COBOL-74
Language Manual

Order Number AA-5059A-TK

January 1979

This manual reflects the software of version 12 of the
COBOL-74 compiler (CBL74), version 12 of the object-
time system (C740TS), and version 4A of SORT.

To order additional copies of/ this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, January 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1979, by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem~10 MASSBUS
DEC DECtape . OMNIBUS
PDP ' DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET~8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 : RTS-8 ITPS-10

3/79-14

PREFACE

ACKNOWLEDGMENT

PART

PART

CHAPTER

CHAPTER

CHAPTER

WWWWWWWWWWW W N e b e e o e e b s e

1

=N

« o o
WN -

BB WWWWWNDNRNDNNDNNDNNDN R RS e
* s e e
[\

® 8 e s e 6 e e 4 e ° O & e+ e s+ o o e e e o
.

[NN bW Www N

L et et e e b

H WO U WN

o

CONTENTS

INTRODUCTION TO THE COBOL-74 SYSTEM
AND THE STRUCTURE OF THE MANUAL

COBOL-74 LANGUAGE REFERENCE MATERIAL
INTRODUCTION TO COBOL-74 LANGUAGE

SYMBOLS AND TERMS
Symbols
Underline
Brackets and Braces
The Ellipsis
COBOL Terms

ELEMENTS OF COBOL LANGUAGE
Program Structure
COBOL-74 Character Set
Words
Reserved Words
User-Defined Words
Literals
Numeric Literals
Alphanumeric Literals
Separators

SOURCE PROGRAM FORMAT
Card-type Format
Terminal-type Format
With Line Numbers
Without Line Numbers

THE COBOL LIBRARY FACILITY
The COPY Statement

THE IDENTIFICATION DIVISION
THE ENVIRONMENT DIVISION

ENVIRONMENT DIVISION CLAUSE FORMATS
CONFIGURATION SECTION
SOURCE-COMPUTER
OBJECT-COMPUTER
SPECIAL-NAMES
INPUT-OUTPUT SECTION
FILE-CONTROL
SELECT
RESERVE
ORGANIZATION
ACCESS MODE

iii

Page

xii

xiii

=
I
=

I
HFHEFOYOOUVL&EWWWNDNND -

o

[
o

i—‘lT'—-‘l—‘l—'l—‘l—‘l—-‘l—‘l—‘l—'l—‘l—"—‘i—'l—"—‘
1
[y
—

i
[
w

1-14
1-15
1-15
1-16
1-19
1-19

[N
I
=

I
HEOGOA®WNDN L

o>

o

|
[a
[=)}

WWWWWwWWwWwwwww w
I i
=
~

1
b
Y]

CONTENTS (CONT.)

Page
3.1.11 RECORD KEY 3-20
3.1.12 RELATIVE KEY 3-21
3.1.13 RECORDING MODE/DENSITY/PARITY 3-22
3.1.14 FILE STATUS 3-26
3.1.15 I-0-CONTROL 3-34
CHAPTER 4 THE DATA DIVISION 4-1
4.1 FILE SECTION 4-2
4.1.1 Record Descriptions 4-2
4.1.2 Elementary Items and Group Items 4-3
4.1.3 Level Numbers 4-3
4.2 SCHEMA SECTION 4-4
4.3 COMMUNICATION SECTION 4-4
4.4 WORKING-STORAGE SECTION 4-5
4.5 LINKAGE SECTION 4-5
4.6 REPORT SECTION 4-6
4.6.1 Format Of Report Section 4-7
4.7 QUALIFICATION 4-9
4.8 SUBSCRIPTING AND INDEXING 4-9
4.9 DATA DIVISION CLAUSES 4-13
4.9.1 File Description (FD) 4-14
4.9.2 BLOCK CONTAINS 4-16
4.9.3 CODE-SET 4-17
4.9.4 DATA RECORD 4-18
4.9.5 FD File-name 4-19
4.9.6 LABEL RECORD 4-20
4.9.7 RECORD CONTAINS 4-22
4.9.8 REPORT 4-23
4.9.9 SD File-name 4-24
4.9.10 VALUE OF
IDENTIFICATION/DATE~-WRITTEN/USER~-NUMBER 4-25
4.9.11 DATA DESCRIPTION ENTRY 4-29
4.9.12 BLANK WHEN ZERO 4-31
4.9.13 Condition-name (level-88) 4-32
4.9.14 Data-name/FILLER 4-34
4.9.15 JUSTIFIED 4-35
4.9.16 Level-number 4-37
4.9.17 OCCURS 4-38
4.9.18 PICTURE 4-40
4.9.19 REDEFINES 4-54
4.9.20 RENAMES (level-66) 4-56
4.9.21 SIGN 4-58
4.9.22 SYNCHRONIZED 4-60
4.9.23 USAGE 4-62
4.9.24 VALUE 4-68
4.9.25 Report Description (RD) 4-70
4.9.26 CODE 4-72
4.9.27 CONTROL 4~73
4.9.28 Report Group Description 4-74
4.9.29 COLUMN NUMBER 4-77
4.9.30 GROUP INDICATE 4-78
4.9.31 LINAGE 4-79
4.9.32 LINE NUMBER 4-81
4.9.33 NEXT GROUP 4-83
4.9.34 RESET 4-84

iv

CONTENTS (CONT.)

SOURCE
SUM
TYPE

NG S Y
P
(Vo RV V]
« s e

www
~Noyon

CHAPTER THE PROCEDURE DIVISION

[C IS, |

SYNTACTIC FORMAT OF THE PROCEDURE
DIVISION
Statements
Sentences
Paragraphs
Sections
SEQUENCE OF EXECUTION
SEGMENTATION AND SECTION~NAME PRIORITY
NUMBERS
ARITHMETIC EXPRESSIONS
Arithmetic Operators
Formation and Evaluation Rules
CONDITIONAL EXPRESSIONS
Relation Condition
Format of a Relation-Condition
Relational Operators
Comparison of Numeric Items
Comparison of Nonnumeric Items
Class Condition
Format of a Class Condition
Restrictions
The ALPHABETIC Test
The NUMERIC Test
Condition-Name Condition
Format of a Condition-Name Condition
Sign Condition i
Format of a Sign Condition
Logical Operators
Formation and Evaluation Rules
Combined and Negated Combined
Conditions
Abbreviated Combined Relation
Conditions
COMMON OPTIONS ASSOCIATED WITH THE
ARITHMETIC VERBS
The ROUNDED Option
The SIZE ERROR Option
THE CORRESPONDING OPTION
DETERMINATION OF USAGE IN ARITHMETIC
COMPUTATIONS
PROCEDURE DIVISION VERB FORMATS
ACCEPT
ADD
ALTER
CALL
CANCEL
CLOSE
COMPUTE
DELETE
. DISPLAY

oo,

. ¢ ¢ o e o o
. . L] .
W -

. .
[SS I

« o o o
o] NOTUERWWNNNODNN
« o o o
> W=

e o+ v e
> W N

OJoO >} (8} oot UUTOT OO0 D WK o

LU OOA OO0 0
. . . . L] -
AN

.

[

(6] o
. .

« .
N =

oot o,
. L] . . .
WO W WOLWWILWWWOWYY
WO U B WN

e e o e o o s s o

(SO NE O T]

| R L L L L L T T O O e I |
HPHEHWOWOWWOWOOOOI~IOOOW, UL NN

oot uToTo O,

CONTENTS (CONT.)

Page
5.9.10 DIVIDE 5-34
5.9.11 ENTER 5-36
5.9.12 ENTRY 5-37
5.9.13 EXIT 5-38
5.9.14 EXIT PROGRAM 5-39
5.9.15 FREE 5-40
5.9.16 GENERATE 5-43
5.9.17 GO TO 5-45
5.9.18 GOBACK 5-46
5.9.19 IF 5-47
5.9.20 INITIATE 5-49
5.9.21 INSPECT 5-50
5.9.22 MERGE 5-54
5.9.23 MOVE 5-56
5.9.24 MULTIPLY 5-58
5.9.25 OPEN 5-59
5.9.26 PERFORM 5-64
5.9.27 READ 5-68
5.9.28 RELEASE 5-71
5.9.29 RETAIN 5-72
5.9.30 RETURN 5-78
5.9.31 REWRITE 5-79
5.9.32 SEARCH 5-80
5.9.33 SET 5-83
5.9.34 SORT 5-84
5.9.35 START 5-87
5.9.36 -STOP 5-89
5.9.37 STRING 5-90
5.9.38 SUBTRACT 5-95
5.9.39 TERMINATE 5-97
5.9.40 TRACE 5-98
5.9.41 UNSTRING 5-100
5.9.42 USE 5-108
5.9.43 WRITE 5-111
PART 3 COBOL-74 USAGE MATERIAL
CHAPTER 6 COMPILER COMMAND STRINGS 6-1
CHAPTER 7 COBOL~74 UTILITY PROGRAMS 7-1
7.1 ISAM - INDEXED-SEQUENTIAL FILE
MAINTENANCE PROGRAM V 7-2
7.1.1 Building an Indexed-Sequential File 7-4
7.1.2 Maintaining an Indexed-Sequential
File 7-7
7.1.3 Packing an Indexed-Sequential File 7-9
7.1.4 Ignoring Errors 7-10
7.1.5 Reading and Writing Magnetic Tape
Labels 7-11
7.1.6 Indirect Commands 7-12
7.1.7 Using Indexed-Sequential Files 7-13
7.2 LIBARY - SOURCE LIBRARY MAINTENANCE
PROGRAM 7-15
7.2.1 Library File Format 7-15
7.2.2 Invoking The Library Utility 7-15
7.2.3 Command String Defaults 7-17
7.2.4 LIBARY Switches 7-18

vi

CONTENTS (CONT.)

Page
7.2.5 Running LIBARY 7-18
7.2.6 LIBARY Commands 7-19
7.2.6.1 Group Mode Commands 7-19
7.2.6.2 Edit Mode Commands 7-20
7.2.6.3 Edit Commands 7-~20
7.2.6.4 LIBARY-Directing. Commands 7-21
7.2.6.5 Example of Command Usage 7-21
7.3 COBDDT -~ PROGRAM FOR DEBUGGING COBOL
PROGRAMS 7-22
7.3.1 Loading and Starting COBDDT 7-23
7.3.2 COBDDT Commands 7-24
7.3.3 Obtaining Histograms of Program
Behavior 7-27
7.3.3.1 Initializing the Histogram Table 7-28
7.3.3.2 Starting the Histogram 7-28
7.3.3.3 Stopping the Histogram 7-29
7.3.3.4 Obtaining Histogram Listing 7-29
7.3.3.5 Using the Histogram Feature 7-31
7.4 RERUN - PROGRAM TO RESTART COBOL-74
PROGRAMS 7-31
7.4.1 Operating RERUN 7-32
7.4.2 Examples of Using RERUN 7-33
CHAPTER 8 FILE FORMATS 8-1
8.1 RECORDING MODES 8-1
8.1.1 ASCII Recording Mode 8-1
8.1.2 SIXBIT Recording Mode 8-2
8.1.3 EBCDIC Recording Mode 8-2
8.1.4 BINARY Recording Mode 8-3
8.2 FILE FORMATS 8-3
8.2.1 Fixed-Length ASCII 8-4
8.2.2 Variable-Length ASCII 8-5
8.2.3 Fixed-Length SIXBIT 8-8
8.2.4 Variable-Length SIXBIT 8-10
8.2.5 EBCDIC File Formats 8-12
8.2.6 BINARY File Formats 8-19
8.2.6.1 COBOL ASCII Mixed-Mode Binary 8-20
8.2.6.2 COBOL SIXBIT Mixed-Mode Binary 8-21
8.2.6.3 COBOL EBCDIC Mixed-Mode Binary 8-22
8.3 FILE ORGANIZATION AND ACCESS 8-23
8.4 SEQUENTIAL FILES 8-23
8.5 RELATIVE FILES 8-23
8.5.1 Sequential Access Of Relative Files 8-24
8.5.2 Random Access Of Relative Files 8-25
8.5.3 Dynamic Access Of Relative Files 8-25
8.6 INDEXED-SEQUENTIAL FILES 8-27
8.6.1 Data File 8-27
8.6.2 Index File 8-28
CHAPTER 9 SIMULTANEOUS UPDATE 9-1
9.1 PROGRAMMING CONSIDERATIONS 9-3
9.1.1 The OPEN Statement 9-4
9.1.2 The RETAIN Statement 9-8
9.1.3 The FREE Statement 9-11
9.1.4 Accessing Sequential Files 9-12
9.1.4.1 Basic Reading 9-12
9.1.4.2 Basic Writing 9-12

vii

CHAPTER

CHAPTER

CHAPTER

CHAPTER

11.1
11.1.1
11.1.2
11.2 |
11.2.1
11.2.1.1
11.2.1.2
11.2.2
11.2.3
11.2.4
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6

CONTENTS (CONT.)

Basic Updating

Sophisticated Access to Sequential
Files

Accessing Relative Files

Accessing Indexed-Sequential Files

REPORT WRITER

PROGRAM SEGMENTS, SUBPROGRAMS, AND
OVERLAYS

PROGRAM SEGMENTS
Section~-Names and Segment Numbers
Examples

SUBPROGRAMS
Inter-Program Communication
The Calling Program
The Called Subprogram
Loading a Subprogram Structure
Object Libraries and Searches
Examples

OVERLAYS
When to Use Overlays
Overlayable COBOL Programs
Defining Overlays
The /SPACE Switch to LINK
The CANCEL Statement
Examples

- CALLING NON-COBOL SUBPROGRAMS

CALLING FORTRAN SUBPROGRAMS
CALLING MACRO SUBPROGRAMS

IMPROVING PERFORMANCE OF COBOL-74
PROGRAMS

HOW TO PROCEED WITH PROGRAM
OPTIMIZATION
Where to Begin
What Tools are Available
What Method or Procedure to Use
Evaluating Performance
Documentation
LISTING THE TOOLS
COBDDT
The ENTRIES Column
The CPU Column
ELAPSED Column
OVERHEAD
USING THE CORRECT DATA TYPE
DISPLAY Data Types
EBCDIC
ASCII
SIXBIT
COMPUTATIONAL

viii

Page
9-13
9-13
9~16
9-17

10-1

PART

13.4

13.4.1
13.4.2
13.4.3
13.5

13.5.1
13.5.2
13.5.3
13.5.4
13.5.5
13.5.6
13.5.7
13.5.8

4

APPENDIX A

APPENDIX

APPENDIX

APPENDIX
APPENDIX
GLOSSARY

INDEX

FIGURE

(a)
(a)

[+]

u1pa>¢-?+~haw

[L}
SNourmbswWwNHEBW N o W N WA -

cooooocooooloooqmm w

CONTENTS (CONT.)

Page
DATA EFFICIENCIES 13-10
Counter, Indexes, Subscripts 13-11
File Storage 13-11
Blocking Data 13-11
EFFICIENT CODING CONVENTIONS 13-12
Alignment 13-12
Usage of Subscripts 13-12
Incrementing Counters 13-13
The PERFORM Statement 13-13
Use of the INSPECT Statement 13-14
Data Movement 13-14
Ordering Statements 13-15
Asking the Correct Question 13-15
APPENDIXES, GLOSSARY, INDEX
DIFFERENCES BETWEEN COBOL-68 AND
COBOL-74 A-1
COBOL RESERVED WORDS B-1
ASCII, SIXBIT, AND EBCDIC COLLATING
SEQUENCES AND CONVERSIONS c-1
ALTERNATE NUMERIC TEST D-1
DEFINING LOGICAL NAMES UNDER TOPS-20 E-1
Glossary-1
Index-1
FIGURES
Card-type Format 1-14
Terminal-type Format with Line Numbers 1-15
Terminal-type Format without Line Numbers 1-16
Direct Subscripting/Indexing 4-11
Relative Subscripting/Indexing 4-11
Qualified Direct Subscripting/Indexing 4-11
Picture String Charcter Chart 4-53
Order of Evaluation of a Conditional
Expression 5-13
Order of Evaluation of a
Compound-conditional Expression 5-14
PERFORM Cycle Logic - Two Variables 5-66
PERFORM Cycle Logic - Three Variables 5-67
COBOL-74 ISAM File Environment 7-3
ASCII Recording Mode 8-1
SIXBIT Recording Mode 8-2
EBCDIC Recording Mode 8-2
EBCDIC Recording Mode ~ Industry-Compatible 8-2
Binary Recording Mode 8-3
Fixed-Length ASCII 8-4
COBOL Fixed-Length ASCII 8-5

ix

CONTENTS (CONT.)

8-8 Variable~Length ASCII

8-9 COBOL Variable-Length ASCII

8-10 Fixed~Length SIXBIT

8-11 COBOL Fixed~Length SIXBIT

8-12 Variable-Length SIXBIT

8~-13 COBOL Variable-Length SIXBIT

8-14 Fixed-Length EBCDIC

8-15 COBOL Fixed-Length EBCDIC

8-16 Variable~Length EBCDIC

8-17 COBOL Variable-Length EBCDIC

8-18 COBOL Blocked Fixed-Length EBCDIC

8-19 Blocked Vvariable-~Length EBCDIC

8-20 COBOL Blocked Variable-Length EBCDIC

8-21 COBOL Standard Binary and ASCI
Mixed-Mode Binary

8-22 COBOL Standard Binary and SIXBIT
Mixed-Mode Binary

8-23 COBOL Standard Binary and EBCDIC
Mixed-Mode Binary

8~24 Statments Used to Sequentially Access
a Relative File

8-25 ISAM Data File Structure

8-26 Locating a Record in an

Indexed~Sequential File

8-27 ISAM Index File Structure

9-1 The Problem of Buried Update

9-2 The Problem of Deadly Embrace

9-3 Projecting Resources For Simultaneous
Update

9-4 The OPEN Statement

9-5 Competing For Program Access to Files

9-6 The RETAIN Statement

9-7 The FREE Statement

11-1 Example of an Overlay Structure

13-1 Sample COBDDT Histogram

TABLES

TABLE Recording Modes

Monitor File Status Bits

Monitor Error Codes

Standard Label for Magtapes

Procedure Verb and Statement Categories
Types of Segments

Conditions, Logical Operators, and
Parentheses Combinations

CLOSE Options and File Types

COBOL Switch Summary

ASCII and SIXBIT Collating Sequence and
Conversion to EBCDIC

ASCII to SIXBIT Conversion

EBCDIC Collating Sequence and
Conversion to ASCII

0O Oow Ttnu1hc»uaw
WN HEHEB WNHEFWN

[+]
N
(<]

I
w N
[N

L.
=10 00 Ui wr

=0 W OO O WO o
wl-l-'l

O\ \O =

PREFACE

This manual describes COBOL-~74 as it has been implemented on the
TOPS-10 and TOPS-20 operating systems. Part 1 of this manual outlines
the topics to be covered in each chapter. Part 2 describes the
COBOL-74 compiler and presents the vocabulary and syntax of the
language. Part 3 provides the information necessary to use the COBOL
system, including performance improvement, utilities, and various
features of COBOL~74. Part 4 contains appended material. Several
appendixes and a glossary of COBOL-74 terms have also been included.
Appendix A is a list of differences between COBOL-74 and COBOL-68.
Appendix B contains a list of all COBOL-74 reserved words. Appendix C
lists the character collating sequences. Appendix D describes an
alternative form of numeric test which may be elected at system
installation time. .

It is assumed that the reader has a knowledge of the COBOL language.
This manual is intended primarily for reference and is not a tutorial
guide for beginning COBOL programmers. Those wishing to 1learn the
COBOL language are referred to the following books.

Carl Feingold, Fundamentals of COBOL Programming (Dubuque, Iowa,
William C. Brown Company, 1977).

Daniel D. McCracken, A Simplified Guide to Structured COBOL
Programming (New York, John Wiley and Sons, Inc., 1976).

Daniel D. McCracken and Umberto Garbassi, A Guide to COBOL
Programming, Second Edition (New York, John Wiley and Sons, Inc.,
197%).

The COBOL programmer should be familiar with the operating system
commands and the editing 1language for the system in question. For
users of the TOPS-10 operating system, the manuals which contain this
information are:

® Operating System Commands Manual

e TECO Programmer's Reference Manual

Other manuals which contain information useful to TOPS-10 COBOL-74
programmers are:

® Monitor Calls Manual

® Hardware Reference Manual

® LINK Reference Manual

xi

For users of TOPS-20, the information concerning the operating system
commands and the system editing language is contained in the following
manuals:

e DECSYSTEM-20 User's Guide

® EDIT Reference Manual

Other manuals which contain information useful to TOPS-20 COBOL-74
programmers are:

® Monitor Calls Reference Manual

® Hardware Reference Manual

e LINK Reference Manual

xii

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover,. no
responsibility is assumed by any contributor, or by the committee, in
connection therewith.

The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming
for the Univac (R) I and 1I, Data Automation Systems copyrighted
1958, 1959 by Sperry Rand Corporation;

IBM Commercial Translator Form No. F 28-8013, copyrighted 1959
by IBM;

FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis~Honeywell
have specifically authorized the use of this material, in whole or in
part, in the COBOL specifications. Such authorization extends to the

reproduction and use of COBOL specifications in programming manuals or
similar publications.

xiii

INTRODUCTION TO THE COBOL-74 SYSTEM
AND THE STRUCTURE OF THE MANUAL

The typical COBOL program follows a fairly simple series of steps from
the human-readable format in which it is written to the
machine-readable format in which it is executed. The following flow
chart shows the basic steps which all programs take.

Introduction-1

Source Program
(.CBL)

Library File (.LIB)

COBOL-74 i ted by LIBARY
COMPILER greated by
N
~
~
~
~ ~ Compilation
Listing
(.LST)
Relocatable (.REL)
Object Module
LIN - T e pep—— Other (.REL) |
KE il Object Modules
Executable (.EXE)
Program
/
USER PROGRAM - C740TS

Simultaneous Report

Update Writer
COBDDT RERUN

MR-$-017-79

The program first sees the light of day as a source file which is
either created with a text editor or entered into the system by some
other means (for example, it could be punched into cards and loaded
through a card reader). This file is usually given a filename whose
extension is .CBL, and it is identified in the flow chart by this
extension.

The COBOL-74 compiler then translates the source file into a
relocatable object module. In order to do this, the compiler may
sometimes copy text from user libraries which contain often-used
pieces of code. These libraries, identified 1in the chart by the
extension of .LIB, are created by the LIBARY utility. The output from
the compiler, the relocatable object module, is usually given an

Introduction-2

extension of .REL, and is identified by this extension in the flow
chart. The compiler can optionally produce a file which contains the
compilation listing of the source program. This file is identified by
its extension, .LST.

At this point the program is given to the system 1linker, which
produces the executable version with the extension .EXE. (This manual
does not contain any information on the system 1linker. Users of
TOPS-10 should refer to the LINK Reference Manual and the LOAD command
in the Operating System Commands Manual for more information about
LINK. Users of TOPS-20 should refer to the the LINK Reference Manual
and the LOAD command in the DECSYSTEM-20 user's Guide.)

The .EXE version of the program runs in conjunction with the
object-time system, C740TS. Among other things, the object-time
system handles I/0 and calls routines from the COBOL-74 library to be
used at runtime. The user program is now in a format which can be
executed, but there is no guarantee that it will produce the <correct
results. Most programs must still be debugged after they compile
error~free. The . COBOL-74 system provides an on-line debugging
facility called COBDDT to assist the programmmer in finding out what
the program is really doing. COBDDT runs along with the user program
and the object-time system, and allows the steps which the program
executes to be monitored by the programmer.

Many COBOL programs use indexed files during their execution. These
files are convenient £for many applications. The COBOL-74 system
provides a program, called ISAM, to create and maintain indexed files.

There are times when the user program is running and the system
operator has to shut down the system unexpectedly. Some programs are
written to be restartable, but many are not. The RERUN utility is
provided with COBOL-74 to help in this situation. RERUN can save
enough information to allow the program to be restarted after the
system is brought back up, even though no provision was made in the
program for the restart.

Thus, the COBOL-74 system, in conjunction with the operating system,
provides complete facilities for the creation and execution of a COBOL
program. The rules regarding the creation of a COBOL-74 program, and
the syntax to be wused in the program, are described in Part 2,
COBOL-74 Language Reference Material. The individual wunits of the
COBOL~74 system are enumerated below.

1. The Compiler -

The compiler copies text from user libraries and translates
the COBOL-74 program into a relocatable object module.
Running the COBOL-74 compiler is described in Part 3, Chapter
6.

2. The OTS -

The object-time system runs the COBOL-74 program and allows
the program to use such facilities as simultaneous update and
Report Writer. 1Information on the file formats which the OTS
accepts may be found in Part 3, Chapter 8. The simultaneous
update facility is described in Part 3, Chapter 9, and Report
Writer in Part 3, Chapter 10. Subprograms, segmentation and
overlaying are covered in Part 3, Chapter 11. Chapter 12 of
Part 3 contains information on calling non-COBOL subprograms.

Introduction-3

3. The Utilities -

The COBOL-74 utilities - LIBARY, COBDDT, RERUN and ISAM - are
described in Part 3, Chapter 7. Information on the use of
COBDDT in improving the performance of COBOL-74 programs may
be found in Part 3, Chapter 13.

Part 4 of this manual contains appended material which may be of
interest to some users of COBOL-74. Appendix A presents a list of
differences between DIGITAL's COBOL-68 and DIGITAL's COBOL-74.
Appendix B 1is the 1list of COBOL-74 reserved words. Appendix C
provides ASCII, SIXBIT, and EBCDIC collating sequences, along with
conversion charts for these three codes. An alternate to the usual
numeric test, which may be elected at the time of installation of
COBOL-74, 1is described in Appendix D. Finally, Appendix E contains a
short description of the process of defining a 1logical name for
TOPS-20 users of the COBOL-74 utilities.

Introduction-4

CHAPTER 1

INTRODUCTION TO COBOL-74 LANGUAGE

This chapter describes the symbols, special terms, language elements,
and source program formats acceptable to COBOL-74. The source
language statements are discussed in subsequent chapters.

NOTE
In this manual the word COBOL
refers to COBOL~74. Any
documentation concerning

DECtapes can be ignored if your
system does not have them.

1.1 SYMBOLS AND TERMS

The symbols and terms used in the following chapters of this manual
are necessary to describe the language or are commonly used COBOL
terms. The single exception to this statement is the term
BIS-compiler. This term refers to compiler implementations that
compile COBOL-74 using the Business Instruction Set (BIS). All users
of TOPS-20 get BIS code. Users of TOPS-10 who have a KS or KL central
processing unit get BIS code as the default, but the compiler may be
installed without the BIS option. TOPS-10 users who have a KI central
processor will usually not get the BIS option on their compilers. The
KI processor will not execute the BIS instructions; however, the KI
will run the compiler which produces BIS code should there be a need
for it (for more information, see the COBOL-74 1Installation
Procedures.) You can tell if your compiler is producing BIS code by
checking a 1listing of a compiled program. If vyour compiler is
producing the BIS instructions, the letters BIS will follow the
version and edit numbers on top of the page.

1.1.1 Symbols

The symbology used in this manual to illustrate the various COBOL
statement formats is essentially the same as that used in other COBOL
language manuals. 1Its basis is the system of symbols wused in the
American National Standard and developed by CODASYL.

INTRODUCTION TO COBOL-74 LANGUAGE

1.1.1.1 Underline - The underline is used to denote reserved key
words. Key words (uppercase underlined words) are required when you
use a function of which they are a part. The absence of an- underline
in an uppercase word denotes that the word is optional; you may use
or omit the word at your discretion.

NOTE

Uppercase words, whether underlined or
not, must be spelled correctly.

1.1.1.2 Brackets and Braces - When brackets, [], enclose a portion of
a general format, they denote an optional portion that may be included
or omitted as needed. When braces, {}, enclose a portion of a general
format, you must select one of the options within the braces.
Consider the following figure.

WORDS)
MEMORY SIZE integer CHARACTERS
MODULES j

The brackets indicate that the entire clause is optional. The braces
indicate that a choice of one of the words vertically stacked within
the braces must be specified.

Wherever a choice 1is required, the possibilities are vertically
stacked either within brackets or braces. Consider the following
example.

{SYNCHRONIZED} LEFT
SYNC RIGHT

The outside brackets indicate that the entire clause is optional. The
braces indicate that if the clause 1is used, a choice of a word
vertically stacked within the braces must be made. The inside
brackets indicate that you may optionally select a vertically stacked
word within,

NOTE
When possibilities are vertically
stacked between brackets, you have the
option of overriding a default

condition. The default condition is
described in the general rules for the
clause.

1.1.1.3 The Ellipsis - The ellipsis (...) indicates that you may
repeat the item preceding it. The preceding item is usually enclosed
either by brackets or braces to remove any ambiguity as to which item
may be repeated. Consider the following example.

[SAME [RECORD] AREA FOR file-name-~l1 [file-name-2] ...] ...
The final ellipsis indicates that the entire clause, if used, may be

repeated. The 1initial ellipsis indicates that the item file-name-2
may also be repeated within the clause.

1-2

INTRODUCTION TO COBOL-74 LANGUAGE

1.1.2 COBOL Terms

The terms block, record, and item have special meanings when used in
relation to a COBOL program.

Term

Block

Record

Item

Meaning

Signifies a logical grouping of records. This term
commonly refers to a logical block of records on some

storage medium.

NOTE

The term "block" as defined here does not refer
to a "disk block", which 1is 128 words of
storage space on a disk.

Signifies a logical unit of information. In relation
to a data file, a record is the largest unit of logical
information that can be accessed and processed at a
time. Records can be subdivided into fields or items.

Signifies a logical field or group of fields within a
record. A group item is one that is further broken
down into subitems (for example, a group item called
TAX might be broken down into subitems called FED-TAX
and STATE-TAX). Subitems can be further broken down
into other subitems. An item that has no subitems is
called an elementary item.

ELEMENTS OF COBOL LANGUAGE

1.2.1 Program Structure

A COBOL program consists of four divisions. Each division is made up

of

program;

source language statements. Some statements are required in every
most of them are optional.

Division Meaning
IDENTIFICATION DIVISION Identifies the source program.
ENVIRONMENT DIVISION Describes the computer on which the

source program 1is to be compiled,
the computer on which the object
program is to run, and certain
relationships between program
elements and hardware devices.

DATA DIVISION Describes the data to be processed

by the object program.

PROCEDURE DIVISION Describes the actions to be

performed on the data.

1-3

INTRODUCTION TO COBOL-74 LANGUAGE

NOTE

The COBOL~74 compiler will recognize
source 1line numbers up to and including
8184. If your program {(including
library routines) exceeds this maximum,
the compiler will start numbering again
at 0001. Since this causes two or more
lines to have a single line number, you
should exercise caution when debugging
your program. The cross-reference
listing may be confusing. However, the
compiler will generate correct code
regardless of how many lines are in the
program or how they are numbered in the
cross-reference listing.

1.2.2 COBOL-74 Character Set

Within a source program statement, all ASCII characters are valid
except:

1. null, delete, and carriage return (which are ignored)

2. line feed, vertical tab, form feed, and the printer control
characters (20(8) through 24(8)), which mark the end of a
source line

3. CTRL/Z (32(8)), which marks the end-of-file

The compiler translates the lowercase ASCII characters to uppercase
characters except when they appear in nonnumeric literals.

Of this character set, 37 characters (the digits 0 through 9, the 26
letters of the alphabet, and the hyphen) can be used by the programmer
to form COBOL user-defined words, such as data-names, procedure-names,
and identifiers.

The remaining ASCII characters which are acceptable to the COBOL-74
compiler are listed below.

Punctuation characters include:

A (space) " or ' (quotation mark)

, (comma) ((left parenthesis)
;s (semicolon)) (right parenthesis)
. (period) +{ (horizontal tab)

INTRODUCTION TO COBOL-74 LANGUAGE

Special editing characters include:

+ (plus sign) * (check protection symbol)
- (minus sign) Z (zero suppression)

$ (dollar sign) B (blank insertion)

, (comma) 0 (zero insertion)

. (decimal point) CR (credit)

/ (slash) DB (debit)

Special characters used in arithmetic expressions include:

+ (addition) / (division)
- (subtraction) * % (exponentiation)
* (multiplication) + (exponentiation)

Special characters used in conditional (IF) statements include:

= (equal) > (greater than) < (less than)

NOTE

These special characters will not
necessarily be underlined when they
appear in formats. For example, an
underlined minus sign might easily be
confused with an equal sign. However,
they are wusually required items. You
may not omit them, unless you are
specifically told otherwise.

1.2.3 Words

A COBOL word is a character string which has not more than 30
characters and is either a user-defined word or a reserved word. For
COBOL-74, as for most COBOL compilers, a word may be either
user-defined or reserved, but not both.

1.2.3.1 Reserved Words - A reserved word is a COBOL word that is one
of a specific 1list that may be wused in COBOL source programs as
specified in the general formats. You cannot use a reserved word as a
user-defined word; the two types are mutually exclusive. (See
Appendix B for a complete list of COBOL reserved words).

INTRODUCTION TO COBOL-74 LANGUAGE

There are six types of reserved words:

1.

Key words

A key word is required when the format in which the word
appears is used in a source program. Within each format, key
words are uppercase and underlined. Consider the following
example.

COMPUTE identifier-1 [ROUNDED] [identifier-2 [ROUNDED]] ...
=arithmetic-expression [ON SIZE ERROR imperative-statement]

In this case, the words COMPUTE, ROUNDED, SIZE, and ERROR are
key words. '

Optional Words

Within each format, uppercase words that are not underlined
are optional words included for readability. You may use or
omit these words indiscriminately. The presence or absence
of an optional word does not alter the semantics of the COBOL
program in which it appears. Consider the following example.

LINAGE IS integer-1 LINES [WITH FOOTING AT integer-2]
[LINES AT TOP integer-3]

In this case, the words IS, LINES, WITH, and AT are optional
words.

Connectives
There are three types of connectives:

a. Qualifier connectives that associate a data-name, a
condition-name, or a text-name with its qualifiers: OF,
IN (See Section 4.7, Qualification.) An example of this
type is

COPY ACTREC OF COBLIB.

b. Series connectives that 1link two or more consecutive
operands: separator comma, separator semicolon. An
example is

GO TO PART1, PART2, PART3 DEPENDING ON COUNTERI.

c. Logical connectives that are used in the formation of the
following conditions: AND, OR, AND NOT, OR NOT. An
example is

IF HOURS-WORKED IS GREATER THAN ZERO AND NOT
DEDUCTION-TIME PERFORM PRINT-CHECK.

Figurative Constants

A few specific constant values are used frequently and 1in
enough different ways to make it useful to have names for
them. The names given to them are called Figurative
Constants. These names are reserved words and are listed
below.

1-6

INTRODUCTION TO COBOL-74 LANGUAGE

The values represented by figurative constants are generated
by the compiler and referenced through the use of the
reserved words given below. These words must not be bounded
by quotation marks when used as figurative constants. The
singular and plural forms of figurative constants are
equivalent and may be used interchangeably to increase
readability.

The values which the compiler generates for you, and the
reserved words that name them, are as follows:

ZERO Represent the value '0', or one or more of the
ZEROS character '0', depending on context.

ZEROES

SPACE Represent one or more of the character

SPACES "space".

HIGH-VALUE Represent one or more of the character that

HIGH-VALUES has the highest ordinal position in the
computer's collating sequence (in ASCII code,
this is octal 177).

LOW-VALUE Represent one or more of the character that

LOW~-VALUES has the 1lowest ordinal position in the
computer's collating sequence (in ASCII this is
octal 000).

QUOTE Represent one or more occurences of the gquote

QUOTES character, usually '"' (double gquote).

ALL literal Represents one or more repetitions of the
string of characters which compose the literal.
The literal must be either an alphanumeric
literal or a figurative constant other than
ALL. When a figurative constant is used, the
word ALL 1is redundant and is an option. You
may use it for readability if you wish.

Frequently a figurative constant represents a string of
characters whose length is not explicitly stated. When this
happens, the compiler determines the length of the string
from context. The figurative constant may be associated with
another data item by the context, as in the following
statements:

MOVE SPACES TO WORK-RECORD
IF AMOUNT-OWED EQUALS ZERO PERFORM CLOSE-ACCOUNT

Alternatively, the figurative constant may stand by itself
with no relation to any data item, as in:

DISPLAY "BALANCE IS" ZERO

STRING DAY-CODE, SPACE, "-", SPACE, MONTH-CODE
DELIMITED BY SIZE INTO DSPLY-DATE

In cases where the figurative constant is associated with a
data item, the compiler assumes that the string of characters
represented by the figurative constant has the same number of
characters as the associated data-item. 1In the case of the
figurative constant ALL literal, the literal is repeated from
left to right and truncated on the right, if necessary.

1-7

INTRODUCTION TO COBOL-74 LANGUAGE

Thus, if WORK-RECORD in the above example contains 128
characters, the figurative constant SPACES represents a
string of 128 spaces. If AMOUNT-OWED is an eight-character
numeric field with two decimal places, ZERO represents the
value 000000.00. 1In the following example:

MOVE ALL "ABC" TO HOLD-AREA

if HOLD-AREA is a ten-character alphanumeric field, its
contents after the MOVE will be

[2[s]c[a[s]c]a[s]c[a]

If you associate a JUSTIFIED clause with the data item, the
character repetition and truncation will take place before
any justification.

When the figurative constant is not associated with a data
item, as in the second set of examples above, the length of
the character string is one character, or one occurrence of
the literal in the case of ALL literal. This is true even if
you use the plural form instead of the singular. That is,
all of the following statements cause the same display:

DISPLAY ZERO.
DISPLAY ZEROS.
DISPLAY ALL ZEROS.

In each case, one zero will be displayed.

A figurative constant may be used whenever a literal appears
in a format. However, 1if the 1literal is restricted to
numeric characters, the only figurative constants permitted
are ZERO (ZEROS, ZEROES), LOW-VALUE (LOW-VALUES), and
HIGH-VALUE (HIGH-VALUES).

Each reserved word that is used to reference a figurative
constant value 1is a distinct character string with the
exception of the construction ALL literal, which is composed
of two distinct character strings.

Special Registers

COBOL~-74 recognizes four reserved words as special registers:
DAY, DATE, TIME, and LINAGE-COUNTER. All special registers
have implied data descriptions of unsigned elementary
integers. The lengths of DAY, DATE, and TIME are fixed; the
length of LINAGE-COUNTER depends upon the file description
statement that generates the register.

DAY is five digits long. 1Its value represents the number of
the current day of the year. 1Its format is:

YYDDD
where YY is the year of the century, and

DDD is the number of the day of the year.

INTRODUCTION TO COBOL-74 LANGUAGE

DATE is six digits long. 1Its value represents the current
date. 1Its format is:

YYMMDD
where YY is the year of the century,
MM is the number of the month, and
"DD is the number of the day.

TIME is eight digits long. 1Its value represents the current
elapsed time since midnight on a twenty-four-hour basis. Its
format is:

HHMMSShh
where HH is the hours,
MM is the minutes,
SS is the seconds, and
hh is the 1/100ths of a second.

DAY, DATE, and TIME may be accessed by ACCEPT statements in
the Procedure Division. See Section 5.9.1 for the correct
format to use with the ACCEPT verb.

The LINAGE-COUNTER special register is generated whenever the
file description of a sequential file includes the LINAGE
clause. The contents of a LINAGE-COUNTER represent the
current 1line number within the current page of output. The
contents of a LINAGE-COUNTER are updated automatically by
WRITE statements referring to the associated sequential file.
The LINAGE clause and LINAGE-COUNTER are fully explained in
Section 4.9.31.

6. Special-Character Words

~

The arithmetic operators +, -, *, /, **, °, and the relation
characters <,>, and = are special-character reserved words.

1.2.3.2 User-Defined Words - A user-defined word 1is a COBOL word
which 1is supplied by the user to satisfy the format of a clause or
statement. The characters which may be used to form user-defined
words are the letters of the alphabet, the digits 0 through 9, and the
hyphen. The hyphen may not be used as the first or last character in
the user-defined word.
There are 17 types of user-defined words:

1. alphabet-name

2. ¢d-name

3. condition-name

4. data-name

INTRODUCTION TO COBOL-74 LANGUAGE

5. file-name

6. index-name

7. level-number

8. library-name

9. mnemonic-name
10. paragraph-name
11. program-name
12. record-name
13. report-name
14. routine-name
15. section-name
16. segment-number
17. text-name

Each of these user-defined word types is described in the Glossary
which appears at the end of this manual.

1.2.4 Literals

A literal is a character string whose value 1is determined by the
ordered set of characters of which it is composed. You can also use a
figurative constant as a literal. There are two types of literals:
numeric and alphanumeric.

1.2.4.1 Numeric Literal - A numeric literal is a character string of
from 1 to 20 characters selected from the digits 0 through 9, the plus
sign, the minus sign, and the decimal point. The rules for the
formation of numeric literals are as follows:

1. A literal must contain at least 1 digit and no more than 18
digits.

2. A literal must not contain more than one sign character. If
a sign 1is used, it must appear as the leftmost character of
the literal. 1If the literal is unsigned, it 1is considered
positive.

3. A literal must not contain more than one decimal point. The
decimal point is treated as an assumed decimal point, and may
appear anywhere within the literal except as the rightmost
character. If the 1literal contains no decimal point, the
literal is considered an integer.

NOTE

The word integer, appearing in a general format,
represents a nonnegative numeric literal with no
decimal point.

1-10

INTRODUCTION TO COBOL-74 LANGUAGE

If a literal conforms to the rules for the formation of
numeric literals but 1is enclosed in quotation marks, it is
considered an alphanumeric literal and is treated as such by
the compiler.

4. The value of a numeric 1literal 1is the algebraic quantity
represented by the characters in the numeric literal. Every
numeric literal is category numeric. (See Section 4.10.16,
The PICTURE Clause.) The size of a numeric literal is equal
to the number of digits specified by the user, including
leading zeros, if any.

1.2.4.2 Alphanumeric Literals - An alphanumeric literal is a
character string representing from 1 to 120 characters, delimited on
both ends by quotation marks and consisting of any allowable character
in the computer's character set. An opening quotation mark must be
immediately preceded by a space or left parenthesis. A closing
quotation mark must be immediately followed by one of the separators
(space, comma, semicolon, or right parenthesis) or by the terminator,
period.

NOTE

You may use either the single quote
character (') or the double quote (").
Whichever one you use, you must be sure
to pair them correctly - do not try to
pair a single quote with a double quote
or vice versa.

To represent one gquotation-mark character within an alphanumeric
literal, two contiguous gquotation marks must be used. The value of an
alphanumeric literal in the object program is the string of characters
itself, except that:

1. The delimiting quotation marks are excluded, and

2. Each embedded pair of contiguous quotation marks represents a
single quotation mark character.

All other punctuation characters are part of the value of the

alphanumeric literal, not separators. All alphanumeric literals are
category alphanumeric. (See Section 4.9.18, The PICTURE Clause.)

1.2.5 Separators

A separator is a string of one or more punctuation characters. The
rules for forming separators are:

1. Space

a. Anywhere a space is used as a separator, more than one
space may be used.

b. A space may immediately precede all separators except the

closing quotation mark. Here the space is considered
part of an alphanumeric literal, not a separator.

1-11

INTRODUCTION TO COBOL-74 LANGUAGE

c. A space may immediately follow any separator except the
open quotation mark. 1In this case, a following space is
considered part of an alphanumeric 1literal, not a
separator.,

Comma and Semicolon

The punctuation characters, the comma and semicolon, are
separators. You may 1insert these separators only where
explicitly permitted by the general formats, by format
punctuation rules, by statement and sentence definitions, or
by source program format rules.

Right Parenthesis and Left Parenthesis

Right parenthesis and left parenthesis are separators only
when used in balanced pairs to delimit subscripts or indexes.

Quotation Marks

Quotation marks may be used only in balanced pairs to delimit
alphanumeric 1literals or 1in adjacent pairs to pass one
quotation mark in an alphanumeric literal. (See note
concerning quotation marks in Section 1.2.4.2, Alphanumeric
Literals.)

Horizontal Tab

The horizontal tab character is governed by the same rules
that govern the space character. It is normally used to
vertically align statements or clauses on successive lines of
the source program listing. The compiler, upon encountering
a tab character, generates one or more space characters
consistent with the tab character position in the source
line. oo .

Pseudo-text Delimiter

Pseudo-text delimiters set off textual matter 1in the COPY
statement from 'the rest of the sentence. Each delimiter
consists of two contiguous equal signs (==). The opening
pseudo-text delimiter must be immediately preceded by a
space; the closing delimiter must be immediately followed by
one of the separators space, comma, semicolon, or period.
These delimiters- may appear only in balanced pairs delimiting
pseudo-text.

NOTE

There are certain rules for writing
source programs which supersede these
general rules. For a discussion of
source program formats see Section 1.3.

1-12

INTRODUCTION TO COBOL-74 LANGUAGE

1.3 SOURCE PROGRAM FORMAT

There are two basic types of source program formats in which you may
write vyour COBOL-74 programs. These two types arise from the methods
of entering the source program into the system. The first |is
conventional card-type format. You should use this type if you wish
your COBOL-74 program to be compatible with other compilers. The
second 1is the standard DEC format which is designed for easy use on
terminals. This format is the one to use for those programs which are
to be entered into the system through a terminal using a text editor.
The compiler will assume that the source program 1is written in
terminal-type format wunless the /S switch is included in the command
string to the compiler (refer to Appendix C).

Certain margins which begin the areas used for writing COBOL-74
statements are standard for source programs. The standard names for
these margins are Margins L, A, B, and R. As you might expect,
Margins L and R are the 1left and right margins of the line,
respectively. Margins A and B mark the beginning of two areas, Areas
A and B. Area A 1is where all division-names, section-names,
paragraph-names, and FD (File Description) entries must begin. All
other entries must begin in Area B. Although the actual character
position which marks each of these margins changes from format to
format, the function of each area is the same; in other words, you
must begin your division-names at Margin A no matter what format you
use, no matter where Margin A happens to be placed in that format.

NOTE

These rules agree with the 1974 ANSI
standard for source program formats.
Programs written according to the rules
will be more readable and transportable.
The COBOL-74 compiler, however, does not
do complete syntax checking to determine
if you have followed all rules, and will
not always issue an error message if you
violate them. Thus, you are encouraged
to conform to the rules to avoid
unpredictable results.

Some of the rules for using source program formats remain constant
regardless of 'which format you use. These rules are given below.
Refer to them for all types of formats.

1. Continuation Area - If you wish to split a word or 1literal
across two lines, you must use this area to indicate your
wish to the compiler. To do this, write the first line up to
the point at which you wish to split it, then place a hyphen
(-) in the continuation area of the next 1line and continue
the second 1line beginning at or after Margin A. If you are
splitting a word or numeric literal vyou may leave spaces
between the last character in the first line and the end of
the source statement area. (This area ends at the
identification area, when it exists; otherwise it ends at
Margin R.) However, if you wish to split an alphanumeric
literal you must not leave spaces after the last character of
the first line, since the compiler will assume that those
spaces are part of the literal. If you wish only to continue
a sentence on the next line without splitting any words, you
may simply write the first line, then continue on the next
line; do not use the continuation column for this purpose.

1-13

INTRODUCTION TO COBOL-74 LANGUAGE

2. Comment Lines - You may insert comment 1lines into your
COBOL-74 program by using the continuation area. 1If the
compiler finds an asterisk (*) in that area it will list the
remainder of the 1line as a comment on the next line. If
there is a slash (/) instead of an asterisk a new page will
be started and the comment will be listed at the top of the
new page.

NOTE

All formats may be used with any input
medium. The names of the types of
formats refer to their origins, not
their uses.

1.3.1 Card-type Format

You should use card-type format if you wish to compile your program
under an operating system other than TOPS-10 or TOPS-20. Your program
may be punched on an off-line card punch or created with an on-line
text editor. This format uses card sequence numbers which must be
created by the user. The layout of a line in this format is shown in
Figure 1-1. The numbers refer to card columns or character positions.

CARD-TYPE FORMAT

12 A, 73 80

1 6 7 8

l 1|) |
= p— — A ~ _
L . Cc A B l MR-5.018-79

Figure 1-1(a) Card-type Format

In this format, Margin L is to the left of position 1 and Margin R is
to the right of position 80. Margin A is between positions 7 and 8
and begins the area labeled A in the figure. Margin B 1is between
positions 11 and 12 and begins the area labeled B.

The following rules pertain to the use of this source format:

1. Line Numbers - These are placed in area L (positions 1
through 6) by the user who creates the file on a terminal or
a card punch.

2. Debug Lines - You may insert debug lines into your program by
putting a "D" in the continuation area (column 7). The
compiler will recognize it and print it on the source listing
with the spacing similar to a comment line.

1-14

INTRODUCTION TO COBOL-74 LANGUAGE

3. 1Identification Area - This area is marked I in the figure
(positions 73 through 80). These eight character positions
may hold identifying information which can be composed of any
eight characters. This information will be printed on the
source listing, and can be used to identify the card deck (if
the source code is in fact on cards).

NOTE

The card sequence numbers are not the
same as the 1line numbers created by a
line editor. The numbers supplied by an
editor are not acceptable to COBOL-74
when you specify card-type format.

The examples in Figure 1-1(b) illustrate these rules. The first two
lines are simple statements, with a line number in area L, COBOL-74
statements in areas A and B, and the identification area containing
the name of the program. The third line shows how the continuation
column is used to split a word across two lines. Note that the word
may be written right up to the end of area B.

1.3.2 Terminal-type Format

If you are writing your program using a text editor and a terminal to
input the source code, terminal-type format is your best choice.
There are two types of terminal-oriented formats, one with 1line
numbers and one without. Layouts and examples of each type are shown
in the figures which follow.

1.3.2.1 With Line Numbers - This format is suitable if you use a
line-oriented editor such as EDIT or SOS. The format is shown in
figure 1-2(a).

TERMINAL-TYPE FORMAT - WITH LINE NUMBERS

1 6 7 8 12 /4 105
L[] l ,]
N - - J———— . — e —
L zZ C A B MRS 1978

Figure 1-2(a) Terminal-type Format with Line Numbers

In this format, margin L is to the left of position 1 and margin R is
to the right of position 105. Margin A is between positions 7 and 8
and begins the area labeled A. Margin B is between positions 11 and
12 and begins the area labeled B.

1-15

INTRODUCTION TO COBOL-74 LANGUAGE
The following rules pertain to the use of this source format:

1. Line Numbers - These are placed in area L (positions 1
through 5) either by the line editor or by the user. If you
are using an editor which supplies line numbers you must not
add numbers yourself - one set is enough.

2. Position 6 - This position (marked Z in the figure) remains
blank. The editor may insert a tab here for purposes of
making your text more readable; if so, the compiler will
read the tab as a space. '

3. Continuation Area - To use the continuation area, type -, *,
, or / as the first character of the line. However, if you
do not wish to use the continuation area, you may 1ignore it
altogether - you do not need to type a space at the beginning
of the line. 1If you do type a space as the first character
of a line, the compiler will assume that you meant the space
to be part of the line.

4. Debug Lines - Debug lines can be inserted in your program
with this format if you type "\D" (backslash D) as the first
two characters on the line. 1If you use "D" as 1in card-type
format, the compiler will read the "D" as the first character
of a word beginning in area A.

The examples in figure 1-2(b) illustrate the use of this format. The
first two lines are simple COBOL-74 statements with the five-character
line number in area L and areas Z and C blank. The third 1line shows
how a word is split across two lines. Note that you may leave spaces
between the last letter of the word and margin R without confusing the
compiler. '

1.3.2.2 Without Line Numbers - If you decide to use a terminal to
enter your program but your editor (such as TECO) does not supply line
numbers (or you requested that the editor remove them when vyou
finished editing), this is the simplest format to use. The format is
shown in figure 1-3(a).

TERMINAL-TYPE FORMAT - NO LINE NUMBERS

0 1 5 L, 105
7
T N ——— s -~ s
c A R MR-$020-79

Figure 1-3(a) Terminal-type Format without Line Numbers

In this format, margin L is to the left of position 0, if it exists,
or position 1, if position 0 does not exist. Margin R is to the right
of position 105. Margin A is to the left of position 1 and begins the
area labeled A. Margin B is between positions 4 and 5 and begins the
area labeled B.

1-16

INTRODUCTION TO COBOL-74 LANGUAGE

The following rules pertains to the use of this source format:

1. Continuation Area - If you wish to use the continuation area,
type the character you wish to enter (-, *, \, /) as the
first character of the continued line. If the compiler finds
one of these characters at the beginning of a line it will
assume that the line has a position 0 - in other words, a
continuation area. Otherwise, each line starts in position 1
and there 1is no position 0.

2. Debug Lines - Debug lines may be inserted into the program.
To do this type a "\D" (backslash D) as the first two
characters on the line.

The examples in Figure 1-3(b) show this format's simplicity. The
first two lines are the same simple COBOL-74 sentences as above. Note
that the paragraph-name starts in the very first character position.
The third line shows how to tell the compiler that the line you enter
is a continuation (or a comment) line. The first half of the line is
entered beginning in the first position of Area B, while the second
half begins with a hyphen and continues from the second position.

1-17

81-T

olohifololof Ip{RlolclElsls]-[Tialx;. lxialckiTle
ololfo1lo MOVIEl [THIZIS|-[PIE[RIZ]ofDiS|-ITIAlX TiO |TIAIXI-[PAI[D TiIXIAlcldT]e
olo[1[oj2jo SITIRIZNIG] IMOIS|TI-|RIEICIEINTI-IMoINTiH{, JSIPIACEEL " |- |"].ISIPIA CEEL, IMolS|T}- Ti-[DANT, TIXIAICICITlG
ojoh[ol3jo siplalcie],["[-] L. sIP{AlclE] JMo[s|T]-IREIdEINTI-|YEJAIR] [DlE|LIIIMI[TEIN Bl IN[TIo| [oiz[s|piLiTlalxlAlcicT]G
olo[1[oajol- AY[-|D{AITIE | | [| |
Figure 1-1 (b) s
olofifop| | [PIRI[CEISIS|-{TAlX | [
oo MolVEE| [TH[z[s-IPE[RI[o[pis|-[T{alx] friol ITlAIXI-IPlalzD
olo[1l2lo SITIRTING] MO[SITIIRIE[CIEINITI-[MOINITHI, [S[PIAICIET, [FI- [IS|P{ATCIE, OIS T TFPRN T, SIPIACEL P ISP
oloh|3b} |- AlclE], IMols|Tl-IREEICEINT]-[¥E[AlR] [DEL|TMI]TE[D] IB]Y] Is|[zlE] [tNiTio] [pjT - DRITE].
| L I
Figure 1-2 (b) o
PIROICIE[SIS]-[AN [|
molvie [TH1s|-IAElrlzlo{ Dl TAX [d [AX-]PlAlIld
SITRIING [MolsiT-{RIEIdEINY{MaANTIH .|SIPAGELL|"lH "} [s|PIAlQE] IMd S| TI-|RE|AEIN T - PlAICIEL,|"|-[",ISIPAGE] MOIS
- T REGEINTI-MEAR] [DEU{MITED [BY] [S|I]ZE [1NTo| [dIls|P|UAY-{DATE]. 1 [T

Figure 1-3 (b)

MR-§-023-79

dOVADNN'T ¥.L-T040D OL NOILONAOYINI

INTRODUCTION TO COBOL-74 LANGUAGE

1.4 THE COBOL LIBRARY FACILITY

You can use the COBOL Library Facility to copy part of your program
from a COBOL source library at compile time. This can be useful if,
for example, you need to describe a complex file to be used in several
different programs, and you wish to write the file description only
once. You can insert the file description into the 1library (for
directions and further description see the COBOL-74 Usage Material,
Part 3 of this manual), and whenever the description is needed you can
simply copy it from the library into the program you are writing. The
following statement is used to accomplish this.

1.4.1 The COPY Statement

Function

The COPY statement incorporates text from a COBOL library into a COBOL
source program. (For a complete description of COBOL libraries, see
the COBOL-74 Usage Material, Part 3 of this manual.) The COPY
statement may also be used to replace specified text in the source
text being copied.

General Format

COPY text-name {%%} library-name
==pseudo-text-1== ==pseudo-text-2==
identifier-1 jdentifier-2
REPLACING literal-1 BY f1iteral-2
word-1 word-2
Technical Notes
NOTE

In the technical notes which follow, the
term string-1l is wused to denote the
character string which is used in place
of pseudo-text-1, identifier-1,
literal-1, or word-l. The term string-2
is similarly used.

1. If more than one COBOL 1library is available during
compilation, text-name must be gualified by the library-name
identifying the COBOL library in which the text associated
with text-name resides.

Within one COBOL library, each text-name must be unique.

1-19

INTRODUCTION TO COBOL-74 LANGUAGE

The COPY statement must be preceded by a space and terminated
by the separator period. The entire statement, including the
period, will be removed when the» text is copied from the
library.

String-1l must not be null, nor may it consist solely of the
character space(s), nor may it consist solely of comment
lines.

String-2 may be null.

Character-strings within string-l1 and string-2 may be
continued. However, both characters of a pseudo-text
delimiter must be on the same line.

A COPY statement may occur in the source program anywhere a
character-string or a separator may occur except that a COPY
statement must not occur within a COPY statement.

The effect of processing a COPY statement is that the library
text associated with text-name is copied into the source
program, logically replacing the entire COPY statement,
beginning with the reserved word COPY and ending with the
punctuation character period, inclusive. The compilation of
a source program containing COPY statements is logically
equivalent to processing all COPY statements prior to the
processing of the resulting source program.

If the REPLACING phrase is not specified, the library text is
copied unchanged. 1If the REPLACING phrase is specified, the
library text is copied and each properly matched occurrence
of string-1 in the 1library text 1is replaced by the
corresponding string-2.

The comparison operation to determine text replacement occurs
as follows: '

a. Any separator comma, semicolon, and/or space(s) preceding
the leftmost library text-word is copied into the source
program. Starting with the 1leftmost 1library text-word
and the first string-l that was specified in the
REPLACING phrase, the entire REPLACING phrase operand
that precedes the reserved word BY is compared to an
equivalent number of contiguous library text-words.

b. String-l1l matches the library text if, and only 1if, the
ordered sequence of text-words that forms string-1 is
equal, character for character, to the ordered sequence
of 1library text-words. For purposes of matching, each
occurrence of a separator comma or semicolon in string-1l
or in the library text is considered to be a single space
except when string-1 consists solely of either a
separator comma or semicolon, in which case it
participates in the match as a text-word. Each sequence
of one or more space separators is considered to be a
single space.

c. If no match occurs, the comparison is repeated with each
next successive string-1, if any, in the REPLACING phrase
until either a match 1is found or there is no next
successive REPLACING operand.

1-20

lo.

11.

12.

13.

1l4.

INTRODUCTION TO COBOL-74 LANGUAGE

d. When all the REPLACING phrase operands have been compared
and no match has occurred, the leftmost library text-word
is copied into the source program. The next successive
library text-word is then considered as the leftmost
library text-word, and the comparison cycle starts again
with the first string-1 specified in the REPLACING
phrase.

e. Whenever a match occurs between string-l and the library
text, the corresponding string-2 is placed into the
source progranm. The library text-word immediately
following the rightmost text-word that participated in
the match is then considered as the leftmost library
text-word. The comparison cycle starts again with the
first string-1 specified in the REPLACING phrase.

f. The comparison operation continues until the rightmost
text-word in the library text has either participated in
a match or been considered as a leftmost library
text~word and participated in a complete comparison
cycle.

When you use the REPLACING phrase, you must treat any picture
strings in the library text as complete pieces of text. That
is, if you wish to replace X's in the picture string

EXAMPLE-ITEM PICTURE IS XXX.

with 9's, you must replace the entire PICTURE clause, not
just the three X's, with the form shown below:

COPY EXAMPLE-TEXT FROM LIBARY REPLACING ==PICTURE IS
XXX== BY ==PICTURE IS 999==.

For purposes of matching, a comment line which occurs in the
library text and string-1 is interpreted as a single space.
Comment ‘lines which appear in string-2 and library text are

copied into the source program unchanged.

Debugging 1lines are permitted within 1library text and
string-2. Debugging lines are not permitted within string-1;
text-words within a debugging 1line participate in the
matching rules as if the 'D' did not appear in the indicator
area. If a COPY statement is specified on a debugging 1line,
then the text that 1is the result of the processing of the
COPY statement will also appear as though it were specified
on debugging 1lines with the following exception: comment
lines in library text will appear as comment lines in the
resultant source program.

The text produced as a result of the complete processing of a
COPY statement must not contain a COPY statement.

The syntactic correctness of the 1library text cannot be
independently determined. The syntactic correctness of the
entire COBOL source program cannot be determined until all
COPY statements have been completely processed.

15.

l6.

INTRODUCTION TO COBOL-74 LANGUAGE

Library text must conform to the rules for COBOL source
program format. (See Section 1.3.) You may copy text from a

library without worrying about what format your program is
in, however.

For purposes of compilation, text-words after replacement are
placed in the source program according to the rules for
source program format.

1-22

CHAPTER 2

THE IDENTIFICATION DIVISION

The Identification Division is required in every source program. It
identifies the source program and the output from compilation. 1In
addition, it may contain other documentary information such as the
name of the program's author, the name of the installation, the dates
on which the program was written and compiled, any special security
restrictions, and any miscellaneous remarks.

General Structure

Jo

[PROGRAM-ID. program-name.:l

[M. comment-entry ..]

[INSTALLATION. comment-entry]
[DATE-WRITTEN. comment-entry :|
[DATE-COMPILED. comment-entry]
[SECURITY. comment-entry ...]

Technical Notes

1. The Identification Division must begin with the reserved
words IDENTIFICATION DIVISION followed by a period and a
space. Note that in COBOL-74 the reserved word ID may be
substituted for IDENTIFICATION in the division header.

2. The PROGRAM-ID paragraph contains the name identifying the
program. The program-name may have up to six characters, and
must contain only letters, digits, and the hyphen. It can be
enclosed in quotation marks. The program-name cannot be a
reserved word and must be unique. It cannot be the same as a
section, paragraph, file, data, or subprogram name. This
paragraph is optional. If it is not present, the name MAIN
is assigned to the program.

THE IDENTIFICATION DIVISION

The remaining paragraphs are optional and, if used, may
appear in any combination and in any order. A comment
paragraph consists of any combination of characters from the
COBOL character set organized to conform to COBOL sentence’
and paragraph format. All text appears as written on the
output listing, except the DATE-COMPILED paragraph which will
be replaced by the current date. Reserved words can be used
in any comment paragraph.

2-2

THE IDENTIFICATION DIVISION

GENERAL FORMAT FOR IDENTIFICATION DIVISION

{ i_gENTI FICATION } DIVISION.
[PROGRAM—ID. program-name.]
[MI_O_R. comment-entry .. :]
[INSTALLATION. comment-entry :|
I:DATE-WRITTEN. comment-entry .. :l
[DATE-COMPILED. comment-entry]

I:SECURITY. comment-entry]

2-3

CHAPTER 3

THE ENVIRONMENT DIVISION

The Environment Division allows you to describe the particular
computer configurations you wish to use for program compilation and
execution. In this division you also specify the files and devices
you will wuse for input and output. The clauses used to do these
things are presented on the following pages.

THE ENVIRONMENT DIVISION

CONFIGURATION SECTION

3.1 ENVIRONMENT DIVISION CLAUSE FORMATS
3.1.1 CONFIGURATION SECTION
The Configuration Section allows you to describe the computers used
for program compilation and execution, and to assign mnemonic-names
for input/output devices. The Configuration Section consists of the
section name (CONFIGURATION SECTION.) followed by one or more of the
following paragraphs:

SOURCE-COMPUTER. (See Section 3.1.2)

OBJECT-COMPUTER. (See Section 3.1.3)

SPECIAL-NAMES. (See Section 3.1.4)

Technical Notes
1. This section is optional.

2. All commas and semicolons are optional. A period must
terminate the entire entry.

THE ENVIRONMENT DIVISION

SOURCE-COMPUTER

3.1.2 SOURCE-COMPUTER

Function

The SOURCE-COMPUTER paragraph describes the computer on which the
program is to be compiled.

General Format

SOURCE-COMPUTER. computer-name [wITH DEBUGGING MODE])

Technical Notes

1.
2.

Examples

This paragraph is optional.

Computer-name must be one of the list DECsystem-10,
DECSYSTEM-20, PDP-10, or PDP-integer-l1l. Integer-1 must be in
the range 1000 to 1099.

If the WITH DEBUGGING MODE clause is specified, all debugging
lines are compiled. If it is not specified all debugging
lines are treated as if they were comment lines. In either
case all USE FOR DEBUGGING statements are compiled as if they
were comments. This is because COBDDT accomplishes what 1is
otherwise done with debugging statements.

SOURCE-COMPUTER. DECSYSTEM-1055.

SOURCE-COMPUTER. DECSYSTEM-20 WITH DEBUGGING MODE.

3-3

THE ENVIRONMENT DIVISION

OBJECT-COMPUTER

3.1.3 OBJECT-COMPUTER

Function

The OBJECT-COMPUTER paragraph describes the computer on which the
program is to be executed.

General Format

0BJECT-COMPUTER. computer-name

WORDS)
MODULES

MEMORY SIZE integer { CHARACTERS;

[:PROGRAM COLLATING SEQUENCE IS a1phabet-nam§]

[SEGMENT-LIMIT l§_segment-number:}

Technical Notes

1.
2.

This paragraph is optional.

Computer-name must. be one of the following: PDP-10,
PDP-integer-1, DECsystem-10, or DECSYSTEM-20. Integer-1 must
be a number in the range 1000 through 1099. The number
specified 1is for documentary purposes only and has no direct
bearing on the object code generated*' by the compiler. If the
compiler was installed to take advantage of the KL central
processing unit's Business Instruction Set (BIS), the
BIS-code will be generated automatically. (See the COBOL-74
Installation Procedures.) .

The optional MEMORY SIZE clause specifies the maximum memory
size of SORT's work area during a SORT operation. If the
MEMORY SIZE clause is omitted, 262,144 WORDS are assumed. ' If
it appears, the following ranges are applicable.

CHARACTERS Up to 1,572,864 (262,144 words x 6
characters/word)

WORDS Up to 262,144

MODULES Up to 256 (1 module equals 1024
words) i

COBOL-74 presently ignores the MEMORY SIZE clause. SORT will
use its default algorithms to determine the amount of memory
needed to execute a sort. (Refer to the SORT User's Guide
for more information.)

Example

THE ENVIRONMENT DIVISION
OBJECT-COMPUTER (Cont.)

The PROGRAM COLLATING SEQUENCE clause specifies a collating
sequence for a program. When you use the PROGRAM COLLATING
SEQUENCE clause the collating sequence is the one associated
with alphabet-name. When you do not use the PROGRAM
COLLATING SEQUENCE clause the collating sequence 1is ASCII.
The program collating sequence determines:

1. the results of explicit comparisons in
relation-conditions and in condition-name conditions

2. the results of implicit comparisons in CONTROL clauses of
report description entries

3. the order of records processed by SORT and MERGE
statements which do not specify another «collating
sequence with the COLLATING SEQUENCE phrase

4. the values of the figurative constants HIGH-VALUE and
LOW-VALUE

(See the alphabet-name IS <clause in the SPECIAL-NAMES
paragraph for information on how to associate a collating
sequence with alphabet-~name.)

If you use the SEGMENT-LIMIT clause, only those segments
having segment numbers from 0 up to but not including the
value of integer-3 are treated as resident segments of the
program. Integer-3 must be a positive integer in the range 1
to 49.

If you omit the SEGMENT-LIMIT clause, segments having segment
numbers from 0 through 49 are considered as resident segments
of the program (that is, SEGMENT-LIMIT IS 50 1is assumed).
More on segmentation can be found in Sections 5.3 and 11.1.

The DISPLAY clause is optional. If you include it 1in your
program, the compiler will use the DISPLAY type you specify
as the default in determining the recording mode for external
files and for items described in the Data Division as
DISPLAY. This allows you to change the default usage inside
the program without using compiler switches. The effect of
specifying DISPLAY IS DISPLAY-9 is the same as that of
including a /X switch in the command string to the compiler.
However, the /X switch will always override the DISPLAY
clause. For example, if you include in your program the
following statement

DISPLAY IS DISPLAY-7

all items described in the Data Division as USAGE IS DISPLAY
will be considered DISPLAY-7 items.

OBJECT-COMPUTER. DECSYSTEM-1077

MEMORY 50000 WORDS

SEGMENT-LIMIT IS 35

PROGRAM COLLATING SEQUENCE IS NATIVE
DISPLAY IS DISPLAY-7.

THE ENVIRONMENT DIVISION

SPECIAL-NAMES

3.1.4 SPECIAL-NAMES

Function

The SPECIAL~NAMES paragraph provides a means of assigning mnemonic
names to input/output devices, code sets, and collating sequences.
This paragraph may also define the character used as a currency sign,

and may specify the interchange of decimal point and comma functions
in the program.

General Format

—
SPECIAL-NAMES.

\‘T
STANDARD-1
NATIVE
THROUGHY .
literal-1 {THRU } Titeral-2
alphabet-name IS¢ ALSO Titeral-3 [ALSO Titeral-4] ... >

THROUGH\ .
literal-5 {THRU } literal-6
ALSQ Titeral-7 [ALSO Titeral-8] ...

u \ y

[ﬁitera1-9 Is mnemonic—name:]

[}URRENCY SIGN IS literal-10]
[PECIMAL-POINT Is coMMa] .:]

Technical Notes
1. This paragraph is optional.

2. The reserved word CONSOLE refers to the user's terminal. The
assigned mnemonic-name may be used with the ACCEPT and
DISPLAY verbs in the Procedure Division to input data from
and output data to the terminal.

3. The name CHANNEL refers to a channel on the 1line-printer
control tape. m and n represent any integer from 1 to 8 and
refer to any one of the eight channels on the tape. Control
tape channels can be referred to in the ADVANCING clause of
the WRITE verb in the Procedure Division to advance the paper
form to the desired channel position. (Refer to the Hardware
Reference Manual for a description of printer control
tapes.) For example, if the entry

CHANNEL (1) IS TOP-OF-PAGE

3-6

THE ENVIRONMENT DIVISION

SPECIAL-NAMES (Cont.)

is included 1in this paragraph, the following procedure
statement will print the line and then skip to the top of the
next page.

IF LINE-COUNT IS GREATER THAN 50 WRITE PRINT-RECORD
BEFORE ADVANCING TOP-OF-PAGE.

The alphabet-name IS clause associates a user-specified name
with a sequence of characters that may be used as a character
code set, a collating sequence, or Dboth. This character
sequence may be either one of the two sequences provided by
the compiler or a sequence specified by the user.

A character code set is specified by referencing
alphabet-name in the CODE-SET clause of a file description.
When defining a character code set, the alphabet-name IS
clause is restricted to STANDARD-1, NATIVE, ASCII, or EBCDIC.
A collating sequence is specified by referencing
alphabet-name either in the PROGRAM COLLATING SEQUENCE clause
of the OBJECT-COMPUTER paragraph or in the COLLATING SEQUENCE
phrase of a SORT or MERGE statement.

When STANDARD-1, NATIVE, or ASCII appear in an alphabet-name
IS clause, the character code set and collating sequence
specified is ASCII. When EBCDIC appears in an alphabet-name
IS <clause, the character code set and collating sequence
specified is EBCDIC.

When the 1literal phrase appears in an alphabet-name IS
clause, the 1literals define an ascending collating sequence
in the order of their appearance 1in the phrase. Numeric
literals represent the ordinal number of the character within
the ASCII character set and must be in the range from 1
through 128. Nonnumeric 1literals 1in an alphabet-name IS
clause represent themselves. If the literal contains
multiple characters, they are assigned successive ascending
positions within the collating sequence, starting with the
leftmost character. Characters whose positions are not
explicitly defined by the 1literal phrase are assigned
positions higher than the specified characters and in their
normal ASCII sequence.

When you specify the THROUGH phrase, the set of contiguous
ASCII characters beginning with the character specified by
literal-1 and ending with the character specified by
literal-2 are assigned successive ascending positions in the
collating sequence. The characters specified by a THROUGH
phrase may be in either ascending or descending order.

When you specify the ALSO phrase, the characters specified by
literal-1l, literal-3, literal-4, ..., are all assigned to the
same position in the collating sequence.

The highest character in the collating sequence, regardless
of how it 1is specified, becomes the figurative constant
HIGH-VALUE. If more than one character occupies this
position, the 1last character specified becomes HIGH-VALUE.
The lowest character in the collating sequence, regardless of
how it is specified, becomes the figurative constant
LOW~VALUE. If more than one character occupies this
position, the first character specified becomes LOW-VALUE.

3-7

THE ENVIRONMENT DIVISION

SPECIAL-NAMES (Cont.)

5.

Example

The clause literal-l IS mnemonic-name~5 specifies the CODE
value for a particular report (refer to the CODE clause in
Section 4.9.26). Literal-l must be an alphanumeric 1literal
enclosed in quotation marks, and can be from 1 through 120
characters in length.

If you use the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph, you must use the literal you specify (instead of
the $ character) in PICTURE clauses in the Data Division.
For instance, if you wish to insert a currency sign at the
front of a field which is to be printed on your report, you
must use the literal you specified - not the §$ character - as
the editing symbol.

This literal is limited to a single printable character and
must not be one of the following characters:

digits 0 through 9

alphabetic characters A, B, ¢, D, P, R, S, V, X, &

special characters * + - , . ; () "

If you use the DECIMAL-POINT IS COMMA clause, then the

functions of the comma and period are interchanged for all
PICTURE clauses and numeric literals.

SPECIAL-NAMES. CONSOLE IS MYTERM

CHANNEL (1) IS TOP-OF-PAGE.

3-8

THE ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION

3.1.5 INPUT-OUTPUT SECTION
The Input-Output Section names the files and external media required
by the object program and provides information required for

transmitting and handling data during execution of the object program.
This section consists of the section header (INPUT-OUTPUT SECTION.)

followed by one or more of the following paragraphs:
FILE-CONTROL. (See Section 3.1.6)

I-0-CONTROL. (See Section 3.1.15)

Technical Notes
1. This section is optional.
2. All semicolons and commas are optional. Each SELECT

statement in the FILE-CONTROL paragraph must end with a
period. The entire entry in the I-O-CONTROL paragraph must

end with a period.

3-9

THE ENVIRONMENT DIVISION

FILE-CONTROL

3.1.6 FILE-CONTROL
Function
The FILE-CONTROL paragraph names each file, identifies the file

medium, and allows logical hardware assignments.

General Format
FORMAT 1:
SELECT [pPTIONALt] file-name

ASSIGN TO device—néme-] [}evice—name-z:] e

. AREA
l:RESERVE integer-1 I:AREAS]]

[:ORGANIZATION IS SEQUENTIAL:]
[:ACCESS MODE IS SEQUENTIAL:]

ASCII

SIXBIT

: BINARY
RECORDING | MODE IS EYTE MODE] F
v

STANDARD-ASCII
STANDARD ASCII

DENSITY IS

©
o
o

N
s
NIO
"
(=]
o
o
-

—
[=)
o
o

{%%—%—ﬁ%g} IS data-name-1 data-name-2 data-name-3 data-name-4

data-name-5 [}ata-name-ﬁ [Eata-name-7 [?ata-name-gj:[]}

3-10

FORMAT 2:

SELECT file-name

ASSIGN TO ‘device-name-1

: AREA
RESERVE integer-1 [AREAéI}

THE ENVIRONMENT DIVISION

ORGANIZATION IS RELATIVE

ACCESS MODE IS

=

RECORDING | MODE IS

s SEQUENTIAL RELATIVE KEY

RANDOM
I{DYNAMIC} RELATIVE KEY IS

Mo |

DENSITY IS ann

FILE-STATUS Is
FILE STATUS

data-name-5

BINARY
BYTE MOD{]

STANDARD-ASCII
STANDARD ASCII

data-name-1 data-name-

{}ata—name-G [Eata-name—7

3-11

device-name-2 :]

FILE-CONTROL (Cont.)

IS data-name-l)

data-name-1 ‘

2

data-name-3 data-name-4

e

THE ENVIRONMENT DIVISION

FILE-CONTROL (Cont.)
FORMAT 3:
SELECT file-name
ASSIGN TO device-name-1 I: device-name-2]

. ["AREA
RESERVE integer-1 _AREAs:I:]

ORGANIZATION IS INDEXED

SEQUENTIAL
ACCESS MODE IS ! RANDOM
DYNAMIC

“RECORD KEY IS data-name-1

— S

ASCII

SIXBIT

BINARY
RECORDING | MODE IS EYTE MODE] F

v

STANDARD-ASCII
STANDARD ASCII

200
556 0DD

DENSITY IS 800 PARITY IS {—EVEN }
1600

|

{g—t?—%%} IS data-name-1 data-name-2 data-name-3 data-name-4

data-name-5 [jata-name—6 Eiata-name-7 [data-name-S]]]J

3-12

THE ENVIRONMENT DIVISION

FILE-CONTROL (Cont.)

Technical Notes

1.
2.

3.

This section is optional.

All semicolons and commas are optional. Each SELECT clause
must end with a period.

The SELECT and ASSIGN statements must appear before any other
clause shown, and the SELECT statement must precede the
ASSIGN statement. Every file described in the Data Division
must be named in a SELECT clause in the Environment Division.
Thus, the following clause must be specified for every such
file: SELECT file-name ASSIGN TO device-name.

The individual clauses are described on the following pages
in the order shown above.

SELECT

THE ENVIRONMENT DIVISION

3.1.7 SELECT

Function

The SELECT statement names each file that is to be described 1in the
Data Division, and assigns each file to a particular device.

Géneral Format

SELECT file-name

ASSIGN TO device-name-1 [: device-name-2 :] ...

Technical Notes

1.

Each file described in the Data Division must be named once
and only once as a file-name in a SELECT statement.
Conversely, each file named in a SELECT statement must have a
File Description entry in the Data Division. Each file-name
must be unique within a program.

The key word OPTIONAL is required for input files that are
not necessarily present each time the object program is run.
When your program tries to open a file which you have
declared to be OPTIONAL, the question IS file-name PRESENT?
is typed on the operator's console and the operator responds
with YES or NO. If the response 1is YES, the file is
processed normally; if the response is NO, the first READ
statement executed for that file will immediately take the AT
END or INVALID KEY path.

NOTE

ISAM files may not be optional. They must be present
at program start-up, even if only as dummy files.
(Refer to the COBOL-74 Usage Material, Part 3 of this
manual, for more information on ISAM.)

The ASSIGN clause specifies the device for a file.
Device-names can be either physical device-names or logical
device-names.

Physical device-names are fixed mnemonic-names that refer to
specific peripheral devices. When specified in an ASSIGN
clause, a physical device-name assigns the associated file to
that device. Physical device-names are described in the
TOPS-10 Operating System Commands Manual and the TOPS-20
User's Guide.

3-14

6.

Examples

THE ENVIRONMENT DIVISION
SELECT (Cont.)

Logical device-names are names created by the programmer.
They can contain up to six characters, and can consist of any
combination of letters and digits. At object execution time,
each 1logical device-name must be assigned to a physical
device by means of a monitor command (refer to the COBOL-74
Usage Material, Part 3 of this manual, for an explanation of
the commands).

You may assign more than one device to a file to avoid delay
when switching from one reel or unit to the next. When you
specify more than one device the object program automatically
uses the next device, in a cyclic manner, when an end-of-reel
condition is detected. This applies only to tape devices and
SORT and ISAM files, and it is unconditional for tapes. For
SORT/MERGE, any number of devices may be assigned. If the
disks are specified generically, SORT/MERGE will use its
internal algorithm to determine which physical devices to
use. Otherwise, all devices specified will be used in a
round-robin fashion. For ISAM files you may assign not more
than two devices.

If the access mode is INDEXED and two devices are assigned,
the first device is assumed to contain the index portion of
the file and the second to contain the data portion of the
file. If one device is specified, it is assumed to contain
both the index portion and the data portion of the file.

For ISAM and random files, the devices must be random-access.

SELECT INFIL ASSIGN TO MTAL.

SELECT SRTFIL ASSIGN TO DSK, DSK, DSK.

'3-15

RESERVE

3.1.8 RE

Function

THE ENVIRONMENT DIVISION

SERVE

The RESERVE clause allows you to specify the actual number of
input/output buffer areas for the compiler to allocate to this file.

General F

ormat

. AREA
RESERVE integer-1 [:AREAéJ

Technical

1.

‘Example

Notes

If you specified the organization for this file as RELATIVE
or 1INDEXED, this clause is ignored and only one buffer area
is assigned.

If you did not specify RELATIVE or INDEXED organization, the
integer specifies the number of buffer areas for the compiler
to assign.

If you omit this clause for a sequential file, two areas will
be assigned.

Integer-1 does not have a maximum, but you may run out of
available memory if you request too many areas reserved. You
may also make your program run slower if you request a large
number of areas, since the program will be that much bigger.

SELECT INFIL ASSIGN TO DSK

RESERVE 1 AREA.

3-16

THE ENVIRONMENT DIVISION

ORGANIZATION

3.1.9 ORGANIZATION

Function

The ORGANIZATION clause specifies the way in which a file will be
organized.

General Format

SEQUENTIAL

ORGANIZATION IS)RELATIVE

INDEXED { DEFERRED UTPUT
- CHECKPOINT }

Technical Notes

1.

The ORGANIZATION clause 1is required for relative and
indexed-sequential files. It 1is 1ignored for sequential
files.

If ORGANIZATION IS SEQUENTIAL and the file is on a
random~-access device, records are obtained or placed
sequentially. That is, the next 1logical record 1is made
available from the file on a READ statement execution, and an
output record is placed into the next available area on a
WRITE statement execution. Thus sequential-access processing
on a random-access device 1is functionally similar to the
processing of a magnetic tape file.

If ORGANIZATION IS RELATIVE, the contents of the data item
associated with the RELATIVE KEY specifies which record,
relative to the beginning of the file, is made available by a
READ statement, or where the record is to be placed by a
WRITE statement, or which record is to be deleted by a DELETE
statement, or which record will be replaced by a REWRITE
statement. .

If ORGANIZATION IS INDEXED, the contents of the data item
associated with the RECORD KEY specifies which record is made
available by a READ statement, or where the record is to be
placed by a WRITE statement, or which record is to be deleted
by a DELETE statement, or which record will be replaced by a
REWRITE statement.

The DEFERRED OUTPUT option of the ORGANIZATION IS INDEXED
clause causes the object-time system to output a block of an
indexed~-sequential file only when another block must be
brought into memory. Normally, to ensure integrity for the
file, a block is output every time a record is written, even
if records are written successively in the same block. When
a file is opened for simultaneous update, the DEFERRED OUTPUT
clause 1is 1ignored. Refer to the OPEN statement, Section
5.9.25.

3-17

THE ENVIRONMENT DIVISION

ORGANIZATION (Cont.)

6.

Example

If you are using ISAM files sequentially, DEFERRED OUTPUT
provides the advantage of running faster. However, your file
is also more easily damaged if the system crashes. Thus, its
use is advantageous if file integrity is not important.

If you use the ORGANIZATION IS INDEXED clause, you may also
specify the CHECKPOINT OUTPUT option (instead of DEFERRED
OUTPUT). If you specify this option, the object-time system
will force the buffers to be written out, and all pointers
internal to the file to be updated, after every WRITE
statement. This will naturally make your program run much
more slowly. However, it will also safeguard your file
against system crashes, since the file will have been updated
after the last WRITE before the crash.

SELECT INFIL ASSIGN TO DSK, DSK

ORGANIZATION IS INDEXED DEFERRED OUTPUT.

THE ENVIRONMENT DIVISION

ACCESS MODE

3.1.10 ACCESS MODE

Function

The ACCESS MODE clause specifies the method used to access the file in

question.

General Format

ACCESS MODE IS

Technical Notes

1.

Example

If you do not specify the ACCESS MODE clause, ACCESS MODE IS
SEQUENTIAL 1is assumed regardless of the organization of the
file.

If you specify ACCESS MODE IS DYNAMIC you may access the file
either sequentially or randomly.

When you specify ACCESS MODE ‘IS SEQUENTIAL, the records in
your file are accessed in the sequence dictated by the file
organization. Sequential files are accessed 1in the same
order they are added to the file. Relative files are
accessed in ascending relative record number order. Indexed
files are accessed in ascending record key order.

If you choose random access mode, the relative key (for
relative files) or the record key (for indexed files)
indicates the record to be accessed.

SELECT INFILE ASSIGN TO DSK

ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS RECKEY.

THE ENVIRONMENT DIVISIGN

RECORD KEY

3.1.11 RECORD KEY

Function

The RECORD KEY clause specifies the record in an indexed-sequential
file that is to be read, written, deleted, or rewritten.

General Format

RECORD KEY IS data-name-1

Technical Notes

1.

Example

The RECORD KEY clause is valid only for files whose access
mode is INDEXED; it must be specified for those files (refer
to the READ statement, Section 5.9.27).

You must define the RECORD KEY data-name as an item in the
record area of the file to which it pertains. Though the
RECORD KEY is described in only one of the records, it |is
assumed to occupy the same position in all records for that
file.

The RECORD KEY is required to describe the 1location in the
record area of the key for the file. The contents of the
RECORD KEY data~item must be unique for each record 1in the
file and cannot be equal to LOW-VALUES (refer to the READ,
WRITE, REWRITE, and DELETE statements in Section 5.9).

SELECT INFIL ASSIGN TO DSK, DSK

ORGANIZATION IS INDEXED
RECORD KEY IS RECKEY.

THE ENVIRONMENT DIVISION

RELATIVE KEY

3.1.12 RELATIVE KEY

Function

The RELATIVE KEY clause specifies which record is read or written in a
random-access file. :

General Format

RELATIVE KEY IS data-name-1

Technical Notes

1.

Example

The RELATIVE KEY clause 1is valid only for a file whose
organization is RELATIVE; it must be specified for this type
of file. This clause cannot be used for a file whose
organization is INDEXED or SEQUENTIAL.

The RELATIVE KEY data-name must be defined in the Data
Division as a COMPUTATIONAL item of ten or fewer digits. The
PICTURE can contain only the characters S and 9 or their
equivalent,. for example S9(10).

SELECT INFIL ASSIGN TO DSK

ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS RKEY.

3-21

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY

3.1.13 RECORDING MODE/DENSITY/PARITY

Function

The RECORDING clause specifies the recording mode, tape density, and
parity for a magnetic tape file.

General Format

—

RECORDING | MODE IS

DENSITY IS

Technical Notes

1.

N
(=3

o
Sal

I

[00]
o

—
()]
()

BINARY
BYTE MOD{] F

STANDARD-ASCII
STANDARD ASCII

0

6 0DD

0 PARITY IS { EVEN }
0

The RECORDING MODE clause allows the user to record data on
the device 1in a format other than that used in memory. The
following recording modes are acceptable.

ASCII

SIXBIT

BINARY

The file will be read/written as ASCII records, five
7-bit characters per 36-bit word. Bit 35 (the
rightmost bit) is ignored.

The file will be read/written as SIXBIT records, six
6-bit characters per 36-bit word with record
headers.

The file will be read/written as binary records, 36
bits per word.

The file will be read/written as fixed-length EBCDIC
records, four 9-bit characters per 36-bit word.
However, for industry-compatible magnetic tape
(9-track, with at least 800 bpi density), the file
will be read/written with four 8-bit characters per
36-bit word. If more than one record description is
given in the FD entry, the record length must be the
same for all of them.

3-22

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY (Cont.)

\'4 - The file will be read/written as variable-length
EBCDIC records, four 9-bit characters per 36-bit
word with record and block headers. However, for
industry~-compatible magnetic tape (9~track, with at
least 800 bpi density), the file will be
read/written with four 8-bit characters per 36-bit
word. If a file whose recording mode is V 1is open
for INPUT-OUTPUT and the user overwrites a record,
the record being written must be the same size as
the overwritten record. A file whose recording mode
is V cannot be opened for simultaneous update.

STANDARD-ASCII (STANDARD ASCII) -

The five 7-bit bytes in each word in memory are
transferred to five 8-bit bytes on the tape and bit
35 is stored in bit 0 of ‘the fifth byte on tape.
The character set and the character encodings are
the same as those of ASCII recording mode. This
enables interchanges with other manufacturers' ASCII
data files.

The format of records for each recording mode 1is given in
Sections 8.1 and 8.2 of this manual.

The recording mode of a file is determined by a number of
factors besides the recording mode specified in the RECORDING
MODE clause. These factors are:

a. If the device can only accept ASCII data (for example, a
line printer), the object~time system will always use
ASCII as the recording mode no matter what recording mode
is specified.

b. If the ADVANCING or POSITIONING clause is included in the
WRITE statement, the object-~time system will always use
ASCII as the recording mode no matter what recording mode
is specified.

c. If the file descriptor (FD) has a REPORT clause, the
object-time system will always use ASCII as the recording
mode no matter what recording mode is specified.

d. The recording mode specified in the RECORDING MODE clause
is compared to the USAGE clause for the record.
Normally, the recording mode specified is used. However,
if the recording mode 1is not specified, the default
recording mode will depend on the usage mode. If neither
the recording mode nor the usage mode is specified, and
the /X switch is not included in the command string to
the compiler, the default recording mode is SIXBIT. If
the /X switch is present, the default recording mode is
F.

3-23

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY (Cont.)

Example

When the recording mode is not declared, it is inferred from
the wusage mode for the record according to the rules given
above. However, the reverse is not true; that is, when the
recording mode 1is declared and no usage mode is given for a
record, the presence of the RECORDING MODE clause serves only
to specify the recording mode of the file. The usage mode of
the records in the file may default to another character set,
with undesirable results (see the USAGE clause in Section
4.9.23). Table 3-1 shows the resulting recording mode when
the recording mode declared in the RECORDING MODE clause is
compared to the usage mode declared in the USAGE clause.

The DENSITY and PARITY clauses are valid only for magnetic
tape and are ignored for all other devices. If the DENSITY
clause is not present, tapes are recorded 1in the density
standard for the installation. The density for a job can be
modified by system commands which are described in the
Operating System Commands Reference Manual for users of
TOPS-10, and in the TOPS-20 User's Guide for users of
TOPS~20. Remember that not all drives will handle all
densities. You should verify that the drive you plan to use
will accept the density you specify. If the PARITY clause is
omitted, ODD is assumed. Care must be taken when using even
parity: 1if nulls are written into a file that is recorded in
even parity, the file cannot be read properly. Nulls can be
written into a file without a user being aware of them; that
is, when SYNCHRONIZED data items appear in an item, the word
preceding the word 1in which the item is synchronized could
contain nulls.

If BYTE MODE is used, the exact number of bytes is written on
the tape. (It does not round up to a word boundary.) This
is only valid on magnetic tape, and applies only to users of
TOPS-10. Its purpose 1is to enable interchanges with other
manufacturers' equipment.

SELECT INFIL ASSIGN TO MTAl

RECORDING MODE IS V
DENSITY IS 800
PARITY IS ODD.

3-24

THE ENVIRONMENT DIVISION

RECORDING MODE/DENSITY/PARITY (Cont.)

Table 3-1
Recording Modes
RECORDING MODE USAGE RECORDING MODE
Clause Clause Actually Used
none DISPLAY-6 SIXBIT
none DISPLAY~7 ASCII
none DISPLAY-9 EBCDIC
none none SIXBIT (no /X)
none none EBCDIC (/X)
SIXBIT DISPLAY-6 SIXBIT
SIXBIT DISPLAY-7 SIXBIT
SIXBIT 'DISPLAY-9 SIXBIT
ASCII DISPLAY-6 ASCII
ASCII DISPLAY-7 ASCII
ASCII DISPLAY-9 ASCII
F or v DISPLAY-6 EBCDIC
F or V DISPLAY-7 EBCDIC
F or V DISPLAY-9 EBCDIC
BINARY DISPLAY-6 BINARY
BINARY DISPLAY-7 BINARY
BINARY DISPLAY-9 BINARY
NOTE
The object-time system automatically
makes the conversions necessary to have
the recording mode conform to the usage
mode of the records. (These conversions
' may cause your program to run more
slowly.)

3-25

THE ENVIRONMENT DIVISION

FILE STATUS

3.1.14 FILE STATUS

Function

The FILE STATUS clause specifies data-items into which the object-time
system places values when an I/O error or warning message occurs on
the file specified by the SELECT clause. A user-written USE procedure
may then examine and alter these values as part of a recovery process.

General Format

FILE STATUS

data-name-5 [}ata-name-ﬁ [Eata-name-? [@ata-name-s:II]j

{ElL§:§IAIQ§} IS data-name-1 data-name-2 data-name-3 data-name-4

Technical Notes

1.

Data-name-1 is required if you specify this clause, but
data-name-2 through data-name~8 are optional. If you specify
fewer than eight data-names, the compiler assumes that the
data-names are specified starting with data-name-1l and
continuing in order. Therefore, if you wish to specify
data-name-8, you must also specify data-name-l through
data-name-7.

3-26

2.

THE ENVIRONMENT DIVISION

data-name-1 PIC 9(2).
data-name-2 PIC 9(10).
data-name-3 USAGE INDEX.
data-name-4 PIC X (9).

data-name-5
data-name-6
data=-name-7
data-name-8

USAGE INDEX.
USAGE INDEX.
PIC X(30).

USAGE INDEX.

FILE STATUS (Cont.)

You must define the data-names in the Working Storage Section
of the Data Division in the following form.

3. After a fatal I/O error, the FILE STATUS items contain the

following values.

data-name-1 contains the file status.
data-name-2 contains a 10-digit error number.

data-name-3 contains the action code, which is set to zero.

data-name-4 contains the VALUE OF ID.
data-name-5 contains the current block number.
data-name-6 contains the current record number.
data-name-7 contains the file name.

data-name-8 contains the file-~table pointer.

The file status, which is stored in data-name-1, is set to one of the

following 2-character codes.

00 the I/O was successful.

10 no next logical record; that is, there is no next record in

the file. The AT END path is taken.

22 duplicate key; that is, an attempt was made to

write a

record 1into a record position that is already occupied. The

INVALID KEY path is taken.

23 no record found on READ, REWRITE, DELETE; that is,

when an

indexed-sequential file was accessed, an empty record

position was found. The INVALID KEY path is taken.
actual key

24 Dboundary violation, that is, the random file's
violated the file limits. The INVALID KEY path is

30 permanent error; that is, a successful hardware
cannot be done without a hardware error signal.

34 permanent error; that is, more space on the media
obtained to extend the file for output operations.

The 10-character error number stored in data-name-2 has the
ABCDEFGHIJ

where the code has the meanings shown below.

taken.
operation

cannot be

form:

AB contains a value indicating the COBOL verb that caused the error.

0 no COBOL verb error
OPEN

CLOSE

WRITE

REWRITE

DELETE

READ

AUl wWwN -

3-27

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

CD contains a value indicating the monitor call (UUO) that caused the
error.

no UUO error
INPUT
OUTPUT
LOOKUP
ENTER
RENAME

INIT

FILOP

NouikdkwhEHO

EF contains a value indicating the type of file being accessed when
the error occurred.

0 ©None of the following
1 ISAM index file

2 ISAM data file

3 a sequential file

4 a random file

G contains a value indicating the ISAM block type that was being
accessed when the error occurred.

None of the following
ISAM statistics block
ISAM SAT block

ISAM index block

ISAM data block

d_»WhHO

HIJ contains a value indicating an error number on INPUT or OUTPUT.

If CD is 0, HIJ contains an error number. The numbers and their
meanings are 1listed below. Note that these are the same as the
messages issued by LIBOL after an error or warning occurs.

0 None of the following

1l SYMBOLIC-KEY MUST NOT EQUAL LOW-VALUES 2 NO MORE INDEX LEVELS

AVAILABLE

3 INSUFFICIENT MEMORY WHILE ATTEMPTING TO SPLIT THE TOP INDEX

BLOCK

4 VERSION NUMBER DISCREPANCY

5 ALLOCATION FAILURE - ALL BLOCKS ARE IN USE

6 THE MAXIMUM RECORD SIZE MAY NOT BE EXCEEDED

7 CANNOT EXPAND MEMORY WHILE SORT IS IN PROGRESS

8 INSUFFICIENT MEMORY FOR BUFFER REQUIREMENTS

9 BLOCKING-FACTOR DIFFERS BETWEEN INDEX FILE AND FILE-TABLE

10 FILE CANNOT BE OPENED, ALREADY OPEN

11 LOCKED FILE CANNOT BE OPENED

12 FILE CANNOT BE OPENED SHARES BUFFER AREA WITH OPENED FILE

13 FILE CANNOT BE OPENED DEVICE IS NOT AVAILABLE TO THIS JOB

14 FILE CANNOT BE OPENED DEVICE IS ASSIGNED TO ANOTHER FILE

15 FILE CANNOT BE OPENED DEVICE CANNOT INPUT/OUTPUT

16 FILE CANNOT BE OPENED DEVICE CANNOT INPUT

17 FILE CANNOT BE OPENED DEVICE CANNOT OUTPUT

18 FILE CANNOT BE OPENED DEVICE IS NOT A DEVICE

19 FILE CANNOT BE OPENED DIRECTORY DEVICE MUST HAVE STANDARD
LABELS

20 FILE CANNOT BE CLOSED BECAUSE IT IS NOT OPEN

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

21 FILE CANNOT BE CLOSED
THE CLOSE "REEL" OPTION MAY NOT BE USED WITH A
MULTI-FILE-TAPE

22 FILE IS NOT OPEN FOR OUTPUT

23 ZERO LENGTH RECORDS ARE ILLEGAL
FILE CANNOT DO OUTPUT

24 "AT END" PATH HAS BEEN TAKEN
FILE CANNOT DO INPUT

25 ENCOUNTERED AN "EOF" IN THE MIDDLE OF A RECORD
FILE CANNOT DO INPUT

26 RECORD-SEQUENCE-NUMBER n SHOULD BE m
FILE CANNOT DO INPUT

27 file-name ON device-name SHOULD BE REORGANIZED, THE TOP INDEX
BLOCK WAS JUST SPLIT

28 NOT USED

29 EITHER THE ISAM FILE DOES NOT EXIST OR THE VALUE OF 1ID
CHANGED DURING THE PROGRAM

30 ATTEMPT TO DO I/0 FROM A SUBROUTINE CALLED BY A NON RESIDENT
SUBROUTINE. FILE CANNOT BE OPENED

31 1I/0 CANNOT BE DONE FROM AN OVERLAY. FILE CANNOT BE OPENED

32 READ AN "EOF" INSTEAD OF A LABEL

33 CLOSE REEL IS LEGAL ONLY FOR MAGNETIC TAPE

34 FILE IS NOT OPEN FOR INPUT

35 NOT ENOUGH FREE MEMORY BETWEEN .JBFF AND OVERLAY AREA

36 INSUFFICIENT MEMORY WHILE ATTEMPTING TO SPLIT THE TOP INDEX
BLOCK

37 STANDARD ASCII RECORDING MODE AND DENSITY OF 1600 BPI REQUIRE
THE DEVICE TO BE A TU70

38 TAPOP. FAILED - UNABLE TO SET STANDARD-ASCII MODE

39 GOT AN EOF IN MIDDLE OF BLOCK/RECORD DESCRIPTOR WORD

40 BLOCK DESCRIPTOR WORD BYTE COUNT IS LESS THAN FIVE

41 ERROR - GOT ANOTHER BUFFER INSTEAD OF "EOF"

42 ERROR - RECORD EXTENDS BEYOND THE END OF THE LOGICAL BLOCK

43 IT IS ILLEGAL TO CHANGE THE RECORD SIZE OF AN EBCDIC I/O
RECORD

44 THE TWO LOW-ORDER BYTES OF A BLOCK/RECORD DESCRIPTOR WORD
MUST BE ZERO

If CD is set to 1 or 2, HIJ contains the number of an I/0 error status
bit. The I/O error status bits, their mnemonics, and their meanings,
are shown in Table 3-2.

FILE STATUS (Cont.)

THE ENVIRONMENT DIVISION

Table 3-2

Monitor File Status Bits

Bit

Mnemonic

Meaning

18

19

20

‘21

22

23

29

30

31

32-35

IO.IMP

IO.DER

IO.DTE

IO.BKT

I0.EOF

I0.ACT

IO.WHD

I0.SYN

IO0.UWC

IO.MOD

Improper Mode. Attempt to write on a
software write-locked file structure, or a
software redundancy failure occurred. This
bit is wusually set by the monitor. The
user cannot set this bit.

Hardware device error. The disk unit is in
error, rather than the data on the disk.
However, data read into memory or written
on the disk 1is probably incorrect. The
user does not usually set this bit.

Hard data error. The data read or written
has 1incorrect parity as detected by the
hardware. The user's data 1is probably
unrecoverable even after the device has
been fixed. This bit is usually not set by
the user.

Block too large. A disk data block is too
large to fit into the buffer; or a block
number is too large for the disk unit; or
DSK has been filled; or the user's quota
on the file structure has been exceeded.
This bit is wusually not set by the user.
This error is also returned when the user
tries to <close a file that has open locks
associated with it (via Enqueue/Dequeue).

End-of-file. The user program has
requested data beyond the last block of the
file with an IN or INPUT call; or USETI
has specified a block beyond the last data
block of the file. When IO.EOF is set, no
data has Dbeen read into the buffer. This
bit is usually not set by the user.

I1/0 Active. The disk is actively
transmitting or receiving data. This bit
is always set by the monitor for 1its own
use.

Write disk-pack headers. This is wused in
conjunction with the SUSET. monitor call to
format a disk pack. (Not used in COBOL)

Synchronous mode 1I/0. Stop disk after
every buffer is read or written. (Not used
in COBOL)

User word count, supplied by the wuser in
each buffer.

Data mode of the device.

3-30

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

For the file status for each device, refer to the Monitor Calls
Manual.

If CD is set to 3, 4, 5, or 7, HIJ contains the error code for LOOKUP,
ENTER, RENAME, or FILOP errors. Table 3-3 gives these codes and their
meanings.

Table 3-3
Monitor Error Codes

Code Explanation

0 File not found, illegal filename (0,%),
filenames do not match, or RENAME after a LOOKUP
failed.

1 UFD does not exist on specified file structures.
{Incorrect project-programmer number)

2 Protection failure or directory full on DTA.

3 File being modified.

4 Filename already exists (RENAME) or filename is

different (ENTER after LOOKUP) or requested
supersede (on a non-superseding ENTER).

5 Illegal sequence of UUOs (RENAME with neither
LOOKUP nor ENTER, or LOOKUP after ENTER).

6 1. Transmission, device, or data error.

2. Hardware-detected device or data error
detected while reading the UFD RIB or UFD
data block.

3. Software-detected data 1inconsistency error
detected while reading the UFD RIB or file

RIB.
7 Not a saved file.. (Not expected to occur)
10 Not enough memory.
11 Device not available.
12 No such device.
13 No 2-register relocation capability. (Not

expected to occur)

14 No room on this file structure or quota exceeded
(overdrawn quota not considered).

15 Write-lock error. Cannot write on file
structure.

16 Not enough table space in free memory of
‘ monitor.

3-31

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)
Table 3-3 (Cont.)
Monitor Error Codes
Code Explanation

17 Partial allocation only.

20 Block not free on allocated position.

21 Cannot supersede an existing directory.

22 Cannot delete a nonempty directory. (Not
expected to occur)

23 Subdirectory not found (some SFD in the
specified path was not found).

24 Search list empty (LOOKUP or ENTER was performed
on generic device DSK and the search list is
empty) .

25 Cannot create a SFD nested deeper than the
maximum allowed level of nesting. (Not expected
to occur)

26 No file structure in the job's search 1list has
both the no-create bit and the write-lock bit
equal to zero and has the UFD or SFD specified
by the default or explicit path (ENTER on
generic device DSK only). '

27 GETSEG from a locked 1low segment to a high
segment which is not a dormant, active, or idle
segment. (Segment not on the swapping space)
(Not expected to occur)

30 Cannot update file.

31 Low segment overlaps high segment. (Not
expected to occur)

32 Not logged in. (Not expected to occur)

4. The FILE STATUS items are the paths of communications between

the object-time system and a USE procedure. A USE procedure
specifies a recovery process executed when an error or
warning occurs during an I/O operation. A USE procedure
determines the error or warning type from the error-number
placed 1into data-name-2 by the object-time system. Control
returns to the object-time system at the conclusion of the
USE procedure. The object-time system action is determined
by the error number and by the contents of the action-code
placed into data-name-3 by the USE procedure. If the
action-code is set to 1, the object-time system ignores the

error and continues the run. 1If the action-code is left set

3-32

Example

THE ENVIRONMENT DIVISION

FILE STATUS (Cont.)

to 0, the object-time system issues an error message and
terminates the run. If the error-number is 17, the
object-time system continues the run independent of the
action-code setting. If the action-code is not 0 or 1, the
object-time system action is undefined.

When the program comes to a normal termination and you have
requested (by loading a "1" into the action-code) that errors
be ignored, the object-time system issues the following
message:

$n ERRORS IGNORED

Refer to the USE statement in Section 5.9.42 for details of
writing USE procedures.

If you did not specify the FILE STATUS statement, I/O error
recovery processing cannot be performed. If you specify the
FILE STATUS statement with only data-name-1 included, you can
examine the status of the file, but you cannot specify that
the object-time system ignore the error because you cannot
set the action code (data-name-3). You also cannot examine
the error number (data-name-2).

-

SELECT INFIL ASSIGN DSK, DSK

ORGANIZATION IS INDEXED

ACCESS MODE IS RANDOM

RECORD KEY IS RECKEY

RECORDING MODE IS ASCII

FILE STATUS IS FILSTAT, ERRNUM, ACTCODE, VID,
BLKNUM, RECNUM, FILNAM, FILPNTR.

DATA DIVISION.

WORKING-STORAGE SECTION.
77 FILSTAT PIC 9(2).

77 ERRNUM PIC 9(10).
77 ACTCODE INDEX.

77 VID PIC X(9).

77 BLKNUM INDEX.

77 RECNUM INDEX.

77 FILNAM PIC X(30).
77 FILPNTR INDEX.

3-33

THE ENVIRONMENT DIVISION

I-O-CONTROL

3.1.15

Function

I-0-CONTROL

The I-O~CONTROL paragraph specifies the points at which a RERUN DUMP
is to be performed, the memory area that is to be shared by different
files, and the location of files on a multiple-file reel.

General Format

[:I-O-CONTROL.

SAME

F

L

RERUN EVERY

f e)
END OF { NIT OF file-name-1
RECORDS

integer-1 ORDS

RECORD
SORT AREA FOR file-name-2 { file-name-3 }
SORT-MERGE

ULTIPLE FILE TAPE CONTAINS file-name-4 [:POSITION integer-3i]

[ﬁ]e-name-S EPOSITION integer-ﬂ] :l]

Technical Notes

1.

2.

This paragraph is optional.

The RERUN clause specifies when a rerun dump 1is to be
performed.

The dump is always written onto a disk file, wusing the
program's low segment name as the filename, and an extension
of CKP. 1If the program has no filename because it was never
saved, the program name (from the PROGRAM-ID paragraph in the
Identification Division) is used as a filename, with the
extension CKP.

If you use the END OF UNIT option, a rerun dump is taken at
the end of each input or output reel of the specified REEL
file.

If you use the integer-1 RECORDS option, a rerun dump 1is
taken whenever a number of logical records equal to a
multiple of integer-1 is either read or written for the file.

3-34

Example

THE ENVIRONMENT DIVISION
I-C-CONTROL (Cont.)

A rerun dump 1is not taken if any files are open for
input/output (updating), or if any file is open on a device
other than magnetic tape, disk, line printer, or terminal, or
if an indexed-sequential (ISAM) file is open. Therefore, do
not attempt to have a rerun dump taken while a sort 1is in
progress. Also, RERUN cannot be used if overlays are used or
if files are open for simultaneous update.

The SAME AREA clause specifies that two or more files are to
use the same area during processing; this overlapping
applies to all buffer areas and the record area. However,
unless the RECORD option is used, only one of the named files
can be open at one time.

If you specify the RECORD option, the files share only the
record area (that is, the area in which the current logical
record is processed). All of the files mentioned in the SAME
RECORD AREA clause may be open at the same time. A logical
record in the SAME RECORD AREA is considered to be a 1logical
record of each opened output file whose name appears in the
SAME RECORD AREA clause, as well as the most recently read
input file whose name 'is specified. Since the various
DISPLAY usages are represented differently in memory, you
must keep track of the usage of the record in the SAME RECORD
AREA. You may use the record in any way you would otherwise
use it. However, you must be sure that you have a record of
the expected usage in the SAME RECORD AREA. If, for example,
you plan to wuse a DISPLAY-7 record in your processing, you
must have a DISPLAY-7 record in the SAME RECORD AREA, not a
DISPLAY-6 record. You will not get an error message if you
attempt to use a DISPLAY-6 record as if it were DISPLAY-7.

The SORT option is used for sort files. However, this option
need not be specified because all sort files always use the
same sort area.

The MULTIPLE FILE clause is required when several files share
the same physical reel of tape. This clause is invalid for
media other than magnetic tape.

Regardless of the number of files on a single reel, only
those files defined in the program may be listed. If all
files residing on the tape are listed in consecutive order,
the POSITION option need not be given. If any file on the
tape is not listed, the POSITION option must be included;
integer-2, 1integer-3, and so forth, specify the position of
the file relative to the beginning of the tape. All files on
the same reel of tape must be ASSIGNed to the same device in
the FILE-CONTROL paragraph.

No more than one file on the same reel of tape can be open at
one time.

I-0-CONTROL.

RERUN EVERY 300 RECORDS OF INFIL
SAME RECORD AREA FOR INFIL, OUTFIL
MULTIPLE FILE TAPE CONTAINS INFIL POSITION 4.

3-35

THIS PAGE INTENTIONALLY LEFT BLANK.

THE ENVIRONMENT DIVISION
VERB FORMATS

THE ENVIRONMENT DIVISION

GENERAL FORMAT FOR ENVIRONMENT DIVISION

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name [:NITH DEBUGGING MODE])

OBJECT-COMPUTER. computer-name

; WORDS I
MEMORY SIZE integer ICHARACTERS$
MODULES

[:PROGRAM COLLATING SEQUENCE IS a]phabet-namé]

[SEGMENT-LIMIT IS segment—numbef:]

[:?PECIAL—NAMES.

——

STANDARD-1
alphabet-name IS NATIVE

THROUGH\ .
Titeral-1 {THRU } literal-2
ALSO literal-3 [jALSO literal-4 | ...

THROUGH | .
Viteral-s| {Tub] } riterale
ALSO Titeral-7 [ALSO literal-8]

\

[}itera]-Q IS mnemonic-name:}
[}URRENCY SIGN IS 11tera1-10:]
[PECIMAL-POINT IS COMMA :J .:]

THE ENVIRONMENT DIVISION

GENERAL FORMAT FOR ENVIRONMENT DIVISION

[:INPUT-OUTPUT SECTION.
FILE-CONTROL.

{fi]e-controi-entry }

[:I-O-CONTROL.

=l

—
END OF { NI } OF file-name-1
l integer-1 RECORDS

—

RERUN EVERY

=
—

—

RECORD
SAME SORT AREA FOR file-name-2 { file-name-3 }
SORT-MERGE
—
[

MULTIPLE FILE TAPE CONTAINS file-name-4 [:POSITION integer—3i]

L

l:fﬂe-name-S I:POSITION integer—g:l :] :l

THE ENVIRONMENT DIVISION

GENERAL FORMAT FOR ENVIRONMENT DIVISION

FORMAT 1:
SELECT [pPTIONAL:J file-

ASSIGN TO device-name-

[:RESERVE integer-1

name

1 [device-name-Z:I .
AREA
AREAS

[:ORGANIZATION IS SEQU

ENTIAL:]

[:ACCESS MODE IS SEQUENTIAL:]

RECORDING | MODE IS |B

N
o
o

|

(]
(al
(e}

DENSITY IS

[e}
()
o

[
(o)}
o
o

FILE-STATUS IS
FILE STATUS

data-name-5

BINARY
YTE MOD{]

STANDARD-ASCII
STANDARD ASCII

data-name-1 data-name=2 data-name-3

[}ata-name-6 ‘:Eata—name-7

3-38

)

data-name-4

THE ENVIRONMENT DIVISION

GENERAL FORMAT FOR ENVIRONMENT DIVISION

FORMAT 2:
SELECT file-name
ASSIGN TO device-name-1 [j
B AREA:I:I
AREAS

RESERVE integer-1
ORGANIZATION IS RELATIVE

device-name-2 :]

RELATIVE KEY

s SEQUENTTAL
ACCESS MODE IS

RECORDING | MODE IS

BYTE MOD{}

RANDOM
l{w} RELATIVE KEY IS

IS data-name—l)

data-name-1 ‘

STANDARD-ASCII
STANDARD ASCII

200
556 0DD
DENSITY IS 800 PARITY IS { EVEN }
600

FILE-STATUS Is
FILE STATUS

data-name-5

data-name-1

[}ata-name-6 [Eata-name—7

data-name-2 data-name-3 data-name-4

L

[]ﬂﬂ

3-39

THE ENVIRONMENT DIVISION

GENERAL FORMAT FOR ENVIRONMENT DIVISION

FORMAT 3:
SELECT file-name

ASSIGN TO device-name-1

=
RESERVE integer-1 AREAS:[]

device-name-2 :] -

AREA

ORGANIZATION IS INDEXED

SEQUENTTAL
ACCESS MODE IS ¢ RANDOM

DYNAMIC

"~ RECORD KEY IS data-name-1

— —
ASCII
SIXBIT
BINARY
RECORDING | MODE IS [%YTE MOD{} F
v

STANDARD-ASCII
STANDARD ASCII

-_—
— —

‘ 200 -
556 0D
DENSITY IS 800 PARITY IS { EVEN }

o
o
o

0

|

{E%%%lg%%%%g} IS data-name-1 data-name-2 data-name-3 data-name-4

-

data-name-5 [}ata-name-6 [}ata—name—7 [@ata—name-8:[1]}

CHAPTER 4

THE DATA DIVISION

The Data Division, which is required in every COBOL program, describes
the characteristics of the data to be processed by the object program.

This data can be divided into six major types:

1.
2.

6.

Data contained in files, both input and output

Data contained in a database and accessed through the Data
Base Management System

Data to be sent to or received from the Message Control
System or the Transactional Processing System

Data which is used by the program in the process of executing
(This data can be constant or variable, and may be stored as
part of the program or computed by the program during its
operation.)

Data in a subprogram that is passed from the program calling
it

Data to be printed in a report, and the format used to print
such data

To handle these types of data, the Data Division consists of the
following sections:

1.

2.

The File Section, which describes the characteristics and the
data formats for each file processed by the object program

The Schema Section, which names the sub-schema and schema
that link a program or subprogram to the Data Base Management
System

The Communication Section, which defines the special data
items that 1link a program or subprogram to the Message
Control System (MCS-10) or the Transactional Processing
System (TPS-20)

The Working-Storage Section, which contains any fixed values
and the working areas in which intermediate data can be
stored

The Linkage Section, which describes the data in a subprogram
that is available from a calling program

The Report Section, which describes the data and format of a
report

THE DATA DIVISION

Unused sections of the Data Division may be omitted. However, the
sections which are included must be in the following order:

FILE SECTION.

SCHEMA SECTION.
COMMUNICATION SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

REPORT SECTION.

4.1 FILE SECTION

The File Section begins with the section-header FILE SECTION. Iif
present, it must be the first section in the Data Division. 1In the
File Section, the characteristics of each file to be ©processed are
described by two types of entries, the file description and the record
description.

The first type of entry, the file description, describes the physical
aspects of the file. These aspects include:

1. How the logical data records of the file are physically
grouped into blocks on the file medium

2. The maximum length of a logical record, which cannot exceed
4095 characters

3. Whether or not the file contains header and trailer labels
and, if so, whether the format of these labels is standard or
nonstandard

4. The names of the records contained in the file

5. The names of any reports in the file

The second type of entry, the record description, describes the data
formats of the logical records in the files.

4.1.1 Record Descriptions

Following the FD file-name entry for a file, or the SD file-name entry
for a sort file, a record description is given for each different
record format in the file. A record description consists of a set of
data description entries which describe a particular logical record.
Each data description entry consists of a level-number followed by a
data-name (or FILLER) which is followed, as required, by a series of
descriptive clauses. The general format of a data description entry
can be found in Section 4.9.11.

A record description begins with a level-01 entry:
01 data-name
A complete record description may be as simple as
01 data-name PICTURE picture-string.
or it may be more complek, where the 0l-level is followed by a 1long

series of data description entries of varying hierarchies that
describe various portions and subportions of the record. A (0Ol-level

4-2

THE DATA DIVISION

data-name in the File Section cannot be explicitly redefined using the
REDEFINES clause. However, because a file has only one record area,
if more than one data-name is specified, they implicitly redefine the
first data-name.

4.1.2 Elementary Items and Group Items

The basic user-defined datum in a COBOL program is called an
elementary item; it may be referenced directly only as a unit. An
elementary item may combine with contiguous elementary items to form
sets of data items called group items. Group items may combine with
other group items and/or elementary items to form more inclusive group
items. Thus, an elementary item may be contained within one or more
group items, and a group item may contain more than one elementary
item.

4.1.3 Level Numbers

Level numbers indicate a hierarchy of data items. The highest level
is 01, which signifies that the data item is a record within a file
named in an FD clause (or is a contiguous area in the Working-Storage
Section). Level numbers of 02 through 49 indicate items that are
subordinate to a 0l-level data item. For example, an employee record
can be described in the following manner:

01 EMPLOYEE-RECORD.
02 NAME.
03 FIRST-NAME PICTURE IS A(6).
03 MIDDLE-INITIAL PICTURE IS A.
03 LAST-NAME PICTURE IS A(20).
02 BADGE-NUMBER PICTURE IS X(5).
02 SALARY-CLASS PICTURE IS X(2).

Within a record description, the level numbers indicate which items
are contained within higher-level items. 1In the above example, the
items that have a 03 level are subordinate to NAME, which has a 02
level, which is in turn subordinate to EMPLOYEE-RECORD, which has a 01
level. The example also shows elementary items (those that contain
PICTURE clauses) contained within group items. In this example,
EMPLOYEE-RECORD is a group item, NAME is a group item contained within
a group item, and FIRST-NAME is an elementary item contained within
the group item NAME. An item at 01 level is not required to be a
group item; it may be an elementary item as long as it is referenced
as a unit. For example:

01 EMPLOYEE-RECORD PICTURE IS X(34).

shows the same record as above, but in this case the record is always
operated on as a single entity.

Three other level numbers are available to the COBOL programmer: 77,
66, and 88.

Items with a level number of 77 are noncontiguous elementary data
items that are defined only in the Working-Storage Section to define
constant values or to store intermediate results. Defining a level-77
item is the equivalent of defining a level-01l elementary item.

Level-66 data items are those items that contain an explicitly
specified portion of a record already defined, or even the whole

4-3

THE DATA DIVISION

record. A data item with a level number of 66 is used in a RENAMES
clause to regroup items within a record. After a record is described,
a level-66 item RENAMES a portion of that record. The 1level-66 data
item can be a regrouping of the whole record, a group within the
record, or a combination of group and elementary items. For example:

01 EMPLOYEE-RECORD
02 NAME
03 FIRST-NAME...
03 MIDDLE-INITIAL...
03 LAST-NAME...
02 BADGE-NO...
02 SALARY-CLASS...
66 PERSONNEL-REC RENAMES NAME THRU BADGE-NO.
66 PAY-REC RENAMES LAST-NAME THRU SALARY-CLASS.

When the level-66 item PAY-REC is referenced, the items LAST-NAME,
BADGE-NO, and SALARY-CLASS are referenced as a unit. The programmer
can thus regroup portions of a record for differing purposes.

Level-88 items are condition-names that cause a value or a range of
values to be associated with a data item. The condition-name may then
be used in place of the relation condition in conditional expressions
in the Procedure Division. For example:

03 BADGE-NO...
88 FIRST-BADGE VALUE IS A(001l.
88 LAST-BADGE VALUE IS 79999.

In a comparison, the following statements would then be equivalent:

Conditional Variable Condition-Name
IF BADGE-NO IS EQUAL TO AQ001... IF FIRST-BADGE...
IF BADGE-NO IS EQUAL TO %9999... IF LAST-BADGE...

4.2 SCHEMA SECTION

In the Schema Section, either an INVOKE statement or an ACCESS
statement specifies the names of the sub-schema and schema to be
processed.

The Schema Section begins with the section-header SCHEMA SECTION and
must follow the File Section, if present.

If the installation does not include DBMS, the Schema Section cannot
be used.

A description of the contents of the Schema Section will be found in
the Data Base System Programmer's Procedures Manual.

4.3 COMMUNICATION SECTION

The Communication Section contains the definitions of input and output
communication-description entries.

CD entries define records called CD records which contain special data
items used to link the program to the Message Control System for users
of TOPS-10 or the Transactional Processing System for users of
TOPS-20.

4-4

THE DATA DIVISION

The Communication Section begins with the section-header COMMUNICATION
SECTION and must follow the File Section and precede the Report
Section. The Communication Section must also follow the Schema
Section if both are present.

If your TOPS-10 installation does not include MCS, or your TOPS-20
installation does not have TPS, the Communication Section cannot be
used.

Details of the Communication Section entries will be found in the
Message Control System Programmer's Procedures Manual for users of
TORPS-10, and the Transactional Processing System Programmer's
Procedures Manual for users of TOPS-20.

4.4 WORKING-STORAGE SECTION

The Working-Storage Section defines (1) data that is stored when the
object program is loaded, and (2) areas used for intermediate results.
The Working-Storage Section is similar to the File Section, except
that the Working-Storage Section can contain level-77 items and cannot
contain FD, SD, RD, CD, or SCHEMA entries.

The Working-Storage Section begins with the section-header
WORKING-STORAGE SECTION.

The maximum size of a record in Working Storage is 4095 characters.

4.5 LINKAGE SECTION

The Linkage Section describes data available from a calling program
and can appear only 1in a subprogram. The structure is the same as
that of the Working-Storage Section with the following restrictions:

1. The VALUE clauses can only be used in condition-name entries.

2. The data-names used in the VALUE OF IDENTIFICATION (or 1ID),
the VALUE OF DATE-WRITTEN, and the VALUE OF USER NUMBER
cannot appear in this section.

3. The OCCURS clause with the DEPENDING phrase cannot be defined
in this section.

4. The RECORD KEY and RELATIVE KEY data items cannot be defined
in this section.

Data described in the Linkage Section of a subprogram is not allocated
storage space. Instead, at link-time, the LINK program sequentially
equates the Linkage Section identifiers (listed in the USING clause of
the ENTRY statement within the subprogram or in the USING clause of
the Procedure Division header within the subprogram) to the calling
program identifiers (listed in the USING clause of the CALL statement
within the calling program). Thus, when the Procedure Division of a
subprogram executes, references to the Linkage Section data refer
instead to the calling program data.

THE DATA DIVISION

Thus:
CALLING PROGRAM CALLED PROGRAM
DATA DIVISION. DATA DIVISION.
FILE SECTION. FILE SECTION.
FD... LINKAGE SECTION.
01 MAIN... 01 SUB...
02 MAIN1... 02 SUBl...
02 MAIN2... 02 SUB2...
PROCEDURE DIVISION. PROCEDURE DIVISION.
. ENTRY ENTRPT USING SUB,
. SUB1, SUB2.
CALL ENTRPT USING MAIN, .
MAIN1, MAIN2Z2. .
. EXIT PROGRAM.

The identifier MAIN is defined in the File Section of the calling
program; the identifier SUB is defined in the Linkage Section of the
called program. When the Procedure Division of the called program
executes, references to SUB refer instead to MAIN, references to SUBl
refer to MAIN1l, and so on through the list. See the COBOL-74 Usage
Material, Part 3 of this manual, for more information about
subprograms.

Each 01~ or 77-level item in the Linkage Section must have a unique
name because it cannot be qualified. Also, each 01- and 77-level item
must correspond to a word-aligned item of the same size or larger in
the calling program. Word-aligned items start at the beginning of a
computer word. All 01- and 77-level items fulfill this requirement;
any items that do not can be made to do so by means of the
SYNCHRONIZED LEFT statement.

4.6 REPORT SECTION

The Report Section defines reports by describing the physical
appearance of the particular format and data rather than by specifying
the procedure used to produce the report.

The data for a report can be read from a file or another part of the
program or can be summed within the Report Section. The format of the
report is given in the record description and report group entries in
the Report Section.

The Report Section begins with the section-header REPORT SECTION, and
must follow the File Section, the Working-Storage Section and the
Linkage Section.

4-6

THE DATA DIVISION

The Report Section contains the descriptions of one or more reports
and the report groups that make up each report. '

Report groups are the basic elements of a report. Each report group
is divided into report lines, which are in turn divided into fields.
The report groups that can appear in a report are:

REPORT HEADING printed once at the beginning

REPORT FOOTING printed once at the end

PAGE HEADING printed at the beginning of each page

PAGE FOOTING printed at the end of each page

DETAIL printed for each set of report data

CONTROL HEADING printed at the beginning of each detail

report group when a control break occurs

CONTROL FOOTING printed at the end of each detail report
group when a control break occurs

The detail report groups contain the data items that constitute the
report. Data items within a detail group can be designated by the
programmer as controls. These control items are in descending order
of rank from final, through major, intermediate, to minor. Each time
a control item changes, a control break is said to occur; the control
footings for the detail group are printed, and control headings for
the next detail group are printed before the next detail group is
printed. A FINAL control break occurs twice during the generation of
a report, before the first detail line is printed and after the 1last
detail 1line 1is printed. The most major control break happens least
often and the most minor control break happens most often. If the
most minor control field breaks, the control footing for that control
field is generated, and the control heading for the next detail group
for that control is generated. 1If a more major control field breaks,
the control footings for all fields more minor than that which broke
are generated, starting with the most minor and continuing up to the
control footing for the control that broke. The control headings are
then printed starting with the control field that broke and continuing
through the most minor control field. An example of a skeleton report
follows.

THE DATA DIVISION

REPORT HEADING

PAGE HEADING

CONTROL HEADING (FINAL)
CONTROL HEADING (MAJOR)
CONTROL HEADING (MINOR)
DETAIL GROUP

CONTROL FOOTING (MINOR) (control break occurred)
CONTROL HEADING (MINOR) .
DETAIL GROUP

CONTROL FOOTING (MINOR)

CONTROL FOOTING (MAJOR) (control break occurred)
CONTROL HEADING (MAJOR)

CONTROL HEADING (MINOR)

DETAIL GROUP

CONTROL FOOTING (MINOR)

CONTROL FOOTING (MAJOR)

CONTROL FOOTING (FINAL) (control break occurred)
PAGE FOOTING

REPORT FOOTING

Within a report file, more than one report can be written. If more
than one report 1is written in a file, the names of all the reports
must be specified in the REPORTS clause of the file description entry,
and a unique code must be specified for each report by means of the
CODE clause in the Report Description of each report. The code must
also be identified in the SPECIAL-NAMES section of the Environment
Division.

To print one of the reports within a report £file, you enter the
filename and the code of the desired report into the print queue using
the PRINT command and specifying the code with the REPORT switch, as
follows:

PRINT file-specifier/REPORT:code

Only the first 12 characters of the code will be accepted in the PRINT
command string.

Included in the description of a report are the number of lines on a
report page, where headings should begin on the page, where footings
should end, the column on the page where each item in a report group
should be placed, and the number of lines which should be left between
report groups.

To cause a report to be printed, in addition to specifying its format
and data in the Data Division, you must include certain verbs in the
Procedure Division. These verbs are: INITIATE, which initializes the
report and sets sum counters to zero; GENERATE, which causes report
groups to be generated on specified control breaks; and TERMINATE,
which ends the report. An additional statement, USE BEFORE REPORTING,
causes programmer-specified procedure to be performed before a report
group is produced.

THE DATA DIVISION

4.7 QUALIFICATION

Any data item that is to be referenced must be uniquely identified.
This unique identification can be achieved by the assignment of a
unique name to each item. However, in many applications this is
tedious and inconvenient (1) because of the large number of names
required, and (2) because items containing the same type of
information in different records would have different names.
Therefore, qualification is introduced to allow similar items and
certain records to have identical names.

Qualification means giving enough information about the item to
specify it uniquely. In COBOL, this information is the name of the
group items containing it, in order of increasing inclusiveness. It
is not necessary to name each group containing it, but only enough
groups so that no other item with the same name as the original item
could be identically qualified. It is also unnecessary to name each
successively higher group containing the item until a unique
qualification is made. Any set of names that uniquely describe the
item is sufficient.

Example:
01 RECORD-1. 01 RECORD-2.
02 ITEM-1. 02 ITEM-2.
03 SUB-ITEM. 03 SUB-ITEM.
04 ‘FIELD PIC X. 04 FIELD PIC X.

FIELD in the left-hand example can be referenced uniquely in any of
the following ways:

FIELD OF SUB-ITEM OF ITEM-1 OF RECORD-1.
FIELD OF SUB-ITEM OF ITEM-1.

FIELD OF SUB-ITEM IN RECORD-1.

FIELD IN ITEM-1 OF RECORD-1.

FIELD IN RECORD-1.

FIELD IN ITEM-1.

The connectives OF and 1IN are equivalent and may be used
interchangeably.

The only data items which need to have unique names are level-77 items
and records not associated with files, since they are not contained in
any higher level data structure. Records associated with files may be
qualified by the £file name, as may any item contained within the
record. File names must be unique.

Level-66 items may be qualified only (1) by the name of the record
with which they are associated and (2) by the name of any file with
which that record is associated.

4.8 SUBSCRIPTING AND INDEXING

It may sometimes be more convenient for you to specify a set of data
values as a table rather than assign a name to each element of the
set. A table (or array) is a set of homogeneous items stored together
in memory for wuse by the program. You define the table elements in
the program by specifying an OCCURS clause in the description of a
data item. The data item thus defined represents not one item but a
set of items having the identical format. Subscripting and indexing
are used to refer to one of the elements of the set. In DIGITAL
COBOL-74, subscripting and indexing are identical in use and can be

4-9

THE DATA DIVISION

used interchangeably. However, the manner in which they are defined
differs. Subscripting is defined simply by the fact that an item has
an OCCURS clause in its description. For example,

01 RATE-TABLE.
02 VOLUME OCCURS 25 TIMES.

describes VOLUME as 25 elements of RATE-TABLE. If you wish to refer
to one of the elements of this set you must qualify the data-name with
a subscript. Thus, VOLUME (10) is the tenth element (or occurrence) of
VOLUME. A subscript can be either an integer or a data-name to which
an integer value has been assigned. Thus, when DIST has been assigned
to value 10, VOLUME (DIST) is the same as VOLUME (10).

To specify indexing you must add the INDEXED BY option to the OCCURS
clause. Thus,

01 RATE-TABLE.
02 VOLUME OCCURS 25 TIMES INDEXED BY IND.

defines VOLUME as 25 elements of the table and defines IND as the
index by which each element of the table can be indexed; that is,
VOLUME (IND) is an element in the table. The index-name IND 1is
treated exactly like the data-name DIST because the compiler
recognizes an index-name as being exactly the same as a data-name. An
item defined as an index in an OCCURS clause has an implicit usage of
INDEX, and is equivalent to a data item that is declared USAGE INDEX.
However, this wusage 1is included in DIGITAL COBOL for compatibility
with other compilers because an item whose usage is INDEX (implicit or
explicit) 1is treated as if its usage were COMPUTATIONAL. In fact, a
data-name that is used as a subscript can be explicitly declared as
USAGE 1INDEX; it will be treated as a COMPUTATIONAL data item by the
compiler.

COBOL-74 tables can be one, two, or three dimensions. The number of
dimensions 1is defined by the number of subscripts or indexes required
to refer to an individual item. For example,

C(1,3)

represents the item located in the first row and third column of a
2-dimensional table which is defined by the Data Division entries

01 TABLEA,
02 ROW OCCURS 20 TIMES.
03 COLUMN OCCURS 5 TIMES.

The subscript/index must be enclosed in parentheses and must appear
immediately after the terminal space that follows the data-name.
Multiple subscripts/indexes are separated by a comma or by a space.
No spaces can appear immediately following the left parenthesis or
immediately preceding the right parenthesis. When referring to
elements in multi-dimensional tables, subscript/indexes are written
from left to right in the order of major (subscript/index varying
least rapidly), intermediate, and minor (subscript/index varying most
rapidly). The major index corresponds to the item written with the
smallest 1level-number, that 1is, the most inclusive item. As an
illustration, consider a table having a major element occurring 10
times, an intermediate element occurring 5 times within each
occurrence of the major element, and a minor element occurring 3 times
within each intermediate element. The last major element of the table
is referred to by the subscript form (10,1,1), while the final element
of the table is referred to by (10,5,3).

THE DATA DIVISION

There are two forms of subscripting/indexing: direct and relative.
Direct subscripting/indexing means that the subscript/index refers
directly to the desired element. Relative subscripting/indexing means
that the element of the table 1is referred to indirectly by a
subscript/index to which an integer is added or subtracted. The form
for direct subscript/indexing is shown in Figure 4-1.

data-name ({ gubscript [{ ,gubscript I] .)
index , index

Figure 4-1 Direct Subscripting/Indexing

In relative subscripting/indexing, the subscript/index is followed by
the operator plus (+) or minus (-) followed by an unsigned integer
numeric literal - all enclosed in the parentheses immediately
following the terminal space of the data-name. The form for relative
subscripting/indexing is shown in Figure 4-2.

subscript + - ,subscript + .
data-name index } [_ } integer l index ' { _ } integer

Figure 4-2 Relative Subscripting/Indexing

When you use relative subscripting/indexing, the element of the table
that you refer to is not the one to which the subscript/index refers,
but the element to which the subscript/index plus or minus the integer
refers. That is, if the item

VOLUME (IND + 2)

is specified, and IND is set at 3, the fifth occurrence of VOLUME is
referred to, not the third. However, the value of the subscript/index
is not changed by relative subscripting/indexing; the value of IND
remains 3.

When you need to qualify a table element for uniqueness, you should
use the format for direct subscripting/indexing shown in Figure 4-3.

o
b

data-name { : data-name-1 | ... { subscript } { ssubscript }

index ,index

—
=

Figure 4-3 Qualified Direct Subscripting/Indexing

THE DATA DIVISION

For example, to refer to ANAME in the following sample:
01 AREC1.
02 AGROUP1 OCCURS 5.
03 ASUBGROUP1 OCCURS 10.
04 ANAME PIC X(5) OCCURS 20.
you could specify the following:

ANAME OF ASUBGROUP1 OF AGROUP1 OF AREC1 (I,J,4)

NOTE

Subscripts may not be subscripted.

4-12

THE DATA DIVISION

4.9 DATA DIVISION CLAUSES

The clauses which make up the Data Division are presented 1in the
following pages. The function, syntax, and details of each clause are
described, and the general format of the clause is -included. The
clauses are presented in the order in which they appear in the general
formats at the end of this chapter, that is, in the order in which
they occur in the Data Division. The formats of some clauses contain
other clauses. When this is the case each clause which is subordinate
is described separately on succeeding pages.

4-13

THE DATA DIVISION

FILE DESCRIPTION (FD)

4.9.1 File Description (FD)

Function

The File Description (FD) furnishes information concerning the
physical structure, identification, and record names pertaining to a

given file.
General Format
DATA DIVISION.
[FILE SECTION.
[:EQ file-name

{ELOCK CONTAINS [linteger-1 TO] integer-2 { Nk {]

I:}ECORD CONTAINS [Ginteger-3 T0 | integer-4 CHARACTER%]

RECORD IS STANDARD
LABEL { RE CORDS ARE} { OMITTED
record-name-1

IDENTIFICATION | data-name-1
VALUE OF [{ID } IS {1itera1-1 }}

data-name-2 -data-name-3
DATE-WRITTEN IS {]iteral-Z %J [?SER-NUMBER IS {1itera]-3 {}

-

RECORD IS
DATA {'ﬁﬁﬁﬁﬁﬁs ARE} data-name-4 [}ata-name-s:] ...:]

~ —
data-name-6 data-name-7
LINAGE IS {integer-5 } LINES WITH FOOTING AT {integer—s g]

data-name-8 data-name-9
[EINES AT TOP v{integer-7 } [}lNES AT BOTTOM {integer-B g]

[?ODE-SET IS a]phabet—name:]

[: {EEEg;;SIZRE} report-name-1 [}eport-name-%] ..C}

4-14

THE DATA DIVISION

FILE DESCRIPTION (FD) (Cont.)

B ASCII \ |
SIXBIT
BINARY
RECORDING | MODE IS [:év £ MOD%] F
V .
STANDARD-ASCII
B STANDARD ASCIT
200
556 00D
DENSITY IS 800 PARITY IS {EVEN}
1600

The clauses shown in the General Format appear in alphabetical order
on the following pages.

Technical Notes

1. An FD entry must be present for each file-name selected in
the FILE-CONTROL paragraph of the Environment Division.

2. All semicolons and commas are optional. The entire FD entry
must terminate with a period.

3. The clauses may appear 1in any order within the File
Description entry.

4. The ability to place the RECORDING MODE clause in the FD has
been provided for compatibility with other manufacturers. If
you specify the RECORDING MODE clause for a file in the FD,
you cannot also specify it in the File-Control paragraph for
that file in the Environment Division. Also, if you wish to
use the RECORDING DENSITY and RECORDING PARITY clauses, you
must put them 1in the File-Control paragraph in the
Environment Division, even if the RECORDING MODE clause is in
the FD. The description of the RECORDING MODE clause can be
found in Section 3.1.13.

5. The maximum number of files that can be open at one time is

16. ISAM files count as two files: one index (.IDX) file
and one data (.IDA) file.

4-15

THE DATA DIVISION

BLOCK CONTAINS

4,9.2 BLOCK CONTAINS

Function

The BLOCK CONTAINS clause specifies the size of a logical block.

"General Format

CHARACTERS

——

ELOCK CONTAINS [integer-1 T0] integer-2 {RECORD(s) }:l

Technical Notes

1.

If you do not include this clause, or if you specify that
integer-2 1is zero, the file will not be organized into
logical blocks when it is written. Rather, all records will
be placed in the file with no empty space. The file is then
considered to be "unblocked" or "blocked zero".

If you use the CHARACTERS option, you specify the 1logical
block size in terms of the number of character positions
required to contain the record. If the recording mode is
ASCII (that 1is, all records for the file are described,
explicitly or implicitly, as USAGE DISPLAY-7), the compiler
assumes that the size 1is specified in terms of ASCII
characters. If the recording mode is SIXBIT (that 1is, the
records for the file are all described, explictly or
implicitly, as DISPLAY-6), the compiler assumes that the size
is specified in terms of SIXBIT characters. If the recording
mode is F or V (that is, the data is recorded on the medium
as EBCDIC characters), the compiler assumes that the size is
specified in terms of EBCDIC characters, either fixed- or
variable-length. When variable-length EBCDIC records are
used (that is, the recording mode is V), the number of
records in a block is also variable. If the blocking factor
is not zero, the number of records in a block 1is determined
by dividing the block size in characters by the number of
characters in the longest record as specified by the FD
statement. For example, if the FD statement specifies a
maximum record 1length of 248 characters and the BLOCK
CONTAINS 2400 CHARACTERS <clause 1is wused, the number of
records in a block will be 9.

Integer-1 and integer-2 must be positive integers. If you
specify only integer-2, it represents the exact size of the
logical block. If you specify both integer-1 and integer-2,
integer-1 1is 1ignored and integer-2 is used as the blocking
factor.

Files whose organizations are RELATIVE or INDEXED must have a
nonzero blocking factor.

4-16

THE DATA DIVISION

CODE-SET

4.9.3 CODE-SET

FUNCTION

The CODE-

SET clause specifies the character code set used to represent

data on the external media.

General Format

I:CODE-SET IS al phabet-name:l

Technical Notes

1.

When you specify the CODE-SET clause for a file, you must
describe all data in that file as USAGE IS DISPLAY. You must
also describe any signed numeric data with the SIGN IS
SEPARATE clause.

The alphabet-name clause referenced by the CODE-SET clause
must not specify the literal phrase.

You may specify the CODE-SET clause only for files not
residing on mass storage media.

The CODE-SET clause is included only for compatability, since
ASCII 1is the only alphabet-name allowed, and ASCII is also
the default.

If you include the CODE-SET clause, alphabet-name specifies
the character code convention used to represent data on the
external media. It also specifies the algorithm for
converting the character codes on the external media from or
to the native character codes. This code conversion occurs
during the execution of an input or output operation.

If you omit the CODE-SET clause, the ASCII character set is
assumed for data on the external media.

4-17

THE DATA DIVISION

DATA RECORD

4.9.4 DATA RECORD

Function

The DATA

RECORD clause cross-references the record-name with its

associated file.

General Format

RECORD IS
E)ATA {ms ARE} data-name-4 I:data-name-sj :]

Technical Notes

1.

This clause is optional because all records in the FD entry
are assumed to be data records. ’

All records within a file share the same area.

All record-names must be specified in 0l-level data entries
subordinate to this FD entry. The presence of more than one
such record-name indicates that the file contains more than
one type of data record. These records may have different
descriptions. The order in which they are 1listed 1is not
significant.

4-18

THE DATA DIVISION

FD File-name

4.9.5 FD File-name

Function

The FD file-name clause identifies the file to which this
description entry and the subsequent record descriptions relate.

General Format
[ﬂg fﬂe-name]

Technical Notes
1. This entry must begin each file description.

2. The file-name must appear in a SELECT statement in
File-Control paragraph of the Environment Division.

4-19

file

the

THE DATA DIVISION

LABEL RECORD

4.9.6 LABEL RECORD

Function

The LABEL RECORD clause specifies whether or not labels are present on

the file

and, if they are, identifies the format of the labels.

General Format

OMITTED

RECORD IS } STANDARD }

LABEL { RECORDS ARE

record-name-1

Technical Notes

1.

2.

If you omit the clause, LABEL RECORDS ARE STANDARD is
assumed.

You should use the OMITTED option when the file has no header
or trailer labels.

You should use the STANDARD option when the file has header
and trailer 1labels that conform to the standard format. If
the file you are describing is on disk or DECtape, you must
either specify LABEL RECORDS ARE STANDARD, or omit the clause
altogether allowing the default to take over. See the VALUE
OF IDENTIFICATION clause for the association between the
label and the filename on disk or DECtape.

The standard label for DECtape and disk 1is the directory
block used by the monitor. For magnetic tape, if the file is
recorded in SIXBIT, the standard 1label is 78 SIXBIT
characters in 1length and is written in a separate physical
record from the data. If the recording mode 1is ASCII, the
label contains 78 ASCII characters, plus carriage return and
line feed, for a total of 80 characters. Table 4-1 shows the

.contents of each character in a standard 1label for

nonrandom-access devices.

Magnetic tapes are the only devices with ending labels. Each
ending 1label 1is preceded by and followed by an end-of-file
mark.

Files whose recording mode is F or V (fixed- or variable-
length EBCDIC) must have LABELS RECORDS ARE OMITTED if they
are on magnetic tape. If they are on disk or DECtape, they
are assumed to have DECsystem-10 standard labels.

THE DATA DIVISION

LABEL RECORD (Cont.)
5. If PULSAR is running on your TOPS-10 system, you must perform
a MOUNT to get a tape. PULSAR writes labels in a different
format from the label format explained here. (Refer to the
reference material provided with PULSAR for more
information.) PULSAR labeling depends on the type of
labeling you specify at MOUNT time. It is recommended that
you make the LABEL RECORD clause and the value specified for
the /LABELS: switch on the mount agree.
LABEL RECORDS can have two values: STANDARD and OMITTED.
These values have the following equivalents in PULSAR
labeling: /LABELS:STANDARD; /LABELS:NONE. You must specify
the PULSAR 1label on the mount and the COBOL label in your
program.
If you use STANDARD in your program, that 1is equivalent to
/LABELS : STANDARD in PULSAR.
If you use OMITTED in your program, that is equivalent to
/LABELS:NONE in PULSAR.
Table 4-1
Standard Label for Magtapes
Characters Contents
1-4 HDR1 = Beginning File
EOF1 = Ending file
EOV1 = Ending reel
5-13 Value of identification
14-21 Always spaces
22-27 Not used
28-31 Reel number; the first reel is always 0001
32-41 Not used
42-47 Creation date; two characters each for the
year, month, and day, respectively
48-78 Not used
79-80 Carriage-return/line-feed if file is ASCII (Note
that this is on the label only; it is not kept
internally.) '

4-21

THE DATA DIVISION

RECORD CONTAINS

4.9.7 RECORD CONTAINS
Function
The RECORD CONTAINS clause specifies the size of the data

the file to which it refers.

General Format

[RECORD CONTAINS I:integer‘-3 T_Q_] integer-4 CHARACTERS:I

Technical Notes

1. Since the record description entry completely 4

records

efines

in

the

size of the data record, this clause is never required.
However, if you use it, it replaces the record description

entry in setting the size of the record.

2. Integer-l1 and integer~2 must be positive integers.
cannot exceed 4095, which is the 1limit on the
record. Integer-2, if specified, must be 1
integer-1.

3. The data record size is equal to the number of
positions required to contain the record.

Integer-2
may not be 1less than the size of the largest record but

size of
than

arger

a

character

THE DATA DIVISION

REPORT

4.9.8 REPORT

Function

The REPORT clause specifies the name of each report that is associated
with the file.

General Format

[: {%%g%%%SIiRE} report-name-1 [}eport-name-%] ..;]

Technical Notes

1. This clause is optional; it is used only when Report-Writer
statements cause output to be written on the file.

2. Report-name-1 and report-name-2 must be the names of Report
Descriptor items in the Report Section.

3. If you use this <clause, you may omit the data record
description because the name of the data record is not
referred to directly in the Procedure Division. When the
data record description is omitted, the compiler
automatically assumes a 132-character record.

THE DATA DIVISION

SD File-name

4.9.9 SD File-name

Function

The SD file-name clause identifies the sort file to which this file
description entry and the subsequent record description relate.

General Format

[:§Q file-name
[:RECORD CONTAINS [}nteger—l IQ] integer-2 CHARACTER{]

RECORD IS) .
[:FATA {RECORDS ARE} data-name-1 [gata name i] ...i] .
E}ecord-description-entry} ..:] ...i}

Technical Notes
1. The SD entry must begin each sort file description.

2. The file-name must appear in a SELECT statement in the
FILE-CONTROL paragraph of the Environment Division.

3. The DATA RECORD and RECORD CONTAINS clauses are the only
descriptive clauses allowed.

4-24

THE DATA DIVISION

VALUE OF IDENTIFICATION/DATE-WRITTEN/USER-NUMBER

4.9.10 VALUE OF IDENTIFICATION/DATE-WRITTEN/USER-NUMBER

Function

The VALUE OF IDENTIFICATION clause provides specific data for an item
within the 1label records associated with a file. The VALUE OF
DATE-WRITTEN clause specifies a date which the file label must contain
to be processed by the program. The VALUE OF USER-NUMBER clause
provides a project-programmer number to be checked against the file
label before processing.

General Format

IDENTIFICATION | data-name-1
VALUE OF BI_Q } IS {11‘tera1-1 }]
] data-name-2 data-name-3

Technical Notes
1. ID may be substituted for IDENTIFICATION.

2. The VALUE OF IDENTIFICATION clause is required only if label
records are standard; it is ignored in all other cases. The
VALUE OF DATE-WRITTEN and the VALUE OF USER-NUMBER are always
optional.

3. The three clauses can be written in any order, but only one
' of each can be specified for a file.

4. IDENTIFICATION represents the file-name and extension of a
file with standard labels. 1If a data-name is specified, it
must be associated with a DISPLAY, DISPLAY-6, DISPLAY-7, or
DISPLAY~-9 data item nine characters in length. 1If a literal
is specified, it must be a nonnumeric literal nine characters
in length. The first six characters are taken as the
file-name, and last three characters are taken as the
extension. The programmer must provide spaces as required to
conform to this convention. The period which the system
prints between the file-name and the extension must not be
included in the VALUE OF IDENTIFICATION clause.

THE DATA DIVISION

VALUE OF IDENTIFICATION/DATE-WRITTEN/USER-NUMBER (Cont.)

Examples:
a. VALUE OF IDENTIFICATION IS "COST TST"

b. VALUE OF IDENTIFICATION IS FILE-1-NAME
(WORKING-STORAGE SECTION.)

77-FILE-1-NAME PICTURE IS X (9).

DATE-WRITTEN represents the date that a file (with STANDARD
labels) was written. If a data-name is specified, it must be
associated with a DISPLAY, DISPLAY-6, DISPLAY-7 or DISPLAY-9
data item six characters in 1length. If a 1literal is
specified, it must be a nonnumeric literal six characters in
length. The first two characters are taken as year, the next
two as month, and the last two as day. The DATE-WRITTEN
clause 1is ignored when the file 1is OPENed for output;
instead, the current date is used.

Examples:

a. VALUE OF IDENTIFICATION IS "RANDOMXYZ", DATE-WRITTEN IS
760112

b. VALUE OF IDENTIFICATION IS "DATA ", DATE-WRITTEN 1IS

FILE-1-DATE

(WORKING-STORAGE SECTION.)
77 FILE-1-DATE PICTURE IS 9(6).

USER-NUMBER represents the project-programmer number of the
owner of a disk file; it is ignored for all other devices.
Data-name-3 must be a COMPUTATIONAL item of 10 or fewer
digits in which the project-programmer number is stored.
Literal-3 and literal-4 are numeric literals of six or fewer
digits that are treated as octal. Literal-3 is the project
number and literal-4 is the programmer number.

For input files the VALUEs specified are checked against the
file when it 1is opened. 1ISAM files are checked as soon as
your program 1is run. For output files, the VALUE OF
IDENTIFICATION is written when the file is opened. If the
specified values do not match a file on the selected medium,
a run-time error message is issued.

If the access mode is INDEXED and data-name-~1l is used in the
VALUE OF IDENTIFICATION clause, data-name-l1 must contain the
filename and extension of the index-file for the
indexed-sequential file being referenced. The contents of
data-name-1 may not be altered during program execution. You
need not specify the identification for the data file of an
indexed~sequential file because this identification is stored
in the index file.

THE DATA DIVISION

VALUE OF IDENTIFICATION/DATE-WRITTEN/USER-NUMBER (Cont.)

If data-name-3 is used to represent the project-programmer
number, you must be aware that the value of data-name-3 is
treated as decimal, even though the project-programmer number
is octal. The data-name-3 value will be translated from
decimal to binary by the COBOL conversion routine. Thus, the
project-programmer will not be accurate unless you provide a
conversion routine in your ©program to convert your octal
project-programmer number to its decimal equivalent so that
it will be converted to the <correct binary number. The
following example is a suggested method for performing the
conversion.

77 ERR-FLAG PIC 9, USAGE COMP.
77 HALF-NUM, PIC S9(7), USAGE COMP.
77 OCTAL-PPN, PIC S9(10), USAGE COMP.
77 DIGIT, - PIC 9.
01 PP-NUMBER.

02 PROJ-NUMBER, PIC 9(6).

02 PROG-NUMBER, PIC 9(6).

02 EITHER-NUM, PIC 9(6).

02 X REDEFINES EITHER-NUM.

03 PP-DIGIT, PIC 9, OCCURS 6 TIMES, INDEXED BY I.

ACCEPT PROJ-NUMBER, PROG-NUMBER.

SET ERR-FLAG TO ZERO.

MOVE PROJ-NUMBER TO EITHER-NUM.

MOVE ZERO TO HALF-NUM.

PERFORM CONVERT VARYING I FROM 1 BY 1 UNTIL I>6.
IF ERR-FLAG IS NOT = 0 GO TO OCTAL-ERROR.
COMPUTE OCTAL-PPN = HALF NUM * 262144.

MOVE PROG-NUMBER TO EITHER-NUM.

MOVE ZERO TO HALF-NUM.

PERFORM CONVERT VARYING I FROM 1 BY 1 UNTIL I>6.
IF- ERR-FLAG IS NOT = 0 GO TO OCTAL-ERROR.
COMPUTE OCTAL-PPN = OCTAL-PPN + HALF-NUM.

CONVERT.

IF PP-DIGIT (I) = 8 OR 9, SET ERR-FLAG UP BY 1.
COMPUTE HALF-NUM = 8 *HALF-NUM + PP-DIGIT (I).

* THIS ROUTINE INVALID FOR PROJECT NUMBERS LARGER THAN
* 77777.

THE DATA DIVISION

‘'VALUE OF IDENTIFICATION/DATE-WRITTEN/USER-NUMBER (Cont.)

10.

If the access mode is INDEXED and data-name-3 is used to
represent the project-programmer number, the following rules
must be observed:

a.

Data-name-3 must have a value that is the decimal
equivalent of an octal project-programmer number, and
that project-programmer number must contain a file with
the name used in the VALUE OF IDENTIFICATION clause.

Data-name-3 may be altered during program execution only
if all files referenced have identical parameters.

If several files will be read through the same File
Description, data-name-3 . should point to the file with
the largest number of levels of index (this 1is wusually
the largest file).

None of the data-names in the VALUE OF clauses can appear in
the Linkage Section.

4-28

4.9.11

Function

THE DATA DIVISION

DATA DESCRIPTION ENTRY

DATA DESCRIPTION ENTRY

A data description entry describes a particular item of data.

General Format

FORMAT 1:

level-number {

data-name-l}
FILLER

[REDEFINES data-name-2 ___]

|

PICTURE
PIC

:EI_GN] { e,

OCCURS {

i

|

ASCENDING
DESCENDING

{SYNCHRONIZED

USAGE IS ¢

COoM

P

COMPUTATIONAL-1

} IS character-string:]

(COMPUTATIONAL

CoM

P-1

COMPUTATIONAL-3

coM
DIS
DIS
DIS
DIS
IND

LEADING

TRAIL

P-3

PLAY

PLAY-6
PLAY-7
PLAY-9

EX

DATABASE-KEY
DBK

EY

ING

} [SEPARATE CHARACTERj]

integer-1 T0 integer-2 TIMES DEPENDING ON data-name-3 }
integer-2 TIMES

} KEY IS data-name-4 [}ata-name-{] ..;]
[:INDEXED BY index-name-1 [:1ndex name- {] :1]

RIGHT

JUST

)

{JUSTIFIED
-

LEFT

LEFT

5
|

4-29

THE DATA DIVISION

DATA DESCRIPTION ENTRY (Cont.)

FORMAT 2:

66 data-name-1 RENAMES data-name-2 {

FORMAT 3:

THROUGH

THRU } data-name-3

VALUES ARE THRU

88 condition-name {MALQE IS } literal-1 { THROUGH } literal-2

. THROUGH . .
literal-3 [} TRRU } literal 4:]

The clauses shown in the General Format appear in alphabetical order
along with the other Data Division clauses on the following pages.

Technical Notes

1.

2.

Each data description entry must be terminated by a period.
All semicolons and commas are optional.

The clauses may appear in any order, with one exception: the
REDEFINES <c¢lause, when used, must immediately follow the
data-name being redefined.

The VALUE clause must not appear in a data description entry
which also contains an OCCURS clause, or in an entry which is
subordinate to an entry containing an OCCURS clause. The
latter part of this rule does not apply to condition-name
(level-88) entries.

The PICTURE clause must be specified for every elementary
item, except a USAGE INDEX, COMP-1 item, DATABASE-KEY, or
DBKEY.

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO can be specified only at the elementary level.

4-30

THE DATA DIVISION

'BLANK WHEN ZERO

4.9.12 BLANK WHEN ZERO

Function
The BLANK WHEN ZERO clause causes the blanking of an item when its

value is zero.

General Format

[BLANK WHEN ZEROQ]

Technical Notes

1. When the BLANK WHEN ZERO option is used and the item is zero,
the item is set to blanks.

2. BLANK WHEN ZERO can be specified only at the elementary level
and only for numeric or numeric-edited items whose usage is
DISPLAY-6, DISPLAY-7, or DISPLAY-9.

3. An asterisk used as a zero suppression symbol in a PICTURE
clause may not appear in the same entry with the BLANK WHEN
ZERO clause. More comprehensive editing features are
available in the PICTURE clause.

4. When the BLANK WHEN ZERO clause is used for an elementary

item whose PICTURE 1is numeric, the category of the item is
considered to be numeric-edited.

4-31

THE DATA DIVISION

Condition-name (level-88)

4.9.13 Condition-name (level-88)

Function

The condition-name (level-88) entry assigns a name to a value or range
of values of the associated data item.

General Format

88 condition-name {M IS } literal-1 {T_HM} literal-2

VALUES ARE THRU

. THROUGH .
literal-3 [} THRU } 11tera1-4:}

Technical Notes

1.

Each condition-name requires a separate level-88 entry. This
entry contains the name assigned to the condition, and the
value or values associated with that condition.
Condition-name entries must immediately follow the data
description entry with which the condition-name 1is to be
associated.

A condition-name entry can be associated with any elementary
or group item except

a. another condition-name entry, or
b. a level-66 item.
Some examples of possible level-88 entries are given below.

a. 05 B-FIELD PICTURE IS 99.
88 Bl VALUE IS 3.
88 B2 VALUES ARE 50 THRU 69.
88 B3 VALUES ARE 20, 25, 28, 31 THRU 37.
88 B4 VALUES ARE 70 THRU 75, 80 THRU 85, 90 THRU 95.

b. 02 C~-FIELD PICTURE IS XXX.
88 C-YES VALUE IS "YES".
88 C-NO VALUE IS "NO ".

The data item with which the condition-name is associated is
called a conditional variable. A conditional variable may be
used to qualify any of its condition-names. If references to
a conditional variable require indexing, subscripting, or
qualification, then reference to its associated
condition-names also require the same combination of
indexing, subcripting, or qualification.

4-32

5.

THE DATA DIVISION
Condition-name {level-88) (Cont.)

A condition-name is used in conditional expressions as an
abbreviation for the related condition. Thus, if the above
Data Division entries (Note c) are used, the statements in
each pair below are functionally equivalent.

Relational Expression Condition-Name
a. IF B-FIELD IS EQUAL TO 3.... IF Bl.... "~
b. IF B-FIELD IS GREATER THAN IF B2....

49 AND LESS THAN 70....

c. IF B-FIELD IS EQUAL TO 20 OR IF B3....
EQUAL TO 25 OR EQUAL TO 28
OR GREATER THAN 30 AND 1
LESS THAN 38....

d. IF B-FIELD IS GREATER THAN 69 IF B4....
AND LESS THAN 76 OR GREATER
THAN 79 AND LESS THAN 86 OR
GREATER THAN 89 AND LESS
THAN 96....

e. IF C-FIELD IS EQUAL TO "YES".. IF C-YES

Literal-l must always be less than literal-2, and 1literal-3
less than literal-4. The values given must always be within
the range allowed by the format given for the conditional
variable. For example, any condition-name values given for a
conditional variable with a PICTURE of 999 must be in the
range of 000 to 999.

4-33

THE DATA DIVISION

Data-name/HLLER

4.9.14

Function

Data-name/FILLER

A data-name specifies the name of the data being described. The word
FILLER specifies an unreferenced portion of the logical record.

General Format

lTevel-number {

data-name-l}
FILLER

Technical Notes

1.

2.

A data-name or the word FILLER must immediately follow the
level-number in.each data description entry.

A data-name must be composed of a combination of the
characters A through Z, 0 through 9, and the hyphen. It must
contain at least one alphabetic character and must not exceed
30 characters 1in 1length. It must not duplicate a COBOL
reserved word. Refer to Section 1.2.3.2, User-Defined Words,
for further information.

The key word FILLER is used to name an unreferenced item in a
record (that 1is, an item to which the programmer has no
reason for assigning a unique name). A FILLER item cannot,
under any circumstances, be referenced directly 1in a
Procedureé Division statement. However, it may be indirectly
referenced by referring to a group-level item of which the
FILLER item is a part. FILLER can be used at any level,
including- the 01 level.

4-34

THE DATA DIVISION

JUSTIFIED

4.9.15 JUSTIFIED
Function
The JUSTIFIED clause specifies nonstandard positioning of data within

a receiving data item.

General Format

JUSTIFIED RIGHT
JUST LEFT

Technical Notes

1. The JUSTIFIED clause cannot be specified at a group level, or
for numeric or edited items. If neither RIGHT nor LEFT is
specified, RIGHT is assumed.

2. An item subordinate to one containing a VALUE clause cannot
be JUSTIFIED.

3. DISPLAY, DISPLAY-6, DISPLAY-7 and DISPLAY-9 items can be
JUSTIFIED.

4. The standard rules for positioning data within an elementary
data item are as follows:

a. The receiving data item 1is described as numeric or
numeric-edited (see definition in Notes 7 and 10 under
the PICTURE clause, Section 4.9.18.)

A numeric or numeric-edited item is Jjustified according
to the following rules, thus the JUSTIFIED clause cannot
be used.

The data is aligned by decimal point and is moved to the
receiving character positions with zero fill or
truncation on either end as required.

If an assumed decimal point is not explicitly specified,
the data item is treated as if it had an assumed decimal
point immediately following its rightmost character, and
the sending data 1is aligned according to this decimal
point.

b. The receiving data item is described as alphanumeric or
alphabetic (see definition in Notes 6 and 8 under the
PICTURE clause, Section 4.9.18).

The data is moved to the receiving character positions
and aligned at the leftmost character position with space
fill or truncation at the right end as required.

THE DATA DIVISION

JUSTIFIED (Cont.)

5.

When a receiving item 1is described as JUSTIFIED LEFT,
positioning occurs as in 4a above.

When a receiving data item is described with the JUSTIFIED
RIGHT <clause and 1is larger than the sending data item, the
data is aligned at the rightmost character position in the
receiving item with space fill at the left end.

When a receiving data item is described with the JUSTIFIED
RIGHT clause and is smaller than the sending data item, the
data is aligned at the rightmost character position in the
receiving item with truncation at the left end.

Examples are given below.

.03 ITEM-A PICTURE IS
X(8) VALUE IS "ABCDEFGH".

03 ITEM-B PICTURE IS
X(4) VALUE IS "WXYZ".

03 ITEM-C PICTURE IS X(6).
03 ITEM-D PICTURE IS X(6).
JUSTIFIED RIGHT.

Procedure Division statement Contents of Receiving Field

MOVE ITEM-A TO ITEM-C. [A[B]C|D|E[F]|
MOVE ITEM-A TO ITEM-D. | c[p[E[F[G]H]
MOVE ITEM-B TO ITEM-C. [wix[y]z]afa]
MOVE ITEM-B TO ITEM-D. [a]a]w]x]¥]z]

4~-36

THE DATA DIVISION

Level-number

4.9.16 Level-number

Function

The level-number shows the hierarchy of data within a logical record.
In addition, special 1level-numbers are used for condition-names
(level-88), noncontiguous Working-Storage items (level-77), and the
RENAMES clause (level-66).

General Format

data-name-l}

level-number {FILLER

Technical Notes

1. A level-number is required as the first element in each data
description entry.

2. Level-numbers may be placed anywhere on the source 1line, at
or after margin A.

3. Level-number 88 is described under "condition-name
(level-88)", Section 4.9.13, and level-number 66 is described
under "RENAMES (level-66)", Section 4.9.20.

4, A further description of level-numbers and data hierarchy can
be found in the introduction to this chapter.

4-37

OCCURS

THE DATA DIVISION

4.9.17 OCCURS

Function

The OCCURS clause eliminates the need for separate entries for

repeated

data, and supplies information required for the application

of subscripts and indexes.

General Format

{:?CCURS {

integer-1 TO integer-2 TIMES DEPENDING ON data-name-B}
integer-2 TIMES

Technical Notes

1.

This clause cannot be specified in a data description entry
that has a 66 or 88 level-number, or in one that contains a
VALUE clause.

The OCCURS clause is used to define tables or other
homogeneous sets of repeated data. Whenever this clause is
used, the associated data-name and any subordinate data-names
must always be subscripted or indexed when wused in all
Procedure Division statements.

All clauses given in a data description that includes an
OCCURS clause apply to each repetition of the item.

The integers must be positive. If integer-1 is specified, it
must have a value 1less than integer-2. No value of a
subscript can exceed integer-2; in addition, if the
DEPENDING option is specified, no subscript can exceed the
value of data-name-1 at the time of subscripting.

The value of data-name-1 is the count of the number of
occurrences of the item described by the OCCURS clause; 1its
value must not exceed integer-2.

If the DEPENDING option is specified, the integer-1 TO phrase
must be included. The DEPENDING option must immediately
follow TIMES. Data-name-l1 must be a positive integer, and
for efficiency should be either USAGE INDEX or USAGE COMP,
It cannot be subcripted, and if the <c¢lause appears in the
Linkage Section, data-name-l1 must be either USAGE INDEX or
USAGE COMP.

The KEY IS option indicates that you have sorted the repeated
data into either ascending or descending order according to
the values associated with data-name-2, data-name-3, and so
forth. The data-names are listed in order of decreasing
significance. Note that you must sort the data - it will not
be sorted automatically.

4-38

10.
11.

THE DATA DIVISION
OCCURS (Cont.)

Data-name-2 must be either the name of the entry containing
the OCCURS clause, or the name of an entry subordinate to the
entry containing the OCCURS clause. Data-name-3, etc., must
be the name of an entry subordinate to the group item that is
the subject of this entry.

An index-name defined in a OCCURS clause must not be defined
elsewhere; its appearance in the INDEXED option is its only
definition. There can be no items of the same name defined
elsewhere. The USAGE of each index-name is assumed to be
INDEX.

Subscripting and indexing are described in Section 4.8.

The entire record containing the OCCURS clause must not
exceed 32,767 characters in size; that is, if the record
were completely full of data, the number of characters
required to contain the record would have to be less than or
equal to 32,767.

4-39

PICTURE

THE DATA DIVISION

4.9.18 PICTURE

Function

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

General Format

PICTURE
PIC

} IS character-strin%]

Technical Notes

1. A PICTURE clause may be specified only for an elementary data
item. It may not be used with an item described as USAGE
INDEX, COMP-1, or DATABASE-KEY (DBKEY).

2. PIC may be substituted for PICTURE in the format.

3. A picture string consists of certain allowable combinations
of characters in the COBOL character set used as symbols.
These symbols are as follows:

a. Symbols representing data characters
9 represents a numeric character (0 through 9)
A represents an alphabetic character (A through 2, tab,
and space) :
X represents an alphanumeric character (any allowable
character)
b. Symbols representing arithmetic signs and assumed decimal
point positioning
V represents the position of the assumed decimal point
P represents an assumed decimal point scaling position
S represents the presence of an arithmetic sign
c. Symbols representing zero suppression operations
Z represents standard zero suppression (replacement of
leading zeros by spaces)
* represents check protection (replacement of 1leading
zeros by asterisks)
d. Symbols representing insertion characters
§ represents a dollar sign (this sign floats from left to
right and replaces the rightmost leading zero when more
than one $ appears)!?
1 If the CURRENCY SIGN IS clause appears in the SPECIAL-NAMES

paragraph, the symbol specified by the literal must be used in all
instances in place of the S.

THE DATA DIVISION

PICTURE (Cont.)

represents an insertion comma!l
represents an actual decimal point!
represents an insertion blank
represents an insertion zero
represents an insertion slash

Now. ~

e. Symbols representing editing sign-control symbols

+ represents an editing plus sign

- represents an editing minus sign

CR represents an editing Credit symbol
DB represents an editing Debit symbol

The plus and minus signs (+ and -) float when more than
one appear, and replace the rightmost leading zeroes.

f. Consecutive repetitions of a picture symbol can be
abbreviated to the symbol followed by (n), where n
indicates the number of occurrences. However, some
editing symbols may not be used more than once in a data
item: "S", an, u.u' "CR", and "DB".

4. A maximum number of 30 symbols can appear in a picture
string. Note that the number of symbols in a picture string
and the size of the item represented are not necessarily the
same. There are two reasons for this discrepancy. First,
the abbreviated form for indicating consecutive repetitions
of a symbol may result in fewer symbols in the picture string
than character positions in the item being described. For
example, a data item having 40 alphanumeric character
positions can be described by a picture string of only 5
symbols:

PICTURE IS X (40).

The second reason is that some symbols are not counted when
calculating the size of the data item being described. These
symbols include the V (assumed decimal point), P (decimal
point scaling position), and S (arithmetic sign); these
symbols, with one exception, do not represent actual physical
character positions within the data item. The exception
involves the use of the SIGN IS SEPARATE clause, which causes
the S (arithmetic sign) to take up a character position. If
the clause is omitted, the character-string

S999v99

represents a 5-position data item. However, if the SIGN 1IS
SEPARATE clause ,is included, the character-string would
represent a 6-position item.

Other size restrictions for numeric and numeric-edited items
are given under the appropriate headings below.

5. There are five categories of data that can be described with
a PICTURE clause: alphabetic, numeric, alphanumeric,
alphanumeric-edited, and numeric-edited. A description of
each category is given in the notes below.

1 If the DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES
paragraph, the function of the comma and decimal point is reversed.

4-41

THE DATA DIVISION

PICTURE (Cont.)

6.

l10.

Definition of an Alphabetic Item

Ca.

b.

Its picture string may contain only the symbol A or B.

It may contain only the 26 letters of the alphabet and
the space.

Definition of a Numeric Item

a.

Its picture string may contain only the symbols 9, P, S,
and V. It must contain at least one 9.

The picture string must have from 1 to 18 digit
positions.

It may contain only the digits 0 through 9 and an
operational sign.

Definition of an Alphanumeric Item

a.

b.

Its picture string can consist of all Xs, or a
combination of the symbols A, X, and 9 (except all 9s or
all As). The item is treated as if the character-string
contained all Xs.

Its contents can be any combination of characters from
the complete character set (see Section 1.2.2).

Definition of an Alphanumeric-Edited Item

a.

b.

Its picture string can consist of any combination of As,
Xs, or 9s (it must contain at least one A or one X), plus
at least one of the symbols B, 0 or /.

Its contents can be any combination of characters £from
the complete character set.

Definition of a Numeric-Edited Item

a.

Its picture string must contain at 1least one of the
following editing symbols:

; « *4+ - 0B CRDB $

It may also contain the symbols 9, V, or P. If you use
the CURRENCY SIGN IS clause, the new currency sign you
specify replaces the $ in the above 1list.

The allowable sequences are determined by certain editing
rules for each symbol and can be found in Note 11.

The picture string must have from 1 to 18 digit
positions.

The contents can be any combination of the digits 0
through 9 and the editing characters.

11.

THE DATA DIVISION

PICTURE (Cent.)

The symbols used to define the category of an elementary item
and their functions are as follows:

A

Each A in the picture string represents a character
position which can contain only a letter of the alphabet
or a space.

Each B in the picture string represents a character
position into which a space character will be inserted
during editing.

Examples: (A-FLD contains the value 092469)

B-FLD picture string Result
MOVE A-FLD TO B-FLD 99B99B99 [o]o]a]2]4]a]6]9]
MOVE A-FLD TO B-FLD 9999BBBB [o]a]2]a]a]a]a]a]

Also see Note 15, Simple Insertion Editing.

Each P in the picture string indicates an assumed decimal
point scaling position and is used to specify the
location of an assumed decimal point when the point is
outside the positions defined for the item. Ps are not
counted in the size of the data item. They are counted
in determining the maximum number of digit positions (18)
allowed in numeric-edited items or numeric items. Ps can
appear only to the left or right of the picture string
and must appear together. The assumed decimal point is
assumed to be to the left of the string of Ps if the Ps
are at the left end of the picture string and to the
right of the string of Ps if the Ps are at the right end
of the picture string. If the V symbol is used in this
case, it must appear in either of those positions; 1in
either case, it is redundant.

Examples:

PPP9999 (or VPPP9999) defines a data item of four
character positions whose contents will be treated as
.000nnnn during any decimal point alignment operation
(such as in a MOVE or ADD). 9PPP (or 9PPPV) defines a
data item of one character position whose contents will
be treated as n000 during any decimal point alignment
operation.

An S in a picture string indicates that the item has an
operational sign and will retain the sign of any data
stored in it. The S must be written as the 1leftmost
character in the picture string. If S is not included,
all data will be stored in the item as an absolute value
and will be treated as positive in all operations. The S
symbol is not counted in the size 2f the data item unless
the SIGN IS SEPARATE clause is included, in which case it
occupies one character position.

4-43

THE DATA DIVISION

PICTURE (Cont.)

A

A V in a picture string indicates the 1location of the
assumed decimal point and may appear only once in a
picture string. The V does not represent a physical
character position and is not counted in the size of the
data item. If the assumed decimal point position 1is at
the right of the rightmost character position of the
item, the V is redundant (that is, 9999 1is functionally
equivalent to 9999V).

Each X in a picture string represents a character
position which can contain any allowable character from
the complete character set.

Each Z in a picture string represents the leftmost
leading numeric character positions in which leading
zeros are to be replaced by spaces. Each Z is counted in
the size of the item.

Each * in a picture string represents the 1leftmost
leading numeric character positions in which leading
zeros are to be replaced by *. Each * is counted in the
size of the item.

Examples: (A-FLD contains the value 00305)

B-FLD picture stri