VAXcluster Systems

Digital Technical Journal

Digital Equipment Corporation

Number 5

September 1987

Cover Design

VAXcluster systems are featured in this issue. The central
connection between the elements in a cluster is called the
Star Coupler. Our star-filled cover evokes the thousands of
VAXcluster systems now operating worldwide. The image was
created using the Lightspeed System:.

The cover was designed by Barbara Grzeslo and Tim Roberts
of the Graphic Design Department.

Editorial Staff
Editor — Richard W. Beane

Production Staff

Production Editor — Jane C. Blake
Designer — Charlotte Bell

Interactive Page Makeup — Terry Reed

Advisory Board

Samuel H. Fuller, Chairman
Robert M. Glorioso

John W. McCredie
Mahendra R. Patel

F. Grant Saviers

William D. Strecker

The Digital Technical Journal is published by
Digital Equipment Corporation, 77 Reed Road,
Hudson, Massachusetts 01749.

Changes of address should be sent to Digital
Equipment Corporation, attention: Media Response
Manager, 444 Whitney Street, NRO2-1/J5, Northboro,
MA 01532-2599

Comments on the content of any paper are welcomed.
Write to the editor at Mail Stop HL02-3/K11 at the
published-by address. Comments can also be sent on
the ENET to RDVAX::BEANE or on the ARPANET to
BEANE%RD VAX.DEC@DECWRL.

Copyright © 1987 Digital Equipment Corporation.
Copying without fee is permitted provided that such
copies are made for use in educational institutions by
faculty members and are not distributed for
commercial advantage. Abstracting with credit of
Digital Equipment Corporation’s authorship is
permitted. Requests for other copies for a fee may be
made to the Digital Press of Digital Equipment
Corporation. All rights reserved.

The information in this journal is subject to change
without notice and should not be construed as a
commitment by Digital EQuipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

ISBN 1-55558-004-1
Documentation Number EY-8258E-DP

The following are trademarks of Digital Equipment
Corporation: CI, DEC, DECnet, DECnet-VAX,
DECsystem-10, DECSYSTEM-20, Digital Network
Architecture (DNA), Digital Storage Architecture
(DSA), the Digital logo, HSC, Local Area VAXcluster,
MicroVAX, MicroVAX II, MicroVAX 2000, Q-bus,
RMS-11, SA482, UNIBUS, VAX, VAX-11/750,
VAX-11/780, VAX-11/782, VAX-11/785, VAX 8600,
VAX 8650, VAX 8700, VAX 8974, VAX 8978,
VAXcluster, VAXstation, VAXstation 11,

VAXstation [1/GPX, VAXstation 2000, VMS,

VT, VT220

IBM is a registered trademark of International Business
Machines, Inc.
Intel is a trademark of Intef Corporation.

Lightspeed is a trademark of Lightspeed Computers,
Inc.

Book production was done by Educational Services
Media Communications Group in Bedford, MA.

Contents

22

29

45

56

69

80

93

VAXcluster Systems

The VAXcluster Concept: An Overview of a Distributed System
Nancy P. Kronenberg, Henry M. Levy, William D. Strecker, and Richard J. Merewood

The System Communication Architecture
Darrell J. Duffy

The VAX/VMS Distributed Lock Manager
William E. Snaman, Jr. and David W. Thiel

The Design and Implementation of a Distributed File System
Andrew C. Goldstein

Local Area VAXcluster Systems
Michael S. Fox and John A. Ywoskus

VAXcluster Availability Modeling
Edward E. Balkovich, Prashant Bhabhalia, William R. Dunnington, and Thomas F. Weyant

System Level Performance of VAX 8974 and 8978 Systems
Daeil Park, Rekha D. Von Ehren, Tzyh-Jong Wang, and Nii N. Quaynor

CI Bus Arbitration Performance in a VAXcluster System
Xi-ren Cao, Nii N. Quaynor, and Fernando C. Colon Osorio

Richard W. Beane
Editor

VAXcluster systems are closely coupled configu-
rations of VAX CPUs and storage devices. The VAX
CPU at any node can communicate with
the processor and storage devices at any other
node in the cluster. The interconnects and soft-
ware used to activate this unique concept allow
data transfers at up to 70 megabits per second
between nodes. This issue of the Digital Techni-
cal Journal contains papers about some of the
key hardware and software features in these sys-
tems, as well as some measures of their perfor-
mance. Since several organizations within Digital
are responsible for various VAXcluster features,
these papers are contributed by engineers from a
wide spectrum of engineering groups.

Since the VAXcluster concept spans such a
range of technologies, the first paper is an
overview explaining generally how these sys-
tems work. Nancy Kronenberg, Hank Levy, Bill
Strecker, and Richard Merewood describe the
architecture, the storage control, the VMS soft-
ware alterations, and the multitude of activities
that control access to the storage devices.

The System Communication Architecture,
described by Darrell Duffy, is the structure that
allows the nodes in a VAXcluster system to coop-
erate. This relatively simple framework governs
the sharing of data between resources at the
nodes and binds together applications that run on
different VAX CPUs.

l\)|

Editor’s Introduction

Additional fcatures were needed in the VMS
softwarc to accommodate accessing disks on
multiple systems. The distributed lock manager,
described by Sandy Snaman and Dave Thiel, pro-
vides the synchronization needed to accomplish
transparent data transfers between cluster mem-
bers. Other changes were also needed to broaden
the file functions performed by the VMS software.
Andy Goldstein relates some alternative ways to
expand those functions and how the QIO proces-
sor was extended to synchronize file accesses.
The resulting system of locks and queues pro-
vides a consistent sequence for managing dis-
tributed files.

The next paper, by Mike Fox and John Ywoskus,
describes the extension of the VAXcluster con-
cept to systems connected with an Ethernet.
These Local Area VAXcluster systems use special
software to provide functions needed by clusters,
but not provided by Ethernet software. Thus,
MicroVAX Il and other small VAX systems can be
clustered to yield significant amounts of process-
ing power.

The last three papers deal with performance
aspects of VAXcluster systems. The paper by Ed
Balkovich, Prashant Bhabhalia, Dick Dunnington,
and Tom Weyant discusses the results of a VAX-
cluster model that demonstrates how redundancy
improves availability. Then, Dale Park, Rekha
Von Ehren, T-J. Wang, and Nii Quaynor describe
two models they developed to measure the per-
formances of VAX 8974 and 8978 systems. These
models, based on benchmarks run in different
environments, use a VAX 8700 CPU for a baseline
comparison.

The final paperrelates the results of a model to
measure the characteristics of the CI bus. Xi-ren
Cao, Nii Quaynor, and Fernando Colon Osorio
describe how their model measures the per-
formance of the arbitration algorithm in this
bus. They suggest some interesting schemes to
improve utilization and reduce response time.

Biograpbhies

Edward E. Balkovich Ed Balkovich is the manager of VAXcluster System
Engineering, which addresses issues of VAXcluster performance, availability
and architecturc for High Performance Systems. He was Digital’s associate
director of Project Athena at MUILT. and is an Adjunct Associate Professor at
Brandeis University. Before joining Digital in 1981, Ed was a faculty member
at the University of Connecticut. He earned his B.A. degree (1968) from the
University of California at Berkeley, and his M.S. (1971) and Ph.D. (19706)
degrees from the University of California at Santa Barbara. He is a member of
the ACM and IEEE.

Prashant Bhabhalia A principal enginecr in VAXcluster Systems Engi-
neering, Prashant Bhabhalia develops and interprets reliability and availabil-
ity models. Earlicr, he was a program manager in Computer Systems Manu-
facturing and a senior engineer in GIA Manufacturing. Before joining Digital
in 1980, Prashant was an industrial engineer at Norton Company and Gits
Plastic Corporation. He holds an M.S.1.E. degree (1974) from the Polytech-
nic Institute of Brooklyn and a B.S.M.E. degree (1972) from the M.S. Univer-
sity in India. Prashant is a senior member of 1.1.E.

Xi-Ren Cao As a principal software enginecr in the High Performance Sys-
tems and Clusters Group, Xi-Ren Cao models and cvaluates VAXcluster con-
figurations. Before joining Digital in 1986, he was a research fellow at Har-
vard University. Xi-Ren has published over 20 technical papers on
performance evaluation, simulation, stochastic systems, queuing networks,
and control theory, and has co-authored a book “Perturbation Analysis of Dis-
crete Event Systems,” to be published in 1988. He received his Ph.D. degree
from Harvard University in 1984 and is a member of 1EEE.

Fernando C. Colon Osorio Fernando Colon Osorio graduated from the
University of Puerto Rico (B.S.E.E., 1970) and the University of Massachu-
setts (M.S., Ph.D., 1976) . Joining Digital in 1976. he helped design the PDP-
11/60 and PDP-11/74 systems and managed the LAN group in Corporate
Research. Fernando also managed the overall design verification for the VAX
8600 project. In High Performance Systems. he now manages the systems
rescarch and advanced development group, responsible for VAXclusters,
fault tolerance, advanced architectures, and performance analyses. He was
Associate Editor of the [EEE Transactions on Computers and is the co-author
of “Enginccring Intelligent Systems.”

Darrell J. Duffy Asa consulting softwarce engincer, Darrell Duffy works on
the network architecture for VAXcluster systems. On previous projects, he
led the development of operating systems for parallel processors and wrote
software for the Local Area Terminal protocol. Darrell helped to develop
DECnet softwarc after joining Digital in 1977. He reccived a B.S. in com-
puter science from West Virginia University in 1972 and worked at the Uni-
versity of Florida. Darrell and three other Digital engincers have applied for a
patent on the LAT protocol.

Biograpbies

William R. Dunnington Dick Dunnington is a principal quality engincer
working on availability modcling in the Computer System Manufacturing
Group. Previously, he was a quality engineer in the Far East Manufacturing
Group, working on personal computer memorics. Before joining Digital in
1979, Dick was a captain in the U.S. Army. He received an Associates degree
in liberal arts from S.U.N.Y. (1973) and a B.S. degree in engineering science
from the University of Nebraska (1974). Dick, a member of SIAM and ASQC,
isalso a Certified Quality Engincer.

Michael S. Fox In 1977, Mikc Fox joined Digital after carning his M.S.
(1977) and B.S. (1976) degrees in computer science from Rensselaer
Polytechnic Institute. Initially, he helped to develop the RSX11M-PLUS soft-
ware, then served as architect and supervisor on the PRO/SERVER project. In
Digital’s Graduate Engineering Education Program, Mike returned to Rensse-
laer for a year as a faculty member in computer science. Back at Digital, he
joined the VMS Enginecring Group and lead the project that developed the
Local Area VAXcluster software. Mike is now a consulting software engineer.

Andrew C. Goldstein Andy Goldstein received his B.S.E.E. and M.S.E.E.
degrees from M.1.T. in 1971, and joined Digital in 1973. He was initially
responsible for the file system in the RSX-11D and RSX-11M systems, and
became a charter member of the VMS Development group. Andy designed
and implemented the VMS file system, and worked as well on the VMS 1/0
and executive software. More recently, he designed the security features in
VMS version 4.0 and helped with the VAXcluster file system. Andy is now a
senior consultant softwarc engineer, and is a member of Tau Beta Pi, Eta
Kappa Nu, Sigma Xi, and ACM.

Nancy P. Kronenberg Nancy Kronenberg is a senior consultant software
engineer in the Advanced VAX Development Group. She is currently project
leader of the microcode team for a new VAX CPU. Previously, Nancy worked
in the VMS Development Group where she assisted with the SCA specifica-
tion and wrote the CI port driver and part of the VMS SCA services. Before
joining Digital in 1978, she was a systems analyst at Massachusetts Computer
Associates and at Applied Data Research. Nancy earned her AB degree in
physics from Cornell University in 1967.

Henry M. Levy A consultant ecngineer on leave from Digital, Hank Levy is
currently an Assistant Professor working on distributed systems and com-
puter architecture rescarch at University of Washington. Hank joined Digital
in 1974. He was a member of the original VAX/VMS tcam and later worked
for the VAX Architecture Group on interconnect and workstation archi-
tectures. He has published over a dozen papers and the books Capability-
Based Computer Systems and Computer Programming and Architecture: The
VAX-11. Hank holds a B.S. degree (1974) from Carnegie-Mellon University
and an M.S. degree (1981) from University of Washington.

Richard J. Merewood Richard Merewood is the software development
manager for the DECnet-VAX, Local Area VAXcluster, and VAXcluster soft-
ware projects. In Reading, England, he managed the development of Digital’s
X.25 networking products, performed advance development on the ISDN
project, and supervised a modem development project. Before joining Digi-
tal in 1980, Richard was an international consultant in data communications
and transaction processing. He studied electrical engineering at the Imperial
College of Science & Technology, London.

Daeil Park As a principal software engineer in the Systems Performance
Group, Dale Park executes and analyses tests to determine VAXcluster per-
formance. He is particularly involved with measuring the performance of
application programs on these systems. Dale joined Digital in 1983 after
receiving his M.S. degree in computer engineering (1983) from Case West-
ern Reserve University. Earlier, he was a system design engineer at Samsung
Electronics Co. Ltd, in Korea. Dale earned his B.S. degree in electrical engi-
neering (1977) from Seoul National University in Korea.

Nii N. Quaynor After earning his B.E. degree from Dartmouth College in
1973 and his Ph.D. from S.U.N.Y. at Stony Brook in 1977, Nii Quaynor joined
Digital in 1978. He first worked in corporate research on multimicro sys-
tems. In 1982, Nii joined the VAX 8600 project as a consulting software
engineer and created models for large-scale CAD applications using a register
transfer language. Later, he worked on the verification of the VAX 8600
design. Nii is now the manager of the System Performance Group in High Per-
formance Systems.

William E. Snaman, Jr. Sandy Snaman is a principal software engineer in
the VMS Development Group, currently working on software for VAXcluster
systems and the distributed lock manager. Sandy has also developed and
taught VAXcluster courses in Educational Services and was a software main-
tainability engineer for Customer Services Systems Engineering. He joined
Digital in 1980 after eight years in the U.S. Navy. Sandy holds a B.S. degree
(1985, Magna Cum Laude) from the University of Lowell, where he is now
completing his M.S. degree in computer science.

William D. Strecker Bill Strecker, vice president for Product Strategy and
Architecture, joined Digital after receiving his B.S., M.S., and Ph.D. degrees
from Carnegie-Mellon University. Bill’'s work on cache memories led to the
PDP-11/70 system, and he also led the team that developed the VAX archi-
tecture. Bill guided Digital’s interconnect strategy, which lead to the com-
puter interconnect (CI) and the Systems Communication Architecture. He
holds several patents on CPU designs and computer interconnects. Bill and
was elected to the National Academy of Engineering in 1986.

Biographies

David W. Thiel Dave Thiel, a consulting software engineer, is currently
studying future directions for VAXcluster systems in the VMS Development
Group. He was project leader for the initial VAXcluster support in VMS ver-
sion 4.0. Dave also worked on the executive and data compression areas of
the VMS software. Dave joined Digital in 1980 from GenRad, Inc., where he
was a principal software engineer. He earned his B.S.E.E., M.S.E.E., and Elec-
trical Engineer degrees from M.I.T. in 1972. He is a member of Tau Beta Pi,
Eta Kappa Nu, ACM, and IEEE.

Rekha D. Yon Ehren As a senior software engineer in the Systems Perfor-
mance Group, Rekha Von Ehren works on performance measurements and
analyses for VAXcluster systems. Previously, she analyzed the performance of
VAX 8600 and 8650 CPUs. Rekha joined Digital in 1983 after receiving her
M.S. degree in industrial engineering from the University of Wisconsin. She
also earned an M.S. degree (1981) in operations research from the London
School of Economics and a B.S. degree in statistics and computing from North
London Polytechnic. Rekha has just given birth to her first child, a baby boy,
named Samuel.

Tzyh-Jong Wang As a principal engineer in the Systems Performance
Group, Tzyh-Jong Wang conducts modeling studies to measure system per-
formance. He analyzes VAXcluster configurations, on-line transaction pro-
cessing, and other advanced systems. Before joining Digital in 1987, Tzyh-
Jong was a lecturer at the University of Wisconsin at Madison, where he
received his M.S. and Ph.D. degress (1987) in information systems. He also
earned a B.S.1.E. degree (1978) from the National Tsing-Hua University, Tai-
wan. Tzyh-Jong is a member of ACM, IEEE, ORSA, and TIMS.

Thomas F. Weyant Tom Weyant is the manager of the Systems Reliability
Engineering Group in Computer Systems Manufacturing. As a consulting
engineer, he worked on systems reliability and availability modeling, com-
puter-interconnect reliability, infant-mortality and long-term failure-rate
modeling, and was the manager of advanced development. Before joining
Digital in 1985, Tom worked for ten years at AT&T Bell Laboratorics and
Hughes Aircraft Company. He earned his B.S.M.E. degree (197S5) from the
University of California at Santa Barbara, and his M.S. and Ph.D. degrees
(1981) in operations research from UCLA.

John A. Ywoskus John Ywoskus is a principal software engineer with the
VAX/VMS Development Group. He is currently project leader of the Local
Area VAXcluster development effort and was lead technical contributor in
the development of the first release of this product. Before joining the VMS
group in 1985, John worked as a developer on the LAT-11 terminal scrver
project and as project leader of the LATplus V1.0 application terminal pro-
ject. John came to Digital in 1981 from the Charles Stark Draper Laboratory,
where he worked on CAD system software development. He earncd a B.S.
degree in Applied Mathematics from Harvard College in 1979.

Nancy P. Kronenberg
Henry M. Levy
William D. Strecker
Richard J. Merewood

The VAXcluster Concept:
An Overview of a Distributed System

A VAXcluster system is a bigbly available and extensible configuration of
VAX computers that operate as a single system. To achieve bigh perfor-
mance in a multicomputer environment, a new communications architec-
ture, communications bardware, and distributed software bad to be
jointly designed. The software is the VAX/VMS operating system, using a
distributed lock manager to synchronize access to shared resources. The
communications hardwareincludes a 70-megabit per second message-ori-
ented interconnect, and an interconnect port that performs communica-
tions tasks traditionally bandled by software. The Local Area VAXcluster
system, an implementation of the VAXcluster architecture, uses a standard
Ethernet as its interconnect. This development provides VAXcluster func-

tions for the MicroVAX family.

Contemporary multicomputer systems typically
lie at the ends of the spectrum delimited by
tightly coupled multiprocessors and loosely cou-
pled distributed systems. Historically, loosely
coupled systems have been characterized by the
physical separation of processors, low-bandwidth
message-oriented interprocessor communication,
and independent operating systems.'2:34 Con-
versely, tightly coupled systems have been char-
acterized by close physical proximity of proces-
sors, high-bandwidth communication through
shared memory, and a single copy of the operat-
ing system.5-¢.7

An intermediate approach taken at Digital
Equipment Corporation was to build a “closely
coupled” structure of standard VAX computers,?
called a VAXcluster system. By closely coupled,
we imply that a VAXcluster system has character-
istics of both loosely and tightly coupled systems.
On one hand, a VAXcluster system has separate
processors and memories connected by a mes-
sage-oriented interconnect, running instances of
the same copy of the distributed VAX/VMS oper-
ating system. On the other hand, the initial

The original version of this paper appeared in “VAXclusters:
A Closely-Coupled Distributed System,” by Nancy P. Kronen-
berg, Henry M. Levy, and William D. Strecker, published in
ACM Transactions on Computer Systems, Vol. 4, No. 2,
May 1986. Copyright 1987, Association for Computing
Machinery, Inc.

implementation of the cluster relied on close
physical proximity, a single (physical and logi-
cal) security domain, shared physical access to
disk storage, and high-speed memory-to-memory
block transfers between nodes.

The goals of the VAXcluster multicomputer sys-
tem are high availability (in suitable configura-
tions) and easy extensibility to a large number of
processors and device controllers. In contrast to
other highly available systems,”-'?-!1:12 3 VAXclus-
ter system is built from general-purpose, off-the-
shelf processors ranging in size from MicroVAX
workstations to high-performance VAX CPUs,
and a general-purpose operating system.

A key concern in this approach is system
performance. Two important factors in the per-
formance of a multicomputer system are the
software overhead of the communications archi-
tecture and the bandwidth of the computer inter-
connect. To address these issues, several develop-
ments were undertaken as part of the original
VAXcluster design, including

= A simple, low-overhead communications
architecture whose functions are tailored to
the needs of highly available, extensible sys-
tems. This architecture is called the System
Communication Architecture (SCA).

= A very high speed message-oriented Computer
Interconnect, called the CI bus

Digital Tecbnical Journal
No. 5 September 1987

The VAXcluster Concept: An Overview of a Distributed System

* An intelligent hardware interface to the CI
bus, called the CI port, that implements part
of the SCA in hardware

= An intelligent, message-oriented mass storage
controller that uses both the CI bus and the CI
port interface

This combined software and hardware archi-
tecture supports a high-performance communi-
cations structure for interconnecting high-perfor-
mance VAX systems. For low-end VAX CPUs, the
Local Area VAXcluster system has been developed
to permit workstations interconnected by means
of the Ethernet to share a common file system,
printers, and batch processing. Workstation users
can derive the benefits of centralized timesharing
without sharing a CPU and without system man-
agement overhead. A Local Area VAXcluster sys-
tem is supported by software that emulates some
of the CI functions, thus making the difference
between Cl-based and Ethernet-based VAXclus-
ters largely invisible to higher level software.
Local Area VAXcluster systems can be formed
from and coexist with existing Ethernet networks
without the need for special-purpose hardware.

This paper describes the communications hard-
ware developed for VAXcluster systems, the hard-
ware-software interface, the Local Area VAXclus-
ter system, and the structure of the distributed
VAX/VMS operating system. The developments
described in this paper are part of Digital’s VAX-
cluster product; there are, as of mid-1987,
approximately 6,000 VAXcluster and Local Area
VAXcluster systems in operation.

VAXcluster Hardware Structure

The CIl-based VAXcluster System

Figure 1 shows the topology of a typical Cl-based
VAXcluster system. The components include the
Cl bus, VAX hosts, CI ports, and Hierarchical
Storage Controllers (HSC) for mass storage (i.e.,
disk and tape). For high-reliability applications, a
cluster must contain a minimum of two VAX pro-
cessors and two mass storage controllers with
dual-ported devices. The preferred method of
attaching terminals is through a Local Area Trans-
port (LAT) server (not shown), which allows a
terminal to connect to any host in a VAXcluster
system.

The CI bus is a dual-path serial intercon-
nect with each path supporting a transfer rate of
70-megabits per second. The primary purpose of

VAX
Cl PORT
cl
BUS
Cl PORT Cl PORT
cl ; Y
BUS [STAR gus
VAX COUPLER VAX
cl cl
BUS, BUS
Cl PORT Cl PORT
STORAGE
HSC HSC
DISK DISK CONTROLLERS
SYSTEM SYSTEM
25
o=
Figure 1 VAXcluster Hardware Topology

the dual paths is to provide redundancy in the
case of path failure; when both paths are avail-
able, they are usable concurrently. Each path is
implemented in two coaxial cables; one for trans-
mitted and one for received signals. Baseband sig-
naling with Manchester encoding is employed.

While the CI bus is logically a bus, it is physi-
cally organized as a star topology. A central hub
called the Star Coupler connects all of the nodes
through radial CI paths of up to 45 meters.
The current coupler is a passive device that sup-
ports a maximum of 16 nodes; node addresses
are 8 bits, providing an architectural limit of
256 nodes.

The selection of a star topology was chosen
over a conventional linear topology for several
reasons. First, the efficiency of a serial bus is
related to the longest transit time between nodes.
The star permits nodes to be located within a
45-meter radius (an area of about 6400 square
meters) with a maximum node separation of
90 meter radius (an area of about 6400 square
meters) with a maximum node separation of

Digital Technical Journal
No. 5 September 1987

90 meters. Typically, a linear bus threaded
through 16 nodes in the same area would greatly
exceed 90 meters. Second, the central coupler
provides simple, electrically and mechanically
safe addition and removal of nodes.

The CI port is responsible for arbitration, path
selection, and data transmission. Arbitration uses
carrier sense multiple access (CSMA) but is dif-
ferent from the arbitration used by the Ether-
net.'¥!'> Each CI port has a node-specific delay
time. When wishing to transmit, a port waits
until the CI bus is quiet and then waits its
specific delay time. If the CI bus is still quiet, the
node has won its arbitration and may send its
packet. This scheme gives priority to nodes with
short delay times. To ensure fairness, nodes actu-
ally have two delay times — one relatively short
and one relatively long. Under heavy loading,
nodes alternate between short and long delays.
Thus the bus is contention driven under light
loadingand round robinunder heavy loading.

Upon winning an arbitration, a port sends a
data packet and waits for receipt of an acknowl-
edgment. If the data packet is correctly received,
the receiving port immediately returns an
acknowledgment packet without re-arbitrating
the CI bus. This action is possible because the CI
port can generate an acknowledgment in less
time than the smallest node-specific delay.
Retries are performed if the sending CI port does
not receive an acknowledgment.

To distribute transmissions across both paths of
the dual-path CI bus, the CI port maintains a path
status table indicating which paths to each node
are currently good or bad. Assuming that both
paths are marked good, the CI port chooses one
randomly. This provides statistical load sharing
and early detection of failures. Should repeated
retries fail on a path, it is marked bad in the status
table and the other path is tried.

The Ethernet-based VAXcluster System

Figure 2 shows an example of a Local Area VAX-
cluster system. The CI bus of Figure 1 has been
replaced by an Ethernet, and the VAX hosts
(referred to as satellite nodes) are MicroVAX
computers and workstations. Satellite nodes may
be diskless, in which case one or more VAX
hosts act as storage servers, serving a function
analogous to the HSC controllers in Cl-based con-
figurations. One or more storage servers, called
boot nodes, are responsible for loading satellite
nodes with the VMS operating system and for stor-

ing crash dumps from those nodes. Satellite
nodes may use remote disks for process swapping
and virtual memory backing storage.

The important difference between the CI-
based and the Local Area VAXcluster systems is
that the communication functions performed by
the CI hardware are emulated in the latter by soft-
ware within the VMS operating system. The Eth-
ernet is an industry-standard, 10-megabit per sec-
ond baseband local area network'> that uses the
carrier sense multiple access with collision
detection (CSMA/CD) technique for arbitration.
Unlike the CI bus, an Ethernet may be used to
carry multiple protocols simultaneously. (Note
that this allows a cluster to share the Ethernet
with other protocols, such as the LAT and DECnet
protocols.)

A new Ethernet protocol, which is an extension
of SCA, was designed for Local Area VAXcluster
system. Using this protocol, a VMS software com-
ponent emulates the CI port interface, which is
to say that the higher level software interface is
identical to that of the CI bus, but the Ethernet is
used to carry data. This approach eliminated the
need for any special hardware and allowed the
software modifications needed to be mostly lim-
ited to a single VMS component.

Exactly the same approach was used for load-
ing the VMS system into satellite nodes. Here, a
special port emulator was developed to operate
in the booting and system-initialization environ-
ment. This boot driver forms part of a vestigial
VMS environment whose function is to read,
initialize, and start the VMS system image from
the remote disk. These modules are themselves
loaded by means of the Digital Network Architec-
ture maintenance operations protocol (MOP).!6

The CI Port Architecture

Each VAXcluster host and mass storage controller
connects either to the CI bus through a CI port or
to the Ethernet by means of a standard Ethernet
adapter. CI ports have been implemented for the
HSC50 and HSC70 mass storage controllers, and
the VAX-11/750, 11/780, 11/782, 11/785, and
VAX 8000 series hosts. Ethernet adapters have
been implemented for all VAX processors. VAX
Cl ports implement a common architecture,
whose goals are to

= Off load much of the communications over-
head typically performed by nodes in dis-
tributed systems

Digital Technical Journal
No. 5 September 1987

VAXcluster
Systems

The VAXcluster Concept: An Overview of a Distributed System

= Provide a standard, message-oriented software
interface for both interprocessor communica-
tion and device control

The design of the CI port is based on the needs
of the VMS System Communications Architecture.
SCA is a software layer that provides efficient
communications services to low-level distributed
applications (e.g., device drivers, file services,
and network managers). SCA supports three com-
munications services: datagrams, messages, and
block data transfers. In a Local Area VAXcluster
system, the SCA functions performed by the CI
port are performed by software in the port emula-
tor module.

SCA datagrams and messages are information
units of less than 4,000 bytes sent over a connec-

tion. They differ only in reliability. The delivery
of datagrams is not guarantced; they can be lost,
duplicated, or delivered out of order. The deliv-
cry of messages is guaranteed, as is their order of
arrival. Datagrams are used for status and infor-
mation messages whose loss is not critical, and by
applications like the DECnet software that have
their own high-level reliability protocols. Mes-
sages arc used, for example, to carry disk read
and write requests.

To simplify buffer allocation, hosts must
agree on the maximum size of messages and data-
grams that they will transmit. VAXcluster hosts
use standard sizes of 576 bytes for datagrams and
112 bytes for messages.

To ensure the delivery of messages without
duplication or loss, each CI port maintains a vir-

VAX VAX -
CPU CcPU @
PORT PORT PORT
EMULATOR EMULATOR EMULATOR
ETHERNET ETHERNET ETHERNET
PORT PORT PORT

ETHERNET

ETHERNET
PORT

PORT
EMULATOR

VAX
CPU

DISK

DISK

DISK

0 @) 0

Figure 2 Local Area VAXcluster Topology

10

Digital Technical Journal
No. 5 September 1987

tual circuit with every other remote CI port. A
virtual circuit descriptor table in each port indi-
cates the status of its port-to-port virtual circuits.
Included in each virtual circuit descriptor are
sending and receiving sequence numbers. Each
transmitted message carries a sequence number
enabling duplicate packets to be discarded.

Block data is any contiguous data in a process’
virtual address space. There is no size limit
except that imposed by the physical memory
constraints of the host. The CI port hardware is
capable of copying block data directly from the
process virtual memory on one node to the pro-
cess virtual memory on another node. For the Eth-
ernet, this function is performed in software by
the port emulator.

The delivery of block data is guaranteed. The
sending and receiving ports and the port emula-
tors cooperate in breaking up the transfer into
data packets and ensuring that all packets are cor-
rectly transmitted, received, and placed in the
appropriate destination buffer. Virtual circuit
sequence numbers are used on the individual
packets, as with messages. Thus the major differ-
ences between block data and messages are the
size of the transfer, and the fact that block data
need not be copied by the host operating system.

COMMAND QUEUE 0
COMMAND QUEUE 3

RESPONSE QUEUE

- (LIT

Block data transfers are used, for example, by
disk subsystems and disk servers to move data
associated with disk read and write requests.

CI Port Interface

The VAX CI port interface is shown in Figure 3.
The interface consists of a set of seven queues:
four command queues, a response queue, a data-
gram free queue, and a message free queue. The
queues and queue headers are located in host
memory. When the port is initialized, the host
software loads a port register with the address of
a descriptor for the queue headers.

Host software and the port communicate
through queued command and response packets.
To issue a port command, the port driver software
queues a command packet to one of the four com-
mand queues. These four queues accommodate
four priority levels; servicing is FIFO within each
queue. An opcode within the packetspecifies the
command to be executed. The response queue is
used by the port to enqueue incoming messages
and datagrams, while the free queues are a
source of empty packets for incoming messages
and a sink for transmitted message packets.

For example, to send a datagram, software
queues a SEND DATAGRAM packet onto one of

VAX
PORT
SOFTWARE =

DATAGRAM FREE QUEUE cl

11—

MESSAGE FREE QUEUE

: T~

BUFFER
DESCRIPTOR |
TABLE

VAX MEMORY

Figure 3 The CI Port Interface

Digital Technical Journal
No. 5 September 1987

11

VAXcluster

The VAXcluster Concept: An Overview of a Distributed System

FORWARD LINK

BACKWARD LINK

OPCODE PORT STATUS

DATAGRAM LENGTH

DATAGRAM TEXT

Figure 4 CI Port Command Jacket

the command queues. The packet contains an
opcode field specifying SEND DATAGRAM, a port
field with the destination port number, the data-
gram size, and the text of the datagram. The
packet is doubly linked through its first two
fields. This structure is shown in Figure 4.

If the host software needs confirmation when
the packet is sent, it sets a response queue bit in
the flags field. This bit causes the port to place
the packet in the response queue and interrupts
the host after the packet has been transmitted.
The response packet is identical to the SEND
DATAGRAM packet, except that the status field
indicates whether or not the send was successful.
Had the response queue flag bit been clear in the
SEND DATAGRAM command (as it typically is),
the port would instead place the transmitted
command packet on the datagram free queue
without causing a host interrupt.

Upon receiving a datagram, a CI port takes a
packet from its datagram free queue. Should the
queue be empty, the datagram is discarded. Oth-
erwise, the port constructs a DATAGRAM
RECEIVED packet that contains the datagram and
the port number of the sending port. This packet
is then queued on the response queue.

Messages operate in a similar fashion, except
that they have a different opcode, and the mes-
sage buffers are dequeued from the message free
queue. If the message free queue is empty when
a message arrives, the port generates an error
interrupt to the host. The high-level SCA flow

control ensures that the message free queue does
not become empty.

Block transfer operations are somewhat more
complicated. Each port has a data structure
called a buffer descriptor table. Before perform-
ing a block transfer, host software creates a buffer
descriptor that defines the virtual memory buffer
to be uscd. The descriptor contains a pointer to
the first VAX page table entry mapping the virtu-
ally contiguous buffer. In addition, the descrip-
tor contains the offset (within the first page) of
the first byte of the buffer, the length of the
buffer, and a 16-bit key. The data structures for a
block transfer are illustrated in Figure 5.

Each buffer has a 32-bit name, consisting of
a 16-bit buffer descriptor table index and the
16-bit buffer key. The key is used to prevent dan-
gling references and is modified whenever a
descriptor is released. To transfer block data, the
initiating software must have the buffer names of
the source and destination buffers. The buffer
names are exchanged through a high level mes-
sagc protocol. A host can cause data to bc moved
either to another node (SEND DATA) or from
another node (REQUEST DATA). A SEND DATA or
REQUEST DATA command packet contains the
names of both buffers and the length of the trans-
fer. In either case (send or request), a single
command packet causes the source and destina-
tion ports to perform the block transfer. When
the last packet has been successfully received,
the initiating port places a response packet on its
responsce queue, indicating that the transfer is
complete.

The goal of reducing VAX host interrupts is met
through several strategies and mechanisms. First,
the block transfer mechanism minimizes the
number of interrupts necessary to transfer large
amounts of data. Second, at the sending port,
DATAGRAM SENT/MESSAGE SENT confirmation
packets are typically generated only when a fail-
ure occurs. Third, a receiving port interrupts the
VAX host only when the port queues a received
packet on an empty response queue. Thus when
softwar¢ dequeues a packet in response to an
interrupt, it always checks for more packets
before dismissing the interrupt.

Port Emulation for the Ethernet

Figure 6 shows the relationship of the port emu-
lator to the VMS operating system functions that
usc that emulator. For comparison, the CI port
interface is also shown in this diagram. The port
cmulator implements the same functions as the

Digital Technical Journal
No. 5 September 1987

Cl BUS

Cl PORT

COMMAND
QUEUE

QUEUE LINKS

FLAGS OPCODE

PORT NO. STATUS

TRANS. SIZE

SOURCE BUFFER NAME

DEST. BUFFER NAME

BLOCK TRANSFER
PORT COMMAND

BUFFER
DESCRIPTOR

TABLE

PAGE
TABLE

DESCRIPTOR

HOST MEMORY

PAGES

SOFTWARE

HARDWARE

VMS

SYSTEM COMMUNICATION SERVICES

ROUTINES

Figure 5 CI Port Block Data Memory Mapping

COMMAND
Cl PORT DRIVER NTEREAGE
TRANSPORT
| PROTOCOL
|
Cl PORT I DATALINK g‘IT:EESNET
|
HARDWARE | CONTROL APPLICATIONS
|
[
| Y
|
CiBUS I ETHERNET
| DEVICE DRIVER
|
S o

ETHERNET
HARDWARE

ETHERNET

Figure 6 CI Port Emulation Using Ethernet

Digital Technical Journal

No. 5

September 1987

13

VAXcluster
Systems

The VAXcluster Concept: An Overview of a Distributed System

emulator implements the same functions as the
CI port and its associated driver. The emulator
also opcrates the SCA protocol across the Ether-
nct and manages its interface with the Ethernet
datalink driver. Thus the emulator is responsible
for

= The provision of a compatible command inter-
face to the system communication services
(SCS) module

= The operation of a transport protocol that imi-
tates Cl behavior

= Node authentication and topology control
functions

= Propagation of Ethernet datagrams and data-
link control

The port emulator must deal with an underly-
ing datalink layer whose characteristics are some-
what different than those of the CI bus. The Eth-
ernet datalink can transmit datagrams between
64 and 1,536 bytes in length in either a point-to-
point, multicast, or broadcast fashion. The Ether-
net provides neither automatic acknowledgment
nor flow control, and Ethernet adapters do not
handle either buffer segmentation or different
message types. The CI functions of datagram
transmission, sequenced messages, and block
transfers must be implemented by the emulator
and translated into requests that can be pro-
cessed by the standard VMS Ethernet device
drivers.

Port emulation can be viewed conceptually as
three separate layers. The highest layer provides a
command interface for the higher level SCS rou-
tines. That interface is compatible with that used
for CI ports. This layer is also responsiblc for the
fragmentation and re-assembly of block transfer
buffers that are larger than the maximum Ether-
net message size.

The transport layer provides a sequenced mics-
sage and datagram service to the corresponding
layer in the remote node. Its handling of data-
grams amounts to little more than a pass-through
function; the handling of sequenced messages
and block transfers, however, is more complex.
In the latter case, the transport layer must ensure
that messages are transmitted and received in the
correct order, cnsure that acknowledgments arc
sent and rcceived, and retransmit messages that
have becen lost. The transport layer opcrates a
simple pipeline flow control scheme that allows
a fixed window of unacknowledged messages.
Acknowledgments can be “piggybacked” on
returning messages.

Last, the datalink control layer is responsible
for passing messages between the Ethernet device
drivers and the transport layer and control of the
Ethernet datalink service. The datalink control
layer also maintains a record of the cluster’s
topology by exchanging multicast messages with
other cluster members.

Below the port emulator module is the stan-
dard VMS Ethernet device driver, which can also
be uscd simultaneously by other applications like
the DECnct, LAT, and ISO transport protocols.
These protocols are multiplexed and demulti-
plexed by the Ethernet device driver using the
Ethernet standard protocol type.

The CI port emulation function for the Local
Arca VAXcluster system has a higher system
overhead than the equivalent CI connection
since the operations involved are performed by
the host VAX processor. Since the Ethernet has
lower bandwidth and longer response times,
howcever, the demand for host system resources
is modcrated. The Local Area VAXcluster per-
formance is acceptable for typical customer
workloads in which most nodes are single-user
workstations. The CPU time overhcads are most
noticcable on nodes that serve disks to multiple
uscrs; those nodes are typically dedicated
Processors.

Mass Storage Control

The move from control- and status register-
activated storage devices to message-oriented
storage devices offers several advantages:

= Sharing is simplificd since several hosts can
qucuc messages to a single controller. In addi-
tion, device control messages can be transmit-
ted toand executed by hosts with local disks.

= Extension to new devices is easier. In contrast
to conventional systems where there is a differ-
cnt driver for every type of disk and disk
interface, a single disk class driver simply
builds message packets and transmits them
using a communications interface. The disk
class driver is independent of drive specifics
(c.g., cylinders and sectors). New disk and
tapc devices and controllers can be added with
little or no modification to the host software.

= Performance is improved. The controller can
maintain a queue of requests from multiple
hosts and can optimize disk performance in
rcal time. ‘The controller can also handle error
rccovery and bad-block replacement.

Digital Technical Journal
No. 5 September 1987

The HSC family, shown in Figure 1, is a CI- model scparates the flow of control and status
based controller for both disks and tapes. A singlc information from the flow of data. This distinc-
HSC70 controller can handle up to 32 disk tion has been used in other systems to achieve
drives. Multiple HSC controllers with dual- efficient file access'” and corresponds to the CI
ported disks provide redundancy in casc of fail- port’s message and block data mechanisms; mes-
ures. Further redundancy can be provided by sages are used for device control commands
grouping disk volumes together in shadow sets to while block transfers are used for data.
form a single virtual volume in which all mem- The samc control protocol is uscd to provide
bers contain c¢xactly the same data. If one mem- clusterwidce access to Cl-based controllers like
ber of the shadow set fails, the virtual disk vol- the HSC devices, and to disks connected directly
ume continucstobe available. to a VAX processor (See Figure 7). In a Local Arca

The protocol interpreted by the HSC controller VAXcluster system, all mass storage is connected
is called the Mass Storage Control Protocol directly to the boot node and to zero or morce
(MSCP), which provides access to mass storage other storagce server nodes. Messages are routed
volumes at the logical block level. The MSCP from the disk class driver in the requesting node

VAX 1 VAX 2
PROCESS PROCESS
FILE RECORD FILE RECORD
MGMT. MGMT. MGMT. MGMT.

DISK DISK MSCP DISK

CLASS oK GeR CLASS O GER DISK PORT

DRIVER DRIVER SERVER DRIVER

TTTI
LOCAL
DISKS
CONNECTION CONNECTION
MANAGER MANAGER
SCA SOFTWARE SCA SOFTWARE
PORT PORT
Cl BUS
OR
ETHERNET
PORT
HSC
(Cl BUS ONLY) SCA SOFTWARE

DISK SERVER

DISKS

Figure 7 VAXcluster Software Structure

Digital Technical Journal
No. 5 September 1987

VAXcluster
Systems

The VAXcluster Concept: An Overview of a Distributed System

to an MSCP server on the node with the local
disk. This server then parses thc MSCP message,
issues requests to its disk, and initiates the block
transfer through its SCA interface. Thus in either
a Cl-based or a Local Area VAXcluster system, all
locally attached disks can be made transparently
available to all other VAX hosts in the cluster.

VAXcluster Software

From a user’s point of view, a VAXcluster system
is a set of nodes cooperating through the VAX/
VMS distributed operating system software to
provide sharing of resources among users on all
nodes. Shared resources include certain devices,
files, records within files, and system batch and
print queues. Typically, user account and pass-
word information resides in a single file shared
by all cluster nodes. A user obtains the same
environment (files, default directory, privileges,
etc.) regardless of the node to which he or she is
logged into. In many respects, the VAXcluster
system “feels” like a single system to the user.

This sense of a single system results from the
fact that the VAXcluster system is symmetrical
with respect to the participating VAX processors.
In other words, there is no specialization of func-
tion designed into the software (although an
installation may choose to configure certain
CPUs differently according to the special needs
of that installation). The VMS and VAXcluster file
system architecture is based on the concept of
clusterwide and uniform logical block access to
the mass storage managed by a distributed file
system. This concept contrasts with file server-
based distributed systems.

Figure 7 shows an example of a small VAXclus-
ter system and some of its major software compo-
nents. Note that the operation of the VMS soft-
ware in the VAXcluster environment is exactly
the same for both Local Area and Cl-based VAX-
cluster systems. The diagram shows an underly-
ing interconnect that may be either the CI bus or
the Ethernet, both of which use the port interface
methods described above. HSC disk controllers
connect only to the CI bus.

At the highest level, multiple user processes on
each node execute in separate address spaces.
File and record management services are imple-
mented as procedure-based code within each
process. The file and record services rely on
lower level primitives, such as the lock man-
ager'® and disk class driver. The lock manager is
the foundation of all resource sharing in both

clustered and single-node VMS systems. It pro-
vides services for naming, locking, and unlocking
clusterwide resources. The disk class driver,
mentioned earlier, uses the MSCP to communi-
cate with disk servers. The disk class driver runs
in both clustered and nonclustered environments
and contains no knowledge of the VAXcluster
configuration. SCA software below the driver is
responsible for routing driver messages to the
correct device controller.

A distributed connection manager is responsi-
ble for coordinating the cluster. Connection
managers on all cluster nodes collectively decide
upon cluster membership, which varies as nodes
leave and join the cluster. Connection managers
recognize recoverable failures in remote nodes;
they also provide data transfer services that han-
dle such failures transparent to higher software
levels.

Forming a Cluster

A VAXcluster system is formed when a suffi-
cient set of VAX nodes and mass storage resources
becomes available. New nodes may boot and join
the cluster, and members may fail or shut down
and leave the cluster. When a node leaves or
joins, the process of reforming the cluster is
called a cluster transition. Cluster transitions are
managed by the connection managers.

In an operating cluster, each connection man-
ager has a list of all member nodes. The list must
be agreed upon by all members. A single node
can be a member of only one VAXcluster system;
in particular, the same resource (such as a disk
controller) cannot be shared by two clusters or
the integrity of the resources could not be guar-
anteed. Therefore, connection managers must
prevent the partitioning of a cluster into two or
morce clusters attempting to share the same
resources.

To prevent partitioning, the VMS system uses a
quorum voting scheme. Each cluster node con-
tributes a number of votes, and the connection
managers dynamically compute the total votes of
all members. The connection managers also
maintain a quorum value. As transitions occur,
the cluster continues to run as long as the total
number of votes present equals or exceeds the
quorum. Should the total number of votes fall
below the quorum, the connection managers will
suspend VAXcluster activity. When a node joins
and brings the total votes up to the quorum, clus-
teractivity will resume.

16

Digital Technical Journal
No. 5 September 1987

A cluster member may have a recoverable error
in its communications. Such an error leaves the
node’s memory intact and allows the operating
system to continue running after the error condi-
tion has disappeared. These errors can cause ter-
mination of a virtual circuit and a corresponding
loss in communication. When cluster members
detcct the loss of communication with a node,
they wait for a short period (specified by the sys-
tem manager) for the failing member to re-estab-
lish contact. If the failing member recovers
within this pcriod, it rejoins the cluster. Users
may experience a brief interruption of service
when this happens. If the failing member docs
not recover in time, the surviving members
remove the failed node from the cluster and con-
tinue operating (assuming sufficient votes arc
present). A nodc that recovers after it has been
removed from the cluster is told to re-boot by the
connection managers.

Shared Files

The VAXcluster system provides a clusterwide
shared file system to its users.!? Cluster accessi-
ble files can existon Cl-based disk controllers or
on disks local to any of the cluster nodes. Each
cluster disk has a unique and location-indepen-
dent name. A complete cluster file name includes
the disk device name, the directory name, and the
file name. Using the device name for a file, the
cluster software can locate the node (either a
CPU or a disk controller) on which the file
resides.

Cluster file activity requires synchronization;
exclusive-write file opens, coordination of file
system data structures, and management of filc
system caches are a few cexamples. However,
despite the fact that files can be shared cluster-
wide, the file management services are largely
unaware of whether they are executing in a clus-
tered environment. These file managers synchro-
nize through the VMS lock manager, described
later. The lock manager handles the locking and
unlocking of resources across the cluster. At the
level of the file manager, then, cluster file
sharing is similar to single-node file sharing.
Lower levels handle the clusterwide synchroniza-
tion and routing of physical-level disk requests to
the correct device.

Distributed Lock Manager

As previously described, the VMS lock manager is
the basis for clusterwide synchronization. Several

goals influenced the design of the lock manager
for a distributed environment. First, programs
using the lock manager must run in both single-
node and cluster configurations. Second, lock
services must be efficient to support system-level
software that makes frequent short-duration
accesscs. Therefore, in a VAXcluster system, the
lock manager must minimize the number of SCA
messages needed to manage locks. In a single-
node configuration, the lock manager must rec-
ognizc the simpler environment and bypass any
cluster-specific overhead. Finally, the lock man-
ager must recover from failures of nodes holding
locks so that surviving nodes can continue to
access shared data in a consistent manner.

The VMS lock manager services allow cooper-
ating processes to define shared resources and
synchronize access to those resources. A resource
can be any object an application cares to define.
Each resource has a user-defined name by which
it is referenced. The lock manager provides basic
synchronization services to request and release
locks. Each lock request spccifics a locking
modec, such as exclusive access, protected read,
concurrent read, and concurrent write. If a pro-
cess requests a lock that is incompatible with
existing locks, the request is queued until the
resource becomes available. In many applica-

tions, rcsources may be subdivided into a
resource tree, as illustrated in Figure 8.
DISK VOLUME
FILE 1 FILE 2 FILE 3
RECORD 1 RECORD 2

Figure 8 VAXcluster Locking Structure

In this cxample, the resource Disk Volume
contains resources File 1 through File 3; resource
File 3 contains resources Record 1, Record 2, and
so on. The first locking request for a resource can
specify the parent of that resource, thereby defin-
ing its relationship in a tree. A process making
several global changes can hold a high-level lock
(c.g., the root) and can make them all very effi-
ciently. A process making a small, low-level
change (c.g., a leaf) can do so while still per-
mitting concurrent access to other parts of the
tree.?!

Digital Technical Journal
No. 5 September 1987

VAXcluster
Systems

e Juu

The VAXcluster Concept: An Overview of a Distributed System

The lock manager’s implementation is in-
tended to distribute the overhead of lock man-
agement throughout the cluster while still mini-
mizing the internode traffic needed to perform
lock services. The databasc is therefore divided
into two parts: the resource lock descriptions,
and the resource lock directory system, both of
which are distributed. Each resource has a master
node responsible for granting locks on the
resource; the master maintains a list of granted
locks and a queuc of waiting requests for that
resource. The master for all operations for a sin-
gle tree isthe node on which the lock request for
the root was made. While the master maintains
the lock data for its resource tree, any node hold-
ing a lock on a resource mastered by another
nodc keeps its own copy of the resource and lock
descriptions.

The second part of the database, the resource
dircctory system, maps a resource name into the
name of the master node for that resource. The
directory database is distributed among nodcs
willing to share this overhcad. Given a resource
name, a node can trivially compute the responsi-
ble directory as a function of the name string and
the number of directory nodes.

To lock a resource in a VAXcluster system, the
lock manager sends a lock request message
through the SCA to the dircctory for the resource.
The directory responds in onc of three ways:

1. If located on the master node for the
/"/Fifsource, the directory performs the lock
oy '5rcqucst and sends a confirmation responsc to

the requesting system.

2. If the directory is not on the master node but
finds the resource defined, it returns a
response containing the identity of the mas-
ter node.

3. If the directory finds the resource to be
undcfined, it returns a response telling the
requesting node to master the resource
itself.

In the best cases (1 and 3), two messages are
required to request a lock; case 2 takes four mes-
sages. An unlock is cxccuted with one message. 1f
the lock request is for a subresource in a resource
tree, the requesting process will cither be
located on the master node (i.c., the request is
local) or will know who the master for its parent
is, allowing it to bypass the directory lookup. In
all cases the number of messages required is

independent of the number of nodes in the VAX-
cluster system.

In addition to standard locking services, the
lock manager supports data caching in a dis-
tributed environment. Depending on the fre-
quency of modifications, caching of shared data
in a distributed system can substantially reduce
the 1/0 and communications workload.

A 16-byte block of information, called a value
block, can be associated with a resource when
the resource is defined to the lock manager. The
valuc in the value block can be modified by a
process releasing a lock on the resource and can
be read by a process when it acquires ownership.
Thus this information can be passed along with
the resource ownership.

In the case of a file buffer, for example, a ver-
sion number is maintained in the value block.
When caching a buffer, a process saves the cur-
rent version number. To modify the buffer, the
process obtains an exclusive lock and receives
the current version number. If the current ver-
sion number equals the version number of the
cached data, the cache is valid. Several updates
can then be made on the cached data before it is
written back to disk. When the modified data is
written, the process increments the version num-
berand releases its lock.

Another mechanism used in buffer caching is a
softwarc interrupt mechanism. When requesting
an cxclusive lock, a process can specify that it
should be notified if another lock request on the
resource is forced to block. A process can then
hold a modified copy of the data without writing
it back. When another process wants access, the
owner writes the modified data and releases its
lock.

In the case of cluster transitions (e.g., failure
of a node), the connection manager notifies the
lock manager that a transition has started. Each
lock manager performs rccovery action, and all
lock managers must complcte this activity before
cluster operation can continue.

As the first step in handling transitions, a lock
manager dcallocates all locks acquired on behalf
of other systems. Only local lock and resource
information is retained. Temporarily, there are no
resource masters or directory nodes. In the sec-
ond step, each lock manager re-acquires each
lock it had when the cluster transition began.
This step establishes new directory nodes based
on a new set of eligible cluster members and rear-
rangces the assignment of master nodes. If a node

18

Digital Technical Journal
No. 5 September 1987

has left the cluster, the net result is to releasc
locks held by that node. If no node has left the
cluster but nodes have joined, this recovery is not
necessary from an integrity point of view. It is
performed, however, to keep the directory and
lock mastering overhead evenly distributed.

Some resources, depending on how they arc
modified. might be leftin an inconsistent state by
a cluster transition. To ensure the proper han-
dling of such resources, users can define a class
of locks that are not released on a cluster transi-
tion. In this case a special process can search for
such locks and perform nceded consistency
checks before releasing them.

Batch and Print Services

In a VAXcluster system, users may either submit a
batch job to a queue on a particular node (not
necessarily their own node), or submit a job to a
clusterwide batch queue. Jobs on the clusterwide
queue are routed to queues attached to specific
nodes for execution. The algorithm for assigning
jobs to specific nodes is a simple one based on
the ratio of executing jobs compared to the job
limit of the quecue.

The management of batch jobs is the responsi-
bility of a VMS process called the job controller.
Each VMS node runs a job controller process,
which acquires work from one or more batch
queues. Batch queues are stored in a disk file that
may be shared by all nodes. The synchronization
of queue manipulation is handled with lock man-
agerservices.

Print queues are similar to batch queues. Users
may queue a request for a specific printer (not
necessarily physically attached to their own
node) or may let the operating system choose an
available printer from those in the cluster.

Both batch and print jobs can be declared
restartable. If a node fails, restartable jobs arc
cither requeued to complete on another node in
the cluster or executed when the failed node
reboots (for jobs that must execute on a specific
node).

DECnet Communications

Each member of a VAXcluster system can also
participate in a DECnet network as an individual
node. Simultaneously, the cluster as a whole may
participate in the network as a single node. The
cluster’s system manager may sclect an additional
DECnet node name and address, known as the

cluster’s alias, 10 be assigned to the cluster. DEC-
net connections originating from a cluster mem-
ber can be made to appear as if they came from
the alias node, regardless of the true originator.
Connections addressed to the alias will be
directed to any cluster member that has declared
itself willing to receive them. This concept is
particularly uscful for sending and receiving net-
work mail. All mail sent from the cluster will
appear to have come from a single node. All
replies will be delivered to the cluster’s mail files
even when the node from which the first message
was sent is unavailable (provided that the disk
remains available).

The VAXcluster DECnet alias address requires
the presence of at least one routing node in the
cluster. DECnet routing nodes maintain tables
describing the topology of the network and com-
municate this information to other nodes. The
existence of the cluster’s alias address is thus
propagated in control messages to other nodes in
the network. Although the alias node does not
actually exist, a path to it via the cluster’s router
is apparent. The router maintains a table of con-
nections to the alias node by mcans of the dis-
tributed lock manager. When a connect request
for the alias arrives at the router, it passes the
request to another node in the cluster, distribut-
ing the connections in a round-robin fashion.
Connect requests originating from the cluster
members arc simply set up as if they came from
the alias.

Terminal Support

The optimum method for connecting users’ ter-
minals to a VAXcluster system is through the LAT
server. Terminals are connected to the LAT server,
which is attached to the VAX systems by the Eth-
ernet. In a Local Area VAXcluster system, this
connection can be the same Ethernet used to
interconnect the members of the cluster. Users
command the LAT server to connect them either
to a spccific node or to any node in the cluster.
The case of switching nodes Ieads users to find
and usc the least busy node. The server also
allows users to quickly move from a failed node
to onc that is still running. If the LAT server is
directed to sclect a node, it attempts to find the
lcast busy one. Its choice is based on node CPU
type (a measure of processing power) and recent
idle time.

Digital Technical Journal
No. 5 September 1987

VAXcluster
Systems

The VAXcluster Concept: An Overview of a Distributed System

Performance

Performance measurements using a Cl-bascd
VAXcluster system of two VAX-11/780 systems
have shown it is possiblce to achieve 3,000 mes-
sage round-trips per second.?' A round-trip is
defined as the transmission of a message and the
receipt of its acknowledgment from the remote
system. This performance provides a basis for
efficient execution of higher level distributed
services, such as the VMS distributed lock man-
ager and the MSCP logical block service used
for access to mass storage. The performance
characteristics of Cl-based VAXcluster systems
vary almost linearly in relation to the number
of CI nodes in the system. From this it can bec
concluded that the underlying communications
architecture upon which the VAXcluster system
is based scales well with an increasing num-
ber of nodes. Measurements with up to twclve
VAX-11/780 nodes showed nearly linear perfor-
mance in cluster round trips per second.

The performance characteristics of a Local Arca
VAXcluster system are somewhat different for the
following reasons:

= The interconnect speed is limited to 10 mega-
bits per second, as opposed to 70 megabits per
second for the CI bus.

= The delay (i.e., latency) for message round
trips in the Ethernet network is somewhat
greater.

Because VMS VAXCcluster systems attached to
the Ethernet are optimized as single-user work-
stations, the limits of throughput and latency do
not present a problem. Workload studies have
shown that the limiting factor in Local Area VAX-
cluster performance is the rate at which the boot
node can scrvice the satellites’ mass storage /0
requests. These studies further indicate that this
limit in turn depends upon the CPU speed of the
boot node while executing both the Clport emu-
lation codc and the MSCP server code. For a fast
VAX system (e.g., a VAX 8700 CPU), the next
limit is imposed by the throughput of the Ether-
net adapter used by the boot node. The final
limit to be encountered is the saturation of the
Ethernet network itself. This limit is reached at
approximatcly 100 typical VMS [/O requests per
sccond and is largely independent of the number
of satellite and boot nodes accommodated by the
network. Note that the factors limiting the num-
ber and size of Local Area VAXcluster systems that

can bce sustained by a single Ethernet segment is
heavily dependent upon the nature of the appli-
cations being run.

Summary

A principal goal of VAXcluster systems was the
development of an available and extensible mul-
ticomputer system built from standard processors
and a genceral-purposce operating system. Much
was gained by the joint design of distributed soft-
ware, communications protocols, and hardware
aimed to mcet this goal. For example:

= The CI interconnect supports the fast message
transfer nceded by the system software.

= The CI port implements many of the functions
needed by the SCA software.

= The HSC controllers, with their message-pro-
tocol and request-queuing optimization logic,
support a large pool of disks for multiple
hosts.

Designing hardwarc and software together
allows for system-level trade-offs; the software
interfacc and protocols can be tuned to the hard-
ware devicces.

An important simplifying aspect of the VAX-
cluster design is the usc of a distributed lock
manager for resource synchronization. In this
way, higher level services such as the file system
do not require special code to handle sharing in
a distributed environment. However, the perfor-
mance of the lock manager becomes a crucial fac-
tor. The performance of the distributed lock
manager has been attacked with the design of
a locking protocol requiring a fixed number of
messages, independent of the number of cooper-
ating nodcs.

The system design of the original VAXcluster
implementation also allowed its straightforward
migration to the Ethernet without the need for
extensive hardware and software modification.
The Local Arca VAXcluster product allows work-
station uscrs to enjoy the benefits of a large, cen-
trally managed timesharing system on their indi-
vidual office system without having to deal with
the various system management tasks.

Finally, we believe that performance measure-
ments show the extent to which the VAXcluster
system has succeeded in implementing an cffi-
cient communications architecture that is appli-
cable to both a high-spced dedicated LAN (the
ClI bus) and a general-purposc shared LAN (the

20

Digital Technical Journal
No. 5 September 1987

Etherner). This feat is particularly impressive
when considering that the VMS software is a
large, general-purpose operating system.

Acknowledgments

VAXcluster systems are the result of work donce by
many individuals in several engineering groups at
Digital Equipment Corporation. We would partic-
ularly like to acknowledge the contributions of
Richard [. Hustvedt to the VAXcluster design.

References

1. G. Almes et al., “The EDEN System: A Tech-
nical Review,” IEEE Transactions on Soft-
ware Engineering SE-11 (January 1985):
43-59.

2. Apollo Domain Architecture (North Biller-
ica: Apollo Computer Corporation, 1981).

3. A. Brownbirdge, A. Marshall, and A. Randcll,
“The Newcastle Connection or UNIXES of
the World Unite!,” Software — Practical
Experiments 12 (1982): 1147-1162.

4. G. Popek et al.,, “LOCUS: A Network ‘Irans-
parent, High Reliability Distributed Sys-
tem,” Proceedings of the 8th Symposium
on Operating Systems Principles, ACM
(1981): 169-177.

5. G. Ficlland and D. Rodgers, “32-bit Com-
puter System Shares Load Equally Among Up
to 12 Processors,” Electrical Design (Scp-
tember 1984): 153-168.

6. K. Hwang and F. Briggs, Computer Architec-
ture and Parallel Processing. (New York:
McGraw-Hill, 1984).

7. M. Satyanarayanan, Multiprocessors: A Coni-
parative Study, (Englewood Cliffs: Pren-
tice-Hall, 1980).

8. W. Strecker, “VAX-11/780: A Virtual
Address Extension to the DEC PDP-11 Fam-
ily,” Proceedings of AIFIPS NCC (1978):
967-980.

9. J. Bartlett, “A Nonstop Kernel,” Proceedings
of the 8th Symposium on Operating Sys-
tems Principles, ACM (1981): 22-29.

10. A. Borg, J. Baumbach, and S. Glazer, “A Mcs-
sage System Supporting Fault Tolerance,”
Proceedings of the 9th Symposium on
Operating Systems Principles, ACM
(1983): 90-99.

11.

12.

13.

14.

15.

10.

17.

18.

19.

D. Katsuki et al.. “PLURIBUS — An Opcra-
tional Fault-tolerant Multiprocessor,” Pro-
ceedings of the IEEE 66 (October 1978):
1146-1159.

J. Katzman, “The Tandem 16: A Fault-toler-

ant Computing System,” Computer Struc-
tures: Principles and Examples, ed. D.
Siewiorck (New York: McGraw-Hill, 1982).

M. Fox and J. Ywoskus. “Local Area VAXclus-
ter Systems,” Digital Technical Journal
(September 1987, this issuc): S6-068.

R. Mctcalfe and D. Boggs. “Ethernet: Dis-
tributed Packet Switching for Local Com-
puter Newtworks,” Communications of the
ACM 19 (July 1976): 395-404.

The Ethernet: A Local Area Network, Data
Link layer and Physical Layer Specifica-
tion, Version 2.0 (Digital Equipment Cor-
poration, Intel Corporation, and Xerox Cor-
poration, Order No. AA-K759B-TK, 1982).

DECnet Digital Network Architecture
(Phase 1V) Maintenance Operations Func-
tional Specification (Bedford: Digital
Equipment Corporation, Order No. AA-
X4306A-TK, 1983).

D. Cheriton and W. Zwacnepoel, “The Dis-
tributed V Kernel and Its Performance for
Diskless Workstations,” Proceedings of the
9th Symposium on Operating Systems
Principles, ACM (1983): 129-140.

W. Snaman, Jr. and D. Thicl “The VAX/VMS
Distributed Lock Manager,” Digital Techni-
cal Journal (September 1987, this issue):
29-44.

A. Goldstein, “The Design and Implementa-
tion of a Distributed File System,” Digital
Technical Journal (September 1987, this
issuc): 45-55.

. J. Gray et al., “Granularity of Locks and

Dcgrees of Consistency in a Shared Data
Basc.” Modelling in Data Base Manage-
ment Systems, ed. G. Nijssen (Amsterdam:
North Holland, 19706).

. N. Kronenberg, H. Levy, and W. Strecker,

“VAXclusters: A Closely-Coupled Dis-
tributed System.” ACM Transactions on
Computer Systems, vol. 4, no. 2 (May
1986): 130-146.

Digital Technical Journal
No 5 September 1987

VAXcluster
Systems

DarrellJ. Duffy |

The System Communication

Architecture

The System Communication Architecture defines how data traffic is han-
dled among bost systems and their disk systems over the Cl interconnectin
a VAXcluster configuration. Low CPU overbead was a key design goal. The
SCA supports the management of cluster configurations, buffers, and con-
nections. It also supports directory services, datagram and sequenced-
message services, and named-buffer transfer services. The SCA can be
extended to connections between hosts and locally attached storage con-
trollers, and to Local Area VAXcluster systems, which use the Ethernet.
Each CI port is capable of sustaining about two megabytes per second of
bandwidth with minimal overbead required from a CPU.

The System Communication Architecture (SCA)
defines the network architecture for VAXcluster
systems, much like the Digital Network Architec-
ture (DNA) defines the network protocols for
Digital’s wide arca networks.!

In 1981, as the Computer Interconnect (Cl)
hardware was being developed, it became clear
that somce type of network architecture was
needed to bind the CI subsystems together. This
architecture required a relatively simple struc-
ture so that little overhead would be needed in
cither the VAX host computers or the Hierarchi-
cal Storage Controllers (HSC). Many of the sys-
tem processes within the systems and controllers
would have to communicate in, at that timc,
unforeseen ways. Therefore, the SCAarchitecture
had to support all the features and performance
of the CI hardware so they could be used by the
system processes.

The CI Interconnect
The Cl interconncect provides the following basic
services:?

= Sending datagrams, which are not guaranteed
against loss and duplication

= Scnding sequenced messages, which are guar-
antced against loss and duplication (If an error
occurs, the sending node on the CI intercon-
nect will be notified.)

= Named-buffer transfers, which are potentially
large darta transfers between process buffers in
virtual memory (These transfers arc also guar-
antced against loss and duplication.)

These services are very useful to the operating
system software when VAXcluster and other dis-
tributed systems are built. However, in the form
that the CI port provided those services, they
could not be shared conveniently by the many
parts of the operating system needing them.

The SCA architecture provides a simple and
cfficient means for the various parts of the operat-
ing system and the disk-controller software to use
these services.

SCA Geals

SCA was developed from the beginning with the
following sct of goals:

= To provide a high-performance mecans of
accessing and directing mass-storage control-
lers, and of transferring data

= To facilitatc access to and sharing of all the
capabilities of the Cl ports among many pro-
cesses within the operating systems of the host
computers

= ‘lo provide a way for cach system on the ClI
interconnect (e.g.. VAX host systems, disk and
tapc controllers) to obtain configuration infor-

22

Digital Tecbnical Journal
No. 5 September 1987

mation about every other system and which
functions each system performs

= To establish a means of binding together sys-
tem applications (SYSAPs) in two different
systems over the CI interconnect so that the
SYSAPs can communicate using their names

SYSAPs are functions within the operating sys-
tems of hosts and within the firmware of disk and
tape controllers. In host systems, those functions
include disk and tape class drivers, DECnet soft-
ware, and the VAXcluster connection manager,
among others.?

In single computer systems, command status
registers are used to direct the mass-storage con-
trollers and other devices. In VAXcluster systems,
however, the SCA network architecture would
now direct the traffic between host systems and
disk systems. One important design goal of SCA
was to make it operate as efficiently as possible,
thatis, with low overhead on the systems.

SCA Services

The SCA architecture supports the performance
of six different functions.

1. Cluster configuration management

2. Buffer management

3. Connection management

4. Dircctory services

5. Datagram and sequenced-message services
6. Named-buffer transfer services

The following sections describe each of these
functions and show how they interoperate to
provide a coherent scheme for system communi-
cation.

Cluster Configuration Management

A node on the CI interconnect is either a VAX
computer system or an HSC controller support-
ing disc or tape devices. Within the cluster, a
node cannot communicate with another nodc
until it has established that node’s location on the
Cl interconnect. At present, 16 nodes is the maxi-
mum number the CI interconnect can support,
although the architecture can support 224. Sincc
this current number is small, polling is an effi-
cient method for each node to determine which
of the potential nodes are present. There is an
“instance” of the SCA software within each of the

hardwarc components connected to the CI inter-
connect. Using the ID request/response feature
of the CI ports, SCA software periodically polls
each of the other nodes on the CI and keeps a list
of the active members in the hardware cluster.
Using the information in this list, the SCA soft-
ware keeps a port-to-port virtual circuit open to
every other node on the interconnect.

SCA software opens this port-to-port virtual cir-
cuit by using a series of messages, called a hand-
shake, between itself and another SCA software
instance in a partner node. The handshake allows
the two SCA instances to first synchronize and
then exchange information. At the end of the
handshake each node will direct its local CI port
to enable the virtual circuit state with the other
node’s CI port. This enabling allows the guaran-
teed cxchange of sequenced messages and
named-buffer transfers between the two ports.

The information exchanged in the handshake
gives to each node the software type and SCA ver-
sion running on the other node. That allows
nodes with different SCA versions to interoperate.
Other information, such as the time of day and
the time the node last booted, is also exchanged.

A node with multiple CI ports will use all its
ports to form port-to-port virtual circuits to all
the other remote nodes. Each node will store
information about each of the remote nodes in a
system block for that remote node. Each port-to-
port virtual circuit is called a path. The informa-
tion blocks representing these paths, called path
blocks. are chained together to the system block
for a particular remote node. In that way, SCA can
maintain the exact relationships among the paths
and nodecs.

The total number of paths between two nodes
is equal to the number of Cl ports on the local
node times the number of Cl ports on the remote
node. SYSAPs in both the local and remote nodes
can detcrmine the topology of the CI intercon-
ncct by making special calls to SCA software. Fig-
ure 1 depicts an example of the relationship
between system blocks and path blocks for a net-
work.

Buffer Management

One of SCA’'s most important properties is its
close control over how the communications
buffers arc used within the nodes. This control is
important because node activity normally occurs
at very high data rates. The buffers could be

Digital Technical Journal
No. 5 September 1987

23

VAXcluster
Systems

The System Communication Architecture

SYSTEM PATH PATH PATH

BLOCK A [™| BLOCK [T ™| BLOCK BLOCK

SYSTEM PATH PATH

BLOCK B ™| BLOCK BLOCK

SYSTEM PATH PATH PATH

BLOCK C ™| BLOCK BLOCK BLOCK
Figure 1 Connections between System

and Path Blocks

quickly overrun if data transmission were not
strictly controlled from the source. Recovery
from buffer exhaustion is not a rapid process.
During periods of high load within the node,
these delays yield further delays and thus
increase the requirements for buffering.

SCA software controls the buffers for two types
of traffic: SCA control messages, and SYSAP data
messages. SCA control messages are used to estab-
lish and remove SYSAP-to-SYSAP conncctions and
to control buffer usage on those connections. The
SCA control-message protocol is structured so as
to simplify the control of buffer usage.

Control messages come in pairs, a command
and its responsc. A response is expected for each
command sent, and a buffer must be available to
receive it. The SCA architecture specifies that a
response will be received for cach command
sent. Therefore, a command buffer is made
available on the free queue of the CI port to
receive the response. Thus each SCA path has two
buffers available for control messages, one for
sending a command and receiving its response,
the other for receiving a command and sending
its responsc.

Allocating buffers for SYSAP dialogues is not
as simple as thc command/response alloca-
tion. In this casc, the buffer allocation must be
based on the necds of the protocol used by the
SYSAPs. Some protocols are command/responsc
in nature, such as the Mass Storage Control Proto-
col (MSCP) used for the HSC and other storage
controllers. Others are not, such as the VMS con-
nection-manager protocol used for VAXcluster
systems.

SCA architecture c¢nables the SYSAPs on a node
to allocate as many reccive buffers as arc nceded
for cach connection. Each SYSAP provides these
bufters to SCA. which then keeps track of them,
Lach receive buffer acts as a “credit” to allow the
ot her node to send one message over that con-
ncction. The node’s SCA software informs the
remote SCA software of the number of credits
available for each conncction. [f a credit is not
available, the remote SYSAP will suspend sending
its message. This style of buffer management is
called “pessimistic flow control.” [t is normally
unsuitable for use in general networks involving
routing messages between nodes. However, since
routing is not donc in the SCA environment, this
style has the advantage of being completely pre-
dictable. If a node momentarily lags in satisfying
communication requests made upon it, the other
nodes simply wait until the lagging node recov-
crs. Thus no additional buffer management is
required.

The cost of these tight controls on buffer man-
agement is some additional overhead to commu-
nicate the credits to the sending node. These
credits are “piggybacked” onto messages going to
the correct node by including a credit field in all
SCA messages. When the SYSAP protocol does not
contain returning traffic, however, additional
control messages are required.

The command/response nature of SCA control
messages and the pessimistic flow control for
SYSAP messages remove much of the time-related
behavior from the SCA architecture. That means
the SCA operation is relatively independent of the
cxact timing of the arrival of messages and the
speed of response of the nodes involved in the
communication. Thesc factors make it relatively
casy toimplement and verify the SCA software.

Connection Management
A connection between two SYSAPs in different
nodces is a correspondence between two connec-
tion identifiers, onc ftrom each SCA instance.
These connection identifiers allow the SCA soft-
ware to multiplex its services onto the underly-
ing virtual circuit by dispatching the messages to
the correct connection based on the connection
identifiers. Each SCA message has a header con-
taining these conncction identifiers. Figure 2
shows the layout of an SCA message with the for-
mat of the protocol header.

When a node receives a message, SCA will dis-
patch it based on the message type. For SYSAP-

24

Digital Technical Journal
No. 5 September 1987

1),

W
W

Cl PORT HEADER

b))

CREDITS MSG TYPE

SCA PROTOCOL

DESTINATION CONNECTION ID HEADER

SOURCE CONNECTION ID

= SYSAP MESSAGE CONTENTS Az

Figure 2 SCA Message with Protocol Heacder

related messages, SCA uses the 1D of the destina-
tion connection to dispatch further to the correct
SYSAP. As mentioned earlier, the credit field in
each message header allows credits to be piggy-
backed in message traffic.

A SYSAP signals its willingness to receive con-
nections from other SYSAPs by initiating a “lis-
ten” call to its own SCA so ftware instance. This
call establishes the name of that SYSAP in a list
of names of waiting processes. SYSAP namcs
are defined by the architecture as strings of up
to 16 characters. Some of the currently defined
names are MSCPSDISK and MSCPSTAPE for
the disk and tape servers, VMS$VAXcluster for
the VAXcluster connection manager, and
SCSSDIRECTORY for the SCA dircctory server.

A SYSAP from another node, the source nodc,
can establish a connection to a listening SYSAP in
a destination node by issuing a connect call to
SCA, giving the node address of the destination
node and thc name of the listening SYSAP. Two
SCA control-message pairs are rcquired to c¢stab-
lish a connection. The first command/responsc
pair from the source establishes the connection at
the destination end; the second pair from the dces-
tination to the source either accepts or rejects the

SYSTEM A

SENDING SYSAP STARTS

connection. This separation into pairs allows the
destination SYSAP to decidc, based on the infor-
mation passed with the connect request from the
sourcc and on its current resources, whether or
not to accept the connection.

Figurc 3 illustrates the events required to es-
tablish a connection betwecen two SYSAPs. The
sequencc of messages is as follows:

1. A conncct-request message is sent from the
source node to the destination node. This
message contains the source and destination
SYSAP names and 16 bytes of additional in-
formation from the sourcc SYSAP.

2. A conncct-response message is sent from the
destination node to the source node. This
message indicates that a SYSAP with the
requested name exists and that enough re-
sourcces are present for SCA to honor a con-
nection. If there are not enough resources,
then the connection is refused.

3. Latcr, the destination SYSAP performs either
an accept or a reject call, and its SCA soft-
warc responds by sending either an accept-
requcest message or a reject-request message
to the source node.

NN

If thc message was accept request, the
sourcce will respond with an accept-response
message and notify its SYSAP that the con-
nection is open. If the message was a reject
request, the source SCA software will re-
spond with its own rcject response, and the
connection will not be opened.

The accept and reject responses by the receiv-
ing SYSAP arc separated from the connect-request
and conncct-response message pair. That separa-
tion allows the SYSAP to initiate a potentially

SYSTEM B

CONNECT REQUEST MESSAGE

CALL CONNECT (system B.” SYSAPname’)

» CALL LISTEN ('SYSAPname’)

CONNECT RESPONSE MESSAGE

A

ACCEPT SIGNALLED TO SENDING SYSAP. -

CONNECT REQUEST SIGNALLED
SYSAPname SYSAP.
CALL ACCEPT (CONNECT ID)

ACCEPT REQUEST MESSAGE

CONNECTION OPEN TO SYSTEM B

ACCEPT RESPONSE MESSAGE

Figure 3

CONNECTION OPEN TO SYSTEM A

 /

Events to Open a Connection

Digital Technical Journal
No. 5 September 1987

25

VAXcluster
Systems

The System Communication Architecture

time-consuming operation without tying up the
SCA control-message buffer of the sending SCA
instance.

When either member of a pair of SYSAPs hold-
ing an open connection wishes to break that con-
nection, that member performs a disconncct call
to its SCA softwarc. The SCA software will inform
the SYSAP in the other node. which must then
perform its own disconnect call to synchronize
the dismantling of the connection. Each sidc
informs thce other of the disconnect call by
cxchanging a disconnect-request and disconncect-
response message pair.

Directory Services

To accomplish their tasks, the various SYSAPs
running within a node need the help of SYSAPs in
other nodes. These SYSAPs operate either in a
pceer-to-peer relationship, such as the VAXcluster
connection manager,* or in a client-to-server rela-
tionship, such as the disk class driver and the
MSCP disk server. The method by which SYSAPs
find those other SYSAPs within the context of SCA
is called the dircctory service. This scrvice is
itself implemented as a SYSAP that listens for
incoming conncctions. The service responds to a
simple protocol of requests for information about
which SYSAPs on this node are listening for con-
nections from other nodes.

To query the directory service, a SYSAP must
request an SCA connection to another node with a
destination process name of SCSSDIRECTORY.
This special process name is reserved for usc by
the directory services. The requesting SYSAP can
then inquire if a SYSAP with a particular name is
listening for a connection and also ask for a list of
all SYSAPs currently listening for connections.
Figure 4 shows two VAX systems and an HSC
device in a cluster, with the SYSAP processces lis-
tening in each nodc.

SCS$DIRECTORY
VMS$VAXcluster

SCS3$DIRECTORY
VAX A'| VMS$VAXcluster VAX B
MSCP$DISK

SCS$DIRECTORY
HSC MSCPS$DISK
MSCP$TAPE

Figure 4 SYSAP Processes among Three Nodes

Every implementation of a SYSAP has the prob-
lem of finding partner SYSAPs of the same name
to communicate with in the cluster. To centralize
the software performing this function, the VAX/
VMS software implements a genceral facility for
SYSAPs to find other SYSAPs. This facility periodi-
cally polls other nodes through the directory ser-
vice to dctermine which listening SYSAPs arc
present. This process poller is a powcrful tool
that simplifics the design of the SYSAPs and the
operating system software by allowing various
SYSAPs to start in one node without depending on
whether or not other nodes are working yet.
When new nodes — and the SYSAPs within those
nodes — arc added to the cluster, all the SYSAPs
currently running will find each other and com-
municatc automatically.

Datagram and
Sequenced-message Services

The CI port and the CI interconncect provide
the capability to e¢xchange datagrams and
sequenced messages between ports. Datagram
and sequenced-message services are both pro-
vided by SCA in the context of a conncction. A
SYSAP cstablishes a connection with another
SYSAP and then sends datagrams or messages over
that conncection. In the context of SCA, datagrams
and messages, by convention, differ in size as
well as in their delivery mechanisms. Datagrams
are 5706 bytes in length so that they are suitable
for usc by the DECnet protocol as datalink
buffers. Messages are 112 bytes in length to
accommodate MSCP control messages and VAX/
VMS lock manager messages.

Controlling the flow of credits for datagrams
and messages is done separately by SCA. Data-
gram credit controls operate at the recciver. The
receiving of datagrams is not guarantced. Upon
receiving a datagram, a SYSAP must have avail-
able a datagram-rcceive credit; otherwisce. the
datagram is discarded. The recciving of messages.
however, is guarantecd. Message-credit controls
are instituted at the sending node. When a SYSAP
wants to send a message, the receiving node must
have a credit available. If not, the sending SYSAP
waits and docs not send the message until
informed that the creditis available.

As mentioned carlier, the port-to-port virtual
circuit provided by the CI port hardware controls
the loss of scquenced messages hetween nodes.
The circuit retransmits these messages as neces-
sary to guarantcce their delivery. In fact, the hard-

Digital Technical Journal
No. 5 September 1987

ware performs this task for CI datagrams as well,
but higher layers of software do not take advan-
tage of this fact.

Datagrams are used to log events and other
communications, such as from DECnet nodes,
that control the loss of datagrams in other ways. It
is useful in these applications to discard informa-
tion when buffering becomes a problem so that
too many buffers are not consumed. In the case of
event logging, the lost messages are likely to be
duplicates anyway. In the case of the DECnet soft-
ware, higher layers of DECnet protocol control
the loss, and discarding the datagrams prevents
congestion at intermediate nodes.

SCA and the CI port work together to make
message transfer more efficient by eliminating
transmit-done interrupts. When a node expects a
response to a message, SCA and the CI port coop-
erate to queue the buffer sending the message to
the free queue. That buffer can then be used to
receive the response. Thus in a command/
response exchange of two messages, the sending
and receiving nodes each experience only one
receive interrupt.

Named-buffer Transfer Services

One striking feature of the CI port hardware is its
ability to transfer large amounts of data between
named buffers in the virtual address space of pro-
cesses within a node.? This feature is the most
useful one for disk and tape transfers.

SCA provides services for the two named-buffer
transfer commands available in the CI port: the
send-data command, and the request-data com-
mand. The send-data command transmits the con-
tents of a segment of a local named buffer into a
segment of a named buffer in a remote node. The
parameters for the send-data command are thce
transfer length in bytes, and the names and byte
offsets of the sending and recciving buffers. The
request-data command asks the remote port to
transmit data from a remote named buffer to a
local named buffer. The send-data command per-
formed by a disk controller corresponds to a disk
read function, and the request-data command to a
disk write function.

Of coursc, named-buffer transfers can be uscd
by any SYSAP, not just the ones communicating
with disk controllers. Using named-buffer trans-
fers, it is possible for two VAX systems in a clus-
ter to exchange memory data at a transfer ratc of
over 2 megabytes persecond at the CI ports.

Extensions to Other Interconnects

To this point, only the CI implementation of SCA
has been discussed. However, the utility of SCA
is not limited solely to the Cl interconnect. SCA
is a gencral network communication architec-
ture that can serve a number of interconnects.
For example, it is currently used in locally con-
nected storage controllers and on Ethernet for
low-end VAXcluster systems.

Locally Connected Storage Controllers

The UDASO UNIBUS and KDBSO BI disk con-
trollers arc locally connected storage controllers
that conncct Digital Storage Architecture (DSA)
disk drives to VAX computers without an inter-
vening Cl interconnect. These devices are intelli-
gent controllers that incorporate the SCA and
MSCP protocols, just as does the HSC50 Cl-based
disk controller. The use of SCA in these con-
trollers has proven to be an efficient means to
communicate with disk controllers in which a
direct bus interface has traditionally been used.
In controllers, there is no interconnect be-
tween the host adapter and the disk controller;
both functions are performed by the same con-
troller. Although the port header has been simpli-
fied because it does not have to address multiple
ports on an interconnect, the basic SCA functions
still operate. The use of SCA allows multiple
functions to be placed in a controller and used
scparately by having them appear as SYSAPs with
different namcs. For example, disk and tape con-
troller functions can both co-reside in a con-
troller but arc accessed via different SYSAPs.

Adapting SCA to Ethernet

Digital decided to extend the VAXcluster archi-
tecture to the Ethernet in order to support work-
stations and other Ethernet-based systems. The
most obvious way to accomplish that extension
was to build a port emulator for the CI capabili-
ties on top of the datagram capabilities of the Eth-
ernet adapters. Such a port emulator performs
the functions of a CI port in software written as
a driver running under the VMS system. SCA
extends naturally in this way since the Ethernet
has the fundamental properties expected of a net-
work to be used by SCA. That is, Ethernet is a
multiaccess media in which the nodes need not
be concerned with how packets are routed to
their final destinations.

Digital Technical Journal
No. 5 September 1987

VAXcluster
Systems

The System Communication Architecture

SCA Performance

VAXcluster performance greatly depends on the
performance of SCA, in terms of messages and
bytes transferred per second, and on the overhcad
on the system software performing the transfer.
Not only does SCA perform storage access, it also
sends the lock manager messages that allow VAX-
cluster systems to share devices and files. SCA,
together with the CI port design, is indecd a
high-performance and low-overhead intercon-
nect. Forexample, on a VAX-11/780 system, over
3000 sequenced-message round trips per second
can be exchanged with another VAX system. Yet,
only about 300 microseconds of CPU overhcad
are required to send and receive each message
pair. Each CI port will sustain approximatcly
2 megabytes per second of named-buffer trans-
fer bandwidth with no overhead on the part of
the CPU. Each mass storage operation requircs
a sequenced-message pair and a named-buftfer
transfer initiated by the HSCSO0 disk control-
ler. Therefore, the CPU overhead of SCA soft-
ware alone for these functions is only about
300 microseconds. The storage transfer itself can
proceed at the rate of about 2 megabytes per
second for long transfers to disk or between host
systems.

Summary

SCA is a high-performance network architecture
developed to allow the CI interconnect to bc
shared among the various functions required in
VAXcluster systems. Among these functions arc
mass-storage and tape-storage access, which had
traditionally been done using direct control over
a bus instead of a network message-passing proto-
col. SCA has proven to be a highly efficient mcans
both to control storage access and to allow VAX
host systems to communicate. Its flexibility per-
mits its use to be extended to direct local-storage
controllers and to other interconnects such as
Ethernet.

Acknowledgments

A large number of people contributed to the SCA
architecture and its implementations. Without
their efforts, SCA could not have met its goals and
would not be so widely used. Thanks also to all
the folks who have reviewcd and contributed
helpful suggestions to this paper.

References
1. A. Lauck, D. Oran, and R. Perlman, "“Digital
Network Architecture Overview,” Digital
Technical Journal (Septcmber 19806):
10-24.

o

N. Kronenberg, H. Levy, W. Strecker, and R.
Merewood, “The VAXcluster Concept: An
Overview of a Distributed System,” Digital
Technical Journal (Scptember 1987, this
issue): 7-21.

3. W. Snaman, Jr. and D. Thiel, “The VAX/VMS
Distributed Lock Manager,” Digital Techni-
cal Journal (September 1987, this issue):
29-44.

4. N. Kronenberg, H. Levy, and W. Streckecr,
“VAXclusters: A Closcly-Coupled Distribu-
tion System,” ACM Transactions on Com-
puter Systems, vol. 4, no. 2 (May 1980):
130-146.

28

Digital Technical Journal
No. 5 September 1987

William E. Snaman, Jr.
David W. Thiel

The VAX /VMS Distributed

Lock Manager

The VMS distributed lock manager provides the synchronization mecha-
nism needed to ensure transparent and reliable data sharing between
nodes in a VAXcluster system. The lock manager provides services for
mutual exclusion and event notification, and achieves bigh performance
by minimizing the number of messages sent between nodes. The lock man-
ager also bandles deadlock situations with a minimum of messages
exchanged. Since processors systems can join or leave a cluster at any
time, a connection manager was developed to bandle reconfigurations in

a dynamic, efficient manner.

Development Background

As people and organizations came to depend
heavily on computer systems to perform their
daily activities, it became increasingly obvious
that they needed continuous access to the vital
data stored in those computer systems. Moreover,
growing organizations were faced with a need to
incrementally increasc the amount of computing
power availablc to them over an extended period
of time. In the past, their options were usually
limited to either buying more than needed ini-
tially or facing painful upgrades and application
conversions as the systems were outgrown. The
emergence of bus technologies, such as Digital’s
Computer Interconnect (CI) and the Ethernet,
provided an opportunity to combine multiple
processors and storage controllers into closely
coupled distributed systems. Such systems could
provide the needed data availability and incre-
mental growth characteristics. The VAXcluster
system was developed to answer those needs.!

To encompass the VAXcluster concept, the VMS
opcrating system was extended to provide trans-
parent data sharing and dynamic adjustment to
changes in the underlying hardware configura-
tion. These extensions make it possible for multi-
ple processors, storage controllers, disks, and
tapes to be dynamically added to a VAXcluster
system configuration. Thus a small system can be
purchased initially and expanded as needed by
adding computing and storage resources with no
software modifications or application conver-

Digital Technical Journal
No. 5 September 1987

sions. New devices can even be added without
shutting down operations. The ability to use
redundant processors and storage controllers vir-
tually eliminates single points of failure.

The VMS software running on each processor
node in a VAXcluster system provides a high level
of transparent data sharing and independent fail-
ure characteristics. Each processor runs its own
copy of the operating system and interacts with
the other processors to form a cooperating dis-
tributed operating system. In this system, all
disks and the files residing on them are accessible
from any processor in exactly the same fashion as
if those files were connected to a single proces-
sor. They can be transparently shared at the
record level by application software.

One of the challenges of putting together such
a system is to provide both maximum perfor-
mance and a very high level of reliability. A data-
sharing modcl was chosen as the design center
rather than a client-server model. In the data-
sharing model, data resources are made directly
available to all processors, which must coordi-
nate their accesses to those resources. This model
contrasts with that of the client-scrver, in which
the server mediates access to the data. The data-
sharing modcl climinates potential bottlenecks
that develop around heavily utilized scrvers, pro-
vides bctter opportunities for parallelism, and
avoids the scrveras a single point of failure.

In 1982, the first lock manager was provided
in version 3.0 of the VAX/VMS operating system.

The VAX/VMS Distributed Lock Manager

The lock manager provided synchronization scr-
vices for multiple processes residing on a single
processor, as well as decadlock detection.? Con-
currently, design work was under way for a dis-
tributed version of this lock manager. The dis-
tributed lock manager wasreleased in 1984 with
version 4.0 of the VAX/VMS operating system; the
CI bus was used as the communications medium.
In 1986, the Local Area VAXcluster system was
released.? This system has the same locking and
other algorithms as the Cl-based VAXclustcr sys-
tem, but uses the Ethernet as the communications
interconnect.

Lock Manager Description

This paper describes the distributed lock man-
ager, which is the basic synchronization mecha-
nism for VAXcluster systems. The lock manager
permits the high degree of transparent data
sharing attained by the VMS system by providing
a set of services uscd by coopcerating processes to
synchronize access to shared resources. These
processes can reside on any or all of the VAX pro-
cessors that comprise a VAXcluster system. In
this paper, the terms “node” and “processor” are
used interchangeably to refer to VAX processors.

Each resource in a VAXcluster system is repre-
sented by a unique abstract name that is agreed
upon by all the cooperating processes. This name
is entered into a distributed global namespace
that is maintained by the distributed lock man-
ager. Cooperating processes can use the lock
manager as a mechanism to mediate access to a
resource by requesting locks on the abstract rep-
resentation before accessing the actual resource.

The lock manager does not actually allocate
or control the resource, and there is no require-
ment that the name represent an actual physical
resource. This permits the lock managcr scrvices
to be used for event notification and other com-
munication functions, in addition to mutual-
exclusion functions. Dcadlock detection is also
provided.

To permit maximum concurrency, resource
names can be tree structured, and locks can be
requested at modes that permit varying degreces
of sharing. Many resources have an inhcrent
hierarchical structure that permits diffcrent parts
to be accessed by diffcerent processes at the same
time. For ¢xample, a disk can contain various
files, each in turn containing records. This struc-
ture allows different records of the same file,
and different files to be updated concurrently.

30

Providing trec-structured resourcc names per-
mits locks to be requested at different levels of
the hicrarchy.*

In the lock manager, six lock modes are repre-
sented by an abstract matrix that dcfines whether
or not a given mode is compatible with another
mode. An application designer can interpret
thesc modcs as sctting limits on how a resource
can be accessed (e.g., no access, read, or write).
The modes can also be interpreted as setting lim-
its on how a resource is shared (i.e., permit read
access, write access, or no access to others). Lock
requests that are granted at one mode can be con-
verted to a more or less restrictive mode. Table 1
describes the compatibility of each lock mode;
Table 2 contains the suggested intcerpretation of
each mode.

The services provided by the distributed lock
manager arc flexible enough to be used by coop-
erating processes for mutual exclusion, syn-
chronization. and event notification. These ser-
vices arc known as the SENQ (lock) and SDEQ
(unlock) system services. The SENQ system ser-
vice allows a process to request a lock on a
resource. The lock request is then cither granted
or denied by the lock manager, based on the
modc of other locks that are granted on the
resource. The 8ENQ service allows a caller to
queue a lock request and either wait for the
request to be granted or continue execution. The
caller can also signify that the request should not
be queued. In this case the status is returned in
the event that the request cannot be granted
immcdiately.

If a caller chooses to queue a lock request and
continuce c¢xcecution, the SENQ scrvice provides
asynchronous notification when the lock request
is granted. The caller can specify a routine to be
called when the lock request is granted. This

Table 1 Compatibility of Lock Modes

Mode of

Requested Mode of Currently Granted Lock
Lock NL CR CW PR PW EX
NL Yes Yes Yes Yes Yes Yes
CR Yes Yes Yes Yes Yes No
CwW Yes Yes Yes No No No
PR Yes Yes No Yes No No
PW Yes Yes No No No No
EX Yes No No No No No
NL - Null lock CR - Concurrent read

CW - Concurrent write PR - Protected read
PW - Protected write EX - Exclusive lock

Digital Technical Journal
Ne. 5 September 1987

ability to spccify a routine permits queuing a
request in a way that lcaves the process frec to
carry on other functions until the request is
granted. The notification mechanism used is
called a completion asynchronous system trap
(AST).

The SENQ scrvice also provides a notification
mechanism whereby a process that has been
granted a lock on a resource can be notified when
another process is waiting for it to releasc the
lock. This mechanism, known as a blocking AST,
can provide an important performance optimiza-
tion when a resource is shared infrequently. After
acquiring a lock. the holder can access the
resource multiple times without further lock-
ing until notified by a blocking AST that another
process is waiting for it to releasc the lock. The

Table 2 Modes at which Locks Can Be

Requested

Mode Suggested Interpretation of Mode

NL Null mode grants no access to the
resource; it is typically used either as an
indicator of interest in the resource or as a
place holder for future lock conversions.

CR Concurrent read mode grants read access
to the resource and allows its sharing with
other readers. The concurrent read mode is
generally used either when additional lock-
ing is being performed at a finer granularity
with sublocks or to read data from a
resource in an “‘unprotected” fashion
(allowing simultaneous writes to the
resource).

CwW Concurrent write mode grants write access
to the resource and allows its sharing with
other writers. The concurrent write mode is
typically used either to perform additional
locking at a finer granularity, or to write in
an “unprotected” fashion.

PR Protected read mode grants read access to
the resource and allows its sharing with
other readers. No writers are allowed
access to the resource. This mode is the
traditional “share lock.”

PW Protected write mode grants write access
to the resource and allows its sharing with
concurrent read-mode readers. No other
writers are allowed access to the resource.
This mode is the traditional “update lock.”

EX Exclusive mode grants write access to the
resource and prevents it sharing with any
other readers or writers. This mode is the
traditional “exclusive lock.”

Digital Technical Journal
No. 5 September 1987

holder then stops accessing the resource and
rcleases the lock, thus permitting the lock re-
quest of the other process to be granted.

Applications can be designed that dynamically
change their locking protocol from blocking
ASTs (during periods of low contention) to a
request-release protocol (during periods of high
contention).

Another use for the blocking AST is to implec-
ment a “door-bell” notification mechanism in
which a process takes out a lock and specifies a
blocking AST. When another process wants to get
the first process’s attention, it makes an incom-
patible lock request that results in the delivery of
a blocking AST to the first process.

A 106-byte valuc block associated with cach
resource functions as a small piece of global
memory that is atomically updated. The contents
of a valuc block are optionally returned when a
lock is granted, and updated when an exclusive
(EX) or protected write (PW) mode lock is
released. Paramcters on the lock and unlock
requests control the use of a value block.

A value block can be used to help implement
local caching of disk data. The resource repre-
sents the data being accessed and locks arce used
to provide mutual exclusion. A value block asso-
ciated with the resource is used to maintain a
sequence number representing the current ver-
sion of data stored on the disk. Whenever data is
initially rcad from the disk into a local buffer, a
lock is first obtained, and the version number
containcd in the value block is saved with the
data that is read. Whencever the data is to be modi-
fied, a lock is first obtained, then the buffer is
updated and written back to the disk. When the
lock is rcleased. an updated version number is
stored in the value block representing the new
version of the data on the disk. Upon subsequent
reads by this or any other node in the VAXcluster
system. a lock is first obtained. and the sequence
number contained in the value block is com-
pared to the sequence number stored with the
locally cached data. Whenever the sequence
numbers match, the cache is valid and no disk
read is required.’

Value blocks can also be used for communica-
tion between processces.

The SDEQ system service is used to indicate
that a process no longer wants to mainrain a lock
on the resource. Part of its function is to option-
ally update the value block when the mode of the
lock being released is either PW or EX.

31

VAXcluster
Systems

The VAX/VMS Distributed Lock Manager

Design Constraints and Goals

Several constraints were placed on the design of
the distributed lock manager, the most impor-
tant one being that it had to be extremely rcli-
able. This constraint was vital since the VMS file
system, the Record Management System, several
database systems, and other critical products
would depend on the lock manager to maintain
the integrity of their resources. The lock manager
had to be general enough so that many different
applications could be built using its services,
thus avoiding the creation of a separate synchro-
nization tool for each application. Moreover, the
lock manager had to have very high pecrform-
ance characteristics and be able to tolerate the
failure of an arbitrary number of processcs or
nodes.

For performance reasons, it was essential to
minimize the number of messages exchanged
between the various nodes. This was espccially
important as the number of nodes increased.
Additionally, minimum penalties should bec
imposed when all the cooperating proccsses
reside on a single processor. The goal was to have
the cost increase no more than linearly as the
number of nodes increased. In fact, what was
attained was a cost bounded by a small constant
that is independent of the number of nodes that
exist in a VAXcluster system.

Relationship between the Distributed
Lock Manager and the Connection
Manager

As the lock manager was being developed, it
became clear that a need existed to separate the
function of managing a dynamic configuration of
processors from that of managing the resource
namespace. This separation required the creation
of anew entity, the connection manager. The dis-
tributed lock manager relies on the conncction
manager for several vital services.

The connection manager maintains a globally
consistent list of all processors that are in the
VAXcluster system at any given instant. To main-
tain this consistency, the connection managcr uti-
lizes a very strong notion of cluster membership
and orchestrates the addition and removal of
nodes. Part of that orchestration process is the
coordination of the distributed lock manager’s
task of rebuilding a database describing the lock-
ing namespace and state whenever the configura-
tion changes.

Another function of the connection manager is
to prevent the partitioning of the namespace.
This partitioning could happen if the distributed
lock managers in disjoint subsets of nodes oper-
ated independently. They could do so in the
event of a communications failure, or a “rolling”
power failurc a nd recovery cycle. In these situa-
tions, any objects accessible to multiple subsets
could be inconsistently accessed and therefore
corrupted. The connection manager uses a voting
algorithm to ensure that the set of available pro-
cessors cannot be split into two or more function-
ing groups if communications fail. This approach
requires that only a very limited amount of global
information (i.e., the number of votes held by a
node and the total number of votes available to
the entire set of member nodes) be known by
cach system. Furthermore, protection is given
against a very wide sct of failures because there
are no additional underlying assumptions about
failure mechanisms.

The final function is a communications ser-
vice that provides a virtual circuit between each
member node of a VAXcluster system. This ser-
vice ensurcs the reliable delivery of sequenced
messages. If messages cannot be dclivered in
sequence, the virtual circuit will break. The
most significant characteristic of this service
is that cluster membership and the existence of
the virtual circuit are tightly coupled. The
virtual circuit must exist for a pair of nodes to
become or remain part of a VAXcluster system.
A failure of the virtual circuit, therefore, requires
the removal from the cluster of at least one of the
nodces terminating that circuit. This approach
greatly simplified the design of the distributed
lock manager because only one type of communi-
cations failure is visible to it. The required action
upon the occasion of such a failure is made sim-
pler becausc it is certain to be followed by a
change in the cluster’s membership. Such a
change involves rebuilding the distributed lock
managcer’s database.

The Operation of the Distributed
Lock Manager

The following section describes the operation of
the distributed lock manager when all lock
requests can be granted immediately. A later sec-
tion discusses its opcration under conditions of
contention. Table 3 gives definitions of the terms
used in describing these operations.

Digital Technical Journal
No. 5 September 1987

Table 3

Terms and Definitions

Term

Definition

Resource tree

The lock manager allows names to be structured in a hierarchical fashion. For example,
the root resource can represent a device; its child, referred to as a sub-resource, can
represent a file on that device; and another subresource beneath it can represent a
record.

Lock request

The request by a process for a lock on a resource.

Root-lock

The lock request for a resource at the root of a resource tree.

Sublock

The lock request for a resource below the root of a resource tree.

Resource manager

The node that controls the granting of lock requests on a given resource tree for which
it maintains information about all granted and waiting lock requests. All nodes are
potentially resource managers, each handling a particular subset of the set of resource
trees.

Directory service

The directory service provides a mechanism to locate the current resource manager. This
service is needed because lock requests must be directed to the resource manager,
which may change over time. The directory function is distributed among the various
nodes in a VAXcluster system, each node providing the function for a subset of the
resource trees. This distribution eliminates potential performance bottienecks.

Lock mode

The mode of a lock request indicates the type of lock being requested, such as NL, PR,
or EX. By convention, the mode represents the type of access to the resource that is
being requested, such as read, write, or no access. It also indicates a willingness to

permit others to share the resource.

An Initial Lock Request on a

Root Resource

When a process somewhere in a VAXcluster sys-
tem requests a root-lock, the distributed lock
manager must first identify which node is cur-
rently managing the resource tree. The resource
name specified by the lock request is hashed, and
the resultant value is applied to a vector contain-
ing zero or more entries for every node currently
in the cluster. The selected vector entry identi-
fies the directory node for the resource specified.
A message is then sent to this node requesting a
lock on the resource. The building and sending
of a message can be avoided if the node making
the request is also the directory node.

The vector is maintained by the connection
manager, which ensures that the vector is
updated whenever a node enters or leaves the
cluster. The connection manager also ensures
that the vector is identical on all nodes. Each
node can request that it be entered zero or more
times in the directory vector, depending on the
extent to which the node wants to participate in
the distributed directory function.

Upon receiving the message, the directory
node can respond in any of three ways. First, it
can indicate that the node making the request
should manage the resource itself. Second, it can

indicate that the request should be re-sent to
another node that is already managing the
resource. Finally, it can respond to the request
directly, since the directory node itself may
already be managing the resource. If this lock
request is the first one on the resource, the direc-
tory node will instruct the requestor to manage
the resource itself. It will also create a directory
entry for the resource, thus ensuring that subse-
quent requests from other nodes will be directed
to the new resource manager. Figure 1 illustrates
this case.

All subsequent lock requests for additional
root-locks or sublocks on this resource from the
node that originated the initial request will now
be processed without further message traffic,
since the node is now managing the resource
itself. This action, called local locking, was
developed to minimize the cost of locking should
all the processes sharing a resource reside on one
node. Figure 2 provides an illustration of local
locking.

At this point, if a process residing on another
node makes an initial root-lock request, the
resource name is again hashed and the directory
node identified in the same fashion as before. The
request is sent to the directory node, which
responds by identifying the node currently man-

Digital Technical Journal
No. 5 September 1987

»
»

VAXcluster
Systems

The VAX/VMS Distributed Lock Manager

RESOURCE MANAGER

Bo®

DIRECTORY NODE

O®

KEY:
. RESOURCE BLOCK

DIRECTORY ENTRY FOR RESOURCE
(IMPLEMENTED AS A RESOURCE BLOCK)

O LOCK BLOCK

® OO

NODE C

When a lock request is received, a resource
block and a lock block are created.

A message requesting a lock is then sent to the
directory node.

A directory entry is created listing node A as the
resource manager.

The response message directs node A to
become the resource manager.

Figure 1 A Root-lock Request When No Resource Manager Exists

aging the resource. Upon receiving the response,
the requestor re-sends the lock request to that
node.

This case is potentially the worst with regard to
messages since onc round trip is required to the
directory node (assuming that it is another node
in the VAXcluster system) and another round trip
to the resource manager. Note that this cost is
bounded by a small constant with respect to the
number of nodes in a VAXcluster system. Figure 3
illustrates this casc.

Subsequent Root-Lock and Sublock
Requests

Once a lock on a root-level resource has been
established, the identity of the resource-manager

node is known. After that point no further mes-
sages arc sent to the directory node by that pro-
cessor; all requests are sent directly to the
resource manager. If the lock request is made on
a node that is not the resource manager, two mes-
sages are required for every lock request after the
first: a request, and a response. This process is
called remote locking. Figure 4 illustrates the
remote locking concept.

Releasing Lock Requests

When a process residing on the node managing
the resource decides to release a lock, no mes-
sages are sent unless the lock is the last remain-
ing one on the resource. In that event a message
is sent to the directory node indicating that this

34

Digital Technical Journal
No. 5 September 1987

RESOURCE MANAGER

®

DIRECTORY NODE

[

KEY:
H RESOURCE BLOCK

DIRECTORY ENTRY FOR RESOURCE

(IMPLEMENTED AS A RESOURCE BLOCK)

O LOCK BLOCK

© O

NODE C

As root-lock requests are received, lock blocks
are created and linked to the existing resource
block.

When a sublock request is received, a sub-
resource block is created if this is the first
request for a lock on the subresource. A lock
block is then linked to the subresource block.

Figure 2 Root and Sublock Requests Made on the Resource Manager

node is no longer managing the resource. The
directory node then deletes the directory entry
for the resource. This deletion allows the next
node requesting a lock on the resource to
become the resource manager. No response is
necessary because the message delivery is guaran-
teed by the connection manager.

For the case in which a process releasing a lock
does not reside on the node that manages the
resource, a message is sent to the resource man-
ager. Again, if this is the last remaining lock on
the resource, the resource manager sends a mes-
sage to the directory node indicating that this
node is no longer the resource manager. Figure 5
illustrates the concept of unlocking.

Converting Lock Requests

The lock manager also permits the mode of a
granted lock to be altered. This action is called a
conversion. Conversion requests can be pro-
cessed more efficiently than new lock requests
because all the data structures are already in
place, and the resource manager has already been
identified. If a conversion request is made on the
node managing the resource, no messages need
be exchanged. If the resource manager is not the
node on which the request is being made, either
one or two messages are required. For example,
in some cases in which the requested mode is
compatible with the granted mode, the request

Digital Technical Journal
No. 5 September 1987

35

VAXcluster

The VAX/VMS Distributed Lock Manager

NODE A

RESOURCE MANAGER

DIRECTORY NODE

B

KEY:

RESOURCE BLOCK

DIRECTORY ENTRY FOR RESOURCE
(IMPLEMENTED AS A RESOURCE BLOCK

O LOCK BLOCK

®

)

When a new root-lock request is received, local
copies of the resource block and lock block are
created.

A message requesting a lock is then sent to the
directory node.

The response indicates that node A is currently
the resource manager.

The lock request is again sent to node A.

A master-copy lock block is created on the
resource manager and linked to the resource
block.

A granted response is returned.

Figure 3 New Root-lock Request When a Resource Manager Exists

can be unilaterally granted, and a single message
sent to notify the resource manager of the
change. In others, the resource manager must
make a decision bascd on the other requests that
are granted. A request is then sent to the resource
manager, who must respond. In all cases, no com-
munications arc rcquired with the dircctory
node. Figure 0 illustrates a conversion request.

Operation During Periods of

Resource Contention

The operation is slightly more complicated dur-
ing periods of contention. When a resource man-
ager receives a lock request that cannot be
granted because an incompatible lock exists, two

actions are required. First, all holders of incom-
patible locks that have indicated a desire to
receive blocking ASTs must be notified that a pro-
cess is waiting. To accomplish this, a message is
sent to each node where a lock holder resides.
The process holding the lock is notified only
once, even though it may be blocking multiple
lock requests. Second, the requester of the lock
must be told to wait; this is accomplished by
sending a response to the lock request. When the
blocking lock is later released, a message is sent
to each waiting requestor indicating that the lock
is now granted. Table 4 summarizes the numbers
of messages used for different types of lock
requests.

36

Digital Tecbhnical Journal
No. 5 September 1987

NODE A

RESOURCE MANAGER

NODE C

® |®

DIRECTORY NODE

[]

KEY:

- RESOURCE BLOCK

D DIRECTORY ENTRY FOR RESOURCE

(IMPLEMENTED AS A RESOURCE BLOCK)

0 LOCK BLOCK

When a sublock request is received, a lock biock
is created. If this is the first lock on the sub-
resource, a resource block is also created.

The request is sent to the resource manager. No
directory lookup is required.

If locks already exist on the subresource, only
a lock block is created. Otherwise, both a lock
block and a resource block are created.

@ A granted response is returned.

Figure 4 A Sublock Request on a Node that Is Not the Resource Manager

Scaling Bebhavior of the Distributed
Lock Manager

It can be shown that the number of messages
required forany locking operation is bounded by
a small constant that is independent of the num-
ber of nodes, or cluster size, in a VAXcluster sys-
tem. This section addresses how the size of the
darta representing the locking state and the total
number of locking messages vary with a cluster’s
size.

The distributed lock manager uses a fixed-size
control block to represent both a lock and a lock
request. An instance of this control block exists
on the node requesting the lock. If the resource
manager is a different node, another instance
exists on the resource manager. A resource is rep-

resented by another fixed-size control block. An
instance of this control block exists on each node
requesting the lock, on the resource manager,
and on the directory node. Whenever any of these
categories overlap (i.e., requestor, resource man-
ager, and directory node), only one instance of
the control block is present. The control blocks
for locks and resources are dynamically allocated
and deallocated.

At least one lock is represented for every
resource represented. Conversely, a resource is
represented for every lock represented. For each
lock, the upper bound on the storage require-
ments is two lock control blocks and three
resource control blocks. This upper bound is
usually quite loose and depends on a cluster’s
size.

Digital Technical Journal
No. 5 September 1987

37

VAXcluster

The VAX /VMS Distributed Lock Manager

RESOURCE MANAGER

NODE C

DIRECTORY NODE

©O © O

DIRECTORY ENTRY FOR RESOURCE
(IMPLEMENTED AS A RESOURCE BLOCK)

O cockBLOCK

When an unlock request is received for a root-
lock, the lock block is deallocated. If this is the
last lock on the resource, the resource block is
also deallocated.

A message is sent to the resource manager. No
response is required.

The resource manager deallocates the lock block.
If this is the last lock on the resource, the
resource block is also deallocated.

A message is sent to the directory node.

The directory entry is removed.

Figure 5 Unlock Request for the Last Remaining Lock on a Root Resource

VAXcluster applications are typically designed
so that their algorithms do not change as the size
of the cluster changes. Therefore, an instance of a
typical application running on one node exhibits
a behavior with respect to the number of out-
standing locks and the frequency of locking oper-
ations that is independent of the number of addi-
tional instances of that application running on
the same or other nodes. If multiple instances of
the application are running, the number of out-
standing locks and the frequency of locking oper-
ations increase in proportion to the number of
copies of the application, independent of the
cluster size.

Both the number of messages per locking oper-
ation and the storage requirements for a lock are

bounded by constants that are independent of the
cluster size. Therefore, the rate at which mes-
sages must be exchanged and the total storage
required to represent the locking state are pro-
portional to the number of instances of the appli-
cation that are running, which is also indepen-
dent of the cluster’s size. If the number of
instances of the application is proportional to the
cluster size, the rate of message exchange and the
total storage required to represent the locking
state are both bounded by a constant times the
cluster size.

This argument is also valid when multiple
instances of each of several applications are
present.

Digital Technical Journal
No. 5 September 1987

NODE A NODE C

RESOURCE MANAGER

@ A conversion request is received.
@ The request is sent to the resource manager.

@ The request is granted.

DIRECTORY NODE @ A granted response is returned.

[]

Note: Conversion requests on the resource

KEY:

- RESOURCE BLOCK

DIRECTORY ENTRY FOR RESOURCE

(IMPLEMENTED AS A RESOURCE BLOCK)

[0 LOCK BLOCK

manager require no messages.

Figure 6 Conversion Request on a Node that Is Not the Resource Manager

These characteristics of the distributed lock
manager (i.e., total space and message traffic
behavior that is subject to a linear bound in the
“workload™) are a significant fact or in allowing
VAXcluster systems to act as distributed operat-
ing systems. These characteristics suggest that,
from the distributed lock manager’s viewpoint,
additional growth inthe size of a VAXcluster con-
figurations is certainly viable.

Performance Aspects of the Distributed
Lock Manager

Table 5 summarizes the performance of the dis-
tributed lock manager. The measurements reflect
operations that are normally done in pairs. Such

operations include an $ENQ followed by a $DEQ,
and a conversion to a more restrictive mode (up)
followed by a conversion to a less restrictive
mode (down). The operations reported in the
table are performed on sublocks.

When Processors jJoin or Leave the
VAXcluster System

The connection manager plays a major role in the
lock manager’s ability to deal with configuration
changes when one or more nodes join or leave the
VAXcluster system. When the membership of the
cluster must be altered, a coordinator node is
elected to lead the other nodes through the state
transition. Any node can become the coordinator

Digital Technical Journal
No. 5 September 1987

39

VAXcluster
Systems

The VAX/VMS Distributed Lock Manager

Table 4 Summary of Number of Messages Used for Lock Requests

Request Type Messages Comments

Initial root-lock request from a system for 20r0 Zero messages if node making the request is

a previously unknown resource (i.e., no the directory node. Otherwise two messages;

manager exists) a directory lookup request followed by a “do
local” response.

Subsequent root-lock requests on 0

resource manager

Sublock request on resource manager 0

Unlock request on resource manager with

locks remaining

Unlock of last lock on resource by 1or0 Remove directory entry message sent to

resource manager directory node. No message sent if manager
is also directory node.

Initial root-lock request from a system for 2o0r4(1) If requester is the directory node, two

a resource that is known (i.e., a manager messages consisting of a lock request

exists) followed by a response from the manager. If
requester is not directory node, do a
directory lookup, a resend to manager
response, a lock request to the manager, and
a response back.

Sublock requests and subsequent 2(1) Lock request to manager and a response

root-lock requests from a system that is back.

not resource manager

Unlock request from a system that is not 1or2 Dequeue message to manager. Manager may

the resource manager

then send a remove directory message to
directory node if this lock is the last one.

NOTE: If the lock request cannot be granted immediately, add one message. If the lock is granted, blocking another request, and a blocking
AST was requested, add one message. In all cases the number of messages is independent of the number of nodes in the VAXcluster

system.

Table 5 Performance Summary of the

Distributed Lock Manager

VAX-11/780 VAXcluster System Locking
Using the Computer Interconnect (CI780)

Local

Locking Remote Locking

Local Local Remote Elapsed
CPU CPU CPU Time

ENQ + DEQ 0.6 27 1.5 39
CVT (up+down) 0.4 2.4 1.3 33

MicroVAX Il Locking Using the Ethernet

Local

Locking Remote Locking

Local Local Remote Elapsea
CPU CPU CPU Time

ENQ + DEQ 0.7 6.0 4.8 8.1
CVT (up+down) 0.5 5.6 4.6 7.8

w A/l numbers are in milliseconds

= For Local Locking, Local CPU = Elapsed Time

= ENQ refers to a lock operation, DEQ refers to an unlock, and
CVT to a mode conversion

and it is usually the first to discover that a mem-
bership change is required. The need for a mem-
bership change can result from timing out a bro-
ken connection, or upon discovering a new node.
All configuration changes are madc using a two-
phase commit protocol to ensure consistency on
all nodes. To add or remove a node, the coordina-
tor describes a proposed configuration to the
other members. They have the option of agreeing
or disagreeing with the proposed configuration.

They will disagree if they can construct a more
optimal configuration based on the number of
nodes they can communicate with and on the
assignment of votes to those nodces. The resulting
VAXcluster system can only consist of a strongly
connected group of nodes where every node has a
connection to each of the others.

In case of disagreement, the coordinator backs
out of the operation, waits a random amount of
time, and then initiates the election protocol
again. During this interval other nodes can
attempt to become the coordinator. Disagree-

40

Digital Technical Journal
No. 5 September 1987

ments are quickly resolved so that the node that
can put together the most optimal configuration
becomes the coordinator. At this point, the new
configuration has been described to all nodes and
they have agreed; therefore, commit messages are
sent.

Thus the connection manager is able to provide
the distributed lock manager with a consistent
view of the processors that are members of the
VAXcluster system. The connection manager can
also ensure that the vectors used to identify the
directory node for a given resource are identical
on all nodes. In addition, the manager assigns a
unique identifier, called the cluster system ID
(CSID), to each processor admitted into the VAX-
cluster system.

At the completion of any change in member-
ship, the connection manager leads the other
nodes through a lock database rebuild. The node
that was the coordinator now takes on the role of
a synchronizer. Each node begins to execute a
series of action routines that control how the lock
database is to be rebuilt. Each action routine
describes a particular step in the rebuild pro-
cess, and all nodes execute the action routines in
parallel.

One or more action routines are separated by
synchronization steps. Upon reaching a synchro-
nization step, a node sends a message to the syn-
chronizer indicating that that node has com-
pleted a step and is waiting for notification to
proceed with the next one. After receiving this
message from each processor in the VAXcluster
system, the synchronizer sends a message to each
node telling it to proceed with the next step.
This process continues until all action routines
have been executed and the lock database has
been rebuilt on all nodes.

From the viewpoint of the distributed lock
manager, the actions taken are identical when
nodes are added or removed. This redistrib-
utes the management of resource trees to pre-
vent the management of most of them from
migrating to the “oldest” member of the VAX-
cluster system.

Upon discovering a broken connection to a
remote node, the connection manager initially
assumes that this condition is temporary and
attempts to restore the connection for a speci-
fied interval that depends on the installation.
During this interval, normal activity can gener-
ally proceed. Lock-request and other messages
addressed to the remote node and sent using the

connection manager’s message delivery service
are queued pending the re-establishment of the
connection. If the connection is re-established,
the queued messages are sent in the original
order, and the sender remains unaware that a
problem existed.

If the connection cannot be re-established
within a specified interval, the connection is
declared irrevocably broken, and a cluster recon-
figuration is required. Locking is disabled on all
nodes during a reconfiguration. Lock requests
can still be made, but the processes making them
will be blocked pending completion of the state
transition.

The lock database is rebuilt in the following
fashion by each node. First, new lock requests are
disabled. Then, the lock database is scanned and
all directory information is removed, since a
change in membership redistributes the direc-
tory functions. Information about locks that are
either held or requested by processes on other
nodes is also discarded. These actions result in a
period of time during which no directory nodes
and no resource managers exist. The only infor-
mation retained concerns the lock requests made
by processes actually residing on a node.

At this point the nodes re-acquire all the locks
held before the membership changed, using the
same algorithm by which the locks were initially
acquired. Locks that were waiting to be granted
are re-ordered by a sequence number that was
assigned when they were queued so that the
order in which they wait is preserved. By the pro-
cess of re-acquiring locks, new directory entries
are created and new resource managers chosen.
Since each node re-acquires its own locks, the
locks held by nodes that are no longer members
of the VAXcluster system are released. Once all
locks have been re-acquired, an attempt is made
to grant waiting locks since the removal of lock
requests contributed by a failed node may permit
waiting requests to be granted. Once these
actions have been accomplished, locking is
enabled and activity proceeds normally.

Distributed Deadlock Detection

The requirements for a distributed deadlock
algorithm were to minimize the number of mes-
sages involved in a deadlock search, find all
deadlocks, and not find false deadlocks. Since
the distributed lock manager was to be a general-
purpose synchronization tool used by many

Digital Technical Journal
No. 5 September 1987

41

VAXcluster
Systems

The VAX/VMS Distributed Lock Manager

applications, simplifications based on assump-
tions about the way it was used could not be
made.

From the lock manager’s perspective, there are
two classes of deadlocks: conversion, and multi-
ple-resource. This distinction is made because
conversion deadlocks are easily detected by the
resource manager whereas multiple-resource
deadlocks are detected by a more complex dis-
tributed deadlock algorithm.

A conversion deadlock involves multiple con-
version requests on a single resource so that all
information will be readily available for the
resource manager to identify them. Let us con-
sider a request to convert a lock held at one mode
to another more restrictive mode (e.g., from CR
mode to EX mode). If another lock is also held at
CR mode, the conversion request must wait for
the second lock to be released or converted to a
compatible mode. If an attempt is then made to
convert the second lock from CR mode to EX
mode, a conversion deadlock results. The first
conversion request cannot be granted while the
second lock is still held at the original mode and
the second conversion request cannot be granted
because it must wait for the first lock to be
granted.

A multiple-resource deadlock can be identified
by searching for cycles in a “wait-for” graph of
processes. A simple example can be constructed
with two processes and two resources. Suppose a
process P1, which is already holding a granted
lock on resource R1, waits for a lock request to
be granted on resource R2. A deadlock results if a
process holding a lock on R2 that is blocking P1's
request attempts to acquire a lock on R1 that is
incompatible with the granted lockheldbyP1.

Distributed deadlock detection is implc-
mented with an algorithm that searches the clus-
terwide wait-for graph by sending messages to
traverse arcs that cross system boundaries. The
algorithm using messages to traverse arcs
between systems was developed independently
both at Digital and at IBM Corporation.¢’

One of the assumptions that was made in the
design of the lock manager was that deadlock
searches would be an infrequent occurrence and
relatively costly. This being the case, deadlock
searches are initiated only after a process has
waited longer than a configuration-specified
period. This has the effect of greatly reducing the
number of searches that are initiated. For exam-
ple, if process A on system 1 has a lock request

waiting for longer than the deadlock wait inter-
val, then a deadlock search is initiated on its
behalf.

Time-outs are detected on the node that is man-
aging a resource so that information about all
lock requests on the particular resource is avail-
able for the deadlock search. If a conversion
request has timed-out, the queue of conversion
requests is searched to identify whether the
granted mode of any conversion request made
after the timed-out conversion request is incom-
patible with the requested mode of the timed-out
conversion request. If one is found, a conversion
deadlock exists and a victim is selected. The
waiting lock request of the victim is then com-
pleted with a error status indicating that a dead-
lock was found. Granted locks are never affected
by victim selection.

If no conversion deadlock is found, a more
extensive multiple-resource deadlock search is
initiated. The wait-for graph of processes is tra-
versed, beginning with the process owning the
timed-out lock request and searching for a path
back to that same process. Beginning with the
lock request, each process holding a blocking
lock on the resource is tested to determine if the
process has waiting locks on other resources. For
each waiting lock found, the algorithm is applied
recursively until either no more waiting locks are
found or the initial process is found. In the for-
mer case no deadlock exists because no cycle
exists. In the later case a deadlock exists because
a cycle was found to include the process owning
the lock that timed out.

If the arcs of the wait-for graph traverse proces-
sor boundaries in the VAXcluster system, mes-
sagesare scnt indicating that the search should be
continued on the destination processor. The mes-
sages indicate that the search should commence
with a certain lock and continue with the ulti-
mate goal of discovering a path to the process
owning the timed-out lock request.

In the implementation, two possibilities exist
that must be accounted for. In the first, a block-
ing lock is found that is owned by a process resid-
ing on a remote system. In this case the search
must be continued on the remote system by iden-
tifying all locks that the process is waiting for. In
the second, a process is waiting for a lock man-
aged on a remote system. In this case the search
must be continued on the remote system by iden-
tifying all locks that are blocking the waiting
lock.

42

Digital Technical Journal
No. 5 September 1987

Let us consider the following example. A wait-
ing lock request L1 owned by process P1 on node
N1 times out, and a deadlock search is initiated.
The search is initiated on node N2, which man-
ages the resource tree. A blocking lock L2 owned
by process P2 located on node N3 is discovered
on the resource. A message is then sent to node
N3, indicating that a search should be continued
there, beginning with the lock L2, with the goal
of finding a path to process P1. Upon receiving
the message, node N3 determines that process P2
is waiting on lock L3 managed by node N4. A
message is sent to node N4 to continue the search
starting with lock L3 with a goal of finding pro-
cess P1. Lock L3 is discovered to be blocked by
lock L4 that is owned by process P1. Since a cycle
has been discovered, a victim is selected, and its
waiting lock request is completed with deadlock
status. Deadlock messages contain the identity of
the best victim found so far, and a message is sent
to the node in which the victim resides.

An interesting extension to the similar algo-
rithm described in reference 6 is used in the
deadlock search. To prevent looping on cycles
that do not include the process with a timed-out
lock request and to greatly reduce the worst-case
search time, a bitmap is used to indicate if a pro-
cess has already been visited in the search. Each
node in the VAXcluster system has a bit map with
one bit for every process on that node. When the
search is initiated, all bits are cleared. If a pro-
cess has been involved in the deadlock search,
its corresponding bit is set. If a message then
arrives that indicates that this process should
be involved in the search, the message is ignored
since all paths from this process have been
searched already.

A node never knows when a deadlock search is
completed because the messages simply die out
when no deadlock is found. Therefore, some way
must be provided to determine when the bitmap
can be reused for a new search. That is accom-
plished by assigning a “timestamp lifetime” to
the deadlock search. In this scheme, one node is
assigned the role of a timestamp server by the
connection manager whenever the cluster mem-
bership changes. To initiate a deadlock search, a
node requests a timestamp from the timestamp
server. The timestamp represents a time slightly
in the future. Once that timestamp has been
issued, the timestamp server will not issue
another until that time has passed (i.e., the times-
tamp has expired). The initial value of the time-

stamp is 50 milliseconds, based on an estimate of
a reasonable worst-case search time. The times-
tamp is used in the deadlock messages to indicate
a specific deadlock search.

Whenever a deadlock message is received, its
timestamp is compared to a timestamp stored
with the bitmap. The comparison determines
how the bitmap is to be used. There are three
possible cases, described as follows:

= The message value exceeds the bitmap value -
The bitmap was being used by a previous
deadlock search and its timestamp lifetime has
expired. In this case the bitmap is available for
use by the new deadlock search. The bitmap is
cleared and the timestamp from the message is
saved with it. The new search is then contin-
ued.

= The bitmap equals the message value — The
bitmap is available and has already been used
by an earlier message involved in this search.
Proceed with the search. If the bit corre-
sponding to the process requesting the lock is
already set, then ignore this message since all
paths from this process have already been
searched.

= The bitmap value exceeds the message value —
The bitmap has been preempted by a sub-
sequent deadlock search. The timestamp
assigned to this message expired before the
search completed. Abort this deadlock search
for now but reinitiate it later with a new times-
tamp that is double the last timestamp’s life-
time.

The bitmap optimization provides not only the
performance benefits noted above, but also pre-
vents the algorithm from looping when it
encounters unsuspected deadlocks. For example,
suppose process A is waiting for B which waits
for C which waits for B. Processes B and C have a
deadlock that will not be discovered when
searching on behalf of process A since the ulti-
mate destination of the search is process A. How-
ever, the deadlock will be found when searching
on behalf of B or C. The use of bitmap optimiza-
tion prevents the search from looping when
searching on behalf of process A.

Acknowledgments

The authors would like to acknowledge all those
who worked to make VAXcluster systems a real-
ity. We especially want to acknowledge Steve

Digital Technical Journal
No. 5 September 1987

43

VAXcluster
Systems

The VAX/VMS Distributed Lock Manager

Beckhardt, who designed and implemented the
distributed lock manager. Also, our thanks to
Steve Neupauer, who supplied the performancc
figures, and to all those who reviewed this paper.

References

1.

N. Kronenberg, H. Levy, and W. Strecker,
“VAXclusters: A Closely-coupled Dis-
tributed System,” ACM Transactions on
Computer Systems, vol. 4, no. 2. (May
1986): 130-146.

. L. Kenah and S. Bate, VAX/VMS Internals

and Data Structures,
Press, 1984).

(Bedford: Digital

. M. Fox and]. Ywoskus, “Local Area VAXclus-

ter Systems,” Digital Technical Journal
(September 1987, this issue): 56-068.

44

~

. J. Gray, R. Lorie, G. Putzolu, and I. Traiger,
“Granularity Of Locks and Degrees of Con-
sistency in a Shared Data Base,” IBM
Research Report RJ1654 (1975).

. VAX/VMS System Services Reference Man-
ual (Maynard: Digital Equipment Corpora-
tion, Order No. AA-Z501C-TE, 1980).

. R. Obermarck, “Global Deadlock Detec-
tion.” IBM Research Report RJ2845(36131)
(June 1980).

S. Beckhardt, Digital Equipment Corpora-
tion Internal Memorandum describing the
deadlock detection algorithm used by the
VMS operating system.

Digital Technical Journal
No. 5 September 1987

Andrew C. Goldstein |

The Design and Implementation
of a Distributed File System

The advent of VAXcluster systems, with their simultaneous requests for
storage data, altered the requirements of the file functions in the VMS soft-
ware. To replace the single-system process, an extended QIO processor
was developed to synchronize file accesses. The locks in the VMS lock man-
ager provide that synchronization by arbitrating and blocking requests.
Deadlock is prevented by taking out locks in a consistent order. Proper
cache management is ensured by locks with sequence counters and a set of
synchronization queues. This total scheme works so well that, in addition
to VAXcluster hosts, it is used for single systems as well.

The VMS file system provides basic file-manage-
ment facilities to all VMS users and to many other
components of the VMS system itself. From a raw
disk, which consists simply of a series of data
blocks, this file system provides files and file
management, directories, security enforcement,
and a variety of functions related to the intrica-
cies of managing a file structure. The VMS inter-
face to the file system is the $QIO system ser-
vice.' The $QIO read and write functions provide
block-level access to file data. Other $QIO func-
tions specific to the file system create, access,
modify, and delete files.

The $QIO service normally leads to the VMS
driver context. This context consists of initial
kernel-mode execution in the process context,
with few system services allowed, followed later
by interrupt-level execution. The complexity of
the file system makes it impractical to execute in
the normal driver context. Therefore, the VMS
system provides two methods for extending the
operating context of the file system to provide
the richness needed to support its complexity.

The Ancillary Control Process

In VMS releases 1 through 3, a technique called
the ancillary control process (ACP) extended the
file system’s context. An ACP is a separate VMS
system process that executes in a privileged con-
text. All the VMS services normally available to
processes are available to the ACP, thus making
feasible the implementation of complex code.
The I/O processing routines (the FDT routines)

in a process context send $8QIO functions for the
file system to the ACP. In turn, the ACP executes
the functions in its own context, returning com-
pletion data and status to the caller by using the
I/0O completion routines in the VMS kernel. An
extension of the VMS buffered-I/O mechanism
copies both the caller’s arguments to the ACP and
the return parameters back to the caller.

In addition to the extended execution environ-
ment, the ACP concept provides an important
facility to the file system: synchronization. The
VMS file system ACP executes user functions in a
single stream, completing each function before
starting the next one. Thus all file functions are
inherently synchronized because only one ACP
performs file management on a volume. More-
over, the implementation of a file system cache
becomes quite simple and straightforward when
operating in the single-process context. Figure 1
depicts the ACP-based file system.

USER USER USER

TN
_

DISK

VOLUME
A

Figure 1 ACP-based File System

Digital Technical Journal
No. 5 September 1987

The VAX/VMS Distributed Lock Manager

Cluster Alternatives

Many of the attributes that made the ACP concept
attractive were invalidated when the VMS soft-
ware had to support the VAXcluster concept.
VAXcluster systems require that each disk vol-
ume be accessible to all host systems in the clus-
ter. Therefore, a disk volume can no longer be
served by a single process. We examined other
concepts, including having a single “master ACP”
for a volume on one member of the cluster. That
ACP would then execute all file functions for all
cluster members. We rejected this approach,
however, because of the high availability require-
ments of VAXcluster systems. Transferring the file
system context to another cluster member in the
event of a failure would have been very difficult.

Based on those considerations, we chose an
approach that uses a symmetrical file-manage-
ment design in which the file functions execute
on the cluster member on which they originatc.
No longer having the implicit synchronization
and cache management of a single ACP, we were
now forced to address those issues explicitly in
the distributed system.

The Extended QIO Processor

Our need for an explicit synchronization scheme
eliminated one of the major attractions of the
ACP: its implicit synchronization. In addition, it
seemed redundant to have two schemes — onc
implicit (ACP) and onc explicit — to managc
file operations. Therefore, rather than using
explicit synchronization only between cluster
members, we chose to usc it for all operations,
including those local to one processor. As a
result, we developed the second operating con-
text for the file system now available in the VMS
software: the extended QIO processor, or XQP.
The XQP executes as an asynchronous system
trap (AST) thread at the kernel level in the con-

USER USER USER

XQP XQpP |[«—— XQP

Figure 2 XQP based File System

text of the calling process. An cextended kernel
stack and a data area located in the process’s
Pl region provide the necessary execution con-
text. Since execution occurs at interrupt priority
level (IPL) O, all the basic system services can be
used. Figure 2 depicts the XQP-bascd file system.

The XQP design for the file system has several
advantages over the distributed master-ACP
design:

= Consistency — All file opcrations are synchro-
nized in the same way, whether the volume is
accessible clusterwide or not. This technique
simplifies the synchronization design and pro-
vides fewer opportunities for bugs.

= Performance — We climinated the process con-
text switch associated with an ACP call by run-
ning the file system in the context of the
caller.

= Concurrency — Multiple file operations can
procced concurrently, in many cases, by
implementing explicit synchronization wherc
it is needed, thus improving system perfor-
mance.

The remainder of this papcr concentrates on
the problems unique to the VAXcluster dis-
tributed-file system: synchronization, and cache
management.

Synchronization
The file system requires synchronization for two
basic rcasons:

1. Filestructure integrity — Multiple users must
be prevented from simultancously modifying
the same parts of the file structure (e.g.,
attempting to find and allocatec the same
picce of free disk space to different files).

2. File system semantics — Certain file opera-
tions provide uscr-level synchronization
(c.g., preventing two uscrs from simulta-
ncously accessing the same file in a conflict-
ing manner).

Synchronization is achieved first by organizing
the file structure into units that can be synchro-
nizcd, then by using an underlying facility to
control concurrency. The VMS lock-management
scrvices provide an ideal synchronization facility
for VAXcluster systems.? The VMS file structure
rcadily decomposes into managcable units. In
fact, all units are files. Naturally. a filc itself is a

46

Digital Technical Journal
No. 5 September 1987

file. A dircctory is a file. Even the volumewide
management structures (c.g., the quota file and
the storage bitmap) arc files. Thus the filc is the
natural unit of synchronization for most aspects
of file operations.*

Each file has a 48-bit file [D that uniquely
identifies the file within a volume or volume sct.
Removing the secquence number from the file 1D
leaves a 32-bit integer that uniquely identifics
the file at any instant of time. This integer, the
filc number, forms the resource name that syn-
chronizes operations on the file. A file consists of
its contents plus a filc hcader, both of which arc
synchronized by a single lock. Not all locks are
bascd on individual files. For example, for conve-
nicnce and efficiency, a single-volume synchro-
nization lock controls the allocation and dcallo-
cation of all frec spacc and file headers.

Armed with this introduction, we can now
cxamine in dctail how cach lock is used to syn-
chronize the operations of the file system.

Device Lock

The device lock manages the states of devices
accessed by the cluster. The resource name of the
lock is derived from the device name, prefixed
with the text string SYS$. The following lock
modcs represent the device state:

Lock Mode Device State

(No lock) Idle

CR Volumc has channels assigned
and/or is mounted for sharced
access

PW Mount in progress

EX Volume allocated or mounted
privately

These lock modes provide the same device
arbitration that is available on single-CPU VMS
systems. The value block of the device lock con-
tains additional dctails about the device state
(device ownership and protection, whether
mounted or not, whether mounted on a foreign
system or not, Ctc.).

Mount Lock

The device arbitration semantics in the VMS sys-
tem dictate that the device lock may not be
waited upon; any attempt at a conflicting access
to a device yields a lock crror. Thercfore. an addi-
tional mount lock will serialize concurrent
attempts to mount the same device. The resource

Digital Technical Journal
No. 5 September 1987

namc of the mount lock is again derived from the
device name, prefixed with the text string
MOUS. The mount lock is held in EX mode while
a user mounts a device, thus allowing others in
the cluster to queue behind the current mount
opcration.

Volume Synchronization Lock

Mounting a volumc creates the volume synchro-
nization lock in CR mode. This lock represents
the mounted volume and associates once for one
with the device on which the volume is mounted.
The lock’s resource name is derived for sharcable
volumes from the volume label, prefixed with
the text string F11BSv. This derivation guaran-
tees that all sharcable volumes mounted in the
cluster will have unique volume labels. Non-
shareable volumes use the system address of the
unit control block (UCB, the VMS data structure
representing the device) as the volume lock
name, thus allowing volumes with duplicate
namcs to be mounted. The value block of the vol-
ume lock contains additional flags to describe the
state of the volume as well as the allocation and
buffer-management states.

Both the device lock and the volume lock must
be held by a cluster member for the total length
of time a volumc is mounted. This pcriod will
usually exceed the lifetime of any process in the
system. Thercfore, normal locks, which arc asso-
ciated with an owner process. cannot be used.
Instead. the file system usces system-owned locks,
which arc held by the system as a whole, not by
any particular process. As a result, they survive
the life of any and all processes in the system.
These locks are released only when cxplicitly
commandecd by the system software or when the
system leaves the cluster (e.g., it crashes).

The volume synchronization lock also synchro-
nizes the allocation and deallocation of all space
on the volume. When the XQP wishes to allocate
space (c.g.. to create a file), it takes a separate
copy of the volume lock in PW mode. (Note that
PW modc is compatible with the CR-mode lock
representing the mount, but incompatible with
itself. That c¢nsures that only onc process will
attempt to allocate or deallocate space at the
same time.) This form of the volume lock is held
as a process lock. but only for short periods of
time (the duration of a single file function or
less). Part of the value block for the volume lock
controls the allocation of space and contains the
current count of free blocks as well as pointers

VAXcluster
Systems

The VAX/VMS Distributed Lock Manager

into the space-allocation bitmaps. Upon raising
the volume lock to PW mode, the XQP reads this
value block and writes it back to the lock man-
agerupon release.

File Serialization Lock

The file serialization lock synchronizes all opera-
tions that affect the state of an individual file. The
resource name of the file serialization lock is sim-
ply the file number, prefixed with the text string
F11BS$s. The resource name is qualified by the
volume name by virtue of being a sublock of the
volume synchronization lock. By holding the
file serialization lock at PW mode, the XQP
ensures that only one operation (opening, clos-
ing, extending, deleting, etc.) is performed at a
time on any one file. The serialization lock also
ensures that only one operation is performed at a
time on any one directory. The file serialization
lock, a process lock, is held only for the duration
of a single file operation.

The locks described so far are sufficient to
assure the integrity of the filc structure in the
face of concurrent operations. However, two
additional locks are required to support the syn-
chronization semantics that the file system pro-
vides to its users.

Arbitration Lock

The file system provides access arbitration for
files; that is, users may open files for read or
write operations and can specify whether other
users may open the file concurrently. An arbitra-
tion lock is used to arbitrate file access across a
cluster. The resource name of the arbitration lock
is the file number, prefixed by the text string
F11B3a and the volume lock name (the resource
namec of the volume lock). The arbitration lock is
held as a system-owned lock in any of the avail-
able lock modes, depending on the state of access
of the file. These states of access are

NL - No-lock file access

CR - Open forread, allowing other
reads/writes

CW - Open forread/write, allowing other
reads/writes

PR - Open for read, allowing other readers

PW — Open for rcad/write, allowing other
readers

EX - Open for exclusive access

Since the arbitration lock is held for the entire
time that a file is open, its usc is optimized. One
systcm-owned lock represents the state of all
accesses to the file on cach cluster node. The
lock mode represents the “highest” mode of
access to the file on that cluster member.

Blocking Lock
Certain maintenance opcrations on the file struc-
ture require it to be held stable for a period of
time. For example, the ANALYZE/DISK utility
will lock out all file opcrations during a disk-
rcbuild operation by using privileged file func-
tions to lock the volume. To implement the lock-
ing function clusterwide requires another
volume-specific lock, the blocking lock. The
resource name of the blocking lock is the volume
lock name, prefixed by the text string F11BSb.

Since performance degrades if the lock man-
agcr checks on the blocking lock as cach file
function starts, this lock is managed in an opti-
mized fashion. Under normal conditions, each
cluster member holds the blocking lock as a sys-
tem-owned lock in CR mode. This state is noted
in the volume control block (VCB). Thus the start
of cvery file function requires only a local state
check. When a lock-volume function executes, it
attempts to raise the blocking lock to EX mode.
Since the EX lock is incompatible with the CR
locks, a system-blocking AST routine will be exe-
cuted on cach cluster member holding the lock
at the CR mode. This AST routine cxecutes as a
subroutine called at IPL 8 using the JSB sub-
routinc call instruction. The routine acquires
process context by “borrowing” the swapper
process. A kernel AST is then queued to the swap-
per, causing another routine to execute in the
swapper’s process context. This other routine
relcases the CR-mode blocking lock and up-
dates the VCB context accordingly. When all the
CR-modc locks have been released, the EX lock
will be granted and the lock-volume function
completes

The volume will remain locked because the
blocking-lock check at the start of every file func-
tion will now fail. When that happens, the XQP
will attempt to reacquire the blocking lock. This
attempt causes the process to stall because the
blocking lock is still held elsewhcre in EX mode.
When an unlock-volume function finally releases
the blocking lock, all processes waiting for the
lock will also be released and the CR mode lock
is re-cstablished. Normal file operations can then
proceed.

48

Digital Technical Journal
No. 5 September 1987

Deadlock Prevention and
Locking Order

The execution of a single file function can
involve taking out several locks. Holding morc
than one lock at a time always presents the poten-
tial for deadlock. The XQP avoids deadlocks,
however, by taking out locks in a consistent
order, as follows:

1. Blocking lock
2. Directory serialization lock
3. File serialization lock

4. Volume lock

5. Other special locks

Note that the ordering of the directory and file
locks assumes a truly hierarchical directory struc-
ture. The VMS file structure allows the creation
of arbitrary links; thus directory links can point
“upward” in the directory hierarchy. Any attempt
to traverse an upward link while another process
is traversing the corresponding downward link
can result in a deadlock error. The VMS system
views such deadlocks as an exceptional circum-
stance and returns them to the caller.

Caching

The file structure of the VMS file structure is
complex.? Typical file operations require the
examination or modification of several separate
components of the file structure. To achieve
acceptable performance, the VMS file system has
always maintained extensive caches of compo-
nents of the file structure. These caches include
the following:

= A general-purpose block-buffer cache holds
recently read disk blocks containing file struc-
ture components.

= A file control block (FCB) list describes the
attributes and states of all open files and
recently referenced directories.

= An extent cache holds a portion of the disk’s
free space for fast allocation and deallocation.
Space held in the extent cache is marked “in
use” in the disk’s storage bitmap (the primary
structure that controls space allocation) to
ensure safety if the system crashes. Should the
system crash, the space in the extent cache
will be temporarily lost. Because this spacc
has been marked “in use,” there is no possibil-
ity of space that was allocated to files before

the crash being again allocated to other files
after the crash. Lost space is usually recovered
with a disk rebuild operation after the volume
is mounted.

= Afile-1D cache holds a set of free file numbers
for fast allocation and deallocation of file
headers. Similar to those in the extent cache,
file numbers held in this cache are marked “in
use” in the disk’s file-number bitmap.

= When quota management is in effcct, a quota
cache holds quota records for currently active
users.

Together, these caches absorb over 75 percent
of the disk 1/0O that the file system would other-
wise incur in performing file management func-
tions.

Implementing these caches in the single-sys-
tem ACP context was relatively straightforward.
The block-buffer cache was located in the ACP’s
process context; the remaining caches occupied
small portions of the system nonpaged pool.

The advent of clusters and the XQP introduced
the traditional problems of maintaining cache
cohcrency in a distributed environment. These
problems were solved by using traditional cache-
consistency techniques and both traditional
and nontraditional application of the VMS lock
manager. Many of the synchronization locks
described so far also play a second role in manag-
ing the caches.

To put the block-buffer cache into a shared
context, we moved this cache from the ACP pro-
cess context to the system paged pool. The other
caches remained in their existing locations. Since
each CPU in a cluster has its own set of caches,
all were synchronized with locks using a combi-
nation of sequence counters and blocking ASTs.

Becausce major changes werc involved, we took
the opportunity to ¢xamine some of the design
decisions made in VMS version |. Based on this
examination, we made some alterations to reflect
the changes in scale that have taken place in the
VMS software since its initial relcase. For exam-
ple, the original block-buffer cache had used lin-
ear searching on its descriptor tablcs. The new
block-buffer cache uses descriptors based on a
hash tablc to allow faster access to a large cache.

Previous versions of the VMS system uscd a sim-
ple directory-index mechanism built into the
dircctory’s file control block. In cffect, this
mechanism kept a small table of contents that
allowed faster access to the entries of a directory

Digital Technical Journal
No. 5 September 1987

VAXcluster

The VAX/VMS Distributed Lock Manager

file. In the XQP conversion, this index was
moved into the block-buffer cache to increase
the space available to each directory index, thus
improving its effectiveness.

Block Buffer Cache

The block-buffer cache consists of a collection of
512-byte buffers for disk blocks, plus the neces-
sary collection of descriptors and hash tables.
Cache coherency is maintained using the tradi-
tional lock and sequence-number technique.

Every file structure block processed by the
XQP is governed by some synchronization lock.
The value block of the lock contains a sequence
number representing the last update to blocks
governed by that lock. Upon reading a block, the
file system associates the current sequence num-
ber with the copy of the block held in the cache.
Upon modifying a block, the file system incre-
ments the sequence number and, at the end of the
file operation, releases the lock with the updated
sequence number. The corresponding locks are
not fully released if any data blocks remain in the
cache. Instead, the locks are demoted to NL mode
to preserve the continuity of the value block.

If another system’s XQP subsequently refer-
ences this file structure block and finds an old
copy of it in its own block-buffer cache, that sys-
tem will find that the sequence numbers in the
cache descriptor and in the value block of the
lock do not match. This mismatch indicates that
the block has been modified, and that the cache

contents are invalid and must be refreshed from
the disk.

We observed earlier that the volume synchro-
nization lock and the file serialization lock are
the only ones strictly necessary to ensure the
integrity of the file structure. Consequently, all
file structure data is read and written under these
two classes of locks, which govern cache
coherency. Blocks related to space allocation on
the volume, such as the storage and file-number
bitmaps, are processed under the volume lock.
All other blocks, such as file headers and direc-
tory contents, are processed under the file serial-
ization lock of the file to which they belong. The
file serialization lock carries two sequence num-
bers to discriminate between updates to file data
(e.g., directory contents) and updates to file
headers (e.g., the directory file header).

Detailed Cache Organization

The buffers of the cache are partitioned into four
buffer pools. These pools contain

= File headers and file-number bitmap blocks
= Storage bitmap blocks

= Directory, quota file, and miscellaneous data
blocks

= Directory index blocks

This partitioning is needed because one or two
buffers of each type may have to be available con-
currently. For example, creating a file might

BFRD
LOGICAL
BLOCK
> NUMBER —»| BFRD
HASH
TABLE T
BFRD BFRD
BUFFER
CACHE
HEADER
— BFRL |<—
LOCK ID
HASH
TABLE
= BFRL
Figure 3 Buffer Cache Structure

50

Digital Technical Journal
No. 5 September 1987

require concurrent access to the file header, the
storage bitmap for space allocation, and the
directory to create the directory entry. Each
buffer pool is managed using a variant of least
recently used (LRU) replacement. Consequently,
the buffer manager can guarantee concurrent
access to one or two buffers of each type without
any explicit buffer lock and release mechanism.
(Certain file and directory operations require
concurrent access to two file headers or two
directory blocks.) The structure of the buffer
cache is shown in Figure 3.

Each buffer has a buffer descriptor (BFRD),
which contains the information needed to iden-
tify and manage the current buffer contents, as
shown in Figure 4. The BFRD contains the follow-
ing information:

= An logical block number (LBN) and a unit con-
trol block (UCB) to identify the disk address
and the volume of the block contained in the
buffer

= The lock basis (i.e., the root of the resource
name for the lock governing the buffer)

QUEUE
LINKAGE

LOGICAL BLOCK NUMBER

UNIT CONTROL BLOCK

LOCK BASIS

SEQUENCE NUMBER

BFRL TYPE FLAGS

NEXT PROCESS ID

Figure 4 Buffer Descriptor Block

REFERENCE COUNT NEXT

LOCK 1D

LOCK BASIS

PARENT ID

Figure 5 Buffer Lock Block

= The buffer sequence number from the value
block of the lock

= A pointer to the lock block of the buffer
= Flags, including valid and modified

= A process ID of the buffer’s owner

= Queue pointers for state queue linkage

= A hash-chain link pointer

In addition, a buffer lock block (BFRL), shown
in Figure 5, is associated with each buffer, sev-
eral of which may be processed under the same
lock. Thus the BFRL identifies the lock under
which some set of buffers is managed and con-
tains the following information:

= The lock ID ofthe lock

= The lock ID of the parent lock
= The lock basis

= Areference count

= A hash-chainlink pointer

Buffers and locks are found using two hash
tables, one each for BFRDs and BFRLs. The disk
block LBN is used to hash into the BFRD hash
table; the lock basis is used to hash into the BFRL
hash table. Each entry in the table forms the head
of the hash chain for a set of BFRDs or BFRLs.

The cache header ties together the compo-
nents in the block-buffer cache. The cache
header contains

= Base pointers for the hash tables
= The BFRD and BFRL lists

= Availability counts and descriptors to form the
four partitions of the buffer cache

= Performance counters

= Scveral synchronization queues

Each synchronization queue is described as
follows:

= Cache synchronization queue — Changes to
the cache descriptors (e.g., signing a buffer
out of the cache for process use or changing
the contents of a buffer) must be serialized.

= Pool wait queues — If insufficient buffers are
left in the buffer pools, the XQP must wait
before processing a file function.

Digital Technical Journal
No. 5 September 1987

51

VAXcluster
Systems

The VAX/VMS Distributed Lock Manager

= Ambiguity queue - The lock name used to
synchronize a file header sometimes changes.
For example, all headers of a multiheader file
are synchronized under the serialization lock
of the primary file header. Therefore, the lock
name for an extension header will change
when the file is deleted and the header reused
for another file. The ambiguity queue is used
when the VMS software finds that a file header
buffer is owned by another process under a
different lock. Thus the queue allows the cur-
rently executing XQP to wait until the state of
the header buffer stabilizes.

Since each host CPU has a buffer cache, access
to it is not synchronized by the lock manager.
Rather, an informal queuing mechanism, which
saves considerable overhead, is used. When an
XQP must wait on one of the buffer header
queues, it simply sends the I/O packet represent-
ing the current file operation into the appropri-
ate queue and suspends execution. Some time
later, another process in the system will rectify
whatever condition the first process was waiting
for (e.g., making buffers available). Having done
so, the other process checks the appropriate
queue to detect that the first process is waiting.
The first process is then restarted by removing its
I/0 packet from the synchronization queue and
using the I/O packet to queue an AST.

Buffer Management

In the block-buffer cache, each buffer is in one of
two states: either it is available for use (and may
or may not contain valid disk data), or it is owned
by a process (and only one process). The cache is
carefully managed to avoid resource deadlocks
and to prevent individual processes from “hog-
ging” it.

A resource deadlock happens when a process
partially executes a file function, then discovers
the need for an additional 1/O buffer. Being par-
tially complete, the process probably holds some
locks. If no more buffers were available, the pro-
cess would have to wait, holding its locks. In the
meantime, some other process, also holding some
I/0 buffers, might attempt to acquire a lock that
the first process is holding. In this case, that
other process will stall. This situation is the clas-
sic deadlock of “A is holding X and waiting for Y,
B is holding Y and waiting for X.” Yet the VMS
lock manager would not dctect this deadlock
because some of the entities involved are not
locks.

Resource deadlocks are avoided by reserving
sufficient buffers before starting a file function.
Thus the file system is designed so that all file
functions can be completed using a known mini-
mum number of buffers. If this minimum num-
ber is not available, the XQP must wait on the
pool wait queue. Therefore, deadlocks cannot
occur because the XQP is not yet holding any
locks.

Buffers are reserved by simply decrementing
the pool availability counters in the cache
hcader. Individual buffers are not actually taken
by the process until needed. The state queue
linkage and the owner process ID (PID) repre-
scnt the state of a buffer. An available buffer is
linked into the LRU list corresponding to the
buffer pool; this buffer has a zero-owner PID. A
process takes a buffer when the process wishes to
rcad a particular disk block. The process selects
an appropriate buffer either by finding the
desired disk block in the LBN hash table, or, if
the block is not found, by removing the oldest
buffer from the front of the LRU list. Taking a
buffer for process use involves first removing it
from the LRU list and entering it into the pro-
cess's in-process list, then entering the process
ID into the buffer’s owner PID field.

A buffer is never taken if marked with a differ-
ent owner PID (i.e., owned by another process).
If the buffer is for a file header, the lock basis for
the hcader could be changing; therefore, the
XQP must wait on the ambiguity queue. The lock
basis for other types of buffers never changes
while the buffer is owned. Therefore, finding a
buffer owned by another process indicates that
fil e synchronization has been violated, which
causcs a system crash.

In many cases, more buffers than the necessary
minimum may be useful in processing a file func-
tion (¢.g., when a file has many headers or a large
dircctory must be searched). If more buffers are
availablc in the cache, the XQP will continue to
reserve and take them for process use. Once the
cachc availability counters fall below a minimum
threshold, however, the XQP will stop reserving
additional buffers. In this case, the XQP must
recurn a buffer from its in-process list for each
ncw buffer taken. This swap prevents one very
complcex file operation from hogging all available
buffers and guarantees a minimum level of opera-
tional concurrency.

At the end of a file operation, all buffers held
on the in-process list must be returned to the
cache. Since modified buffers are not held in the

52

Digital Technical Journal
No. 5 September 1987

cache, any on the in-process list are written back
to the disk as they are returned. As the buffers are
rcturned, the XQP ensures that each one is asso-
ciated with a BFRL corresponding to the synchro-
nization lock under which the buffer was read.
The XQP will release all synchronization locks
when all buffers have returned. Locks corre-
sponding to buffers remaining in the cache are
not released but are demoted to NL mode to pre-
serve the buffer sequence number.

The inability to hold modified buffers in the
general cache is a small regression from the ACP-
based file system. VMS versions 2 and 3 could
hold modified file headers of files currently open
for write in the cache. That ability saved a write
operation when such a file was modified (e.g.,
extended). Now, the techniquc of holding modi-
fied buffers and flushing them under a blocking
AST is well understood. It is possible to add the
necessary mechanism to the new buffer manager.
However, development time constraints pre-
vented us from including this capability in VMS
version 4.

User Interference

The file system is designed to tolerate the modifi-
cation of the file structure components by user-
level software (such as the disk-rebuild utility).
Thercfore, when a user process opens the storage
bitmap file for a write operation, for example,
any updates to that file must be accounted for in
the block-buffer cache. This task is accomplished
by first recognizing files that constitute compo-
nents of the file structure when they are opened
for write, then routing all writes through the
XQP. The XQP checks all blocks written against
the cache and invalidates matching cache
buffers.

File Control Blocks

Like the block-buffer cache, the file control
blocks for open files and directories represent
replicated cache data that must be kept coherent.
The blocking AST mechanism in the lock man-
ager solves this coherency problem. Recall that
each cluster member holds an arbitration lock for
each open file on a cluster-accessible volume.
Associated with the arbitration lock is a system
blocking AST routine. File access arbitration
never invokes this routine because arbitration
does not wait for file accessibility. (File access
conflicts are returned as errors to the caller.)
When a user modifies the attributes of a file (its
size, protection, etc.), the various file control

blocks across the cluster must be updated. This
task is done by queuing an EX-lock request for
the arbitration lock, thus causing the blocking
AST routine to execute. The AST routine simply
marks the local file control block “stale.” Once
qucued, the EX-lock request will be immediately
canccled since it will normally ncver be granted.
On the other cluster nodes, the next operation on
the file will update the file control block. The
XQP, finding the file control block marked stale,
will refresh it with file data rcad from the disk
and rearm the blocking AST by re-cstablishing the
arbitration lock.

Quota Cache

The quota cache presents a unique cluster-syn-
chronization problem. The quota cache contains
asmall number of currently active quota records,
each representing a file owner to whom file
space has been charged. Now, users normally
modify files owned only by themselves. There-
fore, a small cross section of the quota file, repre-
senting the set of users currently logged into the
system, can be cached with excellent locality.
The quota cache is especially effective because
quota changes are rcflected only in the cache
cntries. These changes are written back to the
quota file only when replacement removes them
from the cache. As a result, a properly sized
cache eliminates almost all the overhead of quota
management. Figure 6 illustrates the access to
the quota cache, and Figure 7 the entry to that
cache.

Preserving the performance characteristics of
the quota cache presented us with a unique
problem. The locality of use of filc owners does
not in any way reflect back into locality of use of
quota file blocks. Thus the cache entries must be
handled on an individual basis. Quota-cache
coherency across the cluster is maintained by
using a separate lock for each quota-cache entry.
The dynamic part of a quota record (quota, over-
draft, and usage, plus some flags) just fits into the
16-byte value block of the lock. The resource
name of the lock is the file owner, plus the vol-
ume name andthe textstring FI [BSq.

A lock held at PW mode backs up cach valid
cntry to the quota cache. When another XQP in
the cluster wishes to use the same quota record,
that XQP must find a suitable cache entry (by
finding the file owner in its cache or taking the
LRU cache entry) and then ¢nqucuc for the lock
at PW mode. This action triggers a blocking AST

Digital Technical Journal
No. 5 September 1987

53

VAXcluster
Systems

The VAX /VMS Distributed Lock Manager

UNIT
CONTROL QUOTA
BLOCK BLOCK
vCB
QUOTA BLOCK
AST CONTR. BLK.
QUOTA FLUSH
VOLUME AST CONTR. BLK.
CONTROL
BLOCK
QUOTA CACHE
ENTRIES
QUOCACHE

Figure 6 Quota Cache

LRU INDEX CACHE INDEX

LOCK ID

FLAGS RECORD NUMBER

USAGE
VALUE
BLOCK

PERM QUOTA

OVERDRAFT

USER ID CODE

Figure 7 Quota Cache Entry

on the node currently holding the lock at PW
mode. Because the quota-cache lock is system
owned, the blocking AST routine will execute at
IPL 8. Using an AST control block built into the
quota-cache structure, the routine queues an AST
to the swapper process to borrow its process con-
text. The swapper AST executes another subrou-
tine that releases control of the entry to the quota
cache. This subroutine marks this entry “invalid”
and demotes the PW lock to CR mode, in the pro-
cess writing the entry contents into the value
block of the lock. Upon release, the lock is
granted to the requesting process, which trans-
fers the lock’s value block into its cache entry. As
a result, the lock manager can transfer quota-
cache entries about the cluster without incurring
any disk 1/0.

File Number and Extent Caches
During normal operation, the file-number and
extent caches, shown in Figure 8, do not present
any synchronization or coherency problems in
the cluster. Since the cache contents are marked
“in use” in the appropriate bitmap, each cache in
each cluster member simply contains a different
collection of free disk space or free file numbers.
The cache may have to be emptied, however,
and its contents written back to the bitmap.
There are two reasons for these actions. First, the
file system will tolerate the modification of the
file structure components by user-level software
(e.g., the disk-rebuild utility). Therefore, when a
user process opens the storage bitmap file for a
write, for example, all instances of the extent
cache must be flushed to the bitmap. That does
two things:

1. It presents the user with a correct view of
the bitmap.

2. It prevents the cache from containing stale
data in the event the user modifies the
bitmap.

Note, by the way, that the quota cache is affected
by all these considerations as well.

Second, resource exhaustion must be handled
as gracefully as possible. With the extent caches
in opcration, the available free space on the disk
is distributed in the various extent caches across
the cluster. If a user makes an allocation request
for all the remaining free space on the disk, that

UNIT VOLUME
CONTROL CACHE
BLOCK BLOCK
FIDCACHE
EXTCACHE
VCB
FILE
NUMBER
VOLUME CACHE
CONTROL
BLOCK
EXTENT
CACHE CACHE

Figure 8 File Number and Extent Caches

54

Digital Technical Journal
No. 5 September 1987

request cannot be satisfied without emptying the
extent caches on the other cluster members.

A cache-flush lock will handle both situations
stated above. The quota, file-number, and extent
caches are each backed by a cache-flush lock.
The resource name is derived from the file
number of the related file, plus the text string
Fl11B$c. While a cache is active, the cache-flush
lock is held as a system-owned lock at PR mode.

When wishing to cause a cache flush for a cer-
tain type of cache across the cluster, the XQP
enqueues for the related lock at CW mode. This
action causes the blocking AST associated with
the PR lock to execute as a fork IPL 8 routine.
This routine uses an AST control block built
into the cache structure to queue an AST to the
CACHE_SERVER process of the file system. One
such process runs on each node in a cluster; its
sole responsibility is to respond to cache-flush
requests.

The parameters associated with the AST iden-
tify which cache is involved and the volume
for which the cache is to be flushed. The
CACHE_SERVER process then executes a privi-
leged file system control function that causes the
file system to empty the specified cache. Having
emptied the cache, the XQP releases the PR lock,
thus allowing the process requesting the CW
lock to proceed. If a cache flush is requested
simply to make all free space available, the CW
lock will be immediately released. If the cache
flush is associated with opening a piece of the
file structure for a write, however, the CW lock
will be held as a system-owned lock until the fil¢
is closed. Since any attempt to refill the cache
must first acquire the PR lock, such attempts will
fail until the file is closed and the CW lock
released.

Digital Technical Journal
No. 5 September 1987

Summary

The distributed file system was one of the most
challenging aspects in developing VAXcluster
systems. Starting from a file system that was pro-
cess based and single threaded, we developed
one that is procedure based and multithreaded.
The major challenges lay in developing the nec-
essary synchronization and in redesigning the
caches to work correctly in the distributed envi-
ronment. We solved these problems by exten-
sively employing the VMS distributed-lock man-
ager in new and creative ways. The result is a file
system that works effectively in the cluster envi-
ronment. What's more, this file system displays
better performance and concurrency in the sin-
gle-system environment as well.

References

1. VAX/VMS 1/0 User’s Reference Manual,
Part 1(Maynard: Digital Equipment Corpo-
ration, Order No. AA-ZGOOC-TE, 1980).

2. VAX/VMS Systems Services Reference Man-
ual (Maynard: Digital Equipment Corpora-
tion, Order No. AA-Z501B-TE, 19860).

3. Guide to VAX/VMS Disk and Magnetic
Tape Operations (Maynard: Digital Equip-
ment Corporation, Order No. AI-YS06B-TE,
1986).

55

VAXcluster
Systems

Michael S. Fox
Jobn A. Ywoskus

Local Area VAXcluster Systems

Local Area VAXcluster systems use the Ethernet rather than the CI bus as
their interconnect between nodes. This makes it possible to include
MicroVAX systems and workstations in a VAXcluster environment. The key
technical issues that bad to be solved were to provide an Ethernet base
equivalent to the CI bus for the cluster’s System Communication Architec-
ture protocols and to allow the VMS software to boot on a diskless system
using the Ethernet as a link to a remote system disk. This paper describes
the work done to satisfy these two design issues: providing robust cluster
communication on the Ethernet as a means of performing remote disk
access, and network booting of the VMS system.

The Local Area VAXcluster (LAVc) software is a
ncw product that brings VAXcluster functionality
to the full range of VAX processors. A LAVc uses
the Ethernet instead of Digital’s proprietary Com-
puter Interconnect called the CI bus, thus mak-
ing possible the inclusion of small systems like
the MicroVAX I1 CPU in the VAXcluster configu-
ration. This paper describes the benefits pro-
vided by a LAVc, the concepts on which it was
built, and the technical details of the two new
major internal capabilities added to the VMS
operating system.

VAXcluster System Definition

A VAXcluster system is a distributed system made
up of VAX computers and their associated stor-
age elements, all linked in a closcly coupled
arrangement.! VAXcluster members coopcrate
with each other on a peer-to-peer basis. They all
share a common file system, print and batch
queue operations, and comprise a single manage-
ment domain (the cluster is managed as a single-
system entity) enclosed by a single security
perimeter.

A VAXCcluster system differs from a more tightly
coupled multiprocessor arrangement in several
ways. First, the VAX systems communicate over a
fast, efficient network link instead of sharing
memory. Second, each system has its owncopy of
the VMS system in memory (possibly loaded from
the same shared disk image). Third, the members
may boot and shut down independently. Finally,
the clusterwide file system, single sccurity and

56

management domains, and other VAXcluster fca-
tures are much closer to those offered by a tradi-
tional single timesharing system thanto the capa-
bilities offered by traditional networks.

The first VAXcluster implementation (VMS ver-
sion 4.0) operated only on the CI bus, a limited-
distance LAN connecting up to sixteen nodes at
70 megabits per second. CI adapters are highly
intelligent, and hence relatively complex and
expensive. They were built expressly for large
systems located in machine rooms. With the
advent of small desktop VAX processors, some
new interconnect was needed for bringing them
the benefits of cluster functionality. The CI bus
could meet neither the geographical criteria nor
the low cost required in an office (as opposed to
a computer room) environment, nor could it sup-
portenough nodes.

The VAXcluster support in VMS version 4.4 had
maturcd cnough so that extending it to another
interconnect became feasible. The Ethernet,
already Digital’s standard for network communi-
cation, was the obvious choice for this new inter-
connect. Ethernet’s cost, distance, speed, connec-
tion capabilities, and existing hardwarc basc
allowed the VAXcluster functions to move out
of the machinc room and effectively support
smaller systems.

LAVc Goals, Requirements,

and Configurations

The overall LAVc goal was to bring the benefits
of VAXcluster systems to low-end and desktop

Digital Techbnical Journal
Ne. 5 September 1987

systems. The benefits of this goal included the
following:

= Asingle, clusterwide common file system with
disks connected to any CPU

= Fully integrated and synchronized file sharing
atthe record level among users on any member
in the cluster

s Clusterwide availability of print and batch
queues (Print and batch execution facilities
can be located on any set of members.)

= Asingle security domain

= The simplification (or even elimination) of the
end user’s system-management responsibilities

With this goal in mind, we drew up a list of
requirements for such a product. These require-
ments included

= Support the Ethernet instead of the CI bus as a
cluster interconnect, yet allow simultaneous
use by other clusters and networks

= Boot the VMS software over the Ethernet

= Simplify cluster management and installation
by providing tools and limiting configurations

= Provide clusterwide disk access by means of
the software Mass Storage Control Protocol
(MSCP) server instead of the HSC controllers

= Retain all the existing VAXcluster software
capabilities and as much of the implementa-
tion as possible

= Supportdiskless systems

The first three requirements had the largest
impact on the LAVc development. In fact, the first
two required the most engineering effort to
develop new software. After a brief description of
the resulting LAVc product, the remainder of this
paper will describe the technical work done to
meet those two requirements.

Configurations

The configuration supported by the initial
releases of LAVc utilizes a single Ethernet as the
cluster interconnect. Conservative restrictions
were imposed where necessary to limit the com-
plexity and to allow thorough testing and perfor-
mance analysis of almost all supported cluster
configurations. The result is the configuration
shown in Figure 1. Future extensions to increase

the number of members, allow both CI and Ether-
net in the same cluster, and multiple Ethernets
are being planned. They will not be addressed
further in this paper.

The members cooperate with each other in a
peer-to-peer relationship. They are managed by a
cluster connection manager and synchronized by
a distributed lock manager without regard for the
roles they play in an operating LAVc.? That is a
key difference between the LAVc and other
“client/server” products. Any system in the clus-
ter can provide or consume resources provided
by the other systems. To simplify the resulting
supported configurations, however, we chose to
assign certain roles to the systems. The boot
member and satellite roles merely describe the
jobs those systems perform; the roles are not
known by the VAXcluster software. The cluster
software cares only where the resources are
located and which systems have access to them.

Each boot member is a management center of
the cluster. The VMS system disks connected to
each boot member makes them available to other
cluster members by means of the MSCP server
software. The initial LAVc releases limit the num-
ber of boot members and system disks to reduce
the complexity of installation and management.

DISK

VAX VAX

ETHERNET

VAX VAX VAX

Figure I LAVc Configuration

Digital Tecbhnical Journal
No. 5 September 987

S7

VAXcluster
Systems

Local Area VAXcluster Systems

Boot members may also serve other data disks in
the cluster.

A boot member also functions as a load host
during an Ethernet boot operation. This role
is discussed further in the sections on remote
booting.

Satellite systems boot off the system disk pro-
vided by a boot member and generally depend on
that member for other resources as well (data
disks, printers, etc.). On the other hand, satel-
lites may serve data disks to the cluster, as well as
provide print or batch resources. The satellites
are configured by the cluster manager to best
meet the needs of the application.

To date, only members of the MicroVAX II fam-
ily of systems and workstations (MicroVAX 11,
VAXstation II, VAXstation II/GPX, MicroVAX
2000, and VAXstation 2000 systems) can be
satellites. This restriction results from the need
for specific code to be written to support remote
booting for the CPU and Ethernet adapters. Satel-
lite support for other CPUs (both new and exist-
ing) will be considered in the future.

Disk Access

In a CI cluster, the HSC disk controllers connect
to the CI bus in the same manner as do the VAX
systems. I/O requests originating in any VAX CPU
are passed to the disk class driver (DUDRIVER),
which encodes them into MSCP packets. These
packets are sent over the CI network to the appro-
priate HSC controller for execution. All VAX
CPUs in the cluster therefore have equal access
to the HSC controllers and the disks connected
to them. However, an HSC controller cannot
connect to an Ethernet. Therefore, some other
method is needed in a LAVc to allow disk access
to all systems.

In the absence of HSC controllers, each disk
must be connected to the system by some con-
troller, such as a UDA, KDA, or UNIBUS con-
troller. Making these disks accessible to other
VAX systems in the cluster requires a software
emulation of the HSC controller. This need is
filled by the MSCP server software.

The VAX CPU originating the [/O request
merely sends an MSCP packet over the network to
the target VAX CPU with the desired disk. The
packet is identical to the one DUDRIVER would
have sent to an HSC controller. The MSCP server
software on that target CPU receives the packet,
performs the operation, and returns the results
just as an HSC would do. The class driver on

the originating VAX cannot tell the difference
between the MSCP server and an HSC controller.
The result, as shown in Figure 2, is that disks
served by the MSCP server appear to be equally
available to all systems in the cluster, indepen-
dent of which system they are actually cabled to
and the type of interconnect.

System Management

The LAVc configurations described above were
designed so that all systern management activities
would take place on the boot member. Although
the cluster can be configured differently, that
configuration is the simplest. It is also what most
users would want when the satellites are personal
workstations.

The VMS, satellite system, and application soft-
ware installations are all controlled by command
procedures executed on the boot member. Disk
backups are done mostly on the boot member, on
which the backup device (usually tape) is
located. Data disks can be located anywhere in
the cluster. If the satellite is a single-user work-
station, we recommend that applications and user
data not be put on any of its disks. Using a work-
station’s local disks only for page and swap files
eliminates the need for backups, thus freeing the
owner of all system-management responsibilities.

The overall product simplicity goal is clearly
facilitated by configuring the cluster in this man-
ner. All management activity is local to one sys-
tem and remains under the control of a limited
number of people. Cluster users should have no

VAX VAX DISK
NETWORK MSCP
DUDRIVER SERVER
DISK
NETWORK
HSC DISK
DISK

Figure 2 Disk Access

58

Digital Technical Journal
No. 5 September 1987

more system-management responsibilities than
users of dumb (e.g., VT220) terminals would
have.

LAVc’s Use of the Ethernet

The Ethernet is used as the cluster communica-
tion mechanism because it is compatible with
the LAVC's requirements for cost and system envi-
ronment (non-computer room). There are, how-
ever, significant tradeoffs inherent in substituting
the Ethernet for the CI bus. For example, commu-
nication over the Ethernet is slower and more
CPU intensive than over the CI bus. The Ether-
net’s advantages are lower expense, much greater
geographic distance, and the ability to connect
many more systems.

The VMS port driver that provides reliable
cluster communication utilizing the Ethernet is
called PEDRIVER. It provides communication in
such a way that the rest of the VMS software is
unaffected. This section describes PEDRIVER’s
role within a LAVc, the PEDRIVER protocol,
and some technical details about its internal
structure.

The PEDRIVER

Communication services within a VAXcluster sys-
tem are described by the System Communication
Architecture, or SCA.3 The SCA model consists of
the four layers shown in Figure 3.

The system application (SYSAP) layer consists
of users of the connection services provided by
the systems communication services (SCS) layer.
Examples of SYSAPs are the disk class driver
(DUDRIVER), the MSCP server, and the cluster
connection manager.

The SCS layer provides network resources to
the SYSAPs. It multiplexes the underlying com-
munication service, provided by the port-to-port
communication layer, into several connections.
These connections link a number of entities,
including the connection managers between two

SYSAP SYSTEM APPLICATIONS LAYER

SCS SYSTEMS COMMUNICATION SERVICES LAYER

PPD PORT-TO-PORT COMMUNICATIONS LAYER

Pl PHYSICAL INTERCONNECT LAYER

Figure 3 SCA Layers

members, the class driver to the MSCP server (or
HSC device), and so forth. The SCS layer also pro-
vides flow control, buffer management, notifica-
tion of new SYSAPs registering with it, and notifi-
cationof connection breakage.

The port-to-port communications (PPD) layer
maintains a single communications path, called a
virtual circuit, with every other VAX system or
HSC controller in the cluster. On a CI cluster,
this layer is the lowest software layer within the
VMS system. It is implemented by the CI port
driver, called PADRIVER. PADRIVER knows how
to interface with the CI adapter and is responsi-
ble for discovering new nodes, forming virtual
circuits with them, detecting communication
failures, and signaling these events to the SCS
layer.

In a LAVc, PEDRIVER provides much of the

VAXcluster
Systems

same PPD functionality as does PADRIVER. Since

the Ethernet hardware offers only a datagram ser-
vice (instead of the reliable communication path
offered by the CI bus), PEDRIVER uses a net-
working protocol to provide a reliable communi-
cations service. Unlike PADRIVER, PEDRIVER is
device independent, utilizing an underlying
datalink driver to control the Ethernet adapter.

The physical interconnect (PI) layer repre-
sents the medium over which packets are sent
and received. A complete specification for this
layer includes the mechanisms for clocking bits
on the wire, the framing of bits into bytes and
bytes into messages, electrical signal require-
ments, cabling, and so forth.

Ports

A port is a software interface between the port
driver and a communications entity, usually an
adapter. A port is implemented as a set of queues
whose use is rigorously defined. Access to these
queues is by means of interlocked instructions;
thus no other synchronization mechanisms are
required. The port driver manages the port. The
driver receives requests from the SCS layer, for-
mats them, then passes them across the port by
linking a packet in a prioritized command queue.
The driver then sets a control bit to inform the
port of this action. The entity behind the port
dequeues the command packet, executes it, and
either returns it to the driver with a status mes-
sage or places it in the appropriate free queue.
Packets being delivered across the port to the
driver are linked into a response queue. An inter-
rupt is generated if the queue was previously
empty.

Digital Technical Journal
No. 5 September 1987

59

Local Area VAXcluster Systems

In the CI case, this port structure is used to
communicate between PADRIVER and the CI
hardware. The hardware guarantees the delivery
of sequential messages. It also moves user data
into or out of the virtual address space of a target
node during block transfers. Thus the CPU over-
head is kept to an absolute minimum. The CI
adapter is intelligent enough to perform these
functions on its own and to interrupt the CPU
when the operation is finished.

Ethernet adapters do not fit this model. They
are typically packet-oriented devices that trans-
mit or receive using discrete, limited-size
buffers. The adapters do not guarantee sequential
delivery. Since VAXcluster systems require these
features, they must be replaced with software, at
a corresponding increase in CPU overhead.

To preserve the same port interface, however,
we put the software providing these services
below the port interface. The port then becomes
an interface between SCS and a port driver above
the port, and a port emulator below. Preserving
the same level of functionality at the port inter-
face eliminated the need for extensive software
modifications to the SCS and higher software lay-
ers. Figure 4 shows the port structure for both
the CI and Ethernet cases.

SYSAP SYSAP SYSAP

~ /

SYSTEMS COMMUNICATION SERVICES (SCS)
cl ETHERNET
PORT DRIVER PORT DRIVER
(PADRIVER)
R, PEDRIVER
PORT EMULATOR
DATALINK
DRIVER
ETHERNET
ADAPTER ADAPTER Bl
CABLE
CI CABLE

Figure 4 VAXcluster Software Structure

PEDRIVER Functions

PEDRIVER is used instead of PADRIVER as the
port driver in a LAVc. PEDRIVER contains two
major segments: a port manager that receives
packets from SCS and queues them to the port,
and a port emulator that operates below the port
interface. This port emulator effectively emulates
the behavior of the CI hardware, utilizing a still
lower level datalink driver for access to the Ether-
net adapter, as shown in Figure 5. Since the port
emulator is the key to the LAVc’s use of the Ether-
net, its design and implementation will now be
described in detail.

NI-SCA is the name of protocol used by the port
cmulator to communicate with its peers on other
nodes. This protocol extends the SCA so that sys-
tems can be connected by the Ethernet (also
known as the NI). This extension is achieved at
the costofreduced CPU efficiency, since the soft-
ware is doing more work, and lower I/O band-
width, since the Ethernet is slower than the CI
bus. In addition, the public access nature of the
Ethernet introduces security and configuration
problems not encountered on the CI bus.

Major Objectives
The goals of the NI-SCA port design are

= Compatibility — The interface to the NI-SCA
port must have a strong resemblance to that of
the Cl port to minimize the impact on the sys-
tem software directly using the port. In partic-
ular, the functions required by the SCS layer
and provided by the port should be opera-
tionally equivalent to their Cl port counter-
parts so that the SCS layer need not be
changed.

= Performance — The port architecture has to
address two performance problems. First, the
low Ethernet bandwidth may very well be a
bottleneck in some configurations, especially

Mscp MSCP
DUDRIVER S vee
SCS CONNECTIONS
SCS f———m———————————- SCS
NI-SCA
PEDRIVER [F—— — ——— = — — — — — — — PEDRIVER

DATALINK F———— = — — — — — — — DATALINK
PHYSICAL ETHERNET CABLE

ADAPTER ADAPTER

Figure 5 Protocol Layering

60

Digital Technical Journal
No. 5 September 1987

as CPU speeds increase. Second, the low band-
width affects both the aggregate throughput
and the response time between a transmitted
message and the subsequent response.

= Security - Provisions for authenticating
remotc nodes are required. (Software data
encryption is not currently part of the port
design.)

= Simplicity — The port architecture should be
defined so that implementations may substi-
tute performance for simplicity. Ports imple-
menting different subsets of the architecture
must be able to communicate with each other.

Differences between the CIBus
and Ethernet

The NI-SCA architecture must address several
areas that result from the fundamental differ-
ences between the CI and Ethernet buses and
their existing adapters.

» Locating other nodes — The CI polling for the
existence of other nodes does not work in the
larger Ethernet environment.

= Data transport — The NI-SCA port emulator
must make the data transfer limitations of the
Ethernet transparent. Data segmentation and
reconstruction must be handled efficiently.

= Multiple paths — Any given node may interact
with more than one Ethernet through more
than one Ethernet adapter. The port emulator
must allow an implementation to exploit such
configurations transparently to achieve the
requirements of efficiency and redundancy.
The current implementation of PEDRIVER
does notsupportthis.

= Detection of communication failures — The
port emulator must detect node or communi-
cations failures and signal them to the SCS
layer.

= Ethernet coexistence — The NI-SCA protocol
must allow multiple clusters to coexist on the
same Ethernet and to share that Ethernet with
other network protocols.

= Security — Secure communication between
nodes must be addressed since the Ethernet
spans a wider and less secure environment
than does the CI bus, which is typically pro-
tected by the security of the computer room.

Locating Other Nodes and Virtual
Circuit Formation

The address space on the CI bus is currently
implemented as a four-bit field. The resulting
maximum of 16 possible addresses and the limi-
tation of one cluster per Cl bus makes polling all
possible addresses to locate other nodes an
attractive solution. Polling is clearly not prac-
tical on the Ethernet, however, where there are
2% possible addresses, multiple clusters, and
nodes totally unrelated to clusters.

PEDRIVER replaces the CI bus polling with a
multicast scheme to a cluster-specific multicast
address. A large block of consecutive multicast
addresses have been reserved for NI-SCA. The
lowest address in the block is hard coded into
PEDRIVER. During installation, the user assigns a
group number to the cluster. PEDRIVER adds this
group number to the base address to generate
that cluster’s unique multicast address within NI-
SCA’s reserved block.

PEDRIVER enables the reception of this multi-
cast address and transmits a HELLO multicast to it
every three seconds. PEDRIVER will attempt to
create a circuit upon receiving a HELLO message
from a node with which it does not currently
share an open virtual circuit. HELLO messages
received from nodes with a currently open vir-
tual circuit indicate that the remote node is still
operational.

A standard three-message-exchange handshake
is used to create a virtual circuit, as shown in
Figure 6.

The START_VC and START_ACK contain infor-
mation about the transmitting system, and what
it believes the cluster password to be. These
parameters are verified at the receiving system,
which continues the handshake only if its verifi-
cation is successful. Thus each system authenti-
cates the other. After the final ACK message, the
virtual circuit is open for use by both systems.

TRANSMITTING
SYSTEM

RECEIVING
SYSTEM

> START_VC

A

START_ACK

= ACK

Figure 6 Standard Handshake

Digital Technical Journal
No. 5 September 1987

61

VAXcluster
Systems

Local Area VAXcluster Systems

Data Transport

PEDRIVER uses the virtual circuit to provide the
three SCA port data transfer services described
below. The SCS layer does not need to distinguish
between the CI hardware or the NI-SCA port emu-
lator version of these services.

1. Datagrams — Packets to be delivered on a
“best effort” basis. No guarantees are made
about delivery, sequentiality, or replication.

2. Sequenced messages — The port guarantees
the sequential delivery of exactly one copy
of the packet.

3. Block transfers — The port moves a large
amount of data in either direction. Segmenta-
tion, handled below the port, is invisible to
the portdriver and everything above it.

Datagrams are sent as Ethernet packets, which
are sufficient since no delivery guarantees are
assumed.

PEDRIVER uses a standard networking protocol
to provide reliable communications when neces-
sary. A sequence number is included in each
packet so that lost or out-of-sequence packets can
be detected. Each packet requiring reliable
delivery must be acknowledged by the receiving
port emulator. To improve efficiency, several
packets may be sent without waiting for an ACK.
Whenever possible, the recipient will also bun-
dle the ACK into a message to be sent back to the
original source, thus saving the cost of an explicit
ACK. Timers are used in both the source and des-
tination systems to generate a retransmission if an
ACK does not arrive after a specified time period
has elapsed. These timers also initiate the trans-
mission of an explicit ACK in the absence of any
reverse traffic.

To send relatively small amounts of data, SYS-
APs use sequenced messages, generally holding
up to about 120 bytes. PEDRIVER sends these
messages with a sequence number over the vir-
tual circuit, and they must be acknowledged by
the recipient as described above. PEDRIVER can
therefore guarantee reliable message delivery to
the destination SYSAP.

To send large amounts of data, SYSAPs use
block transfers. In a VAXcluster system, the disk
class driver and the MSCP server use block
transfers to move data being read from or written
to a disk. PEDRIVER’s port emulator imple-
ments block transfers by segmenting the data in
1300-byte chunks. Each chunk is copied out of

the source buffer into a datalink packet and trans-
mitted over the virtual circuit as a sequenced
message. The receiving port emulator copies the
data out of the Ethernet packet into the user’s
buffer. The virtual circuit guarantees the sequen-
tial delivery of these packets, thus maintaining
data ordering and integrity.

The CI adapter can copy data into or out of
the virtual address space of a target node by
using direct memory access (DMA). Thus the
CPU is not involved in block transfers. Ether-
net adapters, however, access data in specific
buffers; therefore, PEDRIVER must copy data
using a MOVC instruction. This scheme adds a lot
of CPU overhead to Ethernet block transfers.

Detection of Communication and
Node Failures

Communication can be lost between nodes for
several reasons: a node shutdown, a system crash,
or a hardware failure. PEDRIVER must detect
these events and signal their occurrences to the
SCSlayer.

A system generally transmits a node-stop (or
last gasp) datagram upon learning it will shut
down. This shutdown could be a planned event
by an operator or a system software crash. The
SCS layer acts upon a received node-stop data-
gram. SCS breaks all connections with SYSAPs on
the originating system and tells PEDRIVER to
break the virtual circuit. Cluster reconfiguration
occurs much faster when a last-gasp datagram is
received because no time-outs are required.

Communication can be lost, however, without
the receipt of a node-stop datagram. Both a hard-
ware failure and tripping a system’s halt switch
will break contact, or the node-stop datagram
could be lost on the Ethernet. Therefore, other
ways of detecting a breakage are needed. In gen-
eral, PEDRIVER detects a breakage by checking
for the HELLO multicasts being transmitted every
three seconds. One eight-second timer checks for
the arrival of HELLO messages for all virtual cir-
cuits. If two ticks of this timer (eight to sixteen
seconds) occur without receiving a HELLO mes-
sage from a system, that system is assumed to
have failed. The SCS layer is then notified of this
occurrence.

Certain hardware failures may cause a node to
continue sending but to be unable to receive
HELLO messages. Therefore, still another fail-
ure detection method is used: the counting of
retransmission attempts for a sequenced packet.

62

Digital Technical Journal
No. 5 September 1987

If a sending node makes 30 attempts (at one-sec-
ond intervals) without receiving an ACK, the
recipient node is presumed dead and SCS notified
of the failure.

Sharing the Ethernet

The Ethernet is designed as a shared-communica-
tions bus. Any NI-SCA architecture that precludes
its use by other clusters or networks is un-
acceptable.

Multiple LAVcs coexist on the same Ethernet by
using different group numbers. Thus each LAVc
uses different multicast addresses to transmit and
receive its HELLO messages. As a result, it does
not “hear” messages from other LAVc’s or attempt
to form virtual circuits with them. Multicast mes-
sages on one Ethernet are not passed to other Eth-
ernets that are linked by means of traffic
routers or gateways utilizing other communica-
tions media. Therefore, group numbers must
be unique only on each Ethernet. Different clus-
ters on other Ethernets may use the same group
number. The group-number space is large
enough so that ranges of numbers can be given
to different branches of a business organization,
thereby reducing the need for nectworkwide
administration.

NI-SCA is registered as Ethernet protocol
type 60-07. This registration allows the datalink
driver to distinguish NI-SCA packets from those
sent by the DECnet, LAT, or other protocols.
PEDRIVER’s use of the Ethernet has no effect on
any other protocol, regardless of how the packets
are multiplexed on the single Ethernet.

Security

The VAXcluster system itself is one VMS security
domain. All the security control and alarm fea-
tures in the VMS system work on a clusterwide
basis. These features can be used with an appro-
priate degree of physical security (around the
systems and Ethernet cable) to achieve a desired
level of overall security.

Unauthorized systems are prevented from join-
ing the cluster because a cluster password is
required to establish communications. That pass-
word is validated by both nodes during the ini-
tialization handshake to create the virtual circuit.
The password prevents an unauthorized user
from booting off a privately crcated local disk
with a local authorization file (instead of a boot
member) and joining the cluster. Satellite sys-
tems booting off the boot member must have

been configured into a database by the system
manager, effectively authorizing their entry into
the cluster. A means is also provided to prevent
users from performing conversational bootstraps
to alter system parameters.

Ethernet cables are subject to unauthorized
taps and eavesdropping. The LAVc assumes the
presence of an appropriate level of physical secu-
rity around the systems and Ethernet cables, as
these problems cannot be solved in software.
Encryption hardware is the only truly effective
counterweapon to these attacks. Exploiting the
vulnerabilities of Ethernet in the absence of
encryption could be done, but it would require
substantial time, energy, and expertise.

Internal Structure of PEDRIVER

When extending SCA to include the Ethernet, we
found the layering of the original model to be
somewhat inconvenient. For one thing, the PPD
layer performed too many functions to be
thought of as asingle layer. This problem was fur-
ther compounded when additional functions,
such as node authentication, were included.
Therefore, the approach taken was to adhere gen-
erally to the original model, but to replace the
PPD and PI layers with several layers.

In the NI-SCA model, the PPD layer was
replaced with the layers from the port command
interface (PCI) to the datagram propagation
(DX) layers. The PI layer was replaced with the
datalink and physical link (PL) layers. The resul-
tant layering may seem a bit excessive — seven
layers replacing two — but is nevertheless a nat-
ural partitioning of the activities below the SCS
layer. Increasing the number of layers for NI-SCA
does not increase the intrinsic complexity of the
port; it merely facilitates the port’s description.
The new NI-SCA model is shown in Figure 7,
together with a brief description of each new
layer.

The Port Command Interface

(PCI) Layer

The PCI layer effectively implements the port by
defining the interface between the port and the
port driver. Normally, the modules of a given
layer communicate with modules in the corre-
sponding layer on remote nodes. Lacking this
characteristic, the PCI is not a layer in the strict
sense of the word but is merely an interface
between the SCS and the port-to-port communi-
cations (PPC) layers.

Digital Technical Journal
No. 5 September 1987

63

VAXcluster
Systems

Local Area VAXcluster Systems

SYSAP SYSTEM APPLICATIONS LAYER
SCS SYSTEMS COMMUNICATION

SERVICES LAYER
PCI PORT COMMAND

INTERFACE LAYER
PPC PORT-TO-PORT

COMMUNICATIONS LAYER
TRANSPORT PACKET SEQUENCING AND PPD LAYER

ACKing LAYER IN SCA
CHANNEL NODE AUTHENTICATION,
CONTROL TOPOLOGY CONTROL,

UNSEQUENCED DATAGRAM

SERVICE LAYER
DX DATAGRAM PROPAGATION LAYER
DATALINK DATALINK CONTROL LAYER

PI LAYER
IN SCA
PL PHYSICAL LINK LAYER
y

Figure 7 NISCA Layers

The PCI layer is the set of queues used to pass
command packets down to and response packets
up from the port emulator. Each packet consists
of two regions:

= The port interface region is comprised of com-
mand and status information between the port
and the port driver. The specifics of this region
are private to PEDRIVER.

= The PPC region is comprised of the informa-
tion used by the local PPC layer to communi-
cate with a remote PPC layer. The specifics of
this region are not private to PEDRIVER since
the region is interconnect independent. The
PPC region is the same for the Ethernet as it is
for the CI bus.

The Port-to-Port Communication

(PPC) Layer

The PPC layer exists below the port interface.
This layer provides port services (datagrams,
sequenced messages, and block transfers) to the
PCI layer by translating between PCI packets and
a series of PPC messages exchanged with the

remote port. The PPC layer also segments block
transfers into a series of sequenced messages. The
datagram and sequenced services provided by the
transport layer are used to exchange these mes-
sages. To be consistent with the CI bus, any errors
detected at the PPC layer in a packet sent or
received in sequenced mode cause the virtual
circuit to be disconnected.

The Transport (TR) Layer

The transport layer uses one or more paths to the
remote node to provide the local PPC layer witha
sequenced-message and datagram connection to a
remote PPC layer. For datagrams, the transport
layer is little more than a conduit to the channel
control layer. For sequenced messages, the trans-
port layer handles all the sequencing, sending
and receiving ACKs, and retransmissions required
to provide guaranteed message delivery and
sequentiality. Although multiple Ethernets are
not currently supported in a cluster, this layer
would be responsible for that functionality.

The Channel Control (CC) Layer

A channel is a path that utilizes a single Ethernet
to join two ports with an authorized datagram
service. To accomplish that service, the channel
uses the datagram scrvice provided by the DX
layer. The channel control layer manages the net-
work topology and therefore provides such ser-
vices as node authentication, access control, and
virtual circuit initialization.

The Datagram Exchange (DX) Layer
The DX layer attempts to transmit packets
from the source port to the destination port. On
any given system, the DX layer is the interface
between the ports and the datalinks. As such, this
layer is basically a switch; many ports may be
above it, many datalinks below it. Note that on a
single system, the DX layer may be shared among
multiple ports and is not owned by any one port.

The DX layer determines which systems are on
which Ethernet and transmits packets correctly
to their destinations by managing the group num-
ber and multicast HELLO messages. This layer
includes the group number in all the packets it
transmits and checks the numbers on received
packets.

The Datalink Control Layer
‘The datalink layer provides access to the physical
link and the functions at the packet level. These

Digital Technical Journal
No. 5 September 1987

functions include the hardware adapter control,
the minimum and maximum length requirements
of packet, provisions for data-integrity checking,
datalink header formats, and multicast address-
ing. For NI-SCA, this layer is provided by a sepa-
rate datalink driver. This driver controls the Eth-
ernet adapter hardware and is shared by all
Ethernet users (LAVc, DECnet, LAT systems, etc.)
on the system.

The Physical Link (PL) Layer

The PL layer represents the medium over which
packets are sent and received. A complete speci-
fication for this layer would include the mecha-
nisms for clocking bits on the wire, the framing
of bits into bytes, electrical signal requirements,
cabling, and so forth. For NI-SCA, this layer is
defined by the Ethernet standard.

Network Booting of the VMS Software

Two LAVc requirements are met by booting the
VMS software over the Ethernet: simplifying sys-
tem management by requiring only one VMS sys-
tem disk, and making possible diskless systems.
The software engineering effort required during
LAVc development to provide this functionality
was second only to that needed to develop
PEDRIVER.

Normal VMS Booting

Booting a system on a VAX processor takes place
in several stages. Each stage is characterized by a
loaded program that performs some prescribed
function, which in turn loads and transfers con-
trol to another program.

The first such program to run is the console
program, which is different on different proces-
sor types. Its basic role with respect to booting is
to retrieve the input parameters, store them in
the first six general-purpose registers, and then
load and transfer control to VMB. VMB, referred
to as either the primary bootstrap or primary
loader, is the first program that is more or less
common across all processor types. Depending
on the processor type, VMB is retrieved either
from ROM (the MicroVAX II class of systems)
or the console block-storage device (other VAX
systems).

Although the partitioning of work between
the console program and VMB differs slightly
with processor type, together they accomplish
the following:

= Locate a block of memory to use during the
boot

= Locate and establish an access path to the sys-
tem disk

= Provide a primitive I/O system consisting of a
boot driver for the system device, a file system,
and the $QIO access routine

= Locate, load, and transfer control to the sec-
ondary bootstrap, called SYSBOOT.EXE for
the VMS system, or DIAGBOOT.EXE for diag-
nostics

SYSBOOT is the secondary bootstrap selected
to run when VMB is directed to load the VMS soft-
ware. SYSBOOT performs the following actions:

= Loads the VMS images into memory

= Reads the system parameter file, accepts any
user specified parameter changes if this is a
conversation boot, and configures the system
accordingly

= Allocates memory for and loads the terminal
and system disk drivers

= Transfers control to the INIT module of the
VMS system

The VMS INIT module initializes the now run-
ning VMS system.

= Loads the processor dependent code (SYS-
LOAxxx) and other loadable components into
memory

= Copies the boot I/O routines to the nonpaged
pool for use during any system crash

= Tries to form a new VAXcluster system or join
an existing one if the parameters are set to do
this

= Transfers control to the system scheduler to
initiate process execution

Remote Booting Requirements

The actions performed during each of the three
stages of a network boot are the same as those in a
local disk boot. No modifications were required
in the functional operation of these programs.
What was needed was the ability to contend with
an Ethernet linking the booting system with its
system disk. The Ethernet has totally different
characteristics than those of the block-structured
disk device previously present. The plan, then,
was to load a piece of software that makes the
Ethernet look like a disk, thus enabling the rest of
the VMS boot sequence to proceed normally.

Digital Technical Journal
No. 5 September 1987

65

VAXcluster
Systems

Local Area VAXcluster Systems

The three primary requirements for the remote
booting design and implementation were to

= Change the existing boot process as little as
possible

= Require no initial state or context information
on the satellite system

= Work with the existing MicroVAX II boot
ROMs (Required hardware upgrades in the
field would make a LAVc much more difficult
to install).

The existing boot ROMs on MicroVAX 1I sys-
tems include an Ethernet device boot driver capa-
ble of transmitting and receiving packets, plus a
VMB program containing the DECnet mainte-
nance operation protocol (MOP). MOP locates a
boot host system on the Ethernet network, uses a
simple, synchronous ping-pong protocol to copy
an image from the host into local memory, and
then transfers control to that image.

The existing SYSBOOT program could not be
loaded directly by a MOP exchange. SYSBOOT
expects to be able to access the boot device as a
block-structured storage decvice; it does not
understand the various types of Ethernet adapt-
ers that may be present. Moreover, SYSBOOT
would not have enough information to locate the
system disk. Therefore, another image called
NISCS—LOAD is inserted into the boot sequence
between VMB and SYSBOOT. NISCS_LOAD pro-
vides the environment that SYSBOOT needs to do
its job correctly. As a result, minimal modifica-
tions to SYSBOOT and VMS INIT were necessary.

Remote Booting Operation

The user starts the satellite boot sequence with
the appropriate BOOT command on the system
console. From thereon, the process is automatic.

Satellite Operation during the
MOP Exchange

The VMB program in the satellite system’'s boot
ROM interprets the boot command and attempts
an Ethernct boot. VMB starts by transmitting a
multicast message requesting an operating Sys-
tem load. This message is multicast to an archi-
tecturally specified address because the ROM
cannot have any knowledge of the network con-
figuration. This “please boot me” rcquest is
received by host systems on the Ethernet that are
willing to service network boots. If the request-
ing satellite is one that the host is willing to ser-

66

vice, it responds to the request with an “assis-
tance volunteer” packet. The satellite responds to
the first “assistance volunteer” packet received
and ignores any others. That response causes
the host to send the NISCS_LOAD image to the
satellite.

Boot Member Operation during the
MOP Exchange

The host side of the MOP exchange is handled by
the DECnet-VAX softwarc, which must be run-
ning on the boot member. Each boot member in
all clusters on the Ethernet will hear the operat-
ing system request multicasts sent out by every
satcllite. Other systems that are not boot mem-
bers will not have enabled reception of this mul-
ticast address.

The DECnet software responds to an incoming
boot request multicast by extracting the source
address of the multicast from the packet and
searching the node database for a match. This
48-bit hardware address of the transmitting satel-
lite is guarantced to be unique on every Ethernet
adapter. This address is not normally present in
the database since it is not used for DECnet (or
other) communication under the VMS system.
Only those nodes that have been configured into
the boot member’s cluster by the cluster mana-
ger will have their hardware address entered
into the database. The request is ignored if
the multicast source does not match an address
in the database. Therefore, satellites will be
booted only by a boot member in the appropriate
cluster.

If the source address does match an address in
the database, the DECnet software starts running
the maintenancce opcerations module (MOM). This
program handlcs the host end of the MOP
cxchange. MOM also looks up the satellite in the
nodc database to get other information stored
there, including the name of a load assist agent
(LAA) program, which is used to customize the
load proccedure for a LAVc. MOM cannot do this
customizing because it is a general-purpose MOP
facility. MOM invokes the LAA by merging it into
MOM'’s address space and then calling it.

The LAA was written specifically to handle the
loading of NISCS_LOAD. LAA customizes the
NISCS_LOAD image for the booting satellite by
appending necessary information to it, including

= The name and unit number of the satellite’s
system disk

Digital Technical Journal
No. 5 September 1987

= The name of that satellite’s root directory on
that disk

= The cluster group number
= The cluster password

= A flag allowing or disallowing conversational
bootstraps

The NISCS_LOAD image and appended data are
then passed to routines within MOM that transmit
them to the satellite using the MOP protocol.
When NISCS_LOAD starts executing on the satel-
lite, it can use this information for the next phase
of the boot.

After NISCS_LOAD has been successfully trans-
mitted, the MOP phase of the boot (and the
involvement of DECnet-VAX) is complete. The
boot member no longer knows that the satellite is
booting, and it does not need to provide the satel-
lite with additional special services.

NISCS_LOAD, Loading SYSBOOIT, and
VMS Software

The VMS system will not have been loaded into
the satellite when NISCS_LOAD executes. There-
fore, NISCS_LOAD is designed to run in a bare
machine environment; that is, NISCS_LOAD must
be specifically programmed to handle any Ether-
net adapter or CPU it is to support. To date, only
support for the MicroVAX II CPU has been
included, along with the Q-bus adapter and the
MicroVAX 2000 and VAXstation 2000 Ethernet
adapters.

The NISCS_LOAD image contains four compo-
nents:

= Datalink boot drivers for all supported Ether-
net adapters

= A boot driver version of PEDRIVER, called
PEBTDRIVER

= Primitive “class driver” MSCP code

= Parameter values assembled by the load assist
agent on the boot member

PEBTDRIVER retrieves the boot member’s Eth-
ernet address, the group number, and the cluster
password from the NISCS_LOAD parameter list.
A virtual circuit back to the boot member is set
up by transmitting a START_VC packcet, which
starts the normal initialization sequence. The
boot member does not know that the system at
the other end of this ‘virtual circuit is booting

since the virtual circuit and I/O requests sent
over it are identical to those sent by a running
VMS system.

Upon setting up the virtual circuit, PEBT-
DRIVER has a path to the system disk that
NISCS_LOAD will need to continue the boot.
The primitive class driver now issues a normal
MSCP command to read the SYSBOOT.EXE image
from that disk into memory and transfer control
to that image. PEBTDRIVER remains in memory
to serve as SYSBOOT’s “driver” for accessing the
system disk, hiding all knowledge of the Ethernet
adapter. The presence of the primitive class
driver makes SYSBOOT “see” the expected
block-structured device interface. SYSBOOT can
now load the VMS software normally by issuing a
read operation over the virtual circuit set up by
PEBTDRIVER.

After being loaded by SYSBOOT, the VMS sys-
tem can initialize normally because the Ethernet
path to the system disk is totally hidden. No oper-
ational changes to SYSBOOT or VMS INIT were
necessary. The runtime PEDRIVER takes over
from the boot driver during the initialization of
the VMS software, thus breaking the boot driver’s
virtual circuit and establishing a new one.

The PEBTDRIVER portion of NISCS_LOAD
remains permanently in memory. If the system
crashes, that portion is activated again to write
the contents of memory into the dump file. The
runtime driver is not used because the state of the
VMS system, the drivers, and the data structures
cannot be trusted in a crashed system. The boot
driver is totally ignored while the system is up;
thereforce, its integrity is usually left intact by the
crash. As with any other boot driver, the system
disk is the only known device. Therefore, the
dump file must be on that disk.

Summary

We have shown how Local Area VAXcluster sys-
tems are a natural follow-on to the original VMS
VAXcluster implementation using the CI bus. The
cluster architecture and implementation were
generally independent of the interconnect
specifics; therefore, the switch to Ethernet was
confined to the port driver layer. The replace-
ment of PADRIVER with PEDRIVER and the addi-
tion of Ethernet booting was all that was required
to make the product work. This combining of
VAXcluster functionality with the MicroVAX sys-
tems and workstations now available, plus the

Digital Technical Journal
No. 5 September 1987

67

VAXcluster
Systems

Local Area VAXcluster Systems

low cost and flexibility of the Ethernet, brings
new power to low-end systems. These benefits
include both the data and resource-sharing capa-
bilities of VAXcluster systems, and the ability to
isolate workstation users from system-manage-
ment responsibilities.

The LAVc has a bright future planned. Work is
in progress to allow both CI and Ethernet inter-
connects to coexist in the same cluster. When
this work is completed, workstation users will be
able to draw upon the power, resources, and
speed of the large VAX machines, HSC con-
trollers, and disk farms in the computer room. In
addition, users will have full access to the same
data files as do users on those mainframes. All
these systems will be running the same operating
system, be centrally managed, be highly avail-
able, and offer the same software environment to
all users. No other product comes close to offer-
ing such total system integration from the data
center to the desk top.

References

1.

N. Kronenberg, H. Levy, W. Strecker, and R.
Merewood, “The VAXcluster Concept: An
Overview of a Distributed System,” Digital
Technical Journal (September 1987, this
issue): 7-21.

W. Snaman and D. Thiel, “The VAX/VMS
Distributed Lock Manager,” Digital Techni-
cal Journal (September 1987, this issue):
29-44.

D. Duffy, “The System Communication
Architecture,” Digital Technical Journal
(September 1987, this issue): 22-28.

68

Digital Technical Journal
Ne. 5 September 1987

Edward E. Balkovich
Prasbant Bhabbalia
William R. Dunnington
Thomas F. Weyant

VAXcluster Availability Modeling

VAXcluster systems use redundant bardware—processors, interconnects,
and storage elements—and software to achieve bigh system availability.
No special bardware or software is required. A simple, first-order
availability model is used to illustrate bow this redundancy improves
availability. Four VAXcluster configurations are analyzed to show that
redundancy decreases system unavailability by two orders of magnitude.
Decomposition techniques were used to develop these first-order availabil-
ity models, which were then analyzed using “textbook” reliability analysis
techniques. More complex configurations and models of broader classes of
Saults will require the support of more sopbisticated modeling tools.

An increasing number of specialized computer
systems are being dedicated to tasks that are
critical to the success of an organization. For
example, in the financial services industry or in
manufacturing, it must be possible to access a
computing system to deliver a service or to man-
ufacture a product. Any loss of access to the com-
puting system adversely impacts business. The
ability to access a computing system when it is
needed (commonly referred to as availability) is
becoming an important metric used to select
such computer systems. Obviously, high avail-
ability also improves the quality of service pro-
vided by general-purpose computing systems,
such as those providing timesharing services.

VAXcluster systems provide high availabil-
ity.'! They can be configured so that there is no
single point of failure. Each cluster is a multiple-
computer system, built from standard hardware
and software elements. VAXcluster systems can
be expanded in increments to provide the com-
puting power, data resources, and storage capa-
bilities typically associated with mainframe sys-
tems.

Although these systems are not fault tolerant,
they can detect, isolate, and recover from faults
in their processor, interconnect, and storage sub-
systems. (Fault tolerance generally implies that a
recovery from a fault is completely invisible to an
application.) While VAXcluster systems can
detect, isolate, and recover from faults, the
recovery from some types of faults impacts the
applications and their design. For example, a
VAXcluster system will retry an 1/O operation if a

fault is detected in either the interconnect or
storage subsystems.

The integrity of the 1/O operation is ensured by
the operating system. If a processor fails, how-
ever, the computations hosted by it are lost. A
user must start a new session on another (avail-
able) processor. The user must depend on an
application, not the operating system, to recover
the state of the computation to the point at which
the fault occurred. For example, a journal file
can be used to recover an editing session or data-
base transaction. In this case, the integrity of the
computation is assured by the application, not by
the operating system.

This paper documents a study using simple
first-order models to show how the inherent
redundancy of VAXcluster systems is used to
achieve high availability. Although more sophisti-
cated models are possible, the models used in
this study were sufficient to illustrate the main
points. It is assumed that the reader is familiar
with the basic technical concepts of VAXcluster
systems presented in our companion papers.?3 It
is not assumed that the reader is familiar with the
standard methods of analyzing availability used
to illustrate the points of this study.

VAXcluster Structure

Figure 1 illustrates a simple VAXcluster system
with terminals connected to the system via a LAT
server. Either processor is accessible through that
server, and dual-ported disks are accessible
through either Hierarchical Storage Controller
(HSC). The HSC devices and the processors are

Digital Technical Journal
No. 5 September 1987

69

VAXcluster Availability Modeling

TERMINAL o o o TERMINAL
LAT
SERVER
ETHERNET

VAX VAX
STAR
OUPLER

HSC HSC

:

Figure 1 Simple VAX cluster Configuration

connected by a Star Coupler, a passive device
offering two independent datapaths between
each node of the system. Multiple disks are used
to shadow a volume of information. This simple
system illustrates all the basic forms of redun-
dancy in VAXcluster systems.

Processor Failures

If a processor or its Computer Interconnect (CI)
adapter fails, all computations in progress on that
processor will be lost. The processor and the
adapter can detect some types of faults and
inform the VAXcluster system of them immedi-
ately. Other types of faults are detected by the
other VAXcluster processors by way of time-outs.
When other processors detect a fault in a pro-
cessor or its adapter, they reconfigure themselves
to remove the failed processor from the cluster.
The reconfiguration times depend on the number
of locks in the system and on the number of /O
devices in the configuration. The average recon-
figuration time after a processor failure is a small
number of seconds.® After the reconfiguration
is complete, the user can begin a new session
on the remaining processor. Appropriately con-

structed applications, such as those employing
journaling, can then be recovered to the point of
the failure.

Interconnect Failures

The Star Coupler, a passive device, has a negligi-
ble failure rate compared with the other ele-
ments. The individual CI paths attached to a
single adapter have active elements, however,
and the failure rates for those paths must be
considered.

If a single path fails, the CI adapter will retry
the transmission on the redundant path. The retry
is invisible to both the processor and the HSC
device using the adapter.

If both paths fail, neither the processor nor the
HSC device attached to the adapter can commu-
nicate with other elements of the VAXcluster con-
figuration. The effect is similar to a processor or
HSC failure. However, other processors and HSC
devices can continue to communicate with each
other.

Hierarchical Storage Controller Failures

HSC failures are managed by the VAX processors.
The HSC device can detect some faults and
inform the cluster about them immediately.
Other types of faults are detected by the VAX pro-
cessors and the disks by time-outs. When a faultis
detected in an HSC device, the VAX processors
will retry any I/O operations in progress by using
the redundant HSC device. An HSC failure is
invisible to the process issuing the QIO opera-
tion. The times required to reconfigure the sys-
tem after an HSC failure depend on the number
of outstanding I/O operations, the number of
I/O devices, and the use of volume shadowing.
The average time is typically a small number of
seconds.

Volume shadow sets, hosted by an HSC de-
vice, must be reconstructed if that device fails.
Although the shadow set is available during
reconstruction, this process involves additional
I/0O that competes with user requests to read or
write to the volume shadow set.

Disk Failures

HSC devices detect disk failures. Volume shadow-
ing allows an HSC device to retry a failed I/O
operation using another member of the volume
shadow set. The failure of a disk in a shadow
set is invisible to the process issuing the QIO
operation. When a fault is detected, the volume

70

Digital Technical Journal
No. 5 September 1987

shadow set will be reconfigured to remove the
failed volume. Once again, the average time
required to reconfigure the shadow set after a
disk failure is a small number of seconds.

VAXcluster Configurations
Considered

Modeling Procedure

This paper focuses on the availability modeling
of four simple VAXcluster configurations. The
goals of the study were to

= Demonstrate the sensitivity of different reli-
abilityandavailability parameters

= Demonstrate how different types of redun-
dancy improve VAXcluster availability

These goals were achieved by first modeling
the availability of a baseline configuration con-
sisting of a VAX processor, an HSC storage con-
troller, and a disk drive. Each element in the con-
figuration represented a single point of failure.
Next, redundancy in the form of a second VAX
processor was added to the baseline configura-
tion to create a second configuration. Another
HSC storage controller was then added to create a
third configuration. Finally, a disk drive and vol-
ume shadowing were added to create a fourth and
fully redundant configuration. These four simple
configurations were used to study the principal
forms of redundancy in a VAXcluster system.

Referring to Figure 1, the configurations con-
sidered here consisted of VAX processors, a Star
Coupler, HSC storage controllers, and disk
drives; they did not include the Ethernet, the LAT
server, or the user terminals.

Baseline Configuration — Model 1

The baseline configuration, Figure 2, consisted of
a VAX processor, an HSC storage controller, and a

3

o
CONFIGURATION

I DISK }

Figure 2 Baseline Configuration (Model 1)

HSC

VAX

HSC

RELIABILITY BLOCK DIAGRAM

disk drive. The processor and the storage con-
troller were connected by way of a Star Coupler
whose failure rate is negligible compared to that
of the other elements. Figure 2 also shows the
configuration diagram translated into a reliability
block diagram in which the series positioning of
each element represents a single point of failure
for the configuration.

Redundant Processor

Configuration — Model 2

The second configuration considered in the
study, Figure 3, added redundancy in the form
of a second VAX processor. The failure of either
processor or its Cl adapter requires a failover
process to the redundant processor with its asso-
ciated VAXcluster reconfiguration activities.
These activities usually complete in a matter of
seconds.

In the reliability block diagram for the hard-
ware model, the redundant VAX processors are
shown in parallel because both must fail for the
configuration to fail. However, the HSC device

VAX
)
==
VAX
CONFIGURATION
VAX —‘
J HSC I DISK &*
VAX

RELIABILITY BLOCK DIAGRAM
FOR HARDWARE MODEL

VAX VAX

RELIABILITY BLOCK DIAGRAM
FOR RECONFIGURATION MODEL

Figure 3 Configuration with Redundant
Processor (Model 2)

Digital Technical Journal
No. 5 September 1987

71

VAXcluster
Systems

VAXcluster Availability Modeling

and the disk drive are still shown as single points
of failure.

If either processor fails, the VAXcluster system
will undergo a reconfiguration. Depending on
the user application, the system may be unavail-
able during the failover process.> This condition
is represented in the reliability block diagram by
the two VAX processors in series.

Similarly, the reconfiguration operation is re-
peated when a repaired VAX processor is re-
established in the VAXcluster system. Again,
depending on the user application, the system
may be unavailable until the reconfiguration
completes. Since either VAX processor could fail,
the reliability block diagram is again valid for
this condition.

Redundant Storage Controller
Configuration — Model 3

In the third configuration, Figure 4, additional
redundancy in the form of a second HSC storage
controller was added to the Model 2 configura-
tion, which already had a redundant VAX proces-
sor. Now the failure of either a VAX processor or
an HSC storage controller requires a failover pro-
cess to either the redundant processor or the con-
troller with the associated VAXcluster reconfigu-
ration activities.

When a repaired HSC storage controller is
re-established in a VAXcluster system, there is
no reconfiguration operation. Instead, the HSC
device is placed in “warm stand-by” redundancy.
That s, the device is notactively re-established in
the VAXcluster system unless the other HSC
device fails. This situation contrasts with that
of the active redundancy of the VAX processor,
which is immediately reconfigured back into
operation as soon as it is repaired.

Fully Redundant Configuration —
Model 4

A fourth configuration, Figure S, added further
redundancy in the form of a second disk drive and
volume shadowing to the Model 3 configuration,
which already had a redundant VAX processor
and HSC storage controller.

In volume shadowing, write commands are
applied to all available volumes in the shadow
set. Read commands are accomplished using any
available volume. A fault in a disk causes it to be
removed from the shadow set. A repaired volume
is merged back into a shadow set by first copying
the data from an available volume as a back-

ground activity. Only upon becoming identical to
existing members of the set will the repaired vol-
ume again become an available member of the
shadow set.

A detailed description and analysis of the
Model 4 configuration is given later.

Modeling Approach

Several formal definitions are needed to quantify
VAX cluster availability.

Availability is the proportion of time that ser-
vice is available from a VAXcluster system to per-
form a user application.

It is important to remember that this definition
of availability is a general one. As the nature of
the application, the size of the VAXcluster config-
uration, and the amount of redundancy change,
availability can be defined in more complex

VAX HSC
=)
VAX HSC
CONFIGURATION
VAX HSC
=
VAX HSC

RELIABILITY BLOCK DIAGRAM
FOR HARDWARE MODEL

VAX VAX

HSC HSC ——

RELIABILITY BLOCK DIAGRAM
FOR RECONFIGURATION MODEL

Figure 4 Configuration with Redundant
Processor and Storage Controller
(Model 3)

72

Digital Technical Journal
No. 5 September 1987

ways. For the configurations used in this study, at
least one of each type of element must be running
for the VAXcluster system to be operational.

Unavailability is the proportion of time that
service is interrupted and that a VAXcluster sys-
tem cannot perform a user application.

In this study, the related metric of downtime in
minutes per year will be used rather than the sys-
tem unavailability.

Reconfiguration time is the time taken to ini-
tially detect a failed element and remove it from
the VAXcluster system. For a failed VAX proces-
sor, this time also includes the time taken later to
re-establish the repaired element’s membership
in the cluster.

VAX HSC

SC

VAX HSC

CONFIGURATION

VAX HSC DISK

VAX HSC DISK

RELIABILITY BLOCK DIAGRAM
FOR HARDWARE MODEL

-— VAX VAX

— HSC HSC

o —]
G

RELIABILITY BLOCK DIAGRAM
FOR RECONFIGURATION MODEL

Figure 5 Configuration of Fully Redundant
System (Model 4)

Note that the HSC device employs “warm
stand-by” redundancy and therefore does not
have any significant reconfiguration time associ-
ated with re-establishing membership in the
cluster.

VAXcluster reconfiguration activities usually
complete in a matter of seconds; however, in
extremely rare cases, much longer times are
possible.

Overview

The most common approach to modeling com-
plex systems consists of structurally dividing a
system into smaller subsystems, such as proces-
sors, controllers, and disks.® The availability of
each subsystem is then analyzed separately, and
the individual subsystem solutions are combined
to obtain the system solution. One important

assumption must be made to achieve a solution:’

the behavior of each subsystem must be indepen-
dent from that of any other subsystem.

Furthermore, a decomposition technique can
be applied to certain behaviors that cause system
outages due to failures in redundant subsystems.
In these cases, the recovery to an operational sys-
tem happens quickly. Similar behavior is also
present when the failed subsystem is repaired
and is ready to rejoin the system to make it a fully
configured system. This type of decomposition is
called behavioral decomposition.

With this approach to structural and behavioral
decomposition, hardware failures and VAXcluster
reconfigurations are modeled separately. Such a
decomposition allows the model to analyze both
VAXcluster reconfigurations and complete sys-
tem failures due to hardware failures. It also
allows the model to analyze the sensitivity of sys-
tem availability to each factor.

In this study, availability modeling captured
the following factors:

= Hard failures requiring a repair call

= VAXcluster reconfigurations during which the
VAXcluster system was assumed to be unavail-
able in this analysis

= Response time for maintenance personnel
= Time-to-repair

The following factors were not considered
(except for the impact of reconfigurations due to
hardware failures):

= Intermittent failures

= Transient failures

Digital Technical Journal
No. 5 September 1987

73

VAXcluster
Systems

VAXcluster Availability Modeling

= Quorum disks
= Operational errors
= Software errors
The following modeling parameters were used:

= The mean time-between-failures (MTBF) and
mean time-to-repair (MTTR) of each of the fol-
lowing elements:

— VAX processor
— HSC storage controiler
- Disk drive
= VAXcluster reconfiguration times caused by
- VAX processor failure

— Re-establishment of the repaired VAX
processor into the VAXcluster configuration

— HSC storage controller failure
— Disk drive failure
= Response time for maintenance

The remainder of this section describes in
detail the modeling of the fourth configuration
(Model 4).

Analysis of Hardware Failure

Consider the structural decomposition of the
VAXcluster configuration. Three subsystems
were connected in series, each consisting of two
elements in parallel. At least one element in each
subsystem had to be operational for the VAXclus-
ter system to be operational. The hardware reli-
ability block diagram is shown in Figure S.

Repairable systems are those for which an auto-
matic or manual repair can be made if an element
fails. Assume that each element is subject to fail-
ure and has its own repair facility.” If the time-to-
failure of element 7 is exponentially distributed
with failure rate A;, and the time-to-repair of ele-
ment 7 is exponentially distributed with repair
rate u,, the instantaneous availability can be
obtained by the following equation:

)\i — A+t

Hi
Nt * Ai +l~lie

A;(t) =

As t approaches infinity, A;(t) approaches the
steady-state availability and 4; equals g, /(A +pu,).

The steady-state availability of a single element
is given by the following equation:

A=p/(Atp)

in which X is the failure rate of the element and u
is the repair rate of the element. The time-to-fail-
ure and the time-to-repair are assumed to be
exponentially distributed.

The steady-state availability of two elements in
parallel is®

A=1—(1—4))(1—4y)

In Model 4, the elements in each subsystem are
two VAX processors, or two HSC storage con-
trollers, or two disk drives. Using the equation
above, the availability of the processor subsys-
tem, A,, can be expressed as

A 2
-1 —(—2Fr
A,=1 ()\p+u,,

Similarly, the availability of the HSC storage
controller subsystem, A4,, and the availability of
the disk drive subsystem, A,, can be expressed as

ex Ap 2
A,=1 (>\b+ﬂ'b)

and

A
A== ()

The aggregate availability of the VAXcluster
system is

A;=A4, X 4, X 4,

For exponentially distributed times, the fail-
ure rate, A, is 1/MTBF and the repair rate, u, is
1/MTTR.

Analysis of Reconfiguration Times

Next, consider the behavioral decomposition
caused by the reconfiguration that occurs when
one element in a subsystem fails and an automatic
failover to a second (redundant) element takes
place. During this process, a reconfiguration
occurs when a failed element leaves the VAXclus-
ter system. For processors only, another reconfig-
uration occurs when a repaired processor later
rejoins the VAXcluster system. Depending on the
user application, the VAXcluster system may be
unavailable to perform user applications during
these reconfigurations.

74

Digital Technical Journal
No. 5 September 1987

For example, consider the following time line:

» TIME
f

t te ta ta

Figure 6

Time ¢, to t, is the VAXcluster reconfiguration
time for a failed VAX processor to be detected
and removed from the VAXcluster membership.
Time ¢,to ¢ ;is the repair time for the failed hard-
ware element. Time ¢; to t; is the time for the
repaired VAX processor to be re-established in
the VAXcluster membership.

Figure 5 includes the reliability block dia-
gram representing the VAXcluster reconfigura-
tion behavior of the Model 4 configuration. Each
subsystem is shown as two elements in series. If
any single element is not operational, the sub-
system can be unavailable due to a VAXcluster
reconfiguration.

For two elements in series, the availability is?

A=A|XA2

In model 4, the elements in each subsystem are
two VAX processors, or two HSC storage con-
trollers, or two disk drives.

Applying the equation above for elements in
series, the availability of the processor subsys-
tem, A, is

=ttt

(Aot rp)

Note that for the VAX processor, the rate u, is
the reciprocal of the sum of the times ¢, to ¢> and
(3t0¢ ;.

Similarly, the availability of the HSC storage
controller subsystem, A,, and the availability of
the disk drive subsystem, 4, is

Ar = {(Tb‘f:ﬂb)—}z

and

_ My 2
Ar {(A,—m,)}
The aggregate availability of the VAXcluster
system is
As = Ap X A;J X A,.

Assuming an operation running 24 hours a
day, 365 days per year, the downtime equals

(1—A4,) X 525,600 minutes per year. This fig-
ure is the downtime caused only by reconfigura-
tions. The total downtime is the sum of the down-
time caused by hardware failures and the down-
time caused by VAXcluster reconfigurations.

Extensions to the Models

The simple models considered in this study can
be extended in several dimensions.

The complexity of the configurations can be
increased either by adding more VAXcluster ele-
ments or by extending the bounds of the models
to include the Ethernet and its attachments. A
complex configuration could include multiple
clusters and multiple Ethernet segments. More
complex definitions of availability are needed as
the configurations increase in complexity. These
definitions range from the single-user view to a
measure of system productivity.

Only permanent (hard) hardware failures are
considered in this study. Intermittent and tran-
sient hardware and software failures, as well as
operational errors, can be added as extensions to
future models. The downtime allocation reported
in the literature typically attributes about one
third of the total to each of the hardware, soft-
ware, and operator-induced failures.® This result
includes the effectiveness of system recovery that
can be hardware based, software based, or both.
Certain insidious failures can result in ineffec-
tive recovery, even in the presence of hardware
or software redundancies. The term “fault cover-
age” represents the joint probability of fault
detection and successful failover to a redun-
dant element. A fault-coverage factor of one is
assumed in this study.

This study also assumes that the subsystems of
VAX processors, HSC storage controllers, and disk
drives are independent. Relaxing this assumption
adds to the complexity of the modeling
approach. Similarly, a simplistic maintenance
strategy is assumed in which each cluster ele-
ment has itsown repair facility.

The extensions described above add more real-
ism to the modeling approach at the expense of
added complexity in both model formulation and
solution technique. Moreover, the textbook for-
mulae used in this study are limiting and often
inappropriate.

Markov modeling is a particularly useful ana-
lytic technique for formulating and solving these
complex models.” Simulation is an alternative
but computationally less efficient technique.

Digital Technical Journal
No. 5 September 1987

75

VAXcluster
Systems

VAXcluster Availability Modeling

Another valuable industry-wide tool is the Sym-
bolic Hierarchical Automatic Reliability and
Performance Evaluator (SHARPE) software.!?
SHARPE’s hierarchical feature allows complex
subsystem models to be combined into a system
model for efficient solution. SHARPE also
employs state-of-the-art matrix-solving routines
to solve large and often ill-conditioned problems
arising from the Markov model formulation of
these complex configurations.

Results and Conclusions

This section discusses the results of this study in
detail.

The Impact of Initial Redundancy

In Model 1, no redundancy exists in the system.

In Model 2, the redundancy of the additional
VAX processor reduces the total downtime to
16 percent of the downtime in Model 1.

In Model 3, the redundancy of an additional
VAX processor and an HSC storage controller
reduces the total downtime to almost 7 percent
of the downtime in Model 1.

In Model 4, the total redundancy of an addi-
tional VAX processor, an HSC storage controller,
and a disk drive reduces the total downtime to
slightly under 1 percent of the downtime in
Model 1.

These results show that redundancy does work
to increase the availability of the system. Figure 7
shows the effect on total downtime as different
forms of redundancy are introduced. A fully
redundant configuration reduces system down-
time by two orders of magnitude.

VAXcluster Reconfiguration Downtime

redundancy. It also shows the contribution of
VAXcluster reconfigurations to total downtime.
Here the typical duration of reconfiguration is
used. Since Model 1 has no redundancy, the VAX-
cluster reconfiguration downtime is zero.

Impact of Increased Frequency

of Reconfigurations

Since the previous results considered the fre-
quency of reconfigurations equal to that of hard-
ware failures, it was necessary to study the
impact of an increased frequency of reconfigura-
tions on downtime.

Figure 9 shows the linear relationship between
reconfiguration downtime and an increase in the
frequency of reconfigurations. It also shows the
trend in the reconfiguration downtime as the
duration of reconfiguration is first varied to three
and then to six times the typical value. As shown,
the key to reduced downtime is keeping the dura-
tion and the frequency of reconfigurations as low
as practical. High-reliability hardware is a major
factor in keeping the frequency of reconfigura-
tions low.

Contribution of Individual
VAXcluster Elements

This study also examined how much downtime
an individual VAXcluster element contributes
toward the total downtime.

Figure 10 shows the contribution of each ele-
ment (CPU, HSC, and disk) toward the total
downtime for Model 4. At a given MTBF, the VAX
processor contributed 82 percent of the total

Figure 8 is an expanded view of the decrease in F
total downtime for the three models that include sl
z
£t
r o)
op
.}
w L
= =
E L
2t
8 2 3 4
ok
& VAXcluster MODELS
o
=k
KEY:
l I I I
1 2 3 4] RECONFIGURATION
VAXcluster MODELS [HARDWARE
Figure 7 Impact of Initial Redundancy Figure 8 Total System Downtime by Model
76 Digital Technical Journal

No. 5 September 1987

MODEL 4

DOWNTIME

-

FREQUENCY OF RECONFIGURATIONS

KEY:
—=== 1 X TYPICAL

— — 3 X TYPICAL
6 X TYPICAL

Figure 9 Reconfiguration Downtime by
Frequency of Reconfigurations

downtime. When the MTBF of that particular VAX
processor was improved, its contribution
dropped to 57 percent.

Typical VAXcluster configurations would gen-
erally include more than the two disks used in
this study. Having more disks would change the
contribution of the disk subsystem to the system
unavailability. (Analyzing the impact of addi-
tional disks is outside the scope of this paper.)

The reliability improvement in the MTBF of the
VAX processor decreased both the hardware and
the reconfiguration downtime. Figure 11 shows a
decrease of approximately 58 percent in total
downtime.

Hardware Downtime versus
Response Time

This study included a response time for mainte-
nance for each call as part of the recovery time. If
an on-site maintenance person were available,
the response time would be eliminated, thus
speeding the recovery of a failed element. When
this strategy is considered, the hardware down-
time drops by almost 60 percent. Figure 12
shows this reduction as applied to Model 4.

The N of M Redundancy Case

The results given so far have been for (1 of 1) and
(1 of 2) configurations of VAX processors, stor-
age controllers, and disks. In this section, the
hardware downtime results for VAX processors

VAXcluster
Systems

are generalized to the (N of M) redundancy case.
The assumption is that /V processors are required
for capacity and M processors represent M —N
redundancy. The steady-state availability is
defined as the probability of at least (N of M)
processors working. The cluster is assumed to be
unavailable when less than N processors are
working. Note that, depending on the configura-
tion and application, clusters with less than N
working could be considered as partially avail-
able. The case of the partially available cluster is
not considered here.
The (N of M) availability, as defined above, is

M=V M! no\ M=l uoN
Availability yopsn= P —— VNG

& ir(M—i)! St utA

MODEL 4
wr
=
[
z|
4
(o]
(a]
FIRST MTBF IMPROVED MTBF

KEY:

[vAx
[Hsc
[oisk

Figure 10 Contributions of Individual
VAXcluster Elements to Downtime

MODEL 4

TOTAL DOWNTIME

FIRST MTBF IMPROVED MTBF

Figure 11 Total System Downtime by

VAX Processor MTBF

Digital Tecbnical Journal
No. 5 September 1987

77

VAXcluster Availability Modeling

An application of the (N of M) availability
expression for VAX processors is shown in Fig-
ure 13. The number of VAX processors required
to run applications to capacity wassetto 1, 2, 3,
and 4. The values for M were setto N+0, N+1,
and N +2. High availability is typically measured
in values much greater than 0.99. Therefore, to
distinguish the variation in availability, the origin
in Figure 13 is not zero but much greater than
0.9. With no redundancy (M =N +0), availabil-
ity decreases with an increase in the number of
processors. That decrease occurs because more
CPUs must be available to deliver the applica-
tion, bringing about a greater likelihood of fail-

MODEL 4

DOWNTIME

ON-SITE MAINTENANCE SERVICE CALL
RESPONSE TIME

Figure 12 Hardware Downtime versus
Response Time

1.00

SYSTEM AVAILABILITY

1 2 3 4
PROCESSORS REQUIRED FOR APPLICATION (N)

KEY:

B~ + 0
==l
Inee

Figure 13 The (N of M) VAX Processor
Redundancy Case

ure and outage. This result is shown in the graph
by the downward trend of the “N+0” bars.
Adding a single redundant CPU (M=N-+1)
greatly improves system availability. Adding a
second redundant CPU (M =N+2) has little
additional effect on availability. The additional
improvement is not visible on the graph, even
with the expanded vertical scale. It can therefore
be assumed that “~N+ 1" redundancy is sufficient
for most applications.

Summary

VAXcluster systems achieve high availability by
eliminating single points of failure with redun-
dant hardware. Redundancy is introduced at the
level of standard processors, interconnects, stor-
age elements, and software. No special-purpose
hardware or software is required. The same hard-
ware and software could be used to construct a
less available uniprocessor system without vol-
ume shadowing.

The simple analytic models of VAXcluster
availability developed in this study show that
redundancy yields dramatic improvements in sys-
tem availability for the system configuration
shown in Figure 1. The average downtime of the
system is reduced by nearly two orders of magni-
tude from that of a similar uniprocessor system
without volume shadowing.

Because they can be expanded incrementally,
VAXcluster systems requiring a minimum num-
ber of N processors to achieve a performance goal
can achieve significant improvements in avail-
ability with the addition of a single redundant
processor. There is no requirement to fully repli-
cate all the original N processors.

The system configurations analyzed in this
study are simple ones designed to illustrate the
most important concepts of VAXcluster systems.
The downtime of a more complex VAXcluster
configuration, with many additional processors,
HSC devices, and disk drives, changes system
downtime in complex ways. In general, addi-
tional redundant hardware causes multiple hard-
ware failures to become less of a factor. When
faults do occur, however, time is required to
reconfigure the system. Some applications may
view these small reconfiguration times as a
source of system downtime. In such cases, addi-
tional hardware increases both the frequency of
reconfigurations and their contribution to sys-
tem downtime. Continuing efforts to improve
hardware reliability are particularly important to

78

Digital Technical Journal
No. 5 September 1987

reduce the downtime due to multiple hardware
failures and the frequency of reconfigurations
that might be counted as downtime by an appli-
cation.

The analysis used in this study uses structural
and behavioral decompositions of systems. Struc-
tural decomposition is the most common
approach to modeling complex systems. How-
ever, this approach assumes that each subsystem
behaves independently. For the systems and phe-
nomena considered in this study, recovery to an
operational state happens quickly following a
system reconfiguration caused by a fault in a
redundant subsystem. Similar behavior is also
present when a failed VAX processor subsystem is
repaired and is ready to rejoin the system.

These modeling approaches were applied to
the VAXcluster system, which was considered to
be repairable. Structural decomposition was used
to model the hardware failures of each VAX pro-
cessor, HSC device, and disk drive in the system.
Behavioral decomposition was used separately to
model the reconfiguration times.

Notes and References

1. This paper is limited to Cl-based VAXcluster
systems. Local Area VAXcluster systems,
implemented with Ethernet, are not consid-
ered in this analysis. The reader should be
aware that there are significant configura-
tion differences between Cl-based VAXclus-
ter systems and Local Area VAXcluster sys-
tems that lead to important differences in
system availability.

2. N. Kronenberg, H. Levy, W. Strecker, and R.
Merewood, “The VAXcluster Concept: An
Overview of a Distributed System,” Digital
Technical Journal (September 1987, this
issue): 7-21.

10.

VAXcluster
Systems

. VAXcluster Systems Handbook (Bedford:

Digital Equipment Corporation, Order No.
EB-28858-46, 1980).

. E. Los, S. Snaman, S. Szeto, and D. Thiel,

Corrections to “Cluster State Transitions,”
VAXcluster Systems Quorum, vol. 2,
issue 3 (Digital Equipment Corporation,
February 1987): addendum.

. During reconfiguration, significant proces-

sor resources are used to reconstruct the
lock manager database. Some real-time app-
lications may view the reconfiguration time
as a system outage.

. S. Bavuso et al., Dependability Analysis of

Typical Fault-Tolerant Architectures Using
HARP, CS-1986-18.

. K. Trivedi, Probability and Statistics with

Reliability, Queuing and Computer Sci-
ence Applications (Englewood Cliffs: Pren-
tice Hall, 1982).

P. O’Connor, Practical Reliability Engi-
neering (Chichester: John Wiley & Sons,
Ltd., 1985).

. D. Siewiorek and R. Swarz, The Theory and

Practice of Reliable System Design (Bed-
ford: Digital Press, 1982).

R. Sahner and K. Trivedi, SHARPE: Symbolic
Hierarchical Automatic Reliability and
Performance Evaluator, (Durham: Duke
University Department of Computer Sci-
ence, September 1986).

Digital Technical Journal
No. 5 September 1987

79

Daeil Park

Rekhbha D. Von Ebren
Tzyb-Jong Wang

Nii N. Quaynor

System Level Pervformance
of VAX 8974 and 8978 Systems

This paper describes the results of performance tests on the VAX 8974 and
8978 systems in two different situations: a scientific environment, and a
transaction processing environment. Benchmarks were run in both envi-
ronments to collect application throughput, 1/0 activity, and other per-
Jormance data. The results of a VAX 8700 were used as a baseline compari-
son. Based upon measured data, two models, one for each environment,
were constructed to predict system performance under different configu-
rations. These models were run with various parameters to construct per-
Jormance curves. Subsequent test results showed that both models pre-
dicted performance accurately. The 8974 performed 3.2 to 4 times faster,

and the 8978, 6 to 8 times faster, relative to the 8700.

The VAX 8974 and VAX 8978 systems are power-
ful new systems based on Digital’s VAXcluster
technology. These systems consist of either four
or eight VAX 8700 processors respectively, pack-
aged with an I/O subsystem of storage controllers
and disk arrays. This paper presents the perfor-
mance of the VAX 8974 and VAX 8978 systems in
both a scientific environment and a transaction
processing environment. For comparison, the
corresponding VAX 8700 data is presented as the
base-level performance.

The scientific environment was measured
using multistream batch jobs. The transaction
processing environment was measured using a
multiuser interactive workload that simulated an
order entry and inventory control system. The
measured performance for both environments is
presented in terms of user-visible performance,
system behavior, and resource utilization of the
applications.

Based on the measured data, performance mod-
els of VAX 8974/8978 systems under each of the
two environments to predict the performance for
different configurations. The construction of the
model and some results are discussed following
each measured performance section.

VAXcluster Performance Overview

A VAXcluster system is a highly integrated organi-
zation of VAX/VMS systems can be viewed as a
single-domain information management system.

It is a state-of-the-art distributed system provid-
ing full data-sharing functions. All the accesses to
files and records are coordinated by locking
schemes implemented by the distributed lock
manager.! The distributed lock manager is a VMS
feature that has been extended to provide syn-
chronized read/write resource sharing among the
nodes in a VAXcluster system. Being a multicom-
puter system of a single management domain,
a cluster offers increased availability and per-
formance.

The performance of a VAXcluster system can be
observed at many levels, such as the Computer
Interconnect (CI) and the System Communica-
tion Architecture.> The context used in this
paper, however, is the system-level, or user-per-
ceived, performance. The questions that immedi-
ately arise about VAXcluster performance are
how it grows as additional processors are added,
whether the performance grows in a linear scale,
and if not, what performance range is expected
compared to the single-system performance.

There are two primary factors that affect the
performance of a VAXcluster system: a communi-
cation overhead, and a locking overhead. The
first factor is related to the management of the
VAXcluster system. It is the cost to maintain the
multiple processors in an integrated system and
includes such overhead as the computc time to
maintain the connections between the nodes. A
communication overhead always exists in a VAX-

80

Digital Technical Journal
No. 5 September 1987

cluster system, regardless of the applications and
the size of the cluster, although that overhead is
generally small.

The second factor comes from sharing a
resource clusterwide. Every access made to a
shared resource by the processes must be regu-
lated by a certain synchronization scheme. In a
VAXcluster environment, this synchronization is
implemented by using locks. A lock operation
may involve sending and receiving messages
between processors. A previous study shows that
a lock request in a VAXcluster system may take
seven times as long as that in a single VAX/VMS
environment.> Therefore, the performance of a
VAXcluster system will depend upon the degree
of data-sharing of a particular application.

This study has been conducted to understand
what implications these factors, especially the
locking overhead, have on the system-level per-
formance of a VAXcluster system. The two appli-
cations used in this study show the extremes in
terms of degrees of data-sharing. The scientific
workload had no files being shared by the pro-
cesses, whereas with the transaction processing
workload, all the files and records are shared
clusterwide by all the processes. The goal of this
study was to find the relative performance range
of a VAXcluster system across the entire applica-
tion space by tracing the performance of the two
extreme applications discussed above.

Scientific Environment

Workload Description

The scientific workload, called SCIENCE, is a
suite of multistream (homogeneous) batch jobs.
These jobs are well-known programs frequently
used in science and research environments. Four
benchmarks commonly used in physics are ISA-
JET and GEISHA, two Monte Carlo simulations
used in high-energy physics applications, and
TAIR and TWING, two tests used in aerodynamics
applications. Three other programs used in
chemistry are GAUSSIAN 82, a quantum chem-
istry package; MOPAC, a general-purpose semi-
empirical molecular orbital package; and RS/1,
an interactive data analysis software package fre-
quently used in chemistry labs.

Performance Metric for

SCIENCE Workload

The most important performance metric is
throughput. Throughput is defined as the num-

ber of jobs that the system can process in a given
time. This metric was derived in the following
manner, using the elapsed times extracted from
the batch log files. For a closed system with one
job,

1

Throughput = Average elapsed time

The following steps were used to apply this
equation to the multinode, multistream system:

Sum of elapsed
Average elapsed _ _ times for all jobs
time per job Total number of jobs

in which Total number of jobs = Number of

nodes X Number of streams, and

_ Total number of jobs
Average elapsed time per job

Throughput =

The SCIENCE workload is a suite of repre-
sentative programs, each yielding a throughput
for each system. To compare the performance
of systems under this workload, the multiple
relative performances based on the individual
throughput comparison have to be aggregated.
The geometric mean is chosen to aggregate the
relative performances, with equal weight on each
program 4>

Test Methodology

The basic methodology of this study was to
increase the load on the system gradually until
the processors were fully utilized, thus yielding a
peak throughput for a particular configuration.
Since all the benchmarks were run as batch jobs,
this saturation was achieved using multistream
batch jobs. Up to five batch streams on each pro-
cessor were run for each benchmark tested.

Potential I/O and memory bottlenecks were
minimized by allowing large sizes of user work-
ing sets and by allocating one disk per job stream
for data and scratch files.

Hardware and Software Configuration

The hardware environment consisted of the fol-
lowing elements:

= A VAX 8700 system with one CPU, two HSC70
storage controllers, and two SA482 storage
arrays

= A VAX 8974 system with four VAX 8700 CPUs,
two HSC70 storage controllers, and six SA482
storage arrays

Digital Technical Journal
No. 5 September 1987

81

VAXcluster
Systems

System Level Performance of VAX 8974 and 8978 Systems

= A VAX 8978 system with eight VAX 8700
CPUs, four HSC70 storage controllers, and
twelve SA4 82 storage arrays

The software environment consisted of the
VAX/VMS version 4.4 operating system and
FORTRAN version4.3.

Characterization of the
SCIENCE Workload

The seven benchmarks of the SCIENCE workload
were grouped into two categories based on their
I/O behavior. One group included the bench-
marks with virtually no I/O activity; the other
with those that generated some I/O activity.

MOPAC and TWING both generate few 1/Os,
thereby falling into the first category. The re-
maining five benchmarks, ISAJET, GEISHA, TAIR,
RS/1, and GAUSSIAN 82 exhibit some I/0O activ-
ity. Among all, GAUSSIAN 82 is the most I/O
intensive. MOPAC and GAUSSIAN 82 were chosen
as being representative of each category. Before
starting the experiments, we ran the representa-
tive benchmarks on a VAX 8700 system to study
the characteristics of the system resource usage.
The following graphs give a profile of the two cat-
egories in terms of these studies.

Figure 1 shows the profiles of MOPAC and
GAUSSIAN 82 in terms of processor utilization
plotted against elapsed time. Note that a single
stream of MOPAC saturated the VAX 8700 proces-
sor during the entire run of almost 40 minutes,
doing virtually no I/O. On the other hand, GAUS-
SIAN 82 consumed the most CPU power in the
first five minutes and then remained at a lower
rate (67 percent) of CPU utilization for the rest
of the run time. For the first five minutes, GAUS-

SIAN 82 generated little 1/O activity. Then, how-
ever, it generated a heavy I/O load — up to
21 1/Os per second — to the user disk during
the rest of the run. The I/O transfer size of
GAUSSIAN 82 is the largest of all the tests, around
25 kilobytes (KB) per request. The I/O data rate
of a single GAUSSIAN 82 test, collected using the
Software Performance Monitor (SPM) program
with 60-second intervals, shows as much as
530KB per second during this I/O intensive
period.

Results and Observations

MOPAC Results. Figure 2 plots the throughput
of the MOPAC benchmark against the total num-
ber of streams in the cluster. The throughput
increases linearly up to one job stream per pro-
cessor. Beyond this point the curves remain flat.
This flattening occurs because the benchmark is
very CPU intensive, and one stream saturates a
single processor with an average utilization of
99.6 percent. Therefore, adding more streams
does notincrease throughput.

The throughputs at which the curves flatten
out are 1.6, 6.4, and 12.8 jobs per hour re-
spectively for the VAX 8700, VAX 8974, and
VAX 8978 systems. In terms of relative perfor-
mance, the throughput of the VAX 8974 and
VAX 8978 systems were 4.0 times and 8.0 times
respectively greater than the throughput of a sin-
gle VAX 8700 CPU, all showing linear growth
with the number of streams.

GAUSSIAN 82 Results

Figure 3 shows the throughput for the GAUS-
SIAN 82 benchmark plotted against the total
number of concurrent streams on all the systems.

a 100 g
N o . -
-
= 80 =
° 8
T 60 <)
o 5
S a0 g
L 0]
P
@20 3
o % L 1 1
Y S— = 2
15 20 5
0 5 10 15 20 25 30 35 40
AM
ELAPSED TIME (MINUTES) TOTAL STREAMS
KEY:
KEY:
W VAX 8978
A MOPAC A VAX 8974
O GAUSSIANS2 O VAX 8700
Figure 1 Transient CPU Ulilization Figure 2 MOPAC Throughput
82 Digital Technical Journal

No. 5 September 1987

The curves show how throughput grows as the
number of processors increases in the cluster.
The VAX 8974 system achieved a maximum
throughput of 12.1 jobs per hour with 16 con-
current streams. This throughput is 3.8 times
that of the VAX 8700 CPU, which achieved
3.2 jobs per hour. The peak throughput of the
VAX 8978 system was 21.9 jobs per hour, or
7.0 times that of the VAX 8700 CPU. The relative
figure for the VAX 8978 system is somewhat low
because there was an imbalance in the use of the
1/0 subsystem.

Table 1 shows the I/O activities for each
HSC70 device during the five-stream run of
GAUSSIAN 82 on the VAX 8978 system. All the
numbers are averaged for the entire run time.
One can clearly see in this table that some HSC70
devices were loaded more than others. Most disks
were connected to the two HSC70 controllers,
labeled HSCO11 and HSCO14, indicating that
the other two were hot-standbys for the case
of failovers. This loading variation happened
because user disks were randomly assigned to the
job streams. The data rate of over 2 megabytes
(MB) per second on HSCO11 was only the aver-
aged number; the peak rate was close to 4MB per
second, thus limiting the [/O rate. The total data
rate on the CI bus of the VAX 8978 system was
over 4MB per second, 2.3MB of which was

Note that within individual system configura-
tions, throughput increases as the number of
streams increases. With the VAX 8974 system,
for example, one stream per processor produced
a throughput of 2.23 jobs per hour, increasing
up to 3.06 jobs per hour—a 37 percent
increase — with five streams.

Performance Summary

Table 2 shows the relative performance of each
benchmark in terms of maximum throughput
achieved with respect to a single VAX 8700 CPU.
The performance of the VAX 8974 and VAX 8978
systems ranged from 3.76 to 4.00 times, and
6.95 to 8.00 times that of the 8700, with geo-
metric means of 3.88 and 7.40 respectively.

Simulation of the GAUSSIAN 82
Workload on the 8974/8978

Based on the measured data, a model called
SIMsci was developed to describe the perfor-
mance of the 8974/8978 under GAUSSIAN 82,
the multistream, scientific computation work-
load. As described earlier, GAUSSIAN 82, a com-
putational package for quantum chemistry, is a
collection of routines for different calculation
needs. The key computational behavior patterns

through one HSC70 device. This limited the per- Table1 /O Activities per HSC Device
formance of five processors in the cluster. I/0 Rate Data Rate
No. of (Requests/ (KB per
£ a0r HSC70 Spindles Second) Second)
3 6l HSCO11 24 96.4 2126.2
a HSCO012 2 12.7 238.8
g 2r HSC013 2 12,5 2477
~ 15 F HSCO014 12 65.4 1464.2
2
£ 1w0f
5]
2
g S|
E o i L))) Table 2 SCIENCE Performance
0 10 20 30 40 50 Relative to the VAX 8700
OGS UL Program VAX 8974 VAX 8978
KEY: GEISHA 3.76 7.02
ISAJET 3.88 7.40
a VAX 8974 TAIR 3.86 7.29
O VAX 8700 TWING 4.00 797
MOPAC 4.00 8.00
RS/1 .82 7.22
Figure 3 GAUSSIAN 82 Throughput GA{JSSIAN 82 g 24 6.95
Geometric Mean 3.88 7.40
Digital Technical Journal 83

No. 5 September 1987

VAXcluster
Systems

System Level Performance of VAX 8974 and 8978 Systems

of this workload modeled by SIMsci are

= An executing stream places significantly dif-
ferent loads on the CPU and the disk at differ-
ent times of execution (see Figure 1 for the
transient CPU utilization pattern).

= An executing stream has a lot of I/O and CPU
overlap (i.e., computation continues while
I/Oisin progress).

As shown in Figure 4, SIMsci consists of batch
jobs (as concurrent streams), processors, and 1/0
devices. An executing batch job accesses both
CPUs and 1/0 devices. The execution of a job is
modeled as several interconnected stages. Each
stage represents an executing interval during
which the job has similar utilizations of the CPUs
and the 1/0 devices. These stages are introduced
to capture the transient behavior of GAUSSIAN 82
shown in Figure 1. Note that the number and
types of stages depend on the input data to GAUS-
SIAN 82, which triggers different routines to exe-
cute accordingly.

The CPUs and 1/O devices are the principal
resources consumed by a typical batch job. SIM-
sci models a CPU as a single-server queue (i.e., it
can serve one batch job each time). When more
than one batch job competes for the same CPU,
the jobs are served in a round-robin, time-sliced
fashion. The CPU serves a job exclusively either
for a fixed duration (e.g., 200 milliseconds) or
until the job gives up the CPU (e.g., issues an [/O
request), which then switches to another waiting
job. The 1/0 device is simply modeled as a time
delay since the GAUSSIAN 82 experiments are
designed to avoid I/O resource contention. The
presence of simultaneous CPU computations and
I/O operations (over 30 percent of the time, as
observed from direct measurement), was mod-
eled. For a certain percentage of times, a job con-
tinues its computations within the CPU while its

SHARABLE

BUSY IDLE

IDLE BUSY

Figure 4 Model Structures of SIMsci

I/O request is being processed. For the rest of the
times, a job is on hold while its I/O request is in
progress.

SIMsci uses the following model parameters to
describe the interactions of job, CPU, and 1/0
devices:

= TotalStage, the total number of distinguishable
stages of a batch job

= Nio(I), the total number of 1/O requests at
stage |

= TcpuUser(I), the total CPU time used by
GAUSSIAN 82 at stage |

= TcpuSys(l), the total CPU time used by the
VMS software at stage |

= Tcpuldle(l), the total CPU idle time due to
page and swap waits at stage |

= TioWait(I), the total time that the job waits for
its I/O to complete at stage |

= RTio(I), the average response time of disk /O
at stage |

The values of these parameters were derived
from the measurement data. Several assumptions
were made about the relationships between
these parameter values and the VAXcluster con-
figurations and job loads per node. First, it was
assumed that each job’s Nio, TcpuUser, and
TioWait should have the same values for both the
VAX 8974 and VAX 8978 configurations and for
different job loads (i.e., number of streams per
node). These assumptions were made because
each GAUSSIAN 82 workload would always exe-
cute the same codes with the same data in any of
the environments.

Second, it was assumed that TcpuSys increases
as the number of nodes and the number of
streams increase, thus adding communication
load within the cluster and scheduling load
within each node. The third assumption was
that Tcpuldle increases as the number of nodes
increases, since more page Or swap requests
would be placed on the page/swap disk, which is
shared by all nodes in the cluster. It was also
assumed, however, that Tcpuldle decreases as
the number of streams per node increases. The
more streams per node, the higher the probabil-
ity that at least one job without page faults exists
and can utilize the CPU while other jobs are
doing paging or swapping. These assumptions
were consistent with the measurement results.

84

Digital Technical Journal
No. 5 September 1987

SIMsci was validated against the measured data of
three key metrics, job elapsed time, CPU utiliza-
tion, and disk I/O rate, with less than 5 percent
difference.

The performance data collected were through-
put per hour and CPU utilization. Figure 5 shows
that the measured and modeled results overlap
for both the VAX 8700 and VAX 8974 systems,
thus indicating the accuracy of the model. The
8978 curves, however, differ from each other.
The previous section discussed the fact that the
measured throughput of GAUSSIAN 82 was some-
what low due to the imbalanced I/O subsystem.
Therefore, the model results here give us a best-
case throughput when there is no I/O bottle-
neck. Although SIMsci produces reasonably accu-
rate results with little effort, it does have its
limitations. One major one is that SIMsci cannot
predict the saturation of the I/O subsystem.

SIMwic assumes that I1/Os are always free of
bottlenecks; thus it cannot predict the perfor-
mance of the VAX 8974/8978 systems under
heavy workloads (e.g., 10 or more streams per
node).

Transaction Processing Environment

Workload Description

The warehouse and inventory control (WIC)
workload is a transaction processing program
based on the on-line support required to manage
the movement of items into and out of a ware-
house. Although WIC is a warehouse applica-

T 30T
3

e 2
8 20t
&

= 15t
g

& g0t
S

o °r
% L n Il L n]
I o0

0 10 20 30 40 50 60
NUMBER OF STREAMS

KEY:

8978 MEASUREMENT
8974 MEASUREMENT
8700 MEASUREMENT
8978 SIMULATION
8974 SIMULATION
8700 SIMULATION

Domedp

Figure 5 GAUSSIAN 82 Throughput—
Model versus Measured

tion, it is a representative transaction processing
application.

A WIC workload is divided into five functional
parts, each associated with one task type. The
five task types and the percent of total tasks rep-
resented by each type are given as follows:

= Receiving — Performs the functions needed to
log the receipt of parts from the loading dock
into the warehouse (17 percent)

= Inventory — Queries and updates the files
containing inventory information (10 per-
cent)

= Warehouse — Performs the functions needed
to pick parts based on selected orders (10 per-
cent)

= Order entry — Places orders to be filled by the
warehouse (46 percent)

= Purchase order - Composes purchase orders
(with outside vendors) for parts to be stocked
in the warehouse (17 percent)

Each task is performed a specified proportion
of the execution time. The task selection percent-
ages reflect the assumption that the average flow
of items into the warehouse equals the flow out
of the warehouse during peak-hour operations.

Each task consists of a number of transactions.
A transaction is defined as one or more user input
steps followed by computation, database I/0, and
output to the terminal user. Each task has an aver-
age of 7.8 transactions in the WIC application.
Since a transaction implies the initiation of work
by the system, throughput is measured in terms
of transactions per second.

All menus and forms are implemented by re-
quests to the VAX Transaction Data Management
System. Inquiry and update operations take place
on seven different application files in the VAX
Record Management Services (RMS) software.

Performance Metrics for WIC Workload

= System throughput is defined as the total num-
ber of transaction processed systemwide in
constant time (one second), or transactions
per second (TPS). This number includes all
types of transactions. Figure 6 illustrates the
user and system actions needed for one trans-
action.

= User productivity is the average number of
transactions each user completes in a unit of
time, expressed in transactions per user per
hour.

Digital Technical Journal
No. 5 September 1987

85

VAXcluster
Systems

System Level Performance of VAX 8974 and 8978 Systems

USER
PRESSES SYSTEM SYSTEM
CARRIAGE BEGINS COMPLETES
RETURN RESPONSE ~ RESPONSE
USER USER
THINKING TYPING
, TIME ! TIME
3 T | I 1
<«—— SERVICE TIME——
TRANSACTION

Figure 6 Transaction

= Mean service time is defined as the average
time required to complete a transaction. This
time does not include the input typing time or
think time, but doesinclude the time taken for
screen output. A specific receiving transac-
tion, called REC3, was chosen for the evalua-
tion of this metric. REC3 involves updating
three records and writing one record several
times, which represents a moderately complex
unit of work.

Test Methodology

The transaction processing environment was cre-
ated by using remote terminal emulators (RTEs),
which emulated all activities of terminal users.
The RTEs also kept track of each transaction and
the time of its occurrence and maintained the
transaction mix throughout the experiment. Sev-
eral systems of the VAX 8600 class were used as
RTEs to load the systems under test, called SUTs.

To establish a base level of performance, the
initial set of experiments was carried out with
one VAX 8700 CPU as the SUT. The VAX 8974
and VAX 8978 systems were then tested by vary-
ing the number of users, and hence the number
of transactions.

The RTEs logged users into the SUTs in the
cluster at four-second intervals (users were
evenly distributed between the SUTs in the clus-
ter for all the configurations tested). After log-
ging in, each user started his application, also at
four-second intervals. After the SUTs reached a
steady state, data was collected for 20 minutes on
both the SUTs and the RTEs.

Hardware and Software Configuration

The hardware environment for each VAXcluster
configuration included the same I/O subsystem.
The hardware components of the configurations
consisted of the following elements:

= A VAX 8974 system with four VAX 8700 CPUs,
each with 32MB of memory, two HSC70 con-
trollers, one SA482 storage array for the sys-
tem; and the paging/swapping software, and
three SA482 arrays for the database.

= A VAX 8978 system with eight VAX 8700
CPUs; the other hardware was the same as the
VAX 8974 system’s above.

The software environment consisted of the
VAX/VMS version 4.5 operating system, VAX-11
ACMS version 2.0, VAX-11 TDMS version 1.4,
VAX-11 CDD version 3.1, VAX-11 COBOL ver-
sion 3.1, and SPM version 3.0.

In addition tothe general tuning of the SYSGEN
parameters, several application-specific parame-
ters were adjusted for the best performance.
These include the number of application server
processes, and the size of the RMS global buffer
used to buffer some portion of each RMS file. In a
distributed system like a cluster, increasing the
buffer size can result in additional 1/O requests
caused by more frequent buffer invalidations.
The database consisted of 14 RMS indexed-
sequential files spread over 12 disk spindles to
balance the I/O rates.

Performance Results and Observations

System Throughput

Figure 7 displays the system throughput (the
number of exchanges processed) at different
user loads on the different configurations. These
curves give a global indication of the overall rela-
tive performance of the VAX 8974 and VAX 8978
systems.

60
50
40
30

0 1 1 1 1 L 1]
0 200 400 600 800 1000 1200 1400

NUMBER OF USERS

TRANSACTIONS PER SECOND

KEY:

O VAX 8978
A VAX 8974
& VAX 8700

Figure 7 WIC Throughput

86

Digital Technical Journal
No. 5 September 1987

The VAX 8700 CPU peaked at 10.5 trans-
actions per second (TPS) while servicing
280 users. The VAX 8974 configuration achieved
its maximum throughput rate of around 34.5 TPS
while servicing 960 users. Thus the maximum
throughput of the VAX 8974 system is about
3.3 times that of a single VAX 8700 CPU. The
performance gain is not linear in this case
because the degree of data-sharing is quite high
in the WIC application, causing the locking over-
head typical in a cluster environment.

The limiting resource for the VAX 8974 system
and the VAX 8700 CPU was processor power. The
8700 and each processor in the 8974 were fully
utilized at around 960 users for the 8974 and
280 users for the 8700. The corresponding I/O
rates for the peak user levels were 220 and 60
respectively for the 8974 and the 8700.

The VAX 8978 system achieved a maxi-
mum throughput of 47.5 TPS while servic-
ing 1,200 users, which is only 4.5 times the
VAX 8700 throughput. Even taking into account
the cluster overhead, this result is a very low rela-
tive performance gain. Clearly, this result indi-
cates that with the current implementation of the
application the VAX 8978 performance was lim-
ited by some resource.

After more investigation, we found that the
disks were this limiting resource. We observed a
peak of 320 disk I/Os per second at 1,200 users
on the VAX 8978 system. Let us assume that the

35 -
30 -]
w25]
2
@ 20 F
Q
Z 15F
2]
o 10}
5 -
0
480 960 1200
NUMBER OF USERS
KEY:
I O/sK 1
[oisk 2
[—Joisk3
[Joisk4

Figure 8 Disk 1/0 Rates for WIC
(Top Four Disks)

I/Os were uniformly distributed between the
12 spindles (which they were not). In this case,
dividing the peak of 320 1/Os between the spin-
dles yields 27 1/Os per spindle. However, the
actual maximum observed on any one spindle
was actually around 35 I/Os per second. Figure 8
plots the four highest 1/O rates.

Investigating further, we found that these disks
also had large queue lengths associated with
them (up to 4 requests at 1,200 users). Clearly,
the I/O rates above coupled with the large queue
lengths established that disk I/Os were the limit-
ing resource for the VAX 8978 configuration. In
the section Simulation of the WIC Workload,
where the modeling of VAXcluster systems is dis-
cussed, more data on the VAX 8978 performance
will be presented without this limiting factor.

Figure 9 gives a view of system performance in
terms of throughput and processor utilization.
Note that the more processors there are in the sys-
tem, the more processor power it takes to do the
same amount of work. For example, to obtain a
throughput level of 30 TPS, the VAX 8974 system
required 300 percent of the processor power and
the VAX 8978 system required around 340 per-
cent. This extra power is needed by the cluster
overhead, which involves locking activities and
message transfers between the processors.

User Productivity

Figure 10 provides another view of throughput
in terms of user productivity, defined as the
throughput per user (the throughput in Figure 7
divided by the number of users).

60
50 |-
40 |
30 |
20

TRANSACTIONS PER SECOND

0 i 1 1
0 200 400 600

CPU UTILIZATION

KEY:

O VAX 8978
A VAX 8974
A VAX 8700

Figure 9 Throughput versus CPU Utilization

Digital Technical Journal
No. 5 September 1987

87

VAXcluster
Systems

System Level Performance of VAX 8974 and 8978 Systems

170
160
150 r
140
130
120 |
110

100 L 1 1 1 1 1 i
0 200 400 600 800 1000 1200 1400

NUMBER OF USERS

TRANSACTIONS/USER/HOUR

KEY:

O VAX 8978
A VAX 8974
A& VAX 8700

Figure 10 User Productivity

This figure shows that the maximum through-
put per user for this workload is around 150 TPS
for any configuration. This graph also indicates
the number of users that can be supported by
each system while maintaining a certain level of
user productivity. For example, at 140 TPS, the
8700, 8974, and 8978 support 250, 850, and
1,200 users respectively. More users can be sup-
ported at lower user productivity levels.

Figure 10 also indicates the level of users at
which one might consider switching to a larger
system to maintain a certain level of user pro-
ductivity. For example, to maintain a user pro-
ductivity level of approximately 150 TPS, one
must switch to a VAX 8974 system at around
240 users, and to a VAX 8978 system at around
720 users.

Mean Service Time

The VAX 8700 and VAX 8974 service times
remained under one second for all user levels
tested. The VAX 8978 service-time curve also fol-
lowed this trend up to the 960-user level. How-
ever, after that level, the service time degraded
quickly due to the large number of I/Os and
queue lengths at the disks as the 1200-user level
was approached. These patterns are shown in
Figure 11.

ENQ Rate

So far, only user visible performance and some
system behavior has been discussed. Now some of

SECONDS

0 1 1 1) 1 I |
0 200 400 600 800 1000 1200 1400

NUMBER OF USERS
KEY:

O VAX 8978
A VAX 8974
& VAX 8700

Figure 11 WIC Service Time

the cluster aspects of the systems are examined,
mainly the locking activities.

As mentioned at the beginning of this paper,
the WIC workload assumes full data-sharing (i.e.,
all the database files are shared by all users). This
sharing involves locking and unlocking files and
records every time they are accessed. The locking
and unlocking operations are performed by sys-
tem services called ENQ and DEQ. An ENQ
request is serviced by the distributed lock man-
ager, which examines outstanding locks to the
resource and allows access if therc is no conflict.

The SPM software records the thc number of
ENQs on a particular processor. The total ENQ
rates at different user levels for different configu-
rations were extracted from SPM data and
graphed in Figure 12. This curve closely resem-
bles the throughput curve, implying a strong cor-
rclation between locking activities and through-
put. Around 26 ENQ operations were required on
the average to perform each exchange.

Total Remote ENQ Rate

A remote ENQ occurs when the resource of inter-
est is mastered by a process that runs on an-
other processor in the cluster. Remote locks are
morc costly than local locks because additional
interprocessor communication over the CI bus is
required between the requesting and mastering
nodes.

Figure 13 plots the remotc ENQ rates against
the total ENQ rates for different configurations.

88

Digital Technical Journal
No. 5 September 1987

160 [
140 F
1.20
1.00 |
0.80
3060 |-
040 -
0.20 -

0 1 1 L L 1 [J

0 200 400 600 800 1000 1200 1400
NUMBER OF USERS

USANDS/SECOND

ENQ - TH

KEY:

O VAX 8978
A VAX 8974
& VAX 8700

Figure 12 Total ENQ Rate

The increasing slopes of the different curves
indicate that the remote ENQ rate also increases
with the number of processors in the system as
well as with the total number of users. Generally,
in an N-processor homogeneous distributed sys-
tem in which all resources are equally accessed
by all processors and all accesses require locking
operations, thce remote locking operations will
cqual (N —1)/N times the total locking activity.
This result occurs because each processor has
an equal opportunity to master a particular
resource. This relationship held in the case of the
remote versus the total new ENQ rates observed
in the VAX 8974 and VAX 8978 systems, in which
the ratios were 75 percent and 87.5 percent
respectively. Figure 13 shows, however, that on
the avcrage only 60 percent and 80 percent of
the ENQs werc remote for the 8974 and the 8978
respectively. These results occurred because the
plotted ENQ ratc includes the converted ENQ
rate as well as the new ENQ rate; most converted
ENQs were found to be local.

Interprocessor Communication

The communications between the processors are
achieved by the Systems Communication Archi-
tecture by way of transmitting and receiving
sequenced messages. Figure 14 shows the num-
ber of sequenced messages transferred between
the processors every second. Most of these mes-
sages are generated by the distributed lock man-
ager for clusterwide locking purposes.

140 1
1.20 1
1.00 [
0.80
0.60 L
0.40
0.20

1 I L

0 500 1000
TOTAL ENQ/SECOND

o
b
3
b
P
3

|
1500

REMOTE ENQ - THOUSANDS/SECOND

KEY:

O VAX 8978
A VAX 8974
& VAX 8700

Figure 13 Remote versus Total ENQ Rates

A } I 1 L Il (- J

0 200 400 600 800 1000 1200 1400
NUMBER OF USERS

KEY:

O VAX 8978
A VAX 8974
A VAX 8700

Figure 14 Message Rate between Processors

CI Traffic

The traffic on the CI consists of three packet
types: datagrams, sequenced messages, and block
transfer messages. In this application, datagrams
were used only for error logging and therefore
did not exist. Sequenced messages are used for
communications between the processors and the
HSC70 controllers. Most of these short packets
are either packets between the distributed lock
managers to perform clusterwide locking (dis-
cussed earlier) or packets between a processor
and an HSC70 controller to request and response
to I/O operations. Each I/O request to the disks

‘Digital Technical Journal
No. 5 September 1987

89

VAXcluster
Systems

System Level Performance of VAX 8974 and 8978 Systems

or tapes controlled by an HSC70 device requires
a pair of messages to be exchanged between the
processor and the controller. Block transfer mes-
sages are data packets for I/O operations. The
transfer rates of each message type are recorded
by the SPM software. Figure 15 plots the CI traf-
fic against the number of users. The CI traffic,
expressed in KB per second, is calculated from
the data collected by the SPMsoftware.

This figure shows that, in general, the CI bus is
rather underutilized, peaking around 1,265KB
per second at 1,200 users for the VAX 8978 sys-
tem. This utilization is less than 15 percent of the
raw bandwidth of a single CI wire, or 7.5 percent
of the bandwidth on each CI path. It should be
noted, however, that this data includes neither
the extra bytes of the lower level protocol over-
head nor the additional traffic incurred by
retransmissions. Thus the actual CI utilization
will be a little higher than these figures.

WIC Database Partitioning —
Extended Study

The results presented in the previous section
indicate that the application as currently imple-
mented presented a problem with the disk I/0.
More 1/Os were being generated to several files,
resulting in too many disk I/Os to several spin-
dles. To reduce the number of 1/Os, we parti-
tioned both the application and the database,
anticipating that the number of 1/Os to each
spindle would be reduced. This section summa-
rizes the results from this study.

The main difference between this study and
the previous one is the number of disk spindles

160 [
140
120
100 |
080
060 -
040 |

0.20 ~
0 A/ajAA n 1 1 1

0 200 400 600 800 1000
NUMBER OF USERS

MBYTES/SECOND

1 J

1200 1400

KEY:

O VAX 8978
A VAX 8974
A VAX 8700

Figure 15 CI Traffic

used. This study used 24 spindles (6 SA482s),
whereas the previous study used only 12
(3 SA482s). The throughputs achieved with this
new configuration are plotted in Figure 16.

It is clear that with this configuration the
VAX 8978 system performed much better with
24 spindles than with 12. The system achieved a
peak throughput of 66 transactions per second
with 1,600 users, which was 6.3 times the
throughput of the VAX 8700 CPU. This result
illustrates the importance of having a system bal-
anced in regards to its processing power and 1/O
capacity.

Simulation of the WIC Workload

Based on the measurement data, a model called
SIMwic was developed to describe the perfor-
mance of VAX 8974/8978 systems under WIC,
the multiuser, on-line transaction processing
workload. WIC characterizes the on-line transac-
tion processing of items (i.e., parts) that flow
into and out of a warehouse and supports multi-
ple concurrent access to the WIC database. The
model structure of SIMwic is shown in Figure 17.

The following components of WIC were mod-
eled in SIMwic:

= Users (who generate transactions)
= Lock messages
= CPUs

s Shared I/O passages (CI bus, HSC70 con-
troller, channel)

= Disks

80
70 |-
60 |-
50 |-
40 |
30 |
20
10 |

TRANSACTIONS PER SECOND

0 1 1 "
0 500 1000 1500

NUMBER OF USERS
KEY:
A 24 DISKS

a 12 DISKS

Figure 16 WIC Throughput for 12
versus 24 Disks

90

Digital Technical Journal
No. 5 September 1987

2000

<53

USER LOGIN NEXT TASK
O X
TASK DELAY INITIAL TRANSACTION

M. ' »
W,)

DATA ENTRY DELAY TRANSACTION DELAY NEXT TRANSACTION

CPU

4—< 1| cpu

‘_l>

ol X

LOCK MESSAGES

DISK

Figure 17 Model Structure of SIMwic

A user generates one task at a time to access the

WIC database, each task consisting of several
transactions. Each transaction uses the CPU for a
certain amount of time and sends several /O
requests through the shared 1/O passage to
access the WIC database disks. Each I/O request
will first send lock messages to ensure that the
datais accessible and then initiate the I/O opera-
tions.

The following parameters are used by SIMwic

to describe the interactions of the users, lock
messages, CPUs, shared 1/O passages, and disks:

Intertask Delay, the delay after the completion
of a task prior to the initiation of another task
by the same user

Intertransaction Delay, the delay after the
completion of a transaction but prior to the
initiation of the next transaction by the same
task

Task Mix, the percentages of each task type of
the WIC workload

= Total Transaction, the total number of transac-
tions for each task type

= Total Disk I/O, the total number of disk I/O
for each transaction

= ProbDisk, the probability of selecting disk I
for I/O

= CPU Delay, the CPU time to process a transac-
tion on each visit

= Lock Delay, the CPU time to process lock mes-
sages due to an I/O request

= CI Delay, HSC delay, Disk Delay, and Channel
Delay, delays due to data transfer and disk
seeks

The values of these parameters were obtained
from several sources, including workload specifi-
cations, direct measurements, other performance
studies, and hardware specifications.

SIMwic was validated on measurements of CPU
utilization, throughput, and disk 1/O rates. The
differences between simulated and direct-mea-

Digital Technical Journal
No. 5 September 1987

91

VAXcluster
Systems

System Level Performance of VAX 8974 and 8978 Systems

sured results were within five percent, as shown
in Figure 18. The performance data collected
were task life-cycle, throughput rate, CPU uti-
lization, and disk I/O rate.

As discussed earlier, the performance of the
VAX 8978 system under the WIC workload can
be significantly improved by spreading the data-
base over 24 disks instead of 12. SIMwic modeled
such a database expansion and confirmed the per-
formance improvements on the throughput, as
plotted in Figure 19.

Summary

The performances of VAX 8978 and VAX 8974
systems were studied in two environments: a
scientific, compute-intensive batch environment

using the SCIENCE workload, and an on-line
transaction processing environment using the
WIC workload. These two environments were
chosen to capture the range of the relative per-
formances VAXcluster systems can achieve
compared with the performance of a single sys-
tem. Using both measurement and modeling
approaches, it was shown that the 8974 has
from 3.3 to 4.0 times the performance of a single
VAX 8700 CPU, depending on the degree of file
sharing, when there is no substantial bottleneck
in the I/O subsystems. A 8978 was shown to have
between 6.0 and 8.0 times the performance of
the VAX 8700 CPU, again depending upon the
application’s characteristics, especially the
amount of remote locking activity.

Acknowledgment

The authors wish to thank Joe Marconis for
his support with the WIC workload, and Bill
Youngs for providing a suit of scientific pro-
grams. Also thanks to Jory Tsai for the discussion
on the VAX 8650 cluster model, to Hossein
Hosseini for the WIC experiments, and to Ray
Kopacko, who developed the SCIENCE workload
and performed the experiments using it.

References
1. W. Snaman and D. Thiel, “The VAX/VMS
Distributed Lock Manager,” Digital Techni-
cal Journal (September 1987, this issue):
29-44.

2. D. Duffy, “The System Communication
Architecture,” Digital Technical Journal
(September 1987, this issue): 22-28.

3. N. Kronenberg, H. Levy, and W. Strecker,
“VAXclusters: A Closely-Coupled Dis-
tributed System,” ACM Transactions on
Computer Systems, vol. 4, no. 2 (May
1986): 130-146.

4. P. Fleming and). Wallace, “How Not To Lie
With Statistics: The Correct Way To Summa-
rize Benchmark Results,” CACM, vol. 29,
no. 3 (March 1986): 218-221.

5. F. Colon Osorio, N. Quaynor, D. Park, X.
Cao, “Axiomatic Approach to Summarizing

Benchmark Results,” Annual Review/
Reports, System Performance Group
(1986).

S 60
o)
9 s0f
wn
@ 40
o
(%] 30 |
5
,6 20
& 10F
p4
g 0 : : : '
= 0 500 1000 1500 2000
NUMBER OF USERS
KEY:
A MEASUREMENT
D SIMULATION
Figure 18 WIC Throughput — Model
versus Measured
g 80 [
8 70
w
0 60 F
o
w50
%, 40
23
Q2+t
¢
= 10
E 0 " X L J
0 500 1000 1500 2000
NUMBER OF USERS
KEY:
A 24 DISKS
O 12 DISKS
Figure 19 Model Results: Throughput
with 12 versus 24 Disks
92

Digital Technical Journal
No. 5 September 1987

Xi-Ren Cao
Nii N. Quaynor
Fernando C. Colon Osorio

CI Bus Arbitration Performance
in a VAXcluster System

CI bus performance is difficult to evaluate with a conventional queuing
network approach. Therefore, a new model, a generalized semi-Markov
process, is used to model the process on the CI bus under its arbitration
algoritbm. This new model is implemented in a PASCAL program that is
run for different configurations of VAXcluster systems. The simulation
results demonstrate the properties of the arbitration algorithm. The
results also suggest that a centralized control scheme could improve the CI
utilization, and that some load-balance schemes can reduce the average
response time. The method may be useful for designing other products.

This paper relates the study of performance
of the CI bus in a VAXcluster environment. The
cluster nodes (computers and storage control-
lers) are connected through a Star Coupler by a
dual-path CI bus. An arbitration algorithm deter-
mines which node will be allowed to send pack-
ets over that CI bus. The performance of the CI
bus may directly affect the cluster’s performance,
and studying the performance of the CI bus algo-
rithm should yield some useful insights to en-
hance the designs of future computer-intercon-
nect products.

Our approach is first to build a model that cap-
tures the main feature of the algorithm,' and then
to consider other aspects as parameters of the
model. The most important parameters are the
length of the packets and the length of the quiet
slot.

Because arbitration is complicated, a conven-
tional queuing network model would be inade-
quate for modeling the CI process. For example,
the CI bus could notbe modeled as a server since
packet transmission cannot start immediately
after a request arrives, even if the CI bus were
idle. Thus we propose another model based on
the generalized semi-Markov process (GSMP).
Moreover, this model may be useful for studying
other processes in VAX cluster systems.

CI Bus Arbitration Algorithm

Here, we briefly review aspects of the CI arbi-
tration related to the performance study. Refer-
ence 1 contains details of the CI bus arbitration.

A Simple Description of a CI Bus

Let us assume a VAXcluster system in which there
are N nodes attached to a CI bus. Each node can
send both information and acknowledge packets
through the bus to any other node. Upon receiv-
ing an information packet, a node first checks the
cyclical redundancy check (CRC) information in
that packet. If the CRC succeeds, the receiving
node will immediately send back to the transmit-
ting node an acknowledge packet with either an
acknowledgment (ACK) if the node accepts and
stores the packet correctly, or a non-acknowledg-
ment (NAK) if not. If the CRC fails, the node will
send no response.

A time period, called the quiet slot, is reserved
to guarantee the transmission of the acknowledge
packet. The quiet slot (QS) is defined as the
period of time needed to accommodate the time
delay through a node’s front-end logic, plus the
round-trip cable and coupler delays for the
longest path in a CI cluster installation. Only the
node that generates the acknowledge packet for
the information packet just received can grasp
the CI bus during the quiet slot following the
transmission of any information packet. Thus, as
an approximation, the transmission time of the
information packet may be extended to include
the transmission time of the acknowledge packet.

After sending an information packet, the trans-
mitting node waits for the length of an acknowl-
edge time-out period. If that node receives an
ACK during that period, the transmit is com-
pleted. Upon receiving a NAK or no response
within the time-out period, however, the trans-

Digital Tecbnical Journal
No. 5 September 1987

93

CI Bus Arbitration Performance in a VAXcluster System

mitting node must retransmit the packet. The
acknowledge time-out period is greater than the
sum of one quiet slot, plus the CI bus turnaround
time, plus the time to verify and accept the
acknowledge packet at the transmitting node.

In addition, in any such “shared” multinode
bus structure, the arbitration for use of the bus so
as to avoid collisions is a critical element of the
design. The CI bus architecture implements the
distributed arbitration scheme discussed below.

CI Bus Arbitration

Two identical CI paths are used in a VAXcluster
system, and all nodes are connected to both of
them. Each node can randomly pick one path
before transmitting an information packet. Once
having chosen a path, the node will use it until
an acknowledge packet from the destination node
has been received. However, each node cannot
transmit and receive simultaneously using two
different paths. Figure 1 illustrates the structure
of a VAXcluster system in which VAX CPUs and
HSC devices are connected to one CI path.

Arbitration must be performed by all nodes
prior to the transmission of any information
packet. The acknowledge packet, following re-
ceipt of an information packet, does not require
arbitration. This method is called a slotted-carrier
sense multiple access (CSMA) protocol, also
referred to as dual-count round robin. The fol-
lowing parameters are used in current VAXclus-
ter systems:

= The clock unit (TCLK) issetat 114.28 nano-
seconds (ns).

= The value of the quiet slot can range from 7 to
64 TCLKs, or 800 to 7,314 ns, depending on
the cable length of the cluster. The QS for the
for the discussion of this paper simulation is
1,143 ns.

VAX VAX .. VAX
0 1 ¢ i
Cl BUS
HSC . e e HSC NEN-1
i+ 1 n
I [
DISKS DISKS

Figure 1 A Typical VAXcluster System

= The maximum number of nodes in the cluster,
N, is 16 for the current algorithmic implemen-
tation.

s The ID numbers of the nodes are /=0,
1,...,N—1, one for each node.

The arbitration algorithm operates as follows:

1. Upon starting a transmit operation, node /
chooses randomly one of the CI paths and
sets the value of its arbitration counter, C, to
N+I+1.

2. In each TCLK period, the node determines
whether or not the CI bus is busy. If it is
busy, the arbitration counter will remain
unchanged.

3. Once the node senses that the CI bus is not
busy, it will start counting quiet slots. That
is, the arbitration counter is setto C— 1, and
the node then waits for one QS period.

If C > 0 at the end of one QS period, the
node will inquire if the CI bus is busy. If it
isn’t busy, C is set to C—1, and the node
waits during one additional QS period. If the
ClI bus is busy, the arbitration counter is set
to another value that depends on the node
ID.

= Ifthe CI bus is occupied by a node whose
ID is greater than 7, or if this is the node’s
first attempt to grasp the CI bus, then Cis
setto N+/7+1 (i.e., the initial value of C
for this node).

= [fthe CI bus is occupied by a node whose
ID is less than 7/ and this is not the first
attempt of node 7 to grasp the CI bus, then
Cissetto/+ 1. After the arbitration coun-
ter is reset, control returns to step 2
above.

If C=0 at the end of the QS period, the node
inquires again if the CI bus is busy. If so, the
arbitration counter is set to another value
that depends on the node ID, as explained
just above. If the CI bus is not busy, the node
inquires if a packet is being received from
the other path.

= If the node is receiving from the other
path, C is resetto N, and control goes to
step 2 above.

= [f the node is not receiving, it starts the
transmission immediately.

94

Digital Techbnical Journal
No. 5 September 1987

Figure 2 shows a possible case of CI arbitra-
tion. This figure depicts a short history of the
arbitration times for three nodes, labeled 2, 6,
and 8. During the period [0,¢,], the CI bus is
transmitting a packet from some other node
while both node 2 and node 6 have requested to
transmit. The arbitration counters of these two
nodes are set respectively to 19 (16+2+1) and
23 (16+6+1). At time ¢,, the CI bus becomes
idle, and nodes 2 and 6 both start counting quiet
slots. At time ¢, (£,—¢£,=19QS), the arbitration
counter of node 2 becomes zero; hence node 2
wins the bus. At this instant, the arbitration coun-
ter of node 6 is 4. After detecting that the bus has
been captured by a node whose ID is less than its
own, node 6 sets its arbitration counter number
to 7 (6+1). (Assume that this is not the first
attempt of node 6.)

The transmission of the packet from node 2
ends at #;. Node 0 starts counting again at #; with
an arbitration counter of 7 and wins the bus
at Iy, (Le—ts=7QS). Figure 2 also shows that
requests arrive at the ports of nodes 2 and 8 at ¢;
and ¢ respectively. At ¢, the arbitration counter
of node 2 becomes 19 (16+2+1) since the bus
was won by a node whose ID is bigger than that of
node 2. The arbitration counter of node 8 is set to
25 (16+8+ 1) since this is node 8's first attempt
to occupy the CI bus.

For simplicity, we will study the properties of
only one CI path in this report. The principle for
studying two CI paths should be the same.

Some Preliminary Analysis

Although a complete analysis of the CI bus pro-
cess is difficult, some preliminary analyses may
help us to understand the properties of this pro-

—_ p—y n
o (6] o

ARBITRATION COUNTER

()

cess and perhaps validate the simulation results.

When two packets attempt to pass through the
same path of the CI bus simultaneously, both
packets will be destroyed. Therefore, packets can
be passed successfully only if, before sending a
packet, each node determines whether the CI bus
is busy. Even with this check, two nodes can still
send their packets simultaneously if each node
detects at the same instant that the CI bus is idle.
The situation is even worse because of the propa-
gation time of a packet from the transmitting
node to the detecting node.

The introduction of the QS concept into the
arbitration algorithm almost eliminates the possi-
bility of packet collisions when the CI bus is satu-
rated. In this case nearly every transmit request
will find the CI bus busy and must wait until the
end of the transmission of the current packet. At
the end of a transmission period from a node,
denoted as /y, all other nodes having an outstand-
ing transmit request will start counting quiet
slots simultaneously. The arbitration counters of
nodes whose transmit requests are made during
the transmission period have the form N +/+1.
The arbitration counters of those nodes whose
transmit requests were made in previous trans-
mission periods have the form N+ 7+ 1 if I > I,
or the form 7 if I < [y. Thus at a given time, each
node has a unique arbitration count. The node
whose arbitration counter reaches zero first will
grasp the CI bus.

After each transmission period, there is a short
interval (16 quiet slots) in which no transmis-
sions occur on the CI bus. However, every
requesting node is still counting the quiet slots
during this period. For example, suppose that
in one QS, the smallest arbitration counter is

- TIME

Figure 2 Arbitration among Three Nodes

Digital Technical Journal
No. 5 September 1987

95

VAXcluster
Systems

CI Bus Arbitration Performance in a VAXcluster System

N+TI+1, and that in the same QS, node 7 ini-
tiates a transmit operation. In this case the arbi-
tration counters of node / and the node whose
arbitration counter is N+/+1 in that QS are
always the same. Therefore, these two nodes
could start to transmit at the same time, and a col-
lision could occur, even though its probability is
very small.

The CI bus could be considered as a server.
From the arbitration scheme discussed above,
however, customers do not start services immedi-
ately after arriving at the server, even if it is idle.
One may argue that the arbitration time can be
modeled by a separate server. In this case, how-
ever, the customer in that server does not have a
fixed service time (the arbitration counter needs
to be reset frequently). Therefore, the CI bus
cannot be modeled as a standard queuing system.
Fortunately, many stochastic processes exist that
can be used to model real-world processes. One
stochastic process, called the generalized semi-
Markov process, has a characteristic very similar
to the process on the CI bus under the above arbi-
tration rules.

In the next section, we give an description of
this process.

Generalized Semi-Markov Processes

The generalized semi-Markov process, or GSMP,
is one of the most promising stochastic processes
in operations research for modeling complex
phenomena. GSMP was introduced by Matthes,?
and investigated further by other researchers,
among them Schassberger,3 and Whitt.4

A GSMP can be described as follows. Let S and
R be subsets of positive integers. We regard the
elements s of subset § as possible states of the
GSMP. Some events may occur at each state. R
denotes the indices of all possible events that may
occur during the evolution of a GSMP. All cvents
that can occur in state s are denoted as set E (s),
whichisa subsetof R.

The system will stay in a state s until an event
i € E(s) triggers a transition of the systcm to
another state s’. Let p(s’,s,i) be the probability
that the new state is s’, given that event 7 triggers
a transition from state s. An event can trigger a
transition only at the end of its lifetime. Associ-
ated with each event 7 is a clock whose reading
is denoted as ¢,. The clock runs ataspeed r(s,7),
which depends on both the event 7 and the
state s. If at time O the clock is set to ¢;, then at
time ¢ the reading of the clock will be

¢’i=c;—r(s,i) Xt. The lifetime of an event ends
when the associated clock reading reaches zero.
We assume r(s,7)>0 for some 7 € E(s). When
r(s,i)=0 for i € E(s), event i is regarded as
inactive in state s.

The events associated with state s’ are in
the set E(s”). The clock readings after the
transition are determined as follows. New clock
readings are independently generated for each
JEN(s,s,i)=E(s")—(E(s)—1).The new clock
reading for event j € N(s’,s,i) has a cumu-
lative probability distribution, or c.p.d., of
F(x;s’, j,s,i). For events in both E(s) and E (s"),
except for event 7, the old clock readings are
kept after the transition, i.e., for

JEO(s' s, i) =E(s)N(E(s)—1), ¢;=¢" (5,0).

Forevents in E(s) butnotin E(s’), the clocks are
set equal to zero (i.e., ifj € (E(s)—i)—E(s),
then ¢, =00 after the transition.)

For the purpose of modeling the CI process,
the above scheme of determining the clock read-
ings has to be modified slightly. We associate
each cvent 7 with a set of events H (i). Only for
events in j€ O(s',s,i) =E(s")N{E(s)—H (i)}
are old clock readings kept (i.e., ¢;=¢;" (s.c)).
For events in N(s',s,i) = E(s")—{E(s)—H (i)},
new clock readings have to be assigned according
to the c.p.d. F(x;s’, j,s,i). We call the process
with this clock-reading assignment scheme a
modified GSMP. A block diagram is shown in
Figure 3.

The next transition occurs according to the
same rules. These transitions describe the evolu-
tion of the system.

The Stochastic Process on the CI Bus

To describe the process on the CI bus, we use
a continuous time domain as opposed to a dis-
crete domain (i.e., we consider the clock unit
114.28 nanoseconds to be infinitesimally small
compared with other event times, such as trans-
mission times.) Furthermore, to make the prob-
lem tractable, we make the following stochastic
assumptions:

= The transmission times required by every node
are independent of each other.

= The times between two succcessive transmis-
sion requests are independent.

= The destinations of the transmitted packets are
independent of the transmitting node and the
transmission time.

96

Digital Technical Journal
No. 5 September 1987

Under the above assumptions, the CI system can
be characterized by the following items:

s The number of nodes, N

= The cumulative distribution functions of the
transmission time of each node, denoted as
Fi(x),i=0,1,...N—1

= The cumulative distribution functions of
the time between two successive transmis-
sion re-quests of each node, denoted as
Gi(x),i=0,1,... N—1

= The probability that a packet from node 7 will
gotonode j, denoted as p,

The state x of the CI bus consists of the following
elements:

= An index j, indicating the node that is trans-
mitting a packet (We use j =N to indicate that
the Cl busisidle.)

= The number of transmission requests made
by nodes i=0,1,... N—1, denoted as
No, My .., NN—

STATE AT t(!) WITH EVENTS e, e2, AND e3 -

DETERMINE LIFE TIMES Iy, I2, I3 FOR e1 TO
e3 FROM DISTRIBUTIONS, CHOOSE RATES
n, r2, r3 ACCORDING TO SOME RULES

Y

EVENT ey DIES AT t = t(l) + h/ry ETC.
SUPPOSE t2 = MINIMUM {ts ta ta}

NEXT TRANSITION HAPPENS AT
th+1)=th+t

DETERMINE THE STATE AND EVENTS
(SAY e2, e3, AND eq) AFTER TRANSITION

ASSIGN NEW LIFE TIME AND RATES FOR
ez, e3, AND eq

Figure 3 Block Diagram of Modified GSMP

= The residual transmission times of nodes
i=0,1,...,N—1, denoted as bo, b, ... ,bn-1
(Except for node j, these values are the same
as the transmission times.)

s The residual times between two transmission
requests of nodes i=0,1,...,N—1, denoted
as to by, . . oty

= The arbitration counters for the first request
of nodes 7i=0,1,..., N—1, denoted as
ay,a,, ... ,ay-; (Note thata;=0.)

The process on one CI path can be described as
a modified GSMP. Let L be the length of a QS
period. The arbitration counters can be translated
into continuous numbers d;=a; X L. These con-
tinuous numbers can be viewed as clock read-
ings. When j=N (i.e., no packet is being trans-
mitted on the CI bus), these clocks run at a rate
r=1 until one of the readings reaches zero.
When j# N, then these clocks run at a rate r=0;
this means that when a server is transmitting
packets, all arbitration counts do not change. The
clock readings may jump to some other values at
sometransition times.

Now we can describe the process on one CI
path. Let s={j,no, n1, ..., ny—,}. Using the termi-
nology of GSMP, we call s the state of the process.
Associated with each state s, there are at most 3V
events in E(s) (i.e., the end of a transmission
from each node, the grasp of the CI bus by each
node, and a new request arrival at each node).
The clock readings corresponding to these events
are b;, t;, and d,, i=0,1,... N—1. The clock
rates are always one for all ¢;, one for b;, zero for
b, if i #j, and one for all d;if j # 0 and zero for all
d; if j=N. For convenience, we also use b;, ¢,
and d; to denote the corresponding events. Thus

E(S)':{b,‘, iin[> 0, 4, all 1, d,', i n; > O}

The only remaining work for specifying the
GSMP on the CI path is to determine the clock
rates r(s,c), transition rules p(s,s’,7), and clock
reading distributions F(x,s’,j,s,7). These can be
donc by examining carefully the arbitration
scheme. The details can be found in reference 7.

We have modelled the CI process as a modified
GSMP. This concept helps us to simplify the
underlying mechanism of the process. This
mechanism is no more complicated than state
transition and clock readings. A simulation
algorithm based on this model is given in the next
section.

Digital Technical Journal
No. 5 September 1987

97

VAXcluster
Systems

CI Bus Arbitration Performance in a VAXcluster System

Simulation Algorithm

Although the GSMP concept looks sophisticated,
its simulation is not difficult. In fact, the simula-
tion of a GSMP consists mainly of two steps:

1. Use the clock readings and clock rates to
determine the next transition time and the
eventthat triggers this transition.

2. Determine the new state and the new clock
readings after each transition.

Thus the GSMP model simplifies the concept of
the mechanism of CI arbitration to these two
steps.

The specific rules and distributions for deter-
mining the process on one CI path were de-
scribed in detail in the previous sections. The
simulation algorithm is given as follows:

1. Initialize the system.

= Choose an initial state s = {j;ng,ny, ...,
ny—,}. n, is the number of transmission
requests of node i. j is the node transmit-
ting, and j= N means that the bus is idle.

= Assign initial clock readings for events.
For all nodes, the next transmission
request happens at a time with distribu-
tion G; (x). The transmission time of a
request on each node has a distribution
F; (x). Set the arbitration counts accord-
ing to the arbitration rule.

= Set the value of the simulation clock, v,
to 0.

2. Determine the clock rates for events accord-
ing to the state s. The rates for the next trans-
mission request are always 1. The rates for
the transmission completion are 1 for node j,
and O for all other nodes. The rates for arbi-
tration counters are 1 for all nodes if j=N
(CI bus idle), 0 if j # N (CI bus busy).

3. Using the clock rates, find the event whose
clock reading reaches zero the earliest. This
event triggers the transition. Set the simula-
tion clock to the time when this reading
reaches zero.

4. Using the transition probabilities, determine
the next state of the process.

5. Assign new clock readings and rates for the
new state. (This can be done as described in
steps 1 and 2 above.)

6. If the terminating condition is not met, go
to step 3. If the condition is met, stop the
simulation.

There are some points that should be noted
about this algorithm.

First, the model for two CI paths can be easily
obtained by combining two models for one CI
path and making the following modification. At
the end of the arbitration of each node, the model
checks to determine if the node is receiving from
the other path. If not, the node starts transmis-
sion; otherwise, the model sets the arbitration
count C of that node to N and starts the counting
again.

The second point is, the ACK or NAK transmis-
sion times are included in the information packet
transmission times (i.e., the distribution F; (x)
describes the total transmission times of both an
information packet and its ACK or NAK).

As mentioned earlier, we wrote a PASCAL pro-
gram to implement this algorithm. The next
two sections discuss the problems of choosing
parameters for this model and the performance
results obtained.

Choosing Parameters

As mentioned earlier, the maximum number of
nodes in a Cl-based VAXcluster system is 160;
therefore, N is set to 16 in the simulation. QS is
setto 1,143 ns.

The remaining problem is choosing the mean
transmission times and the mean interrequest
times, all of which depend on the node types and
specific applications. In this simulation, these
values are taken from the results of two previous
experiments performed at Digital.>¢ The first of
those observes the CI packet traffic in a system
running ASYNCQIO; the second measures the
I/O performance of a system running [OX.
(ASYNCQIO and IOX are both workload pro-
grams used for simulations.) The following is the
mean interrequest and the mean transmission
times of these two experiments; we use them as
parameters in our simulation.

For ASYNCQIO, we have:

= The mean interrequest time of a VAX 8600
CPU with a CI780 bus is 7, , = 8,300 micro-
seconds (us).

= The mean transmission time is sy 1 =06.4 us.

= The mean interrequest time of the HSC device
is 7y, =1,400 us.

98

Digital Technical Journal
No. 5 September 1987

= The mean transmission time of a packet from
an HSC device is s, =060.5 us.

For 10X, we have:

= The mean interrequest time of a VAX 8600
CPU with a CI780 bus is 7r,,=22,900
microseconds (ps).

= The mean interrequest time of the HSC device
is 742=3,800 us.

Since we assume that 1OX reads the same num-
ber of blocks per request as ASYNCQIO, the
mean transmission times Sy » and sy » are the same
as sy, and Sy.a-

These values are obtained by assuming that the
VAX CPU runs only one stream of ASYNCQIO or
I0X on one disk. If the CPU runs m streams
simultaneously, it is reasonable to take ry;/m and
ryi/m, for i=1,2, as the mean interrequest
times.

Finally, both ASYNCQIO and 10X are I/O
intensive workloads. Therefore, the simulations
described in the next section, using the data
derived from these two workloads, represent the
performance of 1/O intensive programs. The cal-
culations here just yield reasonable values for
parameters.

Simulation Results

The mean values obtained in the previous section
were used in the simulations. In each simulation
run, half the nodes were VAX systems, the other
half were HSC devices. Also, half the VAX systems
ran ASYNCQIO, the other half ran 10X. To study
the CI performance, we ran four sets of simula-
tions.

The first set had 16 nodes, or eight VAX sys-
tems and eight HSC devices. The average trans-
mission time for the VAX systems was 6.4 us, and
for the HSC devices 60.5 us. The interrequest
times were chosen to model the systems in which
each VAX system runs from one to three streams
of the I/0O intensive workloads. Specifically, the
mean interrequest times for a system running two
streams are half those for a system running only
one stream, and so forth.

The CI utilization rates of this first set of simu-
lations are shown in Figure 4, the otherresults in
Table 1. The CI bus transmits packets during
busy time, arbitration occurs during arbitration
time, and the bus is idle during idle time. Idle
time does not include any arbitration time. The
busy, idle, and arbitration rates are the ratios of

80

70 |-

PERCENTAGE

2 3
NUMBER OF STREAMS

KEY:

[] Busy RaTE
[ioLE RATE

_ ARBITRATION RATE

Figure 4 CI Performance for First Simulation

Table 1 First Set of Results
Simulation 1.1 1.2 1.3
No. of nodes: n 16 16 16
No. of streams 1 2 3
s, to sg — useconds 6.40 6.40 6.40
Sq 10 Sy 60.50 60.50 60.50
r, to rq - pseconds 8,300.00| 4,150.00|2,800.00
rsto rg 22,900.00| 11,450.00 | 7,600.00
rgton, 1,400.00 700.00, 470.00
nato rg 3,800.00| 1,900.00| 1,270.00
Total time - seconds 43.79 21.90 14.69
Busy time - seconds 10.56 10.56 10.57
Idle time 27.27 5.95 0.42
Arbitration time 5.96 5.38 3.70
Busy rate - % 24 48 72
Idle rate 62 27 3
Arbitration rate 14 25 25
Arbitration/busy ratio 0.58 052 0.35
Response time -
useconds
RE, 46 80 213
RE, 48 86 235
RE, 48 86 246
RE, 50 92 261
RE; 51 95 256
RE; 55 95 256
RE, 57 97 265
REg 61 101 269
REg 115 181 1,015
RE 120 212 1,179
RE,, 127 238 1,171
RE,, 135 269 1,281
RE 139 257 539
RE;, 143 263 545
RE, 147 270 555
RE,¢ 150 278 | 552

Digital Technical Journal
No. 5 September 1987

99

VAXcluster
Systems

CI Bus Arbitration Performance in a VAXcluster System

80
60 [~ I—-
50 [~
40 [~
30 |
20 |~
10 |-

PERCENTAGE

16

KEY:

12 8
NUMBER OF NODES

[] BusyRATE
[DLE RATE

[ARBITRATION RATE

4

Figure 5 CI Performance for Second

Simulation

Table 2 Second Set of Results

the busy, idle, and arbitration times to the total
time respectively.

From these results, we can see that the arbitra-
tion time takes about 23 to 24 percentof the total
time if the CI bus is busy for more than 50 per-
cent of the total time. The ratio of arbitration
time to busy time decreases as the busy rate
increases. We can also see that the response time
is somewhat sensitive to the interrequest time.
HSC controllers have a longer response time than
VAX CPUs since the interarrival times of the con-
trollers are shorter. The results also reveal that
while the arbitration is almost fair for all nodes,
some very small degree of unfairness still exists.
For example, nodes 13 to 16 have the same mean
interrequest and transmission times; however,
the response times increase slightly as the ID
number of the node increases. These properties
will be explained later. Of course, such a small
degree of unfairness will not affect the perfor-
mance of the CI cluster.

- - The second set of simulations compared the
Simulation 21 22 23 24 performances of clusters with 4, 8, 12, and
No. of nodes: n 16 i 8 & 16 nodes. The node ID numbers are 0 to 3 for the
S, 10 Sy - useconds 6.40 6.40 6.40 6.40 4-node experiment, 0 to 7 for the 7-node experi-
Snj2+1 10 Sp 60.50 60.50| 6050/ 6050 ment, and so forth. Each VAX CPU runs three
110 ry, - useconds | 2,800.00| 2,800.00(2,800.00| 2,800.00 streams of [OX or ASYNCQIO.

Tjas1 10 Fopp 7,600.00| 7,600.00|7,600.00 7,600.00 Theresultsare shown in Figure 5 and Table 2.
;:/2*‘ t‘:o’i”/"] g;g'gg] ;;ggg . ;;ggg] ;;ggg These results confirm the properties observed

Sl el i b Enihottd Tuthe in the first set of simulations. As far as the CI traf-
! (R e L T fic is concerned, reducing the number of nodes is
Busy time ~ seconds 10.57 1055| 1055/ 1056 equivalent to decreasing the traffic intensity on
Idle time 0.56 4.59 1428 4415 the bus.

Arbitration time s a4 461 42 The third set of simulations examined the
Busy rate - % 72 o 36 18 effect on performance of the lengths of packets
Idle rate 4 z B & transmitted on the CI bus. The average transmis-
Arbitration rate 24 23 16 7
sion times of a packet are assumed to be either

Arbitration/busy ratio 0.33 043 0.44 0.39 60.5, 60.5/2. 60.5/3, or 60.5/4 ps, depending
Response time - on the number of streams. The results are shown
useconds .

RE, 215 04 59 4 in Figure 6 and Table 3.

RE, 237 99 60 4 As we expected, the ratio of arbitration time to

REs 235 103 64 101 busy time increases as the length of a packet

RE, - e 64 [decreases. If the average packet length is one-

zg: ggg 1% :gg B fourth of a block, the system will spend more

RE, 243 218 158 — time arbitrating than transmitting.

REg 239 249 162 — The fourth set of simulations kept the interre-

REq 1,002 283 - - quest times of eight nodes constant at 1,000 s,

R I - - - but varied the times of the other eight nodes from

gg; 133: Sgg — _ 300 to 1,000 us. The parameters are listed in

RE.s 471 — — — Table 4, and the results reported in Figure 7.

REwu 475 - — — Figure 7 shows that if the mean interrequest

REs 482 — - - times of nodes 1 to 4 and 9 to 12 are between

REws o —_ —_ — 700 and 1,000 us, the average response times of
100 Digital Technical Journal

No. 5 September 1987

all nodes will be very similar. If the interrequest
times of these nodes decreases further, their
response times increase rapidly. In this case a
load balance scheme would be needed to achieve
better performance.

CI Arbitration Properties

We can make the following observations from the
simulation results:

* The response time increases rapidly if the CI
bus is nearly saturated. This behavior is similar
to that of a single-server queue.

= The arbitration algorithm is almost fair for all
nodes. There is only a very small degree of
unfairness. The response times of nodes with
lower ID numbers are a little bit smaller than
those of nodes with higher IDs.

To explain this unfairness, let us consider
two nodes, node 1 and node 10. Two cases
in which node 1 gets higher priority than
node 10 are given as follows:

1. Assume that the CI bus is idle, and that
node 10 requires a transmission at £, while
node 1 requires a transmission at £, +90QS.
In this case, node 1 will win the bus
despite the fact that node 10 submitted its
request before node 1.

2. Assume that the CI bus is busy, and that
during this busy period both nodes 1 and
10 require transmissions. As soon as the CI
bus becomes idle, both nodes will start
counting quiet slots. In this case, node 1
will always win the bus whether or not it
was the first to make the request.

= Under the current arbitration algorithm, the
response times are sensitive to the inter-
request times, especially when the CI bus
is highly utilized. For example, in Simula-
tion 1.3, the response times for two nodes
with mean interrequest times of 470 and
7,600 us are approximately 1,050 and 240 ps
respectively.

This result will occur because, under satura-
tion, the arbitration is approximately a round-
robin algorithm. If there are three requests in
node 1 and six requests in node 2, the CI bus
must serve the three requests in node 1 and the
first three requests in node 2 before it can
serve the last three requests in node 2. This
algorithm gives higher priority to requests in
node 1 than to those in node 2.

Digital Technical Journal
No. 5 September 1987

80 -
70 | []
60 |-
a
& 50 |-
& a0 -
&}
&30t
o
20 |
10
0
60.5 30.25 20.17 15.12
MEAN TRANSMISSION TIMES: — uSECONDS
KEY:
[BuSYRATE
] ‘bLE RATE
[B] ARBITRATION RATE
Figure 6 CI Performance for Third
Simulation
Table 3 Third Set of Results
Simulation 31 3.2 33 3.4
No. of nodes: n 16 16 16 16
s, to sg — useconds 6.40 6.40 6.40 6.40
Sg tO Sy 60.50 30.25 20.17 15.12
ryto ry — useconds 2,800.00| 2,800.00 |2,800.00 2,800.00
r510 rg 7.,600.00| 7,600.00(7,600.00, 7,600.00
o 15 470.00| 470.00| 470.00| 470.00
rato ryg 1,270.00| 1,270.00|1,270.00| 1,270.00
Total time - seconds 14.69 14.69 14.69 14.69
Busy time - seconds 10.57 5.38 3.65 2.78
Idle time 0.56 4.16 5.59 6.34
Arbitration time 3.56 5.15 5.45 5.57
Busy rate - % 72 37 25 19
Idle rate 4 28 38 43
Arbitration rate 24 35 37 38
Arbitration/busy ratio 0.33 0.95 1.48 2.00
Response time -
useconds
RE, 215 56 41 36
RE, 237 60 44 39
RE, 235 63 46 41
RE, 245 65 48 42
REs 232 65 49 44
REg 235 69 52 46
RE, 243 69 54 48
REg 239 72 55 49
RE, 1,002 11 76 63
REy, 1,086 121 81 67
RE;, 1,037 131 87 72
RE,, 1,091 141 93 76
RE\3 471 137 93 77
RE,, 475 138 95 79
REs 482 143 98 82
RE¢ 481 146 101 84
101

VAXcluster
Systems

CIl Bus Arbitration Performance in a VAXcluster System

8
S 1.00
S
% 0.80
3
s 0.60
|
w 0.40
2
=020
w
(2]
g 0 1 1 1 Il 1 1
. 0 200 400 600 800 1000 1200
% INTERREQUEST TIME — uSECONDS
KEY:
O NODE 5
® NODE 1

Figure 7 CI Performance for Fourth
Simulation

Table 4 Fourth Set of Results

Simulation 4.1 4.2 4.3 44 45
No. of

nodes: n 16 16 16 16 16
Sy 10 Sg -

useconds 6.40 6.40 6.40 6.40 6.40
S t0 Sy 60.50 60.50 60.50 60.50 60.50
rytory -

useconds| 1,000.00| 900.00/ 800.00/ 700.00| 600.00
rstorg 1,000.00| 1,000.00| 1,000.00| 1,000.00 | 1,000.00

rgto ryp 1,000.00| 900.00| 800.00(700.00| 600.00
ratory 1,000.00 | 1,000.00| 1,000.00| 1,000.00| 1,000.00
Simulation 4.6 4.7 4.8 49 4.10
No. of

nodes: n 16 16 16 16 16
Sy t0 Sg —

useconds 6.40 6.40 6.40 6.40 6.40
Sq10 Sy 60.50 60.50 60.50 60.50 60.50
rytor, -

wuseconds| 500.00| 450.00| 400.00({ 350.00(300.00
rstorg 1,000.00| 1,000.00| 1,000.00| 1,000.00| 1,000.00
rgtory 500.00| 450.00| 400.00/ 350.00(300.00
ratorg 1,000.00| 1,000.00(1,000.00| 1,000.00 | 1,000.00

= Figure 7 shows the effect of the relative inter-
request time on the response times. The
response times of nodes 5 to 9 increase rapidly
when their interrequest time is between 50
and 60 percentofthe time for nodes 1 to 4.

= The results of the first and second sets of simu-
lations show that the higher the CI busy rate,
the smaller the total arbitration time. For
example, in Simulation 1.1, the total arbitra-

tion time for 200,000 requests is 5.86 sec-
onds, while that figure in Simulation 1.2 is
5.11 seconds.

If the CI bus rate is low, the average transmis-
sion request from node / will have to wait an
arbitration time of (N+/7/+1)QS. If the CI
busy rate is high, however, each request can
always find some node whose ID is lower and
which can occupy the CI bus earlier. In this
case the average request spends only (/ +1)QS
on arbitration.

s In the third simulation, the arbitration time
rate increases from 0.24 for an average packet
length of one block to 0.38 for a length of one-
fourth of a block. The absolute value of arbi-
tration time also increases. This result occurs
because the arbitration time is the same for
packets with different lengths.

Conclusion

This paper describes the performance of the
algorithm for CI bus arbitration as measured by a
generalized semi-Markov process model. The
simulation results show the following:

= The arbitration algorithm is almost fair to all
nodes.

= The ratio of arbitration to busy times depends
on the average length of packets transmitted;
the smaller the length, the bigger this ratio.

= The ratio of arbitration to busy times also
depends on the traffic intensity; the larger the
intensity, the smaller the ratio.

= The response times of packets at a node are
sensitive to its I/O rate compared to other
nodes; the higher the rate, the longer its
response time.

= Because of the arbitration time, the CI bus is
not fully utilized. In experiment 1.3, the
effective bandwidth for one path of the CI bus
is about 75 percent. This effective bandwidth
also depends on the average length of packets.

The results indicate where problems can be
anticipated, especially when the CI bus is highly
utilized, and suggest some ways to improve CI
performance.

Acknowledgments

The authors are indebted to Jory Tsai for dis-
cussing the possibility of using PAWS to imple-
ment the GSMP model, and to Hossein Hosseini
for assistance in preparing the report.

102

Digital Technical Journal
No. 5 September 1987

References

I.

4.

V. Boaen et al., “Computer Interconnect
Specification,” Digital Equipment Corpora-
tion Standard 161-0, 1986.

K. Matthes, “Zur Theorie der Bedienungs-
prozesse,” Transactions of the Third
Prague Conference on Information The-
ory (1962).

R. Schassberger, “Insensitivity of Steady-
state Distributions of Generalized Semi-
Markov Processes, Part1,” Annuals of Prob-
ability 5. (1977):81-99.

W. Whitt, “Continuity of Generalized Semi-
Markov Processes,” Mathematics of Opera-
tions Research, vol. 5, no. 4 (1980): 494-
501.

5. B. Murray, “CI Traffic Observations: A Com-

parison of the CI780, CIBCI, and CIBCA,”
Digital Equipment Corporation Internal
Technical Memorandum (October 1986).

. X. Cao and H. Hosseini, “I/O Properties of a

VAXCcluster: Part I,” Digital Equipment Cor-
poration Internal Technical Memorandum
(October 19806).

. X. Cao, N. Quaynor, and F. Colon Osorio,

“CI Bus Arbitration Performance in a VAX-
cluster,” Digital Equipment Corporation
Internal Technical Memorandum (March
1987).

Digital Tecbnical Journal

No. 5

September 1987

VAXcluster
Systems

dlilliltall |8

ISBN 1-55558-004-1

. €

Printed in USA EY-8258E-DPCopyright © Scpu-:nlber w87 Digim] Equipment Corporation

	Front cover
	Contents
	Editor's Introduction
	Biographies
	The VAXcluster concept: An Overview of a Distributed System
	The System Communication Architecture
	The VAX/VMS Distributed Lock Manager
	The Design and Implementation of a Distributed File System
	Local Area VAXcluster Systems
	VAXcluster Availability Modeling
	System Level Performance of VAX 8974 and 8978 Systems
	CI Bus Arbitration Performance in a VAXcluster System
	Back cover

