when a correctable error was encountered while the relevant
correctable error bit (PCE or SCE) is set in the MCES register.
Clear on Machine Checks.

29-0 SBZ.

+08

+12

CPU OFFSET - Offset in bytes from the base of the logout frame to the
cpu-specific information. If 16 the frame contains no PALcode-specific
information. If CPU OFFSET is equal to SYS OFFSET, the frame contains
no cpu-specific information.

SYS OFFSET - Offset in bytes from the base of the logout frame to the
system-specific information. If SYS OFFSET is equal to FRAME SIZE, the
frame contains no system-specific information.

+16 PALCODE INFORMATION - PALcode-specific logout information.

+CPU OFFSET CPU INFORMATION - Cpu-specific logout information.

+SYS OFFSET SYS INFORMATION - System platform-specific logout information.

The logout frame is optional; the service routine uses R4 to locate the frame, if
any. Upon entry to the service routine, R4 contains the byte offset of the logout
frame from the base of the logout area. If no frame was built, R4 contains -1
(FFFF FFFF FFFF FFFF16).

6.6 System Control Block

The System Control Block (SCB) specifies the entry points for exception, interrupt,
and machine check service routines. The block is from 8K to 32K bytes long, must
be page aligned, and must be physically contiguous. The PFN is specified by the
value of the System Control Block Base (SCBB) internal register.

The SCB consists of from 512 to 2048 entries, each 16 bytes long. The first 8 bytes
of an entry, the vector, specify the virtual address of the service routine associated
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with that entry. The second 8 bytes, the parameter, are an arbitrary quadword value
to be passed to the service routine.

The 8CB entries are grouped into those for:

1. Faults

2. Arithmetic traps

3. Asynchronous system traps

4. Data alignment trap

5. Other synchronous traps

6. Processor software interrupts

7. Processor hardware interrupts

8. I/O device interrupts

9. Machine checks

The first 512 entries (offsets 0000 through IFF016) contain all architecturally defined
and any statically allocated entries. All remaining 8CB entries, if any, are used
only for those I/O device interrupt vectors that are assigned dynamically by system
software. It is the responsibility of that software to ensure the consistency of the
assigned vector and the 8CB entry.

6.6.1 SeB Entries for Faults

The exception handler for a fault executes with the IPL unchanged, in Kernel mode,
on the Kernel stack.

Table 6-5: SeB Entries for Faults
Byte
offset16 Entry name

000

010

020-070

080

090

OAO

OBO

OCO

OAO-OFO

Unused

Floating disabled fault

Unused

Access Control Violation fault

Translation Not Valid fault

Fault on Read fault

Fault on Write fault

Fault on Execute fault

Unused
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6.6.2 SCB Entries for Arithmetic Traps
The exception handler for an arithmetic trap executes with the IPL unchanged, in
Kernel mode, on the Kernel stack.

Table fH): SCB Entries for Arithmetic Traps

Byte
offset16 Entry name

200

210-230

Arithmetic Trap

Unused

6.6.3 SCB Entries for Asynchronous System Traps (ASTs)
The interrupt handler for an asynchronous system trap executes at IPL 2, in Kernel
mode, on the Kernel stack.

Table 6-7: SCB Entries for Asynchronous System Traps
Byte
offset16 Entry name

240 Kernel Mode AST

250 Executive Mode AST

260 Supervisor Mode AST

270 User Mode AST

6.6.4 SCB Entries for Data Alignment Traps
The exception handler for a data alignment trap executes with the IPL unchanged
in Kernel mode, on the Kernel Stack.

Table 6-8: SCB Entries for Data Alignment Trap

Byte
offset16 Entry name •280

290-3FO

Unaligned_Access

Unused

6.6.5 SeB Entries for Other Synchronous Traps
The exception handler for a synchronous trap, other than those described above,
executes with the IPL unchanged, in the mode and on the stack indicated below.
"MostPriv" indicates that the handler executes in either the original mode or the
new mode, whichever is the most privileged.
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Table 6-9: SCB Entries for Other Synchronous Traps
Byte
Offsetl6 Entry Name Mode

400 Breakpoint Trap Kernel

410 Bug Check Trap Kernel

420 Illegal Instruction Trap Kernel

430 Illegal Operand Trap Kernel

440 Generate Software Trap Kernel

450 Unused

460 Unused

470 Unused

480 Change Mode to Kernel Kernel

490 Change Mode to Executive MostPriv

4AO Change Mode to Supervisor MostPriv

4BO Change Mode to User Current

4CO-4FO Reserved for Digital

6.6.6 sea Entries for Processor Software Interrupts
The exception handler for a processor software interrupt executes at the target IPL,
in Kernel mode, on the Kernel stack.

Table 6-10: Entries for Processor Software Interrupts

Byte
Offsetl6 Entry Name Target IPL10

500 Unused

510 Software interrupt level 1 1

520 Software interrupt level 2 2

530 Software interrupt level 3 3

540 Software interrupt level 4 4

550 Software interrupt level 5 5

560 Software interrupt level 6 6

570 Software interrupt level 7 7

580 Software interrupt level 8 8

590 Software interrupt level 9 9

5AO Software interrupt level 10 10
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Table 6-10 (Cont.): Entries for Processor Software Interrupts

Byte
Offset16 Entry Name Target IPL10

5BO Software interrupt level 11 11

5eO Software interrupt level 12 12

5DO Software interrupt level 13 13

5EO Software interrupt level 14 14

5FO Software interrupt level 15 15

6.6.7 sca Entries for Processor Hardware Interrupts
The interrupt handler for a processor hardware interrupt executes at the target IPL,
in Kernel mode, on the Kernel stack.

Table 6-11: SeB Entries for Processor Hardware Interrupts
Byte
Offset16 Entry name Target IPL10

600 Interval clock interrupt 22

610 Interprocessorinterrupt 22

640 Powerfail interrupt 30

650 Performance monitor 29

680-6EO Reserved - processor specific

6FO Passive Release 20-23

Processor-specific SCB entries include those used by console devices (if any) or other
peripherals dedicated to system support functions.

6.6.8 sca Entries for I/O Device Interrupts
The interrupt handler for an I/O device interrupt executes at the target IPL, in
Kernel mode, on the Kernel stack. SCB entries for offsets of 80016 through 7FF016
are reserved for I/O device interrupts.

6.6.9 sca Entries for Machine Checks

The handler for machine checks executes in Kernel mode, on the Kernel stack. The
handler for system correctable machine checks executes at IPL 20; the handler for
all other machine checks executes at IPL 31.
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Table 6-12: SCB Entries for Machine Checks

Byte
Offset16 Entry Name Target IPLIo

620

630

660

670

System correct. machine check

Processor correct. machine check

System machine check

Processor machine check

20

31

31

31
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6.7 PALcode Support

6.7.1 Stack Writeability
In response to various exceptions, interrupts, and machine checks, PALcode pushes
information on the Kernel stack. PALcode may write this information without
first probing to ensure that all such writes to the Kernel stack will succeed. If a
memory management exception occurs while pushing information, PALcode forces
the processor to enter console I/O mode, and subsequent actions, such as processor
restart, are taken by the console. The REASON FOR HALT code is "processor halted
due to kernel-stack-not-valid".

6.7.2 Stack Residency

The User, Supervisor, and Executive stacks for the current process do not need to be
resident. Software running in Kernel mode can bring in or allocate stack pages as
TNV faults occur. However, since this activity is taking place in Kernel mode, the
Kernel stack must be fully resident.

The faults T~ ACV, FOR, and FOW, occurring on Kernel mode references to the
Kernel stack, are considered serious system failures from which recovery is not
possible. Ifany ofthese faults occur, PALcode forces the processor to enter console I/O
mode, and subsequent actions, such as processor restart, are taken by the console.
The REASON FOR HALT code is "processor halted due to kernel-stack-not-valid".

6.7.3 Stack Alignment

Stacks may have arbitrary byte alignment, but performance may suffer if at least
octaword alignment is not maintained by software.

PALcode creates stack frames in response to exceptions and interrupts. Before doing
so, the target stack is aligned to a 64-byte boundary by setting the six low bits of the
target SP to 0000002 • The previous value of these bits is stored in the SP_ALIGN
field of the saved PS in memory, for use by a CALL_PAL REI instruction.

Software-constructed stack frames must be 64 byte aligned and have SP_ALIGN
properly set; otherwise, a CALL_PAL REI instruction will take an illegal operand
trap.

6.7.4 Initiate Exception or Interrupt or Machine Check

Exceptions and interrupts and machine checks are initiated by PALcode with
interrupts disabled. When an exception, interrupt, or machine check, is initiated,
the associated SCB vector is read to determine the address of the service routine.
PALcode then attempts to push the PC, PS, and R2..R7 onto the target stack. When
an interrupt (software or hardware but not AST) is initiated, PS<IP> is set to 1 to
indicate an interrupt is in progress. Additional parameters may be passed in R4
and R5 on exceptions and machine checks.

During the attempt to push this information, the exceptions (faults) TNV, ACV, and
FOW can occur:
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• If any of those faults occur when the target stack is User, Supervisor, or
Executive, then the fault is taken on the Kernel stack.

• If any of those faults occur when the target stack is the Kernel stack, PALcode
forces the processor to enter console 110 mode, and subsequent actions, such as
processor restart, are taken by the console. The REASON FOR HALT code is
"processor halted due to kernel-stack-not-valid".

6.7.5 Initiate Exception or Interrupt or Machine Check Model
. check for exception or interrupt or mcheck:

IF-NOT-{ready to-inItiate exceptIon OR
ready-to-initiate-interrupt OR
ready=to=initiate=mcheck} THEN

BEGIN
{fetch next instruction}
{decode and execute instruction}

END
ELSE

BEGIN
{wait for instructions in progress to complete}

1 clear interrupt pending
tmp.- 0

IF {unmaskable mcheck pending} THEN
BEGIN

{back up implementation specific state if necessary}
{attempt correction if appropriate}
IF {uncorrectable AND MCES<O> = 1} THEN

{enter console}
ELSE IF {uncorrectable} THEN

new mode.- Kernel
new=ipl.- 31

1 set mcheck error flag
MCES<O>.- 1

ELSE IF {reporting enabled} THEN
new mode.- Kernel
new-ipl.- 31
MCES<2>.- 1

END
END

ELSE IF {data alignment trap} THEN
new mode.- Kernel

ELSE IF {synchronous trap} THEN
CASE {opcode} OF

{back up implementation specific state if necessary}
CHME: new mode.- min(PS<CM>,Executive)
CHMS: new-mode.- min (PS<CM>, Supervisor)
CHMU: new-mode.- min(PS<CM>,User)
otherwise: new mode.- Kernel

ENDCASE
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ELSE IF {maskable uncorrectable mcheck pending and IPL < 31} THEN
BEGIN

{back up implementation specific state if necessary}
IF {MCES<O> = I} THEN

{enter console}
ELSE

new mode ~ Kernel
new-ipl ~ 31
MCES<O> ~ 1 1 set mcheck error flag

END
END

ELSE
new mode ~ Kernel

END

IPR SP[PS<CM>] ~ SP
new=sp ~ IPR_SP[new_mode]

IF {exception pending} THEN
BEGIN

{back up implementation specific state if necessary}
new_ipl ~ PS<IPL>

END

ELSE IF {interrupt pending} THEN
new ipl ~ {interrupt source IPL}
tmp-+- 1 1 set interrupt pending

ELSE IF {maskable correctable mcheck pending AND
reporting enabled} THEN

new ipl ~ 20
MCES<l> ~ 1

END

save align ~ new sp<S:O>
new_sp<S: 0> +- 0-

PUSH(PS OR LEFT SHIFT(save align,S6), old_pc, new_mode)
PUSH(R7, R6, new mode) -
PUSH(RS, R4, new-mode)
PUSH(R3, R2, new=mode)

PS<SW> +- 0
PS<CM> +- new mode
PS<IP> ~ tmp
PS<IPL> +- new_ipl
SP +- new_sp

IF {memory management fault} THEN
R4 +- VA
RS +- MMF

END

IF {data alignment trap} THEN
R4 +- VA
R5 +- {O if read/load 1 if write/store }

END
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IF {mcheck or correctable error interrupt} THEN
IF {logout frame built}

R4 +- logout area offset
ELSE --

R4 +- -1
END

END

IF {arithmetic Trap} THEN
R4 +- register write mask
R5 +- exception summary

END

IF {software interrupt} THEN
SISR +- SISR AND NOT{ 2**{ PRIORITY_ENCODE (SISR) } }

END

vector +- {exception or interrupt or mcheck seB offset}

R2 +­

R3 +­

PC +-

(SCBB + vector)
(SCBB + vector + 8)
R2

END

GOTO check_for_exception_or_interrupt_or_mcheck

PROCEDURE PUSH(first, last, mode)
BEGIN

IF ACCESS(new_sp - 16, mode) THEN
BEGIN

(new_sp - 8) +- first
(new_sp - 16) +- last
new_sp +- new_sp - 16
RETURN

END
ELSE

{initiate ACV, TNV, or FOW fault, or
Kernel Stack Not Valid restart sequence}

END
END

6.7.6 PALcode Interrupt Arbitration

The following sections describe the logic for the interrupt conditions produced by the
specified operation.

6.7.6.1 Writing the AST Summary Register

Writing the ASTSR internal processor register (see Section 5.3) requests an AST for
any of the four processor modes. This may request an AST on a formerly inactive
level and thus cause an AST interrupt.

The logic required to check for this condition is:

ASTSR<3:0> +- {ASTSR<3:0> AND R16<3:0>} OR R16<7:4>
IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}
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6.7.6.2 Writing the AST Enable Register

Writing the ASTEN internal processor register (see Section 5.3) enables ASTs for
any of the four processor modes. This may enable an AST on a formerly inactive
level and thus cause an AST interrupt.

The logic required to check for this condition is:

ASTEN<3:0> +- {ASTEN<3:0> AND R16<3:0>} OR R16<7:4>
IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

6.7.6.3 Writing the IPL Register

Writing the IPL internal processor register (see Section 5.3) changes the current
IPL. This may enable an AST or software interrupt on a formerly inactive level and
thus cause an AST or software interrupt.

The logic required to check for this condition is:

PS<IPL> +- R16<4:0>

! check for software interrupt at level 2 •• 15

IF {RIGHT SHIFT({SISR AND FFFC16 }, PS<IPL> + 1) NE O} THEN
{initiate software interrupt at IPL of high bit set in SISR}

! check for AST

IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> LT 2} THEN
{initiate AST interrupt at IPL 2}

! check for software interrupt at level 1

IF SISR<1> AND {PS<IPL> EQ O} THEN
{initiate software interrupt at IPL 1}

6.7.6.4 Writing the Software Interrupt Request Register

Writing the SIRR internal processor register (see Section 5.3) requests a software
interrupt at one of the fifteen software interrupt levels. This may cause a formerly
inactive level to cause a software interrupt.

The logic required to check for this condition is:

SISR<level> +- 1
IF level GT PS<IPL> THEN

{initiate software interrupt at IPL level}

6.7.6.5 Return from Exception or Interrupt

The CALL_PAL REI instruction (see Chapter 2) writes both the Current Mode and
IPL fields of the PS; see Section 6.2. This may enable a formerly disabled AST or
software interrupt to occur.

The logic required to check for this condition is:

PS +- New PS

! check for software interrupt at level 2 •• 15
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IF {RIGHT SHIFT({SISR AND FFFC16 }, PS<IPL> + 1) NE O} THEN
{initiate software interrupt at IPL of high bit set in SISR}

! check for AST

tmp +- NOT LEFT SHIFT(1110(bin), PS<CM»
IF {{tmp AND ASTEN AND ASTSR}<3:0> NE O} AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

! check for software interrupt at level 1

IF SISR<l> AND {PS<IPL> EQ O} THEN
{initiate software interrupt at IPL I}

6.7.6.6 Swap AST Enable

Swapping the AST enable state for the Current Mode results in writing the ASTEN
internal processor register (see Section 5.3). This may enable a formerly disabled
AST to cause' an AST interrupt.

The logic required to check for this condition is:

RO +- ZEXT(ASTEN<PS<CM»)
ASTEN<PS<CM» +- R16<O>

IF ASTEN<PS<CM» AND ASTSR<PS<CM» AND {PS<IPL> LT 2} THEN
{initiate AST interrupt at IPL 2}

6.7.7 Processor State Transition Table

Table 6-13 shows the operations that can produce a state transition and the specific
transition produced. For example, if a processor's initial state is Supervisor mode, it
is not possible for the processor to transition to a program halt condition. A processor"
can only transition to program halt from Kernel mode.

In Table 6-13:

• REI increases mode or lowers IPL.

• MTPR changes IPL, or is a CALL_PAL MTPR_ASTSR
or CALL_PAL MTPR_ASTEN instruction that causes an interrupt request.

• Exc is a state change caused by an exception.

• Int is a state change caused by an interrupt.

• Mcheck is a state change caused by a machine check.
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Table 6-13: Processor State Transitions

Initial State: Final State:
Program

User Super. Exec. Kernel Halt

User CHMU CHMS CHME CHMK Not
REI Exc Possible

Int
Mcheck
SWASTEN

Supervisor REI CHMS CHME CHMK Not
REI Exc Possible

Int
Mcheck
SWASTEN

Executive REI REI CHME CHMK Not Possible
REI Exc

Int
Mcheck
SWASTEN

Kernel REI REI REI CHMK HALT
REI
Int
Exc
Mcheck
MTPR
SWASTEN
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Part III DEC OSF/1 Alpha Software

This section describes how DEC OSF/l operating
system relates to the Alpha architecture and
includes the following chapters:

1. Introduction to DEC OSF/l Alpha

2. OSF/l PALcode Instruction Descriptions

3. OSF/l Memory Management

4. OSF/l Process Structure

5. OSF/l Exceptions and Interrupts
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Chapter 1

Introduction to DEC OSF/1 Alpha (III)

The goals of this design are to provide a hardware implementation independent
interface between the hardware and DEC OSF/l Alpha. The interface needs to
provide the needed abstractions to minimize the impact of different hardware
implementations on the operating system. The interface also needs to be low in
overhead to support high-performance systems. Lastly the interface needs to only
support the features used by DEC OSF/l Alpha.

The register usage in this interface is based on the current calling standard used by
DEC OSF/l Alpha. If the calling standard changes, this interface will be changed
to reflect that. The current calling standard register usage is shown in Table 1-1.

Table 1-1: DEC OSF/1 Alpha Register Usage
Register Software Use and
Name Name linkage

rO vO Used for expression evaluations and to hold integer function
results.

rl ..r8 to..t7 Temporary registers; not preserved across procedure calls.

r9..r14 sO..s5 Saved registers; their values must be preserved across
procedure calls.

r15 FP or s6 Frame pointer or a saved register.

r16..r21 aO..a5 Argument registers; used to pass the first 6 integer type
arguments; their values are not preserved across procedure
calls.

r22..r25 t8..tll Temporary registers; not preserved across procedure calls.

r26 ra Contains the return address; used for expression evaluation.

r27 pv or t12 Procedure value or a temporary register.

r28 at Assembler temporary register; not preserved across procedure

Icalls.

r29 GP Global pointer.

r30 SP Stack pointer.

r31 zero Always has the value o.
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1.1 Programming Model

The programming model of the machine is the combination of the state visible either
directly via instructions, or indirectly via actions of the machine. The following four
tables define constants, state variables, terms, and subroutines used in the rest of
the document.

1.1.1 Code Flow Constants

Table 1-2: Code Flow Constants
Term

IPL = 2:0

maxCPU

mode =3

pageSize

vaSize

Meaning and value

The range 2:0 used in the PS to access the IPL field of the PS
(PS<IPL».

The maximum number of processors in a given system.

Used as a subscript in PS to select current mode (PS<mode».

Size of a page in an implementation in bytes.

Size of virtual address in bits in a given implementation.

1.1.2 Machine State Terms

Table 1-3: Machine State Terms
Term Meaning

ASN

entArith<63:0>

entIF<63:0>

entlnt<63:0>

entMM<63:0>

An implementation-dependent size register to hold the current
address space number (ASN). The size and existence of ASN is an
implementation choice.

The arithmetic trap entry address register. The entArith is an
internal processor register that holds the dispatch address on an
arithmetic trap. There can be a hardware register for the entArith
or the PALcode can use private scratch memory.

The instruction fault entry address register. The entIF is an internal
processor register that holds the dispatch address on an instruction
fault. There can be a hardware register for the entIF or the PALcode
can use private scratch memory.

The interrupt entry address register. The entlnt is an internal
processor register that holds the dispatch address on an interrupt.
There can be a hardware register for the entlnt or the PALcode can
use private scratch memory.

The memory-management fault entry address register. The entMM
is an internal processor register that holds the dispatch address on
a memory-management fault. There can be a hardware register for
the entMM or the PALcode can use private scratch memory.
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Table 1-3 (Cont.): Machine State Terms
Term

entSys<63:0>

entUna<63:0>

FEN<O>

instruction<31 :0>

KGP<63:0>

KSP<63:0>

PC<63:0>

PCB

PCBB<63:0>

PS<3:0>

PTBR<63:0>

Meaning

The system call entry address register. The entSys is an internal
processor register that holds the dispatch address on an callsys
instruction. There can be a hardware register for the entSys or the
PALcode can use private scratch memory.

The unaligned fault entry address register. The entUna is an internal
processor register that holds the dispatch address on an unaligned
fault. There can be a hardware register for the entUna or the PALcode
can use private scratch memory.

The floating-point enable register. The FEN is a one-bit register that
is used to enable or disable floating-point instructions. If a floating­
point instruction is executed with FEN equal to zero, a FEN fault is
initiated.

The current instruction being executed. This is a fake register used
in the flows to CASE on different instructions.

A per-processor state bit. The intr_flag bit is cleared if that processor
executes an rti or retsys instruction.

The kernel global pointer. The KGP is an internal processor register
that holds the kernel global pointer that is loaded into R15, the GP,
when an exception is initiated. There can be a hardware register for
the KGP or the PALcode can use private scratch memory.

The kernel stack pointer. The KSP is an internal processor register
that holds the kernel stack pointer while in user mode. There can be
a hardware register for the KSP or the storage space in the PCB can
be used.

A one-bit register that is used by the load locked and store conditional
instructions.

The program counter. The PC is a pointer to the next instruction in
the flows. The low-order two bits of the PC always read as zero and
writes to them are ignored.

The process control block. The PCB holds the state of the process.

The process control block base address register. The PCBB holds the
address of the PCB for the current process.

The processor status. The PS is a four-bit register that stores the
current mode in bit <3> and stores the three-bit IPL in bits <2:0>.
The mode is 0 for kernel and 1 for user.

The page table base register. The PTBR contains the physical page
frame number (PFN) of the highest level (level 1) page table.
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Table 1-3 (Cont.): Machine State Terms
Term

SP<63:0>

sysvalue<63:0>

unique<63:0>

USP<63:0>

VPTPTR<63:0>

whami<63:0>

1.1.3 Code Flow Terms

Meaning

Another name for R30. The SP points to the top of the current stack.

PALcode only accesses the kernel stack. The kernel stack must
be quadword aligned whenever PALcode reads or writes it. If the
PALcode accesses the kernel stack and the stack is not aligned, a
kernel-stack-not-valid halt is initiated. Although PALcode does not
access the user stack, that stack should also be at least quadword
aligned for best performance.

The system value register. The sysvalue holds the per-processor
unique value. There can be a hardware register for the sysvalue
register or the storage space in the PALcode scratch memory can be
used.

The sysvalue register can only be accessed by kernel mode code and
there is one sysvalue register per CPU.

The process unique value register. The unique register holds the
per-process unique value. There can be a hardware register for the
unique register or the storage space in the PCB can be used.

The unique register can be accessed by both user and kernel code and
there is one unique register per process.

The user stack pointer. The USP is an internal processor register
that holds the user stack pointer while in kernel mode. There can be
a hardware register for the USP or the storage space in the PCB can
be used.

The virtual page table pointer. The VPTPTR holds the virtual address
of the first level page table.

The processor number of the current processor. This number is in the
range O..maxCPU-l.

Table 1-4: Code Flow Terms
Term Meaning

opDec An attempt was made to execute a reserved instruction or execute a
privileged instruction in user mode.
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Chapter 2

OSF/1 PALcode Instruction Descriptions (III)

2.1 Unprivileged PALcode Instructions

Table 2-1 lists the OSF/1 PALcode unprivileged instruction mnemonics, names, and
the environment from which they can be called:

Table 2-1 : Unprivileged OSF/1 PALcode Instructions
Mnemonic Name Calling environment

bpt Breakpoint trap Kernel and user modes

bugchk Bugcheck trap Kernel and user modes

callsys System call User mode

gentrap Generate trap Kernel and user modes

imb I-Stream memory barrier Kernel and user modes
Described in Common Architecture, Chap-
ter 6

rdunique Read unique Kernel and user modes

wrunique Write unique Kernel and user modes
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2.1.1 Breakpoint Trap

Format:

bpt

Operation:

temp +- PS
if (ps<mode> NE 0) then

USP +- SP
SP +- KSP
PS +- 0

endif
SP +- SP - {6 * 8}
(SP+OO) +- temp
(SP+08) +- PC
(SP+16) +- GP
(SP+24) +- aO
(SP+32) +- al
(SP+40) +- a2
aO +- 0
GP +- KGP
PC +- entIF

Exceptions:

Kernel stack not valid

Instruction mnemonics:

! PALcode format

Mode is user so switch to kernel

bpt Breakpoint trap

Description:

The breakpoint trap (bpt) instruction switches mode to kernel, builds a stackframe
on the kernel stack, loads the GP with the KGP, loads a value of 0 into aO, and
dispatches to the breakpoint code pointed to by the entIF register. The registers
al ..a2 are UNPREDICTABLE on entry to the trap handler. The saved PC at (SP+08)
is the address of the instruction following the trap instruction that caused the trap.

Notes:

• The opcode and function code for the bpt instruction are the same in the
OpenVMS and the OSF/l PALcode.
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2.1.2 Bugcheck Trap

Format:

bugchk

Operation:

temp ~ PS
if (PS<mode> NE 0) then

USP.- SP
SP .- KSP
PS .- 0

endif
SP ~ SP - {6 * 8}
(SP+OO) .- temp
(SP+08) +- PC
(SP+16) +- GP
(SP+24) .- aO
(SP+32) .- al
(SP+40) +- a2
aO ~ 1
GP ~ KGP
PC ~ entIF

Exceptions:

Kernel stack not valid

Instruction mnemonics:

! PALcode format

Mode is user so switch to kernel

bugchk Bugcheck trap

Description:

The bugcheck trap (bugchk) instruction switches mode to kernel, builds a stackframe
on the kernel stack, loads the GP with the KGP, loads a value of 1 into aO, and
dispatches to the breakpoint code pointed to by the entIF register. The registers
a1 ..a2 are UNPREDICTABLE on entry to the trap handler. The saved PC at (SP+08)
is the address of the instruction following the trap instruction that caused the trap.

Notes:

• The opcode and function code for the bugchk instruction are the same in the
OpenVMS and the OSF/l PALcode.

OSF/1 PALcode Instruction Descriptions (III) 2-3

•



2.1.3 System Call

Format:

callsys

Operation:

if (PS<mode> EQ 0) then
machineCheck

endif
USP ~ SP
SP ~ KSP
PS ~ 0
SP ~ SP - {6*8}
(SP+OO) ~ 8
(SP+08) ~ PC
(SP+08) ~ GP
GP ~ KGP
PC ~ entSys

Exceptions:

! PALcode format

1 Mode=kernel

1 PS of mode=user, IPL=O

Machine check-invalid kernel mode callsys

Kernel stack not valid

Instruction mnemonics:

callsys System call

Description:

The system call (callsys) instruction is supported only from user mode. (Issuing a
callsys from kernel mode causes a machine check exception).

The callsys instruction switches mode to kernel and builds a callsys stack frame.
The GP is loaded with the KGP. The exception then dispatches to the system call
code pointed to by the entsys register. On entry to the ·callsys code, the scratch
registers t8..t!! are UNPREDICTABLE.
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2.1.4 Generate Trap

Format:

gentrap

Operation:

temp +- PS
if (PS<mode> NE 0) then

USP +- SP
SP +- KSP
PS +- 0

endif
SP +- SP - {6 * 8}
(SP+OO) +- temp
(SP+08) +- PC
(SP+16) +- GP
(SP+24) +- aO
(SP+32) +- al
(SP+40) +- a2
aO +- 2
GP +- KGP
PC +- entIF

Exceptions:

Kernel stack not valid

Instruction mnemonics:

! PALcode format

Mode is user so switch to kernel

gentrap Generate trap

Description:

The generate trap (gentrap) instruction switches mode to kernel, builds a stackframe
on the kernel stack, loads the GP with the KGP, loads a value of 2 into aO, and
dispatches to the breakpoint code pointed to by the entIF register. The registers
al ..a2 are UNPREDICTABLE on entry to the trap handler. The saved PC at (SP+OB)
is the address of the instruction following the trap instruction that caused the trap.

Notes:

• The opcode and function code for the gentrap instruction are the same in the
OpenVMS and the OSF/1 PALcode.
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2.1.5 Read Unique Value

Format:

rdunique

OperfJtion:

vO ~ unique

Exc;eptions:

None

Irnstruction mnemonics:

! PALcode format

rdunique

Description:

Read unique value

The read unique value (rdunique) instruction returns the process unique value in
vO. The write unique value (wrunique) instruction, described in Section 2.1.6, sets
the process unique value register.

Notes:

• The opcode and function code for the rdunique instruction are the same in the
OpenVMS and the OSF/1 PALcode.

2-6 DEC OSF/1 Alpha Software (III)



2.1.6 Write Unique Value

Format:

wrunique

Operation:

unique i- aO

Exceptions:

None

Instruction mnemonics:

! PALcode format

wrunique Write unique value

Description:

The write unique value (wrunique) instruction sets the process unique register to
the value passed in aO. The read unique value (rdunique) instruction, described in
Section 2.1.5, returns the process unique value.

Notes:

• The opcode and function code for the wrunique instruction are the same in the
OpenVMS and the OSF/1 PALcode.
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2.2 Privileged OSF/1 PALcode Instructions

The Privileged OSF/l PALcode instructions provide an abstracted interface to control
the privileged state of the machine.

Table 2-2: Privileged OSF/1 PALcode Instructions

~neIDonic ~~e

halt

rdps

rdusp

rdval

retsys

rti

swpctx

swpipl

tbi

whami

wrent

wrfen

wrkgp

wrvptptr

Halt the processor
Described in Common Architecture, Chapter 6

Read processor status

Read user stack pointer

Read system value

Return from system call

Return from trap, fault, or interrupt

Swap process context

Swap IPL

TB (translation buffer) invalidate

Who am I

Write system entry address

Write floating-point enable

Write kernal global pointer

Write virtual page table pointer
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2.2.1 Read Processor Status

Format:

rdps

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO +- PS

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

rdps Read processor status

Description:

The read processor status (rdps) instruction returns the PS in vO. On return from
the rdps instruction, registers to and t8..tll are UNPREDICTABLE.
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2.2.2 Read User Stack Pointer

Format:

rdusp

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO +- USP

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

rdusp Read user stack pointer

Description:

The read user stack pointer (rdusp) instruction returns the user stack pointer
in vO. The user stack pointer is written by the wrusp instruction, described in
Section 2.2.13. On return from the rdusp instruction, registers to and t8..t11 are
UNPREDICTABLE.
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2.2.3 Read System Value

Format:

rdval

Operation:

!PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO +- sysvalue

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

rdval Read system value

Description:

The read system value (rdval) instruction returns the sysvalue in yO, allowing access
to a 64-bit per-processor value for use by the operating system. On return from the
rdval instruction, registers to and t8..t11 are UNPREDICTABLE.
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2.2.4 Return From System Call

Format:

retsys

Operation:

! PALcode format

if {PS<mode> EQ 1} then
{Initiate opDec fault}

endif
tmp ~ (SP+08)
GP +- (SP+16)
KSP ~ SP + {6*8}
SP ~ USP
intr flag = 0
lock-flag = 0
PS ~ 8
PC ~ tmp

Exceptions:

Opcode reserved to Digital

Kernel stack not valid (halt)

Instruction mnemonics:

1 Clear the interrupt flag
1 Clear the load lock flag
1 Mode=user

retsys Return from system call

Description:

The return from system call (retsys) instruction pops the return address and the user
mode global pointer from the kernel stack. It then saves the kernel stack pointer,
sets the mode to user, sets the IPL to zero, and enters the user mode code at the
address popped off the stack.
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2.2.5 Return From Trap, Fault or Interrupt

Format:

rti

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
tempps +- (SP+O)
temppc +- (SP+B)
GP +- (SP+16)
aO +- (SP+24)
al +- (SP+32)
a2 +- (SP+40)
SP +- SP + {6 * 8}
if { tempps<3> EQ l} then

KSP +- SP New mode is user
SP +- USP
tempps +- B

endif
intr flag = 0
lock-flag = 0
PS ~ tempps<3 : 0>
PC +- temppc

Exceptions:

Opcode reserved to Digital

Kernel stack not valid (halt)

Instruction mnemonics:

1 Clear the interrupt flag
1 Clear the load lock flag
! Set new PS

Description:

The return from fault, trap, or interrupt (rti) instruction pops registers (aQua3, and
GP), the PC, and the PS, from the kernel stack. If the new mode is user, the kernel
stack is saved and the user stack is restored.

rti Return from trap, fault, or interrupt

•
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2.2.6 Swap Process Context

Format:

swpctx

Operation:

if (PS<mode> EQ 1)
{Initiate opDec fault}

! PALcode format

1 Save current state

Return old PCBB
Switch PCBB
Restore new state

endif
(PCBB) ~ SP
(PCBB+8) ~ USP
tmp ~ PCC
tmp1 ~ tmp<31:0> + tmp<63:32>
(PCBB+24)<31:0> ~ tmp1<31:0>
vO ~ PCBB
PCBB ~ aO
SP ~ (PCBB)
USP ~ ( PCBB+8 )
oldPTBR ~ PTBR
PTBR ~ (PCBB+16)
tmp1 ~ (PCBB+24)
PCC<63:32> ~ {tmp1 - tmp}<31:0>
FEN ~ ( PCBB+4 0 )
if {process unique register implemented}

(vO+32) ~ unique
unique ~ (PCBB+32)

endif
if {ASN implemented}

ASN ~ tmp1<63:32>
else

then

if (oldPTBR NE PTBR)
{Invalidate all TB entries with ASM=O}

endif
endif

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

swpctx Swap process context
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Description:

The swap process context (swpctx) instruction saves the current process data in
the current PCB. Then swpctx switches to the PCB passed in aO and loads the
new process context. The old PCBB is returned in vO. On return from the swpctx
instruction, registers to, t8..t11, and aO are UNPREDICTABLE.
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2.2.7 Swap IPL

Format:

swpipl

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO +- PS<IPL>
PS<IPL> +- aO<2:0>

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

swpipl Swap IPL

Description:

The swap IPL (swpipl) instruction returns the current value of the PS<IPL> bits in
vO and sets the IPL to the value passed in aO. On return from the spwipl instruction,
registers to, t8..t11, and aO are UNPREDICTABLE.
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2.2.8 TB Invalidate

Format:

tbi

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
case aO begin

1: ! tbisi
{Invalidate ITB entry for va=a1}
break;

2: tbisd
{Invalidate DTB entry for va=a1}
break;

3: tbis
{Invalidate both ITB and DTB entry for va=a1}
break;

-1: tbiap
{Invalidate all TB entries with ASM=O}
break;

-2: tbia
{Flush all TBs}
break;

otherwise:
break;

endcase

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

Description:

The TB invalidate (tbi) instruction removes specified entries from the I and D
translation buffers (TBs) when the mapping changes. The tbi instruction removes
specific entry types based on a CASE selection of the value passed in register
aO. On return from the tbi instruction, registers to, t8..t11, aO, and a1 are
UNPREDICTABLE.

tbi TB (translation buffer) invalidate

•
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2.2.9 Who Am I

Format:

whami

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO ~ whami

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

whami Who am I

Description':

The who am I (whami) instruction returns the processor number for the current
processor in yO. The processor number is in the range 0 to the number of processors
minus one (OumaxCPU-1) that can be configued in the system. On return from the
whami instruction, registers to and tBut11 are UNPREDICTABLE.
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2.2.10 Write System Entry Address

Format:

wrent

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
case a1 begin

0- 'write the EntInt:
entInt +- aO
break;

1: write the EntArith:
entArith +- aO
break;

2: write the EntMM:
entMM +- aO
break;

3: 1 write the EntIF:
entIF +- aO
break;

4: write the EntUna:
entuna +- aO
break;

5- , write the EntSys:
entSys +- aO
break;

otherwise:
break;

endcase;

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

Description:

The write system entry address (wrent) instruction determines the specific system
entry point based on a CASE selection of the value passed in register al. The wrent
instruction then sets the virtual address of the specified system entry point to the
value passed in aO.

wrent Write system entry address •
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For best performance all the addresses should be kseg addresses. (See Chapter 3
for a definition of kseg addresses).

On return from the wrent instruction, registers to, t8..tll, aO, and al are
UNPREDICTABLE.
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2.2.11 Write Floating-Point Enable

Format:

wrfen

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
FEN +- aO<O>
(PCBB+40) +- aO AND 1

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrfen Write floating-point enable

Description:

The write floating-point enable (wrfen) instruction writes bit zero of the value passed
in aO to the floating-point enable register. The wrfen instruction also writes the value
for FEN to the PCB at offset (PCBB+40). On return from the wrfen instruction,
registers to, t8..tll, and aO are UNPREDICTABLE.
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2.2.12 Write Kernel Global Pointer

Format:

wrkgp

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
KGP +- aO

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrkgp Write kernal global pointer

Description:

The write kernel global pointer (wrkgp) instruction writes the value passed in aO to
the kernel global pointer (KGP) internal register. The KGP is used to load the GP
on exceptions. On return from the wrkgp instruction, registers to, t8..tll, and aO
are UNPREDICTABLE.
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2.2.13 Write User Stack Pointer

Format:

wrusp

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
USP ~ aO

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrusp Write user stack pointer

Description:

The write user stack pointer (wrusp) instruction writes the value passed in aO to the
user stack pointer. On return from the wrusp instruction, registers to, t8..tll, and
aO are UNPREDICTABLE.
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2.2.14 Write System Value

Format:

wrval

Operation:

!PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
sysvalue.- aO

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrval Write system value

Description:

The write system value (wrval) instruction writes the value passed in aO to a 64­
bit system value register. The combination of wrval with the rdval instruction,
described in Section 2.2.3, allows access by the operating system to a 64-bit per­
processor value. On return from the wrval instruction, registers to, t8..tll, and aO
are UNPREDICTABLE.
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2.2.15 Write Virtual Page Table Pointer

Format:

wrvptptr

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
VPTPTR +- aD

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrvptptr Write virtual page table pointer

Description:

The write virtual page table pointer (wrvptptr) instruction writes the pointer passed
in aO to the virtual page table pointer register (VPTPTR). The VPTPTR is described
in Chapter 3. On return from the wrvptptr instruction, registers to, t8..tll, and aO
are UNPREDICTABLE.
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Chapter 3

OSF/1 Memory Management (III)

3.1 Virtual Address Spaces

A virtual address is a 64-bit unsigned integer that specifies a byte location within the
virtual address space. Implementations subset the supported address space to one
of four sizes (43, 47, 51, or 55 bits) as a function of page size. The minimal supported
virtual address size is 43 bits. If an implementation supports less than 64-bit virtual
addresses, it must check that all the VA<63:vaSize> bits are equal to VA<vaSize-l>.
This gives two disjoint ranges for valid virtual addresses. For example, for a
43-bit virtual address space, valid virtual address ranges are O..3FFFFFFFFFF16
and FFFFFC000000000016..FFFFFFFFFFFFFFFF16• Access to virtual addresses
outside of an implementation's valid virtual address range cause an access-violation
fault.

The virtual address space is divided into 3 segments. The two bits
va<vaSize-l:vaSize-2> select a segment as shown in Table 3-1.

Table 3-1: Virtual Address Space Segments
VA<vaSize-l:vaSize-2> Name Mapping Access Control

Ox

10

11

segO

kseg

segl

Mapped via TB

PA.- sext(VA<vaSize-3:0»

Mapped via TB

Programmed in PTE

Kernel ReadIWrite

Programmed in PTE

For kseg, the relocation, sharing, and protection are fixed. For segO and segl, the
virtual address space is broken into pages, which are the units of relocation, sharing,
and protection. The page size ranges from 8 Kbytes to 64 Kbytes. Therefore, system
software should allocate regions with differing protection on 64 Kbyte virtual address
boundaries to ensure image compatibility across all Alpha implementations.

Memory management provides the mechanism to map the active part of the virtual
address space to the available physical address space. The operating system controls
the virtual-to-physical address mapping tables and saves the inactive (but used)
parts of the virtual address space on external storage media.

3.1.1 Segment SegO and Seg1 Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand in
memory. A segO or segl virtual address consists of three level-number fields and a
byte_within_page field, as shown in Figure 3-1.
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Figure 3-1: Virtual Address Format

63

SEXT (level1 <level size-3» level1 level2 level3

Figure 3-2: Kseg Virtual Address Format

63

SEXT (segment_select<1 » Segment Select=1 0 2 Physical Address

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a
particular implementation. Thus, the allowable page sizes are B Kbytes, 16 Kbytes,
32 Kbytes, and 64 Kbytes. Each level-number field is O-n bits long, where, for
example, n is 9 for an BK page size. Level-number fields are the same size for a
given implementation.

The level-number fields are a function of the page size; all page table entries at any
given level do not exceed one page. The PFN field in the PTE is always 32 bits wide.
Thus as the page size grows the virtual and physical address size also grows.

In Table 3-2, the physical address column is the maximum physical address
supported by the smaller of segO/segl or kseg, as indicated.

Table 3-2: Virtual Address Options
Page Byte Level Virtual Physical Physical
Size Offset Size Address Address Address
(bytes) (bits) (bits) (bits) (bits) Limited by

8K 13 10 43 41 kseg

16K 14 11 47 45 kseg

32K 15 12 51 47 segO/segl

64K 16 13 55 48 segO/segl

3.1.2 Kseg Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand
in memory. A kseg virtual address consists of segment select field with a value
of 102 and a physical address field. The segment select field is the two bits
va<vaSize-1:vaSize-2>. The physical address field is va<vaSize-3:0>.
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3.2 Physical Address Space

Physical addresses are at most vaSize-2 bits. This allows all of physical memory
to be accessed via kseg. A processor may choose to implement a smaller physical
address space by not implementing some number of high order bits. The two
most significant implemented physical address bits select a caching policy or
implementation dependent type of address space. Implementations will use these
bits as appropriate for their systems. For example, in a workstation with a 30-bit
physical address space, bit<29> might select between memory and non-memory like
regions, and bit <28> could enable or disable caching; see Common Architecture,
Chapter 5.

3.3 Memory Management Control

Memory management is always enabled. Implementations must provide an
environment for PALcode to service exceptions and to initialize and boot the
processor. For example PALcode might run with I-stream mapping disabled.

3.4 Page Table Entries

The processor uses a quadword page table entry (PTE) to translate segO and segl
virtual addresses to physical addresses. A PTE contains hardware and software
control information and the physical page frame number (PFN). A PTE is a quadword
with the following fields:

Figure 3-3: Page Table Entry (PTE)

16151413121110 9 876 5 4 3 2 1 0
"" R R R

S UK 8 UK
8 GH

AF F F
V WW V RR V 80 OOV
0 EE 1 E E 2 ME WR

""

1,--63 P_FN__---.l

32

[JW

Bits Name Meaning

Table 3-3: Page Table Entry (PTE) Bit Summary

63:32

31:16

15:14

PFN

SW

RSVO

Page frame number

The PFN field always points to a page boundary. If V is set, the PFN
is concatenated with the byte_within_page bits of the virtual address to
obtain the physical. address.

Reserved for software.

Reserved for hardware; SBZ. •
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Table 3-3 (Cont.): Page Table Entry (PTE) Bit Summary

Bits Name Meaning

13

12

11:10

9

8

7

6:5

4

3

UWE

KWE

RSVI

URE

KRE

RSV2

GH

ASM

FOE

User write enable.

This bit enables writes from user mode. If this bit is 0 and a store is
attempted while in user mode, an access-violation fault occurs. This bit
is valid even when V=O.

Kernel write enable.

This bit enables writes from kernel mode. If this bit is 0 and a store is
attempted while in kernel mode, an access-violation fault occurs. This
bit is valid even when V=O.

Reserved for hardware; SBZ.

User read enable.

This bit enables reads from user mode. If this bit is 0 and a load or
instruction fetch is attempted while in user mode, an Access Violation
occurs. This bit is valid even when V=O.

Kernel read enable.

This bit enables reads from kernel mode. If this bit is 0 and a load or
instruction fetch is attempted while in kernel mode, an access-violation
fault occurs. This bit is valid even when V=O.

Reserved for hardware; SBZ.

Granularity hint.

Software may set these bits to a non-zero value to supply a hint to
translation buffer implementations that a block of pages can be treated
as a single larger page:

1. A block is an aligned group of 8**N pages where N is the value of
PTE<6:5>, e.f. a group of 1, 8, 64, or 512 pages starting at a virtual
address with page_size + 3*N low-order zeros.

2. The block is a group of physically contiguous pages that are aligned
both virtually and physically. Within the block, the low 3*N bits of
the PFNs describe the identity mapping and the high 32-3*N PFN
bits are all equal.

3. Within the block, all PTEs have the same values for bits <15:0>.
Hardware may use this hint to map the entire block with a single
TB entry, instead of 8, 64, or 512 separare TB entries.

Address space match.

When set, this PTE matches all address space numbers. For a given VA,
ASM must he set consistently in all processes, otherwise the address
mapping is UNPREDICTABLE.

Fault on execute.

When set, a Fault on Execute exception occurs on an attempt to execute
any location in the page.
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Table 3-3 (Cont.): Page Table Entry (PTE) Bit Summary

Bits Name Meaning

2

1

o

FOW

FOR

V

Fault on write.

When set, a Fault on Write exception occurs on an attempt to write any
location in the page.

Fault on read.

When set, a Fault on Read exception occurs on an attempt to read any
location in the page.

Valid.

Indicates the validity of the PFN field. When V is set the PFN field is
valid for use by hardware. When V is clear, the PFN field is reserved
for use by software. The V bit does not affect the validity ofPTE<15:1>
bits.

3.4.1 Changes to Page Table Entries

The operating system changes PTEs as part of its memory management functions.
For example, the operating system may set or clear the V bit, change the PFN field
as pages are moved to and from external storage media, or modify the software bits.
The processor hardware never changes PTEs.

Software must guarantee that each PTE is always consistent within itself.
Changing a PTE one field at a time can cause incorrect system operation, such as
setting PTE<V> with one instruction before establishing PTE<PFN> with another.
Execution of an interrupt service routine between the two instructions could use an
address that would map using the inconsistent PTE. Software can solve this problem
by building a complete new PTE in a register and then moving the new PTE to the
page table by using an STQ instruction.

Multiprocessing makes the problem more complicated. Another processor could be
reading (or even changing) the same PTE that the first processor is changing. Such
concurrent access must produce consistent results. Software must use some form
of software synchronization to modify PTEs that are already valid. Whenever a
processor modifies a valid PTE, it is possible that other processors in a multiprocessor
system may have old copies of that PTE in their translation buffer. Software must
inform other processors of changes to PTEs. Hardware must ensure that aligned
quadword reads and writes are atomic operations. Hardware must not cache invalid
PTEs (PTEs with the V bit equal to 0) in translation buffers. See Section 3.7 for
more information.

3.5 Memory Protection

Memory protection is the function of validating whether a particular type of access
is allowed to a specific page from a particular access mode. Access to each page is
controlled by a protection code that specifies, for each access mode, whether read or
write references are allowed. The processor uses the following to determine whether
an intended access is allowed:
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• The virtual address, which is used to either select kseg mapping or provide the
index into the page tables.

• The intended access type (read or write).

• The current access mode base on Processor Mode.

For protection checks, the intended access is read for data loads and instruction
fetches, and write for data stores.

3.5.1 Processor Access Modes

There are two processor modes, user and kernel. The access mode of a running
process is stored in the processor status mode bit (PS<mode».

3.5.2 Protection Code

Every page in the virtual address space is protected according to its use. A program
may be prevented from reading or writing portions of its address space. Associated
with each page is a protection code that describes the accessibility of the page for
each processor mode.

For segO and segl, the code allows a choice of read or write protection for each
processor mode. For each mode, access can be read/write, read-only, or no­
access. Read and write accessibility and the protection for each mode are specified
independently.

For kseg, the protection code is kernel read/write, user no-access.

3.5.3 Access-Violation Faults

An access-violation memory-management fault occurs if an illegal access is
attempted, as determined by the current processor mode and the page's protection.

3.6 Address Translation for SegO and Seg1

The page tables can be accessed from physical memory, or (to reduce overhead) can
be mapped to a linear region of the virtual address space. The following sections
describe both access methods.

3.6.1 Physical Access for SegO and Seg1 PTEs

SegO and segl address translation can be performed by accessing entries in a three­
level page table structure. The page table base register (PTBR) contains the physical
page frame number (PFN) of the highest level (levell) page table. Bits <levell> of
the virtual address are used to index into the first level page table to obtain the
physical PFN of the base of the second level (level 2) page table. Bits <leveI2> of
the virtual address are used to index into the second level page table to obtain the
physical PFN of the base of the third level (level 3) page table. Bits <leveI3> of the
virtual address are used to index the third level page table to obtain the physical
PFN of the page being referenced. The PFN is concatenated with virtual address bits
<byte_within_page> to obtain the physical address of the location being accessed.
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If part of any page table does not reside in a memory-like region, or does reside in
nonexistent memory, the operation of the processor is UNDEFINED.

If the first-level or second-level PTE is valid, the protection bits are ignored; the
protection code in the third-level PTE is used to determine accessibility. If a first
level or second level PTE is invalid, an access-violation fault occurs if the PTE<KRE>
equals zero. An access-violation fault on a first-level or second-level PTE implies that
all lower-level page tables mapped by that PTE do not exist.

The algorithm to generate a physical address from a segO or seg! virtual address
follows:
IF {SEXT(VA<vaSize-l:O» neq VA} THEN

{ initiate access-violation fault}

levell PTE ~ ({PTBR * page size} + {8 * VA<levell>}
IF levell PTE<v> EO 0 THEN -

IF levell PTE<KRE> eq 0 THEN
{ initiate access-violation fault}

ELSE
{ initiate translation-not-valid fault}

level2 PTE ~ ({levell PTE<PFN> * page size} + {8 * VA<level2>}
IF level2 PTE<v> EO 0 THEN -

IF level2 PTE<KRE> eq 0 THEN
{ initiate access-violation fault}

ELSE
{ initiate translation-not-valid fault}

level3_PTE ~ ({level2_PTE<PFN> * page_size} + {8 * VA<level3>}

Read physical

! Read physical

1 Read physical

IF {{{level3 PTE<UWE> eq O} AND {write access} AND {ps<mode> EO l} } OR
{{level3-PTE<URE> eq O} AND {read access} AND {ps<mode> EO l} } OR
{{level3-PTE<KWE> eq O} AND {write access} AND {ps<mode> EO O} } OR
{{level3=PTE<KRE> eq O} AND {read access} AND {ps<mode> EO O} } }

THEN
{initiate memory-management fault}

ELSE
IF level3 PTE<v> EO 0 THEN

{initiate memory-management fault}

IF level3 PTE<FOW> eq l} AND {write access} THEN
{initiate memory-management fault}

IF level3 PTE<FOR> eq l} AND {read access} THEN
{initiate memory-management fault}

IF level3 PTE<FOE> eq l} AND {execute access} THEN
{initiate memory-management fault}

Physical_address ~ {level3_PTE<PFN> * page_size} OR VA<byte_within-page>

3.6.2 Virtual Access for SegO or Seg1 PTEs

The page tables can be mapped into a linear region of the virtual address space,
reducing the overhead for segO and seg! PTE accesses. The mapping is done as
follows:

1. Select a 2(3.1g(pageSize/8»+3 byte-aligned region (an address with 3*lg(pageSize/8) +3
low-order zeros) in the segO or seg! address space. Set the virtual page table
pointer (VPTPTR) with a write virtual page table pointer instruction (wrvptptr)
to the selected value.

2. Create a level! PTE to map the page tables as follows.
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levell PTE = 0 1 Initialize all fields to 0
levell-PTE<63:32> = pfn of Level 1 pagetable

- -1 Set the PFN to the PFN of the level one pagetable
levell PTE<8> = 1 1 Set the kernel read enable bit
levell-PTE<O> = 1 1 Set the valid bit

3. Set the levell page table entry that corresponds to the VPTB to the created
levell_PTE.

4. Set alllevell and level 2 valid PTEs to allow kernel read access. With this setup
in place the algorithm to fetch a segO or seg! PTE is:
tmp ~ left shift (va, {64 - {{lg(pageSize) *4} - 9}} )
tmp ~ right shift (tmp, {64 - {{lg(pageSize) *4} - 9} + 19(pageSize) - 3} )
tmp ~ VPTB OR tmp
tmp<2:0> ~ 0
level3 PTE +- (tmp) 1 Load PTE using it's virtual address

The virtual access method is used by PALcode for most TB fills.

3.7 Translation Buffer

In order to save actual memory references when repeatedly referencing the
same pages, hardware implementations include a translation buffer to remember
successful virtual address translations and page states. When the process context
is changed, a new value is loaded into the address space number (ASN) internal
processor register with a swap process context (swpctx) instruction. This causes
address translations for pages with PTE<ASM> clear to be invalidated on a processor
that does not implement address space numbers.

Additionally, when the software changes any part (except the software field) of a
valid PTE, it must also execute a CALL_PAL tbi instruction. The entire translation
buffer can be invalidated by tbia, and all ASM=O entries can be invalidated by tbiap.
The translation buffer must not store invalid PTEs. Therefore, the software is not
required to invalidate translation buffer entries when making changes for PTEs that
are already invalid.

3.8 Address Space Numbers

The Alpha architecture allows a processor to optionally implement address space
numbers (process tags) to reduce the need for invalidation of cached address
translations for process specific addresses when a context switch occurs.

The address space number for the current process is loaded by software in the
address space number (ASN) with a swpctx instruction. ASNs are processor
specific and the hardware makes no attempt to maintain coherency across multiple
processors. In a multiprocessor system, software is responsible for ensuring the
consistency of TB entries for processes that might be rescheduled on different
processors.
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PROGRAMMING NOTE
System software should not assume that the number
of ASNs is a power of two. This allows, for example,
hardware to use N TB tag bits to encode (2**N)-3 ASN
values, one value for ASM=l PTEs, and one for invalid.

There are several possible ways of using ASNs. There
are several complications in a multiprocessor system.
Consider the case where a process that executed on
processor-l is rescheduled on processor-2. If a page
is deleted or its protection is changed, the TB in
processor-l has stale data. One solution would be to
send an interprocessor interrupt to all the processors on
which this process could have run and cause them to
invalidate the changed PTE. This results in significant
overhead in a system with several processors. Another
solution would be to have software invalidate all TB
entries for a process on a new processor before it can
begin execution, if the process executed on another
processor during its previous execution. This ensures
the deletion of possibly stale TB entries on the new
processor. A third solution would assign a new ASN
whenever a process is run on a processor that is not the
same as the last processor on which it ran.

3.9 Memory-Management Faults

On a memory-management fault, the fault code (MMCSR) is passed in al to specify
the type of fault encountered, as shown in Table 3-4.

Table 3-4: Memory-Management Fault Type Codes

Fault MMCSR value

Translation not valid 0

Access violation 1

Fault on read 2

Fault on execute 3

Fault on write 4

• A translation-not-valid fault is taken when a read or write reference is attempted
through an invalid PTE in a first, second, or third-level page table.
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• An access-violation fault is taken on a reference to a segO or seg1 address when
the protection field of the third-level P'I'E that maps the data indicates that the
intended page reference would be illegal in the specified access mode. An access­
violation fault is also taken if the KRE bit is a zero in an invalid first or second
level PTE. An access-violation fault is generated for any access to a kseg address
when the mode is user (PS<mode> EQ 1).

• A fault-on-read (FOR) fault occurs when a read is attempted with P'I'E<FOR>
set.

• A fault-on-execute (FOE) fault occurs when an instruction fetch is attempted
with P'I'E<FOE> set.

• A fault-on-write (FOW) fault occurs when a write is attempted with PTE<FOW>
set.
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Chapter 4

OSF/1 Process Structure (III)

4.1 Process Definition

A process is a single thread of execution. It is the basic entity that can be scheduled
and is executed by the processor. A process consists of an address space and both
software and hardware context. The hardware context of a process is defined by the
the following:

• 30 integer registers (excluding R31 and SP)

• 31 floating-point registers (excluding F31)

• The program counter (PC)

• The two per-process stack pointers (USP/KSP)

• The processor status (PS)

• The address space number (ASN)

• The process cycle counter (PCC)

• The page table base register (PTBR)

• The process unique value (unique)

This information must be loaded if a process is to execute.

While a process is executing, some of its hardware context is being updated in the
internal registers. When a process is not being executed, its hardware context is
stored in memory in a software structure termed the process control block (PCB).
Saving the process context in the PCB and loading new values from another PCB for
a new context is termed context switching. Context switching occurs as one process
after another is scheduled for execution.

4.2 Process Control Block (PCB)

As shown in Figure 4-1, the PCB holds the state of a process.

The contents of the PCB are loaded and saved by the swpctx instruction. The PCB
must be quadword aligned and should be 64 byte aligned for best performance.
Kernel mode code can read the PTBR, the ASN, and the FEN for the current process
from the PCB. Kernel mode code must use the rdusp/wrusp instructions to access
the USP. The PCC must be read with the rpcc instruction. The unique value can be
accessed with the rdunique and wrunique instructions.
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Figure 4-1: Process Control Block (PCB)
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Chapter 5

OSF/1 Exceptions and Interrupts (III)

5.1 Introduction

At certain times during the operation of a system, events within the system require
the execution of software outside the explicit flow of control. When such an event
occurs, an Alpha processor forces a change in control flow from that indicated by the
current instruction stream. The notification process for such an event is either an
exception or an interrupt.

5.1.1 Exceptions

Exceptions are relevant primarily to the currently executing process. Exception
service routines execute in response to exception conditions caused by software. All
exception service routines execute in kernel mode on the kernel stack. Exception
conditions consist of faults, arithmetic traps, and synchronous traps:

• A fault occurs during an instruction and leaves the registers and memory in
a consistent state such that elimination of the fault condition and subsequent
reexecution of the instruction gives correct results. Faults are not guaranteed to
leave the machine in exactly the same state it was in immediately prior to the
fault, but rather in a state such that the instruction can be correctly executed if
the fault condition is removed. The PC saved in the exception stack frame is the
address of the faulting instruction. An rti instruction to that PC reexecutes the
faulting instruction.

• An arithmetic trap occurs at the completion of the operation that caused the
exception. Since several instructions may be in various stages of execution at any
point in time, it is possible for multiple arithmetic traps to occur simultaneously.

The PC that is saved in the exception frame on traps is that of the next
instruction that would have been issued if the trapping conditions had not
occurred. However, that PC is not necessarily the address of the instruction
immediately following the instructions that encountered the trap condition.
Further, intervening instructions may have changed operands or other state used
by the instructions encountering the trap conditions.

An rti instruction to that PC does not reexecute the trapping instructions, nor
does it reexecute any intervening instructions; it simply continues execution from
the point at which the trap was taken.

In general, it is difficult to fix up results and continue program execution at the
point of an arithmetic trap. Software can force a trap to be continued more easily
without the need for complicated fixup code. This is accomplished by following a
set of code generation restrictions in the code that could cause arithmetic traps
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which are to be completed by a software trap handler (see Common Architecture,
Chapter 4), including specifying the /S software completion modifier in each such
instruction.

The AND of all the software completion modifiers for trapping instructions is
provided to the arithmetic trap handler in the exception summary SWC bit. If
the SWC is set, a trap handler may find the trigger instruction by scanning
backward from the trap PC until each register in the register write mask has
been an instruction destination. The trigger instruction is the first instruction in
the I-stream order to get a trap within a trap shadow. (See Common Architecture,
Chapter 4 for a definition of trap shadow.) If the SWC bit is clear, no fixup is
possible.

• A synchronous trap occurs at the completion of the operation that caused the
exception. No instructions can be issued between the completion of the operation
that caused the exception and the trap.

5.1.2 Interrupts
The processor arbitrates interrupt requests. When the interrupt priority level (IPL)
of an outstanding interrupt is greater than the current IPL, the processor raises IPL
to the level of the interrupt and dispatches to entInt, the interrupt entry to the OS.
Interrupts are serviced in kernel mode on the kernel stack. Interrupts can come
from one of four sources: I/O devices, the clock, performance counters, or machine
checks.

5.2 Processor Status

The processor status (PS) is a four-bit register that contains the current mode
(PS<mode» in bit <3> and a three-bit interrupt priority level (PS<IPL» in bits
<2..0>. The PS<mode> bit is zero for kernel mode and one for user mode. The
PS<IPL> bits are always zero if the mode is user and can be 0 to 7 if the mode is
kernel. The PS is changed when an interrupt or exception is initiated and by the
rti, retsys, and swpipl instructions.

The uses of the PS values are shown in Table 5-1.

Table 5-1 : Processor Status Summary

PS<mode> PS<IPL> Mode Use

1 0 User User software

0 0 Kernel System software

0 1 Kernel System software

0 2 Kernel System software

0 3 Kernel Low priority device interrupts

0 4 Kernel High priority device interrupts
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Table 5-1 (Cont.): Processor Status Summary

PS<mode> PS<IPL> Mode Use

o
o
o

5

6

7

Kernel

Kernel

Kernel

Clock, and interprocessor interrupts

Real time devices

Machine checks

5.3 Stack Frames

There are two types of system entries-those for the callsys instruction and those for
exceptions and interrupts. Both types use the same stack frame layout, as shown in
Figure 5-1. The stack frame contains space for the PC, the PS, the saved GP, and
the saved registers aO, aI, a2. On entry, the SP points to the saved PS.

The callsys entry saves the PC, the PS, and the GP. The exception and interrupt
entries save the PC, the PS, the GP, and also save the registers aO..a2.

Figure 5-1: Stack Frame Layout
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5.4 System Entry Addresses

All system entries are in kernel mode. The interrupt priority PS bits (PS<IPL» are
set as shown in the following table. The system entry point address is set by the
CALL_PAL wrent instruction, as described in Section 2.2.10.

Table 5-2: Entry Point Address Registers

•
Entry Point Value in aO Value in al Value in a2 PS<IPL>

entArith Exception Register mask UNPREDICT- Unchanged
summary ABLE

entIF Fault Type code UNPREDICT- UNPREDICT- Unchanged
ABLE ABLE
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Table 5-2 (Cont.): Entry Point Address Registers
Entry Point Value in aO Value in al Value in a2 PS<IPL>

entInt Interrupt type Vector UNPREDICT- Priority of interrupt
ABLE

entM:M: VA MMCSR Cause Unchanged

entSys pO p1 p2 Unchanged

entUna VA Opcode SrclDst Unchanged

5.4.1 System Entry Arithmetic Trap (entArith)
The arithmetic trap entry, entArith, is called when an arithmetic trap occurs. On
entry, aO contains the exception summary register and a1 contains the exception
register write mask. Section 5.4.1.1 describes the exception summary register and
Section 5.4.1.2 describes the register write mask.

5.4.1.1 Exception Summary Register

The exception summary register, shown in Figure 5-2 and described in Table 5-3,
records the various types of arithmetic exceptions that can occur together. Those
types of exceptions are listed and described in Table 5-3.

Figure 5-2: Exception Summary Register
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Table 5-3: Exception Summary Register Bit Definitions
Bit Description

o Software completion (SWC)

Is set when all of the other arithmetic exception bits were set by floating-operate
instructions with the /S software completion trap modifier set. See Common
Architecture, Chapter 4 for rules about setting the /S modifier in code that may cause
an arithmetic trap, and Section 5.1.1 for rules about using the SWC bit in a trap
handler.
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Table 5-3 (Cont.): Exception Summary Register Bit Definitions
Bit Description

1 Invalid operation (INV)

An attempt was made to perform a floating arithmetic, conversion, or comparison
operation, and one or more of the operand values were illegal.

An INV trap is reported for most floating-point operate instructions with an input
operand that is an IEEE NaN, IEEE infinity, or IEEE denormal.

Floating invalid operation traps are always enabled. If this trap occurs, the result
register is written with an UNPREDICTABLE value.

2 Division by zero (DZE)

An attempt was made to perform a floating divide operation with a divisor of zero.

A DZE trap is reported when a finite number is divided by zero. Floating divide by
zero traps are always enabled. If this trap occurs, the result register is written with
an UNPREDICTABLE value.

3 Overflow (OVF)

A floating arithmetic or conversion operation overflowed the destination exponent.

An OVF trap is reported when the destination's largest finite number is exceeded in
magnitude by the rounded true result. Floating overflow traps are always enabled. If
this trap occurs, the result register is written with an UNPREDICTABLE value.

4 Underflow (UNF)

A floating arithmetic or conversion operation underflowed the destination exponent.

An UNF trap is reported when the destination's smallest finite number exceeds in
magnitude the non-zero rounded true result. Floating underflow trap enable can be
specified in each floating-point operate instruction. If underflow occurs, the result
register is written with a true zero.

5 Inexact result (INE)

A floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.

An INE trap is reported ifthe rounded result ofan IEEE operation is not exact. Inexact
result trap enable can be specified in each IEEE floating-point operate instruction. The
rounded result value is stored in all cases.

Integer overflow (IOV)

An integer arithmetic operation or a conversion from floating to integer overflowed the
destination precision.

An IOV trap is reported for any integer operation whose true result exceeds the
destination register size. Integer overflow trap enable can be specified in each
arithmetic integer operate instruction and each floating-point convert-to-integer
instruction. If integer overflow occurs, the result register is written with the truncated
true result.
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5.4.1.2 Exception Register Write Mask

The exception register write mask parameter records all registers that were targets
of instructions that set the bits in the exception summary register. There is a one­
to-one correspondence between bits in the register write mask quadword and the
register numbers. The quadword records, starting at bit 0 and proceeding right
to left, which of the registers rO through r31, then fO through £31, received an
exceptional result.

NOTE
For a sequence such as:

ADDF Fl,F2,F3
MULF F4,F5,F3

if the add overflows and the multiply does not, the OVF
bit is set in the exception summary, and the F3 bit is
set in the register mask, even though the overflowed
sum in F3 can be overwritten with an in-range product
by the time the trap is taken. (This code violates the
destination reuse rule for software completion. See
Common Architecture, Chapter 4 for the destination
reuse rules.)

The PC value saved in the exception stack frame is the virtual address of the next
instruction. This is defined as the virtual address of the first instruction not executed
after the trap condition was recognized.

5.4.2 System Entry Instruction Fault (entIF)
The instruction fault entry is called for bpt, bugchk, gentrap, opDec, and for a FEN
fault (floating-point instruction when the floating-point unit is disabled, FEN EQ 0).
On entry, aO contains a 0 for a bpt, a 1 for bugchk, a 2 for gentrap, a 3 for FEN fault,
and a 4 for opDec. No additional data is passed in al ..a2. The saved PC at (SP+OO)
is the address of the instruction that caused the fault for FEN faults. The saved
PC at (SP+OO) is the address of the instruction after the instruction that caused the
fault bpt, bugchk, gentrap, and opDec faults.

5.4.3 System Entry Hardware Interrupts (entlnt)

The interrupt entry is called to service a hardware interrupt, or a machine check.
Table 5-4 shows what is passed in aO..a2 and the PS<IPL> setting for various
interrupts.
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Table 5-4: System Entry Hardware Interrupts

Entry Type Value in aO Value in al Value in a2 PS<IPL>

Interprocessor 0 UNPREDICT- UNPREDICT- 5
interrupt ABLE ABLE

Clock 1 UNPREDICT- UNPREDICT- 5
ABLE ABLE

Machine check 2 Interrupt Pointer to 7
vector Logout Area

I/O device 3 Interrupt UNPREDICT- Level of device
interrupt vector ABLE

Performance 4 Interrupt UNPREDICT- 6
counter vector ABLE

On entry to the hardware interrupt routine, the IPL has been set to the level of the
interrupt. For hardware interrupts, register a1 contains a platform-specific interrupt
vector. That platform-specific interrupt vector is typically the same value as the SCB
offset value that would be returned if the platform was running OpenVMS PALcode.

For a machine check, a2 contains kseg address of the logout area. The first 4
longwords of the logout area are implementation-independent. The rest of the logout
area is system specific. The first longword of the logout area is a machine check in
progress flag. If the flag is non zero when a machine check is being initiated, a
double machine check halt is initiated instead. The machine check handler needs to
clear the machine check in progress flag when it can handle a new machine check.
Figure 5-3 describes the logout area.

Figure 5-3: Logout Area

32

5.4.4 System Entry MM Fault (entMM)

The memory-management fault entry is called when a memory management
exception occurs. On entry, aO contains the faulting virtual address and a1 contains
the MMCSR (See Section 3.9). On entry, a2 is set to a minus one (-1) for an

Machine Check in Progress Flag

Logout Area Size in Quadwords Including Header

Machine Type

Logout Area Version

An Implementation-Dependent Number of
Quadwords of Additional State

:00

:04

:08

:12

:16

•
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instruction fetch fault, to a plus one (+1) for a fault caused by a store instruction,
or to a 0 for a fault caused by a load instruction.

5.4.5 System Entry Call System (entSys)

The system call entry is called when a callsys instruction is executed in user mode.
On entry, only registers (t8..t11) have been modified. The PC+4 of the callsys
instruction, the user global pointer, and the current PS are saved on the kernel
stack. Additional space for aO..a2 is allocated. After completion of the system service
routine, the kernel code executes a CALL_PAL retsys instruction.

5.4.6 System Entry Unaligned Access (entUna)

The unaligned access entry is called when a load or store access is not aligned. On
entry, aO contains the faulting virtual address, a1 contains the zero extended six-bit
opcode (bits <31 :26» of the faulting instruction, and a2 contains the zero extended
data source or destination register number (bits<25:21> of the faulting instruction)

5.5 PALcode Support

5.5.1 Stack Writeability and Alignment

PALcode only accesses the kernel stack. Any PALcode accesses to the kernel stack
that would produce a memory-management fault will result in a kernel-stack-not­
valid halt. The stack pointer must always point to a quadword-aligned address. If
the kernel stack is not quadword aligned on a PALcode access, a kernel-stack-not­
valid halt is initiated.
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Appendixes

This section contains the following appendixes:

A. Software Considerations

B. IEEE Floating-Point Conformance

C. Instruction Encodings
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Appendix A

Software Considerations

A.1 Hardware-Software Compact

The Alpha architecture, like all RISC architectures, depends on careful attention to
data alignment and instruction scheduling to achieve high performance.

Since there will be various implementations of the Alpha architecture, it is not
obvious how compilers can generate high-performance code for all implementations.
This chapter gives some scheduling guidelines that, if followed by all compilers and
respected by all implementations, will result in good performance. As such, this
section represents a good-faith compact between hardware designers and software
writers. It represents a set of common goals, not a set of architectural requirements.
Thus, an Appendix, not a Chapter.

Many of the performance optimizations discussed below are advantageous only for
frequently executed code. For rarely executed code, they may produce a bigger
program that is not any faster. Some of the branching optimizations also depend on
good prediction of which path from a conditional branch is more frequently executed.
These optimizations are best done by using an execution profile, either an estimate
generated by compiler heuristics, or a real profile of a previous run, such as that
gathered by PC-sampling in PCA.

Each computer architecture has a "natural word size." For the PDP-11, it is 16 bits;
for VAX, 32 bits; and for Alpha, 64 bits. Other architectures also have a natural word
size that varies between 16 and 64 bits. Except for very low-end implementations,
ALU data paths, cache access paths, chip pin buses, and main memory data paths
are all usually the natural word size.

As an architecture becomes commercially successful, high-end implementations
inevitably move to double-width data paths that can transfer an aligned (at an even
natural word address) pair of natural words in one cycle. For Alpha, this means
eventual 128-bit wide data paths. It is hard to get much speed advantage from paired
transfers unless the code being executed has instructions and data appropriately
aligned on aligned octaword boundaries. Since this is hard to retrofit to old code,
the following sections sometimes encourage "over-aligning" to octaword boundaries
in anticipation of high-speed Alpha implementations.

In some cases, there are performance advantages in aligning instructions or data
to cache-block boundaries, or putting data whose use is correlated into the same
cache block, or trying to avoid cache conflicts by not having data whose use is
correlated placed at addresses that are equal modulo the cache size. Since the
Alpha architecture will have many implementations, an exact cache design cannot
be outlined here. Nonetheless, some expected bounds can be stated.
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1. Small (first-level) cache sizes will likely be in the range 2 KB to 64 KB

2. Small cache block sizes will likely be 16, 32, 64, or 128 bytes

3. Large (second- or third-level) cache sizes will likely be in the range 128 KB to
8MB

4. Large cache block sizes will likely be 32,64, 128, or 256 bytes

5. TB sizes will likely be in the range 16 to 1024 entries

Thus, if two data items need to go in different cache blocks, it is desirable to
make them at least 128 bytes apart (modulo 2 KB). Doing that creates a high
probability of allowing both items to be in a small cache simultaneously, for all
Alpha implementations.

In each case below, the performance implication is given by an order-of-magnitude
number: 1, 3, 10, 30, or 100. A factor of 10 means that the performance difference
being discussed will likely range from 3 to 30 across all Alpha implementations.

A.2 Instruction-Stream Considerations

The following sections describe considerations for the instruction stream.

A.2.1 Instruction Alignment
Code PSECTs should be octaword-aligned. Targets of frequently taken branches
should be at least quadword-aligned, and octaword-aligned for very frequent loops.
Compilers could use execution profiles to identify frequently taken branches.

Most Alpha implementations will fetch aligned quadwords of instruction stream (two
instructions), and many will waste an instruction-issue cycle on a branch to an odd
longword. High-end implementations may eventually fetch aligned octawords, and
waste up to 3 issue cycles on a branch to an odd longword. Some implementations
may only be able to fetch wide chunks of instructions every other CPU cycle.
Fetching four instructions from an aligned octaword can get at most one cache miss,
while fetching them from an odd longword address can get 2 or even 3 cache misses.

Quadword I-fetch implementors should give first priority to executing aligned
quadwords quickly. Octaword-fetch implementors should give first priority to
executing aligned octawords quickly, and second priority to executing aligned
quadwords quickly. Dual-issue implementations should give first priority to issuing
both halves of an aligned quadword in one cycle, and second priority to buffering
and issuing other combinations.

A.2.2 Multiple Instruction Issue - Factor of 3
Some Alpha implementations will issue multiple instructions in a single cycle. To
improve the odds of multiple-issue, compilers should choose pairs of instructions to
put in aligned quadwords. Pick one from column A and one from column B (but only
a total of one load/store/branch per pair).
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ColumnA

Integer Operate

Floating Load/Store

Floating Branch

ColumnB

Floating Operate

Integer Load/Store

Integer Branch

BRlBSRlJSR

Implementors of multiple-issue machines should give first priority to dual-issuing at
least the above pairs, and second priority to multiple-issue of other combinations.

In general, the above rules will give a good hardware-software match, but compilers
may want to implement model-specific switches to generate code tuned more exactly
to a specific implementation.

A.2.3 Branch Prediction and Minimizing Branch-Taken - Factor of 3

In many Alpha implementations, an unexpected change in I-stream address will
result in about 10 lost instruction times. "Unexpected" may mean any branch-taken
or may mean a mispredicted branch. In many implementations, even a correctly
predicted branch to a quadword target address will be slower than straight-line
code.

Compilers should follow these rules to minimize unexpected branches:

1. Implementations will predict all forward conditional branches as not-taken,
and all backward conditional branches as taken. Based on execution profiles,
compilers should physically rearrange code so that it has matching behavior.

2. Make basic blocks as big as possible. A good goal is 20 instructions on average
between branch-taken. This means unrolling loops so that they contain at least
20 instructions, and putting subroutines of less than 20 instructions directly in
line. It also means using execution profiles to rearrange code so that the frequent
case of a conditional branch falls through. For very high-performance loops, it
will be profitable to move instructions across conditional branches to fill otherwise
wasted instruction issue slots, even if the instructions moved will not always do
useful work. Note that the Conditional Move instructions can sometimes be used
to avoid breaking up basic blocks.

3. In an if-then-else construct whose execution profile is skewed even slightly away
from 50%-50% (51-49 is enough), put the infrequent case completely out of line,
so that the frequent case encounters zero branch-takens, and the infrequent case
encounters two branch-takens. If the infrequent case is rare (5%), put it far
enough away that it never comes into the I-cache. If the infrequent case is
extremely rare (error message code), put it on a page of rarely executed code and
expect that page never to be paged in.
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4. There are two functionally identical branch-format opcodes, BSR and BR.

31 2625 2120

BSR Ra Displacement

BA Ra Displacement

Branch Format

Branch Format

Compilers should use the first one for subroutine calls, and the second for GaTOs.
Some implementations may push a stack of predicted return addresses for BSR
and not push the stack for BR. Failure to compile the correct opcode will result
in mispredicted return addresses, and hence make subroutine returns slow.

5. The memory-format JSR instruction has 16 unused bits. These should be used
by the compilers to communicate a hint about expected branch-target behavior
(see Common Architecture, Chapter 4):

Memory FormatRbRaJSR

31 1615
r---~---r----

If the JSR is used for a computed GOTO or a CASE statement, compile bits
<15:14> as 00, and bits <13:0> such that (updated PC+Instr<13:0>*4) <15:0>
equals (likely_target_addr) <15:0>. In other words, pick the low 14 bits so that
a normal PC+displacement*4 calculation will match the low 16 bits of the most
likely target longword address. (Implementations will likely prefetch from the
matching cache block.)

If the JSR is used for a computed subroutine call, compile bits <15:14> as 01,
and bits <13:0> as above. Some implementations will prefetch the call target
using the prediction and also push updated PC on a return-prediction stack.

If the JSR is used as a subroutine return, compile bits <15:14> as 10. Some
implementations will pop an address off a return-prediction stack.

If the JSR is used as a coroutine linkage, compile bits <15:14> as 11. Some
implementations will pop an address off a return-prediction stack and also push
updated PC on the return-prediction stack.

Implementors should give first priority to executing straight-line code with no
branch-takens as quickly as possible, second priority to predicting conditional
branches based on the sign of the displacement field (backward taken, forward not­
taken), and third priority to predicting subroutine return addresses by running a
small prediction stack. (VAX traces show a stack of 2 to 4 entries correctly predicts
most branches.)
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A.2.4 Improving I-Stream Density - Factor of 3

Compilers should try to use profiles to make sure almost 100 percent of the bytes
brought into an I-cache are actually executed. This means aligning branch targets
and putting rarely executed code out of line. Doing so would consistently make an
I-cache appear about two times larger, compared to current VAX practice.

The example below shows the bytes actually brought into a VAX cache (from part of
an address trace of a DLINPAC). The dots represent bytes brought into the cache
but never executed. They occupy about half of the cache.

Each line shows the use of an aligned 64-byte I-cache block. A portion of DLINPAC
and a portion of OpenVMS 4.x are shown. Uppercase I is the first byte of an
instruction, and lowercase i marks subsequent bytes. Period (.) shows a byte
brought into the cache but never executed.

I-fetch Byte 0 Byte 63

000268CO •••••••••••••••••••••••• IiiiIiiIiiIiiiiiiiiiIiii ••••••••••••••••
00026900 •••••••••••••••••••••••••••••••••••••••••••••••• IiiiiIiiiiiiiiii
00026940 IiliiIiliiliIiIiIiiiIiIiiIiliiiiiiiIiiIiii••••••••••••••••••••••
00026980 •••••••••••••••••••••••••••••••••••••••• IiiiliiliiIiiIiililiilii
000269CO I •••••••••••••• IiiiiIiiIiiiiIiIiiiiIiiiIIiIiliiliIiiiIiliii •••••
00026AOO ••••••••.••••••••••••••••••• Iiliiiiiiiiiiiiiliiliiiliii•••••••••
00026A40 ••••••••••••••••••••••••••••••••• IiiiiiiiiiIiiiiiiiiIiIiiiliiIii
00026A80 IiIiiiiIiIiliiiIiIiIiIiiiiiiiiIiiIiiiIiii ••••••••••••••••• IiiIii
00026ACO IiiIiii •••••••••••••••••••••••••••••••••••••••••••••••••••••••••

80004440 •••••••••••••••••••••••••••••••••••.••••••••• IiiiIiIiii •••••••••
80004680 •••• IiiiiiIiii ••••••••••••••••••••••••••••••••••••••••••••••••••
80004900 •••••••••••••••• IiiIiiIiiIiiiiliIiiIiiliiliiililiiiiliIiiiliiiiI
80004940 IiiiiliiiIiiIiIiii ••••••••••••• IiiiiIiii ••••••••••••••••••••••.•
80004AOO ••••••••••••••••••••••••••••••••••••••••••••••••• IiiiiiliiIiiiii
80004A40 IiIiiIiiiiliiiIiiiliiiIiii ••••••.••••• IiiiiiIIiiiiiliiiiliiIiiiI
80004A80 IiiiiIiiiliiliiliii •••• IiiIiiIiii •••••••••••••••••••••••••••••••
80004F40 ••••••••••••••••••••••••••••• IiiiiiIiiiiiiIiiiliiiiiiIiii •••••••
80004F80 ••••••••••••••••••••••• IiiiIiiiiiiiIiiliIiiiliiiiiiiiiiiiiiliiiI
80004FCO IIiiiiiliiililiiiliii ••••• liiiiIiliii •••••••••••••••••••••••••••
80008A40 •••••••••••••••••••••••••••••••••••••••••••••••••••••••• Iiiiliii
80008A80 IIiiliiiIiililiiiIiIiliiiIiIiiIiiiiiliiliiliiliiiiiiiIiliiiliii.

A.2.5 Instruction Scheduling - Factor of 3

The performance of Alpha programs will be sensitive to how carefully the code is
scheduled to minimize instruction-issue delays.

"Result latency" is defined as the number of CPU cycles that must elapse between an
instruction that writes a result register and one that uses that register, if execution­
time stalls are to be avoided. Thus, a latency of zero means that the instruction
writes a result register and the instruction that uses that register can be multiple­
issued in the same cycle. A latency of 2 means that if the writing instruction is issued
at cycle N, the reading instruction can issue no earlier than cycle N+2. Latency is
implementation-specific.

Most Alpha instructions have a non-zero result latency. Compilers should schedule
code so that a result is not used too soon, at least in frequently executed code (inner
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loops, as identified by execution profiles). In general, this will require loop unrolling
and short procedure inlining.

"Too soon" is currently ill-defined, since no implementations have been designed yet.
For starters, assume that implementations can dual-issue instructions. Assume
that Load and JSR instructions have a latency of 3, shifts and byte manipulation a
latency of2, integer multiply a latency of 10, and other integer operates a latency of
1. Assume floating multiply has a latency of 5, floating divide a latency of 10, and
other floating operates a latency of 4. Scheduling to these latencies will give at least
reasonable performance on currently anticipated implementations.

Compilers should try to schedule code to match the above latency rules and also to
match the multiple-issue rules. If doing both is impractical for a particular sequence
of code, the latency rules are more important (since they apply even in single-issue
implementations).

Implementors should give first priority to minimizing the latency of back-to-back
integer operations, of address calculations immediately followed by load/store, of load
immediately followed by branch, and of compare immediately followed by branch.
Second priority should be given to minimizing latencies in general.

A.3 Data-Stream Considerations
The following sections describe considerations for the data stream.

A.3.1 Data Alignment - Factor of 10

Data PSECTs should be at least octaword-aligned, so that aggregates (arrays, some
records, subroutine stack frames) can be allocated on aligned octaword boundaries
to take advantage of any implementations with aligned octaword data paths, and to
decrease the number of cache fills in almost all implementations.

Aggregates (arrays, records, common blocks, and so forth) should be allocated on
at least aligned octaword boundaries whenever language rules allow this. In some
implementations, a series of writes that completely fill a cache block may be a factor
of 10 faster than a series of writes that partially fill a cache block, when that cache
block would give a read miss. This is true of writeback caches that read a partially
filled cache block from memory, but optimize away the read for completely filled
blocks.

For such implementations, long strings of sequential writes will be faster if they
start on a cache-block boundary (a multiple of 128 bytes will do well for most, if not
all, Alpha implementations). This applies to array results that sweep through large
portions of memory, and also to register-save areas for context switching, graphics
frame buffer accesses, and other places where exactly 8, 16, 32, or more quadwords
are stored sequentially. Allocating the targets at multiples of 8, 16, 32, or more
quadwords, respectively, and doing the writes in order of increasing address will
maximize the write speed.

Items within aggregates that are forced to be unaligned (records, common blocks)
should generate compile-time warning messages and inline byte extract/insert code.
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Users must be educated that the warning message means that they are taking a
factor of 30 performance hit.

Compilers should consider supplying a switch that allows the compiler to pad
aggregates to avoid unaligned data.

Compiled code for parameters should assume that the parameters are aligned.
Unaligned actuals will therefore cause runtime alignment traps and very slow
fixups. The fixup routine, if invoked, should generate warning messages to the
user, preferably giving the first few statement numbers that are doing unaligned
parameter access, and at the end of a run the total number of alignment traps (and
perhaps an estimate of the performance improvement if the data were aligned).
Again, users must be educated that the trap routine warning message means they
are taking a factor of 30 performance hit.

Frequently used scalars should reside in registers. Each scalar datum allocated
in memory should normally be allocated an aligned quadword to itself, even if the
datum is only a byte wide. This allows aligned quadword loads and stores and avoids
partial-quadword writes (which may be half as fast as full-quadword writes, due to
such factors as read-modify-write a quadword to do quadword ECC calculation).

Implementors should give first priority to fast reads of aligned octawords and second
priority to fast writes of full cache blocks. Partial-quadword writes need not have a
fast repetition rate.

A.3.2 Shared Data in Multiple Processors - Factor of 3
Software locks are aligned quadwords and should be allocated to large cache blocks
that either contain no other data, or read-mostly data whose usage is correlated with
the lock.

Whenever there is high contention for a lock, one processor will have the lock and
be using the guarded data, while other processors will be in a read-only spin loop on
the lock bit. Under these circumstances, any write to the cache block containing the
lock will likely cause excess bus traffic and cache fills, thus having a performance
impact on all processors that are involved, and the buses between them. In some
decomposed FORTRAN programs, refills of the cache blocks containing one or two
frequently used locks can account for a third of all the bus bandwidth the program
consumes.

Whenever there is almost no contention for a lock, one processor will have the lock
and be using the guarded data. Under these circumstances, it might be desirable to
keep the guarded data in the same cache block as the lock.

For the high sharing case, compilers should assume that almost all accesses to
shared data result in cache misses all the way back to main memory, for each distinct
cache block used. Such accesses will likely be a factor of 30 slower than cache hits.
It is helpful to pack correlated shared data into a small number of cache blocks. It is
helpful also to segregate blocks written by one processor from blocks read by others.

Therefore, accesses to shared data, including locks, should be minimized. For
example, a 4-processor decomposition of some manipulation of a 1000-row array
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should avoid accessing lock variables every row, but instead might access a lock
variable every 250 rows.

Array manipulation should be partitioned across processors so that cache blocks do
not thrash between processors. Having each of 4 processors work on every fourth
array element severely impairs performance on any implementation with a cache
block of 4 elements or larger. The processors all contend for copies of the same cache
blocks and use only 1/4 of the data in each block. Writes in one processor severely
impair cache performance on all processors.

A better decomposition is to give each processor the largest possible contiguous
chunk of data to work on (N/4 consecutive rows for 4 processors and row-major
array storage; N/4 columns for column-major storage). With the possible exception
of 3 cache blocks at the partition boundaries, this decomposition will result in each
processor caching data that is touched by no other processor.

Operating-system scheduling algorithms should attempt to minimize process
migration from one processor to another. Any time migration occurs, there are likely
to be a large number of cache misses on the new processor.

Similarly, operating-system scheduling algorithms should attempt to enforce some
affinity between a given device's interrupts and the processor on which the interrupt­
handler runs. I/O control data structures and locks for different devices should be
disjoint. Doing both of these allows higher cache hit rates on the corresponding I/O
control data structures.

Implementors should give first priority to an efficient (low-bandwidth) way of
transferring isolated lock values and other isolated, shared write data between
processors.

Implementors should assume that the amount of shared data will continue to
increase, so over time the need for efficient sharing implementations will also
increase.

A.3.3 Avoiding CachelTB Conflicts - Factor of 1

Occasionally, programs that run with a direct-mapped cache or TB will thrash,
taking excessive cache or TB misses. With some work, thrashing can be minimized
at compile time.

In a frequently executed loop, compilers could allocate the data items accessed from
memory so that, on each loop iteration, all of the memory addresses accessed are
either in exactly the same aligned 64-byte block, or differ in bits VA<10:6>. For loops
that go through arrays in a common direction with a common stride, this means
allocating the arrays, checking that the first-iteration addresses differ, and if not,
inserting up to 64 bytes of padding between the arrays. This rule will avoid thrashing
in small direct-mapped data caches with block sizes up to 64 bytes and total sizes
of 2K bytes or more.
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Example:

REAL*4 A(lOOO),B(lOOO)
DO 60 i=l,lOOO

60 A(i) = f(B(i»

BAD allocation (A and B thrash in 8 KB direct-mapped cache):

o

A

4K

B

8K 12K 16K

BETTER allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of
B can be in cache simultaneously):

o

A

4K

B

8K+64 12K 16K

BEST allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of B
can be in cache simultaneously, and both arrays fit entirely in 8 KB or bigger cache):

o

A ~ B

4K-64 8K 12K 16K

In a frequently executed loop, compilers could allocate the data items accessed from
memory so that, on each loop iteration, all of the memory addresses accessed are
either in exactly the same 8 KB page, or differ in bits VA<17:13>. For loops that go
through arrays in a common direction with a common stride, this means allocating
the arrays, checking that the first-iteration addresses differ, and if not, inserting
up to BK bytes of padding between the arrays. This rule will avoid thrashing in
direct-mapped TBs and in some large direct-mapped data caches, with total sizes of
32 pages (256 KB) or more.

Usually, this padding will mean zero extra bytes in the executable image, just a skip
in virtual address space to the next-higher page boundary.

For large caches, the rule above should be applied to the I-stream, in addition to
all the D-stream references. Some implementations will have combined I-stream
/D-stream large caches.

Both of the rules above can be satisfied simultaneously, thus often eliminating
thrashing in all anticipated direct-mapped cachetrB implementations.
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A.3.4 Sequential ReadlWrite - Factor of 1

All other things being equal, sequences of consecutive reads or writes should use
ascending (rather than descending) memory addresses. Where possible, the memory
address for a block of 2**Kbytes should be on a 2**K boundary, since this minimizes
the number of different cache blocks used and minimizes the number of partially
written cache blocks.

To avoid overrunning memory bandwidth, sequences of more than eight quadword
Loads or Stores should be broken up with intervening instructions (if there is any
useful work to be done).

For consecutive reads, implementors should give first priority to prefetching
ascending cache blocks, and second priority to absorbing up to eight consecutive
quadword Loads (aligned on a 64-byte boundary) without stalling.

For consecutive writes, implementors should give first priority to avoiding read
overhead for fully written aligned cache blocks, and second priority to absorbing
up to eight consecutive quadword Stores (aligned on a 64-byte boundary) without
stalling.

A.3.5 Prefetching - Factor of 3

To use FETCH and FETCH_M effectively, software should follow this programming
model:

1. Assume that at most two FETCH instructions can be outstanding at once,
and that there are two prefetch address registers, PREa and PREb, to hold
prefetching state. FETCH instructions alternate between loading PREa and
PREb. Each FETCH instruction overwrites any previous prefetching state, thus
terminating any previous prefetch that is still in progress in the register that is
loaded. The order of fetching within a block and the order between PREa and
PREb are UNPREDICTABLE.

IMPLEMENTATION NOTE
Implementations are encouraged to alternate at
convenient intervals between PREa and PREb.

2. Assume, for maximum efficiency, that there should be about 64 unrelated memory
access instructions (load or store) between a FETCH and the first actual data
access to the prefetched data.

3. Assume, for instruction-scheduling purposes in a multilevel cache hierarchy, that
FETCH does not prefetch data to the innermost cache level, but rather one level
out. Schedule loads to bury the last level of misses.

4. Assume that FETCH is worthwhile if, on average, at least half the data in a
block will be accessed. Assume that FETCH_M is worthwhile if, on average, at
least half the data in a block will be modified.

5. Treat FETCH as a vector load. If a piece of code could usefully prefetch 4
operands, launch the first two prefetches, do about 128 memory references
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worth of work, then launch the next two prefetches, do about 128 more memory
references worth of work, then start using the 4 sets of prefetched data.

6. Treat FETCH as having the same effect on a cache as a series of 64 quadword
loads. If the loads would displace useful data, so will FETCH. If two sets of loads
from specific addresses will thrash in a direct-mapped cache, so will two FETCH
instructions using the same pair of addresses.

IMPLEMENTATION NOTE
Hardware implementations are 'expected to provide
either no support for FETCHx or support that closely
matches this model.

A.4 Code Sequences

The following section describes code sequences.

A.4.1 Aligned Byte/Word Memory Accesses
The instruction sequences given in Common Architecture, Chapter 4 for byte and
word accesses are worst-case code. In the common case of accessing a byte or aligned
word field at a known offset from a pointer that is expected to be at least longword
aligned, the common-case code is much shorter.

"Expected" means that the code should run fast for a longword-aligned pointer and
trap for unaligned. The trap handler may at its option fix up the unaligned reference.

For access at a known offset D from a longword-aligned pointer Rx, let D.lw be D
rounded down to a multiple of 4 «D div 4)*4), and let D.mod be D mod 4.

In the common case, the intended sequence for loading and zero-extending an aligned
word is:

LDL Rl,D.lw(Rx)
EXTWL Rl,#D.mod,Rl

! Traps if unaligned
! Picks up word at byte 0 or byte 2

In the common case, the intended sequence for loading and sign-extending an aligned
word is:

LDL
SLL
SRA

Rl,D.lw(Rx)
Rl,#48-8*D.mod,Rl
Rl,#48,Rl

Traps if unaligned
Aligns word at high end of Rl
SEXT to low end of Rl

NOTE
The shifts often can be combined with shifts that
might surround subsequent arithmetic operations (for
example, to produce word overflow from the high end of
a register).

In the common case, the intended sequence for loading and zero-extending a byte is:

LDL Rl,D.lw(Rx)
EXTBL Rl,#D.mod,Rl
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In the common case, the intended sequence for loading and sign-extending a byte is:

LDL Rl,D.lw(Rx) 1
SLL Rl,#S6-8*D.mod,Rl 1
SRA Rl,#S6,Rl 1

In the common case, the intended sequence for storing an aligned word R5 is:

LDL Rl,D.lw(Rx) 1
INSWL RS,#D.mod,R3
MSKWL Rl,#D.mod,Rl
BIS R3,Rl,Rl
STL Rl,D.lw(Rx)

In the common case, the intended sequence for storing a byte R5 is:

LDL
INSBL
MSKBL
BIS
STL

Rl,D.lw(Rx)
RS,#D.mod,R3
Rl,#D.mod,Rl
R3,Rl,Rl
Rl,D.lw(Rx)

A.4.2 Division
In all implementations, floating-point division is likely to have a substantially longer
result latency than floating-point multiply; in addition, in many implementations
multiplies will be pipelined and divides will not.

Thus, any division by a constant power of two should be compiled as a multiply
by the exact reciprocal, if it is representable without overflow or underflow. If
language rules or surrounding context allow, other divisions by constants can be
closely approximated via multiplication by the reciprocal.

Integer division does not exist as a hardware opcode. Division by a constant can
always be done via UMULH of another appropriate constant, followed by a right
shift. General quadword division by true variables can be done via a subroutine.
The subroutine could test for small divisors (less than about 1000 in absolute value)
and for those, do a table lookup on the exact constant and shift count for an UMULH
Ishift sequence. For the remaining cases, a table lookup on about a 1000-entry
table and a multiply can give a linear approximation to 1/divisor that is accurate to
16 bits. Using this approximation, a multiply and a back-multiply and a subtract
can generate one 16-bit quotient "digit" plus a 48-bit new partial dividend. Three
more such steps can generate the full quotient. Having prior knowledge of the
possible sizes of the divisor and dividend, normalizing away leading bytes of zeros,
and performing an early-out test can reduce the average number of multiplies to
about 5 (compared to a best case of 1 and a worst case of 9).

A.4.3 Stylized Code Forms
Using the same stylized code form for a common operation makes compiler output
a little more readable and makes it more likely that an implementation will speed
up the stylized form.
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A.4.3.1 NOP

The standard NOP forms are:

NOP
FNOP

BIS
CPYS

R31,R31,R31
F31,F31,F31

These generate no exceptions. In most implementations, they should encounter no
operand issue delays, no destination issue delay, and no functional unit issue delay.
Implementations are free to optimize these into no action and zero execution cycles.

A.4.3.2 Clear a Register

The standard clear register forms are:

CLR
FCLR

BIS
CPYS

R31,R31,Rx
F31,F31,Fx

These generate no exceptions. In most implementations, they should encounter no
operand issue delays, and no functional unit issue delay.

A.4.3.3 Load Literal

The standard load integer literal (ZEXT 8-bit) form is:

MOV ilit8,Ry BIS R31, lit8, Ry

The Alpha literal construct in Operate instructions creates a canonical longword
constant for values 0..255.

A longword constant stored in an Alpha 64-bit register is in canonical form when
bits <63:32>=bit <31>.

A canonical 32-bit literal can usually be generated with one or two instructions, but
sometimes three instructions are needed. Use the following procedure to determine
the offset fields of the instructions:

val <sign-extended, 32-bit value>

low val<15:0>
tmp1 val - SEXT(low) Account for LOA instruction

high tmp1<31:16>
tmp2 tmp1 - SHIFT_LEFT ( SEXT(high,16) )

if tmp2 NE 0 then
! original val was in range 7FFF800016 .. 7FFFFFFF16

extra = 400016
tmp1 tmp1 - 4000000016
high = tmp1<31:16>

else
extra = 0

endif

The general sequence is:

LOA Rdst, low(R31)
LOAH Rdst, extra(Rdst)
LOAH Rdst, high(Rdst)

Omit if extra=O
Omit if high=O
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A.4.3.4 Register-to-Register Move

The standard register move forms are:

MOV RX,RY == BlS RX,RX,RY
FMOV FX,FY == CPYS FX,FX,FY

These generate no exceptions. In most implementations, these should encounter no
functional unit issue delay.

A.4.3.5 Negate

The standard register negate forms are:

NEGz Rx,Ry
NEGz Fx,Fy
FNEGz Fx,Fy

SUBz
SUBz
CPYSN

R31,Rx,Ry
F31,Fx,Fy
Fx,Fx,Fy

z
z
z

L or Q
F G S or T
F G S or T

The integer subtract generates no Integer Overflow trap if Rx contains the largest
negative number (SUBzN would trap). The floating subtract generates a floating­
point exception for a non-finite value in Fx. The CPYSN form generates no
exceptions.

A.4.3.6 NOT

The standard integer register NOT form is:

NOT Rx,Ry ORNOT R31,Rx,Ry

This generates no exceptions. In most implementations, this should encounter no
functional unit issue delay.

A.4.3.7 Booleans

The standard alternative to BIS is:

OR Rx,Ry,Rz

The standard alternative to BIC is:

ANDNOT Rx,Ry,Rz ==

The standard alternative to EQV is:

XORNOT RX,Ry,Rz ==

BlS

BlC

EQV

Rx,Ry,Rz

Rx,Ry,Rz

Rx,Ry,Rz

A.4.4 Trap Barrier
The TRAPB instruction guarantees that following instructions do not issue until all
possible preceding traps have been signaled. This does not mean that all preceding
instructions have necessarily run to completion (for example, a Load instruction may
have passed all the fault checks but not yet delivered data from a cache miss).

A.4.5 Pseudo-Operations (Stylized Code Forms)
This section summarizes the pseudo-operations for the Alpha architecture that may
be used by various software components in an Alpha system. Most of these forms
are discussed in preceding sections.
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In the context of this section, pseudo-operations all represent a single underlying
machine instruction. Each pseudo-operation represents a particular instruction
with either replicated fields (such as FMOV), or hard-coded zero fields. Since the
pattern is distinct, these pseudo-operations can be decoded by instruction decode
mechanisms.

In Table A-l, the pseudo-operation codes can be viewed as macros with parameters.
The formal form is listed in the left column, and the expansion in the code stream
listed in the right column.

Some instruction mnemonics have synonyms. These are different from pseudo­
operations in that each synonym represents the same underlying instruction with
no special encoding of operand fields. As a result, synonyms cannot be distinquished
from each other. They are not listed in the table that follows. Examples of synonyms
are: BIC/ANDNOT, BIS/OR, and EQVIXORNOT.

Table A-1: Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation in Listing Actual Instruction Encoding

No-exception generic floating absolute
value:
FABS Fx, Fy CPYS

Branch to target (21-bit signed displace­
ment):
BR target BR

Clear integer register:
CLR Rx BIS

Clear a floating-point register:
FCLR Fx CPYS

Floating-point move:
FMOV Fx, Fy CPYS

No-exception generic floating negation:
FNEG Fx, Fy CPYSN

Floating-point no-op:
FNOP CPYS

Move Rx/8-bit zero-extended literal to
Ry:
MOV {RxlLitB}, Ry BIS

Move 16-bit sign-extended literal to
Rx:
MOV Lit, Rx LDA

F31,Fx,Fy

R31, target

R31, R31, Rx

F31,F31,Fx

Fx,Fx,Fy

Fx,Fx,Fy

F31, F31, F31

R31, {RxlLit8}, Ry

Rx, lit(R31)
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Table A-1 (Cont.): Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation in Listing Actual Instruction Encoding

Move to FPCR:
MT_FPCR Fx MT_FPCR Fx, Fx, Fx

Move from FPCR:
MF_FPCR Fx MF_FPCR Fx,Fx,Fx

Negate F_floating:
NEGF Fx,Fy SUBF F31, Fx,Fy

Negate F_floating, semi-precise:
NEGF/S Fx,Fy SUBF/S F31,Fx,Fy

Negate G_floating:
NEGG Fx,Fy SUBG F31, Fx, Fy

Negate G_floating, semi-precise:
NEGG/S Fx,Fy SUBG/S F31,Fx,Fy

Negate longword:
NEGL {RxlLitB}, Ry SUBL R31, {RxlLit}, Ry

Negate longword with overflow detec-
tion:
NEGLN {RxlLit8}, Ry SUBUV R31, {RxlLit}, Ry

Negate quadword:
NEGQ {RxlLit8}, Ry SUBQ R31, {RxlLit}, Ry

Negate quadword with overflow detec-
tion:
NEGQN {RxlLit8}, Ry SUBQN R31, {RxlLit}, Ry

Negate S_floating:
NEGS Fx,Fy SUBS F31,Fx,Fy

Negate S_floating, software with un-
derflow detection:
NEGS/SU Fx,Fy SUBS/SU F31,Fx,Fy

Negate S_floating, software with un-
derflow and inexact result detection:
NEGS/SUI Fx,Fy SUBS/SUI F31,Fx,Fy

Negate T_floating:
NEGT Fx,Fy SUBT F31,Fx,Fy
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Table A-1 (Cont.): Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation in Listing Actual Instruction Encoding

Negate T_floating, software with un­
derflow detection:
NEGT/SU Fx, Fy SUBT/SU F31, Fx, Fy

Negate T_floating, software with un­
derflow and inexact result detection:
NEGT/SUI SUBT/SUI F31, Fx, Fy

Integer no-op:
NOP BIS

Logical NOT of Rx/8-bit zero-extended
literal storing results in Ry:
NOT {RxlLit8}, Ry ORNOT

Longword sign-extension of Rx storing
results in Ry:
SEXTL {RxlLit8}, Ry ADDL

R31, R31, R31

R31, {RxlLit}, Ry

R31, {RxlLit}, Ry

A.5 Timing Considerations: Atomic Sequences

A sufficiently long instruction sequence between LDx_L and STx_C will never
complete, because periodic timer interrupts will always occur before the sequence
completes. The following rules describe sequences that will eventually complete in
all Alpha implementations:

1. At most 40 operate or conditional-branch (not taken) instructions executed in the
sequence between LDx_L and STx_C.

2. At most two I-stream TB-miss faults. Sequential instruction execution
guarantees this.

3. No other exceptions triggered during the last execution of the sequence.

IMPLEMENTATION NOTE
On all expected implementations, this allows for about
50 p'sec of execution time, even with 100 percent cache
misses. This should satisfy any requirement for a 1 msec
timer interrupt rate.
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Appendix B

IEEE Floating-Point Conformance

A subset of IEEE Standard for Binary Floating-Point Arithmetic (754-1985) is
provided in the Alpha floating-point instructions. This appendix describes how to
construct a complete IEEE implementation.

The order of presentation parallels the order of the IEEE specification.

B.1 Alpha Choices for IEEE Options

Alpha supports IEEE single and double formats. Optional extended double is not
supported.

Alpha hardware supports normal and chopped IEEE rounding modes. IEEE plus
infinity and minus infinity rounding modes can be implemented in hardware or
software.

Alpha hardware does not support optional IEEE software trap enable/disable modes;
see the following discussion about software support.

Alpha hardware supports add, subtract, multiply, divide, convert between floating
formats, convert between floating and integer formats, and compare. Software
routines support square root, remainder, round to integer in floating-point format,
and convert binary to/from decimal.

In the Alpha architecture, copying without change of format is not considered an
operation. (LDx, CPYSx, and STx do not check for non-finite numbers; an operation
would.) Compilers may generate ADDx F31,Fx,Fy to get the opposite effect.

Optional operations for differing formats are not provided.

The Alpha choice is that the accuracy provided will meet or exceed IEEE standard
requirements. It is implementation-dependent whether the software binary/decimal
conversions beyond 9 or 17 digits treat any excess digits as zeros.

Overflow and underflow, NaNs, and infinities encountered during software binary to
decimal conversion return strings that specify the conditions. Such strings can be
truncated to their shortest unambiguous length.

Alpha hardware supports comparisons of same-format numbers. Software supports
comparisons of different-format numbers.

In the Alpha architecture, results are true-false in response to a predicate.

Alpha hardware supports the required six predicates and the optional unordered
predicate. The other 19 optional predicates can be constructed from sequences of
two comparisons and two branches.
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Alpha hardware supports infinity arithmetic only by trapping when an infinity
operand is encountered and when an infinity is to be created from finite operands
by overflow or division by zero. A software trap handler (interposed between the
hardware and the IEEE user) provides correct infinity arithmetic.

Alpha hardware supports NaNs only by trapping when a NaN operand is
encountered and when a NaN is to be created. A software trap handler (interposed
between the hardware and the IEEE user) provides correct Signaling and Quiet NaN
behavior.

In the Alpha architecture, Quiet NaNs do not afford retrospective diagnostic
information.

In the Alpha architecture, copying a Signaling NaN without a change of format does
not signal an invalid exception (LDx, CPYSx, and STx do not check for non-finite
numbers). Compilers may generate ADDx F31,Fx,Fy to get the opposite effect.

Alpha hardware fully supports negative zero operands, and follows the IEEE rules
for creating negative zero results.

Alpha hardware does not supply IEEE exception trap behavior; the hardware traps
are a superset of the IEEE-required conditions. A software trap handler (interposed
between the hardware and the IEEE user) provides correct IEEE exception behavior.

In the Alpha architecture, tininess is detected by hardware after rounding, and loss
of accuracy is detected by software as an inexact result.

In the Alpha architecture, user trap handlers will be supported by compilers and
a software trap handler (interposed between the hardware and the IEEE user), as
described in the next section.

B.2 Alpha Hardware Support of Software Exception Handlers

In Alpha instructions, hardware trap behavior is determined only at compile time;
short of recompiling, there are no dynamic facilities for changing hardware trap
behavior.

There is an essential disparity between the Alpha design goal of fast execution and
the IEEE design goal of exact trap behavior. The Alpha hardware architecture
provides means for users to choose various degrees of IEEE compliance, at
appropriate performance cost.

Instructions compiled without the /Software modifier cannot produce IEEE­
compliant trap behavior, nor can they provide IEEE-compliant non-finite arithmetic.
Trapping and stopping on non-finite operands or results (rather than the IEEE
default of continuing with NaNs propagated) is an Alpha value-added behavior that
some users prefer.

Instructions compiled without the !Underflow hardware trap enable modifier cannot
produce IEEE-compliant underflow trap behavior, nor can they provide IEEE­
compliant denormal results. They are fast and provide true zero (not minus zero)
results whenever underflow occurs. This is an Alpha value-added behavior that
some users prefer.
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Instructions compiled without the /Inexact hardware trap enable modifier cannot
produce IEEE-compliant inexact trap behavior. Trapping on Inexact will be painfully
slow; few users appear to prefer this, but they can get it if they really want it.

IEEE floating-point instructions compiled with the /Software modifier produce
hardware traps and unpredictable values; a software trap handler may then produce
all IEEE-required behavior.

IEEE floating-point instructions compiled with the !Underflow enable modifier
produce hardware traps and true zero values for underflow; a software trap handler
may then produce all IEEE-required behavior.

IEEE floating-point instructions compiled with the /Inexact enable modifier produce
hardware traps that allow a software trap handler to produce all IEEE-required
behavior.

Thus, to get full IEEE compliance of all the required features of the standard, users
must compile with all three options enabled.

To get the optional full IEEE user trap handler behavior, a software trap handler
must be provided that implements the five exception flags, dynamic user trap handler
disabling, handler saving and restoring, default behavior for disabled user trap
handlers, and linkages that allow a user handler to return a substitute result.

Also, users must insert a TRAPB in every basic block with a floating operation that
can potentially trap, so that a software handler has an opportunity to scale the true
result by 2**192 or 2**1536, as appropriate for enabled user trap handlers; and to
supply the default +/- infinity, +/-MAX., +/-MIN, denormal, or zero as appropriate
for disabled user trap handlers.

8.3 Mapping to IEEE Standard

There are five IEEE exceptions, each of which can be "IEEE software trap-enabled"
or disabled (the default condition). Implementing the IEEE software trap-enabled
mode is optional in the IEEE standard.

Our assumption, therefore, is that the only access to IEEE-specified software trap­
enabled results will be generated in assembly language code. The following design
allows this, but only if such assembly language code has TRAPB instructions after
each floating-point instruction, and generates the IEEE-specified scaled result in a
trap handler by emulating the instruction that was trapped by hardware overflow
lunderflow detection, using the original operands.

There is a set of detailed IEEE-specified result values, both for operations that are
specified to raise IEEE traps and those that do not. This behavior is created on
Alpha by four layers of hardware, PALcode, the operating-system trap handler, and
the user IEEE trap handler, as shown in Figure B-1.
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Figure B-1: IEEE Trap Handling Behavior

IUser Condition Handler I

The IEEE-specified trap behavior occurs only with respect to the user IEEE trap
handler (the last layer in Figure B-1); any trap-and-fixup behavior in the first three
layers is outside the scope of the IEEE standard.

The IEEE number system is divided into finite and non-finite numbers:

• The finites are normal numbers:

-MAX..-MIN, -0, 0, +MIN..+MAX

• The non-finites are:

Denormals, +/- Infinity, Signaling NaN, Quiet NaN

Alpha hardware must treat minus zero operands and results as special cases, as
required by the IEEE standard.

Table B-1 specifies, for the IEEE /Software modes, which layer does each piece of
trap handling. See Common Architecture, Chapter 4 for more detail on the hardware
instruction descriptions.
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Table B-1: IEEE Floating-Point Trap Handling

Alpha Instructions Hardware

OS
Trap

PAL Handler

User
Software
Handler

FBEQ FBNE
FBGE

LDS LDT

STS STT

CPYS CPYSN

FCMOVx

FBLT FBLE FBGT Bits Only-No Exceptions

Bits Only-No Exceptions

Bits Only-No Exceptions

Bits Only-No Exceptions

Bits Only-No Exceptions

ADDx SUBx INPUT Exceptions

Denormal operand Trap Trap Supply
sum

+/-Inf operand Trap Trap Supply
sum

QNaN operand Trap Trap Supply
QNaN

SNaN operand Trap Trap Supply [Invalid Op]
QNaN

+Inf + -Inf Trap Trap Supply [Invalid Op]
QNaN

ADDx SUBx OUTPUT Exceptions

Exponent overflow Trap Trap Supply [Overflow]
+/-Inf Scale by
+/-MAX 2**Alpha

Exponent underflow Supply _1

and disabled +0

Exponent underflow Supply Trap Supply [Underflow]
and enabled +0 and +/-MIN Scale by

trap denorm 2**Alpha
+/-0

Inexact and disabled
in the instruction

Inexact and enabled Trap Trap [Inexact]
in the instruction

1An implementation could choose instead to trap to PALcode and have the PALcode supply a zero result on all
underflows.
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Table B-1 (Cont.): IEEE Floating-Point Trap Handling

OS User
Trap Software

Alpha Instructions Hardware PAL Handler Handler

MULx INPUT Exceptions

Denormal operand Trap Trap Supply
prod.

+I-Inf operand Trap Trap Supply
prod.

QNaN operand Trap Trap Supply
QNaN

SNaN operand Trap Trap Supply [Invalid Op]
QNaN

0* Inf Trap Trap Supply [Invalid Op]
QNaN

MULx OUTPUT Exceptions

Exponent overflow Trap Trap Supply [Overflow]
+I-Inf Scale by
+I-MAX 2**Alpha

Exponent underflow Supply
and disabled +0

Exponent underflow Supply Trap Supply [Underflow]
and enabled +0 and +I-MIN Scale by

Trap denorm 2**Alpha
+/-0

Inexact and disabled

Inexact and enabled Trap Trap [Inexact]

DIVx INPUT Exceptions

Denormal operand Trap Trap Supply
quot.

+I-Inf operand Trap Trap Supply
quot.

QNaN operand Trap Trap Supply
QNaN

SNaN operand Trap Trap Supply [Invalid Op]
QNaN

010 or Infllnf Trap Trap Supply [Invalid Op]
QNaN
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Table B-1 (Cont.): IEEE Floating-Point Trap Handling
OS User
Trap Software

Alpha Instructions Hardware PAL Handler Handler

DIVx INPUT Exceptions

NO Trap Trap Supply [Div. Zero]
+/-Inf

DIVx OUTPUT Exceptions

Exponent overflow Trap Trap Supply [Overflow]
+/-Inf Scale by
+/-MAX 2**Alpha

Exponent underflow Supply
and disabled +0

Exponent underflow Supply Trap Supply [Underflow]
and enabled +0 and +/-MIN Scale by

trap denorm 2**Alpha
+/-0

Inexact and disabled

Inexact and enabled Trap Trap [Inexact]

CMPTEQ CMPTUN INPUT Exceptions

Denormal operand Trap Trap Supply
(=)

QNaN operand Trap Trap Supply
False
forEQ, True
for UN

SNaN operand Trap Trap Supply [Invalid Op]
False/
True

CMPTLT CMPTLE INPUT Exceptions

Denormal operand Trap Trap Supply
(=)

QNaN operand Trap Trap Supply [Invalid Op]
False

SNaN operand Trap Trap Supply [Invalid Op]
False
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Table B-1 (Cont.): IEEE Floating-Point Trap Handling

OS User
Trap Software

Alpha Instructions Hardware PAL Handler Handler

CVTFi INPUT Exceptions

Denormal operand Trap Trap Supply
Cvt

+/-Inf operand Trap Trap Supply [Invalid Op]
Cvt

QNaN operand Trap Trap Supply
QNaN

SNaN oper~d Trap Trap Supply [Invalid Op]
QNaN

CVTFi OUTPUT Exceptions

Inexact and disabled

Inexact and enabled Trap Trap [Inexact]

Integer overflow Supply Trap [Invalid Op]2
Tronc.
result
and trap
if enabled

CVTif OUTPUT Exceptions

Inexact and disabled

Inexact and enabled Trap Trap [Inexact]

CVTff INPUT Exceptions

Denormal operand Trap Trap Supply
Cvt

+/-Inf operand Trap Trap Supply
Cvt

QNaN operand Trap Trap Supply
QNaN

SNaN operand Trap Trap Supply [Invalid Op]
QNaN

2An implementation could choose instead to trap to PALcode on extreme values and have the PALcode supply a
truncated result on all overflows.
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Table B-1 (Cont.): IEEE Floating-Point Trap Handling

OS User
Trap Software

Alpha Instructions Hardware PAL Handler Handler

CVTff OUTPUT Exceptions

Exponent overflow Trap Trap Supply [Overflow]
+/-Inf Scale by
+/-MAX 2**Alpha

Exponent underflow Supply
and disabled +0

Exponent underflow Supply Trap Supply [Underflow]
and enabled +0 and +/-MIN Scale by

trap denorm 2**Alpha
+/-0

Inexact and disabled

Inexact and enabled Trap Trap [Inexact]

Other IEEE operations (software subroutines or sequences of instructions), are listed
here for completeness:

Remainder
SQRT
Round float to integer-valued float
Convert binary to/from decimal
Compare, other combinations than the four above
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Table B-2 shows the IEEE standard charts.

Table B-2: IEEE Standard Charts
IEEE Software
TRAP Disabled

Exception ( IEEE Default)

Invalid Operation

IEEE Software
TRAP Enabled
(Optional )

(1) Input signaling NaN

(2) Mag. subtract Inf.

(3) 0 * Inf.

(4) % or InflInf

(5) x REM 0 or InfREM y

(6) SQRT(negative non-zero)

(7) Cvt to int(ovfl, Inf, NaN)

(8) Compare unordered

Division by Zero

X/O, x finite <>0

Overflow

Round nearest

Round to zero

Round to -Inf

Round to +Inf

Underflow

Inexact

Quiet NaN

Quiet NaN

Quiet NaN

Quiet NaN

Quiet NaN

Quiet NaN

Quiet NaN

Quiet NaN

+/-Inf

+/-Inf.

+/-MAX

+MAXI-Inf

+Inf/-MAX

O/denorm/+ -MIN

Roundedlovfl

Res/2**192 or 1536

Res/2**192 or 1536

Res/2**192 or 1536

Res/2**192 or 1536

Res*2**192 or 1536

Res

IEEE software trap handler requirements are as follows:

Result is unpredictable unless supplied by trap handler.
Determine which exceptions occurred.
Determine the kind of operation.
Determine the destination format.
Overflow/underflow/inexact: the correctly rounded result, including parts that do
not fit in the format.
Invalid and divzero: the operand values.
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Appendix C

Instruction Encodings

The encodings for the Alpha instruction set are given in the following sections.
There is one section for each instruction format, followed by a summary of all the
instruction opcodes in a single table.

C.1 Memory Format Instructions

Table C-l lists the hexadecimal values of the 6-bit opcode field for the Memory
format instructions.

Table e-1: Memory Format Instruction Opcodes
Mnemonic Mnemonic Mnemonic

LDA 08 LDAH 09 LDF 20
LDG 21 LDL 28 LDL_L 2A
LDQ 29 LD'LL 2B LD'LU OB
LDS 22 LDT 23 STF 24
STG 25 STL 2C STL_C 2E
STQ 2D ST'LC 2F ST(LU OF
STS 26 STT 27

Table C-2 lists the hexadecimal values of the 6-bit opcode field and the 16-bit
displacement field for the Memory format instructions that use the displacement
field as a function code. The notation used is oo.ffif, where 00 is the 6-bit opcode and
the ffffis the 16-bit displacement field.

Table e-2: Memory Format Instructions with a Function Code
Mnemonic Mnemonic Mnemonic

FETCH
RC
TRAPB

18.8000
18.EOOO
18.0000

FETCH_M 18.AOOO
RPCC 18.Cooa

MB
RS

18.4000
18.FOOO

PROGRAMMING NOTE
The code points 18.4400, 18.4800, and 18.4COO must
operate as Memory Barrier instructions (MB 18.4000).
Software will currently only use the 18.4000 code point
for MB. This allows a weaker memory barrier to be
added.
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Table C-3lists the hexadecimal values of the high-order two bits of the displacement
field for the Memory format branch instructions. The notation used is oo.h, where
00 is the 6-bit opcode and the h is the high-order two bits of the displacement field.

Table e-3: Memory Format Branch Instruction Opcodes
Mnemonic Mnemonic Mnemonic

JMP
RET

1A.0
1A.2

JSR 1A.1 JSR_COROUTINE 1A.3

C.2 Branch Format Instructions

Table C-4 lists the hexadecimal values of the 6-bit opcode field for the Branch format
instructions.

Table e-4: Branch Format instruction Opcodes

Mnemonic Mnemonic Mnemonic

BR 30 FBEQ 31 FBLT 32
FBLE 33 BSR 34 FBNE 35
FBGE 36 FBGT 37 BLBC 38
BEQ 39 BLT 3A BLE 3B
BLBS 3C BNE 3D BGE 3E
BGT 3F

C.3 Operate Format Instructions

Table C-5 lists the hexadecimal values of the 6-bit opcode field and the 7-bit function
code field for the Operate format instructions. The notation used is oo.ff, where 00 is
the 6-bit opcode and the ff is the 7-bit function code field.

Table e-5: Operate Format Instruction Opcodes and Function Codes

Mnemonic Mnemonic Mnemonic

ADDL 10.00 ADDLN 10.40 ADDQ 10.20
ADDQIV 10.60 CMPBGE 10.0F CMPEQ 10.2D
CMPLE 10.6D CMPLT 10.4D CMPULE 10.3D
CMPULT 10.lD SUBL 10.09 SUBLN 10.49
SUBQ 10.29 SUBQIV 10.69

S4ADDL 10.02 S4ADDQ 10.22 S4SUBL 10.0B
S4SUBQ 10.2B S8ADDL 10.12 S8ADDQ 10.32
S8SUBL 10.1B S8SUBQ 10.3B

AND 11.00 BIC 11.08 BIS 11.20
CMOVEQ 11.24 CMOVLBC 11.16 CMOVLBS 11.14
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Table e-S (Cont.): Operate Format Instruction Opcodes and Function Codes

Mnemonic Mnemonic Mnemonic

CMOVGE 11.46 CMOVGT 11.66 CMOVLE 11.64
CMOVLT 11.44 CMOVNE 11.26 EQV 11.48
ORNOT 11.28 XOR 11.40

EXTBL 12.06 EXTLH 12.6A EXTLL 12.26
EXTQH 12.7A EXTQL 12.36 EXTWH 12.5A
EXTWL 12.16 INSBL 12.0B INSLH 12.67
INSLL 12.2B INSQH 12.77 INSQL 12.3B
INSWH 12.57 INSWL 12.1B MSKBL 12.02
MSKLH 12.62 MSKLL 12.22 MSKQH 12.72
~SKQL 12.32 MSKWH 12.52 MSKWL 12.12
SLL 12.39 SRA 12.3C SRL 12.34
ZAP 12.30 ZAPNOT 12.31

MULL 13.00 MULUV 13.40 MULQ 13.20
MULQIV 13.60 UMULH 13.30

C.4 Floating-Point Operate Format

Table C-6 lists the hexadecimal values of the 11-bit function code field for the
Floating-point Operate format instructions that are data type independent. The
6-bit opcode for these instructions is 1716.

Table e-6: Function Codes for Floating Data Type Independent Operations

Mnemonic

CPYS 020
CVTLQ 010
CVTQUV 130
FCMOVEQ 02A
FCMOVLE 02E
MF_FPCR 025

Mnemonic

CPYSE 022
CVTQL 030

FCMOVGE 02D
FCMOVLT 02C
MT_FPCR 024

Mnemonic

CPYSN 021
CVTQUSV 530

FCMOVGT 02F
FCMOVNE 02B
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C.4.1 IEEE Floating-Point Instructions
Table 0-7 lists the hexadecimal value of the II-bit function code field for the
IEEE floating-point instructions, with and without qualifiers_ The opcode for these
instructions is 1616-

Table e-7: IEEE Floating-Point Instruction Function Codes

None IC 1M ID IU IUC fUM IUD

ADDS 080 000 040 OCO 180 100 140 1CO
ADDT OAO 020 060 OEO lAO 120 160 lEO
CMPTEQ OA5
CMPTLT OA6
CMPTLE OA7
CMPTUN OA4
CVTQS OBC 03C 07C OFC
CVTQT OBE 03E 07E OFE
CVTTS OAC 02C 06C OEC lAC 12C 16C 1EC
DIVS 083 003 043 OC3 183 103 143 1C3
DIVT OA3 023 063 OE3 1A3 123 163 1E3
MULS 082 002 042 OC2 182 102 142 1C2
MULT 0A2 022 062 OE2 1A2 122 162 1E2
SUBS 081 001 041 OC1 181 101 141 1C1
SUBT OAl 021 061 OE1 1Al 121 161 lEI

ISU ISUC ISUM ISUD ISUI ISUIC ISUIM ISum

ADDS 580 500 540 5CO 780 700 740 7CO
ADDT 5AO 520 560 5EO 7AO 720 760 7EO
CMPTEQ 5A5
CMPTLT 5A6
CMPTLE 5A7
CMPTUN 5A4
CVTQS 7BC 73C 77C 7FC
CVTQT 7BE 73E 77E 7FE
CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC
DIVS 583 503 543 5C3 783 703 743 7C3
DIVT 5A3 523 563 5E3 7A3 723 763 7E3
MULS 582 502 542 5C2 782 702 742 7C2
MULT 5A2 522 562 5E2 7A2 722 762 7E2
SUBS 581 501 541 5C1 781 701 741 7C1
SUBT 5Al 521 561 5E1 7A1 721 761 7E1

None IC N NC ISV ISVC ISVI ISVIC

CVTTQ OAF 02F lAF 12F 5AF 52F 7AF 72F
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Table e-7 (Cont.): IEEE Floating-Point Instruction Function Codes

D NO ISVD ISVID 1M IVM ISVM ISVIM

CVTTQ OEF 1EF 5EF 7EF 06F 16F 56F 76F

PROGRAMMING NOTE
Since underflow cannot occur for CMPI'xx, there is no
difference in function or performance between CMPTxx
/S and CMPTxxISU. It is intended that software
generate CMPTxxISU in place of CMPTxxIS.

C.4.2 VAX Floating-Point Instructions

Table C-8 lists the hexadecimal value of the II-bit function code field for the VAX.
floating-point instructions. The opcode for these instructions is 1516.

Table e-8: VAX Floating-Point Instruction Function Codes

None IC IU IUC IS ISC ISU ISUC

ADDF 080 000 180 100 480 400 580 500
CVTDG 09E OlE 19E 11E 49E 41E 59E 51E
ADDG OAO 020 lAO 120 4A0 420 5AO 520
CMPGEQ OA5 4A5
CMPGLT OA6 4A6
CMPGLE OA7 4A7
CVTGF OAC 02C lAC 12C 4AC 42C 5AC 52C
CVTGD OAD 02D lAD 12D 4AD 42D 5AD 52D
CVTQF OBC 03C
CVTQG OBE 03E
DIVF 083 003 183 103 483 403 583 503
DIVG OA3 023 1A3 123 4A3 423 5A3 523
MULF 082 002 182 102 482 402 582 502
MULG 0A2 022 1A2 122 4A2 422 5A2 522
SUBF 081 001 181 101 481 401 581 501
SUBG OAl 021 1Al 121 4Al 421 5Al 521

None IC N NC IS ISC ISV ISVC

CVTGQ OAF 02F 1AF 12F 4AF 42F 5AF 52F
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C.5 Opcode Summary

Table C-9 lists all Alpha opcodes from 00 (CALL_PALL) through 3F (BGT). In the
table, the column headings appearing over the instructions have a granularity of
816. The rows beneath the leftmost column supply the individual hex number to
resolve that granularity.

If an instruction column has a 0 in the right (low) hex digit, replace that 0 with the
number to the left of the backslash in the leftmost column on the instruction's row.
If an instruction column has an 8 in the right (low) hexadecimal digit, replace that
8 with the number to the right of the backslash in the leftmost column.

For example, the third row (2/A) under the 1016 column contains the symbol INTS*,
representing the all integer subtract instructions. The opcode for those instructions
would then be 1216 because the 0 in 10 is replaced by the 2 in the leftmost
column. Likewise, the third row under the 1816 column contains the symbol JSR*,
representing all jump instructions. The opcode for those instructions is lA because
the 8 in the heading is replaced by the number to the right of the backslash in the
leftmost column.

The instruction format is listed under the instruction symbol.

The symbols in Table C-9 are explained in Table C-IO.
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Table e-9: Opcode Summary
00 08 10 18 20 28 30 38

0/8 PAL* LDA INTA* MISC* LDF LDL BR BLBC
(pal) (mem) (op) (mem) (mem) (mem) (br) (br)

1/9 Res LDAH INTL* \ PAL\ LDG LDQ FBEQ BEQ
(mem) (op) (mem) (mem) (br) (br)

2/A Res Res INTS* JSR* LDS LDL_L FBLT BLT
(op) (mem) (mem) (mem) (br) (br)

31B Res LD~U INTM* \ PAL\ LDT LD~L FBLE BLE
(mem) (op) (mem) (mem) (br) (br)

41C Res Res Res Res STF STL BSR BLBS
(mem) (mem) (br) (br)

51D Res Res FLTV* \ PAL\ STG STQ FBNE BNE
(op) (mem) (mem) (br) (br)

6/E Res Res FLTI* \ PAL\ STS STL_C FBGE BGE
(op) (mem) (mem) (br) (br)

7/F Res ST~U FLTL* \ PAL\ STr ST~C FBGT BGT
(mem) (op) (mem) (mem) (br) (br)

Table e-10: Key to Opcode Summary (Table e-9)
Symbol Meaning

FLTI* IEEE floating-point instruction opcodes

FLTL* Floating-point Operate instruction opcodes

FLTV* VAX floating-point instruction opcodes

INTA* Integer arithmetic instruction opcodes

INTL* Integer logical instruction opcodes

INTM* Integer multiply instruction opcodes

INTS* Integer subtract instruction opcodes

JSR* Jump instruction opcodes

MISC* Miscellaneous instruction opcodes

PAL* PALcode instruction (CALL_PAL) opcodes

\ PAL\ Reserved for PALcode

Res Reserved for Digital
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C.6 OpenVMS PALcode Format Instructions

Sections C.6.1 and C.6.2 list the OpenVMS Alpha unprivileged and privileged
PALcode function codes.

C.6.1 Unprivileged OpenVMS PALcode Function Codes

Table C-ll lists the hexadecimal values of the 26-bit function code field for the
unprivileged OpenVMS PALcode format instructions. The 6-bit opcode for the
PALcode instructions is zero.

Table e-11: Unprivileged OpenVMS PALcode Function codes
Mnemonic Mnemonic Mnemonic

AMOVRM OOAl AMOVRR OOAO BPT 0080
BUGCHK 0081 CHME 0082 CHMK 0083

CHMS 0084 CHMU 0085 GENTRAP OOAA

1MB 0086 INSQHIL 0087 INSQHILR 00A2

INSQHIQ 0089 INSQHIQR 00A4 INSQTIL 0088

INSQTILR 00A3 INSQTIQ 008A INSQTIQR 00A5
INSQUEL 008B INSQUEUD 008D INSQUEQ 008C
INSQUEQID 008E PROBER 008F PROBEW 0090
RD_PS 0091 READ_UNQ 009E REI 0092

REMQHIL 0093 REMQHILR 00A6 REMQHIQ 0095

REMQHIQR 00A8 REMQTIL 0094 REMQTILR 00A7
REMQTIQ 0096 REMQTIQR 00A9 REMQUEL 0097

REMQUEUD 0099 REMQUEQ 0098 REMQUEQID 009A
RSCC 009D SWASTEN 009B WRITE_UNQ 009F
WR_PS_SW 009C

C.6.2 Privileged OpenVMS PALcode Function Codes

Table C-12 lists the hexadecimal values of the 26-bit function code field for the
privileged OpenVMS PALcode format instructions. The 6-bit opcode for the PALcode
instructions is zero.

Table e-12: Privileged OpenVMS PALcode Function Codes

Mnemonic Mnemonic Mnemonic

CFLUSH 0001 DRAINA 0002 HALT 0000
LDQP 0003

MFPR_ASN 0006 MFPR_ASTEN 0026 MFPR_ASTSR 0027

MFPR_ESP 001E MFPR_FEN OOOB MFPR_IPL OOOE

MFPR_MCES 0010 MFPR_PCBB 0012 MFPR_PRBR 0013

MFPR_PTBR 0015 MFPR_SCBB 0016 MFPR_SISR 0019

MFPR_SSP 0020 MFPR_TBCHK 001A MFPR_USP 0022

MFPR_VPTB 0029 MFPR_WHAMI 003F
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Table e-12 (Cont.): Privileged OpenVMS PALcode Function Codes
Mnemonic Mnemonic Mnemonic

MTPR_ASTEN 0007 MTPR_ASTSR 0008 MTPR_DATFX 002E

MTPR_ESP 001F MTPR_FEN OOOC MTPR_IPIR OOOD

MTPR_IPL OOOF MTPR_MCES 0011 MTPR_PERFMON 002B

MTPR_PRBR 0014 MTPR_SCBB 0017 MTPR_SIRR 0018

MTPR_SSP 0021 MTPR_TBIA 001B MTPR_TBIAP 001C

MTPR_TBIS 001D MTPR_TBISD 0024 MTPR_TBISI 0025

MTPR_USP 0023 MTPR_VPTB 002A

STQP 0004 SWPCTX 0005 unused 0009

unused OOOA

C.7 Unprivileged OSF/1 PALcode Function Codes

Table C-13 lists lists the hexadecimal values of the 26-bit function code field for
the unprivileged OSF/l PALcode instructions. The 6-bit opcode for the PALcode
instructions is zero.

Table e-13: Unprivileged OSF/1 PALcode Function Codes
Mnemonic Mnemonic Mnemonic

bpt
gentrap
wrunique

0080
OOAA
009F

bugchk
imb

0081
0086

callsys
rdunique

0083
009E

C.8 Privileged OSF/1 PALcode function codes

Table C-14 lists lists the hexadecimal values of the 26-bit function code field for
the unprivileged OSF/l PALcode instructions. The 6-bit opcode for the PALcode
instructions is zero.

Table e-14: Privileged OSF/1 PALcode Function Codes
Mnemonic Mnemonic Mnemonic

halt 0000 rdps 0036 rdusp 003A
rdval 0032 retsys 003D rti 003F
swpctx 0030 swpipl 0035 tbi 0033
whami 003C wrent 0034 wrfen 002B
wrkgp 0037 wrusp 0038 wrval 0031
wrvptptr 002D
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c.g Required PALcode Function Codes

The opcodes listed in Table C-15 are required for all Alpha implementations. The
notation used is oo.ffff, where 00 is the hexadecimal 6-bit opcode and ffff is the
hexadecimal 26-bit"function code.

Table e-15: Required PALcode Function Codes
Mnemonic Type Function Code

DRAINA

HALT

1MB

Privileged

Privileged

Unprivileged

00.0002

00.0000

00.0086

C.10 Opcodes Reserved to PALcode

The opcodes listed in Table C-16 are reserved for use in implementing PALcode.

Table e-16: Opcodes Reserved for PALcode
Mnemonic

PAL19
PALIE

19
IE

Mnemonic

PALIB
PALIF

IB
IF

Mnemonic

PALID ID

C.11 Opcodes Reserved to Digital

The opcodes listed in Table C-17 are reserved to Digital.

Table e-17: Opcodes Reserved for Digital
Mnemonic Mnemonic Mnemonic

OPCOI 01 OPC02 02 OPC03 03
OPC04 04 OPC05 05 OPC06 06
OPC07 07 OPCOA OA OPCOC OC
OPCOD OD OPCOE OE OPC14 14
OPCIC lC

e-10 Appendixes



A
Aborts, forcing, (I), 6-5
Absolute longword queue, (II), 2-21
Absolute quadword queue, (11),2-25
Access control violation (ACV) fault, (II), 6-10

has precedence, (II), 3-13
memory protection, (II), 3-8
service routine entry point, (II), 6-26

Access-violation fault, (III), 3-10
ADDF instruction, (1),4-88
ADDG instruction, (I), 4-88
Add instructions

See also Floating-point operate
addlongword, (V,4-23
add quadword, (I), 4-25
add scaled longword, (I), 4-24
add scaled quadword, (1),4-26

ADDL instruction, (1),4-23
ADDQ instruction, (1),4-25
Address space match (ASM)

bit in PTE, (II), 3-4; (III), 3-4
TBIAP register uses, (II), 5-25
virtual cache coherency, (I), 5-4

Address space number (ASN)
defined, (III), 1-2
described, (III), 3-8
in HWPCB, (II), 4-2
privileged context, (II), 2-91
range supported, (II), 3-12
TBCHK register uses, (11),5-22
TBIS register uses, (II), 5-26
t~anslationbuffer with, (II), 3-11
VIrtual cache coherency, (I), 5-4

Address space number (ASN) remster (II)5-4 b'" , ,

Address translation
algorithm to perform, (II), 3-9
page frame number (PFN), (11),3-9
page table structure, (II), 3--8
performance enhancements, (II) 3-10
translation buffer with, (II) 3-li
virtual address segment fieids (II) 3-9

ADDS instruction, (1),4-89 ' ,
ADDT instruction, (1),4-89
Aligned byte/word memory accesses, A-II

ALIGNED data objects, (I) 1-9
Alignment '

atomic longword, (I), 5-2
atomic quadword, (1),5-2
D_floating, (I), 2-7
data alignment trap, (II), 6-16
data considerations, A-6
double-width data paths, A-I
F_floating, (I), 2-5
G_floating, (I), 2-6
instruction, A-2
longword, (I), 2-2
longword integer, (I), 2-11
memory accesses, A-II
program counter (PC), (II), 6-6
quadword, (I), 2-3
quadword integer, (I), 2-11
S_floating, (I), 2-8
stack, (II), 6-31
T_floating, (I), 2-10
when data is unaligned, (II) 6-27

Alpha architecture '
See also Conventions
addressing, (I), 2-1
overview, (I), 1-1
porting operating systems to, (I), 1-1
programming implications, (I), 5-1
registers, (I), 3-1
security, (1),1-7

Alpha privileged architecture library
See PALcode

AMOVRM (PALcode) instruction, (11),2-76
AMOVRR (PALcode) instruction (II) 2-76
AND instruction, (I), 4-37 ' ,
Arithmetic exceptions

See Arithmetic traps
Arithmetic instructions, (I), 4-22

See also specific arithmetic instructions
Arithmetic left shift instruction (I) 4-36
Arithmetic trap entry (entArith') re~ster

aIV,1-2,5-3,5-4 '
Arithmetic traps

defined, (II), 6-9; (III), 5-1
described, (II), 6-12

Index-1



Arithmetic traps (cont'd)
division by zero, (1),4-63; (11),6-14; (III),

5-5
F31 as destination, (II), 6-12
inexact result, (I), 4-64; (II), 6-15; (III),

5-5
integer overflow, (I), 4-64; (II), 6-15;

(111),5-5
invalid operation, (1),4-63; (II), 6-14;

(111),5-5
overflow, (I), 4-63; (II), 6-15; (III), 5-5
program counter (PC) value, (II), 6-14
programming implications for, (I), 5-21
R31 as destination, (II), 6-12
recorded for software, (II), 6-13
REI instruction with, (II), 6-9
service routine entry point, (11),6-27
system entry for, (III), 5-3, 5-4
TRAPB instruction with, (1),4-120
underflow, (I), 4-63; (II), 6-15; (III), 5-5
when registers affected by, (II), 6-13

AST enable (ASTEN) register
changing access modes in, (II), 4-3
described, (II), 5-5
in HWPCB, (II), 4-2
interrupt arbitration, (II), 6-35
operation (with ASTs), (II), 4-3
privileged context, (II), 2-91
SWASTEN instruction with, (11),2-19

AST summary (ASTSR) register
described, (II), 5-7
indicates pending ASTs, (II), 4-3
in HWPCB, (11),4-2
interrupt arbitration, (II), 6-34
privileged context, (II), 2-91

Asynchronous system traps (AST)
ASTEN/ASTSR registers with, (11),4-3
initiating, (II), 4-3
interrupt, defined, (II), 6-20
service routine entry point, (II), 6-27
with PS register, (II), 4-3

Atomic access, (I), 5-2
Atomic move operations, (II), 2-76
Atomic operations

accessing longword datum, (1), 5-2
accessing quadword datum, (1),5-2
modifying page table entry, (II), 3-7
updating shared data structures, (I), 5-6
using load locked and store conditional, (I),

5-7
Atomic sequences, A-17

B
Barrier instructions

shared data structures and, (I), 8-10

Index-2

Barrier instructions (cont'd)
use in I/O space read/write ordering, (I),

8-2,8-8
BEQ instruction, (I), 4-17
B field (mailbox), (I), 8-5
BGE instruction, (I), 4-17
BGT instruction, (I), 4-17
BICinstruction, (V,4-37
BIS instruction, (I), 4-37
BLBC instruction, (I), 4-17
BLBS instruction, (I), 4-17
BLE instruction, (I), 4-17
BLT instruction, (I), 4-17
BNE instruction, (I), 4-17
Boolean instructions, (I), 4-36

logical functions, (I), 4-37
Boolean stylized code forms, A-14
bpt (PALcode) instruction, (III), 2-2

required recognition of, (I), 6-4
BPT (PALcode) instruction, (II), 2-4

required recognition of, (I), 6-4
service routine entry point, (II), 6-28
trap information, (II), 6-16

Branch instruction format, (I), 3-10
Branch instructions, (I), 4-16

See also Control instructions
backward conditional, (I), 4-17
conditional branch, (I), 4-17
displacement, (I), 4-17
floating-point, summarized, (I), 4-77
forward conditional, (I), 4-17
opcodes for, C-2
unconditional branch, (I), 4-19

Branch prediction model, (I), 4-15
Branch prediction stack, with BSR

instruction, (I), 4-19
Breakpoint exception, initiating, (II), 2-4
Bridge

defined, (I), 8-1
MBPR DON bit with, (1),8-6
prefetch interrupts, (1),8-12
with I/O space granularity, (I), 8-7

BR instruction, (I), 4-19
BSR instruction, (I), 4-19
Bugcheck exception, initiating, (II), 2-5
bugchk (PALcode) instruction, (III), 2-3

required recognition of, (I), 6-4
BUGCHK (PALcode) instruction, (II), 2-5

required recognition of, (I), 6-4
service routine entry point, (II), 6-28
trap information, (II), 6-16

Byte_within_page field, (II), 3-2; (III), 3-2
Byte data type, (I), 2-1
Byte manipulation instructions, (1),4-42



Byte manipulation instructions (cont'd)
See also Extract instructions; Insert

instructions; Mask instructions

c
Cache coherency

barrier instructions for, (I), 5-20
defined, (I), 5-1
I/O space access, (I), 8-2
in multiprocessor environment, (I), 5-5
with DMA, (I), 8-10

Caches
design considerations, A-I
flushing physical page from, (II), 2-84
I-stream considerations, A-5
MB and 1MB instructions with, (I), 5-20
requirements for, (I), 5-4
translation buffer conflicts, A-8
with powerfail/recovery, (I), 5--4

CALL_PAL (call privileged architecture
library) instruction, (I), 4-114

callsys (PALcode) instruction, (III), 2--4
entSys with, (III), 5-8
stack frames for, (III), 5-3

Canonical form, (I), 4-64
CFLUSH (PALcode) instruction, (11),2-84

with powerfail, (II), 6-22
Changed datum, (1),5-5
CHME (PALcode) instruction, (11),2-6

service routine entry point, (II), 6-28
trap initiation, (II), 6-17

CHMK (PALcode) instruction, (11),2-7
service routine entry point, (II), 6-28
trap initiation, (II), 6-17

CHMS (PALcode) instruction, (11),2-8
service routine entry point, (II), 6-28
trap initiation, (11),6-17

CHMU (PALcode) instruction, (11),2-9
service routine entry point, (II), 6-28
trap initiation, (II), 6-17

Clear a register, A-13
CMD field (mailbox), (I), 8-5
CMOVEQ instruction, (I), 4-38
CMOVGE instruction, (1),4-38
CMOVGT instruction, (1),4-38
CMOVLBC instruction, (I), 4-38
CMOVLBS instruction, (I), 4-38
CMOVLE instruction, (1),4-38
CMOVLT instruction, (I), 4-38
CMOVNE instruction, (I), 4-38
CMPBGE instruction, (1),4--44
CMPEQ instruction, (1),4-27
CMPGEQ instruction, (1),4-91
CMPGLE instruction, (1),4-91

CMPGLT instruction, (1),4-91
CMPLE instruction, (I), 4-27
CMPLT instruction, (I), 4-27
CMPTEQ instruction, (1),4-92
CMPTLE instruction, (I), 4-92
CMPTLT instruction, (1),4-92
CMPTUN instruction, (1), 4-92
CMPULE instruction, (1),4-28
CMPULT instruction, (1),4-28
Code forms, stylized, A-12

Boolean, A-14
load literal, A-13
negate, A-14
NOP, A-13
NOT, A-14
register, clear, A-13
register-to-register move, A-14

Code sequences, A-II
Coherency, cache, (I), 5-1
Compare instructions

See also Floating-point operate
compare byte, (1), 4--44
compare integer signed, (I), 4-27
compare integer unsigned, (I), 4-28

Conditional move instructions, (I), 4-38
See also Floating-point operate

Console, overview, (1), 7-1
Context switching

See also Hardware; Process
defined, (II), 4-1
hardware, (11),4-2
initiating, (II), 2-90
raising IPL while, (II), 4--4
software, (II), 4-2

Control instructions, (1),4-15
Control stream DMA, (1),8-11
Conventions

code examples, (I), 1-10
extents, (I), 1-8
figures, (I), 1-9
instruction format, (I), 3-8
notation, (I), 3-8
numbering, (I), 1-7
ranges, (I), 1-8

IC opcode qualifier
IEEE floating-point, (I), 4-60
VAX floating-point, (I), 4-60

Corrected error interrupts, logout area for,
(11),6-24

CPSY instruction, (I), 4-83
CPSYN instruction, (1),4-83
CPYSE instruction, (I), 4-83
Current mode field, in PS register, (II), 6-6

Index-3



Current PC, (11),6-2
CVTDG instruction, (I), 4--96
CVTGD instruction, (I), 4--96
CVTGF instruction, (1),4-96
CVTGQ instruction, (1),4-94
CVTLQ instruction, (1),4-84
CVTQF instruction, (I), 4--95
CVTQG instruction, (1),4-95
CVTQL instruction, (1),4-84
CVTQS instruction, (1),4-99
CVTQT instruction, (I), 4--99
CVTTQ instruction, (1),4-98
CVTTS instruction, (I), 4--100

D
D_floating data type, (I), 2-6

alignment of, (I), 2-7
mapping, (1),2-6
restricted, (I), 2-7

Data alignment, A-6
Data alignment trap, (11),6-15
Data alignment trap fixup (DAT) bit, in

HWPCB, (II), 4-2
Data alignment trap fixup (DATFX) register,

(11),5-9
Data alignment traps

memory management, (11),6-16
registers used, (II), 6-16; (III), 5-4
service routine entry point, (II), 6-27
system entry for, (III), 5-8

Data format, overview, (1),1-3
Data sharing (multiprocessor), A-7

synchonization requirement, (I), 5-5
Data stream considerations, A-6
Data stream DMA, (I), 8-11
Data structures, shared, (I), 5-5
Data types

byte, (I), 2-1
IEEE floating-point, (I), 2-7
longword, (I), 2-2
longword integer, (I), 2-10
quadword, (I), 2-2
quadword integer, (I), 2-11
unsupported in hardware, (1),2-12
VAX. floating-point, (I), 2-3
word, (I), 2-1

Denormal, (I), 4--58
Devices

local, (I), 8-1
remote, (I), 8-1
shared data structures and, (I), 8-10

Dirty zero, (I), 4--58
DIVF instruction, (I), 4-102

Index-4

DIVG instruction, (I), 4--102
Division

integer, A-12
performance impact of, A-12

Division by zero trap, (II), 6-14; (III), 5-5
DIVSinstruction, (V,4--104
DIVT instruction, (1),4--104
DMA, (I), 8-10

atomic, (I), 8-10
control stream, (I), 8-11
data stream, (I), 8-11
defined, (I), 8-2
interrupts with, (I), 8-12

DON field (mailbox), (I), 8-6
ID opcode qualifier

FPCR (floating-point control register), (I),
4-64

IEEE floating-point, (I), 4-60
draina (PALcode) instruction, (I), 6-5
DRAINA (PALcode) instruction, (I), 6-5
Dual-issue instruction considerations, A-2
DZE bit

exception summary parameter, (11),6-13
exception summary register, (III), 5-5

E
entArith

See Arithmetic trap entry
entIF

See Instruction fault entry
entInt

See Interrupt entry
entMM

See Memory-management fault entry
entSys

See System call entry
EQV instruction, (I), 4-37
ERR field (mailbox), (I), 8-6
Error checking, (I), 8-6
Errors, processor

corrected, (II), 6-23
uncorrected, (II), 6-23

Errors, system
corrected, (II), 6-22
uncorrected, (II), 6-22

Exceptional events
actions, summarized, (II), 6-2
defined, (II), 6-1

Exception handlers, B-2
TRAPB instruction with, (1),4-120

Exception register write mask, (III), 5-6



Exceptions
See also Arithmetic traps; Faults;

Synchronous traps
actions, summarized, (11),6-2
defined, (III), 5-1
initiated before interrupts, (II), 6-18
initiated by PALcode, (II), 6-31
introduced, (II), 6-8
processor state transitions, (II), 6-36
stack frames, (II), 6-7
stack frames for, (III), 5-3

Exception service routines
entry point, (II), 6-26
introduced, (II), 6-8

Exception summary parameter, (11),6-13
Exception summary register, (111),5-2,5-6

format of, (III), 5-4
Executive read enable (ERE), bit in PTE, (II),

3-5
Executive stack pointer (ESP)

as internal processor register, (II), 5-1
in HWPCB, (11),4-2

Executive stack pointer (ESP) register, (II),
5-27

Executive write enable (EWE), bit in PTE,
(11),3-6

EXTBL instruction, (I), 4--46
EXTLH instruction, (I), 4--46
EXTLL instruction, (I), 4--46
EXTQH instruction, (1),4--46
EXTQL instruction, (I), 4--46
Extract instructions (list), (I), 4-46
EXTWH instruction, (I), 4--46
EXTVVLinstruction, (V,4--46

F
F_floating data type, (I), 2-3

alignment of, (I), 2-5
compared to IEEE S_floating, (I), 2-8
MAXIMIN, (I), 4-58
operations, (I), 4-64
when data is unaligned, (11),6-27

Fault on execute (FOE), (II), 6-12
bit in PTE, (II), 3-4; (III), 3-4
service routine entry point, (II), 6-26
software usage of, (II), 6-12

Fault-on-execute fault, (III), 3-10
Fault on read (FOR), (II), 6-10

bit in PTE, (II), 3-4; (III), 3-5
service routine entry point, (II), 6-26
software usage of, (II), 6-10

Fault-on-read fault, (III), 3-10
Fault on write (FOW), (II), 6-11

bit in PTE, (II), 3-4; (III), 3-5
service routine entry point, (II), 6-26

Fault on write (FOW) (cont'd)
software usage of, (II), 6-11

Fault-on-write fault, (III), 3-10
Faults

access control violation, (II), 6-10
defined, (II), 6-8; (III), 5-1
fault on execute, (II), 6-12
fault on read, (II), 6-10
fault on write, (II), 6-11
floating-point disabled, (II), 6-10
memory management, (111),3-9
MM flag, (II), 6-10
program counter (PC) value, (II), 6-8
REI instruction with, (II), 6-8
translation not valid, (II), 6-10

FBEQ instruction, (I), 4-78
FBGE instruction, (1),4-78
FBGT instruction, (I), 4-78
FBLE instruction, (I), 4-78
FBLT instruction, (I), 4-78
FBNE instruction, (I), 4-78
FCMOVEQ instruction, (I), 4-85
FCMOVGE instruction, (1),4-85
FCMOVGT instruction, (1),4--85
FCMOVLE instruction, (1),4--85
FCMOVLT instruction, (1),4-85
FCMOVNE instruction, (1),4--85
FETCH (prefetch data) instruction, (I), 4-115

performance optimization, A-I0
FETCH_M (prefetch data, modify intent)

instruction, (I), 4-115
performance optimization, A-I0

Finite number, Alpha, contrasted with VAX,
(1),4-57

Floating-point branch instructions, (I), 4-77
Floating-point control register (FPCR), (I),

4-64
accessing, (I), 4-66
at processor initialization, (I), 4-67
bit descriptions, (I), 4-65
instructions to read/write, (I), 4--87
operate instructions that use, (I), 4-80
saving and restoring, (I), 4-67

Floating-point convert instructions, (I), 3-12
Floating-point disabled fault, (II), 6-10

service routine entry point, (II), 6-26
Floating-point division, performance impact

of, A-12
Floating-point enable (FEN) register

defined, (III), 1-3
described, (II), 5-10
in HWPCB, (11),4-2
privileged context, (II), 2-91
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Floating-point format, number representation
(encodings), (I), 4-58

Floating-point instructions
branch (list), (I), 4-77
faults, (I), 4-56
introduced, (I), 4-56
memory format (list), (I), 4-68
operate (list), (I), 4-80
rounding modes, (I), 4-59
terminology, (I), 4-57
trapping modes, (1),4-60
traps, (I), 4-56

Floating-point load instructions, (1),4-68
load F_floating, (I), 4-69
load G_floating, (I), 4-70
load S_floating, (I), 4-71
load T_floating, (I), 4-72
with nonfinite values, (I), 4-68

Floating-point operate instructions, (1),4-80
add (IEEE), (I), 4-89
add (VAX), (I), 4-88
compare (IEEE), (I), 4-92
compare (VAX), (I), 4-91
conditional move, (I), 4-85
convert IEEE floating to IEEE floating, (I),

4-100
convert IEEE floating to integer, (I), 4-98
convert integer to IEEE floating, (I), 4-99
convert integer to integer, (I), 4-84
convert integer to VAX floating, (I), 4-95
convert VAX floating to integer, (I), 4-94
convert VAX floating to VAX floating, (I),

4-96
copy sign, (I), 4-83
divide (IEEE), (I), 4-104
divide (VAX), (I), 4-102
format of, (I), 3-11
move from/to FPCR, (1),4-87
multiply (IEEE), (I), 4-107
multiply (VAX), (I), 4-106
opcodes for, C-3
subtract (IEEE), (I), 4-111
subtract (VAX), (I), 4-109

Floating-point registers, (I), 3-2
Floating-point rounding modes

IEEE, (1), 4-59
VAX, (I), 4-59

Floating-point single-precision operations, (I),
4-64

Floating-point store instructions, (I), 4-68
store F_floating, (1),4-73
store G_floating, (I), 4-74
store S_floating, (I), 4-75
store T_floating, (I), 4-76
with nonfinite values, (I), 4-68

Index-6

Floating-point support
FPCR (floating-point control register), (I),

4-64
IEEE, (I), 2-7
IEEE standard 754-1985, (I), 4-67
instruction overview, (I), 4-56
longword integer, (I), 2-10
operate instructions, (I), 4-80
optional with Alpha, (I), 4-2
quadword integer, (I), 2-11
rounding modes, (I), 4-59
single-precision operations, (I), 4-64
trap modes, (I), 4-60
VAX, (1),2-3

Floating-point trapping modes, (I), 4-60
See also Arithmetic traps
imprecision from pipelining, (I), 4-62

FOE
See Fault on execute

FOR
See Fault on read

FOW
See Fault on write

FPCR (floating-point control register)
See Floating-point control register (FPCR)

Frame pointer (FP), register linkage for, (III),
1-1

G
G_floating data type, (I), 2-5

alignment of, (I), 2-6
mapping, (I), 2-5
MAXIMIN, (I), 4-58
when data is unaligned, (II), 6-27

gentrap (PALcode) instruction, (III), 2-5
required recognition of, (I), 6-4

GENTRAP (PALcode) instruction, (11),2-10
required recognition of, (I), 6-4
trap information, (II), 6-17

Global pointer (GP), register linkage for, (III),
1-1

Granularity hint (GH)
bits in PTE, (II), 3-5; (III), 3-4

H
halt (PALcode) instruction, (I), 6-6
HALT (PALcode) instruction, (1),6-6
Hardware context, (III), 4-1
Hardware interrupts

interprocessor, (II), 6-21
interval clock, (II), 6-20
powerfail, (II), 6-22
servicing, (III), 5-6



Hardware nonprivileged context, (II), 4-3
Hardware privileged context, (II), 4-2

switching, (II), 4-2
Hardware privileged context block (HWPCB)

format, (II), 4-2
original built by HWRPB, (II), 4-4
PCBB register, (II), 5-16
process unique value in, (II), 2-80
specified by PCBB, (II), 4-2
swapping ownership, (11),2-90
writing to, (II), 4-3

Hardware restart parameter block (HWRPB)
interval clock interrupt, (II), 6-20
logout area, (II), 6-24

Hose, (I), 8-1
HOSE field (mailbox), (I), 8-5
HWPCB

See Hardware privileged context block
HWRPB

See Hardware restart parameter block

I/O access granularity, (I), 8-2
I/O bus, tightly coupled, (I), 8-1
I/O device interrupts, (II), 6-20
I/O devices, service routine entry points, (II),

6-29
I/O implementation dependencies, (I), 8-13
I/O space, local, (I), 8-2
I/O space, remote, (I), 8-2
I/O space read/write ordering, (I), 8-2, 8-7
I/O subsystem design, implementation

considerations, (I), 8-13
IEEE convert-to-integer trap mode,

instruction notation for, (I), 4-61
IEEE floating-point

See also Floating-point instructions
exception handlers, B-2
format, (I), 2-7
FPCR (floating-point control register), (I),

4-64
hardware support, B-1
NaN, (I), 2-8
options, B-1
S_floating, (I), 2-8
standard, mapping to, B-3
standard charts, B-I0
T_floating, (I), 2-9
trap handling, B-4
trap modes, (I), 4-62

IEEE floating-point instructions
add instructions, (D,4-89
compare instructions, (1),4-92
convert from integer instructions, (I), 4-99

IEEE floating-point instructions (cont'd)
convert IEEE floating format instructions,

(I), 4-100
convert to integer instructions, (I), 4-98
divide instructions, (1),4-104
multiply instructions, (I), 4-107
opcodes for, C-4
operate instructions, (I), 4-80
qualifiers, summarized, C-4
subtract instructions, (I), 4-111

IEEE rounding modes, (1),4-59
IEEE standard

conformance to, B-1
mapping to, B-3
support for, (V,4-67

IEEE trap modes, required instruction
notation, (I), 4-61

IGN (ignore), (I), 1-9
Illegal instruction trap, (II), 6-16

service routine entry point, (II), 6-28
Illegal operand trap, service routine entry

point, (II), 6-28
Illegal PALcode operand trap, (II), 6-17
imb (PALcode) instruction, (I), 6-7
1MB (PALcode) instruction, (I), 5-17, 6-7

virtual I-cache coherency, (I), 5-5
IMP (implementation dependent), (I), 1-9
INE bit

exception summary parameter, (11),6-13
exception summary register, (III), 5-5

Inexact result trap, (II), 6-15; (III), 5-5
Infinity, (I), 4-57
Input/output interrupts, (II), 6-22
INSBL instruction, (I), 4-50
Insert instructions (list), (I), 4-50
Insert into queue PALcode instructions

longword at head interlocked, (II), 2-31
longword at head interlocked resident, (II),

2-33,2-48
longword at tail interlocked, (II), 2-39
longword at tail interlocked resident, (II),

2-42,2-50
quadword at head interlocked, (II), 2-35
quadword at head interlocked resident,

(11),2-37
quadword at tail interlocked, (II), 2-44
quadword at tail interlocked resident, (II),

2-46
INSLH instruction, (I), 4-50
INSLL instruction, (I), 4-50
INSQHIL (PALcode) instruction, (II), 2-31
INSQHILR (PALcode) instruction, (11),2-33
INSQH instruction, (I), 4-50
INSQHIQ (PALcode) instruction, (II), 2-35

Index-7



INSQHIQR (PALcode) instruction, (11),2-37
INSQL instruction, (I), 4-50
INSQTIL (PALcode) instruction, (II), 2-39
INSQTILR (PALcode) instruction, (II), 2--42
INSQTIQ (PALcode) instruction, (II), 2--44
INSQTIQR (PALcode) instruction, (II), 2--46
INSQUEL (PALcode) instruction, (II), 2--48
INSQUEUD (PALcode) instruction, (II), 2-48
INSQUEQ (PALcode) instruction, (II), 2-50
INSQUEQID (PALcode) instruction, (II), 2-50
Instruction encodings

floating-point format, C-3
summarized, C-1

Instruction fault, system entry for, (III), 5-3
Instruction fault entry (entIF) register, (III),

1-2,5-3,5-6
Instruction formats

branch, (I), 3-10
conventions, (I), 3-8
floating-point convert, (I), 3-12
floating-point operate, (I), 3-11
illegal trap, (II), 6-16
memory, (1),3-9
memory jump, (1),3-10
operands, (I), 3-8
operand values, (I), 3-8
operate, (I), 3-10
operators, (I), 3-5
overview, (I), 1-4
PALcode, (I), 3-13
registers, (I), 3-1

Instructions, overview, (I), 1-5
Instruction set

See also Floating-point instructions;
PALcode instructions

access type field, (I), 3--4
Boolean (list), (I), 4-36
branch (list), (I), 4-16
byte (list), (I), 4-42
conditional move (integer), (I), 4-38
data type field, (I), 3-5
extract (list), (I), 4-42
floating-point subsetting, (I), 4-2
insert (list), (I), 4-42
integer arithmetic (list), (I), 4-22
introduced, (I), 1-6
jump (list), (I), 4-16
load memory integer (list), (I), 4-4
mask (list), (I), 4-42
miscellaneous (list), (I), 4-113
name field, (I), 3-4
opcode qualifiers, (I), 4-3
operand notation, (I), 3-4
overview, (I), 4-1
shift, arithmetic, (I), 4-41
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Instruction set (cont'd)
shift, logical, (I), 4-40
software emulation rules, (I), 4-2
store memory integer (list), (I), 4-4
VAX compatibility, (I), 4-121

Instruction stream
See I-stream

INSWH instruction, (1),4-50
INSWL instruction, (I), 4-50
Integer arithmetic instructions

See Arithmetic instructions
Integer division, A-12
Integer overflow trap, (II), 6-15; (III), 5-5
Integer registers

defined, (I), 3-1
R31 restrictions, (I), 3-1
usage, (III), 1-1

Internal processor registers (IPR)
address space number (ASN), (11),5-4
AST enable (ASTEN), (11),5-5
AST summary (ASTSR), (11),5-7
CALL_PAL MFPR with, (11),5-1
CALL PAL MTPR with, (II), 5-1
data alignment trap fixup (DATFX), (II),

5-9
defined, (II), 1-1
executive stack pointer (ESP), (II), 5-27
floating-point enable (FEN), (II), 5-10
interprocessor interrupt request (IPIR)

register, (II), 5-11
interrupt priority level (IPL), (II), 5-12
kernel mode with, (11),5-1
machine check error summary (MCES),

(11),5-13
MFPR instruction with, (11),2-86
MTPR instruction with, (II), 2-87
page table base (PTBR), (II), 5-18
performance monitoring (PERFMON), (II),

5-15
privileged context block base (PCBB), (II),

5-16
processor base (PRBR), (II), 5-17
software interrupt request (SIRR), (II),

5-20
software interrupt summary (SISR), (II),

5-21
stack pointer, (II), 5-1
summarized, (11),5-2
supervisor stack pointer (SSP), (II), 5-28
system control block base (SCBB), (II),

5-19
translation buffer check (TBCHK), (II),

5-22
translation buffer invalidate all (TBIA),

(11),5-24



Internal processor registers (IPR) (cont'd)
translation buffer invalidate all process

(TBlAP), (II), 5-25
translation buffer invalidate single (TBIS),

(11),5-26
user stack pointer (USP), (II), 5-29
virtual page base (VPTB), (II), 5-30
Who-Am-I (WHAMI), (II), 5-31

Interprocessor interrupt, (II), 6-21
protocol for, (II), 6-21
service routine entry point, (II), 6-29

Interprocessor interrupt request (IPIR)
register

described, (II), 5-11
protocol for, (II), 6-21

Interrupt entry (entInt) register, (III), 1-2,
5-4,5-6

Interrupt priority level (IPL)
See also Interrupt priority level (IPL)

register
events associated with, (II), 6-18
field in PS register, (II), 6-6
hardware levels, (II), 6-7
kernel mode software with, (11),6-18
operation of, (II), 6-17
PS with, (III), 5-2
recording pending software (SISR register),

(II), 5-21
requesting software (SIRR register), (II),

5-20
service routine entry points, (II), 6-29
software interrupts, (II), 6-19
software levels, (II), 6-7

Interrupt priority level (IPL) register
See also Interrupt priority level (IPL)
described, (II), 5-12
interrupt arbitration, (II), 6-35

Interrupts
actions, summarized, (II), 6-2
from I/O devices, (I), 8-12
hardware arbitration, (II), 6-34
I/O device, (II), 6-20
initiated by PALcode, (II), 6-31
initiation, (II), 6-18
input/output, (II), 6-22
instruction completion, (II), 6-17
interprocessor, (II), 6-21
introduced, (II), 6-17
PALcode arbitration, (II), 6-34
passive release, (11),6-20
powerfail, (II), 6-22
processor state transitions, (II), 6-36
program counter value, (11),6-2
software, (II), 6-19
sources for, (III), 5-2

Interrupts (cont'd)
stack frames, (II), 6-7
stack frames for, (III), 5-3
system entry for, (III), 5-4
vectors, (I), 8-12

Interrupt service routines
entry point, (II), 6-26
in each process, (II), 6-18
introduced, (II), 6-17

Interval clock interrupt, (II), 6--20
service routine entry point, (II), 6-29

Invalid operation trap, (II), 6-14; (III), 5-5
INV bit

exception summary parameter, (11),6-13
exception summary register, (Ill), 5-5

II opcode qualifier, IEEE floating-point, (I),
4-61

IOV bit
exception summary parameter, (11),6-14
exception summary register, (III), 5-5

IPR
See Internal processor registers (IPR)

IPR_KSP (internal processor register kernel
stack pointer), (II), 5-1

I-stream
coherency, (I), 6-7
design considerations, A-2
modifying physical, (I), 5-5
modifying virtual, (I), 5-5
PALcode with, (1),6-2
with caches, (I), 5-5

J
JMP instruction, (I), 4-20
JSR_COROUTlNE instruction, (1),4-20
JSR instruction, (I), 4-20
Jump instructions, (I), 4-16, 4-20

See also Control instructions
branch prediction logic, (I), 4-21
coroutine linkage, (I), 4-21
return from subroutine, (1),4-20
unconditional long jump, (I), 4-21

K
Kernel global pointer (KGP), (III), 1-3
Kernel mode, protection code with, (III), 3-6
Kernel read enable (KRE)

bit in PTE, (II), 3-5; (III), 3-4
with access control violation (ACV) fault,

(11),3-13
Kernel stack, PALcode access to, (11),6-31
Kernel stack pointer (KSP)

defined, (III), 1-3
in HWPCB, (II), 4-2
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Kernel write enable (KWE)
bit in PTE, (II), 3-6; (III), 3-4

Kseg
format of, (III), 3-2
mapping of, (111),3-1
physical space with, (III), 3-3

L
LDAH instruction, (1),4-5
LDA instruction, (I), 4-5
LDF instruction, (I), 4-69

when data is unaligned, (II), 6-27
LDG instruction, (I), 4-70

when data is unaligned, (II), 6-27
LDL_L instruction, (1),4-8

restrictions, (I), 4-9
when data is unaligned, (11),6-27
with processor lock register/flag, (I), 4-8
with STx C instruction, (I), 4-8

LDL instruction, (I), 4-6
when data is unaligned, (II), 6-27

LDQ_L instruction, (1),4-8
restrictions, (1),4-9
when data is unaligned, (II), 6-27
with processor lock register/flag, (I), 4-8
with STx C instruction, (I), 4-8

LD(LU instruction, (1),4-7
LDQ instruction, (I), 4-6

when data is unaligned, (II), 6-27
. LDQP (PALcode) instruction, (II), 2-85
LDS instruction, (I), 4-71

when data is unaligned, (II), 6-27
LDT instruction, (I), 4-72

when data is unaligned, (II), 6-27
Literals, operand notation, (I), 3-4
Load instructions

See also Floating-point load instructions
emulation of, (I), 4-2
FETCH instruction, (1),4-115
load address, (I), 4-5
load address high, (I), 4-5
load quadword, (1),4-6
load quadword locked, (I), 4-8
load sign-extended longword, (I), 4-6
load sign-extended longword locked, (I),

4-8
load unaligned quadword, (I), 4-7
multiprocessor environment, (I), 5-5
serialization, (I), 4-117
when data is unaligned, (II), 6-27

Load literal, A-13
Load memory integer instructions (list), (I),

4-4

Index-10

Local devices, (I), 8-1
Local I/O space, (I), 8-2
Local side, (I), 8-1
Location, (I), 5-10
Location access order

defined, (I), 5-11
with processor issue order, (I), 5-11

Lock flag, per-processor
defined, (I), 3-2
with load locked instructions, (I), 4-8
with store conditional instructions, (I),

4-11
Lockout, (I), 8-3
Lock registers, per-processor

defined, (I), 3-2
with load locked instructions, (I), 4-8
with store conditional instructions, (I),

4-11
Lock_flag register, (III), 1-3
Logical instructions

See Boolean instructions
Logout area, (II), 6-24; (III), 5-7
Longword data type, (1),2-2

alignment of, (I), 2-11
atomic access of, (I), 5-2
integer floating-point format, (I), 2-10

LSB (least significant bit), defined for
floating-point, (I), 4-57

M
Machine check error summary (MCES)

register
described, (II), 5-13
using, (II), 6-24

Machine checks, (11),6-22; (111),5-6
actions,sur.nmarized, (ID,6-2
initiated by PALcode, (II), 6-31
introduced, (II), 6-22
logout area, (II), 6-24
masking, (11),6-23
no disabling of, (II), 6-24
one per error, (II), 6-24
processor correctable, (II), 6-23
program counter (PC) value, (II), 6-23
REI instruction with, (II), 6-23
retry flag, (II), 6-24
service routine entry points, (II), 6-29
stack frames, (II), 6-7
system correctable, (II), 6-23

Mailbox
address alignment, (I), 8-4
bus-specific implementations for, (I), 8-12
CMD field checking, (I), 8-13
error reporting, (I), 8-8



Mailbox (cont'd)
field checking, (I), 8-12
modification by host, (I), 8-6
operational definition, (I), 8-2
posting, (I), 8-2
posting software with, (I), 8-6
remote reads, (I), 8-6, 8-8
remote writes, (I), 8-6, 8-9
static, (I), 8-6
structure, (I), 8-5
use of STeLC lock_flag, (1),8-3,8-8
WHO_ARE_YOU command, (I), 8-13
with I/O space granularity, (I), 8-7

Mailbox pointer (MBPR) register, (I), 8-4
defined, (I), 8-2
ordering, (I), 8-7

MASK field (mailbox), (I), 8-5
Masking, machine checks with, (11),6-23
Mask instructions (list), (I), 4-52
MAX, defined for floating-point, (I), 4-59
maxCPU, (111),1-2
MB (memory barrier) instruction, (I), 4-117

See also 1MB
multiprocessors only, (I), 4-117
using, (I), 5-18
with DMA I/O, (I), 5-17
with multiprocessor D-stream, (I), 5-17

MBPR
See Mailbox pointer (MBPR) register

MBZ (must be zero), (I), 1-9
Memory, unrecoverable errors with, (II), 6-22
Memory access

aligned byte/word, A-II
coherency of, (I), 5-1
granularity of, (I), 5-2
width of, (I), 5-2

Memory access sequence, (1),5-11
Memory alignment, requirement for, (1),5-2
Memory format instructions

function codes, summarized, C-l
opcodes for, C-l

Memory instruction format, (1),3-9
with function code, (I), 3-9

Memory jump instruction format, (1),3-10
Memory-like behavior, (I), 5-3
Memory management

See also Address translation; Pages;
Processor modes; Virtual address
space

address translation, (II), 3-8
always enabled, (II), 3-3
control of, (III), 3-3
faults, (II), 3-13, 6-9; (III), 3-9
introduced, (II), 3-1
page frame number (PFN), (11),3-6

Memory management (cont'd)
page table entry (PTE), (II), 3-3
protection code, (II), 3-8
protection of individual pages, (II), 3-7
PTE modified by software, (II), 3-7
support in PALcode, (I), 6-2
translation buffer with, (II), 3-11
unrecoverable error, (II), 6-22
with interrupts, (II), 6-18
with multiprocessors, (II), 3-7
with process context, (II), 4-1

Memory-management fault entry (entMM)
register, (III), 1-2, 5-4, 5-7

Memory management faults
registers used, (II), 6-10
system entry for, (III), 5-4
types, (III), 3-9
with unaligned data, (II), 6-16

Memory prefetch registers, A-I0
defined, (I), 3-2

Memory protection, (III), 3-5
MF_FPCR instruction, (I), 4-87
MFPR_IPR_name (PALcode) instruction,

(11),2-86
MIN, defined for floating-point, (I), 4-58
Miscellaneous instructions (list), (I), 4-113
MMCSR, (111),5-7
MMCSR code, (III), 3-9
1M opcode qualifier, IEEE floating-point, (I),

4-60
Move, register-to-register, A-14
Move instructions (conditional)

See Conditional move instructions
MSKBL instruction, (1),4-52
MSKLH instruction, (I), 4-52
MSKLL instruction, (1),4-52
MSKQL instruction, (1),4-52
MSKWH instruction, (I), 4-52
MSKWL instruction, (1),4-52
MT_FPCR instruction, (1),4-87

synchronization requirement, (I), 4-66
MTPR_IPR_name (PALcode) instruction,

(11),2-87
MULF instruction, (1),4-106
MULG instruction, (1),4-106
MULL instruction, (1),4-29

with MULQ, (I), 4-29
MULQ instruction, (1),4-30

with MULL, (1),4-29
with UMULH, (I), 4-30

MULS instruction, (1),4-107
MULT instruction, (1),4-107
Multiple instruction issue, A-2
Multiply instructions

See also Floating-point operate
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Multiply instructions (cont'd)
multiply longword, (I), 4-29
multiply quadword, (I), 4-30
multiply unsigned quadward high, (1),4-31

Multiprocessor environment
See also Data sharing
cache coherency in, (I), 5-5
context switching, (I), 5-18
interprocessor interrupt, (11),6-21
I-stream reliability, (I), 5-17
MB instruction with, (I), 5-17
memory faults, (11),6-10
memory management in, (11),3-7
move operations in, (II), 2-76
no implied barriers, (I), 5-16
read/write ordering, (I), 5-9
serialization requirements in, (I), 4-117
shared data, (1),5-5, A-7

Multiprocessors
I/O with, (I), 8-3
interrupts with, (I), 8-12

Multithread implementation, (II), 2-80

N
NaN (Not-a-Number)

defined, (I), 2-8
Quiet, (I), 4-57
Signaling, (I), 4-57

NATURALLY ALIGNED data objects, (1),1-9
Negate stylized code form, A-14
Next PC, (II), 6-2

defined for arithmetic traps, (II), 6-14
Nonmemory-like behavior, (I), 5-3
NOP, A-13
NOT instruction, ORNOT with zero, (I), 4-37
NOT stylized code form, A-14

o
Opcode qualifiers

See also specific qualifiers
default values, (I), 4-3
notation (list), (I), 4-3

Opcodes
DEC OSF/1, C-9
OpenVMS, C-8
reserved, C-10
summarized, C-6

opDec, (III), 1-4
OpenVMS PALcode instruction opcodes, C-8
OpenVMS PALcode instructions (list), (II),

2-2
Operand expressions, (I), 3-3
Operand notation

defined, (I), 3-3

Index-12

Operand notation (cont'd)
from VAX architecture standard, (1),3-4

Operand values, (I), 3-3
Operate format instructions, opcodes for, C-2
Operate instruction format, (I), 3-10

floating-point, (I), 3-11
floating-point convert, (I), 3-12

Operators, instruction format, (I), 3-5
Optimization

See Performance optimizations
ORNOT instruction, (I), 4-37
OSF/1 PALcode instruction opcodes, C-9
Overflow trap, (II), 6-15; (III), 5-5
OVF bit

exception summary parameter, (11),6-13
exception summary register, (III), 5-5

p
Page frame number (PFN)

bits in PTE, (II), 3-6; (III), 3-3
determining validitation, (II), 3-4
finding for SCB, (II), 5-19
PTBR register, (II), 5-18
with address translation, (II), 3-9
with hardware context switching, (II), 4-3

Pages
collecting statistics on, (II), 6-11
individual protection of, (II), 3-7
max address size from, (II), 3-3
possible sizes for, (II), 3-2
size range of, (III), 3-1
virtual address space from, (II), 3-2

pageSize, (III), 1-2
Page sizes, (III), 3-2
Page table base (PTBR) register, (II), 5-18

defined, (III), 1-3
in HWPCB, (II), 4-2
privileged context, (II), 2-91
with address translation, (II), 3-9

Page table entry (PTE), (II), 3-3
atomic modification of, (II), 3-7
bits, summarized, (III), 3-3
changing and managing, (111),3-5
format of, (III), 3-3
modified by software, (II), 3-7
page protection, (II), 3-8
physical access of, (III), 3-6
virtual access of, (III), 3-7
with multiprocessors, (II), 3-7

PALcode
See also Queues, support for
access to kernel stack, (II), 6-31
barriers with, (I), 5-16
CALL_PAL instruction, (1),4-114



PALcode (cont'd)
compared to hardware instructions, (I), 6-1
defined for OpenVMS, (11),2-1
illegal operand trap, (II), 6-17
implementation-specific, (I), 6-2
instead of microcode, (I), 6-1
instruction format, (I), 3-13
memory management requirements, (II),

3-3
OSF/l support for, (III), 5-8
overview, (I), 6-1
processor state transitions, (II), 6-36
queue data type support, (II), 2-21
recognized instructions, (I), 6-4
replacing, (I), 6-3
required function support, (I), 6-2
required instructions, (I), 6-4
running environment, (1),6-2
special functions, a),6-2

PALcode instructions
OpenVMS (list), (II), 2-2
privileged OpenVMS (list), (II), 2-83
privileged OSF/1 (list), (III), 2-8
required, opcodes for, C-I0
reserved, opcodes for, C-I0
thread OpenVMS, (II), 2-80
unprivileged general (list), (II), 2-3
unprivileged OSF/l (list), (111),2-1

PALcode instructions, privileged
See also individual instructions
cache flush, (II), 2-84
drain aborts, (I), 6-5
halt processor, (I), 6-6
load quadword physical, (II), 2-85
move from processor register, (II), 2-86
move to processor register, (II), 2-87
read processor status, (III), 2-9
read system value, (III), 2-11
read user stack pointer, (III), 2-10
return from system call, (III), 2-12
return from trap, fault, or interrupt, (III),

2-13
store quadword physical, (II), 2-88
swap IPL, (III), 2-16
swap privileged context, (II), 2-89
swap process context, (III), 2-14
TB (translation buffer) invalidate, (III),

2-17
who am I, (111),2-18
write floating-point enable, (III), 2-21
write kernel global pointer, (III), 2-22
write system entry address, (III), 2-19
write system value, (III), 2-24
write user stack pointer, (III), 2-23
write virtual page table pointer, (III), 2-25

PALcode instructions, thread, (II), 2-80
read unique context, (II), 2-81
write unique context, (II), 2-82

PALcode instructions, unprivileged
See also individual instructions
breakpoint, (II), 2-4; (III), 2-2
bugcheck, (II), 2-5; (III), 2-3
change to executive mode, (II), 2-6
change to kernel mode, (II), 2-7
change to supervisor mode, (II), 2-8
change to user mode, (II), 2-9
generate software trap, (II), 2-10
generate trap, (III), 2-5
insert into queue (list), (II), 2-30
I-stream memory barrier, (I), 6-7
probe for read access, (II), 2-11
probe for write access, (II), 2-11
read processor status, (II), 2-13
read system cycle counter, (II), 2-17
read unique value, (III), 2-6
remove from queue (list), (II), 2-30
return from exception or interrupt, (II),

2-14
swap AST enable, (11),2-19
system call, (III), 2-4
write PS software field, (II), 2-20
write unique value, (III), 2-7

PALcode instructions, unprivileged general
(list), (II), 2-3

PALRESO, (1),6-2
PALRESl, (I), 6-2
PALRES2, (1),6-2
PALRES3, (1),6-2
PALRES4, (1),6-2
Passive release interrupt entry point, (II),

6-29
Passive release interrupts, (II), 6-20
PC

See program counter register
PCC

See Process cycle counter
Performance monitoring register (PERF­

MON), (II), 5-15
Performance monitor interrupt entry point,

(11),6-29
Performance optimizations

branch prediction, A-3
code sequences, A-II
data stream, A-6
for frequently executed code, A-I
for I-streams, A-2
instruction alignment, A-2
instruction scheduling, A-5
I-stream density, A-5
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Performance optimizations (cont'd)
multiple instruction issue, A-2
shared data, A-7

PFN
See Page frame number

Phys~cal address translation, (II), 3-9
PhysIcal space, (III), 3-3
PME, bit in HWPCB, (II), 4-2
PMI bus, (1),8-1

uncorrected protocol errors, (II) 6-22
Powerfail, CFLUSH PALcode inst~ction

with, (II), 6-22
Powerfail interrupt, (II), 6-22

service routine entry point, (II), 6-29
Prefetch data (FETCH instruction), (I), 4-115
Prefetch data registers, A-10
Prefetching data, considerations, A-I0
Privileged Architecture Library

See PALcode
Privileged context, (II), 2-90
Privileged context block base (PCBB) register

~,~6 '
Privileged PALcode instructions (list), (II),

2-83; (III), 2-8
PROBER (PALcode) instruction, (11),2-11
PROBEW (PALcode) instruction, (II), 2-11
Process, (II), 4-1

context switching the, (II), 4-4
Process context, (III), 4-1
Process control block (PCB), (III), 4-1

structure, (III), 4-2
Process control block base (PCBB) register

(111),1-3 '
Process cycle counter (PCC)

in HWPCB, (II), 4-2
privileged context, (II), 2-91
RPCC instruction with, (I), 4-118
system cycle counter with, (II), 2-17

Processor base (PRBR) register, (II), 5-17
Processor issue order

defined, (I), 5-11
with location access order, (I), 5-11

Processor issue sequence, (I), 5-10
Processor memory interconnect

See PMI bus
Processor modes

AST pending state, (11),5-7
change to executive, (II), 2-6
change to kernel, (II), 2-7
change to supervisor, (II), 2-8
change to user, (II), 2-9
controlling memory access, (II), 3-8
enabling executive mode reads, (II), 3-5
enabling executive mode writes, (II), 3-6
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Processor modes (cont'd)
enabling kernel mode reads (II) 3-5
enab~g supervisor mode r~ads,' (11),3-6
enablmg supervisor mode writes (II) 3-6
enabling user mode reads, (11),3-6 '
enabling user mode writes, (II), 3-6
page access with, (II), 3-1
PALcode state transitions, (II), 6-36

Processor number, reading, (II), 5-31
Processor state, defined, (II), 6-5
Processor state transitions, (II), 6-36
Processor status (PS) register

bit meanings for, (III), 5-2
bootstrap values in, (II), 6-6
current, (II), 6-5
current mode field, (II), 6-6
defined, (II), 1-1; (III), 1-3
explicit reading of, (II), 6-5
in processor state, (II), 6-5
interrupt priority level (IPL) field, (II), 6-6
saved on stack, (II), 6-5
saved on stack frame, (II), 6-7
software (SW) field, (II), 6-6
stack alignment field, (II) 6-6
virtual machine monitor bit, (II), 6-6
WR_PS_SW instruction, (II), 2-20

Process unique value (unique) remster (111\1-4 0'" , ,h

Program counter (PC) register (I) 3-1
alignment, (II), 6-6 "
current PC defined, (II), 6-2
defined, (III), 1-3
explicit reading of, (II), 6-6
in processor state, (11),6-5
next PC defined, (II), 6-14
saved on stack frame, (II), 6-7
with arithmetic traps, (II), 6-14- (III), 5-1
with faults, (II), 6-8 '
with interrupts, (II), 6-2
with machine checks, (11),6-23
with synchronous traps, (II), 6-15

Protection code, (II), 3-8; (III), 3-6
Protection modes, (II), 6-7
PS<SP_ALIGN> field, (II), 2-13
Pseudo-ops, A-14
PTE

See Page table entry

Q
Quadword data type, (1),2-2

alignment of, (I), 2-3, 2-11
atomic access of, (I), 5-2
integer floating-point format, (I), 2-11
loading in physical memory, (II), 2-85



Quadword data type (cont'd)
storing to physical memory, (II), 2-88
T_floating with, (I), 2-11

Queues, support for
absolute longword, (II), 2-21
absolute quadword, (II), 2-25
PALcode instructions (list), (11),2-30
self-relative longword, (II), 2-21
self-relative quadword, (II), 2-26

R
R31

restrictions, (I), 3-1
with arithmetic traps, (II), 6-12

RAZ (read as zero), (I), 1-9
RBADR field (mailbox), (I), 8-5
RC (read and clear) instruction, (I), 4-122
RD PS (PALcode) instruction, (II), 2-13
RDATA field (mailbox), (I), 8-6
rdps (PALcode) instruction, (III), 2-9
rdunique (PALcode) instruction, (III), 2-6

PCB with, (III), 4-1
required recognition of, (I), 6-4

RDUNIQUE (PALcode) instruction
required recognition of, (I), 6-4

rdusp (PALcode) instruction, (III), 2-10
PCB with, (III), 4-1

rdval (PALcode) instruction, (III), 2-11
READ_UNQ (PALcode) instruction, (II),

2-81
Read/write, sequential, A-10
Read/write ordering (multiprocessor), (I), 5-9

determining requirements, (I), 5-9
memory location defined, (I), 5-10

Registers, (1),3-1
See also specific registers
floating-point, (I), 3-2
integer, (I), 3-1
lock, (I), 3-2
memory prefetch, (1),3-2
optional, (I), 3-2
program counter (PC), (I), 3-1
value when unused, (1),3-8
VAX compatibility, (I), 3-2
with IPRs, (11),5-1

Register-to-register move, A-14
Register write mask, with arithmetic traps,

(11),6-14
REI (PALcode) instruction, (II), 2-14

arithmetic traps, (II), 6-9
faults, (II), 6-8
interrupt arbitration, (II), 6-35
interrupts, (II), 6-2
machine checks, (II), 6-23

REI (PALcode) instruction (cont'd)
synchronous traps, (II), 6-15

Remote devices
defined, (I), 8-1
interrupts with, (I), 8-12
with DMA, (I), 8-10

Remote I/O space, (I), 8-2
accessing, (I), 8-2, 8-8
flow control, (I), 8-3
read/write ordering, (I), 8-9

Remote writes (mailbox), (I), 8-5
Remove from queue PALcode instructions

longword, (II), 2-72
longword at head interlocked, (II), 2-52
longword at head interlocked resident, (II),

2-55
longword at tail interlocked, (II), 2-62
longword at tail interlocked resident, (II),

2-65
quadword, (IV,2-74
quadword at head interlocked, (II), 2-57
quadword at head interlocked resident,

(11),2-60
quadword at tail interlocked, (II), 2--67
quadword at tail interlocked resident, (II),

2-70
REMQHIL (PALcode) instruction, (11),2-52
REMQHILR (PALcode) instruction, (11),2-55
REMQHIQ (PALcode) instruction, (11),2-57
REMQHIQR (PALcode) instruction, (II), 2-60
REMQTIL (PALcode) instruction, (11),2-62
REMQTILR (PALcode) instruction, (II), 2--65
REMQTIQ (PALcode) instruction, (II), 2-67
REMQTIQR (PALcode) instruction, (11),2-70
REMQUEL (PALcode) instruction, (II), 2-72
REMQUELID (PALcode) instruction, (II),

2-72
REMQUEQ (PALcode) instruction, (II), 2-74
REMQUEQID (PALcode) instruction, (II),

2-74
Representative result, (I), 4-57
Reserved instructions, opcodes for, C-10
Reserved operand, (I), 4-58
Result latency, A-5
RET instruction, (I), 4-20
retsys (PALcode) instruction, (III), 2-12

PS with, (III), 5-2
Rounding modes

See Floating-point rounding modes
RPCC (read process cycle counter) instruction,

(1),4-118
RSCC instruction with, (II), 2-18

RS (read and set) instruction, (I), 4-122
RSCC (PALcode) instruction, (II), 2-17

RPCC instruction with, (II), 2-18
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rti (PALcode) instruction, (III) 2-13
PS with, (111),5-2 '
with exceptions, (III), 5-1

s
S4ADDL instruction, (1),4-24
S4ADDQ instruction, (1),4-26
S4SUBL instruction, a), 4-33
S4SUBQ instruction, (1),4-35
S8ADDL instruction, (1),4-24
S8ADDQ instruction, (1),4-26
S8SUBL instruction, (1),4-33
S8SUBQ instruction, (1),4-35
S_floating data type

alignment of, (I), 2-8
compared to F_floating, (I), 2-8
exceptions, (I), 2-8
format, (I), 2-8
mapping, (1),2-8
MAXIMIN, (I), 4-58
operations, (V,4-64
when data is unaligned, (II), 6-27

SBZ (should be zero), (I), 1-9
SCC

See System cycle counter
Security holes, (I), 1-7

with UNPREDICTABLE results (I) 1-8
SegO, mapping of, (III), 3-1 "
Seg1, mapping of, (III), 3-1
Segment number fields, (11),3-2
Self-relat~ve longword queue, (II), 2-21
Self-relatIve quadword queue (II) 2-26
Sequential read/write, A-10' ,
Serialization, MB instruction with, (I), 4-117
Shared data (multiprocessor), A-7

changed vs. updated datum, (1),5-5
Shared data structures

atomic update, (I), 5-6
ordering considerations (I) 5-7
using memory barrier (MB) instruction /]\5-8 ,\·h

Shared memory
accessing, (1),5-10
access sequence, (1),5-10
defined, (I), 5-9
issue sequence, (I), 5-10

Shift arithmetic instructions (I) 4--41
S~ift logical instructions, (I): 4-40
SIngle-precision floating-point (I) 4-64
SLL instruction, (I), 4--40 ' ,
Software (SW) field, in PS register, (II), 6-6
Software completion bit, (II), 6-13
Software considerations, A-1

See also Performance optimizations
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Software interrupt request (SIRR) register
described, (II), 5-20
interrupt arbitration, (II), 6-35
protocol for, (II), 6-19
with interrupts, (II), 6-19

Software interrupts, (II), 6-19
asynchronous system traps (AST) (1]\

6-20 ' /,
protocol between summary and request

(11),6-19 '
recording pending state of, (II), 5-21
request (SIRR) register, (II), 6-19
requesting, (II), 5-20
service routine entry points, (II), 6-28
summary (SISR) register, (II), 6-19
supported levels of, (II), 5-20

Software interrupt summary (SISR) register
described, (II), 5-21
protocol for, (II), 6-19
with interrupts, (II), 6-19

Software traps, generating, (II), 2-10
/S opcode qualifier

IEEE floating-point, (I), 4-61
VAX floating-point, (I), 4-61

SP
See Stack pointer

SRA instruction, (I), 4--41
SRLinstruction, (V,4--40
Stack alignment, (II), 6-31
Stack alignment (SP_ALIGN), field in saved

PS, (11),6-6
Stack frames, (II), 6-7; (III) 5-3
Stack pointer (SP) ,

defined, (II), 1-1; (III), 1-4
register linkage for, (III), 1-1

Stack pointer internal processor registers
(II), 5-1 '

Starvation, (I), 8-4
STATUS field (mailbox) (I) 8-6
STF instruction, (I), 4-73 '

wb:en data is unaligned, (II), 6-27
STG Instruction, (I), 4-74

when data is unaligned, (II) 6-27
STL_C instruction, (I), 4-11 '
w~en data is unaligned, (II), 6-27
WIth LDx_L instruction, (I), 4-11
with processor lock register/flag (I) 4-11

STL instruction, (I), 4-13 "
when data is unaligned, (II) 6-27

Store instructions '
See also Floating-point store instructions
emulation of, (I), 4-2
FETCH instruction, (1),4-115
multiprocessor environment (I) 5-5
serialization, (I), 4-117 ' ,



Store instructions (cont'd)
store longword, (I), 4-13
store longword conditional, (I), 4-11
store quadword, (I), 4-13
store quadword conditional, (I), 4-11
store unaligned quadword, (I), 4-14
when data is unaligned, (II), 6-27

Store memory integer instructions (list), (I),
4-4

ST'LC instruction, (I), 4-11
use in accessing MBPR, (1),8-3
with LDx_L inst., (1),4-11
with processor lock register/flag, (I), 4-11

ST'LL instruction
when data is unaligned, (II), 6-27

ST'LU instruction, (I), 4-14
STQ instruction, (I), 4-13

when data is unaligned, (II), 6-27
STQP (PALcode) instruction, (II), 2-88
STSinstruction, (V,4-75

when data is unaligned, (II), 6-27
STT instruction, (I), 4-76

when data is unaligned, (II), 6-27
SUBF instruction, (I), 4-109
SUBG instruction, (1),4-109
SUBL instruction, (I), 4-32
SUBQ instruction, (1),4-34
SUBS instruction, (I), 4-111
SUBT instruction, (I), 4-111
Subtract instructions

See also Floating-point operate
subtract longword, (I), 4-32
subtract quadword, (1),4-34
subtract scaled longword, (I), 4-33
subtract scaled quadword, (I), 4--35

Supervisor read enable (SRE), bit in PTE,
(11),3-6

Supervisor stack pointer (SSP)
as internal processor register, (II), 5-1
in HWPCB, (II), 4-2

Supervisor stack pointer (SSP) register, (II),
5-28

Supervisor write enable (SWE), bit in PTE,
(11),3-6

SWASTEN (PALcode) instruction, (11),2-19
interrupt arbitration, (II), 6-36
with ASTEN register, (11),5-6

SWC bit
exception summary parameter, (11),6-13
exception summary register, (III), 5-2, 5-4

swpctx (PALcode) instruction, (III), 2-14
PCB with, (III), 4-1
with ASNs, (111),3-8

SWPCTX (PALcode) instruction, (11),2-89
with ASTSR register, (11),5-8

swpipl (PALcode) instruction, (III), 2-16
PS with, (III), 5-2

Synchronous traps, (III), 5-2
data alignment, (II), 6-15
defined, (II), 6-9
program counter (PC) value, (II), 6-15
REI instruction with, (II), 6-15

System call entry (entSys) register, (III), 1-3,
5-4,5-8

System control block (SCB)
arithmetic trap entry points, (II), 6-27
fault entry points, (II), 6-26
finding PFN, (11),5-19
saved on stack frame, (II), 6-7
structure of, (II), 6-25
with memory management faults, (II),

3-14
System control block base (SCBB) register,

(11),5-19
System cycle counter (SCC), reading, (II),

2-17
System entry addresses, (III), 5-3
System value (sysvalue) register, (III), 1-4

T
T_floating data type

alignment of, (I), 2-10
exceptions, (I), 2-10
format, (I), 2-9
MAXIMIN, (1),4-59
when data is unaligned, (II), 6-27

TB
See Translation buffer

tbi (PALcode) instruction, (III), 2-17
with TBs, (III), 3-8

Tightly coupled I/O bus, (I), 8-1
Timeout, (1),8-4
Timing considerations, atomic sequences,

A-17
Translation

physical, (III), 3-6
virtual, (III), 3-7

Translation buffer (TB), (III), 3-8
address space number with, (II), 3-11
fault on execute, (II), 6-12
fault on read, (II), 6-11
fault on write, (II), 6-11
granularity hint in PTE, (II), 3-5
with invalid PTEs, (II), 3-12

Translation buffer check (TBCHK) register
described, (II), 5-22
with translation buffer, (II), 3-12

Index-17



Translation buffer invalidate all (TBIA)
register

described, (II), 5-24
with translation buffer, (II), 3-12

Translation buffer invalidate all process
(TBIAP) register

described, (II), 5-25
with translation buffer, (II), 3-12

Translation buffer invalidate single (TBIS)
register, (II), 5-26

Translation not valid fault, (II), 6-10
service routine entry point, (II), 6-26

Translation-not-valid fault, (III), 3-9
TRAPB (trap barrier) instruction, A-14

described, (I), 4-120
with MT_FPCR, (1),4-66
with trap shadow, (1),4-62

Trap handler, with non-finite arithmetic
operands, (V, 4-63

Trap handling, IEEE floating-point, B-4
Trap modes

floating-point, (I), 4-60
IEEE, (I), 4-61
IEEE convert-to-integer, (I), 4-61
VAX, (I), 4-60
VAX convert-to-integer, (I), 4-61

Traps
See Arithmetic traps

Trap shadow, (111),5-2
defined, (I), 4-62
defined for floating-point, (I), 4-58
trap handler requirement for, (I), 4-62

Trigger instruction, (III), 5-2
True result, (I), 4-57
True zero, (I), 4-57

u
UMULH instruction, (I), 4-31

with MULQ, (I), 4-30
Unaligned access fault

system entry for, (III), 5-4
UNALIGNED data objects, (I), 1-9
Unaligned fault entry (entUna) register, (III),

1-3,5-8
Unconditional long jump, (I), 4-21
UNDEFINED operations, (I), 1-7
Underflow trap, (II), 6-15; (III), 5-5
UNF bit

exception summary parameter, (11),6-13
exception summary register, (III), 5-5

UNORDERED memory references, (I), 5-9
UNPREDICTABLE results, (I), 1-7
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Unprivileged PALcode instructions (list), (III),
2-1

Unprivileged PALcode instructions, VAX
compatibility, (II), 2-75

/U opcode qualifier
IEEE floating-point, (I), 4-61
VAX floating-point, (I), 4-61

Updated datum, (1),5-5
User mode, protection code with, (III), 3-6
User read enable (URE)

bit in PTE, (II), 3-6; (III), 3-4
User stack pointer (USP)

defined, (III), 1-4
in HWPCB, (II), 4-2
internal processor register, (II), 5-1

User stack pointer (USP) register, (II), 5-29
User write enable (UWE)

bit in PTE, (II), 3-6; (III), 3-4

v
Valid (V)

bit in PTE, (II), 3-4; (III), 3-5
vaSize, (III), 1-2
VAX compatibility instructions, restrictions

for, (1),4-121
VAX compatibility register, (I), 3-2
VAX convert-to-integer trap mode, (I), 4-61
VAX floating-point

See also Floating-point instructions
D_floating, (I), 2-6
F_floating, (I), 2-3
G_floating, (I), 2-5
trap modes, (I), 4-62

VAX floating-point instructions
add instructions, (I), 4-88
compare instructions, (I), 4-91
convert from integer instructions, (I), 4-95
convert to integer instructions, (I), 4-94
convert VAX floating format instructions,

(1),4-96
divide instructions, (I), 4-102
multiply instructions, (I), 4-106
opcodes for, C-5
operate instructions, (I), 4-80
qualifiers, summarized, C-5
subtract instructions, (I), 4-109

VAX rounding modes, (1),4-59
VAX trap modes, required instruction

notation, (I), 4-61
Virtual address format, (II), 3-2

segment number fields, (II), 3-2
Virtual address space

minimum and maximum, (11),3-2
page size with, (II), 3-1



Virtual address spaces, (III), 3-1
Virtual address translation, (II), 3-10
Virtual D-cache, (I), 5-3

maintaining coherency of, (I), 5-3
Virtual format, (III), 3-1
Virtual I-cache, (I), 5-3

maintaining coherency of, (I), 5-5
Virtual machine monitor (VMM), bit in PS

register, (II), 6-6
Virtual page base (VPTB) register, (II), 5-30
Virtual page table pointer (VPTPTR), (III),

1-4
N opcode qualifier

IEEE floating-point, (I), 4-61
VAX floating-point, (I), 4-61

w
Watchpoints

with fault on read, (II), 6-11
with fault on write, (II), 6-11

WDATA field (mailbox), (1),8-6
W field (mailbox), (I), 8-5
Whami, (III), 1-4
whami (PALcode) instruction, (III), 2-18
WHO_ARE_YOU command, (I), 8-13
Who-Am-I (WHAMI) register, (11),5-31
Word data type, (I), 2-1
WR_PS_SW (PALcode) instruction, (II),

2-20
wrent (PALcode) instruction, (III), 2-19
wrfen (PALcode) instruction, (III), 2-21
WRITE_UNQ (PALcode) instruction, (II),

2-82
Write-back caches, requirements for, (I), 5-4
Write buffers, requirements for, (I), 5-4
wrkgp (PALcode) instruction, (III), 2-22
wrunique (PALcode) instruction, (III), 2-7

PCB with, (111),4-1
required recognition of, (I), 6-4

WRUNIQUE (PALcode) instruction
required recognition of, (I), 6-4

wrusp (PALcode) instruction, (III), 2-23
PCB with, (111),4-1

wrval (PALcode) instruction, (III), 2-24
wrvptptr (PALcode) instruction, (III), 2-25

x
XOR instruction, (I), 4-37

z
ZAP instruction, (V,4-55
ZAPNOT instruction, (1),4-55

Zero byte instructions (list), (I), 4-55
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