EY-2279E-SG-0002

VAX/VMS
INTERNALS |

Student Workbook

Prepared by Educational Services
of
Digital Equipment Corporation

Second Edition, October 1986

Copyright © 1986 by Digital Equipment Corporation
All Rights Reserved

The reproduction of this material, in part or whole, is strictly prohibited.
For copy information, contact the Educational Services Department,
Digital Equipment Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for.any errors that may appear in this document.

The software described in this document is furnished under a license
and may not be used or copied except in accordance with the terms of
such license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by Digital.

The manuscript for this book was created using DIGITAL Standard
Runoff. Book production was done by Educational Services
Development and Publishing in Nashua, NH.

The following are trademarks of Digital Equipment Corporation:

Eﬂﬂﬂﬂﬂﬂ ™ DECtape Rainbow

DATATRIEVE DECUS RSTS
DEC DECwriter RSX
DECmate DIBOL UNIBUS
DECnet MASSBUS VAX
DECset PDP VMS
DECsystem-10 P/OS vT

DECSYSTEM-20 Professional Work Processor

CONTENTS

SG STUDENT GUIDE

INTRODUCTION e ® o e o o o e o e e e o o o o o o o o o s s o SG-3
GOALS: ¢ o o o o o o o o o o ¢ o o o o o o o o o o o o o o o SG‘4
NON-GOALS. « « « o o o o o o o o o o o o o o o o o o o & o o SG=5
PREREQUISITES. . . « o o e o o o o o o *« o o e o o o o o o SG-S
RESOURCES. e e o ® o o & ® ° e e 8 & © o o o ¢ o o o o o o o SG—S
COURSE MAP e o o o e e e e e o e 8 e e o o o o o o 0+ o o o o SG-6
COURSE OUTLINE &« ¢ o o o o o o o o o o s o o o s o o o o o o SG_7

1 SYSTEM COMPONENTS

INTRODUCTION e o .o o o e o o o e o o . e o o o e o o o1-3
OBJECTIVES ¢ « o o o o o o o o s o o o o o o o o s o o o o o o1-4
RESOURCES.) 0 O .1_4
Reading. e e o o e o & o o e e o s o o e ¢ o o o o o+ o+ o .1_4
Additional Suggested Reading « « o o o o o o o o o o o o« o1-4
Source MOAULES o1-4
TOPICS . Y O) 01—5
THREE MAIN PARTS OF VMS., « o« ¢ ¢ ¢ o o o o o o o o o o o o o «1=7
Scheduling and Process Control « « o o« « o o o o o o o & . 1-7
Memory Managemente. o« o« s o o o o o o o o o o o s o o o o . 1-7

I/O Subsystemo e o6 © e & o o e e e © o e o o o s s o s o .1_7

The Parts of the Operating System. « « « « ¢ « o o o o« o o1-8
Functions Handled "Below" User Level « « « o « o o o o o «1-9
INVOKING SYSTEM CODE e o ° . o 1—10
Interrupts vs. EXceptionS. « +« o ¢ o o o ¢« o o s o o o o 1-11
HARDWARE MAINTAINED PRIORITY LEVELS: ¢ o ¢ ¢ o o o o o o o o 1-12
Two Types Of Priority. « o« o o o o o o o o o o o o o o & 1-13
Interrupt Servicing Sequence . o« « o o o o o o o o o o o 1-14
ACCESS MODES AND COMPONENTS: o o o o o o o o o o o o o o o o 1-16
LOCATION OF CODE AND DATA.: ¢« « s o ¢ o o s o o o o o s o o o 1-17
Entry Paths Into VMS Kernel. . o« ¢ ¢ ¢ o o ¢ o o o o o & 1-18
THREE TYPES OF SYSTEM COMPONENTS &« o« ¢ o o o o o o o o o o o 1-20
INTERACTION OF VMS COMPONENTS. o o o o o o o o o o o o o o o 1-21
Hardware Clock INtErrupt « o o o o o o o o o o o o o o o 1=21
Periodic Check for Device Timeout. « o« o o o o o o o o o 1=22
Periodic Wake of Swapper, Error LOJGgEr « « « o o o o o o 1-23
System Event Reporting « « o« o o o o o o ¢ ¢ o o o o o & 1-24
Page Fault) . .) . . . 1-25
Data Transfer USing RMSe. « o o o « o s o o o o o o o o o« 1-26
File Manipulation Using RMS. « « ¢ o« o o o o o o o o o o 1-27
Data Transfer Using $OTI0 « « « o« o o o o s o o o o o o o 1-29
$QI0 Sequence Of EventsS. « « o o o o o o o o o o o o o o 1-30

" EXAMPLES OF SYSTEM PROCESSES ¢« « o o o o ¢ o o o o o o o o o 1-31
OPCOM' Error Loggero e o e e e o 8 o ® e e o e s o o o o 1—31

iii

Print Jobs « « « & o &
Batch Jobs + « ¢« « +
Terminal Input
Card Reader Inpute. « « « o
SOFTWARE COMPONENTS OF DECnet-VAX.
Data Link Device Drivers . . .
NETDRIVER and NETACP +« o & o
RMS, DAP Routines, and FAL n .

RTTDRIVER, REMACP, and RTPAD
Netserver. « « « o o o o o o
Special DECnet Components. .
EVL. L] . * L] L] L L] L] L] L] L] L[] L]
SERVER_N ProCessS o« « o+ o« & o+ &
NCP, NML, MOM, MIRROR, NDDRIVER
DECnet Remote File Access. . .
SUMMARY. L] L] L] . * L] L] L] * L] . L] L]
APPENDIX:

2 THE PROCESS

INTRODUCTION . o o
OBJECTIVES . . o o
RESOURCES. . . . e
Reading. . o o o a
Additional Suggested
Source Modules . ., .
TOPICS ¢ o o ¢ o o o o o
PROCESS VS, SYSTEM CONTEXT
Process Context. . . &
System Context . . ¢« « o« o« &
PROCESS DATA STRUCTURES OVERVIEW .
Software Process Control Block
Process Header (PHD) « « « + &
Hardware Process Control Block
Privileged vs. General Register
Privileged « ¢« ¢ « ¢ o o o o &
Generale ¢« o o« o o o o o o o o
Job Information Block. « . . .
VIRTUAL ADDRESS SPACE OVERVIEW . .
Process Virtual Address Space.
S0 Virtual Address Space .
PO Virtual Address Space .
Pl Virtual Address Space .
SUMMARY: ¢ o o o o o o o o o &

e o Fge o e o
()

e o o Oy e e o o
o

e o o o ju.0 ® o o
=]

o o o o Qe o o o

L] L] * . [L[] L] L] . L

3 SYSTEM MECHANISMS
INTRODUCTION L] L d L] L L L] L] . L] * L]

OBJECTIVES L[] L] L] * . L] . L] L] L] L] L
RESOURCES. . . L] L] L] L] L L] L] L] * L]

iv

L] L] * * L] . L] L] []

e o o o o o o o o (N e e ~ 0 & o @& o 06 o © o o o

el

® o o o o o ¢ o 0o s o e (N o o

w

L] . *] . L] L] . L] L] L] ° ~— . *]

[] * L] . L] . L L]

ADDITIONAL DECnet-VAX INFORMATIO

L] L] [] L] [L]

. . L] L] * * L]

® © o o o o

N

e © o o © o o o

L] L] * L] L] .

L] L] L] L] L] [] o . e

. L[] * L] . L]

L] . L [] [) L] []

[] [] L] L] * L] . . L] L] [] L]

L] L] L] L] L] L] L] . L] L] L] L]

L] [] . - L] L[] L] L] []

* * L] []

L] L] L] L] * * L] L)

L] . . L] L] L]

L] L] L] L] * * L]

® o o o o o o o o

* L] L] L] . L]

L] L] . L] L] L] L] L]

e © o o e o o o o © o o

L] . L] ® L] L L] L] L * * L[] L]

L] * L] L] L] . L] L d - * L] L] L] L] L] L] *

L] * * L] L] L L]

L] L] L] . L]] * L] L]

L] L] L] . * L] L] L]

L] L d

e e o o o o o

1-32
1-33
1-34
1-35
1-36
1-36
1-36
1-36
1-36
1-36
1-37
1-37
1-37
1-37
1-38
1-39
1-41

[] [] []) L] ® L] L]
'hJT'f§JYb°“)Nh°N
| |
COWOUIUVUTLTO S W

-
()

TOPICS . L] L] L L] L] L] L L L] L
HARDWARE REGISTER AND INSTRUCTION S

SYNCHRONIZING SYSTEM EVENTS. « « « o

Reading. « « « = e o
Additional Suggested Readlng
Source Modules . ¢« « ¢ ¢ o

Cle o o o
o
g e o o o
O
e o e o

T S
Processor Status Word (PSL).
Processor Status Longword. .
Hardware Context « « ¢ o o« o

o« o o [TJe o o o

Hardware Interrupts and the SCB.
Hardware Interrupts and IPL. . .
Software Interrupts and the SCB.
Software Interrupts and IPL. . .
Example of Fork Processing . .
Software Interrupt Requests. .
Blocking Interrupts. « « « « &
Summary of IPL Mechanism . . .
Using IPL to Synchronize System Routines
System Tier Queue and System Clocks. . .
Clocks and Timer ServiceS. + o« o o o o o
Summary of System Synchronization Tools.

L] L] * L] L] L] * . L] L) L[]
[}

e o e e ® e & o o o o

e © o o o & o o o oo o o

L] . *

PROCESS SYNCHRONIZATIONs. o o ¢ o o o o o o o

Mutual Exclusion Semaphores (MUTEXes). .
Obtaining and Releasing Mutexes. . . « &
Asynchronous System Traps (ASTS) o « o
AST DeliVery o« « o o o ¢ o o o o o o o o
AST Delivery SequUENCee o o o o o o .

Synchronizing Access Using the VAX/VMS Lock Manager

EXCEPTIONS AND CONDITION HANDLING. « « « «

HOW

MISCELLANEOUS MECHANISMS . « « « &

APPENDIX A:
APPENDIX B:
APPENDIX C:

Exception and Interrupt Dispatching.
A USER EXECUTES PROTECTED CODE . .
Access Mode Transitions. . « « «
CHMx and REI Instructions. . . « .
REI Is Used in Various Situations.
Path to System Service . « . .
Return from System Service . .
Nonprivileged System Service .
Path to RMS. « ¢ ¢ ¢ o o o o o
Return from RMS. « + ¢ ¢ o o o
Path to User-Written Service (
Path to User-Written Service (
Return from User-Written Servi
Two Dispatchers. « « « ¢« o « &

QN
e o (D~~~ o o o o

. L] . L] [. - . . .
L L] * L] [* L) L] L] L[] L]
L] L] L] L] . . . L] . L] L] * . L] L]

L L] . . L]] L L] L]

Dynamic Memory . . . e s s o o
Allocating Nonpaged Pool e o o o s = .

=

L] L] * . L) L] . L] * . L] L] [} L] [] L] * [] L] L] L] L] L]

.

L] . . L] . L] L] o . L) L] o L]

L]

L] L[] . . . L] L] . L] L] . * . L] * [] L] L] L] *

L] ® * L] . L] L] L] L] L d L] .

*

Relevant SYSGEN Parameters for Nonpaged Pool
SUMMARY OF SYSTEM MECHANISMS ¢ ¢ ¢ o o o o
SYSGEN Parameters Related to System Mechanisms

COMMONLY USED SYSTEM MACROS . .
PRIVILEGE MASK LOCATIONS. . . =
THE REI INSTRUCTION ¢« o « o o

L]

o

L] L] L] . L] L] L] L] L] * L] * L] L d . L] L] L] * L] L] L]

.

L

L L] L] L] * L] L] [] L] * . L] L] L]

* L] L] L] L] L] . . L] L] L] L] . L] L]

* .

L] [L N [

L] L] (] . L] L] L] . L] . . L] L] L] . L] [] L] L] L] L] L[]

e o ©® o o o o o o

. L] . L] L] L] .] L] L L] L] L] L] [] L] [] * [] L] L] L] L[]

* e & o @ o & o o o

¢ e & o o

. * ® L] L[] L] L L] L] . L] L] L]] L[] * L] L]

e o o e e o © o & o » o

. L) L] L] L] L] L] L] L] [] L] L] . L] L] L] L] L] L] L[]

L] (] L]] L[] L]

* L] L] . L] [} L L] L] L] L] L] L] L] . .

0‘0

I
OV~ uou

f WWWwWwWwww
|

il I
]

WWWWWWe ¢ o o o .0 o
|

= s

S wN -

3-15
3-16
3-17

3-18

3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-33
3-34
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-50
3-51
3-52
3-54
3-56
3-57
3-60
3-61

4 DEBUGGING TOOLS

INTRODUCTION . .
OBJECTIVES . . .
RESOURCES. . . .
TOPICS o o o o o e o e o o
VAX/VMS DEBUGGING TOOLS. ¢« o o o o
THE SYSTEM DUMP ANALYZER (SDA) . .

SDA Functions and Commands .

Examining an Active System .,
THE SYSTEM MAP FILE. &« o o o o o

[} . L]

*

. . o L]
. . . .
L]

¢ o o o

. () e

® o o o o o

® o o o o o
.

.
L]] L] .

OVerview « o o ¢ o o o o &
Sections of SYS.MAP. . . .
SYS.MAP and Crash Dumps. .
SYS.MAP and Source Code. .
CRASH DUMPS: « & o o o o o o o o«
Causes of Crash Dumps. . .
BUGCHECKS., « « .+ & . o o« o
The Two Types of Bugchecks .
How Crash Dumps are Generated
How Bugchecks are Generated.
SAMPLE STACKS AFTER BUGCHECKS. .
Access Violation « « o« o+ +
Page Fault Above IPL 2 , . .
Reserved Operand Fault . . .
Machine Check in Kernel Mode
Sample Crash Dump Analysis . .
DELTA AND XDELTA ¢ « o o o o o o .
DELTA Debugger « « o« o o o« o .
CHMK Program « « o o o o o o o o e
DELTA and XDELTA Functions and Commands
APPENDIX A: BUGCHECK FLOW OF CONTROL. . .
APPENDIX B: PATCH 4 « o o o o o o o o o

. . . * L] . L] o o . e o
® o o o o o o
. L] * * ® L] L]
. [] L] L[] . L] L]
L] *

e o o o o
Heoe © o o o
D e o o ¢ ¢ o o o o

3

@]
e o o o o
a
=3

5 SCHEDULING

INTRODUCTION ., .

OBJECTIVES ¢ ¢ & o o o o o o o o o o o o
RESOURCES. * L] L] L] L] L] L] [] L] L] L] L] L] L] L] L]
Reading. « v o o o & o o o o o o o o o
Additional Suggested Reading . . . o+
Source Modules o o & o« ¢« o o o o o o &
TOPICS o o ¢ o o o o o o o o o o o o o o o
THE PROCESS STATES + + .« e o o o o s o
Process Wait States. « o« ¢ ¢ ¢ &« o o &
Ways to Leave the Current State. . .

Ways to Become Computable (Inswapped).
Inswapped to Outswapped Transitions. .
Ways to Become Computable (Outswapped)
HOW PROCESS STATES ARE IMPLEMENTED
QueueS 3 3 . ° . . 3 ° . . .

vi

. L L] [} . L]

e o o o o o

e e o o © o o o

® & @& 6 o & ¢ e ® @6 ¢ O o o O o o @®

L] . . *

] ® o © o o o

e o © ¢ o o

L] . * L] L] L] . L] L) L] L] L] .

e o o e o

L] L[] * * L] L] * [] L] L] L[] [} L] L] . L] L] L] . L] L[] * *

. . L] * L] L] [} L] L[] L] L] L] L]

e o e e o o o

. L] . L] L] . '} L] L[] * . L] L] L] [] L] L] . L] L] . L] [] L] .

e o o e o o

. . . []] (]

L[] L] L] L] [] L] L) . .] [] L[] L] L] L] . . L]

® o o o o o

L[] L] L] L[] * L] L] L] . L] * L] L] [] L] L] L] L] .

[] L] * [] L]

L] * L] [] . L]

® © e © o & o o o © o o o

L] L] [] . .

L A
|

|
HO MO WWwW

Implementation of COM and COMO States.

Example of Computable Queues . . .
Implementation of Wait States. . .
Implementation of CEF State. . . .
Summary of Scheduling States . .
Process Data Structures Related to
Saving and Restoring CPU Registers
THE SCHEDULER (SCHED.MAR): &« & o o o o

BOOSTING SOFTWARE PRIORITY OF NORMAL PROCES

Example of Process Scheduling. . .
[MPLEMENTATION OF PROCESS STATE CHANGES

Report System Event Component (RSE.MAR)

STEPS AT QUANTUM END ¢« ¢ o ¢ o o ¢ o o
Real-Time ProCesSS. « s o o o o o o
Normal ProCess « « o o o o o o .
Automatic Working Set AdJustment .
Rules for Working Set Adjustment .
Example of Working Set Size Variati
Forcing Processes to Quantum End .

SOFTWARE PRIORITY LEVELS OF PROCESSES.

SUMMARY:. &« o o o o o o o o ¢ o o o o o

6 PROCESS CREATION AND DELETION

INTRODUCTION . .
OBJECTIVES . .+ &
RESOURCES. « . &
Reading. . .
Source Modules .« « ¢ ¢ o o o o o
TOPICS « o« o o o o o o o o o o o o o o
PROCESS CREATION o &« « o o o o o o o o
Creation of PCB, JIB, and PQOB. . .
Relationships Between PCBs and JIB
PCB VECLOY « o ¢ o o o s o o o o
PID and PCB, Sequence Vectors. . .
Process IDSe « o o o o o o o o o o
Swapper's Role in Process Creation
PROCSTRT's Role in Process Creation
TYPES OF PROCESSES « o ¢ ¢ ¢ ¢ o o o o
The LOGINOUT Image « « o ¢ o o o o
INITIATING JOBS:e o o o o s o o o o o o
Initiating an Interactive Job. . .
Initiating Job using $SUBMIT . .
Initiating Job Through Card Reader
PROCESS DELETION &« + o o o o o o o o o
Process Deletion Sequence. . . « o
SUMMARY: o o o o o o o o o o .o o o o o

e o e o
L] L] L] L]
L] (] L] L]
L] L] L] []
* o o o
L] L) * L]
e o o o
L] L] . L]

vii

(]

L

Sch

. [) L]

e e o © o ® o ©° e o o o o o

.

e e e ¢ o o o o o

L] L] L] .

00..00.00.0(])0.&.00

[] . L] . L] L] - L]] . * L L]

|—l.o.oo
[

e ® 6 o6 ¢ o o o o & o O o ° o T e e e o o

e © @ o o o o o ¢ o o o [N o

e ® e o o ¢ ©° o o

Q

L] L] * . L] L] L] * L] L] L) L] L] L L] L] * [] L]

L] . L] L]

L] L] . . L] L] L[]

e e © o e o o o © o & o o o

L] L]

L] L] L4 .

e o o e © o o o o o o

L] L] L] L] L] L L[] L] [] L] L] . L] L] L] * . . * * []

L] . * L] L] L[] L] ® L[] L] . L] L] L] L] L] [] []

e © o o o o o s o

. . L] L]

L] L] L] L] L] L] * L] L] L] [] L] * L] L] L] L] [] *

[] .] *) L] L] L] . L] L] L] *

. L d L] L] o L] [] LJ L] L . L] . * L] L[] L] L] L]

L] L] [] L] . L [] L] L]

e o © ¢ o o o o o

5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-23
5-24
5-29
5-31
5-32
5-32
5-32
5-33
5-35
5-36
5-37
5-38
5-39

I i
= OWOoJULd & dWwWw

I O\O\O\O\O;\G\O\O\O\

—

AN O\e o o o o
I

!
=
b W

6-17
6-18
6-18
6-19
6-20
6-21
6-22
6-23

7 SYSTEM INITIALIZATION AND SHUTDOWN

INTRODUCTION . .

OBJECTIVES ¢« o « o o o o o o o o o o o o o
RESOURCES: ¢ ¢ ¢ o o « ¢ o o o o s o o o

Readinge v o o o o o o o o o o o o o o

Source MOAUlES v « o o o o o o o o o
TOPICS ¢ o ¢ o o o o o o o o o o o o o o
VAX-11/780, 11/750, 11/730 CONSOLE DIFFERE

780 and 730. & o 4 ¢ o o o s o o o o o

750. L] L] L] L] L] L] L] L] . . * * L] L] L] L] L]
SYSTEM INITIALIZATION. o o o o o o o o o o
SYSTEM INITIALIZATION SEQUENCE v ¢ o o o« .
INITIALIZATION PROGRAMS: ¢ « & o o o o o o
PHYSICAL MEMORY DURING INITIALIZATION. . .
PHYSICAL MEMORY LAYOUT AFTER SYSBOOT ENDS.
TURNING ON MEMORY MANAGEMENT 4+ o o o o o o
SYSINITO L] L] L] * * L] L] L] L] L] L] L] L] L] L] . L]
START_UP e o . . o o e o

Start-Up Process . « « o« o o o o o o &
STARTUP«COM: ¢ 4 4 o o o o o o o o o o o o
SYSTARTUP.COM: & 4 o« o o o o o o o o o o o
SYSBOOT AND SYSTEM PARAMETERS. o o o o o o
SYSGEN AND SYSTEM PARAMETERS ¢« o« o o o o
VAX_11/780 PROCESSOR e o e o o o o e o o o
VAX'].]./?SO PROCESSOR ® o o o o e e & o e o
VAX-11/730 PROCESSOR « « o o o o o o o o
VAX FRONT PANELS 4 o o ¢ o o o o o o o o o
SHUTDOWN OPERATIONS: o o o o o o o o o o
SHUTDOWN PROCEDURES: o o s o o o o o o o &
AUTORESTARTING THE SYSTEMe « o o o o o o o
REQUIREMENTS FOR RECOVERY AFTER POWER-FAIL

SUMMARY L] L] L] L] . L] L] . L] . L]

[
]
L]
L]
L
[]
o

8 USING THE LINKER

INTRODUCTION L] . . L . L] . L] L] . L] L] L] L] L]
OBJECT IVES LN L] [] L] L] L] L] . L] . L] L] L]

RESOURCES: & 4 ¢ o o o o o & o o o
1 Linking Object Modules to Form an Ima
1.1 Using the LINK Command « . o o o o &
1.2 Program Sections « o« o o o o o o o o
1.3 Linker CluStersS. « « o o o o o o o
1.4 Image Sections . . . e o o o o o
2 Mapping an Image to the Virtual Address Space

Of @ ProcCess «. v v o o o o o o o o @
Linker Assigns Virtual Addresses . .

1

2

3 Creating and Reading a Linker Map. .
1 Creating a Linker Mape « o « o o o &
2

viii

2

@ * % o s e 0 s 0 s 0 0 s 2 s 0 0 s 0 s s 4 0 (Yo o e e o .

ge

o]

e o (N e o o o o

L] L] L] L[] . L[] . L] L] L] .] L] L] L] * L] . L] 3 L]

[] L] L [] L] L] L] [] L] [} L] [] [] L] L] * L] .

L] L L] L] L] L] [] L] L] L]

L d . . * [] *

L]

® @& & o 5 0 6 o e o © o o o o o

Using a Linker Map to Debug Run-Time Errors.

[] L] L] L] * L] L] L] [} * . L] [] L] L[] L] L] L] L] L] L] L]

L] L] L] L] * L] L] [] L] L] ® L] *

e o o o

L] L] [] L] L] [} . [] ® [] L) [] L] L] L] L] L4 [] L] L] * L] L] *

L] L o L] L]] L] L] .] L[] * L] [] L] L] L] []

- L] L[] L] L] L] o * L] * L] L] .

L]

Image Activator Maps Image to Virtual Address Space.

.

L] [} L[] L] L] L] L]

® & 5 o o o

o o o o o o

NN NNNNNNNNAOY
LR L U T O T T R M|
WO Www

NI~ Jde o e ¢ o
1

= et et

B w N o

o 00 COe ¢ o ¢ o o o
| I | | 0O 0O 0O O O
= = L I I I
W b OJdOUVTUTWW W

8-15
8-15
8-15

Linker Options FilesS ¢ « « o o o o o o o o o o o o o o 8-16
Creating and Using Linker Options FileSe o« o o o o o o 8-17
Linker Options Records . « o o ¢ o o o o o o o o o o o 8-18
Using the Cluster Option to Create

More Efficient IMAgeSe o« o o o ¢ o o o o o o o o o o o 8-18

PR
L[] '} .
W N

EXERCISES
TESTS

FIGURES
1 Invoking System Code « « o o o o o o o o o o o o o o o o 1-10
2 Two Types Of Priority. « « o o o o o o o o o o o o W . . 1-13
3 Example of Interrupt Servicing « « o « o o o o o o o o o 1-14
4 Access Modes and ComponentS. o« o o o o o o o o ¢ o ¢ o o 1-16
5 Location of Code and Data In Virtual Address Space . . . 1-17
6 Entry Paths into VMS Kernel. . ¢ ¢ ¢ ¢ o o o o o o o o 1-18
7 Three Types of System Components . ¢ o ¢ o o ¢ o o o o o 1-20
8 Hardware Clock Interrupt « o o« o o o o o o o o o o o o o 1-21
9 Periodic Check for Device Timeout. o« o« o o o ¢ ¢ o o o 1-22
10 Periodic Wake of Swapper, Error Logger .« « « ¢ o o o o 1-23
11 System Event RepOorting « « o« o o o o o o o o o o o o o o 1-24
12 Page Fault « o o o o o o o o o o o o o o ¢ o o o o o o o 1-25
13 Data Transfer Using RMS. « ¢ o o o o o o o s o o o o o o 1-26
14 ODS-2 File Manipulation Using an ACP « « o o o o o o o o 1-27
15 File Manipulation Using an ACP . « « o o o ¢ o o ¢ o o o 1-28
16 Data Transfer Using SOIO « o o ¢ o o o o o o o o o o o o 1-29
17 $QIO Sequence Of EVentSe: « o o o o ¢ o o o o o o o o o o 1-30
18 OPCOM, Error LOJgELr. « o o o o o o o s o o o o o o o o o 1-31
19 Print JObS . ° . .) . e o o o . . 0 1—32
20 BatCh JObS . ° 3 . . . 3] 3 ° 1—33
21 Terminal INPUE o = 1-34
22 Card Reader INPUL. o o o o o o o o o o o o o o o o o o o 1-35
23 DECnet Remote File ACCESSe o+ o o o o o o o s o o o o o o 1-38
24 DECnet ProtoCol LayerS « o« « o o o o o o o o o o o o o o 1-41
25 DECnet Task-to-Task CommunicationNe « o o ¢ o o o o o o = 1-42
26 Performing Set Host Operation. « « « ¢ o o o o o o o o o 1-44
1 Process Data Structures. . . e e s o o o o s o o e« 2-10
2 Software Process Control Block (PCB) e e e o o o e o o o 2-11
3 Process Header (PHD) « o« o o o o o o o o o o o o o o o o 2-12
4 Hardware Process Control BloCK « « o o ¢ o o o o o o o 2-13
5 Job Information Block (JIB)e o ¢ ¢ o o o o o o o o o o o 2-15
6 Virtual Address Space. .« . e e e o o s e o s e o s s s 2-16
7 S0 Virtual Address Space - Low AdAressSes « o« o o o o o o 2-17
8 S0 Virtual Address Space — High Addresses. « « « ¢ o ¢ =« 2-18
9 PO Virtual AddIeSS Space) . . . - . 2_19
10 Pl Virtual Address Space — High AddressesS. « « + s ¢ =+ o 2-20
11 Pl Virtual Address Space — Low Addresses . « o« o ¢ o o =« 2-21

ix

LYodoudwiNe

HOOJdANUTE WD

Processor Status Word.
Processor Status Longword (PSL).
Hardware ConteXt « o o & o o o o
Hardware Interrupts and the SCB.
Software Interrupts and the SCB.
Fork Queue « o o & v o« o & o &
Software Interrupt Requests.
Raising IPL to SYNCH
Timer Queue Element,
Clocks and Timer Services.
A MUteX: o o o o o o o o @
AST Queue Off the Software
AST Delivery Order
AST Delivery Sequence. . . .« .
Relationships in the Lock Database . .

Relationships Between Locks and Sublock
Exceptions and the SCB . . v & o o o

Exception and Interrupt Dispatching.
Condition Handler Argument List. . .
Access Mode Transitions. . « « . .
Stack After CHMx Exception .
Path to System Service . . .
Return from System Service .
Nonprivileged System Service
Path to RMS. « ¢« v ¢ &« o & &
Return from RMS. . ¢ ¢« ¢ o« & o o &

e e o
@]
o TJe o o o o
® & o o & ¢ o o " o ©* o o o
...............
® o o o o e ¢ o e o o e o o

*
L]
L]
L]
[
L]
L
L]
.
]
L]
L]
*
L]
L]
S
.
L]
*
L]
.
.
L]
L]
[

. ° * L] []
e o e o o
L] L[] . L] L]
o o o o o o o

L] . *] L] L] L] * L] L] * L] L] . * L] L] L] L[] .

¢ & o o * o o o e o 6 e 0 ¢ 6 ¢ o e & e e e 6 e o .

Path to User-Written System Service (Part 1)
Path to User-Written System Service (Part 2)

Return from User-Written System Service.
Two Dispatchers. « v o o« v o o o o o o o
Paged Dynamic MEMOrY o o o o o o o o o .
Allocating Nonpaged Pool « v o & & o o .

Stack After Access Violation Bugcheck. .
Stack After Page Fault Above IPL-2 . . .
Stack After Reserved Operand Fault . . .
Stack After Machine Check in Kernel Mode
Bugcheck Flow of Control « o o o o o o &

Process States + o« o o« ¢ o« o o o o o
Process Wait StatesS. « « o« o o o o o o
Ways to Leave Current State. . « o o+
Ways to Become Computable (Inswapped).
Inswapped to Outswapped Transitions. .
Ways to Become Computable (Outswapped)
A State Implemented by a Queue
Implementation of COM and COMO States.
Example of Computable Queues
Wait State Listhead. « « ¢ v & o & o .

L] L L] L] . * L] L] L] L]

[* & o o o e o @

. L] L] L] . L] ® L

L] L] L] L] L] L] L] .

® © 0 o & o * o & o+ e 6 8 6 & 0 o6 6 o s 06 e e e e ¢ ©® o o o

L] L] L] L] L] L] * L] . L) L] L] L] L] L] L] L] o * (] * L] . . L] * L[] L L] L] L] L]

L] L] L] L] L] L] L] * * L]

. * L] L] ° L) L] . . . * . L) L] * . L] . L *

e e o o o

o L[] . . * L] . . L] . L - L] [L] L] L d L] L[] L] L[] L] L d L] L] . L[] L[] L] * L] L]

. LN) [[

Ld L] L] * L] . L] [L] . L] L] * L L] L[] L] L] L) (] . L] L] '] .] . . L] . L] .

=W oo~ U WM

o

WA UTLEe WN -

Implementation of Wait States. . . .
Implementation of CEF State.

Scheduling Fields in Software PCB.

Saving and Restoring CPU Registers . . e o o o o o o« 5=20
Scheduling Example Symbols « « « o« o o & e o o o o o o 5-24
Example of Process Scheduling - Part 1 o « o o o o o o o 5=25
Example of Process Scheduling - Part 2 « o o o o o o o o 5=26
Example of Process Scheduling - Part 3 ¢ o o o o o o s o 5=27
Example of Process Scheduling — Part 4 « « ¢ ¢ ¢ ¢ o o & 5-28
Interaction of Scheduling Components . o« o o o o o o o o 5-30
Automatic Working Set Adjustment « o« o o o o o o o o o o 5-34
WSSIZE Variation Over Time « « o o o o o o o o o o o o o 5-36
Use of the IOTA System Parameter o« o« o o o o o o o o o @ 5-37
Creation Of PCB’ JIB and PQB e o o ® ® o ® & o o o o o o .6_8
Relationships Between PCBs and JIB « o o ¢ o ¢ o o o o o .6-9
PCB VeCtOl:‘ 3 3 6"'10
PID and PCB, Sequence VecCtOrS. « « ¢ o o o o o o o o o o 6-11
Swapper's Role in Process Creation « o « « o o o o o o o 6-13
PROCSTRT's Role in Process Creation. « « « o o o o ¢ o 6-14
Initiating an Interactive JOD. ¢ o« o ¢ o o o o o o o o o 6-18
Initiating Job Using $SUBMIT &« « o o o o o o o o o o o = 6-19
Initiating Job Through Card Reader . . « « « o o o ¢ o = 6-20
Process Deletion « o« o o o o o o o o ¢ o o o o o o o o o 6-22
System Initialization. « « o ¢ o o ¢ o o o o o o o o o o .7-8
System Initialization Sequence . .« « « ¢ « o o ¢ o o o o .7-9
Physical Memory During Tnitialization. « « « o o o o o o 7=12
Physical Memory After SYSBOOT. « o o o o o o o o o o o 7-13
Turning on Memory Management . « o o o o ¢ o o o o o o o 7-14
SYSBOOT and System ParametersS. « « o o o o o o . . 7-18
SYSGEN and System Parameters « o« o ¢ o o o o o o o o o o 7-19
VAX-11/780 Processor: . . Y A A

VAX-11/750 Processor . .
VAX-11/730 Processor . .
VAX Front Panels « .+ « & .
Autorestarting the System. .

e o o o
e o o o o
.

.

.

.

.

.

.

.

.

.

.

.

.
~
i
N
N

Organization of Source Files into Program Sections .
Organization of Input Files into Clusters. « « ¢ « =
Routines for Transaction Processing Application. . .
Placement of Program Sections in Clusters. . . .« « .
Organization of PSECTS into Image Sections « o« o+ o o
Mapping an Image into Process Virtual Address Space.
Clustering Related Code in an Executable Image . . .

L] L[] L] (] []
L] L] . L[] . L]

Differences Between Interrupts and Exceptions. « « « o o 1-11
Summary of System Components and Functions . « « o« o o o 1-19

X1i

N =

WO JOYUT i WN

O ~JOUTdWN b W= YOOI UL bW

S wNo

Function of Pl SPace « « « o o « o o o o o o o

SYSGEN Parameters Relevant to Process Structure.

Keeping Track of CPU, Process State. .
Hardware Interrupts and IPL., « o+ o o
Software Interrupts and IPL. « o« o« o+ &
Blocking INterruptSe o« o o o o o o o o
Summary of System Synchronization Tools
Process Synchronization Mechanisms . .
Rules for Selection of ASTS. « o & o &
Data Structures Supporting the Lock Manager.
Executing Protected Code « v v o o o o o o o
SYSGEN Parameters for Nonpaged Pool. . o« o o .

L] . L] L] L] . L]

® © o o o ¢ o o o

L] L] L] [} L] [] * * L] []

Function and Implementation of System Mechanisms

SYSGEN Parameters Related to System Mechanisms
Privileged Mask LoCationS. « « o o o o o o o &

Environment vs. Debugging Tools.
Examining Crash Dump or Current System .
SDA Functions and Commands « o « o o o &
SDA Commands Used to Display Information
Symbols and OperatorSe « « « o o o o o &
Common Command USage « o o o o o o o o &
Sample BUGCHECKS &« 4 ¢ o o « o o o o o &
Comparison of DELTA with XDELTA. « « o .
DELTA and XDELTA Functions and Commands.
PATCH CommandsS « o o o o s s o o s o o &

. L] * L] L]
. L L] . L
L] L] L] L] L]

Initial Conditions for Scheduling Example. . .
Operating System Code for Scheduling Functions
Reasons for Working Set Size Variations. . . .
Software Priority Levels of Processes on VMS .
SYSGEN Parameters Relevant to Scheduling . . .

Steps in Process Creation and Deletion .
Three Contexts Used in Process Creation.
Routines for Manipulating PIDS + « . .«
Types Of ProCessSesS o v v o o o o o o o o
PCB Fields Defining Process Types. . . .
Restrictions on Process Creation
Steps in Process Creation and Deletion
SYSGEN Parameters Relating to Process Creation
and Deletion ¢« ¢ o o 4 o o o o o o o o o o o o

. [) . L] L L
. L] L] . L] L]
*] L[] L] L] []

In1t1a11zatlon Programs. . . o .
Switches on the VAX-11/780, /730 /750
Shutdown Operations. « « o o« o o o o
Shutdown Procedures. « « « o o o o o &

xii

® o o o o

* L] L[] L] . L] L] L] L] L] . . L]

L] L] L] * L] [] [] L] L[] [] L] [] L] . L]

L] L[] L d [) L] .

L] ® . L] L] L[] L] L] L] L] L] * L]

o . L] * L]

L] L] L] L] ° L]

L] L L] .

L] . L] L] L] L] * L] L] L

e o & o 6 e o e o o

L] L] * L] L] L] L]

. L] L] L] L4 [] .] L LJ

[] L] L] L]

6-12
6-15
6-16
6-16
6-23

6-23

7-10
7-24
7-25
7-26

W N =

B W N

-

PSECT Attributes L] L] L] L] L L] L] L] L] . . L3 L] . L] L] . L] L] L]

8~
8-
8

Commonly Used Qualifiers for the LINK Command. . « « .« .
File Qualifiers Commonly Used with the LINK Command. . .

[WS, ;)

EXAMPLES

Sample SHOW SYSTEM Outputo e o o o o o o o o o e o & o o -1-8

IPL CONtrol MacroS « « o« o o o o s o o o o o o o o o o o 3=57
Argument PrObing Macros. . e o o ¢« o e o o o o e o o o 3-58

PriVilege Checking MaCrOS. . ° Y . ° . . . ° . ° Y . 3_59
Examining an Active System . e o o o o o o s o o o o o 4-11
Sample Console Output After Bugcheck e o o o o o o o o o 4-21
Sample Crash Dump AnalysSisS « o« « o o o o o o o o o o o & 4-26
The CHMK Program * L] L] L] L L] * L] * L] L] L] L] L] L] L] L] * L] L] 4— 33

The Scheduler (SCHED.MAR). e o 5-21

xiii

Student Guide

STUDENT GUIDE

INTRODUCTION

The VAX/VMS Operating System Internals course is intended for
the student who requires an extensive understanding of the
components, structures, and mechanisms contained in the VAX/VMS
operating system. It is also an aid for the student who will go
on to examine and analyze VAX/VMS source code.

This course provides a discussion of the interrelationships
among the 1logic or code, the system data structures, and the
communication/synchronization techniques used in major sections of
the operating system. ' '

Technical background for selected system management and
application programmer topics is also provided. Examples of this
information include:

e The implications of altering selected system parameter
values

e The implications of granting privileges, quotas, and
priorities

e How selected system services perform requested actions.

Information is provided to assist in subsequent system-related
activities such as:

e Writing privileged utilities or programs that access
protected data structures

e Using system tools (for example, the system map, the
system dump analyzer, and the MONITOR program) to examine
a running system or a system crash.

This course concentrates on the software components included
in (and the data structures defined by) the linked system image.
Associated system processes, utilities, and other programs are
discussed in much less detail.

SG-3

STUDENT GUIDE

GOALS

® Describe the contents, use, and interrelationship of
selected VAX/VMS components (job controller, ancillary
control processes, symbionts), data structures (SCB, PCB,
JIB, PHD, Pl space), and mechanisms (synchronization
techniques, change mode dispatching, exceptions and
interrupts).)

® Describe and differentiate system context and process
context.

® Discuss programming considerations and system management
alternatives in such problems as:

- Assigning priorities in a multiprocess application

—- Controlling paging and swapping behavior for a process
or an entire system

- Writing and installing a site-specific system service

® Use system-supplied debugging tools and utilities (for
example, SDA, XDELTA) to examine crash dumps and to
observe a running system.

® Describe the data structures and software components
involved when a process is created or deleted, an image is
activated and rundown, and the operating system is
initialized. \

® Describe how the following interrupt service routines are
implemented:

AST delivery
Scheduling

- Hardware clock
Software timers

e Briefly describe the components of the 1I/0 system,
including system services, RMS, device drivers and XOPs.,

e Briefly describe how RMS processes I/O requests, including
the user-specified and internal data structures involved.

® Describe certain additional VMS mechanisms used on a VAX
system in a cluster (for example, synchronization and
communication mechanisms).

STUDENT GUIDE

NON-GOALS

e Writing device drivers (see the VAX/VMS Device Driver
course)

e Writing ancillary control processes, ACPs (see the VAX/VMS
Device Driver course)

e Comprehensive understanding of RMS internals
® DECnet internals (see the DECnet courées)

e Layered product internals

e Command language interpreter internals

e System management of a VAXcluster

PREREQUISITES

e Ability to program in at least one VAX native 1language.
This may be obtained through language programming
experience and completion of an appropriate language
programming course (for example, Assembly Language
Programming in VAX-11 MACRO). In addition, completion of
the Introduction to VAX-11 Concepts course is recommended.

e Ability to read and comprehend programs written in VAX-11
MACRO is required. In addition, ability to program in
VAX-11 MACRO or BLISS is recommended.

e Completion of one of the Utilizing VMS Features courses.

RESOURCES

1. VAX/VMS Internals and Data Structures

2. VAX/VMS System Dump Analyzer Reference Manual

3. VMS Internals I and II Source Listings

SG-5

STUDENT GUIDE

COURSE MAP

VMS IN A
VAXcluster
ENVIRONMENT

VMS IN A
MULTIPROCESSING
ENVIRONMENT

1/0 CONCEPTS
AND FLOW

O
¥~ FORMING ot
\g ((ACTIVATING AND SYSTEM
TERMINATING PROCESSES

IMAGES

SYSTEM
INITIALIZATION

cﬁ‘\%‘\ PROCESS
W (CREATION AND DEB(L)IS%NG
DELETION T
A
&
\——_——\
N
THE svsTem { AN
PROCESS MECHANISMS Y\"é'??\

SYSTEM
COMPONENTS

0
h
\/ MKV84-2242

SG-6

STUDENT GUIDE

COURSE OUTLINE

I. System Components

A,

B.

C.

How VMS Implements the Functions of an Operating System
How and When Operating System Code is Invoked
Interrupts and Priority Levels

Location of Code and Data in Virtual Address Space
Examples of Flows for:

1. Hardware clock interrupt

2. System event completion

3. Page fault

4. RMS request for I/0

5. $QI0 request for I1I/0

Examples of System Processes

1. Operator Communication (OPCOM)

2. Error logger (ERRFMT)

3. Job controller (JOB_CONTROL)

4. Symbionts (SYMBIONT n)

Software Components of DECnet-VAX

SG-7

ITI.

III.

STUDENT GUIDE

The Process

A.

B.

D.

Process vs, System Context
Process Data Structures Overview

l. Software context information
2. Hardware context information

Virtual Address Space Overview
1. S0 space (operating system code and data)
2. PO space (user image code and data)

3. Pl space (command language interpreter, process data)

SYSGEN Parameters Related to Process Characteristics

System Mechanisms

A.

B.

Hardware Register and Instruction Set Support
Synchronizing System Events
1. Hardware Interrupts
2. Software Interrupts

Example: Fork Processing
3. Requesting Interrupts
4., Changing IPL
5. The Timer Queue and System Clocks
Process Synchronization Mechanisms
1. Mutual Exclusion Semaphores (MUTEXes)
2. Asynchronous System Traps (ASTs)
3. VAX/VMS Lock Manager
Exceptions and Condition Handling
Executing Protected Code

1. Change Mode Dispatching
2. System Service Dispatching

Miscellaneous Mechanisms
l. System and Process Dynamic Memory (Pool)

SYSGEN Parameters Controlling System Resources

SG-8

Iv.

STUDENT GUIDE

Debugging Tools

A. VAX/VMS Debugging Tools
B. The System Dump Analyzer (SDA)
1. Uses
2. Requirements
3. Commands
C. The System Map File
D. Crash Dumps and Bugchecks
1. How bugchecks are generated
2. Sample stacks after bugchecks
3. Sample crash dump analysis
E. The DELTA and XDELTA Debuggers
Scheduling
A. Process States
1. What they are (current, computable, wait)
2. How they are defined
3. How they are related
B. How Process States are Implemented in Data Structures
1. OQueues
2., Process data structures
C. The Scheduler (SCHED.MAR)
D. Boosting Software Priority of Normal Processes
E. Operating System Code that Implements Process State
Changes
l., Context switch (SCHED.MAR)
2. Result of system event (RSE.MAR)
F. Steps at Quantum End
1. Automatic working set adjustment
G. Software Priority Levels of System Processes

S5G-9

VI.

VII.

STUDENT GUIDE

Process Creation and Deletion
A, Process Creation

1. Roles of operating system programs
2. Creation of process data structures

B. Types of Processes
C. Initiating Jobs

1. Interactive
2. Batch

D. Process Deletion

E. SYSGEN Parameters Relating to Process

Deletion

System Initialization and Shutdown
A, System Initialization Sequence

B. Function of initialization programs
C. How memory is structured and loaded
D. Start-up command procedures

E. How hardware differences between
initialization

F. Shutdown procedures and their functions
G. Auto-restart sequence

H. Power-fail recovery

SG-10

Creation

CPUs

and

affect

VIII.

IX.

STUDENT GUIDE

System Processes
A. For selected VAX/VMS processes:
1. Job controller
2. Symbionts
3. Error Logger
4, OPCOM
We will be describing their:

1. Primary Functions
2. Implementation

3. Methods of communication with other VMS components

4., Basic internal structure (on a module basis)

Forming, Activating and Terminating Images
A. Forming an Image

1. PSECTs in source/object modules
2. Format and use of the image header

B. Image Activation and Start-Up
1. Mapping virtual address space
2., Overview of related data structures
3. 1Image start-up (SYSSIMGSTA)
4., 1Installing Known Files
C. Image Exit and Rundown
l. SEXIT system service
2. Termination Handlers
3. DCL Sequence

D. SYSGEN parameters relating to image formation,
and termination

sG-11

activation

XI.

STUDENT GUIDE

Paging

A.

Basic Virtual Addressing

1. Virtual and physical memory
2. Page table mapping

B. Overview of Page Fault Handling
1. Resolving page faults
2. Data structures in the process header
C. More on Paging
l. Free and modified page lists
2. The paging file
3. Cataloging pageable memory (the PFN database)
D. Global Paging Data Structures
E. Summary of the Pager
Swapping
A. Comparison of Paging and Swapping
B. Overview of the Swapper, the System-Wide Memory Manager
C. Maintaining the Free Page Count
1. Write Modified Pages
2. Shrink Working Sets
3. Outswap Processes
D. Waking the System-~-Wide Memory Manager
E. Outswapping a Process
1. Swap files
2. Scatter/Gather
3. Partial Outswaps
F. Inswapping a Process

SG-12

XII.

XIII.

STUDENT GUIDE

I/0 Concepts and Flow

A.

B.

A. .

B.

Overview of I/0 components and flow

Components of I/O system

1.
2'
3.
4.

The
1.

2.
3.

RMS

I/0 system services
XQPs, ACPs

Device drivers

I/0 database
Driver tables

IRPs
Control blocks

Methods of data transfer

RMS Implementation and Structure

RMS
1.

2.

RMS

1.
2.
3.

User-specified data structures (FABs, RABs, and so on)

Internal Data Structures

Process I/0 Control Page (for example, default values,
I/0 segment area)

File-Oriented and Record-Oriented Data Structures
(IFAB, IRAB, BufDescBlk, I/O Buffer)

Processing

RMS Dispatching
RMS routines and data structures

Examples of flows of some common operations

SG-13

XIV.

XV,

STUDENT GUIDE

VMS in a Mulﬁiprocessing Environment

A.

B.

VMS

A,

c.

Loosely coupled processors

Tightly coupled processors (11/782)
l. MP.EXE structures

2. Scheduling differences

3. Startup /shutdown

Clustered proceséors

in a VAXcluster Environment

Cluster synchronization and communication mechanisms
1. Distributed lock manager

2. Distributed job controller

3. Interprocessor communication

System initialization and shutdown differences

1. VMB, INIT and SYSINIT differences

2. Joining a cluster

3. Leaving a cluster

SYSGEN parameters relevant to the VAXcluster environment

Relevant system operations

sG-14

System Components

SYSTEM COMPONENTS

INTRODUCTION

This module introduces the major software components supplied
in or with the VAX/VMS operating system. As an overview of the
operating structure, it gives a review of facilities introduced in
previous VAX/VMS courses. New terms and logic components are
introduced, but detailed discussion of them is generally deferred
until later modules of this course.

This module does not provide a complete catalog of all
facilities, modules, and programs in the operating system. It
provides an understanding of the relationships and coordination
among the various software components.

Software components can be classified by several attributes,
including:

e Implementation form (service routine, procedure, image, or
process)

e "Closeness" to the linked system image (part of SYS.EXE,
linked with system symbol table, privileged known image,
and so forth)

® Access mode (kernel, executive, supervisor, or user)
e Address region (program, control or system)

® Memory-resident characteristics (paged, swapped or shared)

SYSTEM COMPONENTS

For each selected VAX/VMS software

describe:

1. 1Its primary function
2. 1Its implementation (process, ser
procedure; in which address regio
access modes it uses)
3. The method or methods by which
communication
Reading

e VAX/VMS Internals and Data Structures,

Additional Suggested Reading

VAX/VMS Internals and Data Structures,
System Services, Interactive and
Miscellaneous System Services.

Source Modules
Facility Name

SYS

DCL,CLIUTL

DEBUG

RTL

RMS

F11A,F11X,MTAACP
REM,NETACP

JOBCTL, INPSMB, PRTSMB
OPCOM

ERRFMT

OBJECTIVES
component, briefly
vice routine, or
n it resides; what

it accomplishes

RESOURCES

System Overview

I/0
and

Chapters on
Batch Jobs,

SYSTEM COMPONENTS

TOPICS
I. How VMS Implements the Functions of an Operating System

II. How and When Operating System Code Is Invoked
III. Interrupts and Priority Levels

IV. Location of Code and Data in Virtual Address Spife

V. Examples of Flows for: UW"WD
A. Hardware clock interrupt kkN VNW ‘7
v
B. System event completion ?\9@ ' &Q?"o

C. Page fault

D. RMS request for I/0 QXKV
E. $QIO0 request for I/0 '%

VIi. Examples of System Processes

A. Operator Communication (OPCOM)

B. Error logger (ERRFMT)

C. Job controller (JOB_CONTROL)

D. Symbionts (SYMBIONT_n)

VII. Software Components of DECnet-VAX

SYSTEM COMPONENTS

THREE MAIN PARTS OF VMS
Scheduling and Process Control

Functions

® Assign processor to computable process with highest
priority

® Attend to process state transitions

e Facilitate synchronization of processes

® Perform checks and actions at timed intervals

Code and Data

® Scheduler interrupt service routine
Report system event code (IL3)
e Hardware clock and software timer interrupt service

routines fPL 2200 Z"'iﬂ— HRpwe thock @PL?j’m, srwgmcftj
~® System services ($WAKE)

Memory Management

Functions
e Translate virtual addresses to physical addresses
e Distribute physical memory among processes
® Protect process information from unauthorized access
® Allow selective sharing of information between processes

Code and Data

e Pager fault service routine and swapper process
® PFN database, page tables
® System services ($SCRETVA)

1/O Subsystem
Functions

® Read/write devices on behalf of software requests
® Service interrupts from devices
@ Log errors and device timeouts

Code and Data
® Device drivers, device- 1ndependent routines

e I/0 data structures
e System Sérvices ($QIO)

SYSTEM COMPONENTS

The Parts of the Operating System

UAX/UMSE V4.0 on

Fid
00000080
00000081
00000084
00000085
00000086
00000088
00000109
0000008R
0000008C
0000008
0000018F
00000110
00000191
00000096
00000197
00000218
0000019E
HD00001AA
00000120
0000013A

node COMICS

26-SEF-1984 13134335,10

Frocess Name State Fri 1/0
NULL COM 0 0
SWAFFER HIE 1é 0
ERRFMT HIE 8 834
OFCOM LEF 8 133
JOB_CONTROL HIR 9 4110
SYMBIONT..Q001L HIE 6 1161
S0UZA LEF 7 8777
NETACF HIE 10 3375
EVL HIE 6 32
REMACF HIE @ 111
HANDEL LEF 7 2631
BACH LEF b 15106
STRAVINSKY LEF 9 6689
OFERATOR LEF 7 122767
CHOFIN LEF 4 4140
MARSH LEF 4 17492
BATCH.%09 COM 4 1076
SCOTT_KEY LEF 4 2788
HUNT CUR 4 17262
~TTA3, LEF 4 1765
Example 1

CO OO OO OCOCO OO OO OO

CryU
09:110:38.72
00:01:08.46
00:00:07.34
00:00301.62
00:00:45.73
00:011192.87
00100:50.47
00301:25.81
00100:00.,73
00100:00.55
00100:31.96
00:101:58.01
00:101:14.464
00819134.03
00300843.43
00:04325.90
00100116.36
00:00:48.76
00:02:122.36
00:00332.21

Sample SHOW SYSTEM Output

List of processes on the system

Images running in process context

Only the "upper layer"

Notice lack of:

- Scheduling program

- I/0 handling programs

- System service code

Urtime

O 1131138352

Fade flts Fh.Mem

0
0

67
625
155
7514
14077
4121
265
72
14528
20174
16548
6974
9015
59864
7318
11152
23639
9565

0
0

88
58
299
45
445
1500
44
41
150
400
372
499
129
150
312
127
178
138

SYSTEM COMPONENTS

Functions Handled “Below’ User Level

e Scheduling of processes for CPU time
" - Highest-priority process
e Memory management within a process
® System services
- SCREPRC

- SGETxxX
- SCREMBX

® Record Management Services (RMS)

- OPEN
- GET, PUT
- CLOSE
e I/0 Code to handle peripherals

e Time Management

® Basic resource management

SYSTEM COMPONENTS

INVOKING SYSTEM CODE

EVENT mssp TABLE mmm)p EXECUTED CODE

o POINTER TO
A cep
,':ASLET L—» PAGE FAULT —
CODE
M’f" INTERRUPT = POINTER TO
\,’51’ SCHEDULER H——»
’S’? CODE SCHEDULER

CODE

W7

Figure 1 1Invoking System Code

e VAX/VMS driven by interrupts and exceptions

®¢ On interrupt or exception, hardware vectors to correct
code

® Example, page fault
Page fault occurs

- Hardware vectors through table
- Page fault code executes

M |
2
Q{"‘“‘ﬂg] c’?\y@ Q\ﬁfd’w

lwﬁ

SYSTEM COMPONENTS

Interrupts vs. Exceptions

Table 1 Differences Between Interrupts and Exceptions
! .
Interrupts i Exceptions
Asynchronous to the execution Caused by process instruction

of a process

Serviced on the system-wide (
interrupt stack in system- t

wide context

priority level to that

Change the interrupt
of the interrupting device /

lower-priority interrupts
are queued behind higher-
priority interrupts |

Cannot be disabled, although [

execution

Serviced on the process local
stack in process context

Does not alter interrupt
priority level

Some arithmetic traps can
be disabled

Hw '
Sw (

[

Traps Faults Bborts
phT Recoveralle Recoverable . ot Recovevable
410&5 next md ’738:#2/ ¢’0 [n5t sk Che

(D;‘/ b)’ ¢) (ﬂB’e Fau/l«") (CQ)

SYSTEM COMPONENTS

HARDWARE MAINTAINED PRIORITY LEVELS

® Processor is always operating at one of 32 possible
hardware-maintained priority levels (0 - 31).

® Operating at a higher 1level causes hardware to block
interrupts at the same and lower levels from being
serviced.

® Hardware determines which code will execute after an
interrupt occurs.

® How to get into and out of different levels:
1. Interrupt

Into - Hardware requests interrupt (for example,
from a terminal). Levels 16 through 31.
Software requests interrupt (uses MTPR
instruction). Levels 0 through 15.

Out of - Use REI instruction.

2. Block Interrupt

Into - Software raises priority level (uses MTPR).
Out of - Software. lowers priority level (uses MTPR).

® These hardware-maintained priority 1levels are called
Interrupt Priority Levels (IPLs).

[
|

12

SYSTEM COMPONENTS

Two Types of Priority

IPL
31
requested by
hardware Hardware
Maintained 31
16 /v
15 Real time
process
requested by
software 16
15
/ N
0L Software ormal
Maintained g/,owgmess
~ 0

Figure 2 Two Types of Priority

MTOR #on #PRboxrx (7o E)
mToR #) FRI-PL [44»71&2??1,)

SYSTEM COMPONENTS

Interrupt Servicing Sequence

User program being executed.

PC = address of next instruction
to be executed.

PSL = general status information.

l Interrupt occurs. Associated IPL
must be greater than current IPL

CODE
/’ﬂ/ PC—
cfd%
s cB P
(2
go-rmiptgm o L L]
¢/*f5¥#mhﬁ@
- W6
w O
PC
PSL

in PSL, else interrupt not serviced.

Hardware saves current PC and
PSL on stack.

I"ﬁtk o oteur @ pL>3
kestk of & IPL <3

Hardware indexes into table of
service routine addresses to get
new PC, and builds new PSL.

—»] ADDRESS &1—#NEW PC

SYSTEM CONTROL BLOCK

MKV84-2234

Figure 3 Example of Interrupt Servicing
(Sheet 1 of 2)

1-14

SYSTEM COMPONENTS

NEW
PC

REI
INTERRUPT SERVICE
ROUTINE
CODE
PC— l

Figure 3

Interrupt service routine executes
at new IPL.

At end, interrupt dismissed with

RE! instruction (making sure old
PC and PSL are at top of stack).

REI
- Pops PC, PSL from stack % r;,,"aé)
Checks PSL ke

- Moves PC, PSL to CPU registers

- Transfers control to PC

Interrupted program continues

exectution.

MKV842235

Example of Interrupt Servicing

(Sheet 2 of 2)

1-15

SYSTEM COMPONENTS

ACCESS MODES AND COMPONENTS

Runtime
Library

e|/0 o\ o
e SCHEDULING K E

e MEMORY
MANAGEMENT

Program
Development
Tools

Figure 4 Access Modes and Components

® Kernel of the operating system is protected from user
several layers of access protection

® User normally accesses protected code and data through the
Command Language Interpreter (CLI), Record Management

sﬁ £ Services (RMS), and system services
Y

ng#%;* ® System services - routines in operating system kernel that
N

may be <called by the wuser by means of a well-defined

/ interface

SYSTEM COMPONENTS

LOCATION OF CODE AND DATA

o~ Process A Process B
Y
s NATIVE MODE IMAGE COMPATIBILITY

{ MODE IMAGE
" RUN-TIME LIBRARY
' APPLICATION MIGRATION
DEBUGGER CODE EXECUTIVE (NATIVE)

PER

PROCESS PROGRAM REGION (PO)

ADDRESSES

COMMAND LANGUAGE COMMAND LANGUAGE
INTERPRETER INTERPRETER
DATA -- SYMBOL TABLE DATA -- SYMBOL TABLE --
CODE CODE

DEBUGGER DATA --
SYMBOL TABLE

CONTROL REGION (P1)
|

SYSTEM SERVICES

SYSTEM RECORD MANAGEMENT SERVICES

ADDRESSES SYSTEM REGION (SO)

Figure 5 Location of Code and Data in
Virtual Address Space

e Images running within processes use several different
types of software components

e PO space (program region) - user's code and data

e Pl space (control region) - process-specific information;
stored by the operating system

e Pg space and Pl space are mapped differently for native
* and compatibility mode images

e SO space (system space) - operating system code and data;
one copy shared by all processes

60 o

SYSTEM COMPONENTS

_Entry Paths Into VMS Kernel

Device Driver
Fork Processing
Software Interrupts

Translation - not - Valid

N

Memory
Management

® Page Fault
Handler

{Page Fault)

External Device

j Hardware Interrupts
I/0 Subsystem

® Device Drivers

® Post-

processing \ €= |/0 Postprocessing
routines Software Interrupt

Process and Time Management

N

Software Timer
Interrupt

® Rescheduler
® Clock and Timer Service .
AST Delivery

Rescheduling
Software Interrupt

Software Interrupt /

Hardware Clock
Interrupt

Figure 6 Entry Paths into VMS Kernel

Memory Management

® Brings virtual pages into memory

Process and Time Management

Saves and restores context of process

Updates system time

Checks timer queue entries (TQES), guantum end
Causes events to be processed

I/0 Subsystem

® Reads/writes device
® Finishes I/0 processing

@/?\/LD

SYSTEM COMPONENTS

Table 2 Summary of System Components and Functions

Function System Component

Assigns CPU to highest-prioritysp TSR SCHEDULER T3
computable process

. SYved
Moves working set between disk 5¢ ?(’oce.‘ﬁ SWAPPERMMW) IPL}é [‘}’IPL;

and memory

Moves pages from disk to memory §¢/ £9R PAGER Wﬁﬂ

Updates system clock and quantum5¢ HARDWARE CLOCK ISR IP[. 22/2}[

field, check for servicing at
intervals (.(ag?)

Performs servicing at intervalsg SOFTWARE TIMER ISR IpL7

Checks for quantum end
Causes events to be posted

Checks device timeout
W Wakes swapper and error logger

Handles requests to/replies from Y% ygoe%s OPCOM

(M/”""@

operator >
3t

Writes errors to error log file 7,;;} Ppeces5 ERROR LOGGER EIZRM [W@

Maintains voluame sttuctures for 174 ’ "5 ANCILLARY CONTROL W W
driver 005«1 } PROCESS 3

Maintains disk and file structure 7l FILES-11 XQP
for Files- ll&ODS—Z disks

Creates processes for print jobs,pP§ /)woooﬁJOB CONTROLLER JOBCTL EXE
batch jobs, interactive jobs (MW>

Controls devices, service device§¢) WPy DRIVERS
interrupts, check for and report

device errors

Handles printing of files M)ﬂMRINT SYMBIONTS CWD’V‘””[O

Handles process state transitions RoulineREPORT SYSTEM EVENT
resulting from event completion RSE

SYSTEM COMPONENTS

THREE TYPES OF SYSTEM COMPONENTS

w;’f\‘m
PROGESSES: e \/W)

\

ACP \\ JOB CONTROLLER OoPCOM

\/ | M
SWAPPER \ N ERRFMT ﬂ q@ﬂj\)?
; SYMBIONTS 5% AN " \/\/

[’75‘{51 ARIV.cOm
EXCEPTION AND INTERRUPT SERVICE ROUTINES: o frena22)
In =I5 3..1]
SCHEDULER i3 PAGER DRIVERS
HARDWARE CLOCKIp g7 e’r//}?ﬁ%
2] <,
Vo rdied 9
SOFTWARE TIMERZp) 9
ROUTINES:

b W REPORT SYSTEM EVENT
\ SYSTEM SERVICES

MKV84-2236

SYSTEM COMPONENTS

INTERACTION OF VMS COMPONENTS
Hardware Clock Interrupt

Process A Process B Process C
Per Process
Space USER
Prozess ERRFMT PROGRAM
Context :
System ot @
Space SWAPPER
Process
Context Ry TEXT SwiTCH
System DEVICE TIMEOUT SCHEDULER
Space 338 TIMER CODE phiiaedd
System ROUTINE
Context
ExepHweLkinT ® -
HARDWARE CLOCK < il
1P 24 NERRPT SOFTWARE REPORT
SERVICE TIMER SYSTEM
ROUTINE EVENT
Figure 8 Hardware Clock Interrupt
1. Clock

- Updates system time and quantum field
- Checks first timer gqueue entry

2. Timer
- Checks for quantum end
- Causes events to be processed

3. Report system event
- Changes process state

- May request scheduler interrupt

4. Scheduler
- Current <----> Computable

5. Swapper
- Inswaps computable process 7356'9% ng
—~ —————— — ,\/__,/‘\/v
6. Scheduled user program runs

1-21

LEF'OZZZZ

EXE $ BL - TREFL 2 Te%s
zx&éGL ~-TREBL

SYSTEM COMPONENTS

Periodic Check for Device Timeout

Process A Process B Process C
Per Process g
Space e USER
ERRFMT
Process PROGRAM
Context
System OL;,M“ ['ad
Space SWAPPER
Prgz:\::xt (R:gNTEXT SWITCH
SCHEDULER
System INTERRUPT
Space DEVICE SERVICE
System DRIVER ROUTINE

Context
SCHEDULE
IPL3

HARDWARE CLOCK cLocK
INTERRUPT REPORT
SERVICE SYSTEM
ROUTINE EVENT
Nl
4

\ A2
N '/\'\
Figure 9\§er10d1c Check for Device Timeout

1. Hardware clock interrupt.

2. Once every second, a timer queue entry becomes due that

causes a system subroutine to execute.

drivers to handle timeouts.

\w e

[N
|

22

3. This system subroutine checks for device timeouts, <calls

SYSTEM COMPONENTS

Periodic Wake of Swapper, Error Logger

Process A Process B Process C
Per Process
Space USER
Prozess ERRFMT PROGRAM
Context
System
Space SWAPPER @

Prgt(::l ::xt CONTEXT SWITCH
System s
Space DEVICE L 20-23 TIMER CODE SERVICE
System DRIVER ROUTINE

Context

SCHEDULE
PL3

@

HARDWARE CLOCK cLOCK g o
IPL 24 SOFTWARE REPORT
INTERRUPT TIMER
SYSTEM
SERVICE EVENT
ROUTINE

Figure 10 Periodic Wake of Swapper, Error Logger

4. The same system subroutine can wake the swapper process
and the error logger process,

5. Scheduler interrupt is requested.

6,7. Swapper and error logger will eventually run.

SYSTEM COMPONENTS

System Event Reporting

Process A | Process B Process C

Per Process
Space USER USER
Process PROGRAM A PROGRAM B
Context
System
Space SWAPPER
CODE
Process
Context
CONTEXT
System SWITCH
Space
System TIMER (:) SCHEDULER
Context 1/O COMPLETION > gsg%’s‘; INTERRUPT
SET EVENT FLAG EVENT SERVICE
WAKE ROUTINE
RESUME

Figure 11 System Event Reporting

SYSTEM COMPONENTS

Page Fault
Process A Process B Process C
Per Process USER USER
Space PROGRAM A @ PROGRAM B
Process
Context
TRANSLATION
NOT VALID
FAULT
v
System SWAPPER
Space PAGER CODE
Process
Context
1/0
REQUEST
Sisten1 HEPORT SCHEDULER
ace / ETION INTERRUPT
s s‘:em Lo-CoMPLETL —> SYSTEM SERVICE
y @ EVENT ROUTINE
Context

Figure 12 Page Fault

SYSTEM COMPONENTS

Data Transfer Using RMS

Process A

Per Process
Space

Process
Context

$GET

System
$Ql0 fOT

Space RMS SYSTEM ROUTINE

Process ROUTINE SERVICE
Context

System

Space DEVICE
DRIVER

System
Context

Figure 13 Data Transfer Using RMS

SYSTEM COMPONENTS

File Manipulation Using RMS

Process A

Per Process
Space

Process $GET ‘ap @
Context <:>
System @
Space R $Qlo
Progess RoUTINE SaRucE ROUTINE
Context

System
Space

System
Context

DEVICE
DRIVER

Figure 14 ODS-2 File Manipulation Using RMS

When the ODS~2 file structure is imposed on a disk volume, the
following operations require the intervention of the eXtended QIO
Procedures (XQP) to interpret or manipulate the file structure.

File open

File close

File extend

File delete

Window turn (for read or write)

SYSTEM COMPONENTS

File Manipulation Using RMS

Process A Process B

Per Process

Space $GET
Process

Context

N\

®lo

ACP
System @ 6
Space RMS R soe FDT
Process ROUTINE SERVICE ROUTINE @
Context
4
Space et
System
Context %

Figure 15 File Manipulation Using an ACP

Ancillary Control Processes (ACPs) help drivers implement:
® Magnetic Tape File Structure

® Network Operations

@ ODS-1 On-Disk File Structure

SYSTEM COMPONENTS

Data Transfer Using $QIO

Process
USER IMAGE
Per Process
Space $Q10
Process
Context Sg]’rEVENT FLAG
A
h 4
System
Space $Ql10
FDT
Process ggr?J:EcMe ROUTINE SPES{“
Context ROUTINE
* AST DELIVERY
PL 2
Mo, SOt
FORK
pace DISPATCH
Sycstem CODE ROUTINE
ontext
DEVICE .
iPL 8 OR 11 ' DRIVER
INTERRUPT
DISPATCH
CODE
IPL 20-23 ‘_n-—
DEVICE
INTERRUPT
iPL 20-23

Figure 16 Data Transfer Using $QIO

SYSTEM COMPONENTS

$QI0 Sequence of Events

USER
ISSUES
$Q10

'

$QI0 CHECKS
DEVICE INDEPENDENT
PARAMETERS

ERROR

NO

FDT CHECKS
DEVICE DEPENDENT

PARAMETERS

ERROR

v

RETURN WITH
ERROR MESSAGE

Figure 17

NO

1-30

NO

DRIVER REQUESTS
DEVICE ACTIVITY

y

DEVICE INTERRUPTS
CPU IPL 20-23

v

INTERRUPT
SERVICE ROUTINE
IPL 20-23

'

DRIVER DOES
FURTHER PROCESSING
IPL 8-11

YES

DEVICE INDEPENDENT
PROCESSING

IPL 4
!

AST ROUTINE
INVOKED
IPL 2

USER
CONTINUES

EXECUTING

TK-8968

$SQI0O Sequence of Events

SYSTEM COMPONENTS

EXAMPLES OF SYSTEM PROCESSES
OPCOM, Error Logger

Process B

Process A

SREQUEST
OR
SREPLY

PER PROCESS
SPACE

Process C

ERRFMT

PROCESS
CONTEXT
3
SYSTEM
SPACE I
PROCESS
CONTEXT ERROR
MESSAGE jfuunm

SYSTEM BUFFER
SPACE
SYSTEM
CONTEXT

DEVICE DEVICE ERROR

DRIVER @

Figure 18 OPCOM, Error Logger
OPCOM Process
e Handles requests to, and responses from, the system
operator
Error Logger
e Has buffers in memory in which detected errors are
recorded

e Writes to the error log file

SYSTEM COMPONENTS

Print Jobs

LINE PRINTER

"SYMBIONT PRINT
MANAGER" SYMBIONT

$PRINT A

PROCESS l JOB CONTROLLER _L SYMBIONT

Figure 19 Print Jobs

SYSTEM COMPONENTS

Batch Jobs
A.COM
®
|
| ® |
"JOB
$SUBMIT A : INITIATOR" :
($CREPRC)
|]
@ | | @
-

PROCESS _L JOB CONTROLLER _L BATCH PROCESS

Figure 20 Batch Jobs

SYSTEM COMPONENTS

Terminal Input

TERMINAL
DRIVER

"JoB
INITIATOR"

SERVICE ROUTINE _L JOB CONTROLLER I PROCESS

Figure 21 Terminal Input

SYSTEM COMPONENTS

Card Reader Input

CARD
READER
DRIVER

"JOB
INITIATOR"

INPUT
SYMBIONT

SERVICE ROUTINE

- - - - 4

JOB CONTROLLER I PROCESS

Figure 22 Card Reader Input

SYSTEM COMPONENTS

SOFTWARE COMPONENTS OF DECnet-VAX
Data Link Device Drivers

e XMDRIVER, XDDRIVER, XGDRIVER - handle synchronous DDCMP
links (DMR11l, DMP11l, DMF32)

e XEDRIVER

for DIGITAL Ethernet UNIBUS Adapter (DEUNA)

® XQDRIVER for DIGITAL Ethernet Q-bus Adapter (DEQNA)

e CNDRIVER

handles Computer Interconnect (CI)

e NWDRIVER for X.25 (used for datalink mapping)

e Terminal drivers - for asynchronous DECnet (DDCMP
protocol)

NETDRIVER and NETACP

e Implement routing, and End Communications Layer (ECL)

e NETDRIVER handles the time-critical functions (for
example, transmit or receive data).

® NETACP handles the non-time-critical functions (for
example, setting up logical link).

RMS, DAP Routines, and FAL_n

e Implement application layer for file transfer operations

RTTDRIVER, REMACP, and RTPAD

e Implement application layer for remote terminal access

Netserver

@ Collection of programs used to start wup a network user
process on a remote node

1-36

SYSTEM COMPONENTS

Special DECnet Components
EVL

e Event logger process - collects and filters network event
information; passes it to the correct destination

e Created at network start-up if event logging enabled

SERVER_n Process

e Process ready to handle a logical link

NCP, NML, MOM, MIRROR, NDDRIVER

® For network management

e For special functions (down-line 1load, up-line dump,
device loopback tests)

SYSTEM COMPONENTS

DECnet Remote File Access

LOCAL (SOURCE) NODE REMOTE (TARGET) NODE
USER LEVEL USER LEVEL

F11iBxap F11BXQP

I MTAACP I MTAACP I
| | |
NORMAL { t | t I
USER P I - .
TASK < |, RMS |e= : RMS ‘i »| FAL
E.G., DAP DAP 4
DCL COMMANDS | | |
GET, PUT, OPEN L 4
I N D ! 0 N I
E |e > - >| E e
| T[T g FHIR R LY T I
1|3 ool 8§ | o2
SOPHISTICATED) NETACP L E L E NETACP A
USER | y NR | N R ¥ | _
TASK | R | R | TARGET
E.G., USER
salo | | I TASK
SASSIGN [| |
SDASSGN
| | sl
| | R |
E PROCESS
| | N 2 | —RTAn:
RTPAD | | ¢ YU
E
| | Rl |
| | |
[} 1]

Figure 23 DECnet Remote File Access

® User issues DCL command, such as:

TYPE NODEB"NAME PASSWORD"::DISKS$: [DIRECTORY]FILENAME,TYP
® RMS detects "::" in file sgpecification
® RMS and NETDRIVER use internal $QIOs.

® NETACP process_on each node sets wup data structures to
support logical 1link

e FAL n process issues requests to RMS on remote node

SYSTEM COMPONENTS

SUMMARY

® How VMS Implements the Functions of an Operating System
® How and When Operating System Code is Invoked
® Interrupts and Priority Levels
® Location of Code and Data in Virtual Address Space
e Examples of Flows for:

- Hardware clock interrupt

- System event completion

- Page fault

- RMS request for I/O

- S$SQIO0 request for I/O
® Examples of System Processes

Operator Communication (OPCOM)

Error logger (ERRFMT)

Job controller (JOB_CONTROL)
- Symbionts (SYMBIONT n)

e Software Components of DECnet-VAX

DECnet Protocols

SYSTEM COMPONENTS

APPENDIX

ADDITIONAL DECnet-VAX INFORMATION

DATA

User data

Handled by network
application components

Handled by NETDRIVER
and NETACP for data
transfer via logical link

Handled by NETDRIVER
and NETACP to determine
routing

Handled by data link layer
to transfer data across
physical link

MKV84.2237

APPN
PROTOCOL
ECL
ROUTING
DATA LINK DATA
PROTOCOL CHECK
Figure 24 DECnet Protocol Layers

SYSTEM COMPONENTS

DECnet Task-to-Task Communication

LOCAL (SOURCE) NODE REMOTE (TARGET) NODE

USER LEVEL

USER LEVEL

|| F11exar | F1iBxap ||
I MTAACP I MTAACP I
NORMAL | t | t |
usER Lof rus |- I aus | FAL
E.G., I DAP I DAP I
DCL COMMANDS | | |
GET, PUT, OPEN 4
| vl 16 Iw |
| E|e lac|] [ao]® > E |
L s e 1% |
R [P LY LV <+»| R
SOPHISTICATED) E E
i | p “INETACP "l:R | .":R NETACP é |
'I;AGSK | R“ | R | L] tamcer
salo | | P . USER
SASSIGN I > | I " TASK
SDASSGN I I I
R
| | R |
| I £ o I pn:;::ss
R ~RTAn:
RTPAD | | § |
| | Al
| | |
| i |
Figure 25 DECnet Task-to-Task Communication

SYSTEM COMPONENTS

Transparent Task-to-Task Communication

For

example, on the source node, the user issues:

SDEF XXX NODEB"""USERID PASSWORD"""::"""TASK=yyy"""

and

in the program:

OPEN (NAME=XXX ceesens)

The

RMS
the

The

OPEN command is passed to RMS.

checks the translation and sets up a logical link with
remote program YYY.

procedure is similar to remote file access with the

following differences:

The command procedure YYY.COM must reside on the
directory of USERID on NODEB (SYSSLOGIN).

The remote program uses the logical name SYSSNET to
accept connection.

for example, OPEN (NAME=SYSSNET ..c.ceeceesess)

The two programs must cooperate. For example, when
one program issues a Read, the other issues a Write.

Nontransparent Task-to-Task Communication

Bypass RMS and issue $QIOs directly to the NETDRIVER.

SYSTEM COMPONENTS

DECnet Performing Set Host Operation

LOCAL (SOURCE) NODE REMOTE (TARGET) NODE
USER LEVEL | ' I USER LEVEL
| F11BXQP | F11BXQP |
MTAACP MTAACP

- [| |
NORMAL | : :
USER
TASK : RMS ' RMS l FAL
EG., DAP DAP
DCL COMMANDS | | |
GET, PUT, OPEN I I I
| ¢l >lael | A2 > & |
SOPHISTICATED I ? g té 1 t é « ? l
USER | v NETACP 'l‘ " ' 'l‘ " NETACP \E, |
TASK [R i R | TARGET
E.G., | A I 4 4 | USER
salo TASK
SASSIGN A
SDASSGN : : v Yy :
R
T
l ' £ | TL ! .| PROCESS
| | o hid BN ™ _&Tan:
a A '
RTPAD “1 ' € \E! |
| | R
| | |
[' [}

Figure 26 Performing Set Host Operation

e SSET HOST invokes RTPAD program

@ Process is created on remote system to handle requests

® Local terminal appears to be connected to remote system

44

—
]

The Process

THE PROCESS

INTRODUCTION

This module details a familiar part of VAX/VMS: the process.
The definition of a process is fundamental to understanding the
operating system. The process is the representation of each user
of the system. Several of the software components of the system
itself are also processes.

The process is the basic scheduling entity of VAX/VMS. A
group of one or more processes forms the basic accounting entity
of vVAX/VMS: the job. Some features and resources are only
defined for each process, while others are shared among all the
processes in a job. Three major classes of attributes and
resources can define a process and the operations performed within
it.

L e
e Hardware process context ("PRHW'"M:))
e Software process context (Pc&/PHWﬂI6>

e Virtual address space (and associated memory management
data)

Hardware context includes the contents of the hardware
processor registers that contain perprocess values (separate from
system-wide ones). Examples of these registers include:

e The general-purpose registers (RO through R11)
g‘\‘) Ri*
e The frame pointer (FP), argument pointer (AP), the four
perprocess stack pointers (KSP,ESP,SSP,USP), and the
current stack pointer (%ﬁ&

e The processor status longword (PSL) and the program
counter (PC)

e Hardware registers that define the state of the AST queue
and the locations and sizes of the process page tables.

V’Q 5_’ AsTLVL

pst

2 ¢ ép&f

THE PROCESS

Software context defines the resources and attributes used by
the VAX/VMS software but not wused by the VAX-11 hardware.
Examples of this type of information include:

® Resource quotas, privileges, and accumulated accounting
values

® Scheduling or software priority
e Link fields to operating system data structures and queues

® Identification fields such as wuser name, UIC, process
name, and process ID.

Virtual address space includes the mapping information for,
and the contents of, the perprocess address regions, the program
(or P0) region, and the control (or Pl) region. 1In addition, all
processes implicitly share the system region. Software executing
in any of the three address regions, but using the hardware and
software context of a process is said to be "executing in the
context of the process." Software components using only system
address space and the interrupt stack execute in system context
(outside process context). Examples include interrupt service
routines and device drivers.

OBJECTIVES

1. Describe the similarities and differences of system
context and process context.

2. Using the System Dump Analyzer on either a crash dump file
or the current system, examine and interpret the software
process control block, process header, job information
block, and control region of a specified process.

3. Describe how the various process data structures are used.
- When the structures are modified

- Which structures are reset to default or initial
values

4. Discuss the SYSGEN parameters that relate to process
characteristics, and the effects of altering those
parameters.

‘THE PROCESS

RESOURCES
Reading

e VAX/VMS Internals and Data Structures, system overview,

chapters on use of 1listing and map files, and naming
conventions.

Additional Suggested Reading

e VAX/VMS Internals and Data Structures, chapters on
executive data areas, data structure definitions, and size
of system virtual address space.

e VAX/VMS System Dump Analyzer Reference Manual

Source Modules

Facility Name Module Name

SYS SHELL

SYSIMGACT
SYSBOOT
SCHED
PAGEFAULT

SWAPPER

SYS.MAP

THE PROCESS

TOPICS

I. Process vs. System Context

II. Process Data Structures Overview

A. Software context information

B. Hardware context information

III. Virtual Address Space Overview

A. SO space (operating system code and data)
B. PO space (user image code and data)

C. Pl space (command language interpreter, process data)

IV. SYSGEN Parameters Related to Process Characteristics

THE PROCESS

PROCESS VS. SYSTEM CONTEXT
Process Context

e Software Context, including

- Privileges

- Quotas

- Scheduling priority

- IDs (user name, UIC, Process ID)
e Hardware Context, including

- General Purpose Registers (RO- R1l1l, AP, FP, PC)

- Stack pointers (4)
- Processor Status Longword (PSL)

e Virtual Address Space

- Program region (P0)

- Control region (P1l)

- System region (S0)

System Context

e System virtual address space (S9)

e The interrupt stack /

THE PROCESS

PROCESS DATA STRUCTURES OVERVIEW

T ——
VAE J /)
SO@ SPACE ’ , / ?ch,_g
® Pro o) Zen HARDWARE
o PROCESS
CONTROL
pooted PBILTHYRE [Phsical | PO PAGE BLOCK
7u¢£ Heldpess' TABLE
JOB SOFTWARE ‘
INFORMATION PROCESS T
BLOCK CONTROL
(JIB) BLOCK P1PAGE
(PCB) TABLE
PROCESS
HEADER (PHD)
Figure 1 Process Data Structures
® Software Process Control Block (PCB)
- Holds process-specific data that must always be
available (for example, process state, priority).
Contains pointers to other process data structures
Not paged, not swapped
® Process Header (PHD)
- Contains process memory management information
- Contains hardware process control block
® Hardware Process Control Block
- Contains saved hardware context
e Job Information Block (JIB)
- [Keeps track of resources for a detached process and

all its subprocesses.

2-10

THE PROCESS

Software Process Control Block (PCB) (/7, 922 IPS/VI)

-

STATE QUEUE FORWARD LINK e

— @ \VMS standard queue

-~STATE QUEUE BACKWARD LINK

header
® Size of nonpaged

7 T~

. . I TYPE I SIZE pool allocation
/) 2)‘750 ‘\ Scheduling Information
i \ ® Priority .
d SCHEDULING e Status f:;r;fszﬂ
INFORMATION Resident/outswapped
Swap/noswap
® State (f;’ 22, Ipms)
Resources
RESOURCES e 1/0 limits
] Subprocess count
Pointers to:
POINTERS TO e Process heade(iM)
OTHER DATA ° naé'dwar3 PCB
¢ vA \
STRUCTURES ® Event flag clusters (LEF/CEF)
Listheads
LISTHEADS o AST queue

® Lock queue

NAMES AND PRIVILEGES

Names and Privileges

® Process ID (PID)
e Login UIC
® Privilege mask

Figure 2

MKV84-2152

Software Process Control Block (PCB)

(g‘;’wg PLB NP fﬂ’(No Vo
—_— | f S mym
PHD —falance S 7’,%7[1; ,,ffg
J1B J A PP Vo [WMo |

THE PROCESS

924 ID5M)
Process Header (PHD)
od
o0
FIXED AREA ® Privilege mask

® Hardware process control
block

CATALOG WORKING SET PAGES | ® Working set list

USED TO LOCATE IMAGE

® Process section table

SECTIONS IN IMAGE FILES WMCB‘Q
ADDRESS MAPPING * P1 page table

MKV84-2153

Figure 3 Process Header (PHD)

e B>

THE PROCESS

Hardware Process Control Block (//w P HD>

- PRS_PCBB

® Pointers to:

STACK POINTERS Kernel stack) af/ /%ﬁ PLW

Executive stack
Supervisor stack
User stack

[

GENERAL PURPOSE ® RO, R1, .., R11
REGISTERS

e Argument Pointer {AP)
OTHER REGISTERS Frame Pointer (FP)

STATUS INFORMATION Program Counter (PC)
® Processor Status Longword (PSL)

® PO base register

MEMORY MANAGEMENT P1 base register

REGISTERS PO length register
P1 length register

MKV84-2148

Figure 4 Hardware Process Control Block

e PR$ PCBB contains the physical address of the hardware PCB
for the current process.

THE PROCESS

Privileged vs. General Registers

Privileged

General
[

Can only be accessed in kernel mode using MTPR,
instructions

Types:
Pointers to Data Structures

Hardware Process Control Block (PR$_PCBB)
System Control Block Base (PR$_SCBB)

Hardware Error Registers

SBI Error on VAX-11/780 (PR$_SBIER)
Cache Error on VAX-11/750 (PRS$_CAER)

Clock Registers

Time of Year on VAX-11/730 (PR730$_TODR)
Interval Count on VAX-11/780 (PR780$_ICR)

Other Registers

Interrupt Priority Level (PR$_IPL)
Software Interrupt Summary (PRS$_SISR)

MFPR

Can be accessed in any access mode using most instructions

RO-Rll,AP,FP,SP,PC

THE PROCESS

Job Information Block

LIST OF
AVAILABLE
RESOURCES
& LIMITS
DETACHED
PCB JOB INFORMATION
BLOCK (JIB)
SUB
PCB

SUB

PCB

TK-8947

Figure 5 Job Information Block (JIB)

e Job consists of a detached process and its subprocesses.

e Job information block (JIB) keeps track of resources
allotted to a job, such as:

- Limit on number of subprocesses (PRCLIM)
- Open File Limit (FILLM)

2-15

THE PROCESS

VIRTUAL ADDRESS SPACE OVERVIEW

L

PO , SEPARATE MAPPING
FOR EACH PROCESS

P1 =

S0 ALL PROCESSES

}ONE MAPPING FOR

TK-8942

Figure 6 Virtual Address Space

Process Virtual Address Space

. @ﬂZmZZ?b - Image, Run-Time Library, Debugger

s ol (USTE
Wﬁﬂﬁﬁ_w~f-c Pf - Command Language Interpreter,
stacksLmﬁilemsystemwaP7m4¢Q\g§EE¢g£§as

5 ;Jﬁ/ S@ - System services, Record Management

Services, other executive code and
data

THE PROCESS

SO0 Virtual Address Space

| SYSTEM SERVICE VECTORS
_EN .
f/m(b?A ﬁ/ﬂ ® System service code
m,;(p.b“ EXECUTIVE CODE e Scheduler
MW"" Wﬁ AND DATA e Report System Event
Mm‘:‘,’;@';;pf /o Adapter Virtual s
P FILE HANDLING ‘ o RMS.EXE
; ROUTINES
ERROR MESSAGE TEXT o SYSMSG.EXE
DESCRIPTION OF PAGES e PEN database
IN PHYSICAL MEMORY Golomartd ! PFV/
SHARED DYNAMIC ® Paged pool
DATA STRUCTURES e Global section descriptors
SHARED DYNAMIC ¢ Non-paged pool
DATA STRUCTURES e Software process control
blocks
DRIVERS e Unit control blocks
o Lookaside list
e |/0 request packets

® Timer queue elements
MKV84-21560

Figure 7 8S@ Vvirtual Address Space - Low Addresses

THE PROCESS

STACK USED WHEN
INTERRUPTS OCCUR

B
PRYRS — | riction

Interrupt stack

?N"’wbn) TABLE FO VECTORIITG I . c Block (SCE)
i t t
BY HARDWARE TO ys ergfo:;roz ocC
SERVICE ROUTINES (8’6@987-' :Z‘
73y.fo=>

Balance slots

STORAGE FOR
PROCESS HEADERS

LOCATIONS OF VALID System header (smidr %-PHDY
SYSTEM VIRTUAL ADDRESSES - System working set list

- Global section table
DATA STRUCTURES USED
TO LOCATE GLOBAL SECTIONS

R~ LOCATION OF EACH
PAGE OF SYSTEM
VIRTUAL ADDRESS SPACE

3
Z

System page table

LOCATIONS OF
GLOBAL PAGES

Global page table

TV

MKV84-2149

Figure 8 S@ Vvirtual Address Space - High Addresses

2-18

Native Mode Image

THE PROCESS

PO Virtual Address Space

Compatibility Mode Image

0 0
Compatibility
Mode Image
Native Mode Image End of Compatibility
Mode Image
not mapped
1777775 = FFFF
8 16
RSX-11M AME
Run Time Library
Native Mode Image POLR Pages
Debugger not mapped 3FFFFFFF
Traceback
POLR Pages
not mapped
3FFFFFFF
Figure 9 P@ Virtual Address Space

THE PROCESS

P1 Virtual Address Space

Image-Specific

20 Mﬂ/ User 1;tack

40000000

Process Specific

Per-Process Message Section (s)

CLI Symbol Table

CLI Image

W ze: 11 xap (kirelomards)

g IF g;nggz 1/0 Zegg\&ent
Process 1/0 Segment

Process Allocation Region

Channel Control Block Table

4+ CTL$GL_CTLBASVA

4 CTL$AG_CLIMAGE

<+ CTL$GL_F11BXQP

<+ PIOSGW_PIOIMPA+
IMP$L_IOSEGADDR

4~ CTL$GL_ALLOCREG

Static

P1 Window to Process Header

w ﬁ" #Prg’éegsls% Segment (R ’”5)

Per Process Common Area

Per Process Common Area

4 CTLSGL_CCBBASE

4 PIOSGL_FMLH

i

Figure 190 Pl Virtual Address Space - High Addresses

Pl space is built from high addresses toward low addresses.

2-20

THE PROCESS

Compatibility Mode Data Page

4 CTLSGL_CMCNTX

Security Auditing
impure Data Table

4

«NSAST_IDT

L

Image Activator Context

<« CTLSGL_IAFLINK

Generic CLI Data Pages

4 CTLSAL_CLICALBK

Image Activator Scratch Pages

Static

Debugger Context

Vectors for Messages and User-Written System Services

+CTLSA_DISPVEC

Image Header Buffer

+MMGS$GL_IMGHDRBUF

v

4 CTLSAL_STACKLIM

<4+P1SYSVECTORS

syt

4+ CTL$GL_VECTORS

7FFFFFFF

Figure

P Kernel Stack Kw
Executive Stack EW
Supervisor Stack 5w
System Service Vectors
P1 Pointer Page
Debugger Symbol Table
11 Pl Virtual Address Space

Image-Specific - Deleted on image exit
Process-Specific - Changes according to SYSGEN parameters

and CLI used

Static - Does not change

- Low Addresses

set Hudts i'//fz

THE PROCESS

Table 1 Function of Pl Space
Function Pl Area
Images Command Language Interpreter

Symbol tables

Pointers

Stacks U%e oof
RMS data

File system code
Error message text
Storage area

e Data stays around
between images

® Logical names

Other data areas

;&ﬁaﬁ%W

(DCL, MCR, user-written)

Symbolic Debugger
Command Language Interpreter

System service vectors
User-written system service
vectors

Pl window to process header
(maps to PHD in S0 space)

Pl pointer page (i.e.,
CTLSGL_CTLBASVA; addresses
of exception vectors)

Perprocess message vectors

Kernel, executive, supervisor,
user

Image I/O segment
Process I/0 segment

Files-11 XQP

Perprocess message section

Perprocess Common Area
(LIBSGET_COMMON)

Process allocation region

Generic CLI data pages

Image activator scratch pages
Image header buffer
Compatibility mode data page
(used by AME)

Channel control block table
(links process to device)

THE PROCESS

SUMMARY

Table 2 SYSGEN Parameters Relevant to Process Structure

Function

Parameter

Size of the CLI symbol table

Limit on use of process allocation region by
images

Number of pages in the process allocation
region

Default number of pages created by the image
activator for the image I1/0 segment

Number of pages for the process I/0 segment
mapped by PROCSTRT

CLISYMTBL

CTLIMGLIM (%)

CTLPAGES (*)

IMGIOCNT (*)

PIOPAGES (¥*)

(*) = special SYSGEN parameter

System Mechanisms

SYSTEM MECHANISMS

INTRODUCTION

Many of the operations associated with an operating system can
be described in terms of software components manipulating data
structures. A variety of control mechanisms must be established
to ensure that components competing for common resources do not
interfere with each other or cause a system "deadlock." Several
hardware instructions provide support for these software
mechanisms. Additional mechanisms control the accessibility of
data structures.

The implementation of an interrupt priority structure provides
a hardware-arbitrated mechanism for synchronizing device requests,
some software component requests (such as scheduling and AST
delivery), and synchronizing the accessibility of some protected
data structures. Interrupts are the result of asynchronous events
occurring within VMS and the hardware configuration.

Available mechanisms for synchronizing the activities of
processes include: '

e Interrupt Priority Levels (IPL)

e The System Timer Queue

e Mutual Exclusion Semaphores (MUTEXes)
e Asynchronous System Traps (ASTs)

e The VAX/VMS Lock Manager

Exceptions are another mechanism used by VMS. Exceptions are
synchronous events that result from actions within a particular
process. Common examples include:

e Translation-not-valid fault (page fault)
e Divide-by-zero trap

Execution of most system services and record management
services occurs as a result of change mode to kernel and change
mode to executive exceptions (CHMK and CHME instructions).

SYSTEM MECHANISMS

Dynamic memory (pool) is used to provide storage for various
classes of VMS data structures. Process data structures are
allocated from a dynamic memory area in the control (Pl) region.
System-wide data structures are allocated from either paged or
nonpaged pools depending on the types of system components
accessing them.

OBJECTIVES

To understand the operations of VMS, and to write system-level
programs, the student must be able to:

1. Describe how the various = VAX/VMS protection,
communication, and synchronization mechanisms are
implemented, and why each of them is used.

2. Discuss the SYSGEN parameters controlling various system
resources (for example, memory), and the effects of
altering those parameters.

Reading

SYSTEM MECHANISMS

VAX/VMS Internals and Data Structures, chapters on
condition handling, system service dispatching, software
interrupts, AST delivery, the lock manager,

synchronization techniques and dynamic memory allocation.

Additional Suggested Reading

VAX/VMS Internals and Data Structures, chapters on

hardware interrupts, and timer support

VAX-11 Architecture Handbook, chapters on special

instructions, and exceptions and interrupts

VAX-11 Hardware Handbook, chapters on privileged registers

Source Modules

Facility Name Module Name

SYS

ASTDEL, SCHED
CMODSSDSP
EXCEPTION, SYSUNWIND

MEMORYALC

MUTEX

SYSENQDEQ

TIMESCHDL
SYSSCHEVT, SYSCANEVT
FORKCNTRL

IOCIOPOST

SYSSEXAMPLES USSDISP.MAR,USSLNK.COM

Macros

RTL

USSTEST.MAR,USSTSTLNK.COM
IFWRT, IFNOWRT, IFRD, IFNORD
IFPRIV, IFNPRIV
SETIPL,DSBINT, ENBINT, SAVIPL

LIBSIGNAL

SYSTEM MECHANISMS

TOPICS

I. Hardware Register and Instruction Set Support

II. Synchronizing System Events
- Hardware Interrupts
- Software Interrupts
Example: Fork Processing
- Requesting Interrupts
- Changing IPL
-~ The Timer Queue and System Clocks
III. Process Synchronization Mechanisms
- Mutual Exclusion Semaphores (MUTEXes)

~ Asynchronous System Traps (ASTs)
- VAX/VMS Lock Manager

IV. Exceptions and Condition Handling
V. Executing Protected Code
- Change Mode Dispatching

- System Service Dispatching

VI. Miscellaneous Mechanisms

- ©System and Process Dynamic Memory (Pool)

VII. SYSGEN Parameters Controlling System Resources

SYSTEM MECHANISMS

HARDWARE REGISTER AND INSTRUCTION SET SUPPORT

Table 1 Keeping Track of CPU, Process State

Function Implementation Name

Store processor Register Processor Status
state Longword (PSL)
Save, restore Instruction SVPCTX, LDPCTX

process state

SYSTEM MECHANISMS

Processor Status Word

15 8 7 6 5 4 3 2 1 0

NOT USED

DECIMAL OVERFLOW TRAP ENABLE _f
FLOATING UNDERFLOW TRAP ENABLE

INTEGER OVERFLOW TRAP ENABLE
TRACE TRAP ENABLE
NEGATIVE CONDITION CODE
ZERO CONDITION CODE
OVERFLOW CONDITION CODE
CARRY (BORROW) CONDITION CODE

Figure 1 Processor Status Word

e Low-order word of Processor Status Longword (PSL)

@ Writable by nonprivileged users through:

- Special Instructions
- Entry masks
- Results of most instructions

a""
SYSTEM MECHANISMS M(M

aad
Go/"’

Processor Status Longword (PSL)

31 3 20 16 15 0

PROCESSOR STATUS WORD

AA A‘l 1 | I W N |

L— INTERRUPT PRIORITY LEVEL

PREVIOUS ACCESS MODE

CURRENT ACCESS MODE

EXECUTING ON THE INTERRUPT STACK
INSTRUCTION FIRST PART DONE
TRACE PENDING

COMPATABILITY MODE

Figure 2 Processor Status Longword (PSL)

o

e High-order word of most interest to system programmers

- Contains processor status information

- Read-only to nonprivileged users

- Changed as a result of REI and MTPR instructions

- May be changed as a result of interrupts and
exceptions

e PSL is part of process hardware context

Hardware Context

SYSTEM MECHANISMS

Process Header

Table

Hardware PCB

.

® Working Set List
® Process Section

® Accounting Info

PO Page Table
(Virtual

Address Space
Description)

P1 Page Table

Figure 3

PRS._PCBB

-0

Hardware Process
Control Block

® General Registers
® PC, PSL

® Per Process
Stack Pointers

® Memory
Management
Registers

® ASTLVL

(Hardware Context)

Hardware Context

® Hardware PCB contains hardware context while

current

process

not

® VAX instructions for saving and restoring hardware context
(SVPCTX and LDPCTX)

3-19

SYSTEM MECHANISMS

SYNCHRONIZING SYSTEM EVENTS
Hardware Interrupts and the SCB

< & PR$_SCBB

Exceptions

Processor Faults

Software Interrupts

:: EXE$GL__SCB

System Control Block

Figure 4 Hardware Interrupts and the SCB
e System Control Block (SCB) - physically contiguous area of
system space

e Hardware register PR$_SCBB contains physical address of
SCB

e Hardware gets service routine address from longword in SCB

@ Size of SCB is CPU-specific.

SYSTEM MECHANISMS

Hardware Interrupts and IPL

Table 2 Hardware Interrupts and IPL

FUNCTION ((}’e‘t'i-r‘r{sn NAME
Power Fail Interrupt 30

Clock Interrupts 24 IPL$_HWCLK

Device Interrupts 20-23 UCB$B_DIPL*

* Offset into Device's Unit Control Block

e Interrupt Priority Levels (IPLs) above 15 reserved for
hardware interrupts

® Peripheral devices interrupt at IPL 20 to 23

® IPLS xxxXx - IPL level (see $IPLDEF)

SYSTEM MECHANISMS

RR
Software Interrupts and the SCB ol PK¢,5)

PR$_SCBB

<

Exceptions

Processor Faults

Clock and Console

Device Int
evice Interrupts — .. EXE$GL_SCB

System Control Block
Figure 5 Software Interrupts and the SCB

e Hardware gets service routine address from longword in
SCB.

3-13

SYSTEM MECHANISMS
gﬁhaj? "p
222K
>32p/L M4 C

>
Software Interrupts and IPL e

Table 3 Software Interrupts and IPL

VALUE
FUNCTION 4 (decimal)} _NAME
ﬂM)ﬂ“
L
(unused) 15-@%;” ‘dﬂﬂ%y
Fork Dispatching 11 IPL$_MAILBOX
Fork Dispatching 10
Fork Dispatching 9 \
Fork Dispatching 8 IPL$_TIMER
(s IPL$_SYNCH
Software Timer Interrupt 7 IPL$_TIMERFORK
Fork Dispatching 6 (EXESDEALOAON)
Used to Enter XDELTA 5
1/0 Post-Processing 4 IPL$_IOPOST
Rescheduling Interrupt 3 IPL$_SCHED
AST Delivery Interrupt 2 IPL$_ASTDEL
[;9) (unused) 1-0

e Interrupt Priority Levels (IPLs) 1 through 15 reserved for
software interrupts

® Driver fork level stored at offset UCB$B_FIPL in UCB (see
$UCBDEF)

14

w
|

SYSTEM MECHANISMS

Example of Fork Processing

1. IPL 23 interrupt occurs

2. Driver interrupt service routine executes

Processing done at IPL 23

Queue 'context block' (UCB) to fork dispatcher
contains PC)

Request IPL 8 interrupt

Continue processing at IPL 23

REI when done at IPL 23

3. IPL 8 interrupt is recognized

4., Fork dispatcher service routine executes

If queue empty, REI
Dequeue UCB

JSB to PC in UCB

PC is usually in driver code
Routine exits with RSB when done

Loop back
FORK - " o
QUEUE 1 i =
LISTHEAD
PC PC
UCB UCB

TK-8943

Figure 6 Fork Queue

3-15

(block

SYSTEM MECHANISMS

Software Interrupt Requests

31 4 3 [¢]
IGNORED REQUEST

PR$_SIRR Software Interrupt Request Register

(Write Only)

31) 16 15 i 0
PENDING SOFTWARE INTERRUPTS M
MBZ B
F{EyD;CyB;A}9;8;7,6;5,41342,;1]2

PR$_SISR Software Interrupt Summary Register
(Read/Write)

Figure 7 Software Interrupt Requests

® Software Interrupt Summary Register
- Bits 1 through 15 correspond to IPLs 1 through 15.
- Bit set indicates pending software interrupt request.

- Interrupt is serviced as IPL drops below specified
level, when REI is issued.

e Software Interrupt Request Register
- To set bit in SISR, write IPL value to SIRR.
~ Use SOFTINT macro:
.MACRO SOFTINT 1IPL

MTPR IPL,SA#PR$_SIRR
. ENDM SOFTINT

Reactivation of a Driver Fork Process

DEVICE
GENERATES
INTERRUPT

:

DRIVER
SERVICES
INTERRUPT

SOFTWARE
INTERRUPT
OCCURS

l

:

DRIVER
FORKS

Lower IPL to fork level

FORK
DISPATCHER
CALLS DRIVER

l

l

DRIVER
DISMISSES
INTERRUPT

DRIVER
COMPLETES
REQUEST

;

FORK
DISPATCHER
DISMISSES
INTERRUPT

ZK-924-82

Creating a Fork Process After

DRIVER'S
INTERRUPT- | JSB DRIVER
SERVICING |

ROUTINE

'JSB
| RSB IOFORK

L |

ZK-923-82

DEVICE

GENERATES -

INTERRUPT

from Interrupt to Fork Process Context
To lower its priority, the driver calls a VAX/VMS fork process queuing routine

(by means of the IOFORK macro) that performs the following steps:
1 Disables the timeout that was specified in the wait-for-interrupt routine

2 Saves R3 and R4 (these are the registers needed to execute as a fork
process) (UCB$L _FR3, UCB$L _FR4)

3 Saves the address of the instruction following the IOFORK request in the
UCB fork block (UCB$L _FPC)

4 Places the address of the UCB fork block from R5 in a fork queue for the
driver’s fork level

5 Returns to the driver’s interrupt-servicing routine
The interrupt-servicing routine then cleans up the stack, restores registers,

and dismisses the interrupt. Figure 5-7 illustrates the flow of control in a
driver that creates a fork process after a device interrupt.

Fork Block

Fork Queue Forward Link

Fork Queue Backward Link

Fork IPL | Type | Size
h—
Saved PC
Saved R3

Saved R4

Fork Dispatching Queue Structure

IPL 15
IPL 1\4
IPL 13
IPL 12
IPL 11
‘IPL 10
IPL 9
IPL 8
IPL 7
IPL 6
IPLS
iPL 4
iPL 3
IPL 2
IPL 1

IPLO

RESERVED

RESERVED

RESERVED

RESERVED

IPL 11
FORK QUEUE
LISTHEAD

BLOCK

FORK

FORK LEVEL

FORK LEVEL

IPL 10
FORK QUEUE
LISTHEAD

FORK LEVEL

FORKLEVEL

iPL 9
FORK QUEUE
LISTHEAD

TIMERFORK

FORK LEVEL

XDELTA

IPL 8
FORK QUEUE
LISTHEAD

FORK
BLOCK

1/0 POSTING

PROCESS SCHEDULING

IPL 6
FORK QUEUE
LISTHEAD

FORK
BLOCK

AST DELIVERY

RESERVED

PROCESS EXECUTION

ZK-584-81

Activating a Fork Process from a Fork Queue

When no hardware interrupts are pending, the software interrupt priority
arbitration logic of the processor transfers control to the software interrupt
fork dispatcher. When the processor grants an interrupt at a fork IPL, the

- fork dispatcher processes the fork queue that corresponds to the IPL of the
interrupt. To do so, the dispatcher performs these actions:

1 Removes a driver fork block from the fork queue
2 Restores fork context

3 Transfers control back to the fork process

Thus, the driver code calls VAX/VMS code that coordinates suspension and
restoration of a driver fork process. This convention allows VAX/VMS to
service hardware device interrupts in a timely manner and reactivate driver
fork processes as soon as no device requires attention.

When a given fork process completes execution, the fork dispatcher removes
the next entry, if any, from the fork queue, restores its fork process context,
and reactivates it. This sequence is repeated until the fork queue is empty.
When the queue is empty, the fork dispatcher restores RO through R5 from
the stack and dismisses the interrupt with an REI instruction.

The 1/O Database

Unit-Control Block (UCB)

uCBSL . FOFL-

UCBSL_ FOBL-

JCBRSE . TYPE.

ucBsw SIZE-

ucCasL . FPC

UCBSL. FRS

LCBS,

fas

T

JC8S4H SRCADCSH.

UCBSL. .ORB-

UCBSL_LOCKID:

vCBSL_CRB-

LC8sL_D08-

LCBSL _P.D-

UCBSL . LNK-

LCBSL . vCB-

UCBSL_DEVCHAR

UCBSL_DEVCHAR?

.CBsA

DE.BUFS.Z

JCese__DEVTYPE |

oCBSB__DEVCLASS

JCBSL_ DEVIEPEND

UCBSL_DEVDEPND2

UCBSL..10QFL-

ucBesL 0QBL-

JCBSW CHARGE- |

UCBSW _ UNIT:

UCBSL_.IRP

CCBSE AMOD- | UCBSE_DIPL |

uCBSW _REFC-

UCBSL_.AME-

uCBSL_.S7S

JCBSW__CLEN |

sCesw DEVETS

UCBSL._DUETIM-

UCBSL_OPCNT-

UCBSL_SVPN-

UCBSL__SVAPTE

JCBSW_BCNT

JCBSW _BOFF

UCBSW _ERRCNT

UCBSB _ERTMAX I UCBSB_ERTCNT

UCBSL_POT.

uCBsL_00T-

reserved

SYSTEM MECHANISMS

Blocking Interrupts

Table 4 Blocking Interrupts

RAISE IPL TO
WHAT TO BLOCK (decimal) NAME
All Interrupts 31 IPL$_POWER
Clock Interrupts 24 IPL$_HWCLK
Device Interrupts 20-23 ucB$B_DIPL*
Access to 8 IPL$_SYNCH
Scheduler's Data
Structures
Delivery of ASTs 2 IPL$_ASTDEL
(Prevent Process
Deletion)

* Offset into Device's Unit Control Block

e Can use IPL to block interrupt servicing

e For example, to block AST delivery, raise to IPL$_ASTDEL

e IPLS SYNCH wused to coordinate access to scheduler's
database

SYSTEM MECHANISMS

Summary of IPL Mechanism

® IPL determines which component gets the CPU

- IPL of interrupt determines which service routine 1is
called

® Can alter current IPL

~ To raise, use SETIPL or DSBINT
- To lower:

If at original level (IPL has not been raised),
request interrupt at lower 1level with SOFTINT,

then REI

If at elevated level, lower to original level with
SETIPL or ENBINT

-~ REI enforces the rules

e Altering of 1IPLs can be wused to synchronize system
routines and processes

- Current IPL blocks interrupts at same and lower IPLS

- Convention: Raise IPL to IPL$ SYNCH to access
system-wide database (PCBs, PHDs, etc.)

- .Convention: Raise to IPL$ ASTDEL to prevent process
deletion

3-18

SYSTEM MECHANISMS

Using IPL to Synchronize System Routines

©
a

IPL 2] 0 0

T o EIE [g [

TIME

MKV84-2240

Figure 8 Raising IPL to SYNCH

1. Software timer invoked at IPL$ TIMERFORK (IPL 7)
2. Software timer raises to IPL$ SYNCH (IPL 8) to synchronize
3. Device interrupt - driver code at IPL 23
Driver requests interrupt at IPL 8 and issues REI
4. Software timer resumes at IPL$_SYNCH
5. Software timer lowers IPL back to IPLS$_TIMERFORK

6. Driver code executes at IPL 8

3-19

SYSTEM MECHANISMS

System Timer Queue and System Clocks

TQFL
TaBL e

RQTYPE | TYPE | SIZE . p,ls»

PID/FPC MWWW

AST/FR3 7
ASTPRM/FR4 ,

— TIME —

L DELTA —_

| EFN__| RMOD
RQPID

QES$SB_RQTYPE
76543210

System subroutine request (W vz
Scheduled wake request {Wﬁmdz

One-time request
Repeat request

Relative time request
Absolute time request

‘ | “,ngm
t' [Process timer request (m?;:m}“ JoB

N -2O

- O 40

Figure 9 Timer Queue Element

e Timer queue is ordered by absolute expiration time.

e Scheduled wake-up and system subroutine requests may have
a delta time specified for recurring events.

e The AST routine, AST parameter, and event flag fields are
filled from the system service argument list.

100

200

300

400

500

600

700

800

900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800

.SBTTL INSERT ENTRY IN TIME DEPENDENT SCHEDULER QUEUE

+

EXESINSTIMQ - INSERT ENTRY IN TIME DEPENDENT SCHEDULER QUEUE

THIS ROUTINE IS CALLED TO INSERT AN ENTRY IN THE TIME DEPENDENT SCHEDU
QUEUE. THE ENTRY 1S THREADED INTC THE QUEUE ACCORDING TC ITS DUE TIME.
THE QUEUE IS ORDERED SUCH THAT THE MOST IMMINENT ENTRIES ARE AT THE FR
OF THE QUEUE.

INPUTS:
RO = LOW ORDER PART OF EXPIRATION TIME.
R1 = HIGH ORDER PART OF EXPIRATION TIME.
RS = ADDRESS OF ENTRY TO INSERT IN TIME QUEUE.
I1PL MUST BE IPLS_TIMER.
OUTPUTS:

SPECIFIED ENTRY 1S INSERTED INTO THE TIME DEPENDENT SCHEDULER QU
ACCORDING TO ITS DUE TIME.

N6 w6 Ne We Ne Be We We WE Te TE WS We We W We W W& Ve we wo

.PSECT
EXESINSTIMQ:: ; INSERT ENTRY IN TIME QUEUE
MOVQ RO, TQESQ_TIME(RS) ;SET ABSOLUTE DUE TIME
MOVAL WAEXESGL_TQFL,R3 ;sGET ADDRESS OF TIME QUEUE LISTH
MOVL R3,R2 ;COPY ADDRESS OF TIME QUEUE LIST
10§: MOVL TQESL_TQBL(R2),R2 ;GET ADDRESS OF NEXT ENTRY
CMPL R3,R2 ;END OF QUEUE?
BEQL 208 ; IF EQL YES
CMPL R1,TQESQ_TIME+4(R2) ; COMPARE HIGH ORDER PARTS OF TIM
BLSSU 108 ; IF LSSU NEW ENTRY MORE IMMINENT
BGTRU 208 ; IF GTRU NEW ENTRY LESS IMMINENT
CMPL RO, TQESQ_TIME(R2) : COMPARE LOW ORDER’PART OF TIME
BLSSU 108 ; IF LSSU NEW ENTRY MORE IMMINENT
20§: INSQUE TQESL_TQFL(R5),TQESL_TQFL(R2) ;INSERT NEW ENTRY IN TIME
RSB H

Example 3 EXESINSTIMQ (from module EXSUBROUT)

29

MAKETQE

Allocates two blocks from nonpaged pool

Places code to execute periodically in first block

Makes second block TQE that invokes code
block

in

first

Records address of TQE block in site-specific longword

After program run, user can log out
Code will still be executed periodically
No process overhead involved

Independent of CURRENT process

TQE

< EXESGL_SITESPEC::
CODE = PC
BLOCK
REPEAT
REQUEST
DELTA
TIME
Tk4188

Figure 2 Sample System Programs

STOPTQE

Removes TQE from queue
Deallocates TQE and code block

Clears site-specific longword

25

[oF 3

.TITLE MAKETQE —- Inserts TQE into timer queue
.IDENT /VO0l/

++

ABSTRACT:

every tenth of a second.
SIDE EFFECTS:

Non-paged pool is used to hold the TQE,
executes.

PROGRAMMER:

Vik Muiznieks 15-MAY-1980

WE WE WE Ve We We WE We We We We We We We Ve We We We we we

External symbols
SIPLDEF
STQEDEF

~e we

; Local symbols
HEADER = 12
DYN C_MY TYPE = 120
’
; Local storage
.PSECT NONSHARED DATA PIC, NOEXE, LONG
DELTA: . LONG 10000*100

This program places a segment of code into nonpaged péol,
and then establishes a TQE which invokes that routine

and the code that

~e we

~e weo

~e =

IPL definitions
TQE definitions

size of header
my block type

delta repeat time

. LONG 0 of .1 seconds
14
: This is the code that executes every .1 seconds in response to
H the TQE. The timer interrupt service routine transfers control
: to the code with a JSB instruction at IPL$ TIMER (7). Note that
; the code must be PIC (position independent) since it is being COPIED
; to the system buffer (and executes at arbitrary system addresses).
’
COPY_START: start of code to be
copied into pool
INCL QUPDATE This is where the
routine could do
useful work
RSB return control to

UPDATE: .LONG 0
COPY LEN = . - COPY_ START

Program entry point

e W W

.PSECT CODE PIC, SHR, NOWRT
START: .WORD 0
$CMKRNL S ROUTIN=10$

RET

10$: .WORD “"M<R2,R3,R4,R5>
.ENABL LSB
TSTL G "EXESGL_SITESPEC

BEQLU 153

WO We We We We Ne Wo We we we wo

weo we wo

we we we

timer interrupt

service routine

will hold address of
location to be incremented
size of copied code

null entry mask
enter kernel mode
all done

save registers used
enable local symbol block
if in use, error

2.3

MOVL SS_IVMODE,RO
RET

Allocate pool to hold code. Code must be placed in system
space so that it can execute in ANY process context. HEADER extra
bytes will be allocated for a header (since the code block may
later be deleted by running program STOPTQE). The program will
use the first word in the third longword to store the size of
the block. Normally the system uses the first two longwords
for forward and backward links. In this case, the first
longword will be incremented each time the routine specified

by the TQE executes. The second longword will not be used.
Note that IPL is raised to IPL$ ASTDEL before the block of pool
is allocated. This is done so that the process can not be
deleted while it has the address of the block in a register
(and no other record of the block is maintained elsewhere in

Pt %o Ne Ne WO We We We We Ve WO We We We Wwe we we

the system).

5%: MOVL #COPY_LEN+HEADER,R1 ; size of pool needed
SETIPL #IPLS$ ASTDEL ; so process not deleted
JSB G"EXESALONONPAGED ; allocate pool

The above routine destroys R0-R3, and returns in R2 the
address of the allocated block of pool.

we we “e ws

MOVZBW #DYN C MY TYPE, (R2)+ £fill in type field and
- point R2 to start of code
save address of code

copy code to buffer

NOTE -- RO-R5 altered

PUSHL R2
MOVC3 #COPY_LEN,COPY_ START, (R2)

BLBS RO, 20s ; proceed if no error
SETIPL #0 ; lower IPL before exiting
MOVZWL #SS$ INSFMEM,RO ; indicate error
RET - ‘ ; return error code
20%: MOVL R2,UPDATE ; save address of block

CLRQ (R2)+ : clear location to be update

; point R2 to 3rd longword
MOVW R1l, (R2)+ ; fill in size field

’

;

H

H

H

Allocate a TQE. Note that the routine allocates the TQE at
IPL$ SYNCH, but returns control at IPL$_ASTDEL (so process
cannot be deleted before it can deallocate pool used for TQE).
The routine destroys RO-R4, and returns the address of the TQE

We We We We we we wo

block in R2.

JSB G "EXESALLOCTQE ; allocate TQE block

BLBS RO, 403 ; continue if no error

MOVL (sP)+,RO ; else, get code address
; and clean up stack

SUBL #HEADER,RO ; account for header

JSB G "EXESDEANONPAGED ; deallocate code block

MOVZWL #SS$_NOSLOT,RO i return error code

BRB 50 ; and exit

Initialize TQE and insert TQE into queue (using system routine).
The routine expects the TQE address in R5. It copies the

due time into the TQE, and inserts the TQE in the gqueue at

the appropriate point. Since the current time is passed

(in RO and R1) as the due time, the TQE should be placed

at the head of the queue, and delivered after the next

timer interrupt.

WO We We WMo We We We we we we

The address of the TQE is also stored in a global location

i0s: MOVB #TQE$C_SSREPT,TQESB RQTYPE(R2) ;
MOVQ DELTA,TQE$SQ DELTA(R2) :

MOVL (SP)+,TQESL_FPC(R2) ;

MOVL R2,G"EXE$GL_SITESPEC ;

;

ASSUME IPL$ SYNCH EQ IPL$ TIMER
LOCK_START:

SETIPL SYNCH

’

MOVQ G "EXESGQ SYSTIME,RO ;

MOVL R2,R5 - ;

JSB G "EXESINSTIMQ ;

MOVZWL #SS$_NORMAL,R0 ;

50$: SETIPL #0 ;
RET H

H

.DSABL LSB

By placing the SYNCH label after the code

set (with the SLKWSET system service).

® We s Ne Ne we “we we we

’
SYNCH: .LONG IPL$_SYNCH
LOCK_END:
ASSUME LOCK_END-LOCK_START LE 512

.END START

30;3

in the executive reserved for site-specific use.

indicate system sub.

and repeat request

set repeat time-.1 sec
starting address of code;
also cleans up stack
save TQE address for
program that will

cancel TQE request

accessing system data base
get current abs. time

copy TQE address for
queuing routine

set success status

lower IPL

all done

disable local symbol block

that must execute

at IPL$ SYNCH, the page with the SETIPL SYNCH instruction and
the page with the SYNCH label are gquaranteed to be in the
process’s working set. Since the code will not span more

than 2 pages, there is no way to have a page fault above IPL 2,
even though the pages have not been locked into the working

$ set process/priv=cmkrnl

$

$ RUN/NODEBUG MAKETQE

S

$ RUN/NODEBUG MAKETQE

%SHR-F-IVMODE, invalid mode for requested function
$

$ RUN/NODEBUG STOPTQE

Value in EXESGL SITESPEC = B01FEAQOC

Value in field = 0000010F
Value in field = 0000010F
Value in field = 0000010F

S

$ RUN/NODEBUG STOPTQE

MAKETQE program has not been run.

S .

$ RUN/NODEBUG MAKETQE

$

$ RUN/NODEBUG STOPTQE

Value in EXESGL SITESPEC = 80205A00

value in field = 0000003A
Value in field = CO00003A
Value in field = 0000003A

Example 6 Sample Run

33

[oF 2

.TITLE STOPTQE -- Removes TQE from timer queue
.IDENT /V01/

++

ABSTARCT:

This program displays the contents of the location being updated
by the routine specified in a TQE (thrice). It then cancels the
TQE request, and deallocates the block of pool being used to
contain the TQE routine.

SIDE EFFECTS:
Non-paged pool is returned to the system.

PROGRAMMER:

Vik Muiznieks 15-MAY-1980

WO NME WE Ve We NE W We We WE Ve We WE W We We We "¢ “e %o

External symbols
SIPLDEF
STQEDEF

IPL definitions
TQE definitions

e “e

. we

; Local symbols
HEADER = 12
LOOP_CNT = 3

header size for code block
loop counter

~e we

: Local storage

.PSECT NONSHARED DATA PIC, NOEXE, LONG
LKWSET: .ADDRESS START_LOCK

.ADDRESS END_LOCK
TTCHAN: .WORD 0

starting address
ending address
TT channel

H
H
17
TT: .ASCID /SYSSCOMMAND/ ; descriptor for terminal
CTR: . LONG STR_END - STRING ; SFAO control string
.ADDRESS STRING ; descriptor
CTR1: . LONG STR1_END - STR ; S$FAO control string
.ADDRESS STR] ; descriptor
STR: LASCII *Value in EXESGL SITESPEC = !XL*; converts to hexadecimal
STR1 END: -
STRING: .ASCII *Value in field = !XL* ; converts to hexadecimal
STR_END:
FAOLEN: .LONG ; SFAO output length
OuT: . LONG 35 ; Output string desc.

.ADDRESS BUFF
BUFF: .BLKB 35 ; Actual output string
BAD MESSAGE: ; used in case MAKETQE
.ASCII /MAKETQE program has not been run./ ; not yet run
BAD SIZE = . - BAD_ MESSAGE

’

; Entry point for routine
.PSECT CODE PIC, SHR, NOWRT

START: .WORD 0 ; null entry mask
SCMKRNL S ROUTIN=10S . ; enter kernel mode

Note that most of the work being done in kernel mode by this
example really could be done in user mode. There is not much

need to enter kernel mode before label START LOCK.

RET ; all done

.WORD “"M<R2,R3,R4,R5,R6> save registers used
SLKWSET S INADR=LKWSET lock pages in working set
BLBS RO,15$ proceed on success

RET stop on error

~e we wo

[
o
U
”"

we we we we w

22

get channel to terminal
if negative, system address

deassign terminal channel
solve BLBC byte displacemen
point to update location

format EXESGL SITESPEC

.1 seconds

code must be locked in
working set so no page

get address of code block
clean-up location so this
program cannot be rerun

end of locked down code
deassign terminal channel

deassign terminal channel
restore exit status code

15%: $ASSIGN_S DEVNAM=TT, CHAN=TTCHAN ;
BLBC RO, 25% ; exit on error
20$: MOVL ' G"EXE$GL_SITESPEC,R2 ; get TQE address
BLSS 308 ; stop if not negative
SOUTPUT CHAN=TTCHAN, LENGTH= #BAD SIZE,BUFFER=BAD MESSAGE
$DASSGN S CHAN=TTCHAN H
RET ; all done
25%: BRW ERROR ;
30%: MOVL TQESL FPC(R2),R6 ; get code address
SUBL2 #HEADER, R6 ;
MOVZBL #LOOP CNT,R4 ; set loop count
$FAO S CTRSTR=CTR1l,OQUTLEN=FAOLEN, - :
~ OUTBUF=0UT,P1=R2 ; for debugging
BLBC RO, 25$; test for errors
SOUTPUT CHAN=TTCHAN, LENGTH=FAOLEN,BUFFER=BUFF ; print value
BLBC RO, 25$; test for errors
40S$: $FAO_S CTRSTR=CTR,OUTLEN=FAOLEN, ~ ; format counter which
OUTBUF=0UT,P1l=(R6) ; changes every
BLBC RO, 25$; check for error
$OUTPUT CHAN TTCHAN, LENGTH=FAOLEN,BUFFER=BUFF ; display counter
BLBC RO, ERROR ;s check for error
SOBGTR R4,40$; loop a few times
START_LOCK: ;
!
; faults above IPL 2
SETIPL #IPLS$S SYNCH ; raise IPL to synch
REMQUE (R2),R0 ; remove TQE from queue
JSB G "EXESDEANONPAGED ; deallocate TQE
MOVL R6,R0 ;
JSB G "EXES$DEANONPAGED ; deallocate code block
CLRL G“EXE$GL_SITESPEC H
14
; until MAKETQE rerun
SETIPL #0 ; enable interrupts
END _ LOCK: ;
$DASSGN S CHAN=TTCHAN H
MOVZWL ~ #SS5$ NORMAL,RO ; return success status
RET ; all done
ERROR: MOVL RO,R6 ; save exit status code
SDASSGN S CHAN=TTCHAN ;
MOVL "R6,R0 ;
RET ; all done

.END START

SYSTEM MECHANISMS

Clocks and Timer Services

TIMER QUEUE (ELEMENTS ORDERED BY EXPIRATION TIME)

NN

EXE$GL_TQFL

CURRENT SYSTEM TIME

EXE$GQ_SYSTIME

TIME OF DAY CLOCK
: PRxxx$_TODR

{xxx=number associated with processor)

INTERVAL CLOCK

(______l PRxxx$_NICR (NEXT INTERVAL COUNT)
|::' PRxxx$_ICR (INTERVAL COUNT)

Figure 10 Clocks and Timer Services

MKV84-2238

SYSTEM MECHANISMS

Summary of System Synchronization Tools

Table 5

Summary of System Synchronization Tools

Function

Implementation

Name

Arbitrate interrupt
requests

Service interrupts
and exceptions

Synchronize execu-
tion of system
routines

Request software
interrupt

Synchronize sys-
tem's access to

scheduler data
structures

Continue execution

of code at lower
priority

Hardware-maintained
priority

Table of service
routine addresses

Interrupt service
routines

MACRO

MACRO - raise IPL to
IPL$_ SYNCH

Queue request,
SOFTINT, REI

Interrupt priority
level (IPL)

System control
block (SCB)

Timer, SCHED, etc.

SOFTINT

SETIPL or DSBINT

FORK

SYSTEM MECHANISMS

PROCESS SYNCHRONIZATION

Table 6 = Process Synchronization Mechanisms

Function

Implementation

Name

Synchronize certain
system-level
activities of
processes

Allow process to

request action at a
certain time

Synchronize access
to data structures
by processes

Allow process to

execute procedure on
completion of event

Allow processes to

synchronize access
to resources

Adjust IPL
(SETIPL macro)

Queue of requests and

hardware and software
clock interrupts

Semaphore

REI

IPL 2 interrupt ser-
vice routine

SENQ (W) and S$DEQ
system services

IPL

Timer queue

Mutex

Asynchronous system
trap (AST)

VMS lock manager

SYSTEM MECHANISMS

Mutual Exclusion Semaphores (MUTEXes)

31 17 16 15 0

Status Ownership Count

Write-in-Progress or
Write-Pending Flag

Figure 11 A Mutex

e Protect data structures against conflicting accesses by
multiple processes

® One writer or multiple readers are allowed

e Examples:

- Group logical name tables
- System logical name table

@ To access the data structure, first place a 1lock on the
mutex

e Mutex locking is only possible in process context

SEMAPHORE

For articles on related subjects see CONCURRENT
ProcRaMMING. DEADLOCK. LOCKOLT, MONITORS!
ParaLLEL PROCESSING; and PETRI NETS.

Semaphores are synchronization primitives used 0
coordinate the activities of two or more programs or pro-
cesses that are running at the same time and sharing in-
formation. They are used for elementary interprocess
communication, 10 guarnmeé exclusive access to shared
data. to protect & section of code that must be executed
without certain kinds of interruptions (such a code seg-
ment is called & critical region or critical section), or 10
allocate a set of identical scarce resources.

Two operations are defined on semaphores: P, or
wait, and V, or proceed. The usage protocol for a shared
resource is as follows: A process that needs control of a
resource executes a P operation on the semaphore asso-
ciated with that resource. The system suspends the pro-
cess until the resource is available, and then allows it 1o
proceed. When the process is finished with the resource,
it executes a ¥ operation on the semaphore to release the
resource for use by another process. The resource may be
any hardware or software component, including data
structures, physical devices, or code segments. A sema-
phore may also be used to indicate when it is safe for ex-
ecution to proceed past a certain point in the program.
The usage protocol is stightly different when 2 semaphore
is used to coordinate interprocess communication. For ex-
ample. if process 4 requires data produced by process B
before it can execute further, a semaphore can be used to
block A until B provides the data and releases A with a
V¥ operation.

One case of special interest is the mutex (for mutual
exclusion) semaphore, which allows only one process 10
use the resource at once. This is particularly useful for
protecting a data structure from being updated simulta-
neously by more than one process.

Semaphores are often implemented with counters.
For example. a typical implementation of a semaphore
(call it SEM) might involve: .

® Initialization of SEM. (Set the counter of SEM
to the total number of instances of the resource:
¢.g.. for a mutex semaphore, to 1.)

® P(SEM). (If the counter of SEM is greater than
zero, decrement it by one and aliow the calling
process to proceed: otherwise. block the calling
process and switch to another—unblocked—
process.)

® V(SEM). (If there is 8 blocked process waiting
on SEM, then select and awaken some blocked
process: otherwise, increment the counter of SEM
by one.)

. The bodies of these routines must be indivisible (un-
interruptible operations). The P and V notation is due to
Dijkstra, who, motivated by the counter implementation,
used his native Dutch to get P from proberen te veriagen

(“to try to decrease™) and V from wverhogen (“to in
crease™).

REFERENCE

1968. Dijkstra, Edsger W. “The Structure of the “THE -Multi-
programming System,” Comm. ACM 11, No. 5: 341-346
(May).

M. SHaw

List of Data Structures Protected by Mutexes

) Global Name
Data Structure of Mutex
Logacal Name Tabie LNMSAL_MUTEX
1'0 Database ? 10CSCL_MUTEX
Comumon Event Block List EXESCL_CEBMTX
Paged Dyrumuc Memory EXESGL_PGDYNMTX
Global Section Descr:ptor Lust EXESCL_GSDMTX
Shared Memory Globai Section Dexcriptor Tabie EXESCL_SHMGSMTX
Shared Memory Mailbox Descriptor Table EXESCL_SHMMBMTX
(not currently used) , EXESGL_ENQMTX
Line Printer Urut Control Block ° UCBSL_LP_MUTEX
(not currently used) EXESCL_ACLMTX
System Intruder Lists CIASCL _MLUTEX
Obect Rughts Block Access Control Lust 4 ORBSGL_ACL_MUTEX

IWhen a process is placed into an MWAIT state waiting for a mutex. the address of the mutex

is placed into the PCBSL_EFWM field of the PCB The symbouc contents of PCBSL_EFWM will
probably remain the same from release to release but the numeric contents change. The numenc
values are availabie from the system map SYSSSYSTEM SYS MAP

2Trus mutex 1s used by the Assigr Channel and Allocate Device system services when searching
through the Linked Lst of device data blocks and unut control blocks (LCBs) for a device It 18
also used whenever LCBs are adaed or deleted tor example. during the creation of mailboxes and
network devices.

3The mutex associated with each line printer unit does not have a fixed location like the other
mutexes As a field in the urut control block (UCB), its iocation and value depend on where the
UCB for that urut is allocated.

4The mutex associated with each object rights block (ORB) does not have a fixed location like the
other mutexes As a field in the object rights block. 1its location and vaiue depend on where the
ORB s allocated.

The mutex itself consists of a single longword that contains the number of
owners of the mutex (MTXSW_OWNCNT) in the low-order word and status
flags (MTXSW_STS) in the high-order word (see Figure 2-1). The owner count
begins at -1 so that a mutex with a zero in the low-order word has one owner.
The only flag currently implemented indicates whether a write operation is either

in progress or pending for this mutex (MTXSV_WRT).

MUTEX - MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 0
Table of contents

(1) 43 HISTORY ; DETAILED

(1) 61 DECLARATIONS

(1) 83 SCH$RWAIT - RESOURCE WAIT

(1) 121 SCHSLOCKWNOWAIT - LOCK MUTEX FOR WRITE WITHOUT WAITING
(1) 169 SCH$IOLOCKW — LOCK I/O DATA BASE MUTEX FOR WRITE
(1) 205 SCHSLOCKW — LOCK MUTEX FOR WRITE

(1) 252 SCHSIOLOCKR ~ LOCK I/O DATABASE MUTEX FOR READ
(1) 288 SCH$LOCKR - LOCK MUTEX FOR READ

(1) 355 SCHS$RAVAIL - DECLARE RESOURCE AVAILABILITY

(1) 381 SCHSIOUNLOCK -~ UNLOCK I/0 DATABASE MUTEX

(1) 410 SCH$UNLOCK - UNLOCK MUTEX

MUTEX
X-1

- MUTEX WAIT ROUTINES

0000

WO~ W N =

R TR TR TR TR R TR TR TR TR P PV TR P PR T Y

DR R TR I R R R R TR TR T

T T N T O T TN

PRSI I I R A B B N N N N O B N N N N

t

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00

Page

18-JUN-1985 07:53:25 _11DUA75:(SYS.SRC]MUTEX.HAR;l

.TITLE MUTEX - MUTEX WAIT ROUTINES
.IDENT 'X-1'

COPYRIGHT (c) 1978, 1980, 1982, 1984 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

t**i**tt*t*********t***ﬁi*ﬂiﬁ******tk***Q******ﬁ*ﬁ*l*i**t**t**i**t**

++
FACILITY: EXECUTIVE, SCHEDULER
ABSTRACT:

THIS MODULE CONTAINS THE ROUTINES WHICH IMPLEMENT THE MUTEX
LOCK AND UNLOCK SERVICES FOR INTERNAL EXECUTIVE USE.

ENVIRONMENT:

MODE = KERNEL

.PAGE
.SBTTL HISTORY ; DETAILED

AUTHOR: R. HUSTVEDT CREATION DATE: 25-AUG-76

MODIFIED BY:

v03-003 SSA0022 Stan Amway 2-Apr-1984
Backed out SSA0005. It was temporary.

Vv03-002 SSA0005 Stan Amway 10-Jan~-1984
Added code to maintain PMS MWAIT transition counters.
The counters (in MDAT) and supporting code will be removed
before V4 release.

V03-001 ROW0168 Ralph 0. Weber 3-MAR-1983

*t*i’***t***f***i**i***Q*ﬁﬁﬁt*'******i**ﬁ**t**iﬁ*****it****t********i*******

R SR R IR N I N N N N N N N A I IR AR O

1
(1)

MUTEX - MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page 2
X-1 HISTORY ; DETAILED 18-JUN-1985 07:53:25 _§11$DUA75:iSYS.SRC]HUTEK.MAR:l (1)

0000 58 ; Change W" references to G”.
0000 59 ;

MUTEX ~ MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page
X-1 DECLARATIONS 18-JUN-1985 07:53:25 _11DUA75:[SYS.SRCIMUTEX.MAR; 1
0000 61 +SBTTL DECLARATIONS
0000 62
0000 63 ;
0000 64 ; INCLUDE FILES:
0000 65 ;
0000 66
0000 67 $DYNDEF ; STRUCTURE TYPE DEFINITIONS
0000 68 $IPLDEF ; IPL DEFINITIONS
0000 69 SMTXDEF ; MUTEX DEFINITIONS
0000 70 $PCBDEF ; PCB DEFINITIONS
0000 71 $PRDEF ; PROCESSOR REGISTER DEFINITIONS
0000 72 $PRIDEF ; PRIORITY INCR CLASS DEFS
0000 73 $PSLDEF ; PSL DEFINITIONS
0000 74 $SSDEF ; SYSTEM STATUS CODES
0000 75 $STATEDEF ; SCHEDULER STATE DEFS
0000 76 $WQHDEF ; WAIT QUEUE HEADER DEFS
0000 77
0000 78 ; EQUATED SYMBOLS
0000 79 ;
00 80

00
00000000 81 .PSECT AEXENONPAGED, BYTE ; NONPAGED EXEC

MUTEX
X-1

00 00000000'GF

50
7E

-~ MUTEX WAIT ROUTINES
SCHSRWAIT — RESOURCE WAIT

E6
11

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

22-MAY-1987 20:03:51 VAX/UMS Macro V04-00 Pa
18-JUN-1985 07:53:25 _11DUA75: [SYS.SRC |MUTEX . MAR;

.SBTTL SCH$RWAIT - RESOURCE WAIT

s

: FUNCTIONAL DESCRIPTION:

: SCH$RWAIT SUSPENDS THE EXECUTION OF A PROCESS UNTIL REQUIRED

: RESOURCES ARE AVAILABLE.

: CALLING SEQUENCE:

: SETIPL/DSBINT #IPL$ SYNCH

: PUSHL <PSL)> -

: BSB/JSB SCHS$RWAIT

: INPUT PARAMETERS :

4 RO - RESOURCE NUMBER FOR WHICH TO WAIT

; R4 - PCB ADDRESS

: 00{SP) - PC AT WHICH TO RESUME

; 04(SP) - PSL WITH WHICH TO RESUME

: IMPLICIT INPUTS:

; SCH$GQ MWAIT — MUTEX WAIT QUEUE HEADER

: PCB OF CURRENT PROCESS

: OUTPUTS:

: RO-R3 PRESERVED

: IMPLICIT OUTPUTS:

; * & % TBS * %k

; SIDE EFFECTS:

: * ke ke TBS * % %

-

SCH$RWALT: : ::: RESOURCE WAIT ENTRY POINT
BBSSI R0,G"SCH$GL RESMASK,10$::: SET WAITING FLAG

10%: BRB WAITR - ::: AND ENTER WAIT STATE

ge
1

MUTEX - MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page

X-1 SCH$LOCKWNOWAIT - LOCK MUTEX FOR WRITE W 18-JUN-1985 07:53:25 _11DUA75:[SYS.SRC]MUTEX.MAR;1
000A iZI .SBTTL SCHSLOCKWNOWAIT - LOCK MUTEX FOR WRITE WITHOUT WAITING
000A 22
000A 123 ;++
000A 124 ; FUNCTIONAL DESCRIPTION:
000A 125 ; SCHSLOCKWNOWAIT LOCKS THE SPECIFIED MUTEX FOR EXCLUSIVE WRITE ACCESS
000A 126 ; TO THE PROTECTED STRUCTURE. IF ANOTHER PROCESS HAS ALREADY CLAIMED
000A 127 ; THE MUTEX, THEN THIS ROUTINE RETURNS A FAILURE INDICATION.
000A 128 ;
cooa 129 ;
000A 130 ;
000A 131 ; CALLING SEQUENCE:
000A 132 ; BSB/JSB SCH$LOCKWNOWAIT
000A 133 ;
000A 134 ;
000A 135 ; INPUT PARAMETERS:
000A 136 ; RO - ADDRESS OF MUTEX
000a 137 ; R4 - PCB ADDRESS OF CURRENT PROCESS
000A 138 ;
000A 139 ; IMPLICIT INPUTS:
000A 140 ; SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
000A 141 PCB OF CURRENT PROCESS
000A 142 ; MUTEX LOCATED BY RO
000A 143 ;
000A 144 ; OUTPUTS:
000A 145 ; RO LOW BIT SET IF LOCKED SUCCESSFULLY
000A 146 ; LOW BIT CLEAR IF MUTEX IN USE
000A 147 ; R1-R3 PRESERVED
000A 148 ; IPL = ASTDEL
000A 149 ;
000A 150 ; IMPLICIT OUTPUTS:
000A 151 ; k*% TRS Ak
000A 152 ;
000A 153 ; SIDE EFFECTS:
000A 154 ; *kk TBRS Ak
000A 155 ;
000A 156 ;—
000A 157 SCH$LOCKWNOWAIT::
000A 158 SETIPL #IPL$ SYNCH ;::; RAISE TO SYNCH IPL
0B 60 10 E6 000D 159 BBSSI #MTX$V WRT, (RO),20$;:: SET WRITE PENDING
60 B6 0011 160 INCW MTX$W OWNCNT (RO) ;:: RAISE OWNER COUNT
05 12 0013 161 BNEQ 106 — ::; RETURN FAILURE IF BUSY
50 01 3C 0015 162 MOVZWL #SS$ NORMAL,RO ;:; INDICATE SUCCESSFUL COMPLETION

32 11 0018 163 BRB LKEX™ ;::; AND MERGE WITH COMMON EXIT CODE

60 B7 00lA 164 10$: DECW MTX$W OWNCNT (RO) ;::; CORRECT COUNT

50 D4 001C 165 205: CLRL RO ;:; SET FAILURE RETURN INDICATION
001E 166 SETIPL #IPL$_ASTDEL ;:; LOWER TO ASTDEL

05 0021 167 RSB AND RETURN

MUTEX
X-1

50

00000000'EF

- MUTEX WAIT ROUTINES

22-MAY~1987 20:03:51 VAX/VMS Macro V04-00 Page 6

SCH$IOLOCKW - LOCK I/O DATA BASE MUTEX F 18-JUN-1985 07:53:25 _11DUA75:[SYS.SRC)MUTEX.HAR:I (1)

9E

0022
0022
0022
0022
0022
0022
0022
0022
0022
0022
0022
0022
0022
0022

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

e~

Ne ne e Se e e e e Ne S Se Sa Sa s Ve %s Ne Sy N4 N4 S Va Ve We Ne s e Ve s

.SBTTL SCH$IOLOCKW - LOCK I/0 DATA BASE MUTEX FOR WRITE

++
FUNCTIONAL DESCRIPTION:)
SCHSIOLOCKW RETURNS TO THE CALLER WHEN THE I/0 DATABASE MUTEX
HAS BEEN LOCKED FOR WRITE ASSURING EXCLUSIVE ACCESS.

CALLING SEQUENCE:
BSB/JSB SCH$TIOLOCKW

INPUT PARAMETERS:
R4 - PCB ADDRESS OF CURRENT PROCESS

IMPLICIT INPUTS:
SCH$GQ MWAIT —~ MUTEX WAIT QUEUE HEADER
PCB OF CURRENT PROCESS
I/0 DATABASE MUTEX

OUTPUTS:
RO = ADDRESS OF I,/0 DATABASE MUTEX
R1-R3 PRESERVED
IPL = ASTDEL

IMPLICIT OUTPUTS:
xkk TRS **%

SIDE EFFECTS:
*k% PG k**

SCH$IOLOCKW: : ; LOCK I,/0 DATA BASE FOR WRITE ACCESS

MOVAB IOC$GL_MUTEX,RO ; GET ADDRESS OF I/O DATABASE MUTEX

MUTEX
X-1

08 60

- MUTEX WAIT ROUTINES
SCH$LOCKW - LOCK MUTEX FOR WRITE

0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
0029
002C
0030
0032
0034
0036
0036
0036
0038
003A
003C

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00

.SBTTL SCH$LOCKW - LOCK MUTEX FOR WRITE

+
+

FUNCTIONAL DESCRIPTION:
SCH$LOCKW RETURNS TO THE CALLER WHEN THE SPECIFIED MUTEX
HAS BEEN LOCKED FOR WRITE ASSURING EXCLUSIVE ACCESS TO THE
PROTECTED STRUCTURE.

CALLING SEQUENCE:
BSB/JSB SCH$LOCKW

INPUT PARAMETERS:
RO - ADDRESS OF MUTEX
R4 - PCB ADDRESS OF CURRENT PROCESS

IMPLICIT INPUTS:
SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
PCB OF CURRENT PROCESS
MUTEX LOCATED BY RO

OUTPUTS :
RO-R3 PRESERVED
IPL = ASTDEL

IMPLICIT OUTPUTS:
k%% TBG **%

SIDE EFFECTS:
*%%k TRS k&%

SO N N N SA e e e e NE NH Ve e Ne e NE Se SE NN Ne e NI NI NS Se e wa e e s ve

LOCK MUTEX FOR WRITE
RAISE TO SYNCH IPL
SET WRITE PENDING
RAISE OWNER COUNT

SCHSLOCKW: ¢

105: SETIPL #IPL$ SYNCH
BBSSI #MTXSV WRT, (RO),30$
INCW MTX$W_OWNCNT (RO)

P R TR TS
YT IR
BT TR TR

BNEQ 20% WAIT IF BUSY
BRB LKEX MERGE WITH COMMON EXIT CODE
20$: 7+ MUST WAIT FOR EXCLUSIVE USE
DECW MTX$W OWNCNT(RO) ;¢ CORRECT COUNT
30%: BSBB WAITM ™ ;7 AND WAIT FOR MUTEX

REPEAT LOCK ATTEMPT WHEN
RESCHEDULED

BRB 10$

IETRTRIRT

Page

18-JUN-1985 07:53:25 _11DUA7S5:{SYS.SRC|MUTEX.MAR;1

MUTEX
X-1

50

00000000EF

— MUTEX WAIT ROUTINES
SCH$IOLOCKR - LOCK I/O DATABASE MUTEX FO 18-JUN-1985 07:53:25

9E

003cC
003C
003cC
003C
003cC
003C
003cC
003cC
003C
003C
003C
003C
003C
003C
003C
003C
003cC
003C
003C
003C
003C
003C
003cC
003C
003cC
003C
003cC
003C
003C
003C
003C
003cC
003C
003cC
003C

MO S NE NE Ne Yo e NE N NE Ne e e e e NE SO N N WL e Ne e e NE e Ve ve v ve vs

SCH$IOLOCKR: :

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 P

.SBTTL SCH$IOLOCKR - LOCK I/0 DATABASE MUTEX FOR READ

+
+

FUNCTIONAL DESCRIPTION:
SCH$IOLOCKR RETURNS TO THE CALLER WHEN NO WRITERS OWN THE I,/0
DATABASE MUTEX THUS ASSURING THE I,/0 DATABASE WILL REMAIN UN-
CHANGED UNTIL THE MUTEX IS RELEASED. IPL IS RAISED TO PREVENT
AST DELIVERY WHILE THE MUTEX IS OWNED AND THE PROCESS WILL NOT
BE OUTSWAPPED.

CALLING SEQUENCE:
BSB/JSB SCH$IOLOCKR

INPUT PARAMETERS:
R4 — CURRENT PROCESS PCB ADDRESS

IMPLICIT INPUTS:
SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
PCB OF CURRENT PROCESS
I/0 DATABASE MUTEX

OUTPUTS:
RO = ADDRESS OF I/0 DATABASE MUTEX
R1-R3 PRESERVED
IPL = ASTDEL

IMPLICIT OUTPUTS:
*kk TRG k*k

SIDE EFFECTS:
*kk TBG kk%

; LOCK I/O DATABASE FOR READ ACCESS

MOVAB IOC$GL_ﬂUTEX,RO GET ADDRESS OF I/0 DATA BASE MUTEX

ag
_11DUAT75: [SYS.SRCIMUTEX.MAR; 1

8
(1)

MUTEX
X-1

28
29

30

(17:%

01

A4
A4
0B

0B
2F

60

A4

A4

a4
Ad

OE
OE

0B

00acC

(of3

AF

- MUTEX WAIT ROUTINES
SCH$LOCKR - LOCK MUTEX FOR READ

0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0043
0046
004A
004A
004C
0050
0052
0055
0059
0058
0060
0065
0069
006B
006F
0073
0076
0077
007A
007A
007Aa
007D
007D

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00

.SBTTL SCH$LOCKR -~ LOCK MUTEX FOR READ

T+

e N4 N E NE N NS SE e Se Mo Se N e Se Ne e N e e S Se e Ne Se Se Ne g %o we ws

SCHSLOCKR: :

LKEX: CMPB #DYNT_PCB,PCBB_TYPE (R4

FUNCTIONAL DESCRIPTION:
SCH$LOCKR RETURNS TO THE CALLER WHEN NO WRITERS OWN THE
SPECIFIED MUTEX. THUS THE STRUCTURE PROTECTED BY THE MUTEX
WILL REMAIN UNCHANGED UNTIL THE MUTEX IS RELEASED. 1IPL IS
RAISED TO PREVENT AST DELIVERY WHILE THE MUTEX IS OWNED AND
THE PROCESS WILL NOT BE OUTSWAPPED.

CALLING SEQUENCE:
BSB/JSB SCH$LOCKR

INPUT PARAMETERS:
RO - ADDRESS OF MUTEX
R4 - CURRENT PROCESS PCB ADDRESS

IMPLICIT INPUTS:
SCH$GQ MWAIT - MUTEX WAIT QUEUE HEADER
PCB OF CURRENT PROCESS
MUTEX

OUTPUTS :
RO-R3 PRESERVED
IPL = ASTDEL

IMPLICIT OUTPUTS:
kkk TRG k%

SIDE EFFECTS:
*kk TRG *k*

LOCK MUTEX FOR READ

RAISE TO SYNCH IPL

WAIT IF WRITE PENDING OR
IN PROGRESS

INCREASE OWNER COUNT

; CHECK FOR PCB

BUG CHECK IF NOT PCB

;; NOTE IN PCB ALSO

SETIPL #IPL$ SYNCH H
BBS #MTX$v;ﬁRT,(R0),RDWAIT H

INCW MTX$W OWNCNT{RO)

PRI

BNEQ 205

INCW PCB$W MTXCNT(R4)
CMPW PCB$W MTXCNT(R4), #1 IS THIS THE FIRST MUTEX IT OWNS?
BNEQ 106 ~ BR IF OWNS MORE THAN 1 MUTEX
MOVB PCB$B PRI(R4),PCB$B PRISAV(R4); SAVE CURRENT PRIORITY
MOVB PCB$BPRIB(R4),PCBSB PRIBSAV(R4) ; SAVE BASE PRIORITY

T P S SRR

CMPB #16 ,PTB$B PRI(R4) ~ ; IS THIS A REAL TIME PROCESS?
BGTRU 10$% - ; BR IF SO
MOVB #15,PCB$B PRI(R4) ; ELSE FORCE TO LOWEST RT PRIORITY
MOVB #15,PCBSB PRIB(R4) ; AND SET PRIORITY BASE TO RT

105: SETIPL #IPL$ ASTDEL ;:;: DROP TO ASTDEL IPL
RSB - ;;: AND RETURN

20%: BRW NOTPCB :

RDWAIT: ;77 MUST WAIT FOR READ
i

PUSHAL SCHS$LOCKR RETRY AFTER WAIT

WAITM: ;77 WAIT FOR MUTEX TO FREE

Page

18-JUN-1985 07:53:25 _$1135DUAT5:[SYS.SRC]MUTEX.MAR; 1

MUTEX

X-1
6E
04 AE
04 AE 05 10 02
4C A4 50
00000000 'GF 64
00000008 'GF
2C a4 02
FF60'

- MUTEX WAIT ROUTINES
SCH$LOCKR ~ LOCK MUTEX FOR READ

DD 007D 345 PUSHL
DC 007F 346 MOVPSL
FO 0082 347 INSV
DO 0088 348 WAITR: MOVL
0E 008C 349 INSQUE
B6 0093 350 INCW
B0 0099 351 Movw
31 009D 352 BRW
00A0 353

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00

Page
18-JUN-1985 07:53:25

_11DUATS: [SYS.SRC]MUTEX.MAR; 1

(sP) ;:; FORM PC, PSL ON STACK
4(sp) ;:; BUILD PSL
#IPL$ ASTDEL, #PSL$V_IPL, #PSL$S IPL,4(SP)

;:; SET IPL TO ASTDEL
SAVE ADDRESS OF MUTEX
INSERT AT HEAD OF WAIT QUEUE
; 7+ INCREMENT COUNT IN QUEUE
;:: SET STATE
WAIT WITH STACK CLEAN, STATE SET

RO,PCBSL EFWM(R4)
(R4) ,G"STHS$SGQ MWAIT
G“SCH$GQ MWAIT+WQHSW WQCNT
#SCH$C MWAIT,PCB$SW STATE(R4)
SCHSWATTL -

v

10
(1)

MUTEX
X-1

7D 00000000 'GF

50
45

- MUTEX WAIT ROUTINES

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page

SCH$RAVAIL - DECLARE RESOURCE AVAILABILI 18-JUN-1985 07:53:25 _§11$DUA75:[SYS.SRC)HUTEX.MAR:I

E7
11

00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0
00A0D
00A0
00AQ
00A0
00A0
00A0
00A0
Q0A0
00A0
00A0
00A0
00A0
00A0
00A8
00AE

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

.SBTTL SCH$RAVAIL - DECLARE RESOURCE AVAILABILITY

1 ++

: FUNCTIONAL DESCRIPTION:

: SCHSRAVAIL IS CALLED TO SIGNAL THE AVAILABILITY OF THE SPECIFIED

; RESOURCE AND RELEASE ANY WAITING PROCESSES.

 CALLING SEQUENCE:

: BSB/JSB SCH$RAVAIL

! INPUT PARAMETERS:

: RO — RESOURCE NUMBER

; IMPLICIT OUTPUTS:

; *k% TRS **#

! SIDE EFFECTS:

: *kk TRS *k*

;

SCH$RAVAIL: : . DECLARE RESOURCE AVAILABILITY
BBCCI RO,G"SCH$GL RESMASK,EXIT . CLEAR AND TEST WAITING FLAG
DSBINT HIPL$ SYNCH™ ;:; BLOCK SYSTEM EVENTS
BRB UNLOCK {i! MERGE WITH COMMON CODE

11
(1)

MUTEX
X-1

50

00000000 'EF

- MUTEX WAIT ROUTINES

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page

SCH$IOUNLOCK ~ UNLOCK I/O DATABASE MUTEX 18-JUN-1985 07:53:25 _§1l$DUA75:[SYS.SRC]MUTEX.MAR;I

9E

00BO
00BO
00BO
00BO
00BO
00B0O
00B0O
00B0
00B0O
00B0O
0080
00BO
00BO
00BO
00BO
00B0O
00B0O
00BO
00BO
00BO
00BO
00BO
00B0
00BO
00B0
00BO
00BO
00BO

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

.SBTTL SCH$IOUNLOCK - UNLOCK I/0 DATABASE MUTEX

FUNCTIONAL DESCRIPTION:

SCH$IOUNLOCK RELEASES OWNERSHIP OF THE I/O DATABASE MUTEX AND
RE-ACTIVATES ANY WAITING PROCESSES IF THE MUTEX HAS BECOME
AVAILABLE AS A CONSEQUENCE OF THIS UNLOCK REQUEST.

CALLING SEQUENCE:
BSB/JSB SCH$IOUNLOCK

R4 - PCB ADDRESS OF CURRENT PROCESS

IMPLICIT INPUTS:

SCH$GQ MWAIT — MUTEXT WAIT QUEUE HEADER

PCB OF CURRENT PROCESS
I/0 DATABASE MUTEX

IMPLICIT OUTPUTS:
k% PRG kkk

SIDE EFFECTS:

;

i

; INPUT PARAMETERS:
’

’

;

’

’

: *%*% PRG *k%
’

SCH$IOUNLOCK: :
MOVAB I0C$GL_MUTEX,RO

’
’

UNLOCK I/0 DATABASE MUTEX
GET ADDRESS OF I/O DATABASE MUTEX

12
(1)

MUTEX
X-1

52

0A A4 ocC

63

OE A4

25

2F A4 29 A4

51 28 A4

0B A4 51
00000000 'GF 51
00000000 'GF 20 00
52 51

Q3

60

31

2D 60 10

11

53 00000000 'GF
54 63

52 02

54 53

7

4C A4 5B

]

54

FEEC’

08 i3

10

- MUTEX WAIT ROUTINES
SCH$UNLOCK ~ UNLOCK MUTEX

91
12
B7

90
90

00B7
00B7
00B7
00B7
Q0B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00B7
00BD
00c1
00C3
00Cé6
00C8
00CD
00D1
00D5
00DC
00E5
00ES8
00EA
00ED
00EF
00F1
00F5
00F5
00F7
00FE
0101
0104
0107
0109
010D
010F
0111
0114
0117

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

22-MAY-1987 20:
18-JUN-1985 07:

13
(1)

03:51 VAX/VMS Macro V04-00 Page
53:25 _11DUA75:{SYS.SRCIMUTEX.MAR;1

.SBTTL SCH$UNLOCK - UNLOCK MUTEX

+
+

FUNCTIONAL DESCRIPTION:

CALLING SEQUENCE:
BSB/JSB SCH$UNLOCK

INPUT PARAMETERS:
RO - MUTEX ADDRESS

IMPLICIT INPUTS:
SCH$GQ MWAIT - MUTEXT WAIT QUEUE
PCB OF CURRENT PROCESS
MUTEX

IMPLICIT OUTPUTS:
k%% TRBS **%

SIDE EFFECTS:
Xk%x TRG kk%

N NG NE Ne Ne Mg NI Ne Se e e e S Se he Se Se Ve % Se ve N ve S we

SCH$UNLOCK: :

DSBINT #IPL$ SYNCH
CMPB #DYNST PCB,PCB$B TYPE(R4
BNEQ NOTPCB™ -
DECW PCB$W MTXCNT(R4)
BNEQ 106 —
MOVB PCB$B PRIBSAV(R4),PCBS$B
MOVB PCB$B”PRISAV(R4),R1 -
MOVB R1,PCBS$B PRI(R4)
MOVB R1,G"SCHSGB PRI
FFS #0,#32,G°SCH$GL COMQS,R2
CMPB R1,R2 -
BLEQU 10%
SOFTINT #IPL$ SCHED
105: DECW MTX$W OWNCNT (RO)
BGEQ EXITN™
BBCCI #MTX$V_WRT, (RO) ,EXITN
UNLOCK: PUSHR #°M<RO,R4>
MOVAL G"SCH$GQ MWAIT,R3
MOVL (R3),R4 —
MOVZBL #PRI$ RESAVL,R2
10$: CMPL R3,R4™
BEQL 30$
CMPL (SP),PCB$L EFWM(R4)
BNEQ 20$ -
PUSHL (R4)
BSBW SCHS$CHSE
DECW WQHSW WQCNT (R3)
POPR #"M<RD>

SCH$UNLOCK RELEASES OWNERSHIP OF THE SPECIFIED MUTEX AND
RE-ACTIVATES ANY WAITING PROCESSES IF THE MUTEX HAS BECOME
AVAILABLE AS A CONSEQUENCE OF THIS UNLOCK REQUEST.

R4 - PCB ADDRESS OF CURRENT PROCESS

HEADER

UNLOCK MUTEX
;7 RAISE TO SYNCH IPL
; STRUCTURE MUST BE PCB

; NOTE UNLOCK IN PCB
; MORE STILL OWNED
RIB(R4) ; RESTORE SAVED BASE PRIORITY
GET ORIGINAL PRIORITY

RESTORE IT

AND ANNOUNCE IT

FIND PRIORITY OF NEXT COMPUTABLE PROCESS
CHECK FOR DELAYED PREMPTION

NO, CONTINUE

ELSE RESCHEDULE WHEN IPL DROPS
DECREMENT OWNERSHIP COUNT

EXIT IF NOT LAST

EXIT IF NO WRITE IN PROGRESS
OR PENDING

SAVE PCB ADDRESS

GET ADDRESS OF WAIT QUEU
AND HEAD PCB

SET PRIORITY INCREMENT CLASS
CHECK FOR END OF QUEUE

YES, DONE

IS PROCESS WAITING FOR THIS MUTEX
NO, SKIP IT

SAVE FLINK

CHANGE TO EXECUTABLE STATE
DECREASE QUEUE LENGTH

RESTORE FLINK

13
’

P e ve ve s v

ErRYR Y

D T T T T T P P P I PR PR R IR PR M A P

v
v
B
’
-
’
.
v
.
’
v
’
’
’
’
.
’

;
;
;
;
v
H
H
H
;
B
H
;

MUTEX
X-1

54

ot]
a4

11

- MUTEX WAIT ROUTINES

SCH$UNLOCK - UNLOCK MUTEX

0119
011B
011E
0120
0122
0125
0126
0126
012Aa

467

468 20%5:
469

470 30$:
471 EXITN:
472 EXIT:
473

474 NOTPCB:
475

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page

BRB 10%
MOVL (R4),R4
BRB 10$

POPR #"MCRO,R4>
ENBINT
RSB

BUgUCHECK NOTPCB,FATAL

.

18-JUN-1985 07:53:25 _11DUA75:{SYS.SRC]IMUTEX.MAR;1

;7 AND CONTINUE

;; FLINK ON TO NEXT PCB
;7 AND CONTINUE

;: RESTORE REGISTERS

;; ENABLE INTERRUPTS
AND RETURN

STRUCTURE NOT PCB

14
(1)

MUTEX
Symbol table

BUG$ NOTPCB
DYN$ST PCB
EXIT —
EXITN

I0C$GL MUTEX
1PL$ ASTDEL
IPLSTSCHED
IPL$”SYNCH
LKEX™

MTX$V WRT
MTX$W OWNCNT
NOTPCE

PCB$B PRI
PCB$BTPRIB
PCB$B PRIBSAV
PCB$B PRISAV
PCB$SB_TYPE
PCBSLTEFWM
PCB$W MTXCNT
PCBSW STATE
PR$ IPL
PR$TSIRR
PRIT RESAVL
PSLST IPL
PSLSV_IPL
RDWAIT
SCH$CHSE
SCH$C MWAIT
SCHS$GE PRI
SCH$GL™COMQS
SCH$GL RESMASK
SCH$GQ MWAIT
SCHS$IOLOCKR
SCH$IOLOCKW
SCH$ IOUNLOCK
SCH$LOCKR
SCHS$LOCKW
SCHS$ LOCKWNOWAIT
SCHSRAVAIL
SCHSRWAILT
SCH$UNLOCK
SCHS$SWAITL
SS$ NORMAL
UNLOCK
WAITM

WAITR
WQH$W_WQCNT

PSECT name
. ABS .

$ABSS
AEXENONPAGED

~ MUTEX WAIT ROUTINES

22-MAY-1987 20:03:51 VAX/VMS Macro V04-00 Page

18-JUN-1985 07:53:25

Psect synopsis

i X2 L2 22 2] X 02

= 0000000C
00000125 R 02
00000122 R 02
khhhthkhh x 02

= 00000002

= 00000003

= 00000008
0000004C R 02

= 00000010

= 00000000
00000126 R 02

= 0000000B

= 0000002F

= 00000029

= 00000028

= 0000000A

= 0000004C

= 0000000E

= 0000002C

= 00000012

= 00000014

= 00000002

= 00000005

= 00000010
0000007A R 02
%k ok ok K de ke ke X 02

= 00000002
Kk hk kdk ok X 02
Je de de ke ok ok ok ok x 02
Je de de g ke de e K X 02
hhkkhkhkkk X 02
0000003C RG 02
00000022 RG 02
000000B0 RG 02
00000043 RG 02
00000029 RG 02
0000000A RG 02
000000A0 RG 02
00000000 RG 02
000000B7 RG 02
khkkhkhkk x 02

= 00000001
000000F5 R 02
0000007D R 02
00000088 R 02

= 00000008

13

Allocation

00000000 (0.)

00000000 (0.)

0000012A (298.)

4+ o~ 4

Attributes

PSECT No.
00 (0.)
0oL (1.)
02 (2.)

NOPIC USR
NOPIC USR
NOPIC USR

CON
CON
CON

ABS
ABS
REL

_11DUATS5: [SYS.SRCIMUTEX.MAR;1

LCL NOSHR NOEXE NORD NOWRT NOVEC BYTE

LCL NOSHR
LCL NOSHR

EXE
EXE

RD
RD

WRT NOVEC BYTE
WRT NOVEC BYTE

15
(1)

MUTEX
VAX-11l Macro Run Statistics

- MUTEX WAIT ROUTINES 22-MAY-1987 20:03:51 VAX/VMS Macro V04-00

Page 16
18-JUN-1985 07:53:25

_11DUA75:[SYS.SRC]HUTEX.MAR:l (1)

Performance indicators

+ -4
4+ -4

Phase Page faults CPU Time Elapsed Time
Initialization 33 00:00:00.03 00:00:00.33
Command processing 874 00:00:00.22 00:00:01.66
Pass 1 392 00:00:01.87 00:00:07.71
Symbol table sort 0 00:00:00.25 00:00:00.27
Pass 2 26 00:00:00.43 00:00:00.87
Symbol table output 6 00:00:00.01 00:00:00.25
Psect synopsis output 4 00:00:00.01 00:00:00.01
Cross~reference output 0 00:00:00.00 00:00:00.00
Assembler run totals 1338 00:00:02.82 00:00:11.12

The working set limit was 1650 pages.

49006 bytes (96 pages) of virtual memory were used to buffer the intermediate code.

There were 50 pages of symbol table space allocated to hold 889 non-local and 12 local symbols.
475 source lines were read in Pass 1, producing 13 object records in Pass 2.

22 pages of virtual memory were used to define 21 macros.

Macro library statistics

4 o=+
4+ -+

Macro library name Macros defined

11DUAT75:[SYS.OBJ]LIB.MLB;1 12
~11SDUA75: [SYSLIB]STARLET.MLB; 2 6
TOTALS (all libraries) 18

993 GETS were required to define 18 macros.
There were no errors, warnings or information messages.

MACRO/LIS=LIS$:MUTEX/0BJ=0BJ$: MUTEX TMP$:MUTEX . MAR+EXECML$/LIB

SYSTEM MECHANISMS

Obtaining and Releasing Mutexes

e Example - to obtain the paged pool mutex

- In your routine

MOVAL G EXESGL_PGDYNMTX, R0
MOVL G"SCHSGL_CURPCB, R4

JSB G“SCHSLOCKR ;read
or
JSB G " SCHSLOCKW ;write

- When returns, process has mutex

- Process should remain at IPL 2 or greater while it
owns a mutex

e Example - to release the paged pool mutex
- In your routine
MOVAL G EXESGL PGDYNMTX, R0

MOVL G"SCHS$GL_ CURPCB, R4
JSB G"SCHSUNLOCK

SETIPL #0 ; if no longer hold any mutexes

- All mutex symbols defined in module SYSCOMMON, except
for line printer mutex in LPDRIVER.

SYSTEM MECHANISMS

Asynchronous System Traps (ASTs)

Software Process Control Block (PCB)

[TASTEN JASTACT
::Ig:t ® \ AST Conirol Block (ACB) . Z
ASTQFL
) ASTQBL
RMOD | TYPE | SIZE
PID
AST
ASTPRM
KAST
I ASTCNT RMOD bits:
7654 10

I. MODE
PKAS

T
NODELETE acb
QUOTA

KAST

Figure 12 AST Queue off the Software PCB

e Provide an asynchronous tool for communication and
synchronization

e AST Control Block (ACB) built when AST requested

® ACBs are queued to the software PCB when the AST is due

- Queue is ordered by access mode

3-26

ASYNCHRCONOUS SYSTZM TRAPS (ASTS)

MECHANISM TO INITIATE THREAD CF EXECUTIC

- WITHIN A PROCESS ‘

- ASYNCHRONOUSLY TO OTHER ACTIVITY WITHIN PROCESS

- FREQUENTLY TO NOTIFY PRCCESS OF SOME EVENT

- SOMETIMES TO EXECUTE PIECE OF SYSTEM CODE IN PROCESS'S CONTExT

THREAD OF EXECUTION INITIATED

- AT A PARTICULAR ACCESS MODE
- FREQUENTLY AS CALLED PROCEDURE
- SOMETIMES AS SUBROUTINE OF IPL2 ASTDEL SERVICE ROUTINE

"INTERRUPT" MOST PROCESS WAIT STATES
DELIVERY TO ALL ACCESS MODES ENABLED BY DEFAULT
ONLY ONE AST ACTIVE PER PROCESS PER ACCESS MODE

ASSOCIATED SYSTEM SERVICES

SOCLAST DECLARE AST

SENQ[W] ENQUEUE LOCK REQUEST

SGETDVI GET DEVICE/VOLUME INFORMATION
SGETJPI GET JOB/PROCESS INFORMATION
SGETSYI GET SYSTEM INFORMATION
$QIOCW] QUEUE I/0 REQUEST

$SETIMR ENQUEUE TIMER REQUEST

SSETAST ENABLE/DISABLE AST DELIVERY
SSETPRA SPECIFY POWER RECOVERY AST

sUPDSEC UPDATE SECTION FILE ON DISK

ARCHITECTURE FEATURES

¢ PRS_ASTLVL

¢ PHDSB_ASTLVL

¢ LDOPCTX

¢ REI

SOFTWARE PCB FIELDS ASSOCIATED WITH ASTS

PCRSL_ASTQFL
PCBSL_ASTGBL
PCBSW_ASTCNT

PCBSB_ASTACT

PCBSB_ASTEN

LIST HEADER FOR

ENQUEUED ASTS

AVAILABLE AST QUOTA

{ BIT FOR EACH ACCESS MCDE
(1 = AST ACTIVE)

{ BIT FOR EACH ACCESS MODE
({ = AST DELIVERY ENABLED)

ACBS ARL ENQUEUED IN ACCESS MODE ORDER

PCB

50

80

ACB

ap

S
ACB

—F——-Y’ e)

50

50

50

50

ACB

50

AST CONTROL BLOCK

+-----o-------------—----—----—------—-—-----+

:
|
.,
|
:

ASTRFL
P CEORECCCTTTELLLTLEEELI IR Ry

ASTQBL

!
!
!

]

)

1

]

]

'

]

L] (VS]

1] ~

] —

(] wm

)

1

]

]

]

'

]

[}

| ——

[}

L}

L]

1

1

]

] (V8

' a

] >

] +—

'

1

| SR
(e)
(]
¥
o

I
!
I

|
i
!
i
|
|
[

'-—---------'—--—-------o-o—---—--------------
.)

D
R e e R L L LEC R REE LS LY

P

1

|
:
!
:

.
.

AST
| oo m=mmmmmmmm—cmomcmececcccecccccccccaconnanl

|
]
|

|
.
!
:
4
H
|
‘

ASTPRM
[D et

!
!
!

KAST
T R s

ACBSB_RMOD

1

7 R L T L L L R R R L E R PR Y

TARGET

)
v Wl
wuw O
) O
O ¥
<1

(IS}

T

el
— | <
(70} wl —
< [) [amn]
hV4 O -
T
> > >
LY 2 o N
o0 [as] (aa]
(&] (&) (&S
< < <t

.

*» wme wme eme wme =

ACBSV_KAST

SPECIAL KERNEL MODE ASTS

CANNOT BE DISABLED THROUGH $SETAST
QUEUED AT FRONT OF AST QUEUE
DELIVERED THROUGH JSB AT I[PL 2

USED BY VMS EXEC AND UTILITIES

- $GETJPI - READ INFORMATION ABOUT TARGET PROCESS

- [0CSIOPOST - POST [/0 COMPLETION [N PROCESS CONTEXT

- EXESPOWERAST - QUEUE PROCESS-REQUESTED AST NOTIFICATION OF
POWER RECQVERY

- DELTA - READ/WRITE VIRTUAL MEMORY QOF TARGET PROCESS

READ VIRTUAL MEMORY OF TARGET PROCESS

- SDA (ONLINE)

AST ROUTINE CALL FRAME

P e I IR At

REGISTERS
SPECIFIED BY
ENTRY MASK

I FP:SP

I AP

ARGUMENT
LIST

REI

Operation:

Return from Exception or Interrupt

tmpl <= (SP)+: ! Pick up saved PC
tmp2 <- (SP)+; ! and PSL

1f [tmp2<IS> EQLU 1 AND tmp2<IPL> EQLU Q] OR
ftmp2<IPL> GTRU 0 AND tmpZ<CUR MOD>] NEQU 0} OR
ZtmpZ<PRV MOD> LSSU tmpZ(CUR ﬂOD)E OR
[tmp2<PSL_MBZ> NEQU 0} OR
ItmpZ(CUR_%OD> LSSU PSL(CUR_MOD)} OR
[tmp2<IS> EQLU 1 AND PSLKIS> EQLU 0} OR
[tmp2<IPL> GTRU PSLKIPL>] then [reserved operand fault;

1f {compatibility mode implemented} then

begin
1 [tmp2<CM> EQLU 1] AND
{{tmp2<FPD,IS,DV,FU,IV> NECQU 01 OR
["mp2<CUR_MOD> NEQU 3}} tnen [reserved operand fault;
end

else if [tmp2<CM> EQLU 1} then [reservad operand fault

i1f PSLKIS> EQLU 1} then ISP <=- S? tsave old stack pointer
else PSLCKCUR_MOD>_SP <= SP;

1f PSLKTP?> EQLU 1 then tmp2<TP> <- 1% !TP <= TP Oor stack TP

PC <~ tmpl;

PSL <-tmp2;
if PSLKIS> EQLU 0 then

begin

SP <= PSL<CUR_MOD>_SP; !sWwitch stack

1f PSLCKCUR_MOD> GEQU ASTLVL lcheck for AST delivery
tnen {request interrupt at IPL 21;

end;

fcheck for software interrupts};
{clear instrucc:ion look-anead]

SYSTEM MECHANISMS

- AST Delivery

SPECIALK | | KERNEL EXEC SUPER USER
AST AST AST AST AST

KERNEL EXEC SUPER USER

MKV84.2239

Figure 13 AST Delivery Order

e Delivery of an AST depends on:

- The current access mode of the process

- Whether the access mode of the AST is enabled

- Whether an AST is already active in the same access
mode .

e Certain system ASTs have special precedence (special
kernel ASTSs)

- I/0 completion
- SGETJPI on another process

@ REI checks for deliverability of pending ASTs
e Deliverability of ASTs is recorded in ASTLVL
® ASTLVL contains

- Access mode of first deliverable AST in queue
(for example, ASTLVL = 1 for executive mode AST)

- Or, the value 4 if:

1. There are no ASTs in the queue
2. AST delivery is disabled
‘2 3. An AST is active in the same access mode

SYSTEM MECHANISMS

AST Delivery Sequence

Exception/Interrupt
Service Routine
(i.e. Scheduler)

e

REI
acd _ No Ast
Delivered
b
IPL 2 INT
Generated
SCHSASTDEL: JSB Special K
_—"| ast
‘}‘ IPL=2
% USER
{Recompute ASTLVL) RET AST
REI IPL=0

Figure 14 AST Delivery Sequence

Table 7 Rules for Selection of ASTs

Rule Example

a) ASTLVL > new access User AST (3) > kernel access mode (9)
mode

b) ASTLVL £ new access Super AST (2) £ super access mode (2)
mode

c) Interrupt stack active (IS) bit set in PSL

d) Final IPL > 2 Process code at elevated IPL (>2)

L O C K ManAGER
+ SYNCHRONITZES SHARING OF Resources
. RESOURCE <~ ANYTHING THAT CAN BE GIVEN A NAME
. CLvster Devzce AName
~ DERIVED FROM THE PATNWAYy 1o THE Dsvice
- Devzce NpmE = NODOE § DEV:

. SHARED RESOURCE - MUST NAVE UNTIQUE NAME
ACROSS THE CLUSTER

. Dyar Portep Device- musT HAVE THE SAME NAME
Across THE CAVSTER

THE DISTRIBUTED LOCK MANAGER

RESOURCES AND RESOURCE LOCKING

Definition of resources -- Any entity on VAX/VMS -- for example
o Files
o Data structures
o Data bases
o Anything that can be given a name and shared

Definition of locking

o

o

Lock -- a process's request tO access a resource
Locks may be granted -- access permitted .
Locks may be waiting -- access pending (while access is

granted to another process)

Used to prevent such things as one process reading from a
file while another is writing to it.

Program 1 Program 2 Program 3

V .

Figure 4-1 Several Programs Sharing a File

4-7

17

THE DISTRIBUTED LOCK MANAGER

Lock Management System provided by VMS (Lock manager)

o Allows cooperating processes to synchronize access to
shared ressources

o Provides a a queuing mechanism

o Consists of System Services

- $ENQ -- enqueue a lock, return, notify caller when
lock is granted by AST or Event flag

- SENQW -- enqueue a lock and wait until it is granted
(LEF)

- S$DEQ -- dequeue a lock

- S$GETULKI -~ get lock information

Requirements to enqueue a lock

1. Resource name -- indicates which resource is to be locked
2. Lock mode -- indicates how the resource may be shared
3. Address of lock status block =-- receives completion

status and lock identification (used for all future
references to lock)

LKSB: .BLKQ 1 quadword to contain

the lock status block

w-e o

RESOURCE:
.ASCID /MY_FILE/ _ ;: the name of the resourc

L]
*

$ENQW_S LKMODE=#LCXSK_PRMODE, -
LKSB=LKSB, -
RESNAM=RESOURCE

protected read mode

e

Example 4-1 A Simple Lock Request

4-8

.
<

THE DISTRIBUTED LOCK MANAGER

Operation of the lock manager

The lock manager compares the lock mode of newly requested lock to
the lock mode of other locks with the same resource name.

o If no other lock on same resource -- lock is granted
o "If another process has compatible lock -- lock is granted
o If another process has incompatible lock -- lock is

placed in a wait queue for the resource

o A process can change lock mode with SENQ. Called 1lock
conversion,

- 1If requested conversion is compatible with existing
locks -- conversion is granted

- If requested conversion is incompatible with existing
locks =-- lock 1is place in a conversion queue until
the existing incompatible lock is dequeued

R)

o GRANTED

- Contains those locks that have been granted

0 WAITING

- Contains those locks that are waiting to be granted

o CONVERSION

- Contains those locks that are granted at one mode and
are vaiting to be converted to higher lcck mode

4-10

4/

THE DISTRIBUTED LOCK MANAGER

Table 4-1 The Six Lock Modes

Mode name Description

LCKSK_NLMODE NULL MODE. No access granted
to the resource. Serves as an
indicator of interest in a
resource and is converted to
higher modes before for access.
It is quicker to convert an
existing lock than to
create a new lock.

LCKSK_CRMODE CONCURRENT READ. Grants read
access to resource, Permits
others to read and write at
same time. !

LCKSK_CWMODE CONCURRENT WRITE. Grants write
access to resource. Permits
others to read and write at
same time,

LCKSK_PRMODE PROTECTED READ. Grants read
access to resource. Permits
others to read. No writers
are allowed. "share lock"

LCKSK_PWMODE PROTECTED WRITE. Grants write
access to the resource. Allows
it to be shared with concurrent
read mode. No other writers
are allowed access. "update lock"

LCKSK_EXMODE EXCLUSIVE. Grants write access
to the resource and prevents it
from being shared. "exclusive lock”

4-9

Y«

THE DISTRIBUTED LOCK MANAGER

Table 4-2 Compatibility of Lock Modes

Rode of Currently
Granted Locks

NL CR cw Mm pw [4

WL | yes yes yes yes yos yes

ch yes yes yes yes yes no

Node of o yes yos yes ne ne ne
Requested

Lock PR yes yes ne yeos ne no

] yes yes ne no no ne

£x yes | neo no ne ne ne

Key to Lock Rodes

NL -- Null loek

CR -=- Concurrent read

CW -=- Concurrent write
PR -- Protected read

P -~ Protected write

EX -- Exclusive .lock
QRANTED COMPATIOLE
:::J CONVERSIONS
CONVERSIONS CONVERSIONS
GRANTED THAT ARE
INCOMPATIBLE
CONVERSIONS
WAITING LOCXS
NEW GRANTED
Locx ' WAITING
GRANTED
s
NEW LOCK QUEUED
IN-376-81

Figure 4-2 Three Lock Queues

4-11

SYSTEM A

SYSTEM C

MASTER
RESOURCE SYSTEM

FLE) A
fat 2 [
DATABASE 1 (4

Resource trees -- the set of locks and resources that are common
to a given root. Resource trees describe a root resource, related
resources, and all locks on them.

Example -- On system A

1. FILE_l is locked

2. RECORD_1 and RECORD_2 are locked under FILE_1

3. FIELD_3 is locked under RECORD_ 2
This entire structure is called a resource tree. Any §iven
resource tree is entirely located on one system vhich is called

the master system. (ie. It is said that this system is
‘mastering the resource®)

This tends to distribute the locking activity throughout the
cluster.

\,&/

C O -t

0O ==

G RS0 o8

Only one system (the resource master) maintains complete
information asbout & resource tree. All other systems only
maintain information about locks that they have an interest in,

Example

1. System A is doing all locking services for entire cluster
on the resource tree that it is mastering. It holds the
master copies of locks held by remote systems.

2. Systems B and C only maintain information about locks
that they have acquired. They have the local copies of
locks that they hold. The resource master, if it is
another system, holds a corresponding copy of that lock
called the master copy.

System A
Master of
the resouwrce

System 8
* Dwectory for
Resowrce “Fig 1°
* Knowiledge
of wiwch
system i3
mastenng
the resOwce tree

System C

Wanis to lock
Resource Fre 17

System

Be

drectory system
for ths specsic
Resource

The knowledge of vhich system is the master of a resource is
distributed in the VAXcluster.

Each system maintsins a partial directory that identifies which
system is the master of certain resource trees.

A hashing algorithm is used to convert a resoyrce name into the
identity of the system that should be the directory system for
that resource.

The hashing algorithm is chosen at the time of cluster formation
and vhen nodes are added or removed from the VAXcluster. It must
be the same on all nodes.

It provides a distributed lookup point to identify which system is
mastering any given resource.

This directory is held in the lock database in memory an is not
to be confused vith a directory on a disk. ,

THE DISTRIBUTED LOCK MANAGER

EXAMPLE LOCKING OPERATIONS

Systemn A @@ 1

Lock Feg 1
Lock Recorg 1

18

\
System 8 2)
Dveciory System System C
Resource System @ o .
.
® Do
Function i
@ Lock Fie 1
<;¢u=unu¢z
- VIR

Figure 4-8 Example of Locking Operations

4-22

THE DISTRIBUTED

Annotation for Figure 4-8

A.

FILE_l locked on SYSTEM_A

1. Request for a Llock on
indicates that SYSTEM_B

for FILE 1

2, Message To Directory system °” "who is master
SYSTEM_A 1S
FILE_l
now maste

3. No system is mastering FILE_l so
the root directory as master of
Message to SYSTEM A "You are

4. =
5., SYSTEM_A locks FILE_l

RECORD_1 locked on SYSTEM_A

LOCK MANAGER

FILE 1, the hash
should be the director

6. Request for a lock on RECORD_1

7. Lock is granted -~ no
mastering the resource

8. —Request for lock on FILE_Ll.
that SYSTEM_B should be the
9. Message to Directory system -~

10. Message to SYSTEM_C -~ "SYSTEM_A

11. Message to SYSTEM_A -~ "Could I

12. Lock is granted
14
RECORD_2 locked on SYSTEM _C

13. Message tO SYSTEM_C -~ "Lock is granted”
. Lock data is also kept locally

15. Request for lock on RECORD_2

16. SYSTEM_C goes directly to SYSTEM_A,

.

that A 18 mastering the resource

17. Lock is granted

18. Message to SYSTEM_C -~ "Lock is granted'

19. Lock data is also kept locally

4-23

alglorithm
y system

ing FILE_12"
entered 1nto

ring FILE_l"

SYSTEM_A

the hash alg
directory SY
"who is
is masteri
lock FILE_1?"

mastering
ng FILE_L

lorithm indicates

m for FILE_l.

FILE_1?"
|]

since C already knows

SYSTEM MECHANISMS

Synchronizing Access Using the VAX/VMS Lock Manager

e Allows cooperating processes to synchronize access to
shared resources

e Can be used system-wide or group-wide
e Lock manager is invoked with system services

SENQ(W) [efn], lkmode, lksb, [flags], [resnam], [paridl],
[astadr], [astprm], [blkast], [acmode], [nullarg]

SDEQ 1kid, [valblk], [acmode]l, [flags]
® Provides a queuing mechanism
@ To allow for maximum sharing

- Locking at various levels of granularity
- Provides several lock modes

e Lock manager uses event flags to signify completion
e Lock manager uses ASTs

- Kernel ASTs to perform asynchronous operations in
context of the caller

- Normal ASTs to notify of completion
® Detects locking deadlocks
e Limit on number of locks per processk(EﬁQLM)
e Used by
- VAX-11 RMS to implement file and record locking

- Image activator and INSTALL wutility to synchronize
access to the known file database

- Files-11 ODS-2 file system

SYSTEM MECHANISMS

Table 8 Data Structures Supporting the Lock Manager

Purpose Data When Size
Structure Created

Describe a lock on the Lock Block When 1lock Fixed

system (owner PID, (LKB) requested

address of lock status

block)

Catalog all locks on the Lock ID Table At INIT LOCKIDTBL

system LOCKIDTBL_MAX

Describe a resource Resource When first Fixed

being locked (resource Block (RSB) lock placed

name, lock queues, lock on resource

value block, etc.)

Given a resource name, Resource Hash At INIT RESHASHTBL
locate the resource Table

block

Hold the listhead for Software PCB Process Fixed

the process lock queue creation

Can access the lock database in several ways:
®@ Given a resource name, use the resource hash table
® Given a lock ID, use the lock ID table

® To access all locks of a process, use the 1lock queue on
the software PCB

SYSTEM MECHANISMS

Grant
Conversion

[Waiting

Figure 15

Lock ID Table
LKB _ -
— State O —
= Owner Q ——f€—
RSB _
pPCB
! Owner Q

Relationships in the Lock Database

Lckﬁyﬂﬁwyl

Resource Hash
Table

SYSTEM MECHANISMS

RSB

vy

LKB

Lock ID Table

Granted
Conversion

Waiting

— State 0 —

wner =

Figure 16

® Parent

Waiting

' 3

PCB

»1 Owner Q

Relationships Between Locks and Sublocks

38 VMS Level 2 for Field Service
3 ERROR HANDLERS (USER-SPECIFIED)

3.2 Search Sequence

1. PRIMARY EXCEPTION VECTOR for the MODE of the exception

2. SECONDARY EXCEPTION VECTOR for the MODE of the exception
3. All CALL FRAMES in the stack of the MODE of the exception

4. LAST CHANCE EXCEPTION VECTOR for the MODE of the exception

3.2.1 Setting up a Vector Address

Use the following system service macro call to set up an address in any of the three vector
locations for one mode.

$SETEXV_S vector, addres, [acmode], [prvhnd]

Where the [] around an item means you do not have to specify a value because the macro
definition provides a default for you.

Vector = #0 to specify Primary Vector
#1 to specify Secondary Vector
#2 to specify Last Chance Vector

Address = The address of your error handling routine.
The routine must have an entry mask because
the system is going to CALLG to it.

Acmode = The mode you want to set the vector for.
This mode is maximized with the mode
you called the system service in.

Prvhnd = The location to store the previous contents of the vector.

3.2.2 Setting up a Call Frame Address

Use the following instruction to fill in the first location in the currently active call frame.

MOVAL address, (FP)

Address = The address of your error handling routine.
The routine must have an entry mask.

Internal Use Only

18 - Hardware-Detected Exceptions

3.2 Search Sequence

39

3.3 Primary and Secondary Exception Vectors

Kernel Primary
Keznel Secondary
Executive Primary
Executive Secondary
Supervisor Primary
Supervisor Secondary
User Primary

User Secondary

COO0O0O0OO0O0O0

CTLSAQ_EXCVEC:: 00

Figure 11: Primary and Secondary Exception Vectors

3.4

r—— — — —— — —— — —————— — v— —

Call Frame Specifying a Handler Address

::Initial SP Value

Ri1 if Bit 11 is Set in Entry Mask

\

RO if Bit O is Set in Entry Mask

| 1]

Updated PC After CALLx Instruction
FP (Address of Previous Call Frame)
AP Prior to the CALLx Instruction

SP |G]O
1:0]8

ENTRY MASK
tn 10>

<15

PSL Prior to the CALLx Inst. FLW:
10> .

User Specified Handler Address Not Equal to Zero FP:

31302928 27

16 15

Figure 12: Call Frame

The Debugger creates a call frame with a handler before calling your image.
DCL also creates a call frame with EXE§CATCH _ALL as the handler address.

3.5

Last Chance Exception Vectors

Kernel Last Chance
Executive Last Chance
Supervisor Last Chance
User Last Chance

EXESEXCPTN
EXESEXCPTNE

0
EXE$CATCH_ALL

CTLSAL _FINALEXC: :

offset

00 Bugcheck, Fatal

04 Bugcheck, Nonfatal

08
0C Exit Image

Figure 13: Last Chance Exception Vectors

Internal Use Only

12 VMS Level 2 for Field Service

2 SYSTEM COMPONENTS

2.2.2 System Control Block and Addresses

VECTORS (BITS 1:0)

00 SERVICE ON KERNEL STACK UNLESS RUNNING ON INTERRUPT STACK
01 SERVICE ON INTERRUPT STACK
** 10 SER\]/’ICE IN WCS, PASS BITS 15:2 TO MICRO PC

11 HAL

SYSTEM CONTROL BLOCK (SCB)

0 UNUSED, RESERVED
g MACHINE CHECK ABORT/FAULT/TRAP, PROCESSOR & ERROR.INFO PUSHED ON.SP EXESAL_LOAVEC
8 KERNEL STACK NOT VALID ABORT EXESKEASTKNV

c POWER FAIL INTERRUPT EXESPOWERFAIL
10 RESERVED/PRIVILEGED INSTRUCTION FAULT.OP-CODES RESERVED TO DEC & PRIVILEDGED/INST. EXESOPCDEC
14 CUSTOMER RESERVED INSTRUCTION FAULT EXESOPCCUS
18 RESERVED OPERAND FAULT/ABORT EXESROPRAND
1C RESERVED ADDRESSING MODE FAULT EXESRADRMOD
20 ACCESS CONTROL VIOLATION FAULT, VA CAUSING FAULT IS PUSHED ONTO STACK, REASON MASK EXESACVIOLAT
24 TRANSLATION NOT VALID FAULT, VA CAUSING FAULT iS PUSHED ONTO STACK, REASON MASK MMGSPAGEFAULT
28 TRACE (TP) FAULT, ENABLED BY T ON PREVIOUS INSTRUCTION EXESTBIT
2c BREAKPOINT FAULT EXESBREAK
30 COMPATIBILITY TRAP, TYPE CODE PUSHED ON STACK (TABLE A) EXESCOMPAT
34 ARITHMETIC TRAP, TYPE CODE PUSHED ON STACK (TABLE B) EXESARITH
38.3F UNUSED,RESERVED
4 CHMK TRAP, OPERAND WORD PUSHED ONTO STACK SIGN EXTENDED EXESCMODKRNL
4 CHME TRAP, OPERAND WORD PUSHED ONTO STACK SIGN EXTENDED EXESCMODEXEC
48 CHMS TRAP, OPERAND WORD PUSHED ONTO STACK SIGN EXTENDED EXESCMODSUPR
ac CHMU TRAP, OPERAND WORD PUSHED ONTO STACK SIGN EXTENDED EXESCMUDOSER
50 SBI SILO COMPARE
54 CRD/RDS

*58 SBI ALERT

*5C SBI FAULT

*60 CPU TIMEQUT (VMS: ASYNCHRONOUS WRITE TIMEQUT)

61-83 UNUSED, RESERVED
84 SOFTWARE LEVEL 1
88.8C SOFTWARE LEVEL 2.3
90-8C SOFTWARE LEVEL 4.F
Co INTERVAL TIMER
C4E4 UNUSED, RESERVED

*F8 CNSL RECEIVE INTR

*FC CNSL TRANSMIT INTR
FF UNUSED, RESERVED

©100-13C SBI REQ 4

*140-17C SBI REQ 5

*180-18C SBI REQ 6

*1CO-1FC SBIREQ7

* These offsets are 11/780-specific.
* *Interrupt serviced in WCS,
Go to 10E0 which contains a RETURN 1 uniess changed.
***Vector must select interrupt stack

REASON MASK BIT BREAKDOWN

TABLEB

VAX-11 Native Mode Codes

TABLE A
Compatibility Mode Codes

8IT VALUE MEANING CODE | CONDITION CODE | CONDITION
0 0 PROTECTION VIOLATION ; mteegg oxceazwwz?;grm” ? :Fslgengg?Ngr.coos
1 LENGTH VIOLATION INTEGER DIVIDE B8Y AK|
NA | NOTUSED ON TRANSLATION 3 FLOATING DIVIDE bv ZERG TRAP 3 EMT
NOT VALID (PAGE FAULT) 5 FLOATING UNDERFLOW TRAP 4 TRAP
6 DECIMAL STRING OVERFLOW TRAP 5 ILLEGAL INSTRUCTION
1] NORMAL MEMORY 7 DECIMAL STRING DIVIDE BY ZERO TRAP 8 ODD ADDRESS
REFERENCE
1 REFERENCE TO A PTE 8,7 68 5 4,3 2 1 o
2 0 READING B8R TR 00
1 WRITING

PERIPHERAL INTERRUPT VECTOR

Figure 5: System Control Block and Addresses

Internal Use Only

MKV84.2883

SYSTEM MECHANISMS

EXCEPTIONS AND CONDITION HANDLING

“— PR$_SCBB

Software Interrupts

Clock and Console

-9 :: EXE$GL_SCB

Device Interrupts

System Control Block

Figure 17 Exceptions and the SCB

® Exceptions are serviced by system routines

® Exception Service Routines (ESRs) are dispatched through
the SCB

3-33

SYSTEM MECHANISMS

Exception and Interrupt Dispatching

SOFTWARE ® EXCEPTION
DETECTED — DISPATCHER LIB$SIGNAL
—> ® ©
SEARCH ROUTINE
CONDITION
HARDWARE
(DETECTED) Eﬁggﬂ{'&" HANDLERS
= '
L]
[]
b » ﬁ ﬁ
ﬁ
:

Figure 18 Exception and Interrupt Dispatching

SYSTEM MECHANISMS

Notes on Figure 18

PSL, PC and @ to 2 longwords pushed onto stack

Exceptions and interrupts always héndled by VMS (for
example, page fault)

Exceptions that wuser may handle (for example, access
violation)

These exception routines complete the signal array by
pushing "SS$exception name" and "N" (total of longwords
now in signal array) onto the stack.

Detected and signaled by executive

The exception dispatcher

1. Builds mechanism array and argument

2. Invokes the search routine. Search order is:

a. Primary exception
b. Secondary exception
c. Call frames

d. Last chance
Alternate condition-handling mechanism

1. Signaled by RTL or a user calling LIBSSIGNAL or
LIBSSTOP

2. Search mechanism - same as (F)-2.

SYSTEM MECHANISMS

ARGUMENT LIST SIGNAL ARRAY
2 | n
ADDRESS OF SIGNAL ARRAY CONDITION NAME
2322588 OF MECHANISM FIRST SIGNAL ARGUMENT
’LADD|TIONAL ARGUMENTS FOR L
7 CONDITION HANDLER, ,1/
iF ANY
PC
PSL

MECHANISM ARRAY

vy

ESTABLISHER FRAME

DEPTH

RO

R1

TK-5058

Figure 19 condition Handler Argument List

SYSTEM MECHANISMS

HOW A USER EXECUTES PROTECTED CODE

Table 9

Executing Protected Code

Function

Implementation

Name

Protect memory from
read/write

Change access mode

Enter system service,
RMS, user-written
system service

Hardware-maintained
access modes

Instruction

Call --> instruction

Kernel, executive,
supervisor, user

CHMx, REI

CALL_x ~~> CHMx

3-37

SYSTEM MECHANISMS

Access Mode Transitions

CHMX :

REI:

/

Figure 20 Access Mode Transitions

Only way to move from less privileged to more
access modes

Only way to move from more privileged to less
access modes

Checks for illegal or unauthorized transitions

privileged

privileged

SYSTEM MECHANISMS

CHMx and REI Instructions

CHMxXx code-number

® Stack pointer switches to new mode

® PSL, PC and sign-extended code-number pushed onto stack

Sign-extended code-number «— SP

PC of next instruction

Old PSL

MKV84-2241

Figure 21 Stack After CHMx Exception

® PSL zeroed (except for IPL, Current Mode, Previous Mode)
e Current mode of PSL moved to previous mode field

® Current mode changed to new mode

® New PC taken from system control block (SCB)

® Code-number determines routine to execute in new mode

REI

® Replaces current PC and PSL with two longwords popped from
the stack. Before doing so,

- Various checks are made to protect the integrity of
the system.

- Checks for pending ASTs.

- Checks for pending software interrupts.

- After placing the PC and PSL in temporary registers,
the SP is switched to the appropriate access mode
based on the PSL current mode field.

SYSTEM MECHANISMS

REI Is Used in Various Situations

e To provide user-initiated access to system code and data:

CHMx code-number

.

REI

e To switch to compatibility mode:

PUSHL PSL (Bit 31 set)
PUSHL PC

REI
e To dismiss any other exception

e To service and dismiss a hardware interrupt:

Hardware Interrupt (IPL 16 through 31)

.

REI

e To service and dismiss a software interrupt:

Software Interrupt (IPL 1 through 15)

REI

SYSTEM MECHANISNS Jane tllfo™

Path to System Service

P1
Space

PO
Space

Change
Mode Dispatcher

System EXE$CMODxxxx ::
Service Vector

@ l 1) Build call frame Service Specific
SYS$service :: / 2) Check argument Procedure
list

entry mask
. of CHMx #code «”] CASEW
. /, RET . \ @ EXES$service ::

offsets i
. \ entry mask
L]
~A .

L]
process illegal .
change mode
code!

User Program

RET

Common Exit Path

Figure 22 Path to System Service

System services that execute in kernel or executive access
modes are invoked by:

l. A call to a system service vector.

2. A change mode instruction.

3. Dispatching through a CASE instruction in the CMODSSDSP
module.

SYSTEM MECHANISMS

Return From System Service

PO
Space

User Program

| Space | System Space
Change
| l Mode Dispatcher
System EXE$CMODX XXX ::
| Service Vector I
1) Build call frame Service Specific
SYS$service :: 2} Check argument Procedure
I I list
entry mask
CHMx #code CASEW
@ I RET I : EXES$service ::
offs.ets entry mask
| .
P LJ
process illegal
change moge °
| codes .
® /"

Common Ex»it Path
I SRVEXIT: /
L]

I \R.EI

Figure 23 Return from System Service

4, Return through a common code sequence (SRVEXIT)

5. REI

Checks return status code

Causes system service failure exception if service
failed and that feature was enabled

from CHMx exception service routine

6. RET for original CALL

3-42

SYSTEM MECHANISMS

Nonprivileged System Service

PO

Service Vector
Service Specific
Procedure

User Program SYS$service ::

P1 |
Space Space | System Space
|
|
System |
|

entry mask

|
|
|
|
|
|
IO ®

entry mask

RET

®

Figure 24 Nonprivileged System Service

1. Invoked with a CALL statement.

2. System services that do not require a change of access
mode have a simpler control passing sequence.

- SFAQ
- Timer conversion services

3. These services are not checked by SRVEXIT for error status
codes.

SYSTEM MECHANISMS

Path to RMS y\{fv

PO I P1 | (
Space | Space | System Space RMS Dispatcher
l Change RMSS$DISPATCH:
I Mode Dispatcher
CASEW
L]
| l EXECMODEXEC :: :
RMS Service Vector 1) Build Call Frame o":ﬂ-
l @) Check Argument .
SYS$ (List R;B
User Program service = CASEW
@ I entry mask l .
. /]/T CHME scode oftsets
. BRS l . @
catx = .
. JsB
: | |
' l
ommon Exit Path S Service Specific
' ' Procedure
RMS$service :
I I entry mask <t
RMS Synchronization| : :
l Routine l e o
' I RET

Figure 25 Path to RMS

1. Same path as executive mode system service

2. Same as 1

3. TFalls off end of system service case table, so JSB to RMS
case table

4, Dispatch to RMS procedure

SYSTEM MECHANISMS

Return from RMS

PO

Space

User Program

B RE

@

P1
Space

RMS Service Vector

SYSS$service ::

ontry mask
CHME #code

qans Synchronization|

Routine

RMSCHK _STALL:
L]

A

RET

Figure 26

1

—@————————

Common Exit Path

\
SRVEXIT: g~
. I\\\N
L]

N REI

Return from RMS

Same path as system service

Same as 1

Extra step to manage the synchronous nature

I1/0 operations

RET for original CALL

RMS Dispatchgr
RMS$DISPATCH:
CASE'
L]
L)

offaets

o/

RMS Service Specific

Procedure

RMS$service ::
ontry mask

\\TWVM

of most

M’[’V

RMS

SYSTEM MECHANISMS

Path to User-Written Service (1)

PO P1
SPACE SPACE
User P;ogvam JSB A

: RSB

SYSTEM
SPACE

Change Mode
Dispatcher

$ ENTRY
CHMX 4
VECTORS RET I

: @

CASE
L]
L

DISPATCHER ottsets I
RSB.

(ENTRY
.

PROCEDURES RET

» EXESCMODX XXX ::
1) Build call frame
2) Check argument
list
. CASEW
.
.
.
offsets
.
.
.
JsSB
process illegal
change mode codes
.
.
.
Common Exit Path

SRVEXIT :
[
.
]

RE!

Figure 27 Path to User-Written System Service

(Part 1)

1. To find the appropriate wuser-written
program calls a global symbol defining a service entry

vector.

2. A change mode instruction with a negat
change mode dispatcher to look

service, a

ive code causes
for system ser

dispatchers that were linked with the image.

user

the
vice

SYSTEM MECHANISMS

Path to User-Written Service (2)

PO P1 SYSTEM
SPACE SPACE SPACE
User P:ogvam JSB A <

. RSB

Change Mode
Dispatcher

EXESCMODxxxx ::
1) Build call frame
2) Check argument
list

. CASEW
[
I I :
L]
I I offsets
[]
.ENTRY [
CHMX l .
VECTORS RET I i JsB
. process illegal
. change mode codes
CASE I I L4
M °
. []
DISPATCHER _°"§ets I I Common Exit Path
@ RSB. SRVEXIT :
[]
LENTRY I I L4
. L)
. RE|
PROCEDURES | .. I l
Figure 28 Path to User-Written System Service
(Part 2)

3. Code for user-written system service causes JSB at end of
case table to be executed.

4. When a request can be serviced, the user-written
dispatcher passes control through a CASE instruction to
the routine.

5. Same as 4.

SYSTEM MECHANISMS

Return from User-Written System Service

PO P1 SYSTEM
SPACE SPACE SPACE
User P:ogram JSB A
. RSB
> CA.LLx Change Mogde
. Dispatcher
d EXESCMODxxxx ::

1) Build call frame
2) Check argument
list
CASEW
]
]
.
offsets
°
.

]
JSB

.ENTRY
CHMX

VECTORS RET <
. process illegal
. change mode codes
CASE °
[L
M .
DISPATCHER oftsets Common Exit Path
.
nse. -» SRVEXIT :
°
ENTRY *
[[]
. REI|

PROCEDURES RET

: ®

Figure 29 Return from User-Written System Service

6. When the user-written routine exits, it passes control to
SRVEXIT, as the supplied system services do.

7. The rest of the return path to the user program is similar
to the steps for the supplied system services.

8. Same as 7.

3-48

Two Dispatchers

SYSTEM MECHANISMS

PO P1 SYSTEM
SPACE SPACE SPACE
User P:ogram JSB A
. JSB B
CALLx RSB Change Mode
: Dispatcher
. EXESCMODxxxx ::
1) Build call frame
2) Check argument
VECTORS list
CASEW
DISPATCHER .
®
PROCEDURES .
offsets
e
.ENTRY .
CHMX [
VECTORS RET JsB
4 process illegal
. change mode codes
CASE .
: []
DISPATCHER ottsets Common Exit Path
RSB SRVEXIT :
.
ENTRY .
[[]
: REI
PROCEDURES RET

Figure 30 Two Dispatchers

® Multiple dispatchers can be linked to an image.
® Dispatchers are searched in order activated.
® Duplicate CHMx code numbers possible.

- Only first occurrence recognized.

SYSTEM MECHANISMS

MISCELLANEOUS MECHANISMS

Dynamic Memory

€
—e
USED
Beginning of Pool Area
(Filled in When
System is Initialized)
[Size of this Biock_|
First Unused
Block
USED) -.----T..-.----.l
_______________ 0
| Size of this Block Address of First
Next Unused °® Free Block
Block ® (Moditied by Allocation
° and Deallocation Routines)
USE J
... ______] (Zero in Pointer
B _SI_z_e_o_t_t_h!s_glg_c[(_] Signifies End of List)
Last Unused
Block

e ——
o

Figure 31 Paged Dynamic Memory

e Used for the management of data structures that must be
allocated and deallocated after the system or process is

initialized.
e TFree blocks are stored in order of ascending addresses.

e Number of bytes allocated for paged pool determined by
SYSGEN parameter PAGEDYN.

SYSTEM MECHANISMS

Allocating Nonpaged Pool

<€—8:: MMG$GL_NPAGEDYN
Rest of
Nonpaged
Pool :: EXESGL_NONPAGED +4
.995!.4———'-.
size
""" first
unused
block
B <4—@:: I0C$GL_LRPSPLIT
o T 7 :: I0C$GL_LRPFL
+EE-E <€—@:: EXESGL_SPLITADR
1T 1 :: I0C$GL_IRPFL
+ 5% 4=—@:: |I0C$GL_SRPSPLIT
1 1
d :: IOC$GL_SRPFL

Figure 32 Allocating Nonpaged Pool

3-51

SYSTEM MECHANISMS

Relevant SYSGEN Parameters for Nonpaged Pool

Table 10 SYSGEN Parameters for Nonpaged Pool

Function Parameter
Number of bytes preallocated for the nonpaged NPAGEDYN
dynamic pool, exclusive of the lookaside lists

Number of bytes to which the nonpaged pool may NPAGEVIR
be extended.

Number of large request packets preallocated for LRPCOUNT
the LRP lookaside list.

Number of LRPs to which the LRP list may be LRPCOUNTV
extended.

Number of bytes to allocate per LRP, exclusive of LRPSIZE
header. Number of bytes actually allocated per

packet is LRPSIZE + 64.

Size of minimum allocation request for LRP (bytes) LRPMIN
Number of I/0 request packets preallocated for IRPCOUNT
the IRP lookaside list.

Number of IRPs to which the IRP list may be IRPCOUNTV
extended.

Number of small request packets preallocated for SRPCOUNT
the SRP lookaside list.

Number of SRPs to which the SRP list may be SRPCOUNTV
extended.

Number of bytes to allocate per SRP. SRPSIZE

w
|

52

SYSTEM MECHANISMS

Notes on Table 10

® System page table entries are reserved and physical memory
preallocated for NPAGEDYN, LRPCOUNT, IRPCOUNT, and
SRPCOUNT.

® System page table entries are reserved but no physical
memory preallocated for NPAGEVIR, LRPCOUNTV, IRPCOUNTV,
and SRPCOUNTV. Physical memory is allocated on demand
from the free page list if there is enough excess memory.

® Size of IRPs is 208 bytes.

® LRPMIN is a special parameter.

SYSTEM MECHANISMS

SUMMARY OF SYSTEM MECHANISMS‘

Table 11 Function and Implementation of System
Mechanisms
Function Implementation Name

Keeping Track of CPU,

Process State

Store processor
state
Store, restore

process state

Register

Instruction

Handling and Uses of Interrupts

Arbitrate interrupt
requests

Service interrupts
and exceptions

Synchronize execu-

tion of system
routines

Request an interrupt

Synchronize system's
access to system
data structures

Continue execution
of code at lower-

priority

Hardware-maintained
priority

Table of service
routine addresses

Interrupt service
routines

MACRO

MACRO-raise IPL to

IPL$_SYNCH

Queue request,
SOFTINT, REI

How User Executes Protected Code

Protect memory from
read/write

Change access mode

Enter system service,

RMS, user-written
system service

Hardware-maintained
access modes

Instruction

Call --> instruction

Processor status
longword (PSL)

SVPCTX, LDPCTX

Interrupt priority
level (IPL)

System control block
(SCB)

Timer, SCHED,
SOFTINT

SETIPL

FORK

Kernel, Executive,
Supervisor, User

CHMx, REI

CALL_x --> CHMX

3-54

IOPOST..

SYSTEM MECHANISMS

Table 11 Function and Implementation of System
Mechanisms (Cont)
Function Implementation Name
Proéess Synchronization
Synchronize certain‘ Adjusting IPL IPL

system-level
activities of
processes

Allow process to
request action at
a specific time

Synchronize access
to data structures
by processes

Allow process to
execute procedure
on completion of
event

Allow processes to
synchronize access

to various resources

(SETIPL macro)

Queue of requests and
hardware and software
timer interrupts

Semaphore

REI
IPL2 interrupt
service routine

SENQ(W) and $DEQ
system services

Timer queue
MUTEX

Asynchronous
system trap (AST)

VMS lock manager

SYSTEM MECHANISMS

SYSGEN Parameters Related to System Mechanisms

Table 12 SYSGEN Parameters Related to System Mechanisms

Function Parameter
Size of the interrupt stack (in pages) INTSTKPAGES
Initial size of nonpaged pool (no lookaside lists) NPAGEDYN
Maximum size of nonpaged pool NPAGEVIR
Initial number of LRPs LRPCOUNT
Maximum number of LRPs LRPCOUNTV
Bytes in LRP (exclusive of header) LRPSIZE
Size of minimum alloéatioh request for LRP (bytes) LRPMIN (*)
Initial number of IRPs IRPCOUNT
Maximum number of IRPS IRPCOUNTV
Initial number of SRPs SRPCOUNT
Maximum number of SRPs SRPCOUNTV

Number of bytes to allocate per SRP

Initial size of Lock ID Table

Maximum size of Lock ID Table

Max. number of entries in Resource Hash Table
pDeadlock detection timeout period

Number of retries for multiprocessor lock

SRPSIZE (*)
LOCKIDTBL
LOCKIDTBL_MAX
RESHASHTBL
DEADLOCK_WAIT

LOCKRETRY (*)

(*) = special SYSGEN parameter

SYSTEM MECHANISMS

APPENDIX A
COMMONLY USED SYSTEM MACROS
IPL Control Macros

+«MACRO SETIPL IPL

.IF NB IPL
MTPR IPL,S"#PR$_IPL
. IFF
MTPR #31,S"#PR§$_IPL
. ENDC

. ENDM SETIPL

- MACRO DSBINT IPL,DST
.IF B DST

MFPR S"#PR$_IPL,- (SP)
. IFF -
MFPR S"#PR$_IPL,DST
. ENDC
.IF B IPL
MTPR #31,S"#PRS_IPL
.IFF -
MTPR IPL, S"#PR$_IPL
. ENDC
. ENDM DSBINT

«MACRO ENBINT SRC
.IF B SRC

MTPR (SP)+,S"#PRS$ IPL
. IFF -
MTPR SRC,S"#PR$_IPL
. ENDC
. ENDM ENBINT
.MACRO SOFTINT IPL
MTPR IPL,S"#PR$_SIRR
. ENDM SOFTINT

Example 1 1IPL Control Macros

SYSTEM MECHANISMS

Argument Probing Macros

.MACRO IFRD SIZ,ADR,DEST,MODE=#0

PROBER MODE, SIZ,ADR
BNEQ DEST
. ENDM IFRD

. MACRO IFNORD SIZ,ADR,DEST,MODE=#0
PROBER MODE,SIZ,ADR

BEQL DEST
. ENDM IFNORD

.MACRO IFWRT S1%Z,ADR,DEST,MODE=4#0

PROBEW MODE,SIZ,ADR
BNEQ DEST

. ENDM IFWRT

.MACRO IFNOWRT SIZ,ADR,DEST,MODE=#0
PROBEW MODE,SIZ,ADR

BEQL DEST
. ENDM IFNOWRT

Example 2 Argument Probing Macros

SYSTEM MECHANISMS

Privilege Checking Macros

-MACRO IFPRIV PRIV,DEST,PCBREG=R4

.IF DIF <PRIV>,<R1>
.IF DIF <PRIV>,<R2>

BBS #PRV$V_'PRIV,@PCB$L_PHD(PCBREG),DEST
.IFF

BBS PRIV,@PCBSL_PHD (PCBREG) ,DEST

- ENDC

.IFF

BBS PRIV,@PCBSL_PHD (PCBREG) ,DEST

. ENDC

. ENDM IFPRIV

.MACRO IFNPRIV PRIV,DEST,PCBREG=R4
.IF DIF <PRIV>,<R1>
. IF DIF <PRIV>,<R2> .
BBC #PRV$V_'PRIV,@PCB$L_PHD(PCBREG),DEST
.IFF
BBC PRIV,@PCBSL_PHD (PCBREG) ,DEST
. ENDC
. IFF
BBC PRIV,@PCBSL_PHD (PCBREG) ,DEST
. ENDC

. ENDM IFNPRIV

Example 3 Privilege Checking Macros

Table 13

SYSTEM MECHANISMS

APPENDIX B
PRIVILEGE MASK LOCATIONS

Privilege Mask Locations

Symbol Name

Use

CTLSGQ PROCPRIV

PCB$Q_PRIV

PHD$Q_PRIVMSK
(PHD base address)

PHDSQ IMAGPRIV

PHD$Q_AUTHPRIV

Process permanent mask
Altered by SET PROCESS/PRIV= command
Used to reset current masks

Current mask, permanently resident
Altered by known image activation

Altered by SSETPRV system service
Reset by image rundown

Current mask, swappable

Altered by known image activation
Altered by S$SETPRV system service
Reset by image rundown

Used by IFPRIV, IFNPRIV macros

Mask of installed known image
ORed with CTL$GQ PROCPRIV to
produce current masks

Mask defined in authorization file
Not changed during life of process

SYSTEM MECHANISMS

APPENDIX C
THE REI INSTRUCTION

The REI instruction results in a reserved operand fault if any
one of the following operations is attempted:

1.

Decreasing the access mode value (to a more privileged
access mode). (This is a comparison of the current mode

fields of both the present PSL and the saved PSL on the
stack.)

Switching to the interrupt stack from one of the four
perprocess stacks.

Leaving the processor on the interrupt stack in other than
kernel access mode.

Leaving the processor on the interrupt stack at IPL g.

Leaving the processor at elevated IPL (IPL > @) and not in
kernel access mode.

Restoring a PSL in which the previous mode field is more
privileged than the current mode field (previous mode <

current mode).

Raising IPL.

Setting any of the following bits - PSL<29:28> or PSL<21>
or PSL<K15:8>,.

When the processor attempts to enter compatibility mode, the
following checks are made:

The first-part-done bit must be clear.

The interrupt stack bit must be clear.

All three arithmetic trap enables (DV, IV, and FU) must be
clear.

The current mode field of the saved PSL must be user
access mode. '

SYSTEM MECHANISMS

If all the preceding checks are performed without error, the
REI microcode continues by:

1. Saving the old stack pointer (SP register) in the
appropriate processor register (KSP, ESP, SSp, or USP).

2. Setting the trace pending bit in the new PSL if the trace
pending bit in the old PSL is set.

3. Moving the contents of the two temporaries (note 1 above)
into the PC and PSL processor registers.

If the target stack is a perprocess stack:

1. Getting the new stack pointer from the corresponding
processor register (KSp, ESP, SSP, or USP)

2. Checking for potential deliverability of pending ASTs.

3-62

Debugging Tools

épll)P VJI)EOZ%(J;Q @&{eue K
(fwdﬂﬁgﬂmﬂ%V)

DEBUGGING TOOLS

INTRODUCTION

Since VMS runs in executive and kernel modes and at elevated
interrupt priority 1levels, any error is considered serious, and
can cause a system crash.

VMS offers several tools to aid in debugging system level

code.

These tools are:
SDA - a symbolic dump analyzer

DELTA - a debugger for code running in operating modes
from user to kernel.

XDELTA - a debugger for kernel mode code running at
elevated IPLs.

OBJECTIVES

To use various system-supplied debugging tools and
utilities (for example, SDA, DELTA, XDELTA) to examine
crash dumps and to observe a running system.

To use the system map file as an aid in reading source
code, and identifying the source of system crashes.

RESOURCES

VAX/VMS System Dump Analyzer Reference Manual

VAX/VMS Internals and Data Structures, chapter on Error
Handling

VAX/VMS PATCH Utility Reference Manual

VAX Hardware Handbook

Guide to Writing a Device Driver for VAX/VMS

II.

III.

IV.

DEBUGGING TOOLS

TOPICS

VAX/VMS Debugging Tools

The System Dump Analyzer (SDA)

A. Uses

B. Requirements

C. Commands

The System Map File

- Crash Dumps and Bugchecks

A. How bugchecks are generated
B. Sample stacks after bugchecks

C. Sample crash dump analysis

The DELTA and XDELTA Debuggers

DEBUGGING TOOLS

VAX/VMS DEBUGGING TOOLS

Table 1 Environment vs. Debugging Tools

Problem/Environment Method of Analysis
Program IPL=0, VAX/VMS Symbolic Debugger
User mode (Linked with image or
Examine perprocess memory included at run time)
Program IPL = 0, DELTA debugger
User to kernel mode (Linked with an image or
included at run time)
Examine process Nonsymbolic

and system memory

Examine active System Dump Analyzer (SDA)
system Activated from DCL
Examine a Crash file System Dump Analyzer (SDA)

Activated from DCL

Program IPL > O XDELTA DEBUGGER
(Linked with VMS, run from
console terminal only)
Nonsymbolic

e VAX/VMS provides several debugging tools
® Method of analysis depends on
- Program environment

- Nature of desired analys157

A

Uuﬂl/’ﬂ Vﬁb

177 v

4-5

DEBUGGING TOOLS

THE SYSTEM DUMP ANALYZER (SDA)

® The

System Dump Analyzer (SDA) is used to examine:

The system dump file (SYSSSYSTEM:SYSDUMP.DMP)

A copy of the dump file containing previous crash
information

The active system

e Through the SDA, information can be:

Displayed on a video terminal

Printed on a hard-copy terminal

Sent to a file or line printef

® Requirements for running SDA

VIRTUALPGCNT must be size of SYSDUMP.DMP plus 3000
(pages)

PGFLQUOTA must be size of SYSDUMP.DMP plus 2000
(pages)

To examine the active system, the CMKRNL privilege is
needed

To examine a dump file, read access to the file is
needed

DEBUGGING TOOLS

Table 2 Examining Crash Dump or Current System

To Examine Command Restrictions

Currxent System $ ANALYZE/SYSTEM CMKRNL priv
needed

System Dump File $ ANALYZE/CRASH_DUMP Read access to

or

file needed

Other Dump File

e SDA Functions

Examine locations by address or symbol

Displays process/system data
Formats and displays data structures

Assigns values to symbols as requested

® Command Format

SDA> command [parameter] [/qualifier]

DEBUGGING TOOLS

SDA Functions and Commands

Table 3 SDA Functions and Commands

Function Command
Information

Provides help using SDA HELP
Displays specific SHOW
data/information

Formats and displays FORMAT

data structures

Displays contents of EXAMINE
location(s)

Manipulation

Preserves second copy COPY
of dump file

Creates and defines symbols DEFINE
Performs computations EVALUATE
Sets/resets defaults SET
Defines other VMS symbols READ
Repeats last command REPEAT

or

<Keypad 0>

DEBUGGING TOOLS

Table 4 SDA Commands Used to Display Information

Function Command Comments

The last crash SHOW CRASH Dump file only

I/0 data structure SHOW DEVICE Device_name parameter
optional;
/ADDRESS=n

Contents of dump SHOW HEADER

file header

Resource locks SHOW LOCK /ALL

System page table SHOW PAGE_TABLE /GLOBAL, /SYSTEM
/ALL (D)

PFN database SHOW PFN_DATA /FREE, /MODIFIED
/SYSTEM, /BAD
/ALL (D)

Dynamic pool SHOW POOL /IRP, /NONPAGED
/PAGED, /SUMMARY,
/ALL (D)

Process-specific SHOW PROCESS /PCB (D), /ALL,

information /CHANNEL, /INDEX=n,
/LOCKS, /PO, /P1,
/PAGE_IABLES, /PHD,
/PROCESS_SECTION_TABLE,
/REGISTERS, /RMS,
/SYSTEM, /WORKING_SET

Lock manager SHOW RESOURCE /ALL, /LOCKID=nn

resource database

RMS display options SHOW RMS

Stacks SHOW - STACK /INTERRUPT, /KERNEL
/EXECUTIVE, /SUPER
/USER

Summary of all SHOW SUMMARY /IMAGE

processes

Symbol table SHOW SYMBOL Symbol-name parameter

optional; /ALL

DEBUGGING TOOLS

Table 5 Symbols and Operators

Function Symbol or Example

Operator
Contents of location @ Examine @80Q000@45A
Add 80000000 (SO base) G G45A
to address
Add 7FFE@QQ00 (Pl H H7A4
stacks) to address ‘
Current location . Format .
Hexadecimal number “H “H10Q
radix
Octal number radix e} ~020
Decimal number radix “D “D16
Register symbols R@¢-R11, AP, FP,

KSp, ESP, SSP, USP,

PUBR, POLR, PI1BR,

P1LR, PC, PSL

Table 6 Common Command Usage

Function

Command

Comment

Examine
location(s)

Examine address
at location

Format data

Define symbol

EX .
EX G14:G74

EX @USP

Format addr
Format @addr

Define BEGIN =

G580

One 1location
Several locations

Examine address found
contained in given
location

Format at given location
Format at contents addr

>
|

10

DEBUGGING TOOLS

Examining an Active System

$ ANALYZE/SYSTEM

VAX/VMS Sustem Analuzer

SDIA» EVALUATE GH(S0%x4)-(4/2)+707

Hex = B0000145 Decimal = -2147483323
ShAx

SDA> EXAMINE G23CO

SCH$GL_NULLFCE+118% O0000E274 *thes"
SDAx

SDA> EXAMINE

SCH$GL_NULLFCE+11Ct 00000000 fereet

Snax

SHA> EXAMINE ! ysed keurad 0 to rereat last command
SCH$GL..NULLFCE+120¢ FFFFFFFF e’

SpAx

ShA> EXAMINE I used keurad 0 to rereat last command
SCH$GL..NULLFCE+124% FFFFFFFF LIRS

ShAx

sha> EX IOC$GL_DEVLIST

I0C$GL.DEVLIST! 80000FSC AN

SDHAx

sha> EX RO

ROt 00000020 LS

SDhAx

spax EX/FSL PSL
CMF TF FFD IS CURMOD FRUMOD IFL DV FU IV
0 0 0 0 USER USER 00 0 0 O

ShAx .

SpA> EVALUATE/CONDITION C

%“SYSTEM~F—-ACCVIO0s access violationy reasson masks=!XEy

virtusl address=iXLs FC=IXLy FSL=IXL

sShax

ShA» EX G100:1G140

00040019 BFECOOFC 00040018 BFRBCOO3C <o<leeserlesionsen 80000100
0004001F BFECO7ZFC 00040014 B8FBCOOFC li<asevsbotornss 80000110
00040010 BFRCOFFC 0004001C B8FRBCOOFLC 1a<esrveleovans 80000120
0004001F 8FECO03C 0004001E B8FRCOIFC fesvsveoonsns 80000130
00040021 BFEBCOLFC 00040020 BFBCOOLI0O alvssvelesielons 80000140

Example 1 Examining an Active System (Sheet 1 of 5)

4-11

DEBUGGING TOOLS

S0A> SHOW PROCESS
Process index! 0044 Name! HUNT

Extended FID! 000001

44

Frocess statust 02040001 RES s PHIRES

FCER address 80126730
FHDN address 80507800
Master internal FID 00020044
Internal FID 00020044
Extended FID 00000144
State CUR
Current priority 7
‘" Base prioritg 4
uIcC [011,1401
Mutex count 0
Waiting EF cluster 0
Starting wait time 1BOO1ERLE
Event flag wait mashk LFFFFFFF
Loecal EF cluster 0O E0000023
Local EF cluster 1 08000000

Global cluster 2 rointer 00000000
Global cluster 3 rointer 00000000

SDA>
ShA> SHOW LOCK
Lock database

JIBR address
Swarfile disk address
Subrrocess count
Creator internal FID
Creator extended FID

Termination

AST’s enabled
AST’s active
AST’s remaining
Buffered I/0 count/limit
Direct I/0 count/limit
BUFIO0 bute count/limit

% oren files allowed left
Timer entries allowed left 10
Active rade table count
Frocess WS radge count
Global WS radge count

Lock idt 00010001 FID? 00000000 Flads?

Par. id!: 00000000 Granted at EX

Sublocks? o]

LKE? 80257540

Resource?! SF535953 24535953 SYS$S5YS.
Length 16 00000000 00004449 IDveeses
xec. mode 00000000 00000000 te s
Sustem 00000000 00000000 LR S S Y

Local cory

Lock id: 00020002 FID: 00000000 Flads?

Far. id? 00000000 Granted at CR

Sublocks? 0)

LKE? 80257480 BLKAST

Resource! 41566224 42313146 Fl1iB$bVA
Lendth i8 20334C52 S534D5658 XVUMSRL3

Kernel mode 00000000 00002020
Sustem 00000000 00000000
lLocal cory

LI B

LA B S N R O J

mailbox

80200100
0i1001C81
0
00000000
00000000
0000
KESU
NONE
7

676

6/6

7840/7840

36

0
0
0

2
&

WU

NOQUEUE SYNCSTS SYSTEM

CVUTSYS

Status?

MOQUOTA

CONVERT NOQUEUE SYNCSTS
NOQUOTA CVTSYS

Status!?

NOQUOTA

Example 1 Examining an Active System (Sheet 2 of 5)

=
I

12

DEBUGGING TOOLS

SDA> READ OSI$LARBSI!GLORALS

shA
SDAX FORMAT BREXE$GL.TQFL
80108324 TRES$L_TQFL 80118040
80108528 TRE$L.TQEL 80002ES8
80108352C TRE$W.SIZE 0030
8010852E TRE$E.TYFE OF
8010852F TRE$E.RATYFE 05
801083530 TRE$L.FFC BO107F 36
TRE$L.FPID
80108334 TRE$L.AST 802002E4
TRE$L..FR3)
80108538 TRE$L_ASTFRM 802002A0
TRE$L.FR4
8010853C TRE$Q.TIME 9O0DNEDBGO
80108540 008D1CY9
80108344 TRE$Q.DELTA 00989680
80108548 00000000
8010854C TRE$EBR_.RMOD 00
80108540 TRE$B.EFN 00
8010834E 0000
80108550 TRE$L_RQFID 00000000
TRE$C_ LENGTH
ShAx
SDA> FORMAT @.
8011ER040 TRE$L.TQFL 80106918
8011B044 TRE$L.TQEL 80108524
8011R048 TAE$W.SIZE 0000
8011B04A TRE$E.TYFE OF
8011B04EB TRE$EB.RQTYFE 05
8011E04C TRE$L.FFC 80118E11
TRE$L.FID
80118050 TRE$L_AST 00000000
TRE$L.FR3
8011R054 TRE$L_ASTFRM 8011AEL10
TRE$L.FR4
8011R058 TRE$Q.TIME 924N0E60
8011R0SC 00801C?9
80118060 TRE$Q_DELTA 00989680
8011ER064 00000000
80118068 TRE$E.RMOD 00
BO11RB069 TRE$EB_EFN 00
8011B06A 0000
8011B04C TRE$L_RQFID 00000000

TQE$C_LENGTH

Example 1 Examining an Active System (Sheet 3 of 5)

SDhaAx

CONF

FCR

IRF

FCE

JIE

SHOW FOOL/IRFP

801ED&GOQ

801ED?40

801EDAL0

801EDC80

801EDD50

Example 1

DEBUGGING TOOLS

Dumre of blocks allocated from IRF lookaside list

28106C00
80029200
8002C800
800201000
B002F400
00000000
00000000
00000020
000000600
00000000
00000000
00000000
00000000

00000000
00010001
00000001
00000001
000008EL
00000000
FFFFFFFF
00000000
00000000
00000000
00000000
00000000
00000000

00030029
8010AAEQ
80121EBFO
11010001
00000000
4946204E
00030024
00000000
2061206F
00000004
00208001
00000000
00000000

00000000
00000000
00000001
00000040
00000007
00000000
FFFFFFFF
00000000
00000000
00000000
00000000
00000000
00000000

4F56414C
20202020

0763009C
00380000
80029800
8002CEQOQ
8002F200
80030A00
00000028
00000000
00000000
00000000
00000000
00000000
00000000

000700C0
00010001
00000000
00000002
00000000
00010004
FFFFFFFF
00000000
00000000
00000000
00000000
00000000
00000000

410A400C4
00000000
0003FFEBO
00000000
80257%5A0
801159F4
20020000
00000000
742064635
000600200
00000000
00000201
00000000

000700C0
00010001
00000000
00000040
00000000
00010004
FFFFFFFF
00000000
00000000
00000000
00000000
00000000
00000000

002F0080
20202020

00000000
00002020
800294600
8002CC00
8002F000
8002F800
000000190
00000000
00000000
00000038
00000000
00000000
00000000

801FCSEO
80259340
00ZEOBED
0003DANY
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

80002A58
7FFC6928
7FFC&934
00000000
00900820
244C4CAa1
8011F470
7FFROOCO
FAOBL1603
08020054
02000000
Q00O0FFFF
00000000

80202E40
80261040
00060007
000302C3
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

BOLEDDNGO
20202020

00000000
00000000
80029400
8002CA00
8002E000
B8002F&400
0000006C
00000000
00000020
00000000
00000000
00000000
00000000

801EFSERO-

80259340
00000000
00000000
00000000
00000000
05490058
0000EAQO
00000000
00000000
00000000
00000000
00000000

801F59A0
800394E8
1B1DCOOO
0100014F
00001200
0003520F
0000454C
7FFROCFS8
03030000
4E495250
00000003
64280100
00000000

801EDEFO
80261040
00000001
00000000
00000000
00000000
05490058
00004000
00000000
00000000
00000000
00000000
00000000

BO1EDDGO
20204549

seerrresesCaalel(
R v eBesren
seosvessr sl
edosebler oMo sFoe
s e ePreaTeartee
tVes oo s et et e
| T
R T

R
veesBir it s
R
R EEEX

L A A A A A R R A)

QU s OE e s Be v v o v ee
ReZoRoZv e v o v
R R
vee e YZo oo e o
v e e s e et e eflle e
R I A I IR S A S SRS
Xeloosororerenne
P R A S A A
EEEEEEEEEEEEEEN
R R R N I A S I
R EEEEEE RN
R RN I I I

L A O R R RN

sYe o XXs Do sA) v o
NeesCilovese™ Xy
PR CIENE: S B B ¢ PO N
Osseevrsvenssnee

.
veer srealdZevaee

+RecALLSLY o N FI
LEeertorees Xoue
MeLoBe{ovvonnens
eesverezed to B
PRINT oosssaveee
X
velBeseerrsnonne

L N RN NN

PR aBt sBesserae
BoBiBo&ivorsvinnoe
0000”‘00000‘0.00
ve e s LR 4By o @y vy
verrerrrreselWone
DA S R I S S TN S B A}
Xeleooeroosooonn
L I O K I BN I I N B B K BN N 3
L 2N I N I N K O 4
R R RN
RN I B B K B K B 2 B 4
R R I S SRS A AT SR A

LR R IR K K K K B IR 2 IR B 2N 2N 2

F‘JQOF‘JQQ.'/.LGvO
IE

Examining an Active System (Sheet 4 of 5)

4-14

DEBUGGING TOOLS

Shax
S0a> SHOW STACK/USER
Frocess stacks

Current orerating stack (USER)

FF31444 00000000
7FF31448 000011F8 SGNSC_MAXFGFL+1F8
7FF31A40C 00000001
7FF31A50 00000000

JFF31A34 00001017 CTL$C.CLIDATAGBZ+773
7FF31A38 0001F3C2
7FF31A30C 00001023 CTL$C.CLIDATASZL?7F

7FF31A60 0001EDN74

5F 7FF31464 0000101R CTLHCLULIDATASZY 777
7FF31A68 00000000
7FF31a6C 00000000
TFF31A70 2FFCO000
7FF31a474 7FF31AER
7FF31478 7FF31aCC
7FF31A70C CQ00070ES SGNSC.NFAGEDYN+BEZ
7EFF31A8B0 000013a4F SGNSC.MAXFGFLY3A
7FF31a84 00001D17 CTLSC . CLIDATASZHZ272
7FF31488 00000000
7FF3148C 00000000
JFF31490 0000000C

7FF31494 00001017 CTL$C CLIDATASZ+773
7FF31498 O0001EESS
7FF31a%9C 00001123 CTLH#C..CLINATASZY77F
7FF314A0 7FFEDDD4
JFF31Aa44 00001DZR CTL$C..CLIDATABZ+787
7FF31aa8 00000003
FFF31AAC 00001D117 CTL$C_.CLIDATASZ+773

7FF31AB0 CQOO1EDD4
7FF31aR4 O0001E%26
JFF31AE8 0000000F
7FF31aBC 00000600 BUGS .NOHDVIMT
7FF31AC0 00000000
7FF314C4 000000060
7FF314C8 00000000
7FF31aCC 0001FESGS

+ 3

Example 1 Examihing an Active System (Sheet 5 of 5)

4-15

DEBUGGING TOOLS

THE SYSTEM MAP FILE
Overview

e MAP of linked executive

e Available on every VMS system
SYSSSYSTEM:SYS.MAP

e Useful in debugging crash dumps and when reading source
code

Sections of SYS.MAP

1. Object module synopsis

e Listed in order processed by linker
@ Includes creation data and source language

2. Image section synopsis

@ Lists base virtual address

3. Program section synopsis

e Lists PSECTs by base virtual address
e Includes PSECT size and attributes

4. Symbol cross-reference

e Lists global symbols alphabetically
e Includes symbol value, module(s) that define and
reference it

5. Symbols by value

e Lists global symbols by hexadecimal value
e Multiple symbols have same value

6. Image synopsis
e Miscellaneous information about the output image
7. Link run statistics

@ Miscellaneous information about the 1link run that
produced the image.

DEBUGGING TOOLS

SYS.MAP and Crash Dumps

1. Information in crash dumps given by value

e Virtual address of code (PC)
® Contents of data structures

-~ Virtual address references

- Symbolic references (for example, State of
process) ”

2. SYS.MAP.can be used to translate numbers to meaningful
information. ‘

® Program section synopsis (virtual address to source
code module)

e Symbols by value (value to symbol name)

SYS.MAP and Source Code

1. Layout of linked executive in S@ space
® Program section synopsis

2. Interrelationship of modules ("who references whom")
e Symbol cross-reference

3. Module entry points and global data locations

DEBUGGING TOOLS

CRASH DUMPS

® Generated when the system decides that it cannot continue
normal flow of work

e System attempts to copy all the information in physical
memory to a special file on a disk

Causes of Crash Dumps

e Fatal error or inconsistency (fatal bugcheck) recognized
and declared by a component of the operating system

® Bugcheck is declared by referencing a central routine
® Some reasons for declaring a fatal bugcheck:

- Exception at elevated IPL
- Exception while on interrupt stack

- Machine check in kernel mode
- BUG_CHECK macro issued

- HALT instruction restart
- Interrupt stack invalid restart

- Kernel or executive mode exception without exit
handler

W
I

18

BUGCHECKS

DEBUGGING TOOLS

The Two Types of Bugchecks

e Fatal - system must be taken down;

® Continue - nonfatal;

How Crash Dumps Are Generated

® Written by the fatal bugcheck code

¢ For a dump to be written

Bugcheck must be fatal

the system may attempt recovery

no recovery possible

If nonfatal bugcheck, all bugchecks must be declared

fatal (done by setting BUGCHECKFATAL = 1)

DUMPBUG (a SYSGEN parameter) must be set (=
DUMPBUG is set by default.

SYSSSYSTEM:SYSDUMP.DMP must be the correct size
file size = physical memory plus 4 (in pages)

Console must be allowed to finish printing
bugcheck output

1).

the

DEBUGGING TOOLS

How Bugchecks Are Generated

BUGCHECKS are generated using the BUG_CHECK macro.

BUG_CHECK QUEUEMPTY, FATAL
generates

.WORD ‘XFEFF

.WORD BUGSQUEUEMPTY!4

Bugchecks are generated by system components (EXEC, RMS,
so on) after detecting an internal (software) error.

Table 7 Sample BUGCHECKS

ACP, and

Name Module Type Description
BADRSEIPL RSE Fatal Bad IPL at entrance to RSE
FATALEXCPI EXCEPTION Fatal Fatal executive or kernel mode
exception
NOTPCB MUTEX Fatal Structure is not a PCB
UNABLCREVA EXCEPTION Cont. Unable to create virtual address
space
NOTE

When looking at the crash dump, PC minus 4 is

that address at which the BUG_CHECK macro is
referenced.

Kook FATAL

CURRENT FROCESS = SYSTE

REGISTER DUMF

BUG CHECK: VERST

RO = 00000000

R1 = BOOOFINR

= 00000040
s PFFAS0AF
= BO1L17F 60
s PEFES4E4
Ré = 7FFED78A

R? = 7FFED78A
R = 00000000

o 7FFL/U&&
= GOOOFINNR
= Q0000000

KERNEL/INTERRLFT STACK

Fb/hﬂﬂ
ZFFEZDSC
ZFFE?D90

TE7DRO
7hR4
/IFL/NBR

7F L7UUP
ZFFE7INO
7EFEZDDA

FEEZDNG
70ne
7FFEZIEQ
7FFE7DEA4
FFE7DES
7F"FE /LIE(“

Example 2

00000000
00000000
0000000

80000014
#20017F14
00000003

00000014
00000030 |
QOO00BF8
leloTeZeleleTeli]
QOGO000Q0
00000000

00000014
00000222

DEBUGGING TOOLS

M

3 «— MECHANISM ARRAY

<— SS$_ACCVIO
<— REASON MASK

< PC

00C00000
00000000
01040000
PFF75378
7FFEZIES
820009400
00000004

00000000
00000000
7E
7F
BOOOFIICE
PFFEDEYS
0300000

- PSL

ON = U4.,0 SSRVEXCEFTs

< SIGNAL ARRAY

< FAULTING V.A.

Urexrected swstem service excestion

Sample Console Output After Bugcheck

DEBUGGING TOOLS

SAMPLE STACKS AFTER BUGCHECKS

Access Violation

SP—»

4

7FFECDEA#4

ESTABLISHER FRAME

FFFFFFFD

DEPTH = -3 LAST CHANCE

14 RO

0 R1

5

C SS$_ACCVIO

1 REASON

12 VA
80052184 | FPC
1800000 | PSL

Figure 1

Probable Causes:

TK-8966

Stack After Access Violation Bugcheck

e Blown register
e Incorrect data structure field

e Improper synchronization

22

DEBUGGING TOOLS

Page Fault Above IPL 2

SP—» R4
R5
1 REASON
314 VA
80050200 PC
150000 PSL
°
°

TK-8967

Figure 2 Stack After Page Fault Above IPL-2

Probable Causes:

® Blown register in fork interrupt routine
e Improper start I/0 routine design

DEBUGGING TOOLS

Reserved Operand Fault

SP—= 4
ESTABLISHER FRAME
DEPTH
RO
R1
3
454 SS$_ROPRAND
80051234 PC
00070000 PSL
- ,
o
[]

TK-8964

Figure 3 Stack After Reserved Operand Fault

Probable Causes:

e REI failure

- IPL problems (allocate memory at wrong IPL)
- Blown stack

e RET failure

DEBUGGING TOOLS

Machine Check in Kernel Mode (CPU Timeout)

28
0 REASON = CPU TIMEOUT
80014300 VA
TIMEOUT SBI ADDR
80053210 PC
1C 150000 PSL

TK-8963

Figure 4 Stack After Machine Check in Kernel Mode

Reasons:

® Accessing nonexistent UBA or SBI address
® Corrupted page tables
® Processor device or bus failure

DEBUGGING TOOLS

Sample Crash Dump Analysis

“$ ANALYZE/CRASH SYS$SYSTEM:SYSDUMF . DINF
VAX/UMS Sustem dums analuzer

Dums taken on 3-0CT-1984 12:1263120.27
SSRVEXCEFTy Unexrected sustem service excertion

SIlA* sho crash
Sustem crash information

Time of sustem crash! 3-0CT-1984 12:126120.27
Version of sustem! VAX/UMS VERSION V4.0

Reasonrn for BUGCHECK excertion! SSRVEXCEFT, Unexrected system service excestion
Frocess currently executing?! SYSTEM

Current imadge file! DRAOILSYSO.ILSYSMGRICRASHAST.EXE:3

Current IFL! 0 (decimal)

Gerneral redisters?

RO = 00000000 R1 = 800OFIDD2 R2 = 00000004 R3 = 7FFAS0AF

R4 = BO106EEBO RS = 00000000 Ré6 = 7FFED78A R7 = 7FFED78A

R8 = 7FFEDOS2 R? = 7FFEN23A R10 = 7FFEDDDA4 Ri1 = 7FFE330C

AR = 7FFE7D88 FF = 7FFE7D70 Sk = ZFFE7D70 FC = B8000OFDIB

FSL = 00000000

Processor redisters!

FORR = B024R600 PCEE = 006CC478 ACCS = 00000000

FOLR = 00000003 SCEE = Q007EFEQO SRIFS = 00040000

F1BR = 7FASE&600 ASTLVUL = 00000004 SRISC = 00000000

F1LR = Q01FFE9é SISR = 00180000 SRIMT = 00200400

SER = Q07F2000 ICCS = 800000C1 SRIER = 00008000

SLR = 00003800 ICR = FFFFEC69 SEITA = 20000000
TODR = QE470CS51 SEIS = 00000000

ISP = BO22EAQQ

KGF = 7FFE7D70

ESF = 7FFE9EQO

SSF = 7FFEDO4E

use = 7FF75360

Example 3 Sample Crash Dump Analysis (Sheet 1 of 4)

DEBUGGING TOOLS

SDA> sho stack
Current orerating stack

Current orerating stack (KERNEL)!

/FFE7DS0 7FFED2%5A
7FFE7DS4 7FFEDDDA4

7FFE7DG8 7FFE33DC CTL$AG.CLIDATA+180
7FFE7DSC 7FFE7DS88 CTL$GL .KSTKBAS+588
JFFE7D60 7FFE7070 CTL$GL. . KSTKBAS+S570
7FFE7D&64 7FFE7Dé8 CTL$GL.KSTRKBAS+568
JFFE7068 B800OFDDS EXE$EXCPTN+006

JFFE7D6C 00000000

SF => 7FFE7D70 00000000
7FFE7D74 00000000
7FFE7D78 00000000

7FFE7D7C 7FFE70CS8 CTL$GL_KSTKRAS+5CH
7FFE7D80 80000014 SYS$CALL _HANDL+004
7FFE7I'84 B0017F1é EXE$CONTSIGNAL+07C
7FFE7D188 00000002

7FFE7D8C 7FFEZDAC CTL$GL_KSTKRAS+5AL
7FFE7D90 7FFE7D94 CTL$GL . KSTKBAS+594

ZFFE7II94 00000004
7FFE7098 7FF75360
JFFE7D?C FFFFFFFD
7FFE7DAO0 00C00009
JFFE7DA4 00000002
7FFE7DA8 000008F8 SES.ENDOFFILE+088
7FFE7DAC 000000035
7FFE7DEBO 0000000C
7FFE7DEB4 00000000
7FFE7DE8 0000000C

7FFE7DBC BO00?F &8 MFH$QAST
7FFE70DCO 00C00004
7FFE7IC4 00000220 BUG$ _MODRELNRAK

7FFE7RC8 00000000
7FFE7DCC 00240000
7FFE7DDO 7FF75378

7FFE7DD4 7FFE7DE4 CTL$GL .KSTKBAS+S5E4
7FFE7DD8 8000%940C EXE$CMRRNL+OOD
ZFFE7DDC 00000004

7FFE7DEQ 7FFE64E4 MMGS$ IMGHDREUF+0R4

7FFE7DE4 00000000

7FFE7DE8 00000000

JFFE7DEC 7FF75378

7FFE7DFO 7FF75360

7FFE7DF4 8000FDCE EXE$CMODEXEC+1746
7FFE7DF8 7FFEDE96 SYS$CMRRNL+004
7FFE7DFC 03C00000

Example 3 Sample Crash Dump Analysis (Sheet 2 of 4)

8C-V

~$255¢DUARBILSYS.0RJISYSEXESL 16-SEF-1984 04100 VAX-11 Linker V04-00 Pade 7

FPsect Name Module Name Rase End Length Align Attributes
+
.
*
$0SWFSCHED B000O87CE B80008A76 00000249 (481,) BYTE O NOFICsUSRsCONJREL,LCL/NOSHRy» EXEs RD» WRTsNOVEC
OSWPSCHED 800087CE 80008A76 00000249 (681.,) RYTE O
$ZBUGFATAL 8000BA78 80008A78 00000000 ¢ 0+) WORD 1 NOPICsUSRysCONsRELsLCLsNOSHRy EXEr RDy WRTyNOVEC
BUGCHECK 80008A78 80008A78 00000000 ¢ 0.) WORD 1 ’
+ BLANK . 80008A78 80009D8D 00001316 (4886.,) BYTE O NOPICsUSRyCONsSREL,LCLsNDSHRy EXEs RDs WRTsNOVEC
EXSUBRROUT. 80008A78 B80008E10 00000099 ¢ 153.) BYTE ©
FORKCNTRL 80008K11 B8C0008BB1E 0000000E (14.) BYTE ¢
NULLFROC 80008E1F 80008E20 00000002 (2.) BYTE 0
SYSACFFIT 80008E21 B8000925E 0000073k (1851.) BYTE O
SYSASCEFC 8000925C 80009274 0000001F (31.) BYTE O
SYSCANCEL 8000927F 800093B5 0000013E (315.) BYTE. O
SYSCANEVT 80009386 BOOOP3EE 00000039 ($57.) BYTE O
SYSCHGMOD 800093EF B000941F 00000031 (¢ 49.) BYTE O
SYSDERLME 80009420 8000945A 0000003F (59.) BYTE O
SYSFORCEX 80009458 B000949F 00000045 ¢ 69.) BYTE 0
SYSQIGFDT 80009440 80009741 00000242 (674,) BYTE ©
SYSSCHEVT 80009742 B800098A% 00000168 (360.) BYTE 0
SYSQIOREQ 800098AA BOOOPCIE 00000432 (1074.) BYTE 0
SYSSETFRI 80009CHC 80009N&F 00000094 (148.,) BYTE O
SYSMTACCESS 80009070 80009079 0000000A (10.) BYTE 0
MTFDT 80009074 B80009D8D 00000014 ¢ 20.3) BYTE O
ASEXENONFAGED 80009090 8000A37C C0000SELD (1517.) LONG 2 NOFICsUSR,CONsRELsLCLsNOSHRy EXE» RD» WRTNOVEC
ASTDEL 800090190 8000A040 000002R1 (68%9.) LONG 2
FORKCNTRL 8000A044 B000A0C4 00000081 (129.) LONG 2
TIMESCHIOL 8000A0CB B8000A37C 000002RT (493.) LONG 2
AES1 8000A37D B000AL75 000002F9 (761.,) BYTE O NOPIC,»USR»CONJRELyLCLsNOSHRs EXEy RD» WRTsNOVEC
RSE 8000A370 8000A675 000002F9% ¢ 761,) BYTE 0
AES2 8000A6746 B8000A6AL 0000002C (44,) BYTE 0 NOPICsUSRyCONIRELsLCLsNOSHRs EXE» RDs WRTyNOVEC

Example 3 Sample Crash Dump Analysis (Sheet 3 of 4)

ST100d4 ODNIDDNYId

~

01C6 469
01C6 470 i+
01Cé6 471 3
01C6 472
01Cé 473
01C6 474
01C6 475
01C6 476
01C6 477
01C6 478
01C6 479 3
01C6 480 5
01C6 481
01C6 482
01C6 483
01C6 484 ;
01C6 485 '3
01C6 486
01C6 487
0iCé6 488
01C6 489
01Cé 490
0iC6 491 &
01C6 492
01Cé 493
01C6 494 3
01C6 495
01C6 496 3
01C6 497 i
01C6 498
01C6 499 3
01C6 500 3
01Cé6 S01 3
01C6 502
01Cé6 503 i~
01C6 504
01Cé 505 QN
01C6 506
01Cé6 507
01C6 508
01C6 509
0iCé 510
01CB 511
01CE 512
01B1 513 5%
0106 514
0108 515

01Dp8 916 MF
oing 317 SC

01b8 518
01DC 519
01E2 520
01E8 521
01ED 522
01EF 523
Example 3

DEBUGGING TOOLS

+SBTTL SCH$QAST - ENQUEUE AST CONTROL BLOCK FOR F

-+

FUNCTIONAL DESCRIFTION:?
SCH$QAST INSERTS THE AST CONTROL KRLOCK SUFFLIED IN
FOSITION RY ACCESS MODE IN THE AST QUEUE OF THE FR
BY THE PID FIELD OF THE AST CONTROL EBLOCK. AN. AST
I8 THEN REPORTED FOR THE FROCESS TO REACTIVATE FRO
IF APFROPRIATE. THE AST CONTROL EBLOCK WILL BE REL-
IF THE PID SFECIFIES A NON-EXISTENT FROCESS.

LOADARLE MULTI-FPROCESSING CODE WILL REFLACE THIS R
ENTIRELY NEW CODE» AT MFH$QAST.

CALLING SEQUENCE:
BSRB/JSE SCH$QAST

INFUT FARAMETERS!
R2 - PRIORITY INCREMENT CLASS
RS - FPOINTER TO AST CONTROL ELOCK

IMFLICIT INFUTS!
FCE OF FROCESS IDENTIFIED BY FID FIELD

OUTPUT FPARAMETERS!?
RO - COMFLETION STATUS CODE
R4 - PCB ADDRESS OF FROCESS FOR WHICH AST WAS QUEU

SIDE EFFECTS?
THE FROCESS IDENTIFIED RBY THE FID IN THE AST CONTR
WILL BE MADE EXECUTAELE IF NOT SUSFENDED.

COMPLETION CODES:
S5$_NORMAL - NORMAL SUCCESSFUL COMPLETION STATUS
88%_NONEXPR - NON-EXISTENT FROCESS

+ENAEBL LSE

ONEXFR? ,
5 DEALLOCATE THE ACE AS LONG AS THE NODELETE RIT I
5 THIS REALLY SHOULDN’‘T HAFFPENs BUT IF IT DOESy WE
TO FOSSIBLY LOSE FOOL OVER POSSIBLY CORRUFTING I

BES FACE$V_NODELETE»ACB$R.RMOD(RS) »5%3 BR IF N
MOVL RSsRO RELEASE AST CONT
ESEUW EXE$DEANONFAGED IF NO SUCH FROCE

¢ MOVZUWL #SS$_NONEXFRsRO SET ERROR STATUS
BRE QEXIT ANDI EXIT

- wr e e

HERAST ¢

HeQRAST ¢
MOVZUWL ACB$L_FID(RS)sRO
DSEINT #IPL$._SYNCH DISARLE SYSTEM E
MOVL GW"SCH$GL .PCBVECLROIyR4 LOOK UP PCE ADDR
CHMFPL ACB$L.PID(RS) +FCESL.FID(R4) 7 CHECK FOR MA
BNEG QNONEXFR # PID MISMATCHES
CLRL RO i ASSUME KERNEL MO

MULTI-FROCESSING
ENRUEUE AST FOR
GET FROCESS INDE

wr ar W wr W

Sample Crash Dump Analysis (Sheet 4 of 4)

>
I

29

DEBUGGING TOOLS

DELTA AND XDELTA

Table 8 Comparison of DELTA with XDELTA

Factors DELTA XDELTA

Usage User images Operating System Drivers
Terminal used Any TTY Console only (OPA@:)

for control

IPL =0 >0

How activated Linked or included Included at boot time

at run time

Access mode A1l modes Kernel mode only

Both debuggers are:

e Nonsymbolic

® Use name command syntax

e No visible prompt

e Error message is "Eh?"

DEBUGGING TOOLS

DELTA Debugger

To use the DELTA debugger, assemble and link a program in the
following fashion:

l. $ MACRO prog_nameSYSSLIBRARY:LIB/LIB
2. S LINK/DEBUG prog_name, SYSSSYSTEM:SYS.STB/SELECT
3. S DEFINE LIBSDEBUG DELTA
4. $ RUN prog_name
Steps:

l. Assembles the program allowing system macros to be defined
(SYSSLIBRARY:LIB/LIB).

2. Links the program with a debugger and resolving any system
symbols (SYSSSYSTEM:SYS.STB) .

3. Define the debugger used to be DELTA.

4, Activate the program mapping in DELTA.

DEBUGGING TOOLS

CHMK Program

It is often convenient to observe data structures changing
dynamically. One way to gain access to kernel mode data
structures is to run the CHMK program. This program allows any
privileged process (with CMKRNL privilege) to change mode to
kernel, and enter DELTA commands (for example, to look at system
data structures).

NOTE
Extreme caution should be exercised that data
structures not be modified, since such
modification could lead to a system crash.

Perform the following steps to use the CHMK program.

1. Assemble CHMK.

2. Link CHMK.

3. Indicate the DELTA debugger.

4. Run the CHMK program.

5. Enter a breakpoint in the program and tell it to proceed.

The Corresponding Commands are:

1. $ MACRO CHMK SYSSLIBRARY:LIB/LIB

2. $ LINK/DEBUG CHMK, SYS$SYSTEM:SYS.STB/SELECT
3. $ DEFINE LIBSDEBUG DELTA

4, $ RUN CHMK

5. 215;B;P

Note that at step 4, no prompt from DELTA is given.

After you receive the "stopped at breakpoint" message, you are
in kernel mode, and may proceed to examine system data structures.
To leave the program, type ';P', followed by EXIT. (If you just
type EXIT, you will be logged off, since kernel mode exit implies
process deletion.)

DEBUGGING TOOLS

This program gets you into kernel mode.
Use with DELTA debugger to examine system locations.

.WORD O

SCMKRNL_S ROUTIN = 10$
RET

.WORD O

NOP

NOP

MOVZBIL #SSS$_NORMAL, RO
RET

.END GO

Example 4

4-33

WO NS ME NE Ne ND e~

Null entry mask

Enter kernel mode

all done

Null entry mask

Where BPT instruction
is placed (215;B)

Return success status

All done in kernel mode

The CHMK Program

DELTA and XDELTA Functions and Commands

DEBUGGING TOOLS

Table 9 DELTA and XDELTA Functions and Commands
Function Command Example
Display contents address/ GA88/00060034

of given address

Replace contents
of given address

Display contents

of previous
location

Display contents
of next location

Display range of
locations
Display indirect
Single step

command

Set breakpoint

Display breakpoint

addr/contents new

<ESC>

addr/contents <LF>
addr/contents

addr ,addr/contents

<TAB>

or

addr,N;B <RET>
(N is a number 2-8)

;B

GA88/00060034 GA8S

GA88/00060034 'A'
(Replace as ASCII)

80000AB8/8000F0BE4 <ESC>
80000A84/00000000

80000004 /8FBCOFFC
80000008/50E9002C

G4,GC/8FBC@FFC

80000008/50E9002C
8000000C/00000400

80000A88/80000BE4 <TAB>
8000PBE4 /80000078

8000G0A88/80000PBE4/80000078
1 brk at 8000B17D

S

800@UB17E/9AQFBB@5

800@55F6,2;B

;B
1 8009B17D
2 800O55F6

DEBUGGING TOOLS

Table 9 DELTA and XDELTA Functions and Commands (Cont)
Function Command Example
Clear g,N;B <RET> g,2;B
breakpoint
Proceed from ;P H %
breakpoint
Set base 'value' ,N;X 80000000,0;X
register
Display base Xn <RET> X0
register or 000000033
Xn= X0=00000003
Display general Rn/ RO/00000003
register - (n is in
Hexadecimal)
Show value expression= 1+2+3+4=0000000A

Executing stored

addr;E <ret>

command strings

Change display

mode

[B
[w
[L
[v

(+,-,*,%{divide})

8000UPESS;E

Byte width

Word width

Longword width
ASCII display

| = Moy s tsimclin

9

RF+d (PSL)

DEBUGGING TOOLS

APPENDIX A
BUGCHECK FLOW OF CONTROL

SYSTEM
COMPONENT
INVOKES
BUG_CHECK. . - .
GENERATES
EXCEPTION
SYSTEM
DISPATCHES
(THROUGH SCB)
TO
EXE$OPCDEC
HANDLE IN
IS TRADITIONAL
OPCODE WAY
FF, FEOR {EXCEPTION
FF,FD DISPATCHER
ETC.)

JUMP TO
EXE$BUG_CHECK

TK-9009

Figure 5 Bugcheck Flow of Control (Sheet 1 of 3)

YES

DEBUGGING TOOLS

(' Exessuc_cHECK)
Y

READ
BUG$_XXXX
CODE
FOLLOWING

FF, FE OR FF, FD

PROCESS
HAS
BUGCHK
PRIV

YES WRITE
ERROR LOG
ENTRY

FATAL
BUGCHECK

FATAL
BUGCHECK

RETURN
(REI)

YES

READ FATAL SEXIT_S -

BUG #SS$_BUGCHECK
CODE FROM

SYS.EXE

JUMP TO
BUGSFATAL

Figure 5 Bugcheck Flow of Control (Sheet 2 of 3)

TK-9010

DEBUGGING TOOLS

BUGSFATAL

BUILD
DUMPFILE
HEADER

PRINT
INFO

ON
CONSOLE

OPERATOR
SHUTDOWN

REBOOT
REQUESTED

WRITE
DUMPFILE

DUMP
REQUESTED

REBOOT
REQUESTED

REBOOT

XDELTA CALL
PRESENT XDELTA
(BREAKPOINT)
PRINT
OPERATOR SHUTDOWN
SHUTDOWN MESSAGE ON
CONSOLE
LooP

| FOREVER

TK-8011

Figure 5 Bugcheck Flow of Control (Sheet 3 of 3)

DEBUGGING TOOLS

APPENDIX B
PATCH

The patch utility enables a user to 'edit' an image file.
Patch is intended to be used on non-DIGITAL software. Application

of patches to DIGITAL software, other than those that are
DIGITAL-supplied, invalidate the warranty.

Table 19 PATCH Commands

Function Command

Display contents of one Examine
or more locations

Store new contents in Deposit
one or more locations

Insert one or more Insert
symbolic instructions

Verify the replace Replace
contents of location

Display various ' SHOW parameter
information (e.g.,
module names)

Alter default settings SET parameter
(e.g., module name
referenced) .

Scheduling

SCHEDULING

INTRODUCTION

Scheduling is the selection of a process for a particular
action or event. The scheduler, a software interrupt service
routine at IPL 3, is responsible for selecting which
memory-resident, executable process will be the next one to use
the CPU. The scheduler code performs the exchange of hardware
process contexts between the set of resident, computable processes
and the currently executing process.

The swapper, a system process, selects processes for removal
from, or placement in, memory. Outswap operations move processes
in memory-resident states to corresponding outswapped states.
Inswap operations transform executable, nonre51dent processes into
executable, resident ones.

Additional support routines provide the logic to establish and
satisfy a range of conditions for which processes may wait.
Examples of these conditions include system service requests (such
as SHIBER, SRESUME, or SWAITFR) and resource waits (such as mutex
wait or depleted system dynamic memory).

OBJECTIVES

1. For each process state, describe the properties of a
process 1in the state, and how a process enters and leaves
the state.

2. Given a set of initial conditions and a description of a
system event, describe the operation of the scheduler.

3. Assign priorities for a multiprocess application.

4., Discuss the effects of altering SYSGEN parameters related
to scheduling.

SCHEDULING

RESOURCES

Reading

® VAX/VMS Internals and Data Structures, the chapter on
Scheduling.

Additional Suggested Reading

® VAX/VMS Internals and Data Structures, the chapters on
Software 1Interrupts, Process Control and Communication,
Timer Support, Swapping, and Synchronization Techniques.

Source Modules

Facility Name Module Name
SYS SCHED
RSE
SYSWAIT
SDAT

SWAPPER (local
label SWAPSCHED)
OSWPSCHED
SYSPCNTRL

5-4

II.

III.

Iv.

VI.

VII.

SCHEDULING

TOPICS

Process States

A. What they are (current, computable, wait)

B. How they are defined

C. How they are related

How Process States are Implemented in Data Structures

A. Queues

B. Process data structures
The Scheduler (SCHED.MAR)
Boosting Software Priority of Normal Processes

Operating System Code that Implements Process State Changes

A. Context switch (SCHED.MAR)

B. Result of system event (RSE.MAR)

Steps at Quantum End

A. Automatic working set adjustment

Software Priority Levels of System Processes

SCHEDULING

THE PROCESS STATES

WAIT >

1 3
DELETE CUR - COM - > COMO }-sip== CREATE
(SCHEDULER) _J (SWAPPER)

Figure 1 Process States

1. CURRENT - executing

2. WAIT - removed from execution to wait for event completion

3. COMPUTABLE - ready to execute

4. WAIT OUTSWAPPED

5. COMPUTABLE OUTSWAPPED

SCHEDULING

'Process Wait States

O - _»
DELETE CUR - COM - COMO) «ai}== CREATE
@ -— — — e smm s *
e 4 A - ...
@ —— e amm mms eees s e e -

@ —— e s n e mn S s e -

Figure 2 Process Wait States

SCHEDULING

Ways to Leave the Current State

1.
2.
3.
4.
5.
6.
7.
8.

10.

DELETE

Figure 3 Ways to Leave Current State

Wait for common event flag(s) set (SWAITFR)

Wait for local event flag(s) set (SWAITFR)

Hibernate until wake-up ($HIBER)

Suspended until resume ($SUSPND)

Removed from execution-quantum end or preempted

Page read in progress

Wait for free page available

Wait for shared page to be read in by another process
Wait for miscellaneous resources or mutex

Deletion

5-9

SCHEDULING

Ways to Become Computable (Inswapped)

CUR

@

Figure 4 Ways to Become Computable (Inswapped)

1. Common event flag(s) set

2. Local event flag(s) set

3. Wake-up (SWAKE)

4. Resume (SRESUME)

5. Removed from execution-quantum end or preempt

6. Page read complete

7. Free page available

8. Shared page read complete

9. Miscellaneous resources available or mutex available
10. Outswapped computable process is inswapped

SCHEDULING

Inswapped to Outswapped Transitions

coMm

Figure 5 1Inswapped to Outswapped Transitions

SCHEDULING

Ways to Become Computable (Outswapped)

Figure 6 Ways to Become Computable (Outswapped)

5-12

SCHEDULING

HOW PROCESS STATES ARE IMPLEMENTED

Queues

Pointer =P SQFL

= <)
‘k‘\\ SQBL ‘k\‘~

i

state
"listhead"
PCB PCB PCB

Figure 7 A State Implemented by a Queue

e The state of a process is defined by:

- The value in the PCB$W_STATE field
- The PCB being in the corresponding state queue

® State queues are circular

e The current state is not implemented as a queue

- Just a longword pointer (SCHSGL_CURPCB)

- Queue structure not necessary because only one process
in the current state

e VAX instructions for manipulating queues:

- INSQUE new_entry, predecessor
- REMQUE out_entry, return_address

SCHEDULING

Implementation of COM and COMO States

BITMAP (1 EACH FOR COM, COMO)

FOR STATE COM
BITS 31

00

&

PRIORITIES O

LISTHEADS (32 EACH FOR COM, COMO)

31

QUEUE 0 —
PRIORITY 31| D — -
| e -

30 e —

LONGWORD QUEUE BIT MAP
::SCH$GL_COMQS

QUEUE HEADERS

::SCH$AQ_COMH
::SCHSAQ_COMT

TK-8974

Figure 8 Implementation of COM and COMO States

e COM state implemented as a collection of queues

e Designed to speed scheduler's search for highest-priority

computable process

- A queue for each software priority
- Summary longword records nonempty COM queues
- Internally, software priority stored as inverted value

(as 31 minus priority)

e COMO state is implemented like COM state

- 32 more gueues
- Another summary longword

5-14

SCHEDULING

Example of Computable Queues

BITS 31 0
"Hn
PRIORITIES Q 31
QUEUE 25 L g L >
PRIORITY 6 RIORITY 6 B I
PRIORITY b5 — PCB PCB
[=
PRIORITY 4 —\
e
k_/——w PCB

TK-8975

Figure 9 Example of Computable Queues

® COM processes at priorities 4 and 6
- Bit 25 in summary longword is set
- Queue for priority 6 has entries
- Bit 27 in summary longword is set

- Queue for priority 4 has an entry

SCHEDULING

Implementation of Wait States

e

—

State Count

Figure 10 Wait State Listhead

lHIBER 2

|HlBER IHIBER

HIBERNATE PCB PCB
LISTHEAD

TK-8952

Figure 11 Implementation of Wait States

SCHEDULING

Implementation of CEF State

SCH$GQ_CEBHD::

CEB

I
I

PCB

I

Wait Queue PCB

PCB

CEB Name

CEB

Wait Queue [PCB

A

CEB

PCB

I

Wait Queue |€&=—— PCB

CEB

Wait Queue

Figure 12 Implementation of CEF State

o CEB created when event flag cluster created

e CEB contains the cluster, CEF state queue 1listhead, and
other information about the cluster
® One CEF state queue for each CEF cluster

5-17

SCHEDULING

Summary of Scheduling States

® Current

Implemented with one longword pointer

- Contains at most one process

e Computable and computable-outswapped

Each consists of a summary longword, and 32 queues

e Voluntary wait (LEF, LEFO, SUSP, SUSPO, HIB, HIBO)

- One queue for each state

e Involutary wait (PFW, PFWO, FPG, FPGO, COLPG, COLPGO,

MWAIT, MWAITO)

- In four queues

- Resident and outswapped in same queue (differentiate

with resident bit in PCBSL_STS)

Usually not in these states very often

SCHEDULING

Process Data Structures Related to Scheduling

SQFL
SQBL
PRI
PHYPCB
STS
PRIB STATE

Figure 13 Scheduling Fields in Software PCB

e SQFL, SOBL - state queue forward, backward 1links, 1link
PCBs in a given state

® STATE - process state

@ PRI - current software priority

e PRIB - base software priority

® PHYPCB - physical address of hardware PCB

® STS - process status

5-19

SCHEDULING

Saving and Restoring CPU Registers

PR$_PCBB —p STACK POINTERS
KESU

General Purpose
Registers RO-R11

AP
FP

PC

PSL
POBR
AST LVL POLR
P1BR
P1LR

Figure 14 Saving and Restoring CPU Registers

® Process-specific CPU registers saved/restored during
context switch 0
QV?&
iﬁxd ,

SVPCTX instrpuction (G
y BT e k-5t [V
- opies registerns to hardware PCB

- Switches to Interrupt Stack
- Does not save P@BR, POLR, PlBR, PlLR, ASTLVL

e LDPCTX instruction

- Pushes PC, PSL on kernel stack.(REI removes them

'\\ &
. /
\\.‘M,..‘-—»f«ﬁ-’/

- Restores registers (except PC, PSL) from hardwaij PCB

THE SCHEDULER (SCHED.MAR)

o
O N ECNUD IR -

11

R e W W s WP SR W2

SCHEDULING

SCH$RESCHED - RESCHEDULING INTERRUFT HANDLER

THIS ROUTINE IS ENTERED VIA THE IFL 3 RESCHEDULING INTERRUFT.
THE VECTOR FOR THIS INTERRUFT IS CODED TO CAUSE EXECUTION
ON THE RERNEL STACK.

ENVIRONMENT ¢ IFL=3 MODE=KERNEL
INPUT? 00(8F)=FC AT RESC

£ INTERRUFT
04 (SF)=FSL AT INTERRUFT.

+ALIGN LONG

MFH$RESCHED 3 ¢ FMULTI-FROCESSING CODE HOOKS IN HERE
SCH$RESCHED ¢ 3 fRESCHEDULE INTERRUFT HANDLER

SETIFL #IFL$.SYNCH $SYNCHRONIZE SCHEDULER WITH EVENT REFORTING
SVPCTX $SAVE CONTEXT OF FROCESS

MOVL L7SCH$GL .CURFCEsR1 $GET ADDRESS OF CURRENT FCE

MOVZEL FCB$E_.FRI(R1)sR2 $ CURRENT FRIORITY

BRSS R2yL"SCH$GL..COMQAS, 104 iMARK QUEUE NON-EMFTY

10$3 MOVW ~ #SCHS$C.COMsPCESW_STATE(R1) $SET STATE TO RES COMFUTE

MovaQ SCH$AR_COMTLR21,R3 iCOMFUTE ADDRESS OF QUEUE
INSQUE (R1)s@(R3)+ §INSERT AT TAIL OF QUEUE
it
SCH$SCHED - SCHEDULE NEW PROCESS FOR EXECUTION
y
$ THIS ROUTINE SELECTS THE HIGHEST PRIORITY EXECUTABLE FROCESS
AND PLACES IT IN EXECUTION.
§ -
MPH$SCHED FMULTI-PROCESSING CODE HOOKS IN HERE
SCH$SCHEDS : $SCHEDULE FOR EXECUTION
SETIFL #IFL$.SYNCH FSYNCHRONIZE SCHEDULER WITH EVENT REFORTING
FF§ $0,$32,L"SCH$6L.COMASR2 sFIND FIRST FULL STATE
REQL SCH$IDLE $NO EXECUTABLE FROCESS??
MOVAQ SCH$AQ.COMHER21yR3 s COMPUTE QUEUE HEAD ADDRESS
REMQUE @(R3)+yR4 $GET HEAD OF QUEUE
BVS QEMFTY sER IF QUEUE WAS EMFTY (BUG CHECK)
ENEQ 20% $QUEUE NOT EMFTY
ERCC R2yL"SCH$GL..COMQAS,20% iSET QUEUE EMPTY
20%3 .
CMFE $0YN$C.PCR,PCE$B_TYFE(R4) iMUST RE A FROCESS CONTROL BLOCK
ENEQ REMFTY +0OTHERWISE FATAL ERROR
MOVUW #+SCH$C_CUR»FPCRSW.STATE(R4) $SET STATE TO CURRENT
MOVL R4yL"SCH$GL..CURFCE _#NOTE CURRENT FCE LOC
CMFE FCE$B_FRIB(R4) sFCE$B_FRI(R4) $ CHECK FOR BASE
$FRIORITY=CURRENT
BEQL 30% $YESs DONT FLOAT FRIORITY
BEC #4,FPCB$E_FRI(R4),30% DONT FLOAT REAL TIME FRIORITY
INCE PCE$E_FRI(R4) $MOVE TOWARD BASE FRIO
30¢: MOVE FCE$B_FRI(R4) L "SCH$GB_FRI $SET GLOBAL PRIORITY
MTFR FCE$L_FHYFCB(R4) »#FR$_FCEE $SET FCE BASE FHYS ADDR
LIOPCTX FRESTORE CONTEXT
REI i NORMAL RETURN
SCH$IDLE!: #NO ACTIVE, EXECUTABLE FROCESS
SETIFL #IFL$.SCHED DROF IFL TO SCHEDULING LEVEL 9
MOVE $#325L"SCH$GB.FRI $SET FRIORITY TO -1(32) TO SIGNAL IDLE
ERE SCH$SCHED FAND TRY AGAIN
QEMFTY? BUG.CHECK QUEUEMFTYsFATAL $SCHEDULING QUEUE EMFPTY
+ENR

Example 1 The Scheduler (SCHED.MAR)
5-21

SCHEDULING

Comments on SCHED.MAR:

l.

Current process ---> computable resident

a. Entry point

b. Synchronize access to scheduler database

c. Save hardware context of current process in hardware
PCB

d. 1Insert PCB at tail of COM queue

Highest-priority computable resident process ---> current

a. Entry point

b. Synchronize access to scheduler database

c. Remove PCB from head of COM queue

d. Restore hardware context, push PC and PSL onto stack

e. Transfer control to current process

SCHEDULING

BOOSTING SOFTWARE PRIORITY OF NORMAL PROCESSES

@ Usually normal interactive process has base priority 4

e To help interactive processes compete with compute-bound
processes

- Boosts applied upon certain events (I/0 completion,
resource available)

- Different boosts for different events

- Current priority equals greater of:

e Current priority
® Base priority plus boost

- Lowering of priority

® Each time process scheduled, decrement priority
(until reach base priority)

® Return to base priority at quantum end if COMO
process exists

- Not allowed to boost above normal priority range
(9-15)

SCHEDULING

Example of Process Scheduling

Table 1 1Initial Conditions for Scheduling Example

Process Type Base Priority Priority State
Swapper System 16 16 HIB
Null Compute Bound 7} g COoM
A Compute Bound 4 9 CUR
B I/0 Bound 4 19 COMO
C Real-Time 18 - 18 HIB

Symbol Event

@ 1/0 Request
@ Preemption
@ Quantum End

MKV84-2151

Figure 15 Scheduling Example Symbols

SCHEDULING

QUANTUM

M
20
w| =
o
pa—— L] L] L}

14

SOFTWARE

PRIORITY 12

LEVELS

10

g o @

TIME —>

Figure 16 Example of Process Scheduling - Part 1

1. Process C becomes computable. Process A is preempted.

2. C hibernates. A executes again, one priority level lower.

A experiences quantum end and is rescheduled at its base
priority. B is computable outswapped.

4. The swapper process executes to inswap B. B is scheduled

for execution. g/ . Z’fwgzﬁﬁp ﬁ@%ﬁ ﬁgfﬁ

SOFTWARE
PRIORITY
LEVELS

6.
7.

SCHEDULING

QUANTUM

| e |
20
w| =2 =]
e B

14

2
0 NULLi

TIME —>

Figure 17 Example of Process Scheduling - Part 2

B is preempted by C.

B executes again, one priority level lower.

B requests an I/0 operation (not terminal 1I/0). A
executes at its base priority.

A requests a terminal output operation. The null process
executes.

A executes following I/0 completion at its base priority
plus 3. (The applied boost was 4.)

SCHEDULING

QUANTUM

—
20
| []]]]
ol ’
14

SOFTWARE

PRIORITY 12

LEVELS

10

0 NULL

000 0000000 00 OO

TIME —>

Figure 18 Example of Process Scheduling - Part 3

10. A is preempted by C.
11. A executes again, one priority level lower.

12. A experiences quantum end and is rescheduled at one
priority level lower.

13. A is preempted by B. A priority boost of 2 is not applied
to B because the result would be less than the current
priority.

14. B is preempted by C.

SCHEDULING

QUANTUM
—
20
8| [] =] CJ =]]
16 p—— csmmms
14
SOFTWARE
PRIORITY 12
LEVELS

':—T? g
. 9 ‘
: il

000 0000000 ODODODOO®OCOO

TIME —>

Figure 19 Example of Process Scheduling - Part 4

15. B executes again, one priority level lower.

16. B requests an I/0 operation. A executes at its Dbase
priority.

17. A experiences quantum end and is rescheduled at the same
priority (its base priority).

18. A is preempted by C.

SCHEDULING

IMPLEMENTATION OF PROCESS STATE CHANGES

Table 2 Operating System Code for Scheduling Functions

Function Module Routines
Change between CUR and COM SCHED.MAR SCHSRESCHED
SCHS$SCHED
Move between resident and SWAPPER.MAR SWAPSCHED
outswapped INSWAP
OUTSWAP
Move in and out of wait RSE.MAR SCHSRSE
states SCHSUNWAIT

(and others)

Quantum end processing RSE.MAR SCHSQEND

5-29

SCHEDULING

Process A Process B Process C
Per Process |
Space USER USER
Process PROGRAM A PROGRAM B
Context
System
Space SWAPPER
Process CODE
Context
CONTEXT
System SWITCH
Space
System TIMER SCHEDULER
Context 1/O COMPLETION @ > g{;g?& INTERRUPT
SET EVENT FLAG EVENT SERVICE
WAKE ROUTINE
RESUME

Figure 20 Interaction of Scheduling Components

SCHEDULING

Report System Event Component (RSE.MAR)

1.

2‘

3.

‘System events cause transitions between process states.

)
These transitions are accomplished by the code in RSE.MAR.

Inputs to RSE

a.

PCB address

Event number (number for WAKE, CEF SET, and so onh)

flow

Event checked for significance (for example, WAKE only
if in HIBER state).

PCB removed from wait queue and wait queue header
count decremented.

PCB inserted on COM or COMO state queue after priority
adjustment, and summary bit set.

Swapper process can be awakened (if PCB was inserted
on COMO queue).

Scheduler interrupt at IPL 3 requested if the new
computable process has software priority greater than
that of current process.

5-31

SCHEDULING

STEPS AT QUANTUM END
Real-Time Process

l.
2.

Reset PHD$B_QUANT to full quantum value.

Clear initial quantum bit PCBS$V_INQUAN in PCBSL_STS.

Normal Process

Reset PHD$B_QUANT to full quantum value.

Clear initial quantum bit PCBS$V_INQUAN in PCBS$L_STS.

If any outswapped process computable, set current software
priority PCB$B_PRI to base priority PCB$B_PRIB.

If SWAPPER needed, wake SWAPPER.

If CPU limit imposed, and limit has expired, queue AST to
process for process deletion.

If not, then calculate automatic working set adjustment.

Request scheduling interrupt at IPL 3.

SCHEDULING

Automatic Working Set Adjustment

® Goal: optimal working set size
- Large enough to allow good program performance
- Small enough to optimize overall memory usage
e Adjustment calculated at quantum end
- If high paging rate, want to increase working set size

- 1If low paging rate, may want to decrease working set
size (take back some physical memory)

e Usually gives large increases, small decreases

@ Only affects the list size, not the number of entries in
use ,

® No adjustment done for real-time processes

® Can disable adjustment for normal processes

- Perprocess: $ SET WORKING_SET/NOADJUST

- System-wide: SYSGEN> SET WSINC 0

5-33

SCHEDULING

Automatic Working Set Adjustment

PAGE
FAULT

RATE

WSINC

PFRATH—

PFRATL—

WSDEC
-—

Tl
’ t———AWSMIN
MINWSCNT

Figure 21 Automatic Working‘Set

WORKING SET SIZE

L-WSMAX

Adjustment

v

TK-9008

SCHEDULING

Rules for Working Set Adjustment

1. If PFRATL < PFRate < PFRATH, no adjustment is necessary.

2. If PFRate > PFRATH then perhaps WSSIZE = WSSIZE + WSINC.

~ WSSIZE can grow to WSQUOTA anytime

- WSSIZE can grow to WSEXTENT if free pages > BORROWLIM

3. If PFRate < PFRATL then perhaps WSSIZE = WSSIZE - WSDEC.

- WSSIZE can shrink to AWSMIN (no smaller)

Example 2 Working Set Adjustment Algorithm

5-35

SCHEDULING

Example of Working Set Size Variation

WSSIZE =———eeeeipp-

WSMAX —

WSEXTENT— @ @ @ @)—

WSQUOTA—

AWSMIN —
MINWSCNT —

TIME =————p

TK-9012

Figure 22 WSSIZE variation Over Time

Table 3 Reasons for Working Set Size Variations

Time Reason for WSSIZE Change
a Page faults > PFRATH
Free page count > BORROWLIM
b Page faults < PFRATL
c Page faults < PFRATL
d Page faults > PFRATH

Free page count < BORROWLIM

e Page faults > PFRATH
Free page count > BORROWLIM

SCHEDULING

Forcing Processes to Quantum End

Prog.

Program B $Qlo $WAITFR

_____ .
—10TA —

I Context
Switch

Program A

Figure 23 Use of the IOTA System Parameter

e IOTA - special system parameter (in 10 ms units)

e Deduct IOTA units from time quantum when process enters
wait state

® Used to force processes to quantum end

® Not charged to process CPU limit

SCHEDULING

SOFTWARE PRIORITY LEVELS OF PROCESSES

Table 4 Software Priority Levels of Processes on VMS
Base

Process Priority Purpose
NULL 7} Consume idle CPU time
default user 4 User activities
SYMBIONT n 4 Input/output symbiont
OPCOM 6 Operator communications
ODS-1 disk ACPs 8 0DS-1 disk file structure
Tape ACPS 8 Tape file structure
ERRFMT 7 Write error log buffers
JOB_CONTROL 8 Queue and accounting manager
NETACP 8 DECnet ACP
REMACP 8 Remote ACP
SWAPPER 16 System-wide memory manager

e Base priority of process determined by argument to $CREPRC

system service

® Base priority of system processes

- Most are established during system initialization

~ Base priority of ACPs is
system parameter

controlled by ACP_BASEPRIO

e Normal processes receive priority boosts

SCHEDULING

SUMMARY

Table 5

SYSGEN Parameters Relevant to Scheduling

Function

Parameter

Base priority for Ancillary Control Processes

Minimum number of working set pages

Minimum amount of time that must elapse for
significant sample of a process page fault rate

Minimum number of pages required on free page
list before working sets are allowed to grow
beyond WSQUOTA (checked at quantum end)

Base default priority for processes

Time alloted to each of a process's exit
handlers after CPU limit expires

Amount of time to deduct from process gquantum
for each voluntary wait

Minimum number of fluid working set pages

Page fault rate above which VMS attempts
to increase the process working set size

Page fault rate below which VMS attempts
to decrease the process working set size

Maximum amount of CPU time a normal process can
receive before control passes to a computable

process of equal priority
Number of pages for working set size decrease
Number of pages for working set size increase

Maximum number of pages for any working set

ACP_BASEPRIO

AWSMIN

AWSTIME

BORROWLIM

DEFPRI

EXTRACPU

IOTA (%)

MINWSCNT

PFRATH

PFRATL

QUANTUM

WSDEC

WSINC

WSMAX

(*) = special SYSGEN parameter

Process Creation
and Deletion

PROCESS CREATION AND DELETION

INTRODUCTION

This module discusses the operations required to create and delete
processes under VAX/VMS.

Process creation and deletion involve several different components
of VMS. Discussion in this module focuses on the process context
of each component. Some operations execute in the context of the
process that requests the particular action, while others execute
in the context of the target process.

Interactive and batch processes involve additional components such
as command language interpreters (CLIs), the job controller, and
possibly the input symbiont process. In addition, interactive and
batch processes may require execution of the LOGINOUT image for
such functions as mapping the CLI.

The discussion of the life cycle of processes should contribute to
a better understanding of the implications of multiprogramming
application designs.

OBJECTIVES

1. To assist in the design of efficient multiprogramming
applications, the student must understand how the
following kinds of processes are created and deleted:

- User-created processes
- Interactive processes
- Batch processes

2. To alter process characteristics (beyond the functionality
provided by DCL), the student must know how process
context is built.

3. To assist in managing processes, the student must
understand the effects of altering SYSGEN parameters
related to process creation and deletion.

PROCESS CREATION AND DELETION

RESOURCES
Reading \

1. VAX/VMS Internals and Data Structures, chapters on process
Creation, process deletion, and interactive and batch
jobs.

Source Modules

Facility Name Module Name
SYS SHELL
PROCSTRT
SYSCREPRC, SYSDELPRC
LOGIN
JOBCTL
INPSMB

PROCESS CREATION AND DELETION

TOPICS

I. Process Creation

A. Roles of operating system programs

B. Creation of process data structures

II. Types of Processes

III. Initiating Jobs

A. Interactive

B. Batch
IV. Process Deletion

V. SYSGEN Parameters Relating to Process Creation and Deletion

PROCESS CREATION AND DELETION

PROCESS CREATION

Table 1 Steps in Process Creation and Deletion

Action Code
Creating process SYSSCREPRC
Inswap a process SWAPPER
Process startup PROCSTRT
Process deletion SYSSDELPRC

Table 2 Three Contexts Used in Process Creation

Creator's Swapper's New Process's
Context Context Context
SCREPRC From SHELL PC= EXESPROCSTRT
e PCB PHD filled in PSL= K mode, IPL=2
e JIB COMO --> COM Sets up:
e PQB (temp) - logical names (sysSinput...)
-~ Catch-all cond. handler
SW priority - RMS dispatcher
boost - XQP merged in
- Image name moved to PHD
Process re- - Image activated

turned COMO

PROCESS CREATION AND DELETION

Creation of PCB, JIB, and PQB

JB |€—
Creator
(Pooled
Quotas)
PCB
) New Process
4
PCB
$CREPRC L
arguments -—
Control (..
Region
Process
Quota
:F ™ Block
(PQB)
"') Process
Header

Figure 1 Creation of PCB, JIB and PQB

1. SCREPRC allocates new data structures

- PCB ;
~ JIB (if new process is detached)

- PQB (temporary)
2. These new data structures are filled from:

-~ SCREPRC arguments
- Creator's PCB

- Creator's control region
—~ Creator's process header

- System defaults

*SYSGEN -

PQL_xxxx parameters

PROCESS CREATION AND DELETION

Relationships Between PCBs and JIB

JIB for
all processes
in this job

MPID = 001AS

pooled
quotas

-
-

name w
PID O01AS
@ |PrcoNT 2
OWNER 0
JiB [
name X name Y
PID 008 1E PID 00824
PRCCNT O @ PRCCNT 1
OWNER O01AS OWNER O01AS
JiB @ JiB &
name Z
PID 0073F
PRCCNT O
OWNER 00824
Jig
Figure 2 Relationships Between PCBs and JIB

All PCBs point to JIB

W created X and Y

W's PRCCNT is 2

X and Y owner PID is W PID

Y created 2

No pointers from creator to subprocess

PROCESS CREATION AND DELETION

PCB Vector

S$SSCH$GL_PCBVEC

NULL PCB
SWAPPER ﬁ pcB ::JLI.
::::: ___)i g:nppea PROUE®
JOB_CONTROL -
NULL
YMBIONT_0001
PIPPIN

——

NULL
BATCH_195
NULL

MERRY — PCB
FRODO ﬁ of

SAM 3 e MERRY

of
SAM

Figure 3 PCB Vector

e On process creation, search for unused vector

e Unused vectors point to Null's PCB

e Table of pointers to all PCBs

e Index into table is contained in PID

e SCHSGL_PCBVEC points to start of table

*SYSGEN -

MAXPROCESSCNT

6-10

PROCESS CREATION AND DELETION

PID and PCB, Sequence Vectors

$3 SCH$GL_PCBVEC

$3 SCH$GL_SEQVEC

NLL | él

PROCESS
SWAPPER INDEX

—+0

Sequence no.

_

\\ 1

New Sequence no.

Y

L to PCB of Extended PID
new process

PC/&$L ﬁPfD Figure 4 Mlzjw;,z?;géﬁlj@c@f?«;f Q@%nc? Vectors

die %ﬁﬁﬁ?

e Extended P contalns four parts:

- Process index into PCB and sequence vectors<}3:5)

- Process sequence number <20:14>
- Cluster node index < ¥
- Node sequence number <30:26

e PID formed at process creation

e Sequence number incremented each time vector slot re-used

e SCHSGL_SEQVEC points to start of sequence vectoru:>

«*'7@2%) Y Yk
e 4=

6-11

Process IDs

PROCESS CREATION AND DELETION

e There are actually two PIDs for a process

® Extended PID

Visible at the user level

Uniquely identifies a process on a single system, and
on a VAXcluster

Displayed by VMS utilities and system services

Stored in PCB at offset PCBSL_EPID

Format is very subject to change

e Internal PID

Only visible through SDA, and in VMS source code
Stored in PCB at offset PCBSL_PID

Only contains process index and sequence number
(original pre-v4 PID)

Used by most kernel-mode code

Some privileged data structures contain internal PIDs
(for example TQESL_PID, ACBS$L_PID, and LKBSL_PID)

® Several routines available for manipulating PIDs

Table 3 Routines for‘Manipulating PIDs

Operation Mechanism
Convert an extended PID to an internal PID EXESEPID_TO_IPID
Convert an internal PID to an extended PID EXESIPID_TO_EPID
Return the PCB address given an EXESEPID_TO_PCB
extended PID

Return the PCB address given an EXESIPID_TO_PCB

internal PID

PROCESS CREATION AND DELETION

Swapper’s Role in Process Creation

A B

Slot # VBN

I+

Q\ﬁd\"@%swp

WSSWP

PCB

Figure 5 Swapper's Role in Process Creation

pce$l. -

e For new process, WSSWP is less than or equal to zero

® WSSWP less than or equal to zero causes SHELL to be copied

® Swapper &JM%R’%&

- Stores SYSGEN parameters in PHD
~ Initializes pointers, counters in PHD

- Initializes system page table entries

PROCESS CREATION AND DELETION

PROCSTRT’s Role in Process Creation

«$

> JB
New Process
PCB
@
.ﬁ
@
< Control
Region
Process
Quota
~N N
Block VY d
(PQB) —3| Process
Header

Figure 6 PROCSTRT's Role in Process Creation

e Hardware PCB defined in SHELL

@ PC and IPL invoke PROCSTRT at IPL 2
® Code located in SYS.EXE

e Functions

- PQOB information moved to PHD and Pl
- Create logical name tables

- Change to user mode, IPL 0

- Map in F1l1BXQP

- Call SYSSIMGACT

- Call image at transfer vector

PROCESS CREATION AND DELETION

TYPES OF PROCESSES

Table 4 Types of Processes
Created Creating Special
By Code Properties
Batch Job Controller SUBMIT, - Deleted upon logout,
SSNDJBC, or at end of command
$SCREPRC stream »
- No password check

Detached Another RUN, SCREPRC - Survives deletion of
process its creator

- May be interactive
or not

Network Network ACP SCREPRC - Deleted when no more
(result of DCL logical 1links to
command with service
node name)

Subprocess Another RUN, SPAWN, - Cannot survive
process (the LIBSSPAWN, deletion of owner
owner) : SCREPRC -~ Quotas are pooled

with owner
- May be interactive
or not
e RUN and SPAWN call SCREPRC
e After system initialization
- A process is created by another process
- Process creation is done by SCREPRC
e An interactive process has:

6-15

PCBSV_INTER bit set in PCBSL_STS field
Non-file-oriented SYSS$SINPUT

PROCESS CREATION AND DELETION

Table 5 PCB Fields Defining Process Types

PCB$V_BATCH PCBSV_NETWRK PCB§V_INTER PCBSL_OWNER

Network o ' 1 Y)
Batch 1 g /] @
Detached) /) g or 1l @
Subprocess 7}] @ or 1 non-zero

e PCBSV_xxx symbols represent bits in PCBSL_STS longword
e These bits in the status longword

- Are intended ONLY for use by the system (for example, the
job controller or SPAWN)
- Can be set using STSFLG argument to SCREPRC

e Interactive processes have the PCBSV_INTER bit set

Table 6 Restrictions on Process Creation

Quota/Limit Meaning

MAXJOBS Maximum number of interactive, detached, and batch
processes a user may create

MAXDETACH Maximum number of detached processes a process
may create

PRCLM Limit on number of subprocesses a process may
create

Privilege Required for

DETACH or Creation of a detached process with a different

CMKRNL UIC than the creator

6-16

PROCESS CREATION AND DELETION

The LOGINOUT Image

e Initialize the process permanent data region (store
SYSSINPUT value, etc.)

e Perform initializations specific to the type of process

Network process

Validate user name and password
Map CLI if necessary

-~ Batch process

Obtain job parameters from job controller

- Subprocess

No special initialization

- Interactive process (only if initiated by wunsolicited
terminal input)

Ensure that SYSSINPUT is non-file-oriented
Process system password (if necessary)

Write SYSSANNOUNCE (%a%mww

Verify user name and password

Check for re-connections

Ensure that interactive job quota not exceeded

- Detached process

Store user name (no need to verify password)

e Check job limits, account and password expiration, and

hourly restrictions éx
il

.

e If interactive process, write welcome messagegaaw%ﬁﬁﬁf
¥

e Initialize CLI if not activating a single image

@ Alters process characteristics to match UAF record

- privileges
- quotas

® Pass control to CLI or to image

PROCESS CREATION AND DELETION

INITIATING JOBS

Initiating an Interactive Job e

Terminal
Driver

Job ,
Controlier Ay

Creates &R b
3 Context of Job
Process %Q@ Controlier Process

Context of Newly

Created Process &,0 ?u
$SPAWN 2
LOGINOUT.EXE » ok
0
o If not subprocess C b N‘ 1o

- Set quotas, privileges, UIC and

username from UAF record
« © Set up process permanent files
7 ST “)

® Pass control to CLI

- Verify Username,
Password . -

Figure 7 1Initiating an Interactive Job

e Initiated by unsolicited input at a free terminal

- Job controller notified by driver
- Creates process with user name equal to terminal name

e LOGINOUT runs

e DCL mapped (or alternate CLI)

e SPAWN creates an interactive or non-interactive subprocess
(no need to verify user name, etc.)

6-18

PROCESS CREATION AND DELETION

Initiating Job Using $SUBMIT

$ SUBMIT X.COM JBCSYSQUE.DAT
SUBMIT utility c ":"’“
CLI activates notities Job Controller ontrolier
SUBMIT utility
Creates
process -
SYSSINPUT
SYSSCOMMAND

LOGINOUT.EXE
—

1) No username/password
SYSSOUTPUT verification

SYSSERROR
2) SYSSINPUT and SYSSOUTPUT

are different ‘
C xi06 | BATCH.LOG

Figure 8 1Initiating Job Using $SUBMIT

o Similar to interactive process, except
- Job controller notified by DCL ($SﬁBMIT)
- User already validated
-~ Files are assigned:

SYS$SINPUT to batch stream
SYSSOUTPUT to log file

6-19

PROCESS CREATION AND DELETION

Initiating Job Through Card Reader

Job
Controller

Card
Reader
Driver

$ SUBMIT X.COM | supMIT utility Job

notifies Job

CLI activates c f Controller JBCSYSQUE.DA
SUBMIT utility ontratler \ ’
Creates BATCH.COM
process v
SYSS$INPUT
SYSSCOMMAND

LOGINOUT.EXE

1) No username/password
verification

2) SYS$INPUT and SYS$OUTPUT
are different

BATCH.LOG

MKV84-2777

Figure 9 1Initiating Job Through Card Reader

1. Job controller notified by card reader driver
2, Job controller creates input symbiont process
- User authorization
- Read cards into command file
- Submit as batch job

3. Same as for S$SSUBMIT

PROCESS CREATION AND DELETION

PROCESS DELETION

e After image runs and exits, process deleted
- Unless running with a CLI
e All traces of process removed from system
e All system resources returned
e Accounting information passed to job controller
e For subprocess, all qubtas and limits returned to creator

® Creator notified of deletion

PROCESS CREATION AND DELETION

Process Deletion Sequence

name oTG

PID 003AE

PRCCNT 2

OWNER O
name BERT name ERNIE
PID 00423 PID 00518
PRCCNT O PRCCNT O
OWNER OO3AE OWNER OO3AE

Figure 10 Process Deletion ée

AR
o0 Deleted by kernel AST while CURRENT @
o Sequence

- Delete any subprocesses

- Accounting information to job controller

- Call SYSSRUNDOWN

- Delete P1 space

- Free PCBVEC and SWAP slots, page file space
- Decrement counts

Balance set
Total processes

- Jump to SCHSSCHED

PROCESS CREATION AND DELETION

SUMMARY
Table 7 Steps in Process Creation and Deletion
Action Code
Creating process SYSSCREPRC
Inswap a process SWAPPER
Process startup PROCSTRT
Process deletion SYSSDELPRC
Table 8 SYSGEN Parameters Relating to Process Creation
and Deletion
Function Parameter
Maximum number of processes allowed on the MAXPROCESSCNT
system
System default values for some process limits PQL_Dxxx
and quotas
System minimum values for some process limits PQL_Mxxx

and quotas

System Initialization
and Shutdown

SYSTEM INITIALIZATION AND SHUTDOWN

INTRODUCTION

The study of the initialization of a VAX/VMS system provides a
convenient summary of many of the topics previously discussed in
this course. It is during initialization that the structures,
mechanisnms, and other features of the VMS environment are
established.

Each component of the initialization sequence is discussed
from turning on the power to the final start-up command procedure
and the enabling of logins. 1Included is an explanation of:

® Why each component executes in its particular environment

e Why it executes at its position in the overall
initialization sequence.

Hardware differences between VAX systems, especially the
components of the console subsystem, have an effect on the initial
stages of system initialization. The basic configurations of the
VAX-11/730, VAX-11/750 and VAX-11/780 are described, highlighting
the effects of the differences on. the initialization sequence.

In addition, some time is spent discussing the shutdown and
recovery sequences involved in power failure and bugcheck.

OBJECTIVES

1. Describe, in general terms, the sequence of operations
involved in:

e Initial bootstrap
e Powerfail and recovery
® Bugcheck and reinitialization

2. Describe the differences between console subsystems of the
VAX family systems, and the effects on system
initialization.

3. Discuss the effects of altering SYSGEN parameters relating
to system initialization.

SYSTEM INITIALIZATION AND SHUTDOWN

RESOURCES
Reading

1. VAX/VMS Internals and Data Structures, chapters on error
handling, bootstrap procedures, operating system

initialization, and powerfail recovery.

Source Modules

Facility Name Module Name
BOOTS SYSBOOT, SYSGEN
. VMB
SYS INIT
’ SYSPARAM
POWERFAIL
BUGCHECK, BUGCHKMSG
SYSINI SYSINIT
Hardware Microfiche CONSOLE. SYS

Memory ROM program

7-4

II.

SYSTEM INITIALIZATION AND SHUTDOWN

TOPICS

Initialization

A.

B.

C.

D.

System initialization sequence
Functions of initialization programs
How memory is structured and loaded
Start-up command procedures

SYSBOOT, SYSGEN

VAX-11/7889, VAX-11/750, and VAX-11/730
differences and how they affect initialization

Shutdown and Restart

A.
B.

cC.

Front panel switches

Shutdown procedures and their functions

Autorestart sequence

Powerfail recovery

hardware

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/780, 11/750, 11/730 CONSOLE DIFFERENCES
780 and 730

- Contain a console microprocessor

780 - LSI-11
730 - 8085

Boot/restart information available on console media

780 - floppy
730 - TUS8

750

No console microprocessor

Boot/restart information in ROM (normally) or on disk

SYSTEM INITIALIZATION AND SHUTDOWN

SYSTEM INITIALIZATION

TEST

L
LOAD INITIAL
PROGRAM
v
OBTAIN SYSTEM
PARAMETERS
A 2
LOAD OPERATING
SYSTEM

2
RUN INITIALIZATION
CODE
L 2

ACTIVATE STANDARD
COMMAND PROCEDURE

L 2

ACTIVATE SITE'S
COMMAND PROCEDURE

@

Figure 1 System Initialization

SYSTEM INITIALIZATION AND SHUTDOWN

SYSTEM INITIALIZATION SEQUENCE

11/750 11/780;11/730
MICROPROCESSOR
CONSOLE PROGRAM STARJS Up
(D DEVICE SPECIFIC BOOT BLOCK @
INFORMATION PRO%RAM
l CONSOL.SYS
- y
VMB‘.EXE
SYSBO:)T.EXE
SYS‘.'EXE ®
SYSIN‘IVT.EXE '

START‘l‘JP.COM
SYSTARTUP.COM

Figure 2 System Initialization Sequence

1. Bootstrap computer using ROMs in CPU
2. Bootstrap computer using LSI-11 (780) or 8085 (7340)
3. Finish system initialization

Finish preparing system

Load operating system

Run operating system initialization code

Activate VMS standard and site-specific DCL procedures

SYSTEM INITIALIZATION AND SHUTDOWN

INITIALIZATION PROGRAMS

Table 1 Initialization Programs
Program Function Environment
CONSOLE. SYS Loads VAX writable diagnostic control store LSI (780)
(CONSOLE.EXE Acts as monitor for console terminal commands 8085 (730)
on 730) On boot command loads, passes control to CPU (759)
VMB. EXE
VMB. EXE Sizes and tests physical memory, discovers VAX memory
external adapters Physical
Sets up primitive SCB address
Locates, loads, and passes control to
SYSBOOT.EXE
SYSBOOT . EXE Locates and loads SYS.EXE VAX memory
Loads SYSBOOT parameters Physical
Opens and stores location of dump file address
Sets up full SCB
Sizes system space, sets up system page table
Maps nonpaged pool into high end of physical
memory
Loads terminal driver and system disk driver
Sets up P@ page table
Passes control to INIT in SYS.EXE
INIT Turns on memory management VAX memory

(in SYS.EXE)

SYSINIT

Maps and initializes the I/0O adapter

Maps paged pool

Initializes several scheduling and memory
management data structures

Invokes SCHED.MAR

Opens and stores locations of page files
and swap files
Maps RMS and system message file as system

sections
Mounts system disk

Physcial
address/
Virtual
address

Process

SYSTEM INITIALIZATION AND SHUTDOWN

Table 1 1Initialization Programs (Cont)

Program Function Environment

STARTUP.COM Creates several system logical names Process
Creates job controller, error log formatter,
OPCOM processes
Invokes INSTALL
Invokes SYSGEN for autoconfigure
Invokes SYSTARTUP.COM

SYSTARTUP.COM Site-specific, such as: Process

Create logical names

Load user-written device drivers

Install privileged and shareable images
Set up queues and terminal characteristics

~
I

11

SYSTEM INITIALIZATION AND SHUTDOWN

PHYSICAL MEMORY DURING INITIALIZATION

ON ENTRY TO VMB.EXE ON ENTRY TO SYSBOOT.EXE
Restart Parameter Restart Parameter
Block (RPB) «SP Bloc.k (RPB) «—RPBSL.BASE
Primary Primary +°X200
Bootstrap Bootstrap
Program Program
VMB VMB
Symen1Conuo|chk(sc3)'*PRs‘SCBB
for VMB
PFN Bitmap

Bootstrap Stack

SP

A

Secondary
Bootstrap
Program

SYSBOOT

Figure 3 Physical Memory During Initialization

e Console or ROM programs have located 64K bytes of good
contiguous memory.

e On entry to VMB.EXE

Console program has loaded VMB into the known good memory,
leaving 512 bytes for the Restart Parameter Block.

® On entry to SYSBOOT.EXE
VMB has loaded

- Restart Parameter Block with values from R@-R5

- System Control Block with vectors pointing to one
routine

- PFN Bitmap with map of error-free pages in physical
memory -

- SYSBOOT.EXE

VMB has also allocated Bootstrap Stack, used by VMB and
SYSBOOT.

SYSTEM INITIALIZATION AND SHUTDOWN

PHYSICAL MEMORY LAYOUT AFTER SYSBOOT ENDS

<+ 0

Dynamic Pages

<4+— MMG$GL_.MAXPFN
(Physical Page Number) -
PFN Database

Nonpaged Executive
Code and Data

Nonpaged Dynamic Memory

Interrupt Stack

<4— PR$_SCBB
System Control Block (Physical Address)

System Header

<4— PR$_SBR

System Page Table (Physical Address)

<4— Largest PFN

Figure 4 Physical Memory After SYSBOOT

SYSBOOT has

e Sized the pieces of memory shown above

@ Filled in the SCB and part of the system header

e Mapped and read in SYS.EXE (Executive code)

SYSTEM INITIALIZATION AND SHUTDOWN

TURNING ON MEMORY MANAGEMENT

PO
Region

System
Space

Virtual Address Space

From SYSBOOT

Physical Address Space

EXESINIT::
MOVL RPB$L_BOOTRS5(R11).FP
MTPR #1,S*#MAPEN
JMP @#10$ <
108: .
MOVL EXESGL_INTSTK.SP
H
[]
EXES$INIT::
MOVL RPB$L_BOOTRS5(R11),FP
MTPR #1,S "#MAPEN
JMP @#10%
10$: <
MOVL EXES$GL_INTSTK,SP

Figure 5

| EXESINIT: (D)
MOVL RPB$L_BOOTRS(R11),FP
A
l__‘MTPR #1,5A#PR$_MAPEN (@
JMP @#10$
10$:
MOVL

EXE$GL_INTSTK,SP
)

Turning on Memory Management

SYSTEM INITIALIZATION AND SHUTDOWN

Turning on Memory Management

e Done by INIT in SYS.EXE

e Physical to virtual transition:

1.

® All address references treated as physical
addresses

e INIT page table entries set up so P@ virtual
address

equals physical address

e SO and P@ page table entries for INIT contain same
PFNs

Writing a 1 to processor register MAPEN causes
following address references to be treated as virtual
addresses

Next instruction is found in P@ space

When INIT was linked, base was in S@ space, so JMP
@#10$ causes jump to address in S@ space

7-15

SYSTEM INITIALIZATION AND SHUTDOWN

SYSINIT

® Created by swapper as part of one-time initialization
routine

e Selected from COM queue after SWAPPER goes into normal HIB

e Major functions:

- Opens and records locations of page and swap files

- Maps RMS and system message files

- Creates XQP global section

- Mounts system disk

- Creates start-up process

SYSTEM INITIALIZATION AND SHUTDOWN

START-UP

Start-Up Process
e Runs as final part of initialization

e Runs using DCL command procedures

- STARTUP.COM

- SYSTARTUP.COM

STARTUP.COM

Assigns logical names

e Installs VMS images
e Creates system processes

- ERRFMT

- JOB_CONTROL

- OPCOM

e Autoconfigures all devices

SYSTARTUP.COM

e Mounts volumes other than the system disk
e Assigns site-specific logical names
@ Sets up site-specific

- Terminal characteristics

- Print and batch queues

e Installs site-specific images

e Starts DECnet

e Loads user-written device drivers

SYSTEM INITIALIZATION AND SHUTDOWN

SYSBOOT AND SYSTEM PARAMETERS

=

SET USE CURRENT

®

parameter
SYSBOOT Parameter
Table Settings
USE of in Memory @
DEFAULT Working Image of U
Values Executive
USE filespec
Default
Parameter
Settings
Internal
to
SYSBOOT

Figure 6 SYSBOOT and System Parameters

SYSBOOT executes as part of system initialization.
1. Automatically brings in current parameters
2. Allows changes if conversational boot requested

e Valid commands are USE, SET, CONTINUE, EXIT
@ Can alter all parameters used in present system
@ Cannot create alternate parameter files

3. Writes parameters to copy of SYS.EXE in memory

4. Later in initialization sequence, parameter values
copied to VAXVMSSYS.PAR for subsequent boots

are

SYSTEM INITIALIZATION AND SHUTDOWN

SYSGEN AND SYSTEM PARAMETERS

Parameter
Settings
Internal
to
SYSGEN

VAXVMSSYS.PAR

SYSGEN

l.

USE filespec

Parameter
Settings
in Memory
Emage of
Executive

USE ACTIVE

)

Figure 7

WRITE filespec

SYSGEN and System Parameters

runs as an editor-like utility under VMS

WRITE
CURRENT

WRITE
ACTIVE

Parameter
Settings
in Memory
Image of
Executive

SYSGEN copies active system parameters into its buffer

Can replace all values with

values, or with values in an alternate file

Can

Use

current,

default or

alter individual parameters in SYSGEN buffer

WRITE command to record new values:

Can create alternate parameter files

Can alter dynamic parameters on present system
Can alter parameters used on next system boot

7-19

active

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/780 PROCESSOR

FPA ucs

FLOPPY
DISK [

SYSTEMS

CONSOLE -
LA120 - VAX¢¥H78° MEMORY MEMORY | MULTIPORT | MULTIPORT

CONTROLLER [CONTROLLER| MEMORY MEMORY
REMOTE
DIAGNOSIS | MEMORY
CACHE
1/0 ADAPTORS

¥ ¥ 3

1 STANDARD 4 OPTIONAL 1 OPTIONAL
3 OPTIONAL

Figure 8 VAX-11/780 Processor

Program on ROM causes CONSOLE.SYS to be loaded from floppy

.
into LSI-11 memory

e CONSOLE.SYS runs on LSI-11

- Loads diagnostic control store

Causes ROM in memory controller to find 64K good bytes

Loads VMB.EXE from floppy disk to VAX memory

SYSTEM INITIALIZATION AND SHUTDOWN

VAX-11/750 PROCESSOR

Ucs
Tus8
SYSTEMS
LA120 CONSOLE VAX-11/750 MEMORY
CPU CONTROLLER
Dﬁf*ﬁiSS
IAG ! MEMORY
CACHE
I/O ADAPTORS
UNBUS MASSBUSr
1 STANDARD 3 OPTIONAL
Figure 9 VAX-11/750 Processor

e Console program stored in ROM with CPU

- Locates 64K good bytes

- Passes control

e Device ROM

to device ROM

- Reads boot block from device

e Boot block program

- Loads VMB.EXE from specified system device

VAX-11/730 PROCESSOR

|Dua| TUS8s

SYSTEM INITIALIZATION AND SHUTDOWN

|

RD

LA120

FPA IDC
Console
Subsystem Data Path
Control Store
Memory Controller/

Input/Output

COMBO

Board

Figure 10 VAX-11/730 Processor

4-RLO2s
or,

3-RLO2s

& 1-R80

Program on ROM causes CONSOLE.EXE to be loaded from TU58 into
8085 memory

CONSOLE.EXE runs on 8@85

[.oads microcode into CPU from TU58

Executes DEFBOO - loads registers of CPU,

bytes

Loads VMB.EXE from TUS58

finds

64K good

SYSTEM INITIALIZATION AND SHUTDOWN

VAX FRONT PANELS

KEY SWITCH
LOCAL
ATT RU
OFF N POWER REMOTE LOCAL /REMOTE
AUTO) /' DISABLE DISABLE
RESTART BOOT
_/ _/ OFF REMOTE
ON
VAX-11/780@ Panel
BOOT DEVICE POWER ON ACTION Locmt(ey SWITCH
CPU STATE /
SECURE REMOTE/
POWER RUN ERROR INITIALIZE SECURE
OFF REMOTE

A BOOT

B RESTART
C HALT ™
D RESTART

VAX-11/75@ Panel

RUN DCON BATT R/D rﬂlnmn VM]‘V73O
O O O O LOCAL / LOCDSBL
gg:o RESTARTON BOOT §'T'o_sﬁ REwDSEL
" REMOTE
VAX-11/730 Panel
Figure 11 VAX Front Panels

Table 2

SYSTEM INITIALIZATION AND SHUTDOWN

Switches on the VAX-11/786, /730, /7580

11/780

11/750

11/730

Ef fects on Console
Terminal and System

OFF

LOCAL/DISABLE

LOCAL

REMOTE

REMOTE/DISABLE

OFF

SECURE

LOCAL

REMOTE

REMOTE/SECURE

STANDBY

LOCAL/DISABLE

LOCAL

REMOTE

REMOTE/DISABLE

OFF

Power partially off

Local terminal-program

I1/0 mode only. Remote
disabled.

Local terminal-program
I/0 mode and console
I/0 mode. Remote dis-

abled.

Local terminal disabled.
Remote-console I/0

mode and program I/0
mode.

Local terminal disabled.

Remote-program I/0
mode only.

Power completely off

SYSTEM INITIALIZATION AND SHUTDOWN

SHUTDOWN OPERATIONS

Table 3 Shutdown Operations

Action Operation
Clean shutdown $ @SYS$SSYSROOT: [SYSEXE]SHUTDOWN
Quick shutdown $ RUN SYSSSYSTEM:OPCCRASH
Forced crash Control/P (on OPA®:)
>>>@CRASH (780/730 only)
>>>E P (750 only)
>>E/G F
S>E/I 0
DO>>E/I 1
S>>E/I 2
>>>E/I 3
>>>E/I 4
>>>D/<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>