November 1979

This document contains instructions for installing the VAX-11 PASCAL com-
piler on the VAX/VMS operating system. It also contains information not in-
cluded elsewhere in the documentation set, typically concerning software
and/or documentation errors that were discovered or changes that were made
late in the development cycle. This document should be read before the
VAX-11 PASCAL compiler is installed or used.

VAX-11 PASCAL
Installation Guide/Release Notes
Order No. AA-J181A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this

release.
OPERATING SYSTEM AND VERSION: VAX/VMS V1.6
SOFTWARE VERSION: VAX-11 PASCAL V1.0-1

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, November 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright()l979 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the wuser‘s critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 T™S-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT

DATATRIEVE TRAX

CONTENTS

PREFACE

INSTALLATION PROCEDURE
Contents of the Distribution Kit
Preparing to Install the VAX~-11l PASCAL
Compiler
The Installation Procedure
Completion of the Procedure

INTERFACE TO THE VAX-11 SYMBOLIC DEBUGGER
Choosing a Language
Describing Object Program Locations
Examining and Modifying Variables
Debugger Commands

RELEASE NOTES
LIST Option
Rewrite of a File Using DECnet
Reinstallation of VAX-11 PASCAL
Reading REAL or DOUBLE Precision Numbers
Using Descriptors in VAX-11 PASCAL
Number of Significant Digits
Assignment of PASSINPUT and PAS$OUTPUT
Run-Time Errors Not Signaled
Output Characteristics Differ
No Checking for Dereferencing a NIL Pointer
Overflow of REALs and INTEGERs
TRUE and FALSE Comparisons
RUN-TIME ERROR TERMINATION MESSAGE

e & & & ¢ ¢ o & s o e s @ « o o

WWWWWWWWwWwWwWwWwWwW WM NN o

e o & e o e s o

HFEEHEHEOONANT_WNFHEFOMWNEFHOBDW N O

WO

iii

o)
o
Q
[

LYwWVwOYwoomOONAGNULTUIDN - [l el <

PREFACE

MANUAL OBJECTIVES

The VAX-11 PASCAL Installation Guide/Release Notes describe:

The procedures necessary to install the VAX-11 PASCAL compiler
on the VAX/VMS operating system

The use of the VAX-11 Symbolic Debugger in debugging PASCAL
programs

Changes that were made and problems that were discovered too
late in the development cycle to be discussed in the rest of
the VAX-11 PASCAL manual set

INTENDED AUDIENCE

This manual is intended for use by VAX/VMS system managers and PASCAL
programmers.

STRUCTURE OF THIS DOCUMENT

This manual is organized as follows:

Section 1.0 describes the installation procedures.

Section 2.0 briefly describes how to use the VAX-11 Symbolic
Debugger to debug a PASCAL program.

Section 3.0 lists and describes problems and restrictions in
this release of VAX-11 PASCAL.

VAX~11 PASCAL INSTALLATION GUIDE/RELEASE NOTES

1.0 INSTALLATION PROCEDURE

This chapter describes the procedure for installing the VAX-11 PASCAL
compiler on the VAX/VMS operating system. The procedure is automated
and requires that the system manager or other individual performing
the procedure mount floppy diskettes when prompted and respond to
queries issued during the installation procedure.

This procedure can be performed by any system user who has access to

the system manager's account or to an account that has the same
privileges as the system manager's account.

1.1 Contents of the Distribution Kit

The VAX-11 PASCAL installation kit consists of three FILES-11 ODS 2
floppy diskettes.

Each diskette is labeled with both a serial number corresponding to
the VAX-11 PASCAL compiler's product number and a unique label that
differentiates that diskette from every other diskette in the
distribution kit.

The diskettes in the VAX-11 PASCAL distribution kit are:

Diskette Label Contents

VAX-11 PASCAL V1.0 RX01 This diskette contains the installation

{(numbered 1/3) command procedure, the Run-Time Library
object modules, and some of the compiler
object modules.

VAX-11 PASCAL V1.0 RX01 This diskette contains compiler object
(numbered 2/3) modules.

VAX-11 PASCAL V1.0 RX01 This diskette contains the remainder of the
(numbered 3/3) compiler object modules.

These diskettes must be mounted in the order listed above during the
installation procedure.

1.2 Preparing to Install the VAX-11 PASCAL Compiler

To prepare for installation of the VAX-11 PASCAL compiler, perform the
following steps:

l. At the system console terminal, log into the system using the
system manager's account or other privileged account.

2. Be sure that the logical name SYS$SDISK is assigned to the
disk that contains the current version of VAX/VMS, as
distributed, and contains all updates. This disk contains
the command procedure that initiates the installation
procedure. Note that SYS$DISK need not be (and if possible
should not be) the same as SYS$SYSTEM.

VAX-11 PASCAL INSTALLATION GUIDE/RELEASE NOTES

3. Enter the following commands in the order shown:
e Change the current UIC as follows:
SET UIC [1,4]
e Set the default directory as follows:
SET DEFAULT ([SYSUPD]
4. At the console terminal, type:
@QVMSUPDATE
The execution of the command procedure VMSUPDATE.COM initiates the
installation procedure. The procedure VMSUPDATE.COM displays the

following:

This command procedure performs VAX/VMS software updates and
unbundled software installations...

During this sequence, the standard console floppy will not be
present in the console floppy drive.

Therefore, the system is vulnerable to power failure or other
types of fatal crash. If a system crash should occur during this
period the update sequence can be restarted at the beginning of
the first incomplete update.

Dismount the current console floppy.
Please place the first floppy of the kit in the console drive.

You are now ready to begin the installation procedure for the VAX-11
PASCAL compiler.

1.3 The Installation Procedure

If there is a floppy disk mounted in the console floppy drive, remove
it. (Note that if there is no floppy diskette mounted, the system
displays an error message. You can ignore this message and continue.)

When you remove the floppy diskette, note the direction it is facing,
that 1is, the direction of the label on the diskette. When you insert
diskettes from the distribution kit, you must insert them in the drive
so that they face the same direction. (The label is on the front side
of the diskette.)

Place the first diskette, labeled 1/3, in the console drive. You will
receive the message:

ARE YOU READY TO CONTINUE?

If you type Y in response to this message, the installation procedure
continues.

VAX-11 PASCAL INSTALLATION GUIDE/RELEASE NOTES

If you type N, the request to place the first diskette in the console
floppy drive and the query "ARE YOU READY TO CONTINUE?" are repeated.
When you have responded "Y" to the query, the command procedure on the
first floppy diskette assumes control and the files needed to build
the compiler are copied from the first diskette to the system disk.
When this is done, you receive the next messages:

PLEASE PUT THE NEXT PASCAL KIT FLOPPY DISK IN THE DRIVE.

IF NO MORE FLOPPIES TO BE COPIED, PLEASE TYPE <CR>.

ARE YOU READY TO CONTINUE?

Replace the diskette labeled 1/3 with the diskette labeled 2/3, and
type Y to indicate that the installation can continue.

When this stage is complete, you receive the messages:
PLEASE PUT THE NEXT PASCAL KIT FLOPPY DISK IN THE DRIVE.
IF NO MORE FLOPPIES TO BE COPIED, PLEASE TYPE <CR>.
ARE YOU READY TO CONTINUE?

Replace the diskette labeled 2/3 with the diskette 1labeled 3/3, and
type Y to indicate that the installation can continue.

When this stage is complete, you receive the messages:

PLEASE PUT THE NEXT PASCAL KIT FLOPPY DISK IN THE DRIVE.

IF NO MORE FLOPPIES TO BE COPIED, PLEASE TYPE <CR>.

ARE YOU READY TO CONTINUE?
Since you have completed processing all the floppies, type a carriage
return instead of a Y this time. You may now take the diskette

labeled 3/3 out of the drive at any time.

During the following stage, you will get a warning message from the
linker:

$LINK-W-MULTFR, Module "PASCAL" multiply defines transfer address
This a normal message and should be ignored. Then the following
message will appear:

The default linelimit of the compiler is 2**31.

DO YOU WANT TO CHANGE IT?
Respond with N if you do not wish to change the 1linelimit. If you
wish to impose a smaller default linelimit on files generated by the
PASCAL I/0O system, then respond with ¥, in which case the next message

you will see is:

What linelimit do you want to have?

VAX-11 PASCAL INSTALLATION GUIDE/RELEASE NOTES

Respond with the positive decimal integer value you wish to have as
the default linelimit. (For example, typing 100 sets the linelimit to
100 lines.) When this stage is complete, you will receive the message:

DO YOU WANT TO PURGE OLDER VERSIONS OF THE PASCAL COMPILER?
Type Y if you wish to delete older versions; type N if you wish to
retain older versions. If you have not previously installed PASCAL on
the system, type N.

You may now receive some of the following messages:

MODULE "PASSIO_BASIC" REPLACED
MODULE "PASSIO_INPUT" REPLACED
MODULE "PASSIO_OUTPUT" REPLACED
MODULE "PASSRT UTIL" REPLACED
MODULE "PASSRT_HEAP" REPLACED
MODULE "PASSRT_CHK" REPLACED
MODULE "PASSRT_FUNC" REPLACED
MODULE "PASSLINELIM" REPLACED

PASCAL ALREADY APPEARS IN [SYSHLP]HELP.HLP - NOT INSERTED.
$SYSTEM-F-DEVNOTMOUNT, device not mounted
These messages should be ignored.
At this time, an installation verification test will be run. This
test compiles, links, and executes a sample PASCAL program. The only
output to the terminal will be:

PASCAL INSTALLATION SUCCESSFUL

1.4 Completion of the Procedure

When the installation procedure completes, control returns to the
system command procedure VMSUPDATE, This procedure issues the
following message:

ARE THERE MORE KITS TO PROCESS [Y/N]
Respond with a Y to this message only if you have additional software
kits to 1install. Then you will receive a request to mount the first
diskette from another distribution kit. The installation of that kit
will continue.
If you type N, you will receive the message:

Please place the system console floppy in the console drive.
You should immediately restore the standard console diskette (which

was removed at the beginning of the update procedure) to the console
drive.

VAX-11 PASCAL INSTALLATION GUIDE/RELEASE NOTES

After you have replaced the system console diskette, you receive the
message:

ARE YOU READY TO CONTINUE?

Type Y. The console floppy diskette is automatically mounted. You
receive the message:

Requested update sequence is complete.

IMPORTANT NOTE: Upon completion of the installation process, the
system manager must perform the following task:

The following two system logical names must be established:

ASSIGN/SYSTEM SYSSOUTPUT PAS$SOUTPUT
ASSIGN/SYSTEM SYSSINPUT PASSINPUT

These two assignments must also be placed in [SYSMGR]SYSTARTUP.COM.
They establish the default INPUT and OUTPUT files for PASCAL I/O. The
VAX/VMS software release distribution kit version of SYSTARTUP will
eventually include these commands, but until then, they must be
treated as site-specific start-up commands.

The VAX-11 PASCAL compiler is now installed and can be invoked by the
PASCAL command:

SPASCAL

2.0 INTERFACE TO THE VAX-11 SYMBOLIC DEBUGGER

The VAX-11 Symbolic Debugger does not currently contain any special
features to support PASCAL. This means that many of the debugger
commands that supply high-level language support are not available
when debugging PASCAL object modules. However, you can still debug
your PASCAL program in the same manner as you would debug a MACRO
assembly language program. Before attempting to use the debugger on a
PASCAL program, you should be familiar with VAX instruction
architecture.

This section assumes that you are familiar with using the VAXx-11
Symbolic Debugger. If you are familiar with MACRO assembly language
programming, but have not used the debugger, you should read the
VAax-11 Symbolic Debugger Reference Manual before attempting to
understand this section.

2.1 Choosing a Language

The SET LANGUAGE command allows you to choose the debugger command
formats that are most convenient. The current choices are BLISS,
MACRO, and FORTRAN.

When you invoke the debugger, the language is initially set to BLISS.
However, it is advised that only those individuals with a detailed
knowledge of BLISS and the VAX-11l Symbolic Debugger should 1leave the
language set in this way for debugging PASCAL programs.

If you choose FORTRAN, the debugger will understand expressions and
assignments containing simple variables of the INTEGER, REAL, SINGLE
and DOUBLE types. However, in the FORTRAN language mode, the debugger

VAX-~11 PASCAL INSTALLATION GUIDE/RELEASE NOTES

does not allow you to do address arithmetic. As a result, it is
difficult to examine structured variables and object code with the
debugger in FORTRAN mode. FORTRAN mode is useful only if:

l. Your program contains many simple variables (INTEGER, REAL,
SINGLE and DOUBLE).

2. You do not need to examine structured variables (arrays and
records).

3. You need to set break points only at the entries to your
functions and procedures.

MACRO mode allows you to examine structured variables in the same way
that you would examine structured data in an assembly program. You
can also easily examine the object code instructions. Therefore, you
should probably choose MACRO as the language mode to use with the
debugger.

For information about using the debugger with MACRO assembly programs,
refer to the VAX-11 Symbolic Debugger Reference Manual. Using the
debugger with FORTRAN programs 1s described 1iIn the VAX-11 FORTRAN
IV-PLUS User's Guide. Information on using the debugger with BLISS
programs is included in the VAX-1ll BLISS-32 User's Guide.

2.2 Describing Object Program Locations

PASCAL produces its machine code listing before it performs branch
optimization. Therefore, the hexadecimal 1locations in the machine
code listing do not correspond to the locations in the final object
code. As a result, you cannot safely set a break point based on the
locations specified in the listing. However, you can easily set a
breakpoint at the entry of a procedure or function. By using the
EXAMINE/INSTRUCTION command, you can look at the actual object code
and use this information to set break points inside routines.

PASCAL produces a line number table for use by the traceback program
and the debugger. When you examine the stack of routine calls (with
the SHOW CALLS command), you can see the 1line numbers where the
procedure calls have occurred. However, the debugger currently only
allows line number tables produced by FORTRAN to be used as input. If
your PASCAL program does not contain any procedures, the object code
is similar enough to that produced by FORTRAN so that you can use
$LINE parameters with debugger commands in FORTRAN mode. But for most
PASCAL programs, the RLINE parameter will not be available for use
with the current debugger. Furthermore, you cannot use the $LABEL
parameter because PASCAL labels do not 1look 1like FORTRAN statement
numbers.

2.3 Examining and Modifying Variables

PASCAL generates complete symbol table entries only for the INTEGER,
REAL, SINGLE, and DOUBLE types. The EXAMINE, EVALUATE, and DEPOSIT
commands work easily with wvariables of these types. When using
variables of other types, you must be familiar with the internal
format that PASCAL uses to store these types. PASCAL generates
debugger symbol table entries for all variables, but the symbol table
entry for a structured variable currently gives only the variable's
location. As a result, the debugger always prints storage allocated
to a variable as an unsigned numeric value using the debugger's
prevailing number base.

VAX-11 PASCAL INSTALLATION GUIDE/RELEASE NOTES

Because PASCAL is a block structured 1language, you may find it
necessary to provide extra qualification to your program's symbol
names. For example, if variable NAME is declared in procedure PROC in
program PROG, then variable NAME should appear as PROG\PROC\NAME on
input and output to the debugger. This qualification allows the
debugger to differentiate this use of the symbol NAME from other uses
of this symbol elsewhere in your program.

PASCAL does not nest its procedure symbol tables. Thus, even 1if vyou
declare a procedure INNER local to a procedure OUTER, the produced
symbol table describes both INNER and OUTER as unnested procedures
declared 1in main program block. As a result, you never need to
qualify a variable name with more than two context names (the program
or module name and the procedure name).

Variables declared in the outermost block look like they were declared
in a procedure with the same name as the program. Therefore, a
variable with the name NAMEl declared in program PROG appears as
PROG\PROG\NAME1 when used with the debugger. The scoping rules of the
debugger usually make this qualification unnecessary. Refer to the
VAX-11 Symbolic Debugger Reference Manual for a description of how
these scoping rules work. However, since PASCAL does not nest its
debug symbol tables, the debugger sometimes confuses two internal
procedures with identical names.

The current version of the debugger does not reconstruct the proper
context when accessing a variable. You must 1issue a SHOW CALLS
command to determine which PASCAL routine is uppermost in the stack of
called procedures. You can then examine wvariables only in this
uppermost procedure and in the main program block. If your program
references variables declared in outer blocks (other than at program
level), the debugger accesses the wrong location.

PASCAL statically allocates the variables in the outer 1level of the
main program so that you can examine these variables at any time.

2.4 Debugger Commands

Most debugger commands work as described in the VAX-1ll Symbolic
Debugger Reference Manual, The CALL and STEP commands are the two
exceptions.

e CALL -- Although FORTRAN always passes parameters
by-reference, and the debugger considers MACRO to use call
by-value, PASCAL allows a mixture of call by-reference and
call by-value (as described in Chapter 6 of the VAX-11 PASCAL
User's Guide). 1In addition, PASCAL uses its own conventions
when passing procedures and functions as parameters.,
Therefore, you must carefully consider the effect of the
debugger language mode when using the CALL command to call
PASCAL routines. Use the CALL command only if you are
familiar with the run-time representation of parameters for
PASCAL functions and procedures.

® STEP -- The STEP command works in INSTRUCTION mode, but not in
LINE mode. If you select the FORTRAN language mode, you must
also issue the SET STEP INSTRUCTION command after the SET
LANGUAGE command.

VAX-11 PASCAL INSTALLATION GUIDE/RELEASE NOTES

3.0 RELEASE NOTES

The following is a summary of all the known restrictions that affect
the operation of the VAX-11 PASCAL compiler.

3.1 LIST Option

The /LIST command line qualifier does not work as expected in
connection with the (*L+*) source code qualifier. This is due to an
error in the way the VAX/VMS command line processing works.

For now, you must explicitly specify /LIST in the command line if vyou
want a source code listing, as follows:

SPASCAL/LIST=file-spec file-spec
or
SPASCAL file-spec/LIST=file-spec

If you specify neither /LIST nor /NOLIST, the compiler behaves as
though you specified /NOLIST. Therefore, attempts to set the listing
option in the following format within a PASCAL source program will
have no effect:

(*SL+*)

A future release of the VAX/VMS operating system will correct this
problem.

3.2 Rewrite of a File Using DECnet

There is a restriction concerning the rewriting of files that exist on
a remote (not local) node of a DECnet network.

A new file can be created and written on a remote node through VAX-11
PASCAL. An existing file can be read but not rewritten unless it is
empty.

The following code sequence will fail if MASTER.DAT is not empty:

OPEN (FILEX, 'BANGOR"PLUGH XYZZY"::MASTER.DAT', OLD);
REWRITE (FILEX);
WRITE (FILEX, VAR1l, VAR2);

When you call REWRITE in VAX-11 PASCAL, the file buffer variable is
set to the beginning of the file and all existing records are
overwritten and therefore lost. You could also open the file as
"NEW", in which case the previous version of the file 1is not
destroyed, but a new version is created. The result is the same,
except that the file's version number has been incremented.

This stems from a restriction in DECnet-VAX that will be fixed in a
future release.

(For a discussion of "NEW" and "OLD" files, see Section 7.5 of the
VAX-11 PASCAL Language Reference Manual concerning the OPEN statement.
An example of writing data to a remote node is shown in Section 5.6 of
the VAX-11 PASCAL User's Guide.)

VAX-11 PASCAL INSTALLATION GUIDE/RELEASE NOTES

3.3 Reinstallation of VAX-11 PASCAL

The VAX-11 PASCAL compiler must be reinstalled after a new VAX/VMS
operating system is generated. A new system generation will produce a
new copy of the library STARLET.OLB which will not contain the VAX-11
PASCAL modules. The PASCAL specific modules can be written into the
library only by the reinstallation of VAX-11 PASCAL.

3.4 Reading REAL or DOUBLE Precision Numbers

When you read REAL or DOUBLE values using the procedure READ or
READLN, the exponent designator must be a capital letter, "E" or "D."

The following are illegal values to be input:

lel
3.1415€0
10.11114-3

This problem will be fixed in a future release of the VAX/VMS
operating system.

3.5 Using Descriptors in VAX-11 PASCAL

VAX-11 PASCAL uses the uniform descriptor mechanism in transmitting
$DESCR arguments to routines written in languages other than PASCAL.
(For a complete discussion of argument descriptors, see Appendix C of
the VAX-11 Architecture Handbook.)

However, there is a restriction on the use of descriptors in VAX-11
PASCAL. The length and type fields of descriptors of some arrays may
not be filled in. This is due to a deficiency in the size of these
fields. It is not recommended that these fields be referenced
directly.

3.6 Number of Significant Digits

The number of digits printed for a single-precision real number in
VAX-11 PASCAL 1is 9. Typically, however, only 7 of these digits are
significant due to the functioning of the VAX/VMS hardware.

Consider the following program:

PROGRAM TESTFP (OUTPUT) ;

VAR X : REAL;

BEGIN
X = 3.14;
WRITELN ('The value of X is ',X
WRITELN ('nine digits ',X:16:9)
WRITELN ('eight digits ',X:16:8
WRITELN ('seven digits ',X:16:7
WRITELN ('six digits ',X:16:6);
WRITELN ('five digits ',X:16:5)

END.

.
’

)
)
)

VAX-11 PASCAL INSTALLATION GUIDE/RELEASE NOTES

The output from this program would be:

The value of X is 3.140000105E+00

nine digits 3.140000105
eight digits 3.14000010
seven digits 3.1400001
six digits 3.140000
five digits 3.14000

When doing precise arithmetic calculations, you should keep this
degree of error in mind.

3.7 Assignment of PASSINPUT and PAS$OUTPUT

The assignment of PASSINPUT and PASSOUTPUT to SYSSINPUT and SYSSOUTPUT
is specified in the installation section of this manual. However, on
versions of VAX/VMS later than 1.6, these assignments may already be
present in the system startup command procedure file.

The reassignment of PASSINPUT and PASSOUTPUT at installation time will
then be wunnecessary. If performed, reassignment will have no effect
and the compiler will continue to function correctly.

3.8 Run-Time Errors Not Signaled

Errors at run time from the VAX-11 PASCAL compiler cannot be fielded
by condition handlers (see Chapter 7 of the VAX-11 PASCAL User's
Guide).

A future release of the VAX-11 PASCAL compiler will signal these
errors so they may be fielded by condition handlers.

3.9 oOutput Characteristics Differ

The predeclared files INPUT and OUTPUT (SYSSINPUT and SYSSOUTPUT) are
opened with default attributes. However, OUTPUT is not opened in
exactly the same manner as is done in other VAX/VMS languages. For
more information on the predeclared file OUTPUT, see Chapter 7 of the
VAX-11 PASCAL Language Reference Manual.

3.10 No Checking for Dereferencing a NIL Pointer

When the CHECK qualifier is set at compile time, VAX-11 PASCAL does
not generate code to check for dereferencing a NIL pointer.
Currently, an access violation occurs when a program dereferences a
NIL pointer.

To avoid the problem at this time, you can check for dereferencing a
NIL pointer in the source program by writing a routine to do so.

10

VAX-11 PASCAL INSTALLATION GUIDE/RELEASE NOTES

3.11 Overflow of REALs and INTEGERs

There is a restriction in the diagnosis of overflow conditions for
REAL and INTEGER numbers.

For example, consider the following program:

PROGRAM TOOLARGE (INPUT, OUTPUT);
VAR BIG : REAL;

BEGIN
READ (BIG);
WRITE (BIG)
END.

When this program is run and the following number is entered:
1.8E39

The following result is printed:
0.000000000E+00

This problem will be fixed in a future release of the VAX-11l PASCAL
compiler.

3.12 TRUE and FALSE Comparisons
VAX-11 PASCAL uses more than just the low-order bit when comparing
Booleans. This will cause incompatibilities with Boolean values from

FORTRAN IV-PLUS, system services, and other VAX/VMS languages that do
not use 0 for FALSE and 1 for TRUE.

3.13 RUN-TIME ERROR TERMINATION MESSAGE

One of the following messages may appear when your program encounters
an error at run time:

$PAS-F-NOMSG, Subsystem 33 -- Message number 33700
$¥NONAME-F-NOMSG, Subsystem 33 -- Message number 33668
The message appears along with other run-time error messages that

provide more information about the error. These two messages will
change in a future release.

11

Please cut along this line.

VAX-11 PASCAL
Installation
Guide/Release Notes
AA-J181A-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.,

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

ooooag

Other (please specify)

Name Date

Organization

Street

City. State Zip Code
or
Country

— — DoNot Tear- Fold Hereand Tape — — — — — — — = = o - - - - — — — — — — |

No Postage |
Necessary |
if Mailed in the | |
United States |

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

- DoNotTear-FoldHere @ = @ — — — — = o e e e m e = = — — — e -

Cut Alone Dotted Line

