UPDATE NOTICE NO.1

VAX/VMS I/0 User's Guide
AD-D028A-T1

February 1979
Insert this Update Notice page in the manual as a means of maintaining

an up-to-date record of changes to the manual.

NEW AND CHANGED INFORMATICN

This update reflects software changes and additions made in VAX/VMS
Version 1.5, in particular the addition of a driver to support the
LPA-11K Laboratory Peripheral Accelerator.

Copyright C) 1979 Digital Equipment Corporation

INSTRUCTIONS

Place the following pages in the VAX/VMS I/O User's
Guide as replacements for, or additions to, current
pages. The additions made on replacement pages are

indicated in the outside margin by change bars (}).

0ld Page New Page
Title Page/Copyright Page Title Page/Copyright Page
iii/iv through xi/blank iii/iv through xi/xii
- xiii/blank
1-3/1-4 1-3/1-4
1-5/1-6 1-5/1-6
1-11/1-12 1-11/1-12
1-15/1-16 through 1-21/1-22 1-15/1-16 through 1-21/1-22
2-1/2-2 2-1/2-2
2-3/2-4 2-3/2-4
2-9/2-10 2-9/2-10
2-15/2-16 2-15/2-16
- 10-1/10-2 through 10-47/10-48
B-~-1/B-2 B-1/B-2
B-3/B-4 B-3/B-4
- B-5/blank
Index-1/Index~2 through Index-1/Index-2 through
Index~5/Index-6 Index-5/Index-6

- Index-7/blank

Additional copies of this update to the VAX/VMS 1/0 User's
Guide may be ordered from the Software Distribution Center,
Digital Equipment Corporation, Maynard, Massachusetts 01754.
Order Code: AD-D028A-T1l. The order code of the base manual
is AA-DO2BA-TE. !

February 1979

This document contains the information necessary to interface directly with
the 1/O device drivers supplied as part of the VAX/VMS operating system.
Several examples of programming techniques are included. This document
does not contain information on 1/O operations using VAX-11 Record
Management Services.

VAX/VMS

1/0 User’s Guide
Order No. AA-DO28A-TE

and
Update Notice No. 1 (AD-D028A-T1)

SUPERSESSION/UPDATE INFORMATION: This document includes Update Notice
No. 1 (AD-D0O28A-T1).

OPERATING SYSTEM AND VERSION: VAX/VMS V01.5

SOFTWARE VERSION: ’ VAX/VMS V01.5

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978
Updated, February 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978, 1979 by bigital Equipment Corporation

The postage~prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem~10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-~11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT
DATATRIEVE TRAX

CONTENTS

Page
PREFACE xi
CHAPTER 1 INTRODUCTION TO VAX/VMS INPUT/OUTPUT 1-1
1.1 OVERVIEW OF VAX/VMS I/0O 1-1
1.2 VAX/VMS 1/0 DEVICES 1-1
1.3 SUMMARY OF I/O SYSTEM SERVICES 1-2
1.4 QUOTAS, PRIVILEGES, AND PROTECTION 1-3
1.4.1 Buffered I/0 Quota 1-3
1.4.2 Buffered I/0 Byte Count Quota 1-4
1.4.3 Direct I/O Quota 1-4
1.4.4 AST Quota 1-4
1.4.5 Physical I/0 Privilege (PHY_IO) 1-4
1.4.6 Logical I/0 Privilege (LOG_IO) 1-4
1.4.7 Mount Privilege 1-5
1.4.8 Volume Protection 1-5
1.5 SUMMARY OF VAX/VMS QIO OPERATIONS 1-6
1.6 PHYSICAL, LOGICAL, AND VIRTUAL I/O 1-6
1.6.1 Physical I/0O Operations 1-6
1.6.2 Logical I/0 Operations 1-8
1.6.3 Virtual I/O Operations 1-10
1.7 I/0 FUNCTION ENCODING 1-12
1.7.1 Function Codes 1-12
1.7.2 Function Modifiers 1-12
1.8 ISSUING I/0 REQUESTS 1-13
1.8.1 Channel Assignments 1-13
1.8.2 Device Allocation 1-14
1.8.3 I/0 Function Requests 1-14
1.8.4 $QI0 Macro Format 1-15
1.8.5 $QIOW Macro Format 1-16
1.8.6 $QI0 and $QIOW Arguments 1-16
1.8.6.1 Event Flag Number Argument 1-17
1.8.6.2 Channel Number Argument 1-17
1.8.6.3 Function Argument 1-17
1.8.6.4 I/0 Status Block Argument 1-18
1.8.6.5 AST Address Argument 1-18
1.8.6.6 AST Parameter Argument 1-18
1.8.6.7 Device/Function Dependent Arguments 1-18
1.8.7 $INPUT and $OUTPUT Macro Format and Arguments 1-19
1.8.8 Status Returns for System Services 1-19
1.9 I/0 COMPLETION 1-21
1.9.1 Event Flags 1-22
1.9.2 1/0 Status Block 1-22
1.9.3 Asynchronous System Traps 1-23
1.10 DEVICE INFORMATION 1-23
1.10.1 SGETCHN and $GETDEV Status Returns 1-25
CHAPTER 2 TERMINAL DRIVER 2-1
2.1 SUPPORTED TERMINAL DEVICES 2-1
2.2 TERMINAL DRIVER FEATURES AND CAPABILITIES 2-1
2.2.1 Type-ahead 2-1
2.2.2 Line Terminators 2-2
2.2.3 Special Operating Modes 2-2
2.2.4 Escape Sequences 2-2
2.2.5 Terminal/Mailbox Interaction 2-3
2.2.6 Control Characters and Special Keys 2-5

iii

CONTENTS (Cont.)

Page
2.2.6.1 Character Interpretation 2-8
2.2.7 Dial-up 2-10
2.3 DEVICE INFORMATION 2-10
2.4 TERMINAL FUNCTION CODES 2-13
2.4.1 Read 2-14
2.4.1.1 Function Modifier Codes for Read QIO Functions 2-15
2.4.1.2 Read Function Terminators 2-16
2.4.2 Write 2-16
2.4.2.1 Function Modifier Codes for Write QIO
Functions : 2-17
2.4.2.2 Write Function Carriage Control 2-17
2.4.3 Set Mode 2-20
2.4.3.1 Hang-up Function Modifier 2-23
2.4.3.2 Enable CTRL/C AST and Enable CTRL/Y AST
' Function 2-23
2.5 I/0 STATUS BLOCK 2-24
2.6 PROGRAMMING EXAMPLE 2-26
CHAPTER 3 DISK DRIVERS 3-1
3.1 SUPPORTED DISK DEVICES 3-1
3.1.1 RM03 Pack Disk 3-1
3.1.2 RP05 and RP06 Pack Disks 3-1
3.1.3 RK06 and RKO7 Cartridge Disks 3-2
3.2 DRIVER FEATURES AND CAPABILITIES 3-2
3.2.1 Data Check 3-2
3.2.2 Overlapped Seeks 3-3
3.2.3 Error Recovery 3-3
3.3 DEVICE INFORMATION 3-4
3.4 DISK FUNCTION CODES 3-6
3.4.1 Read 3-9
3.4.2 Write 3-10
3.4.3 Set Mode 3-10
3.4.3.1 Set Mode 3-10
3.4.3.2 Set Characteristic 3-11
3.5 I/0 STATUS BLOCK 3-12
3.6 PROGRAMMING EXAMPLE 3-14
CHAPTER 4 MAGNETIC TAPE DRIVER 4-1
4.1 SUPPORTED MAGNETIC TAPE DEVICES 4-1
4.1.1 TE1l6 Magnetic Tape Drive 4-1
4.2 DRIVER FEATURES AND CAPABILITIES 4-1
4.2.1 Master Adapters and Slave.Formatters 4-2
4.2.2 Data Check 4-2
4.2.3 Error Recovery 4-3
4.3 DEVICE INFORMATION 4-3
4.4 MAGNETIC TAPE FUNCTION CODES 4-5
4.4.1 Read 4-8
4.4.2 Write 4-10
4.4.3 Rewind 4-10
4.4.4 Skip File 4-11
4.4.5 Skip Record 4-11
4.4.6 Write End-of-File 4-11
4.4.7 Rewind Offline 4-12
4.4.8 Sense Tape Mode 4-12
4.4.9 Set Mode 4-12
4.4.9.1 Set Mode 4-12
4.4.9.2 Set Characteristic 4-13

iv

CHAPTER

CHAPTER

CHAPTER

CHAPTER

¢ e o o o @
[* ;]

.
U R BRBEBWNNNE R

oottt n (6,1 Lo
¢« o o o o e

(o)}
. e o . LI . [. . . *
UL b B S B WNNNDNDNDN

. Ll . .
N WWWWWN

© NNSNNNNNNNNNN ~ (o)} =)W e e We e W) We We W e We) We We W)

©
[}

[SN N

....
WN -
.

=

« o e « ¢ o s s
wWwwn =

e o
* s

e o

WNDNDN

wWN -

N

NP

CONTENTS (Cont.)

I/0 STATUS BLOCK
PROGRAMMING EXAMPLE

LINE PRINTER DRIVER

SUPPORTED LINE PRINTER DEVICES
LP1l Line Printer Interface
LAll DECprinter I

DRIVER FEATURES AND CAPABILITIES
Output Character Formatting
Error Recovery

DEVICE INFORMATION

LINE PRINTER FUNCTION CODES
Write
Write Function Carriage Control
Sense Printer Mode
Set Mode

I/0 STATUS BLOCK

PROGRAMMING EXAMPLE

CARD READER DRIVER

SUPPORTED CARD READER DEVICE
DRIVER FEATURES AND CAPABILITIES
Read Modes
Special Card Punch Combinations
End-of-File Condition
Set Translation Mode
Error Recovery
DEVICE INFORMATION
CARD READER FUNCTION CODES
Read
Sense Card Reader Mode
Set Mode
Set Mode
Set Characteristic
I/0 STATUS BLOCK

MAILBOX DRIVER

MAILBOX OPERATIONS
Creating Mailboxes
Deleting Mailboxes
Mailbox Message Format

DEVICE INFORMATION

MAILBOX FUNCTION CODES
Read
Write
Write End-of-File Message
Set Attention AST

I/0 STATUS BLOCK

PROGRAMMING EXAMPLE

DMC11l SYNCHRONOUS COMMUNICATIONS LINE INT

DRIVER

SUPPORTED DMC11l SYNCHRONOUS LINE INTERFACES

Page

4-14

U

P
-
~J

LN I I B |

]
HWO®RUIDEWNN R

oo oo
t

(o)}
1
=

()N e Ne Ny lerJe) e W) We) Wer Werle) We) We W o)
|
VOV WNNDNNONFEHE

11

~
|
—

NNNNNNNNNNNN
|
HOdJdoOuoibd wWwNH

(o]

(e
|
[

(o]
|
[an}

CONTENTS (Cont.)

Page
8.1.1 DIGITAL Data Communications Message Protocol 8-1
8.2 DRIVER FEATURES AND CAPABILITIES 8-2
8.2.1 Mailbox Usage 8-2
8.2.2 Quotas 8-3
8.2.3 Power Failure 8-3
8.3 DEVICE INFORMATION 8-3
8.4 DMC1l1l FUNCTION CODES 8-6
8.4.1 Read 8-6
8.4.2 Write 8~-7"
8.4.3 Set Mode) 8-7
8.4.3.1 Set Mode and Set Characteristics 8-8
8.4.3.2 Enable Attention AST 8-8
8.4.3.3 Set Mode and Shut Down Unit 8-9
8.4.3.4 Set Mode and Start Unit 8-9
8.5 I/0 STATUS BLOCK . 8-10
CHAPTER 9 QIO INTERFACE TO FILE SYSTEM ACPS 9~-1
9.1 ACP FUNCTIONS AND ENCODING 9-1
9.1.1 ACP Device/Function-Dependent Arguments 9-2
9.2 FILE INFORMATION BLOCK 9-3
9.3 ATTRIBUTE CONTROL BLOCK 9-11
9.4 I/0 STATUS BLOCK 9-14
CHAPTER 10 LABORATORY PERIPHERAL ACCELERATOR DRIVER 10-1
10.1 SUPPORTED DEVICE 10-1
10.1.1 LPAll-K Modes of Operation 10-1
10.1.2 Errors 10-2
10.2 SUPPORTING SOFTWARE 10-3
10.3 DEVICE INFORMATION . 10-4
10.4 LPAl11-K I/0 FUNCTION CODES 10-7
10.4.1 Load Microcode 10-7
10.4.2 Start Microprocessor 10-8
10.4.3 Initialize LPAll-K 10-8
10.4.4 Set Clock 10-9
10.4.5 Start Data Transfer Request 10-10
10.4.6 LPAll-K Data Transfer Stop Command 10-12
10.5 HIGH LEVEL LANGUAGE INTERFACE 10-13
10.5.1 High Level Language Support Routines 10-13
10.5.1.1 Buffer Queue Control 10-14
10.5.2 LPASADSWP - Initiate Synchronous A/D
Sampling Sweep . 10-18
10.5.3 LPASDASWP - Initiate Synchronous D/A Sweep 10-19
10.5.4 LPASDISWP - Initiate Synchronous Digital
Input Sweep 10-20
10.5.5 LPASDOSWP - Initiate Synchronous Digital
Output Sweep 10-21
10.5.6 LPASLAMSKS ~ Set LPAll-K Masks and NUM
Buffer . 10-22
10.5.7 LPASSETADC - Set Channel Information for
Sweeps ' 10-22
10.5.8 LPASSETIBF - Set IBUF Array for Sweeps 10-23
10.5.9 LPASSTPSWP - Stop In-progress Sweep 10-24
10.5.10 LPASCLOCKA - Clock A Control 10-24
10.5.11 LPASCLOCKB - Clock B Control 10~25
10.5.12 LPASXRATE - Compute Clock Rate and Preset
Value , 10-26

vi February 1979

10.5.13
10.5.14
10.5.15
10.5.16
10.5.17
10.5.18
10.5.19

10.5.20
10.5.21

10.6
10.7
10.7.1
10.7.2
10.8
10.8.1
10.8.2
10.8.3
10.8.4
10.9
10.9.1

10.9.2
10.9.3

APPENDIX A

APPENDIX B

FIGURE

O el el
BWNH OOV B WNH

NNI\[) NN
O oo oy

CONTENTS (Cont.)

LPASIBFSTS - Return Buffer Status
LPASIGTBUF - Return Buffer Number
LPASINXTBF - Set Next Buffer to Use
LPASIWTBUF - Return Next Buffer or Wait
LPASRLSBUF - Release Data Buffer
LPASRMVBUF - Remove Buffer from Device Queue
LPASCVADF - Convert A/D Input to Floating
Point '
LPASFLT16 - Convert Unsigned 16-bit Integer
to Floating Point
LPASLOADMC - Load Microcode and Initialize
LPAll1-K

I/0 STATUS BLOCK

LOADING LPAll1-K MICROCODE
Microcode Loader Process
Operator Process

RSX-11M VERSION 3.1 AND VAX/VMS DIFFERENCES
Alignment and Length
Status Returns
Sweep Routines
General

PROGRAMMING EXAMPLES
LPAl11-K High Level Language Program
(Program A)
LPAll1-K High Level Language Program
(Program B)
LPAll-K QIO Functions Program (Program C)

DISK, MAGNETIC TAPE AND ACP QIO FUNCTIONS

I/0 FUNCTION CODES
FIGURES

Physical I/O Access Checks

Logical I/O Access Checks
Physical, Logical, and Virtual 1/0
I/0 Function Format

Function Modifier Format

System Service Status Return

I/0 Status Block Format

CALL Instruction Argument List
Buffer Format for $GETCHN and $GETDEV System
Services

Terminal Mailbox Message Format
Character Interpretation

Terminal Information

Short and Long Forms of Terminator Mask
Quadwords

P4 Carriage Control Specifier
Write Function Carriage Control
(Prefix and Postfix Coding)

Set Mode Characteristics Buffer
IOSB Contents - Read Function

IOSB Contents - Write Function

vii February

Page

10-27
10-27
10-28
10-29
10-30
10-31

10-31
10-32

10-32
10-33
10-36
10-37
10-37
10-37
10-38
10-38
10-38
10-38
10-39

10-40

10-42
10-47

A-1

B-1

1-7

1-9

1-11
1-12
1-13
1-20
1-22
1-23

1-25
2-4

2-10

2-16
2-17

2-20
2-21
2-24
2-24

1979

FIGURE 2-10

GUTU D S DB DD Ww WwWww
{ N O N N TN RN N N Y NN N N N NN N N N B |
WNhRFOOAUVMIdWNDF T WN

Py I\?\FCP(F“')C?QTI\I\I\I\I\I\I\IO\O\O\G\O\LHWWW
I I]

|
NOUMEBEWNHREPWNFOONAUIEWNHUEWNRNO UL D

HF‘w\fw\om
|
WN =

o O

CONTENTS (Cont.)

FIGURES (Cont.)

IOSB Contents - Set Mode and

Set Characteristic Functions

Disk Information

Starting Physical Address

Set Mode Characteristics Buffer

Set Characteristic Buffer

IOSB Content

Magnetic Tape Information
IOS_SKIPFILE Argument

I0$_SKIPRECORD Argument

Set Mode Characteristics Buffer

Set Characteristic Buffer

IOSB Content

Printer Information

P4 Carriage Control Specifier

Write Function Carriage Control
(Prefix and Postfix Coding)

Set Mode Characteristics Buffer

Set Characteristics Characteristics Buffer
IOSB Contents - Write Function

IOSB Contents - Set Mode Function
Card Reader Information

Binary and Packed Column Storage

Set Mode Characteristics Buffer

Set Characteristic Buffer

IOSB Contents

Multiple Mailbox Channels

Typical Mailbox Message Format
Mailbox Information

Read Mailbox

Write Mailbox

Write Attention AST (Read Unsolicited Data)
Read Attention AST

IOSB Contents - Read Function

IOSB Contents - Write Function
Mailbox Message Format

DMC1l1l Information

Pl Characteristics Block

JOSB Content

ACP QIO Interface

ACP Device/Function-Dependent Arguments
ACP Device/Function Argument Descriptor Format
File Information Block Format
Typical Short File Information Block
Attribute Control Block Format

I0OSB Contents - ACP QIO Functions
Relationship of Supporting Software to LPAll-K
LPAlLl1-¥ Information

Data Transfer Command Table

Buffer Queue Control

I/0 Functions IOSB Content

Page

P
(8]

|

U1 U1 i s i 00 W W W

] bt

VWHEHFEHRFWREM RSN
BWNHF N

| N TR T [A N N A N I I I |

[T T T N T TN A R B I B |
o o

VWWOWWOWWOYWWOWWYWWYWOOOONJIINNNNNINNoOooaoa ottt
1
HBEWWNNHHOWWHOWOWONOEE D WO OO0 EWWOO-
N

1
[
oS

=

oo
1

(LIRS

10-11
10-15
10-33

viii February 1979

CONTENTS (Cont.)

Page
TABLES
TABLE 1-1 Read and Write I/0 Functions 1-12
1-2 Device/Function Independent Arguments 1-16
1-3 $INPUT and $OUTPUT Arguments 1-19
1-4 $QI0, $QIOW, SINPUT, and $OUTPUT System Services
Status Returns 1-20
1-5 SGETCHN and $GETDEV Arguments 1-24
1-6 $GETCHN and S$GETDEV Status Returns 1-26
2-1 Terminal Control Characters 2-5
2-2 Special Terminal Keys 2-8
2-3 Terminal Device-Independent Characteristics 2-11
2-4 Terminal Characteristics 2-12
2-5 Read QIO Function Modifiers 2-15
2-6 Write QIO Function Modifiers 2-17
2-7 Write Function Carriage Control
(FORTRAN: Byte 0 not equal to 0) 2-18
2-8 Write Function Carriage Control
(P4 byte 0 = 0) 2-19
2-9 Value for Set Mode and Set Characteristic

Pl Characteristics

Terminal QIO Status Returns

Disk Devices

Disk Device Characteristics

Disk I/O Functions

Status Returns for Disk Devices

Magnetic Tape Devices

Magnetic Tape Device-Independent Characterlstlcs
Device-Dependent Information for Tape Devices
Magnetic Tape I/O Functions

Set Mode and Set Characteristic Magnetic
Tape Characteristics

1
1
Ul N

o

S BRBWWWWN
[}
VB WNHBWN

\S}

UIUTB S BB DWWWWNN
]
BRWHKF OBBHMHYUIFNN

O I I |
[

=W

4-6 Status Returns for Tape Devices -
5-1 Printer Device-Independent Characteristics -
5-2 Printer Device-Dependent Characteristics -
5-3 Write Function Carriage Control (FORTRAN:

Byte 0 not equal to 0) 5-6
5-4 Write Function Carriage Control (P4 byte

0 equal to 0) 5-6
5-5 Line Printer QIO Status Returns 5-9
6-1 Card Reader Device-Independent Characteristics 6-4
6-2 Device-Dependent Information for Card Readers 6-5
6-3 Card Reader I/0 Functions 6~5
6-4 Set Mode and Set Characteristic Card Reader

Characteristics

Status Returns for Card Reader
Mailbox Read and Write Operations
Mailbox Characteristics
Mailbox QIO Status Returns
Supported DMC1ll Options

DMC1ll Device Characteristics
DMC11 Device Types

DMC11l Unit Characteristics
DMC1ll Unit and Line Status
Error Summary Bits

Status Returns for DMCl1l

[}
!
hal SN UT U1 S S O 00

coooooooooo'ooo\)\l\lm
~NoubdwNhHWNDEHO

ix February 1979

CONTENTS (Cont.)

Page
TABLES (Cont.)

TABLE 9-1 Contents of the File Information Block 9-5
9-2 FIB Argument Usage in ACP QIO Functions 9-9
9-3 Attribute Control Block Fields) 9-12
9-4 ACP QIO Attributes 9-13
9-5 ACP QIO Status Returns 9-15
10-1 Minimum and Maximum Configurations per LPAll-K 10-2
10-2 Device-inedpendent Characteristics 10-5
10-3 Device-Dependent Characteristics 10-6
10-4 VAX-11l Procedures for the LPAll-K 10-13
10-5 Subroutine Argument Usage 10-15
10-6 LPASIGTBUF Call - IBUFNO and IOSB Contents 10-28
10-7 LPASIWTBUF Call ~ IBUFNO and IOSB Contents \ 10-30
10-8 LPAll-K Status Returns for I/O Functions 10-33
10-9 Program A Variables 10-40
10-10 Program B Variables 10-42
A-1 I0$_CREATE Arguments A-2
A-2 IOS_ACCESS Arguments A-4
A-3 I0$_MODIFY Arguments A-6

% February 1979

PREFACE

MANUAL OBJECTIVES

This manual provides users of the VAX/VMS operating system with the
information necessary to interface directly with the 1I/0 device
drivers supplied as part of the operating system. It is not the
objective of this manual to provide the reader with information on all
aspects of VAX/VMS input/output (I/0) operations.

INTENDED AUDIENCE

This manual is intended for system programmers who want to take
advantage of the time and/or space savings that result from direct use
of the I/0 devices. Readers are expected to have some experience with
either VAX-11 FORTRAN IV-PLUS or VAX-11 MACRO assembly language.
Users of VAX/VMS who do not require such detailed knowledge of 1I/0
drivers can use the device-independent services described in the
VAX-11 Record Management Services Reference Manual.

STRUCTURE OF THIS DOCUMENT

This manual is organized into ten chapters and two appendixes, as
follows:

e Chapter 1 contains introductory information. It provides.
overviews of VAX/VMS 1I/0 operations; I/0 system services;
and I1/0 quotas, privileges, and protection. This chapter also
introduces I/0 function encoding and how to make I/0 requests,
and describes how to obtain information on the different
devices.

e Chapters 2 through 8 and 10 describe the use of all the 1I/0
device drivers supported by VAX/VMS:

- Chapter 2 deals with the terminal driver
- Chapter 3 deals with disk drivers

- Chapter 4 deals with magnetic tape drivers

Chapter 5 deals with the line printer driver

- Chapter 6 deals with the card reader driver

xi February 1979

- Chapter 7 deals with the mailbox driver
- Chapter 8 deals with the DMCll driver
- Chapter 10 deals with the LPAll-K driver

Chapter 9 describes the Queue I/0 (QIO) interface to file
system ancillary control processes (ACPs) .

Appendix A describes the QIO functions that are common to the
disk and magnetic tape drivers and the QIO ACP interface.

Appendix B summarizes the QIO function codes, arguments, and
function modifiers used by the different device drivers.

ASSOCIATED DOCUMENTS

The following documents may also be useful:

VAX/-11 Information Directory - contains a complete 1list of
all VAX-11 documents

VAX/VMS System Services Reference Manual

VAX-11 Linker Reference Manual

VAX-11 Software Handbook

PDP-11 Peripherals Handbook

VAX-11 FORTRAN IV-PLUS User's Guide

VAX-11 MACRO User's Guide

VAX-11 Record Management Services Reference Manual

LPAl11-K Laboratory Peripheral Accelerator User's Guide

CONVENTIONS USED IN THIS MANUAL

The following conventions are used in this manual:

Brackets ([]) in QIO requests enclose optional arguments. For
example:

I0$_CREATE Pl,([pP2],[P3],[P4]1,[P5]
Horizontal ellipses (...) 1indicate that characters or QIO
arguments that are not pertinent to the example have been
omitted. For example:

(that is, 8, 16, 24,...).

Vertical ellipses in coding examples indicate that lines of
code not pertinent to the example are omitted. For example:

TTCHAN: .BLKW 1

$ASSIGN_S DEVNAM=TTNAME ,CHAN=TTCHAN

xii February 1979

Hyphens (-) in coding examples indicate that additional
arguments to the QIO request are provided on the following
line(s). For example:

$QI0O_S FUNC=#I0$_WRITEPBLK,~- ;FUNCTION IS
- ;WRITE PHYSICAL
CHAN=W"TTCHAN1 , - ;TO TTCHAN 1
EFN=#1,- ;EVENT FLAG 1
P1=W"ASTMSG,- ;Pl = BUFFER
P2=#ASTMSGSIZE ;P2 = BUFFER SIZE

Angle brackets (<>) enclose keys on the terminal keyboard.
For example:

() <0> <20-2F>...<40-7E>
Unless otherwise noted, all numbers in the text are assumed to

be decimal. In coding examples, the radix -- binary, octal,
decimal, or hexadecimal -- will be explicitly indicated.

xiii

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

See the VAX/VMS System Services Reference Manual for detailed
information on all these system services and examples of their use.
The VAX/VMS System Services Reference Manual also contains information
on physical and logical device-naming conventions.

1.4 QUOTAS, PRIVILEGES, AND PROTECTION

To preserve the integrity of the system, VAX/VMS 1I/0O operations are
performed under the constraints of quotas, privileges, and protection,

Quotas establish a limit on the number and type of I/O operations that
a process can perform concurrently. They ensure that all users have
an equitable share of system resources and usage.

Privileges are granted to a user to allow the performance of certain
I/0O-related operations; for example, create a mailbox and perform
logical I/0 to a file-structured device. Restrictions on user
privilege protect the integrity and performance of both the operating
system and the services provided other users.
/

Protection is used to control access to files and devices. Device
protection is provided in much the same way as file protection:
shareable and nonshareable file devices and shareable nonfile devices
such as mailboxes, are protected by protection masks. Nonshareable,
nonfile devices such as terminals, can be accessed if they are not
allocated to another process.

The Set Resource Wait Mode ($SETRWM) system service allows a process
to select either of two modes when an attempt to exceed a quota
occurs. In the enabled (default) mode, the process waits until the
required resource 1is available before continuing. 1In the disabled
mode, the process is notified immediately by a system service status
return that an attempt to exceed a quota has occurred. Waiting for
resources is transparent to the process when resource wait mode is
enabled; no explicit action is taken by the process when a wait is
hecessary.

The different types of I/O-related quotas, privileges, and protection
are described in the following paragraphs.

l.4.1 Buffered I/O Quota

The buffered I/0 quota specifies the maximum number of concurrent
buffered 1I/0 operations a process can have active. 1In a buffered I/O
operation, the user's data is buffered in system dynamic memory. The
driver deals with the system buffer and not the user buffer. Buffered
I/0 is used for terminal, 1line printer, card reader, and mailbox
transfers. The user's buffer does not have to be locked in memory for
a buffered I/0 operation.

The buffered I/O quota value is established in the user authorization
file by the system manager or by the process's creator. Resource wait
mode is entered if enabled by the Set Resource Wait Mode system
service and an attempt to exceed the buffered I/O quota is made.

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.4.2 Buffered I/0 Byte Count Quota

The buffered I/0 byte count quota specifies the maximum amount of
buffer space that can be concurrently consumed from system dynamic
memory for buffering I/0 requests. All buffered I/0 requests require
system dynamic memory in which the actual I/0 operation takes place.

The buffered I/0 byte count quota 1is established in the user
authorization file by the system manager or by the process's creator.
Resource wait mode is entered if enabled by the Set Resource Wait Mode
system service and an attempt to exceed the buffered I/O byte count
quota is made.

1.4.3 Direct I/0 Quota

The direct I/0 .quota specifies the maximum number of concurrent
direct, that 1is, unbuffered, I/0 operations that a process can have
active. 1In a direct I/0 operation, data is moved directly to or from
the wuser buffer. Direct I/0 1is used for disk, magnetic tape, and
DMCll transfers. For direct 1I/0, the user's buffer must be locked in
memory during the transfer,

The direct I/0 quota value is established in the user authorization
file by the system manager or by the process's creator. Resource wait
mode is entered if enabled by the Set Resource Wait Mode system
service and an attempt to exceed the direct I/O quota is made.

1.4.4 AST Quota

The AST quota specifies the maximum number of asynchronous system
traps that a process can have outstanding. The quota value is
established in the user authorization file by the system manager or by
the process's creator. There 1is never an implied wait for this
resource.

1.4.5 Physical 1/0 Privilege (PHY_IO)

Physical I/0 privilege allows a process to6 perform physical I/0
operations on a device. Physical I/0 privilege 4also allows a process
to perform logical I/0 operations on a device. (Figures 1-1 and 1-2
show the use of physical I/0 privilege in greater detail.)

1.4.6 Logical I/0 Privilege (LOG_IO)

Logical I/0 privilege allows a process to perform logical 1/0
operations on a device, A process can also perform physical
operations on a device if the process has logical I/0 privilege, the
volume is mounted foreign, and the volume protection mask allows
access to the device. (Figures 1-1 and 1-2 show the use of logical
I/0 privilege in greater detail.)

1-4 February 1979

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.4.7 Mount Privilege

Mount privilege allows a process to use the IO$_MOUNT function to
perform mount operations on disk and magnetic tape devices. TI0$_MOUNT
is used in ACP interface operations (see Chapter 9).

1.4.8 Volume Protection

Volume protection protects the integrity of mailboxes and both foreign
and Files-11 structured volumes. Volume protection for a foreign
volume is established when the volume is mounted. Volume protection
for a Files-11 structured volume is established when the volume is
initialized. (The protection can be overridden when the volume is
mounted if the process that is mounting the volume has the override
volume protection privilege.)

Mailbox protection is established by the $CREMBX system service
protection mask argument.

Protection for structured volumes and mailboxes is provided by a
volume protection mask that contains four 4-bit fields. These fields
correspond to the four classes of users that are permitted to access
the volume. (User classes are based on the volume .owner's user
identification code (UIC).)

The 4-bit fields are interpréted differently for volumes that are
mounted as structured (that 1is, volumes serviced by an Ancillary
Control Process (ACP)) and volumes that are mounted as foreign.

The 4-bit fields have the following format for volumes mounted as
structured:

15 11 7 3 0
world group owner system
11 10 9 8
delete execute write read

The 4-bit fields have the following format for volumes mounted as
foreign:

11 10 9 8

Log I/O Phy 1/O * *

*not used

Usually, volume protection is meaningful only for read and write
operations.

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.5 SUMMARY OF VAX/VMS QIO OPERATIONS

VAX/VMS provides QIO operations that perform three basic I/0
functions: read, write, and set mode. The read function transfers
data from a device to a user-specified buffer. The write function
transfers data in the opposite direction - from a user-specified
buffer to the device. For example, in a read QIO function to a
terminal device, a user-specified buffer is filled with characters
received from the terminal. 1In a write QIO function to the terminal,
the data in a user-specified buffer is transferred to the terminal
where it is displayed.

The set mode QIO function 1is wused to control or describe the
characteristics and operation of a device. For example, a set mode
QIO function to a 1line printer can specify either uppercase or
lowercase character format. Not all QIO functions are applicable to
all types of devices. The line printer, for example, cannot perform a
read QIO function.

1.6 PHYSICAL, LOGICAL, AND VIRTUAL I/O

I/0 data transfers can occur in any one of three device addressing
modes: physical, logical, or virtual. Any process with device access
allowed by the volume protection mask can perform logical I/0 on a
device that 1is mounted foreign; physical I/0 requires privilege.
Virtual I/0 does not require privilege; however, intervention by an
ACP to control user access may be necessary if the device is under ACP
control. (ACP functions are described in Chapter 9.)

1.6.1 Physical 1/0 Operations

In physical I/0 operations, data is read from and written to the
actual, physically addressable units accepted by the hardware; for
example, sectors on a disk or binary characters on a terminal in the
PASSALL mode., This mode allows direct access to all device-level I/0
operations,

Physical I/0 requires that one of the following conditions be met:

e The issuing process has physical I/0 privilege (PHY_IO)

e The issuing process has logical I/0 privilege (LOG_IO), the
device 1is mounted foreign, and the volume protection mask
allows physical access to the device

If neither of these conditions is met, the physical I/0 operation is
rejected by the QIO system service with a status return of SS$_NOPRIV

(no privilege). Figure 1-1 illustrates the physical I/0 access checks
in greater detail.

1-6

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Qlo
REQUEST

NO PHYSICAL YES

1/0
REQUEST -
?

LOGICAL
1/0
REQUEST
?

YES

\

TRANSLATE LOGICAL
BLOCK ADDRESS
TO PHYSICAL
BLOCK ADDRESS

[

VIRTUAL
1/0
REQUEST

YES

MAP VIRTUAL BLOCK
ADDRESS TO LOGICAL

BLOCK ADDRESS 1/0
error ’ DRIVER

ACP

INTERVENTION*
?

YES

GOTO
ACP

*“Needed to map virtual address to logical address

WAKE ACP TO
CHANGE MAPPING
WINDOW

J

Figure 1-3 Physical, Logical, and Virtual 1I/0

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.7 1I/0 FUNCTION ENCODING

I/0 functions fall into three groups that correspond to the three 1I/0
device addressing modes (physical, logical, and virtual) described in
Section 1.6. Depending on the device to which it is directed, an 1I/0
function can be expressed in one, two, or all three modes.

I/0 functions are described by 16-bit, symbolically-expressed values
that specify the particular I/0 operation to be performed and any
optional function modifiers. Figure 1-4 shows the format of the
16-bit function value,.

15 6 5 0

function modifiers code

Figure 1-4 1I/0 Function Format

Symbolic names for I/0 function codes are defined by the S$IODEF macro,
as described in the VAX/VMS System Services Reference Manual.

1.7.1 Function Codes

The low-order 6 bits of the function value are a code that specifies
the particular operation to be performed. For example, the code for
read logical block is expressed as IO$_READLBLK. Table l-1 lists the
symbolic values for read and write I/Q functions in the three transfer
modes.

Table 1-1
Read and Write I/O Functions
Physical 1/0 Logical I/0 Virtual 1/0
IO$_READPBLK IO$*READLBLK IO$_READVBLK
IO$~WRITEPBLK IO$_WRITELBLK IO$_WRITEVBLK

The set mode I/O function has a symbolic value of 10$_SETMODE.

Function codes are defined for all supported devices. Although some
of the function codes (for example, I0$ READVBLK and I0$ _WRITEVBLK)
are used with several types of devices, most are device “dependent.
That is, they perform functions specific to particular types of
devices. For example, IO$ CREATE is a device-~dependent function code;
it is wused only with Tfile-structured devices such as disks and
magnetic tapes. Chapters 2 through 8 and 10 provide complete
descriptions of the functions and function codes.

1.7.2 PFunction Modifiers

The high-order 10 bits of the function value are function modifiers.
These are individual bits that alter the basic operation to be
performed. For example, the function modifier IOSM_NOECHO can be
specified with the function I0$ READLBLK to a terminal. When used

1-12 February 1979

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The number of pending I/0O requests, the amount of buffer space, and
the number of outstanding ASTs that a process can have are controlled
by quotas.

Each I/0 request causes an I/0 request packet to be allocated from
system dynamic memory. Additional memory is allocated under the
following circumstances:

e The I/0 request function is an ACP function
e The target device is a buffered I/0 device
e The target device is a network I/O device

After an I/0 request is queued, the system does not require the
issuing process to wait for the I/0 operation to complete. If the
process that issued the QIO request cannot proceed until the 1I/0
completes, an event £flag can be used to synchronize I/0 completion
(see Sections 1.8.6.1 and 1.9.1). 1In this case, the process should
request the Wait for Single Event Flag ($SWAITFR) system service at the
point where synchronization must occur: that is, where I/0 completion
is required.

SWAITFR specifies an event flag for which the process is to wait,
(The $WAITFR event flag must have the same number as the event flag
used in the QIO request.) The process then waits while the 1I/0
operation is performed. On I/O completion, the event flag is set and
the process is allowed to resume operation.

Other ways to achieve this synchronization include the wuse of the
$QIOW system service and ASTs, described in Sections 1.8.5 and 1.9.3,
respectively. In addition, the I/O status block can be specified and
checked if the user wants to determine whether the I/0 operation
completed without an error, regardless of whether or not the process
waits for I/0 completion (see Section 1.9.2.)

The QIO system service is accompanied by up to six device/ function
independent and six device/function dependent arguments. Section
1.8.6 below describes device/function independent arguments. The
device/function dependent arguments (Pl through pP6) are potentially
different for each device/function combination. However, similar
functions that are performed by all devices have identical arguments.
Furthermore, all functions performed by a particular class of device
are identical. Device/function dependent arguments are described in
more detail for the individual devices in Chapters 2 through 8 and 10.

1.8.4 $QI10 Macro Format
The general format for the $0I0 macro, using position-dependent
arguments, is:

$QI0_S [efn],phan,func,[iosb],[astadr],[astprm],—
(pll,[p2]1,[p3],[p4),[p5], [P6]

The first six arguments are device/function independent, 1f keyword
arguments are used, they can be written in any order. Arguments Pl
threugh P6 are device/function dependent. The chan and func arguments
must be specified in each request; arguments enclosed in brackets
([1) are optional.

1~15 February 1979

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The following example illustrates a typical QIO request using keyword
arguments:

$Q0I0 S EFN=#1,- ; EVENT FLAG 1
- CHAN=TTCHAN1,- ; CHANNEL
FUNC=#10$_WRITEVBLK,- ; VIRTUAL WRITE
P1=BUFADD, - ; BUFFER ADDRESS
P2=4BUFSIZE ;BUFFER SIZE

1.8.5 $QIOW Macro Format

The Queue I/0 Request and Wait For Event Flag ($QIOW) system service
macro combines the $QIO0 and $WAITFR system services. It eliminates
any need for explicit I/0 synchronization by automatically waiting
until the I/0 operation is completed before returning control to the
pProcess. Thus, $QIOW provides a simpler way to synchronize the return
to the originating process when the process cannot proceed until the
I/0 operation is completed.

The $QIOW macro has the same device/function independent and
device/function dependent arguments as the $QIO macro:

$QIOW_S [efn],chan,func, [iosb],[astadr], [astprm],-
(pl],[p21,[p3],[pP41,[p5],[p6]

1.8.6 $QIO and $QIOW Arguments

Table 1-2 1lists the $QIO and SQIOW device/function independent
arguments and their meanings. Additional information is provided in
the paragraphs following the table and in the VAX/VMS System Services
Reference Manual.

Table 1-2
Device/Function Independent Arguments

Argument Meaning

efn (event The number of the event flag that is to be

flag number) cleared when the I/0 function is queued and set
when it is completed. This argument is optional
in the macro form; if not specified, efn
defaults to 0.

chan (channel The number of the I/0 channel to which the

number) request 1is directed. The channel number is

obtained from either the $ASSIGN or $CREMBX system
service. This argument is mandatory in the macro
form.

func The 16-bit function code and modifier value that
(function value)|specifies the operation to be performed. This
argument is mandatory in the macro form.

iosb (I/O The address of a quadword I/O status block to
status block) receive the final I/0 status. This argument is
optional in the macro form.

(Continued on next page)

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Table 1-2 (Cont.)
Device/Function Independent Arguments

Argument Meaning
astadr (AST The entry point address of an AST routine to be
address) asynchronously executed when the I/0 completes.

This argument is optional in the macro form.

astprm (AST The 32-bit value to be passed to the AST routine
parameter) as an argument when the I/0 completes. It can be
used to assist the routine in identifying the
particular AST. This argument is optional in the
macro form.

1.8.6.1 Event Flag Number Argument - The event flag number (efn)
argument is the number of the event flag to be associated with the I/0
operation. It is optional in a $QIO or $QIOW macro. The specified
event flag is cleared when the request is issued and set when the I/0
operation completes. The specified event flag 1is also set if the
service terminates without queuing the I/O request.

If the process requested the $QIOW system service, execution is
automatically suspended until the 1I/0 completes. If the process
requested the QIO system service (with no subsequent $WAITFR, SWFLOR,
or SWFLAND macro), process execution proceeds in parallel with the
I/0. As the process continues to execute, it can test the event flag
at any point by using the Read Event Flags (SREADEF) system service.

Event flag numbers must be in the range of 0 through 127 (however,
event flags 24 through 31 are reserved for system use). If no
specific event flag is desired, the efn argument can be omitted from
the macro. In that case, efn defaults to 0.

1.8.6.2 Channel Number Argument - The channel number (chan) argument
represents the channel number of the physical device to be accessed by
the I/0 request. It is required for all $0I0 and $QIOW requests. The
association between the physical device and the channel is specific to
the process issuing the I/0 request. The channel number is obtained
from the $ASSIGN or $CREMBX system service (as described above in
Section 1.8.1).

1.8.6.3 Function Argument - The function (func) argument defines the
logical, virtual, or physical I/0 operation to be performed when the
$QI0 or $QIOW system service is requested. It is required for all QIO
and QIOW requests. The argument consists of a 16-bit function code
and function modifier. Up to 64 function codes can be defined.
Function codes are defined for all supported device types; most of
the codes are device dependent. The function arguments for each 1I/0
driver are described in more detail in Chapters 2 through 8 and 10.

1-17 February 1979

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.8.6.4 1I/0 status Block Argument - The I/0 status block (iosb)
argument specifies the address of the I/0 status block to be
associated with the I/0 request., It is optional in the QIO and QIOW
macros. If omitted, the iosb value is 0 which indicates no iosb
address is supplied. This block is a quadword that receives the final
completion status of the I/0 request. Section 1.9.2 describes the I1/0
status block in more detail.

1.8.6.5 AST Address Argument - The AST address (astadr) argument
specifies the entry point address of an AST routine to be executed
when the I/0 operation is complete. 1If omitted, the astadr value is 0
which indicates no astadr address 1is supplied. This argument is
optional and can be used to interrupt a process to execute special
code at I/0 completion. When the I/0 operation completes, the AST
service routine is CALLed at the address specified in the astadr
argument. The AST service routine is then executed in the access mode
from which the QIO service was requested.

1.8.6.6 AST Parameter Argument - The AST parameter (astprm) argument
is an optional, 32-bit arbitrary value that is passed to the AST
service routine when I/0 completes, to assist the routine in
identifying the particular AST. A typical use of the astprm argument
might be the address of a user control block. If omitted, the astprm
value is 0.

1.8.6.7 Device/Function Dependent Arguments - Up to six
device/function dependent arguments (Pl through P6) can be included in
each QIO request. The arguments for terminal read function codes show
a typical use of Pl through P6:

Pl = buffer address

P2 = buffer size

P3 = timeout count (for read with timeout)

P4 = read terminator descriptor block address
P5 = prompt string buffer address

P6 = prompt string buffer size

;

Pl is always treated as an address. Therefore, in the _S form of the
macro, Pl always generates a PUSHAB instruction. P2 through P6 are
always treated as values, In the S form of the macro, these
arguments always generate PUSHL instructions.

Inclusion of the device/function dependent arguments in a QIO request
depends on the physical device unit and the function specified. A
user who wants to specify only a channel, an I/0 function code, and an
address for AST routine might issue the following:

$QIO_S CHAN=XYCHAN ,FUNC=#10$_READVBLK,-
ASTADR=XYAST,Pl1=BUFADR,P2=#BUFLEN

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

In this example, XYCHAN is the address of the word containing the
channel to which the request is directed; I0$_READVBLK is the
function code; and XYAST is the AST entry point address. BUFADR and
BUFLEN are the device/function dependent arguments for an input
buffer.

1.8.7 $INPUT and $OUTPUT Macro Format and Arguments

The $INPUT and $OUTPUT macros simplify the use of the $QIOW macro.
These macros generate code to perform virtual operations, using the
10$ READVBLK and IOS_WRITEVBLK function codes (the function code |is
automatically specified in the request), and wait for I/0 completion.
The macro formats and arguments are:

SINPUT chan,length,buffer, [iosb], [efn]
$OUTPUT chan,length,buffer,[iosb],[efn]

Table 1-3 lists the SINPUT and $OUTPUT arguments and their meanings.

Table 1-3
SINPUT and SOUTPUT Arguments

Argument Meaning

chan The channel on which the I/0 operation is to be
performed.

length The length of the input or output buffer.
buffer The address of the input or output buffer.
iosb The address of the quadword that receives the

completion status of the I/0 operation. This
argument is optional,

efn The number of the event flag for which the process
waits. This argument is optional; if not specified,
efn defaults to O.

Both the iosb and efn arguments are optional; all other arguments
must be included in each macro. Note that the order of the length and
buffer arguments is opposite that of the QIO and QIOW Pl and P2
arguments. Also note that $INPUT and SOUTPUT do not have the astadr
and astprm arguments; neither of these operations can conclude in an
AST.

1.8.8 Status Returns for System Services
On completion of a system service call, the completion status is

returned as a longword value in register RO, shown in Figure 1-6.
(System services save the data in all registers except RO and R1.)

1-19 February 1979

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

31 16 15 0

RO: 0 status

Figure 1-6 System Service Status Return

Completion status is indicated by a value in bits 0 through 15. ' The
low-order 3 bits are encoded with the error severity level; all
successful returns have an odd value:

warning

success

error

informational (nonstandard) success
severe error

reserved

N WwNhHHO

5=

Each numeric status code has a symbolic name in the form SS$ code.
For example, the return might be S8S$ NORMAL, which indIcates
successful completion of the system service.” There are several error
conditions that can be returned. For example, SS$ IVCHAN indicates
that an invalid channel number was specified in an I/0 request.

The VAX/VMS System Service Reference Manual describes the possible
returns for each system service. Table 1-4 lists the valid status

returns for the $QIO, $QIOW, S$INPUT, and $OUTPUT system service
requests.

Table 1-4
$QIO, $QIOW, $INPUT, and $OUTPUT System Services Status Returns

Status Meaning

SS$_NORMAL The $QIO, $QIOW, SINPUT, or SOUTPUT request was
successfully completed; that is, an I/O request
was placed in the appropriate device queue.

SS$ ACCVIO The IOSB, the specified buffer, or the argument
list cannot be accessed by the caller.

SS$ EXQUOTA The buffer quota, buffered I/0 quota, or direct
- I/0 quota was exceeded and the process has
disabled resource wait mode with the $SETRWM
system service. (The $SETRWM system service is
described in Section 1.4.) SS$ EXQUOTA is also
set if the AST quota was exceeded.

SS$_ILLEFC An illegal event flag number was specified.

SS$ INSFMEM Insufficient dynamic memory is available to
- complete the service and the process has
disabled resource wait mode with the $SETRWM
system service. (The $SETRWM system service is
described in Section 1.4.)

(Continued on next page)

1-20 February 1979

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Table 1-4 (Cont.)
$QI0, $QIOW, $INPUT, and $OUTPUT System Services Status Returns

Status Meaning

SS$_IVCHAN An invalid channel number was specified; that
is, a channel number larger than the number of
channels available.

SS$_NOPRIV The specified channel was assigned from a more
privileged access mode, the channel 1is not
assigned, or the user does not have the proper
privilege to access the device.

SS$_UNASEFC A common event flag in an unassociated event
flag cluster was specified.

Status returns for systems services are not the same as the I/O status
returns described in Chapters 2 through 8 and 10 for the different I/O
drivers (see Section 1.9). A system service status return is the
status of the $QIO, $QIOW, $INPUT, $OUTPUT, or other system service
call after completion of the service, that 1is, after the system
returns control to the user. A system service status return does not
reflect the completion (successful or unsuccessful) of the requested
I/0 operation. For example, a $QIO system service read request to a
terminal might be successful (status return is SS$_NORMAL) but fail
because of a device parity error (I/O status return is SS$_PARITY).
System service error status return codes refer only to failures to
invoke the service.

An I/O status return is the status at the completion of the 1I/0
operation. It is returned in the quadword I/0 status block (IOSB).
Although some of the symbolic names (for example, SS$_NORMAL and
SS$ ACCVIO) can be used in both types of status returns, they have
different meanings.

1.9 I/0 COMPLETION

Whether an I/0O request completed successfully or unsuccessfully can be
denoted by one or more return conditions. The selection of the return
conditions depends on the arguments included in the QIO macro call.
The three primary returns are:

e Event flag--an event flag is set on completion of an I/0
operation.

e 1I/0 status block--if the iosb argument was specified in the
QIO macro call, a code identifying the type of success or
failure is returned in bits 0 through 15 of a quadword 1I/0
status block on completion of the I/0 operation. The location
of this block is indicated by the user-supplied iosb argument.

e Asynchronous system trap--if an AST address argument was
specified in the 1I/0 request, a call to the AST service
routine occurs, at the address indicated, on completion of the
1/0 operation. (The I/O status block, if specified in the I/O
request, is updated prior to the AST call.)

1-21 February 1979

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.9.1 Event Flags

Event flags are status posting bits used by the $QIO, $QIOW, $INPUT,
and S$SOUTPUT system services to indicate the completion or occurrence
of an event. The system service clears the event flag when the
operation is queued and sets it when the operation is completed.
Event flag services allow users to set or clear certain flags, test
the current status of flags, or place a program in a wait state
pending the setting of a flag or group of flags.

See the VAX/VMS System Services Reference Manual for more information
on event flags and thelr use.

1.9.2 I/0 Status Block

The completion status of an I/0 request is returned in the first word
of the I/0 status block (IOSB), as shown in Figure 1-7.

31 16 15 0

transfer count status

device-dependent data

Figure 1-7 1I/0 Status Block Format

The IOSB indicates whether the operation was successfully completed,
the amount of data transferred, and additional device-dependent
information such as the number of lines printed. The status return
code has the same format and bit significance (bit 0 set indicates
success; bit 0 clear indicates error) as the system service status
code (see Section 1.8.8). For example, if the process attempts to
access a nonexistent disk, a status code of SS$_NONEXDRV is returned
in the 1I/0 status block. The status returns for the individual I/0
drivers are listed in Chapters 2 through 8 and 10.

The upper half of the first I0SB longword contains the transfer count
on completion of the I/0 operation if the operation involved the
transfer of data to or from a user buffer. For example, if a read
operation is performed on a terminal, the number of bytes typed before
a carriage return is indicated here. If a magnetic tape unit is the
device and a read function is specified, the transfer count represents
the number of bytes actually transferred. The second longword of the
IOSB can contain certain device-dependent information. This
information is supplied in more detail for each I/0 driver in Chapters
2/ through 8 and 10.

The status can be tested symbolically, by name. For example, the
5S$_NORMAL status - is returned if the operation was completed
successfully. The following example illustrates the examination of
the I/0 status block XYIOSB to determine if an error occurred:

$QI0O_S CHAN=XYCHAN,FUNC=#I0$_WRITEVBLK,-
10SB=XYIOSB,P1=BUFADR,P2=#BUFLEN
BLBC RO,REQERR ;CHECK SYSTEM SERVICE
; STATUS CODE

CMPW #SS$_NORMAL,XYIOSB ;CHECK I/0 STATUS
;CODE
BNEQ ERROR

1-22 \ February 1979

CHAPTER 2

TERMINAL DRIVER

This chapter describes the use of the VAX/VMS terminal driver. This
driver supports the DzZ-11 Asynchronous Serial Line Multiplexer and the
console terminal.

2.1 SUPPORTED TERMINAL DEVICES

Each Dz-11 multiplexer interfaces 8 or 16 asynchronous serial
communication 1lines for use with terminals. It supports programmable
baud rates; however, input and output speeds must be the same.
VAX/VMS supports the DZ-1l1 internal modem control.

The system console terminal is attached to the processor with a
special purpose interface.

2.2 TERMINAL DRIVER FEATURES AND CAPABILITIES
The VAX/VMS terminal driver provides the following capabilities:
e Type-ahead
e Specifiable or default line terminators
e Special operating modes, such as NOECHO and PASSALL
e American National Standard escape sequence detection
e Terminal/mailbox interaction
e Terminal control characters and special keys
e Dial-up

e Optional parity specification

2.2.1 Type-ahead

Input (data received) from a VAX/VMS terminal is always independent of
concurrent output (data sent) to a terminal. This capability is
called type-ahead. Type-ahead is allowed on all terminals unless
explicitly disabled by the Set Mode characteristic, inhibit type-ahead
(TT$M_NOTYPEAHD; see Section 2.4.3).

TERMINAL DRIVER

Data typed at the terminal is retained in the type-ahead buffer until
the user program issues an I/0 request for a read operation. At that
time, the data is transferred to the program buffer and echoed at the
terminal where it was typed.

Deferring the echo until a read operation is active allows the user
process to specify function code modifiers that modify the read
operation. These modifiers can include, for example, noecho
(IO$M_NOECHO) and convert lowercase characters to uppercase
(IO$M_CVTLOW) (see Section 2.4.1.1).

If a read operation is already in progress when the data is typed at
the terminal, the data transfer and echo are immediate.

The action of the driver when the type-ahead buffer fills depends on
the Set Mode characteristic TT$M HOSTSYNC (see Section 2.4.3). 1If
TT$M_HOSTSYNC is not set, CTRL/G (BELL) is returned to inform the user
that™ the type-ahead buffer is full., If TT$M HOSTSYNC is set, the
driver stops input by sending a CTRL/S and the terminal responds by
sending no more characters. These warning operations are beqgun 8
characters before the type-~ahead buffer fills. The driver sends a
CTRL/Q to restart transmission when the type-ahead buffer empties
completely.

The VAX/VMS System Manager's Guide describes the type-ahead buffer
size,

2.2.2 Line Terminators

A line terminator is the control sequence that the user types at the
terminal to indicate the end of an input line. Optionally, the user
process can specify a particular 1line terminator or class of
terminators for read operations.

Terminators are specified by an argument to the QIO request for a read
operation. By default, they can be any ASCII control character except
FF, VT, TAB, or BS. If included in the request, the argument 1is a
user-selected group of characters (see Section 2.4.1.2).

All characters are 7-bit ASCII characters unless data is input on an
8-bit terminal (see Section 2.4.1). (The characteristic TT$M_EIGHTBIT
determines whether the terminal uses the 7-bit or 8-bit character set;
see Table 2-4.) All input characters are tested against the selected
terminator(s). The input is terminated when a match occurs or the
user's input buffer fills.

2.2.3 Special Operating Modes

The VAX/VMS terminal driver supports many special operating modes for
terminal 1lines. Section 2.4.3 lists these modes. ,All special modes
are enabled or disabled by the Set Mode QIO.

2.2.4 Escape Sequences

Escape sequences are strings of two or more characters, beginning with
the escape character (decimal 27 or hexadecimal 1B), that indicate
that control information follows. Many terminals send and respond to
such escape sequences to request special character sets or to indicate
the position of a cursor.

2-2 February 1979

TERMINAL DRIVER

The Set Mode characteristic TT$M_ESCAPE (see Section 2.4.3) is used to
specify that VAX/VMS terminal 1lines can generate valid escape
sequences. I1f this characteristic is set, the terminal driver
verifies the syntax of the escape sequences. The sequence is always
considered a read function terminator and is returned in the read
buffer, that is, a read buffer can contain other characters that are
not part of an escape sequence, but an escape sequence always
comprises the last characters in a buffer. The return information in
the read buffer and I/O status block includes the position and size of
the terminating escape sequence in the data record (see Section 2.5).

Any escape sequence received from the terminal is checked for correct
syntax. If the syntax is not correct, SS$_BADESCAPE is returned as
the status of the I/0. If the escape sequence does not fit in the
user buffer, SS$ PARTESCAPE is returned. The remaining characters are
transmitted on the next read. No syntax integrity 1is guaranteed
across read operations. Escape sequences are never echoed. Valid
escape sequences are any of the following forms (hexadecimal
notation):

Cesc) <intd>...<int> <fin>

where:

is pressing the () key, a byte (character) of 1B

<int> is an "intermediate character" in the range of 20 to 2F.
This range includes the character "space" and 15 punctuation
marks. An escape Sequence can contain any number of
intermediate characters, or none.

<fin> is a "final character" in the range of 30 to 7E. This range

includes uppercase and lowercase letters, numbers, and 13
punctuation marks.

There are four additional escape sequence forms:

<20-2F>...<30-7E>
<20-2F>...<30-7E>
<20-2F>...<40-7E>
<20-7E>...<20-7E>

a
ANANAN
0<O'\J"
vVVVvVyVv

For example, when the IDENTIFY escape sequence, escape Z, is sent to a
VT-55 terminal, the response from the terminal is (&) <C>. (Escape
sequences are neither displayed nor echoed on the terminal.)

Section 2.2.6 describes control character functions during escape
sequences.

2.2.5 Terminal/Mailbox Interaction

Mailboxes are virtual I/0 devices used for communication between
processes., The terminal driver can .use a mailbox to communicate with
a user process. Chapter 7 describes the mailbox driver.

A user program can use the S$ASSIGN system service to associate a
mailbox with one or more terminals. The terminal driver sends
messages to this mailbox when terminal-related events occur that
require the attention of the user image.

TERMINAL DRIVER

Mailboxes used in this way carry status messages, not terminal data,
from the driver to the wuser program. For example, when data is
received from a terminal for which no read request is outstanding
(unsolicited data), a message 1is sent to the associated mailbox to
indicate data availability. On receiving this message, the user
program must read the 'channel assigned to the terminal to obtain the
data. Messages are sent to mailboxes under the following conditions:

e Unsolicited data in the type-~ahead buffer. The use of the
associated mailbox can be enabled and disabled as a
subfunction of the read and write QIO requests (see Sections
2.4.1 and 2.4.2). Thus, the user process can enter into a
dialog with the terminal after an unsolicited data message
arrives. Then, after the dialog is over, the user process can
re—-enable the unsolicited data message function on the 1last
I/0 exchange. The default for all terminals is enabled. Only
one message is sent between read operations.

e Terminal hang-up. Hang-up occurs when a remote line loses the
carrier signal; a message 1is sent to the mailbox. When
hang-up occurs on lines that have the characteristic
TTSM_REMOTE set, the line characteristics are returned to the
system default characteristics (see the VAX/VMS System
Generation Reference Manual).

Messages placed in the mailbox have the following content and format:
® Message type. The codes MSG$_TRMUNSOLIC (unsolicited data)
and MSG$_TRMHANGUP (hang-~up) identify the type of message.
Message types are defined by the $MSGDEF macro.

e Device unit number to identify the terminal that sent the
message.

e Counted string to specify the device name.
e Controller name
Figure 2-1 illustrates this format.

31 16 15 8 7 0

unit number message type

controller name™ counted string

*does not include the colon (:) character

Figure 2-1 Terminal Mailbox Message Format

N

TERMINAL DRIVER

INPUT
CHARACTER

PASSALL?"

TTSM_EIGHTBI
SET?

STRIPBIT7
FROM
CHARACTER VALUE

|

CTRL/

NO Y,C, S, Q,X,0
?

YES

CAN FUNCTION

BE PERFORMED?2

CHARACTER
TO TYPE-A-HEAD YES
BUFFER)
PERFORM
FUNCTION
READ
IN PROGRESS NO
?
DONE

10$M_
NOFILTR OR
PASSALL?!

ESCAPE
SEQUENCE IN
PROGRESS?

CTRL/
U, R, OR
DELETE?

LOWERCASE
CHARACTER
? .

CAN FUNCTION
BE PERFORMED?2

YES

UPPER-
CASE TER-
MINAL OR 10$__
CVTLOW
SET?

1. TTSM__PASSALL or I0$_READPBLK

L

Figure 2-2

CHARACTER BUFFER

CONVERT TO ECHO CHARACTER 2. Except for CTRL/X, the function must
IF ALLOWED AND . F le, CTRL/S t
UPPERCASE SACE N be enabled. For example, 1S RO

meaningful on a line without the
TT$M_TTSYNC characteristic.

Character Interpretation

TERMINAL DRIVER

2.2.7 Dial-up

VAX/VMS supports the DZ-11 internal modem control (for example, Bell
103A, Bell 113, or equivalent) in autoanswer, full-duplex mode. The
terminal driver does not support half-duplex operations on modems such
as the Bell 202. The terminal characteristic TT$M_REMOTE designates
the 1line as being remote to the 1local computer. The driver
automatically sets TT$M REMOTE if the carrier signal changes from off
to on.

Dial-up lines are monitored periodically to detect a change 1in the
modem carrier signal, The monitoring period is a system parameter.
The VAX/VMS System Manager's Guide describes the dial-up monitoring
period.

If a line's carrier signal is lost, the driver waits several monitor
periods for the carrier signal to return. If the carrier signal is
not detected during this time, the 1line is "hung-up." The hang-up
action signals the owner of the line, through a mailbox message, that
the line is no longer in use. (No dial-in message 1is sent; the
unsolicited character message is sufficient when the first available
data is received.) The line is not available for two monitor periods
after the hang-up sequence begins. The hang-up sequence is not
reversible, If the 1line hangs up, all enabled CTRL/Y ASTs are
delivered; the CTRL/Y AST P2 argument is overwritten with SS$_HANGUP.
The I/O0 operation in progress 1is cancelled and the status value
SS$_ABORT is returned in the IOSB.

When a line with the TTSM_REMOTE characteristic is hung-up, the
characteristics of the 1line are returned to the system default
characteristics.

2.3 DEVICE INFORMATION '

The user process can obtain terminal characteristics by wusing the
$GETCHN and $GETDEV system services (see Section 1.10). The
terminal-specific information is returned in the first three longwords
of a user-specified buffer, as shown in Figure 2-3 (Figure 1-9 shows
the entire buffer).

31 24 23 16 15 8 7 0

device characteristics

page width type class

page length terminal characteristics

Figure 2-3 Terminal Information

The first longword contains device-independent data. The second and
third longwords contain device-dependent data.

Table 2-3 lists the device~independent characteristics returned in the
first longword.

2-10 February 1979

TERMINAL DRIVER

In a read physical block operation, the data received from the
associated terminal is placed in the user buffer as binary information
without interpretation; the terminal line is in a temporary PASSALL
mode. Since IO$ READPBLK is a physical 1I/0 function, it can be
specified only by & privileged user (see Section 1.6.1). IO$ READPBLK
puts the terminal line in a PASSALL mode which is in effect only for
the read physical block operation. This is in contrast with the more
comprehensive PASSALL mode established by the Set Mode characteristic
TT$M PASSALL. All input and output data is in 8-bit binary format
when TT$M_PASSALL is set (see Section 2.4.3).

Since IO$_READPBLK does not purge the type-ahead buffer (unless
requested wusing the IO$M_PURGE function modifier) the characters in
the type-ahead buffer may have been subjected to CTRL/Y/C/S/Q/0
interpretation (Section 2.2.6.1). (Characters received while the
I0$_READPBLK is in progress are not interpreted.)

2.4.1.1 Function Modifier Codes for Read QIO Functions - Seven
function modifiers can be specified with I0$_READVBLK, I0$_READLBLK,
10$ READPROMPT, and IO$_READPBLK. Table 2-5 1lists these function
modifiers. I0$M_CVTLOW and IO$M _NOFILTR are not meaningful to
IO$_READPBLK.

Table 2-5
Read QIO Function Modifiers

Code Consequence

I0SM_NOECHO Characters are not echoed (that is, displayed)
as they are entered at the keyboard. The
terminal line can also be set to a "no echo"
mode by the Set Mode characteristic TT$M_NOECHO,
which inhibits all read operation echoing.

IO$M_CVTLOW Lowercase alphabetic characters (hexadecimal 61
to 7A) are converted to uppercase when
transferred into the user buffer ar echoed.

I0$M_NOFILTR The terminal driver does not interpret '
@ ., or (m). They are passed to the user.

I0$M_TIMED The P3 argument specifies the maximum time
(seconds) that <can elapse between characters
received; that is, the timeout value for the
read operation. A value of 0 terminates the
read operation, that is, an I/O timeout occurs,
if no character 1is read within 1 second. In
effect, data is read from the type-ahead buffer
or an error is returned.

I0$M_PURGE The type-ahead buffer is purged before the read
operation begins.

I0$M_DSABLMBX The mailbox is disabled for unsolicited data.

I0$M_TRMNOECHO The termination character (if any) 1is not

echoed. There is no formal terminator if the
buffer is filled before the terminator is typed.

2-15 February 1979

TERMINAL DRIVER

2.4.1.2 Read Function Terminators - The P4 argument to a read QIO
function either specifies the terminator set for the read function or
points to the location containing that terminator set. If P4 is 0,
all ASCII characters with a code in the range 0 through 31
(hexadecimal 0 through 1F) except LF, VT, FF, TAB, and BS, are
terminators. (This is the RMS-32 standard terminator set.)

If P4 does not equal 0, it contains the address of a quadword that
either specifies a terminator character bit mask or points to a
location containing that bit mask. The quadword has a short form and
a long form, as shown in Figure 2-4. In the short form, the
correspondence is between the bit number and the binary value of the
character; the character 1is a terminator if the bit is set. For
example, if bit 0 is set, NULL is a terminator; if bit 9 is set, TAB
is a terminator. If a character is not specified, it is not a
terminator. ‘'Since ASCII control characters are in the range of 0
through 31, the short form can be used in most cases.

The long form allows use of a more Ccomprehensive set of terminator
characters. Any mask size equal to or greater than 1 byte is
acceptable. For example, a mask size of 16 bytes allows all 7-bit
ASCII characters to be used as terminators; a mask size of 32 bytes
allows all 8-bit characters to be used as terminators for 8-bit
terminals. An unspecified mask is assumed to be all 0's.

31 0

SHORT: 0

terminator character bit mask

31 16 15 0

LONG: (not used) mask size in bytes

address of mask

Figure 2-4 Short and Long Forms of Terminator Mask Quadwords

2.4.2 Write

Write operations display the contents of a user-specified buffer on
the associated terminal. VAX/VMS defines three basic write I/0
functions, which are listed with their function codes below:

e IOS_WRITEVBLK - write virtual block
e IO$ WRITELBLK - write logical block
e I0$ _WRITEPBLK - write physical block
The write function codes can take the following

device/function~dependent arguments:

¢ Pl = the starting virtual address of the buffer that is to
be written to the terminal

CHAPTER 10

LABORATORY PERIPHERAL ACCELERATOR DRIVER

This chapter describes the use of the VAX/VMS Laboratory Peripheral
Accelerator (LPAll-K) driver and the high level language procedure
library that interfaces with the LPAl11-K driver. The procedure
library is implemented with callable assembly language routines that
translate arguments into the format required by the LPAll-K driver and
handle buffer chaining operations. Routines for microcode loading and
device initialization are also described.

This chapter is written with the understanding that the reader has
access to a copy of the LPAll-K Laboratory Peripheral Accelerator
User's Guide.

10.1 SUPPORTED DEVICE

The LPAll-K is a peripheral device that controls analog to digital
(A/D) and digital to analog (D/A) converters, digital I/0 registers,
and real-time clocks. It is connected to the VAX 11/780 through the
UNIBUS Adapter (UBA).

The LPAll-K is a fast, flexible, and easy to use microprocessor
subsystem that is designed for applications requiring concurrent data
acquisition and data reduction at high rates. The LPAll-K allows
aggregate analog input and output rates up to 150,000 samples per
second. The maximum aggregate digital input and output rate is 15,000
samples per second.

Table 10-1 lists the useful minimum and maximum LPAll-K configurations
supported by VAX/VMS.

10.1.1 LPAll-K Modes of Operation

The LPAl1l-K operates in two distinct modes< dedicated, and
multirequest.

In dedicated mode, only one user, that is, one request, can be active
at a time, and only analog I/0 data transfers are supported. Up to
two A/D converters can be controlled simultaneously. One D/A
converter can be controlled at a time. Sampling is initiated either
by an overflow of the real-time clock or by an externally supplied
signal. Dedicated mode provides sampling rates of up to 150,000
samples per second.

10~-1 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

i

Table 10-1
Minimum and Maximum Configurations per LPAll-K

Minimum Maximum

1 - DD11-Cx or Dx Backplane 2 - DD11-Cx or Dx Backplanes

1l - KW1ll-K Real Time Clock 1l - KW11l-K Real Time Clock
One of the following: 2 - AD11-K A/D Converters
AD11-K A/D Converter 2 - AM11-K Multiplexers

for AD11-K Converters
AAll1-K D/A Converter
l - AAll-K D/A Converter
DR11-K Digital I/0
Register 5 - DR11-K Digital 1/0
Registers

In multirequest mode, sampling from all the devices listed in Table
10-1 1is supported. The LPAll-K operates 1like a multi-controller
device; up to eight requests (from one to eight users) can be active
simultaneously. The sampling rate for each user is a multiple of the
common real-time clock rate. Independent rates can be maintained for
each user, Both the sampling rate and the device type are specified
as part of each data transfer request. Multirequest mode provides a
maximum aggregate sampling rate of 15,000 samples per second.

10.1.2 Errors
The LPAll-K returns three classes of errors:

1. Errors associated with the issuance of a new LPAll-K command
(SS$_DEVCMDERR) .

2. Errors associated with an active data transfer request
(SS$_DEVREQERR) .

3. Fatal hardware errors which affect all LPAll~K activity
(SS$_CTRLERR) .

Appendix A of the LPAll-K Laboratory Peripheral Accelerator User's
Guide lists these three classes of errors and the specific error codes
for each class. The LPAll-K aborts all active requests if any of the
following conditions occur:

® Power failure
® Device timeout
e Fatal error

Power failure is reported to any active users when power is recovered.

10-2 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Device timeouts are monitored only when a new command is issued. For
data transfers, the time between buffer full interrupts is not

defined. Thus, no timeout errors are reported on a buffer to buffer
basis.

If a required resource is not available to a process, an error message
is returned immediately. The driver does not place the process in the
resource wait mode.

10.2 SUPPORTING SOFTWARE

The LPAll-K is supported by a device driver, a high 1level language
procedure library of support routines, and routines for microcode
loading and device initialization. All data transfer algorithms for
the laboratory data acquisition I/0 devices are accomplished by the
LPAll-K. The only purpose for the system software and support
routines is to provide a control path for synchronizing the use of
buffers, specifying requests, and starting and stopping requests.

The LPAll-K driver and the associated I/0 interface have the following
features:

e They permit multiple LPAll-K subsystems on a single UBA.

e They operate as an integral part of the VAX/VMS operating
system.

e They can be loaded on an operating VAX/VMS system without
relinking the executive.

e They handle 1I/0 requests, function dispatching, UBA map
allocation, interrupts, and error reporting for multiple
LPAl11-K subsystems.

e The LPAll-K functions as a multi-buffered device. Up to eight
buffer areas can be defined per request. Up to eight requests
can be handled simultaneously. Buffer areas can be reused
after the data they contain is processed.

e Since the LPAll-K chains buffer areas automatically, a start
data transfer request can transfer an infinite and continuous
amount of data.

e Multiple ASTs are dynamically queued by the driver to indicate
when a buffer has been filled (the data is avalilable for
processing), or emptied (the buffer is available for new
data).

The high level language support routines have the following features:

e They translate arguments provided in the high level 1language
calls into the format required for the Queue I/O interface.

e They provide a buffer chaining capability for a multibuffering
environment by maintaining queues of used, in wuse, and
available buffers.

e They adhere to all VAX/VMS conventions for calling sequences,
use of sharable resources, and re-entrancy. :

e They can be part of a resident global library, or be linked
into a process image as needed.

10-3 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The routines for microcode loading and device initialization have the
following features:

e They execute, as separate processes, images which issue I/0
requests. These I/0 requests initiate microcode image
loading, start the LPAll-K subsystem, and automatically
configure the peripheral devices on the LPAll-K internal I/0
bus,

e They can be executed by user or operator request.
® They can be executed at the request of other processes.

e They can be executed automatically when the system is
initialized and on power recovery.

Figure 10-1 shows the relationship of the supporting software to the
LPAl1-K.

MCODE LOADING
AND DEVICE
INITIALIZATION
ROUTINES

VAX/VMS OPERATING SYSTEM

Q10 REQUESTS
l Qlo LPA11-K L
i INTERFACE DRIVER | - LPAT1-K
HIGH LEVEL
ASSEMBLY BUFFER
LANGUAGE CHAINING
SUPPORT ROUTINES
ROUTINES
I
HIGH LEVEL | DATA DATA
APPLICATION | BUFFER
PROGRAM AREAS
§

Figure 10-1 Relationship of Supporting Software to LPAll-K

10.3 DEVICE INFORMATION

Users can obtain information on all peripheral data acquisition
devices on the LPAll-K internal I/0 bus by using the $GETCHN and
$GETDEV system services (see Section 1.10). The LPAll-K-specific
information is returned in the first three 1longwords of a

10-4 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

user-specified buffer, as shown in Figure 10-2 (Figure 1-9 shows the
entire buffer).

31 16 15 87 0

device characteristics

0 type class

device-dependent characteristics

Figure 10-2 LPAll-K Information
The first longword contains device-independent information. The
second and third longwords contain device-dependent data.
Table 10-2 lists the device-independent characteristics returned in

the first longword.

Table 10-2
Device-independent Characteristics

Dynamic Bitsl Meaning
(Conditionally Set)

DEV$M_AVL Device is online
and available

Static Bitsl
(Always Set)

DEV$M_IDV Input device
DEV$M_ODV Output device
DEVSM_RTM Real-time device
DEVSM_SHR Device is sharable

lpefined by the $DEVDEF macro.

The second longword contains information on the device class and type.
The device class for the LPAll-K is DC$_REALTIME and the device type
is DT$_LPAll. The $LADEF macro defines these values. Buffer size is
not applicable to the LPAll-K; this word is 0.

The third longword contains LPAl1l-K characteristics, that is,
device-dependent data. LPAl1l1-K characteristics are set by the set
clock, initialize, and load microcode I/0 functions to any one of, or
a combination of, the values listed in Table 10-3.

10-5 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-3

Device-Dependent Characteristics

Fieldl Meaning

LASM MCVALID | The load microcode

I/0 function (I0$_LOADMCODE)

LA$S:MCVALID was performed successfully. LASM MCVALID is set
LASV_MCVALID | by I0$_LOADMCODE. Each microword 1Iis verified by
reading it back and comparing it with the specified
value. LASM MCVALID is cleared if there is no
match.
LASV_MCTYPE The microcode type, set by the load microcode I/0
LASS_ MCTYPE function (IO$_LOADMCODE), is one of the following
values:
LASK_MRMCODE = micrgcode type 1is in multirequest
mode
LASK_ADMCODE = microcode type is in dedicated A/D
mode
LASK_DAMCODE = microcode type is in dedicated D/A
mode
LASV_CONFIG The bit positions, set by the initialize 1/0
LASS_CONFIG function (IO$_INITIALIZE), for the peripheral data

acquisition
are one or more of the following:

LASV_CLOCKA = Clock A
LASM_CLOCKA
LASV_CLOCKB = Clock B

LASM_CLOCKB

LASV_AD1 = A/D device 1

LASM_AD1

LASV_AD2 = A/D device 2

LASM_AD2

LASV_DA = D/A device 1

LASM_ DA

LASV_DIOl = Digital I/0 Buffer 1
LASM_DIO1

LASV_DIO2 = Digital I1/0 Buffer 2
LA$M DIO2

LASV_DIO3 = Digital I/0 Buffer 3
LASM_DIO3

LASV_DIO4 = Digital I/0 Buffer 4
LASM_DIO4

LASV_DIO5 = Digital I/0 Buffer 5
LASM_DIOS5

devices on the LPAll-K internal I/0 bus

lValues defined by the SLADEF macro.

(continued on next page)

February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-3 (Cont.)
Device-Dependent Characteristics

Fieldl Meaning
LASV_RATE The Clock A rate, set by the set clock function
LASS_RATE (IO$_SETCLOCK), is one of the following values:
0 = Stopped
1l =1 MHz
2 = 100 kHz
3 = 10 kHz
4 = 1 kHz
5 = 100 Hz
6 = Schmidt trigger
7 = Line frequency
LASV_PRESET The Clock A preset value set by the set clock
LASS PRESET function (IO$_SETCLOCK). (The value is in the range
- 0 through 65,535 - in two's complement form.) The
clock rate divided by the clock preset value yields
the clock overflow rate.

lValues defined by the SLADEF macro.

10.4 LPAll-K I/0 FUNCTION CODES
The LPAl1l1-K I/0 functions are:
1. Load microcode into the LPAll-K.
2. Start the LPAll-K microprocessor.
3. 1Initialize the LPAll-K subsystem.
4, Set the LPAll-K real-time clock rate,.
5. Start a data transfer request.

The Cancel I/O on Channel ($CANCEL) system service is wused to abort
data transfers.

10.4.1 Load Microcode

This I/0 function resets the LPAll-K and loads an image of LPAll1-K
microcode. Physical 1I/0 privilege 1is required. VAX/VMS defines a
single function code:

I0$_LOADMCODE - load microcode

10-7 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The load microcode function takes three device/function dependent
arguments:

® Pl = the starting virtual address of the microcode image that
is to be loaded into the LPAl1-K

® P2 = the number of bytes (usually 2048) that are to be loaded

® P3 = the starting microprogram address (usually 0) in the
LPAll-K that is to receive the microcode

If any data transfer requests are active at the time a load microcode
request is 1issued, the load request is rejected and SS$ DEVACTIVE is
returned in the I/0 status block.

Each microword is verified by comparing it with the specified value in
memory. If all words match, that 1is, the microcode was loaded
successfully, the driver sets the microcode valid bit (LASV_MCVALID)
in the device-dependent characteristics longword (see Table 10-3). 1If
there is no match, SS$ DATACHECK is returned in the I/0 status block
and LASV_MCVALID is “cleared to indicate that the microcode was not
properly loaded. 1If the microcode was loaded successfully, the driver
stores one of the microcode type values (LASK_MRCODE, LA$K _ADCODE, or
LASK_DAMCODE) in the characteristics longword.

After a load microcode function is completed, the second word of the
I/0 status block contains the number of bytes loaded.

In addition to SS$ DATACHECK, I0$_LOADMCODE can return SS$_DEVACTIVE

in the I/0 status block.

10.4.2 Start Microprocessor

This I/0 function resets the LPAll1-K and starts (or restarts) the
LPAll-K microprocessor. Physical I/0 privilege is required. VAX/VMS
defines a single function code:

° IOS$_STARTMPROC -~ start microprocessor
This function code takes no device/function-dependent arguments.
The start microprocessor function can return five error codes in the

I1/0 status block: SS$_DEVACTIVE, SS$_MCNOTVALID, SS$_CTRLERR,
SS$_POWERFAIL, and SS$_TIMEOUT (see Section 10.6).

10.4.3 1Initialize LPAll-K

This I/0 function issues a subsystem initialize command to the
LPAll-K. This command specifies LPAll1-K laboratory I/0 device
addresses and other table information for the subsystem. It is issued
only once after restarting the subsystem and before any other LPAll-K
command is given. Physical 1I/0 privilege 1is required. VAX/VMS
defines a single function code:

e IO$ INITIALIZE - initialize LPAll-K

10-8 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The initialize LPAl11-K function takes two device/function-dependent
arguments:

e Pl = the starting, word-aligned, virtual address of the
Initialize Command Table in the user process. This table is
read once by the LPAll-K during the execution of the
initialize command. See the LPAll-K Laboratory Peripheral
Accelerator User's Guide for additional information.

e P2 = length of the 1initialize command buffer (always 278
bytes)

If the initialize function is completed successfully, the appropriate
device configuration values are set in the device-dependent
characteristics longword (see Table 10-3).

The initialize function can return ten error codes in the I/0 status
block: SS$_IVMODE, SS$_INCLENGTH, SS$_BUFNOTALIGN, SS$_CTRLERR,
SS$ DEVCMDERR, SS$_CANCEL, SS$_INSFMAPREG, SS$_MCNOTVALID,
SS$_POWERFAIL, and SS$_TIMEOUT (see Section 10.6).

If a device specified in the Initialize Command Table is not in the
LPAll1-K configuration, an error condition (SS$_DEVCMDERR) occurs and
the address of the first device not found is returned in the LPAll-K
maintenance status register (see Section 10.6). A program can use
this characteristic to poll the LPAl1-K and determine the current
device configuration.

10.4.4 Set Clock

This virtual function issues a clock control command to the LPAll-K.
The clock control command specifies information necessary to start,
stop, or change the sample rate at which the real-time clock runs on
the LPAll-K subsystem.

If the LPAll-K has more than one user, caution should be exercised
when the clock rate is changed. In multirequest mode, a change in the
clock rate will affect all users.
VAX/VMS defines a single function code:

e IO$_SETCLOCK - set clock

The set clock function takes three device/function-dependent
arguments:

e P2 = mode of operation. VAX/VMS defines the following clock
start mode word (hexadecimal) values:

1
11

KW1ll-K Clock A
KW1l1l-K Clock B

e P3 = clock control and status. VAX/VMS defines the following
clock status word (hexadecimal) values:

0 = stop clock
143 = 1 MHz clock rate
145 = 100 kHz clock rate
147 = 10 kHz clock rate
149 = 1 kHz clock rate
14B = 100 Hz clock rate
14D = clock rate is Schmidt trigger 1
14F = clock rate is line frequency

10-9 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

® P4 = the two's complement of the real-time clock preset value.
The range is 16 bits for the KWl11l-K Clock A and 8 bits for the
KWll~K Clock B.

The LPAll-K Laboratory Peripheral Accelerator User's Guide describes
the clock start mode word and the clock status word in greater detail.

If the set clock function is completed successfully for Clock A, the
clock rate and preset values are stored in the device-dependent
characteristics longword (see Table 10-3).

The set clock function can return six error codes in the 1I/0 status
block: 5S$_CTRLERR, SS$_DEVCMDERR, SS$_CANCEL, SS$_MCNOTVALID,
SS$_POWERFAIL, and SS$_TIMEOUT (see Section 10.6).

10.4.5 start Data Transfer Request

This virtual I/0 function issues a Data Transfer Start command that
specifies the buffer addresses, sample mode, and sample parameters
used by the LPAll-K. This information is passed to the Data Transfer
Command Table. VAX/VMS defines a single function code:

® IOS_STARTDATA - start data transfer request
The start data transfer request function takes one function modifier:
® IO0S$M_SETEVF - set event flag

The start data transfer request function takes four
device/function-dependent arguments:

® Pl = the starting virtual address of the Data Transfer Command
Table in the user's process

® P2 = the length in bytes (always 40) of the Data Transfer
Command Table

e P3 = the AST address of the normal buffer completion AST
routine (optional)

® P4 = the AST address of the buffer overrun completion AST
routine (optional). Only used when the buffer overrun bit
(LA$SM_BFROVRN) is set, that is, a buffer overrun condition is
classified as a non-fatal error.

A buffer overrun condition is not the same as a data overrun
condition. The LPAll-K fetches data from, or stores data in, memory.
If data cannot be fetched quickly enough, for example, when there is
too much UNIBUS activity, a data underrun condition occurs. If data
cannot be stored quickly enough, a data overrun condition occurs.
After each buffer has been filled or emptied, the LPAll-K obtains the
index number of the next buffer to process from the User Status Word
(USW) . (See Section 2.5 of the LPAll-K Laboratory Peripheral
Accelerator User's Guide). A buffer overrun condition OCCULS if the
LPAll-K fills or empties buffers faster than the application program
can supply new buffers. For example, buffer overrun can occur when
the sampling rate is too high, the buffers are too small, or the
system load is too heavy.

The LPAll-K driver accesses the ten-longword Data Transfer Command
Table, shown in Figure 10-3, when the Data Transfer Start command is
processed. After the command is accepted and data transfers have
begun, the driver makes no further access to the table.

10-10 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

31 24 23 16 15 87 0
highest available
buffer and buffer mode
overrun bit
user status word address
overall data buffer length
overall data buffer address
random channel list length
random channel list address
channel start '
A channel delay
increment
number
dwell number of channels
event digital
digital trigger mask mark trigger
channel channe!
event mark mask

Figure 10-3 Data Transfer Command Table

In the first longword of the Data Transfer Command Table, the first
two bytes contain the LPAll-K start data transfer request mode word.
(Section 3.4.1 of the LPAll-K Laboratory Peripheral Accelerator User's
Guide describes the functions of thils word.)

The third byte contains the number (0-7) of the highest buffer
available and the buffer overrun flag bit (bit 23; values:
LASM BFROVRN and LAS$V BFROVRN). If this bit is set, a buffer overrun
condition is a non-fatal error.

The second longword contains the User Status Word address (see Section
3.4.3 of the LPAll-K Laboratory Peripheral Accelerator User's Guide).
This virtual address points to a two-byte area 1n the user process

space, and must be word-aligned.

The third longword contains the size (in bytes) of the overall buffer
area. The virtual address in the fourth longword is the beginning
address of this area. This address must be longword-aligned. The
overall buffer area contains a specified number of buffers (the number

of the highest available buffer specified in the first

one).

Individual

buffers are

subject

to length re

multirequest mode the length must be in multiples of t
dedicated mode
data buffers are virtually contiguous for .each data transfer request.

the 1length

10-11

must be in multiples of four bytes.

longword plus

strictions: in
wo bytes; in
All

February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The fifth and sixth longwords contain the Random Channel List (RCL)
length and address, respectively. The RCL address must be
word-aligned. The last word in the RCL must have bit 15 set. (See
Section 3.4.6 of the LPAll-K Laboratory Peripheral Accelerator User's
Guide for additional information on the RCL.)

The seventh through tenth longwords contain LPAll-K-specific sample
parameters. The driver passes these parameters directly to the
LPAll-K. (See Sections 3.4.7 through 3.4,12 of the LPAll-K Laboratory
Peripheral Accelerator User's Guide for a detailed description of
their functions,)

The start data transfer request function can return 15 error codes in
the 1I/0 status block: SS$_INCLENGTH, SS$_BUFNOTALIGN, SS$_DEVCMDERR,
SS$_CTRLERR, SS$ DEVREQERR, SS8$_ABORT, 58$_CANCEL, SS8$_EXQUOTA,
SS$ INSFBUFDP, SS$ INSFMAPREG, SSS_INSFMEM, SS$_MCNOTVALID,
SS$_PARITY, SS$_POWERFAIL, and SS$_TIMEOUT (see Section 10.6).

Data buffers are chained and - reused as the LPAll-K and the user
process dispose of the data. As each buffer is filled or emptied, the
LPAll-K driver notifies the application process by either setting the
event flag specified by the QIO request efn argument or queueing an
AST. Since buffer use is a continuing process, the event flag is set
or the AST is queued a number of times. The user process must clear
the event flag (or receive the AST), process the data, and specify the
next buffer for the LPAll-K to use.

If the set event flag function modifier (IOSM_SETEVF) is specified,
the event flag is set repeatedly: when the data transfer request is
started, on each buffer completion, and when the request completes.
If IOSM _SETEVF 1is not specified, the event flag is set only when the
request completes,

ASTs are preferred over event flags for synchronizing a program with
the LPAll-K because AST delivery is a queued process while setting of
event flags is not. 1If only event flags are used, it is possible to
lose buffer status.

Three AST addresses can be specified. For normal data buffer
transactions the AST address specified in the P3 argument is used. 1If
the buffer overrun bit in the Data Transfer Command Table is set and
an overrun condition occurs, the AST address specified in the P4
argument is used. The AST address specified in the astadr argument of
the QIO request is wused when the entire data transfer request is
completed. The astprm argument specified in the QIO request is passed
to all three AST routines.
*

If insufficient dynamic memory is available to allocate an AST block,
an error (SS$ INSFMEM) is returned. If the wuser does not have
sufficient AST Quota remaining to 4llocate an AST block, an error
(SS$_EXQUOTA) 1is returned. In either case, the reéquest is stopped.
Normally, there are never more than three outstanding ASTs per LPAll-K
request,

10.4.6 LPAll-K Data Transfer Stop Command

The Cancel I/0 on Channel ($CANCEL) system service is used to abort
data transfers for a particular process. When the LPAl1-K driver
receives a $CANCEL request, a Data Transfer Stop cemmand is issued to
the LPAll-K.

10-12 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The normal way to stop a data transfer is to set bit 14 of the User
Status Word. If this bit is set, the transfer stops at the end of the
next buffer transaction (see Section 2.5 of the LPAll-K Laboratory
Peripheral Accelerator User's Guide).

10.5 HIGH LEVEL LANGUAGE INTERFACE

VAX/VMS supports several program-callable procedures that provide
access to the LPAll-K. The formats of these calls are documented here
for VAX-11 FORTRAN IV-PLUS users. VAX-11l MACRO users must set up a
standard VAX/VMS argument block and issue the standard procedure CALL.

(Optionally, VAX-1l1l

through the

in Section 10.4.

proper

subroutine or
procedure call is not t

MACRO

a MACRO interface.

10.5.1

VAX/VMS provides 20 high level language procedures for the
procedures are divided into four classes.

These

users

procedure

can, access the

invocation. If

High Level Language Support Routines

VAX-11 procedures for the LPAll-K.

Table 10-4
VAX-11 Procedures for the LPAll-K
Class Subroutine Function
Sweep Control| LPASADSWP Start A/D converter sweep
LPASDASWP start D/A converter sweep
LPASDISWP Start digital input sweep
LPASDOSWP Start digital output sweep
LPASLAMSKS Specify LPAl1-K controller and
digital mask words
LPASSETADC Specify channel select parameters
LPASSETIBF Specify buffer parameters
LPASSTPSWP Stop sweep
Clock control| LPASCLOCKA Set Clock A rate
LPASCLOCKB Set Clock B rate
LPASXRATE Compute clock rate and preset value
Data Buffer LPASIBFSTS Return buffer status
Control LPASIGTBUF Return next available buffer
LPASINXTBF Alter buffer order
LPASIWTBUF Return next buffer or wait
LPASRLSBUF Release buffer to LPAll-K
LPASRMVBUF Remove buffer from device queue
Miscellaneous| LPASCVADF Convert A/D input to floating point
LPASFLT16 Convert unsigned integer to floating
point
LPASLOADMC Load microcode and initialize
LPAll-K
10-13 February 1979

LPAll-K directly
use of the device-specific Queue I/O functions described
) Users of other high level languages must specify the
the subroutine or
he standard linkage, some languages may require

LPAll1-K.
Table 10-4 lists the

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.1.1 Buffer Queue Control - This section is provided for
informational purposes only. Normally, the user does not need to be
concerned with the details of buffer queues.

Buffer queue <control for data transfers by LPAll-K subroutines
involves the use of three queues:

e Device queue (DVQ)
e User queue (USQ)
® In-use queue (IUQ)

Each data transfer request can specify from one to eight data buffer
areas., The user specifies these buffers by address. During execution
of the request, the LPAll-K assigns an index from 0 to 7 when a buffer
is referenced.

The DVQ contains the indices of all the buffers that the user has
released, that is, made available to be filled or emptied by the
LPAll-K. For output functions (D/A and digital output), these buffers
contain data to be output by the LPAll-K. For input functions (a/D
and digital input), these buffers are empty and waiting to be filled
by the LPAll-K.

The USQ contains the indices of all buffers that are waiting to be
returned to the user. The LPASIWTBUF and LPASIGTBUF calls are used to
return the index of the next buffer in the USQ. For output functions
(D/A and digital output), these buffers are empty and waiting to be
filled by the application program. For input functions (A/D and
digital input), these buffers contain data to be processed by the
application program.

The IUQ contains the indices of all buffers that are currently being
processed by the LPAll-K. Normally, the IUQ contains the indices of
two buffers:

e The buffer currently being filled or emptied by the LPAll-K

e The next buffer to be filled or emptied by the LPAll-K. This
is the buffer specified by the next buffer index field in the
User Status Word.

Because the LPAll-K driver requires that at least one buffer be ready
when the input or output sweep is started, the wuser must call
LPASRLSBUF before the sweep is initiated.

Figure 10-4 shows the flow between the buffer queues.

10.5.1.2 Subroutine Argument Usage - Table 10-5 describes the general
use of the subroutine arguments. The subroutine descriptions in the
following sections contain additional information on argument usage.
The IBUF, BUF, and ICHN (Random Channel List address) arguments must
be aligned on specific boundaries. (The VAX-11 FORTRAN-IV-PLUS User's
Guide describes the alignment of FORTRAN arguments.)

10-14 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

BUFFER O

BUFFER OVERRUN

AST HANDLER

LPASIWTBUF
LPASIGTBUF
NORMAL BUFFER NORMAL BUFFER (TO APPLICATION
AST HANDLER AST HANDLER PROGRAM)
——
Y
HEAD HEAD HEAD
DEVICE IN-USE USER
QUEUE QUEUE QUEUE
TAIL TAIL TAIL
T A A
LPASRLSBUF
(FROM APPLICATION
PROGRAM)
Figure 10-4 Buffer Queue Control
Table 10-5
Subroutine Argument Usage
Argument Meaning

IBUF

A 50-longword array initialized by the LPASSETIBF
subroutine. IBUF is the impure area used by the
buffer management subroutines. A unique IBUF array
is required for each simultaneously active request.
IBUF must be longword-aligned.

The first quadword in the IBUF array is an I/0 status
block (IOSB) for high level language subroutines.
The LPASIGTBUF and LPASIWTBUF subroutines £fill this
quadword with the current and completion status (see
Section 10.6).

(continued on next page)

10-15 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-5 (Cont.)
Subroutine Argument Usage

Argument

Meaning

LBUF

NBUF

MODE

IRATE

IPRSET

DWELL

Specifies the size of each data buffer in words (must
be even for dedicated mode sweeps). All buffers are
the same size. The minimum value for LBUF is 1 for
multirequest mode data transfers and 258 for
dedicated mode data transfers. The aggregate size of
the assigned buffers must be less that 32,768 words.
Thus, the maximum size of each buffer (in words) is
limited to 32,768 divided by the number of buffers.
The LBUF argument length is one word.

Specifies the number of times the buffers are to be
filled during the 1life of the request. If O
(default) is specified, sampling 1is indefinite and
must be stopped with the LPASSTPSWP subroutine. The
NBUF argument length is one longword.

Specifies sampling options. MODE bit wvalues are
listed in the appropriate subroutine descriptions.
The default is 0. MODE values can be added to
specify several options. No options are mutually
exclusive although not all bits may be applicable at
the same time. The MODE argument length is one word.

Specifies the clock rate:

Clock B overflow or no rate
1 MHz

100 kHz

10 kHz

1 kHz

100 Hz

Schmidt trigget

Line frequency

Nouds wh=Oo
nownuww o nn

The IRATE argument length is one longword.

Specifies the hardware clock preset value. This
value is the two's complement of the desired number
of clock ticks between clock interrupts. (The
maximum value 1is the two's complement of 65,536.)
IPRSET can be computed by the LPASXRATE subroutine,
The IPRSET argument length is one word.

Specifies the number of hatdware clock overflows
bétween sample sequences in multirequest mode. For
example, if DWELL is 20 and NCHN is 3, then after 20
clock overflows one channel is sampled on each of the
next three succe$8sive overflows; no sampling occurs
for the next 20 ¢loe¢k averflows. This allows
different users to use different sample rates with
the same hardware clock overflow rate, In dedicated
mode, the harfdware c¢lock woverflow rate cont¥ols
sampling and DWELL is not accessed. Default for
DWELL is 1. The DWELL argument length is one word.

(continued on next page)

lo-16 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-5 (Cont.)
Subroutine Argument Usage

Argument Meaning

IEFN Specifies the event flag number or completion routine
address. The selected event flag is set at the end
of each buffer transaction. If IEFN is 0 (default),
event flag 22 is used.

IEFN can also specify the address of a completion
routine. This routine 1is called by the buffer
management routine when a buffer 1is available and
when the request is terminated, either successfully
or with an error. The standard VAX/VMS calling and
return sequences are used. The completion routine is
called from an AST routine and is therefore at AST
level.

If IEFN specifies the address of a completion
routine, the program must call LPASIGTBUF to obtain
the next buffer. If IEFN specifies an event flag,
the program must call LPASIWTBUF to obtain the next
buffer and must use the %VAL operator:

+$VAL(3), (Event flag 3)
,BFRFULL, (Address of completion
routine)

The IEFN argument length is one longword.

If multiple sweeps are initiated, they must use
different event flags (the software does not enforce
this policy).

Event flag 23 is reserved for use by the LPASCLOCKA
and LPASCLOCKB subroutines, If either of these
subroutines is included in the user program, event
flag 23 cannot be used. Also, if IEFN is defaulted,
event flag 22 cannot be used in the user program.

LDELAY | Specifies the delay, in IRATE units, from the start
event until the first sample is taken. The maximum
value is 65,536; default is 1. The LDELAY argument
length 1is one word. The LPAll-K supports thé LDELAY
ardument in multirequest mode only,

ICHN Specifies the number of the f£irst I/0 channel to be
sampled. Default is channel 0, The ICHN argument
length is one byte. The channel number is not the
same as the <¢hannel ass&igned to the device by the
$ASSIGN system service (see Section 1.8.1). The
LPAll=K u$8e§ the channel number to specify the
fiultiplexer address of am A/P, D/A, or digital 1/0
device ori the LPAll-K internal I/0 bus.

S < . -

(eontinued on next page)

10-17 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-5 (Cont.)
Subroutine Argument Usage

Argument Meaning

NCHN Specifies the number of I/0O device channe
in a sample sequence, Default is 1.
argument is 1, the single channel bit is
mode word of the start Request Descriptor
when the sweep is started. The RDA ¢
information needed by the LPAll-K for
(see the LPAll1-K Laboratory Peripheral

ls to sample
If the NCHN
set in the
Array (RDA)
ontains the
each command
Accelerator

User's Guide). The NCHN argument length

IND Receives the VAX/VMS success or failure code of the

is one word.

call. The IND argument length is one longword.

10.5.2 LPASADSWP - Initiate Synchronous A/D Sampling Sweep

The LPASADSWP subroutine initiates A/D sampling through an AD11l-K.

The format of the LPASADSWP call is as follows:

CALL LPASADSWP (IBUF,LBUF, [NBUF],[MODE],[DWELL],[IEFN],[LDELAY],
[ICHN], [NCHN], [IND])

Arguments are as described in Section 10.5.1.2, with the following

additions:

MODE Specifies sampling options. VAX/VMS defines the
following sampling option values:

Value Meaning

32 Parallel A/D conversion sample algorithm
is used if dual A/D converters are
specified (value = 8192). Absence of this
bit implies the serial A/D conversion
sample algorithm.

64 Multirequest mode request. Absence of
this bit implies a dedicated mode request,

512 External trigger (Schmidt trigger 1).
Dedicated mode only. (The LPAl1-K
Laboratory Periphéral Accelerator User's
Guide describes the wuse of an external
trigger.)

1024 Time stamped sampling with Clock B. The

double word consists of one data word
followed by the value of the LPAll-K's
internal 16-bit counter at the time of the
sample (see Section 2.4.3 in the LPAll-K
Laboratory Peripheral Accelerator User's
Guide). Multirequest mode only.

10-18 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Value Meaning
2048 Event marking. Multirequest mode only.
(The LPAl11-K Laboratory Peripheral
Accelerator User's Guide describes event
marking.)

4096 Start method. If selected, digital input
start. If not selected, immediate start.
Multirequest mode only.

8192 Dual A/D converters are to be used.
Dedicated mode only.

16384 Buffer overrun is a non-fatal error. The
LPAll-K will automatically default to fill
buffer 0 if a buffer overrun condition
occurs.

If MODE is defaulted, A/D sampling starts immediately
with absolute channel addressing in dedicated mode.
The LPAll-K does not support delays in dedicated mode.

IND Returns the success or failure status:
0 = Error in call. Possible causes are: LPASSETIBF
was not previously called; LPASRLSBUF was not
previously called; size of data buffers disagrees with
the size computed by the LPASSETIBF call.
1 = successful sweep started

nnn = VAX/VMS status code

10.5.3 LPASDASWP - Initiate Synchronous D/A Sweep
The LPASDASWP subroutine initiates D/A output to an AAll-K.
The format for the LPASDASWP call is as follows:

CALL LPASDASWP (IBUF,LBUF, [NBUF], [MODE],[DWELL], [IEFN], [LDELAY],
[ICHN] , [NCHN], [IND]) \
Arguments are as described in Section 10.5.1.2, with the following
additions:

MODE Specifies the sampling options. VAX/VMS defines the
following start criteria values:
Value Meaning

0 Immediate start. This 1is the default

value for MODE.

64 Multirequest mode. If not selected, this
request is for dedicated mode.

4096 Start method. If selected, digital input

start. If not selected, immediate start.
Multirequest mode only.

10~-19 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Value Meaning

16384 Buffer overrun is a non-fatal error. The
LPAll-K will automatically default to
empty buffer 0 if a buffer overrun
condition occurs.
IND Returns the success or failure status:

0 = Error in call, Possible causes are: LPASSETIBF

was not previously called; LPASRLSBUF was not

previously called; size of data buffers disagrees with

the size computed by the LPASSETIBF call.

1 = successful sweep started

nnn = VAX/VMS status code

10.5.4 LPASDISWP - Initiate Synchronous Digital Input Sweep

The LPASDISWP subroutine initiates digital input through a DRI11-K.
LPASDISWP is applicable in multirequest mode only.

The format of the LPASDISWP call is as follows:

CALL LPASDISWP (IBUF,LBUF,[NBUF],[MODE],[DWELL],[IEFN],[LDELAY],
[ICHN], [NCHN], [IND])

Arguments are as described in Section 10.5.1.2, with the following
additions:

MODE Specifies sampling options. VAX/VMS defines the
following sampling option values:
Value Meaning

0 Immediate start. This is the default

value for MODE,.

512 External trigger for DR11-K. (The LPAll-K
Laboratory Peripheral Accelerator User's
Guide describes the use of an external
trigger.)

1024 Time stamped sampling with Clock B. The
double word consists of one data word
followed by the value of the internal
LPAll-K, 16-bit, counter at the time of
the sample (see Section 2.4.3 in the
LPAl11-K Laboratory Peripheral Accelerator
User's Guide).

2048 Event marking. (The LPAll-K Laboratory
Peripheral Accelerator User's Guide
describes event marking.)

4096 Start method. If selected, digital input
start. If not selected, immediate start.

16384 Buffer overrun is a non-fatal error. The
LPAll1~-K will automatically default to fill
buffer 0 if a buffer overrun condition
occurs.

10-20 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

IND Returns the success or failure status:

0 = Error in call. Possible causes are

: LPASSETIBF

was not previously called; LPASRLSBUF was not
previously called; size of data buffers disagrees with

the size computed by the LPASSETIBF call.
1 = successful sweep started

nnn = VAX/VMS status code

10.5.5 LPASDOSWP - Initiate Synchronous Digital Output Sweep

The LPASDOSWP subroutine initiates digital output through a DR11-K.

LPASDOSWP is applicable in multirequest mode only.
The format of the LPAS$DOSWP call is as follows:

CALL LPA$DOSWP (IBUF,LBUF,[NBUF], [MODE], [DWELL], [IE
[ICHN], [NCHN], [IND])

Arguments are as described in Section 10.5.1.2, with
additions:

MODE Specifies the sampling options. VAX/VMS
following values:
Value Meaning
0 Immediate start. This 1is

value for MODE.

512 External trigger for DR11-K
Laboratory Peripheral Acce

FN], [LDELAY],

the following

defines the

the default

(The LPAll-K
lerator User's

Gulde describes the use of
trigger.)

an external

4096 Start method. If selected, digital input
start. If not selected, immediate start.

16384 Buffer overrun is a non-fata
LPAll-K will automaticall
empty buffer 0 if a bu
condition occurs.

IND Returns the success or failure status:

0 = Error in call., Possible causes are
was not previously called; LPASRL

1 error. The
y default to
ffer overrun

H LPASSETIBF
SBUF was not

previously called; size of data buffers disagrees with

the size computed by the LPASSETIBF call.
1 = successful sweep started

nnn = VAX/VMS status code

10-21

February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.6 LPASLAMSKS - Set LPAll-K Masks and NUM Buffer

The LPASLAMSKS subroutine initializes a user buffer which contains a
number to append to the 1logical name LPAll$, a digital start word
mask, an event mark mask, and channel numbers for the two masks.

LPASLAMSKS must be called:

e By users who intend to use digital input starting or event
marking

e By users who do not want to use the default of LAA0 assigned
to LPA11$0

e If multiple LPAll-Ks are used
The format of the LPASLAMSKS call is as follows:

CALL LPASLAMSKS (LAMSKB, [NUM],[IUNIT],[IDSC],[IEMC]},[IDSW],
[IEMW], [IND])

Argument descriptions are as follows:
LAMSKB Specifies a 4-word array

NUM Specifies the number appended to LPAllS. The sweep
is started on the LPAll-K assigned to LPAllS$num.

IUNIT Not used. This argument is present for
compatibility only.

IDSC Specifies the digital START word channel. Range is
0 to 4. The IDSC argument length is one byte.

IEMC Specifies the event MARK word channel. Range is 0
to 4. The IEMC argument length is one byte.

IDSW Specifies the digital START word mask. The IDSW
argument length is one word.

IEMW Specifies the event MARK word mask. The IEMW
argument length is one word.

IND Always equal to 1 (success). This argument is
present for compatibility only.

10.5.7 LPASSETADC - Set Channel Information For Sweeps
The LPASSETADC subroutine establishes channel start and increment
information for the sweep control subroutines (see Table 10-4). The
LPASSETIBF subroutine must be called to initialize IBUF before
LPASSETADC is called.
The two formats for the LPASSETADC call are as follows:

CALL LPASSETADC (IBUF,[IFLAG],[ICHN],[NCHN],[INC],[IND])

or,

IND=LPASSETADC (IBUF,[IFLAG],[ICHN],[NCHN],[INC])

10-22 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Argument descriptions are as follows:
IND Returns the success or failure status:

0 = LPASSETIBF was not called prior to the
LPASSETADC call

1 = LPASSETADC call successful
IBUF The IBUF array specified in the LPASSETIBF call

IFLAG Reserved. This argument is present for
compatibility only.

ICHN Specifies the first channel number. Range is 0 to
255; default 1is 0. The ICHN argument length is
one longword.

If INC = 0, ICHN 1is the address of a Random
Channel List. This address must be word-aligned.

NCHN Specifies the number of samples taken per sample
sequence, Default is 1.

INC Specifies the channel increment. Default is 1.
If INC is 0, ICHN is the address of a Random
Channel List. The INC argument 1length is one
longword.

10.5.8 LPASSETIBF - Set IBUF Array For Sweeps

The LPASSETIBF subroutine initializes the IBUF array for use with the
LPASADSWP, LPASDISWP, LPASDOSWP, LPAS$DASWP, LPASSTPSWP, LPASIWTBUF,
LPASIGTBUF, LPASIBFSTS, LPASRLSBUF, LPASINXTBF, LPASSETADC, and
LPASRMVBUF subroutines.

The format of the LPASSETIBF call is as follows:
CALL LPASSETIBF (IBUF,[IND],[LAMSKB],BUFO,[BUFI,...,BUF?])

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF Specifies a 50-longword array that is initialized
by this subroutine. IBUF must be
longword-aligned. (See Table 10-5 for additional
information on IBUF.)

IND Returns the success or failure status:

. 0 = Error in call. Possible causes are:
incorrect number of arguments; IBUF array not
longword—-aligned; buffer addresses not
equidistant,

1 = IBUF initialized successfully

10-23 February 1979

LABORATORY PERIPHERAL. ACCELERATOR DRIVER

LAMSKB Specifies the name of a 4-word array. This array
allows the use of multiple LPAll-Ks within the
same program because the argument used to start
the sweep is specified by the LPASLAMSKS call.
(see Section 10.5.6 for a description of the
LPASLAMSKS subroutine,)

BUFO, etc. Specify the names of the buffers. A maximum of
eight buffers can be specified. At least two
buffers must be specified to provide continuous
sampling. The LPAll-K driver requires that all
puffers be contiguous. To ensure this, LPASSETIBF

verifies that all buffer addresses are
equidistant. Buffers must be longword-aligned.

10.5.9 LPA$STPSWP - Stop In-progress Sweep

The LPASSTPSWP subroutine allows a user to stop a sweep that 1is 1in
progress.

The format of the LPASSTPSWP call is as follows:
CALL LPASSTPSWP (IBUF,[IWHEN],[IND])

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF THE IBUF array specified in the LPASADSWP,
LPASDASWP, LPASDISWP, or LPASDOSWP call that
initiated the sweep.

IWHEN Specifies when to stop the sweep. VAX/VMS defines
the following values:

0 = Abort sweep immediately. Uses the $CANCEL
system service. This is the default sweep stop.

1 = Stop sweep when the current buffer transaction
is completed. (This is the preferred way to stop
requests.)

IND Receives a success or failure code in the standard
VAX/VMS format:

1 = Success

nnn = VAX/VMS error code issued by the S$CANCEL
system service

10.5.10 LPASCLOCKA - Clock A Control
The LPASCLOCKA subroutine sets the clock rate for Clock A.
The format of the LPASCLOCKA call is as follows:

CALL LPASCLOCKA (IRATE,IPRSET,[IND],[NUM])

10-24 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Arguments are as described in Section 10.5.1.2, with the following

additions:

IRATE

IPRSET

IND

NUM

Specifies the clock rate. One of the following
values must be specified:

Clock B overflow or no rate
1 MHz

100 kHz

10 kHZ

1 kHz

100 Hz

Schmidt trigger 1

Line frequency

NODEs WO

Specifies the clock preset value. Maximum of 16
bits. The LPASXRATE subroutine can be used to
calculate this value. The clock rate divided by
the clock preset value yields the clock overflow
rate.

Receives a success or failure code as follows:

1 = Clock A set successfully

nnn = VAX/VMS error code indicating an I/O error
Specifies the number to be appended to the logical
name LPA1llS. If defaulted, NUM is 0. This

subroutine sets Clock A on the LPAll-K assigned to
LPAllSnum.

10.5.11 LPASCLOCKB - Clock B Control

The LPASCLOCKB subroutine provides the user with control of the KWll-K

Clock B.

The format of the LPASCLOCKB call is as follows:

CALL LPASCLOCKB ([IRATE],IPRSET,MODE, [IND], [NUM])

Arguments are as described in Section 10.5.1.2, with the following

additions:

IRATE

Specifies the clock rate. One of the following
values must be specified:

Stops Clock B

1 MHz

100 kHz

10 kHz

1 kHz

100 Hz

Schmidt trigger 3
Line frequency

NoUbdwhe-O

If IRATE is 0 (default), the clock is stopped and
the IPRSET and MODE arguments are ignored.

10-25 February 1979

IPRSET

MODE

IND

NUM

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Specifies the preset value by which the clock rate
is divided to yield the overflow rate. Maximum of
8 bits. Overflow events can be used to drive
Clock A. The LPASXRATE subroutine can be used to
calculate the IPRSET value.

Specifies options. VAX/VMS defines the following
values:

1

Clock B operates in non-interrupt mode.

2 = The feed B to A bit in the Clock B status
register will be set (see Section 3.3 of the
LPAl11-K Laboratory Peripheral Accelerator User's
Guide).

Receives a success or failure.code as follows:

1 = Clock B set successfully

nnn = VAX/VMS error code indicating an I/O error
Specifies the number to be appended to the logical
name LPA1llS. If defaulted, NUM is O. This

subroutine sets Clock B on the LPAll-K assigned to
LPAllS$num.

10.5.12 LPASXRATE - Compute Clock Rate and Preset Value

The LPASXRATE subroutine computes the clock rate and preset value for
the LPASCLOCKA and LPASCLOCKB subroutines using the specified
inter-sample interval (AINTRVL).

The two formats for the LPASXRATE call are as follows:

CALL LPASXRATE (AINTRVL,IRATE,IPRSET,IFLAG)

or,

ACTUAL=LPASXRATE (AINTRVL, IRATE, IPRSET, IFLAG)

Arguments are as described in Section 10.5.1.2, with the following

additions:

AINTRVL

IRATE

IPRSET

IFLAG

Specifies the inter-sample time selected by the
user. The time is expressed in decimal seconds.
Data type is floating point.

Receives the computed clock rate as a value from 1
to 5.

Receives the computed clock preset value.
If the computation is for Clock A, IFLAG is 0; if
for Clock B, IFLAG is not 0 (the maximum preset

value is 255). The IFLAG argument length is one
byte.

10-26 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

ACTUAL Receives the actual inter-sample time if called as
a function. Data type 1is floating point. If
there are truncation and roundoff errors, this
time can be different from the specified
inter-sample time. Note that when LPASXRATE is
called from VAX-11 FORTRAN IV-PLUS programs as a
function, it must be explicitly declared a real
function. Otherwise, LPASXRATE defaults to an
integer function.

If AINTRVL is too large or too small to be achieved, both IRATE and
ACTUAL are returned to 0.

10.5.13 LPASIBFSTS - Return Buffer Status

The LPASIBFSTS subroutine returns information on the buffers used in a
sweep.

The format of the LPASIBFSTS call is as follows:
CALL LPASIBFSTS (IBUF,ISTAT)
Argument descriptions are as follows:

IBUF The IBUF array specified in the call that
initiated the sweep.

ISTAT Specifies a longword array with as many elements
as there are buffers involved in the sweep
(maximum of eight). LPA$IBFSTS fills each array
element with the status of the corresponding
buffer:

+2 = Buffer in device queue. LPASRLSBUF has been
called for this buffer.

+1 = Buffer in user queue. The LPAll-K has filled
(data input) or emptied (data output) this buffer.

0 = Buffer is not in any queue.
11 = Buffer is in the in-use queue, that is, it is

either being filled or emptied or is the next to
be filled or emptied by the LPAll-K.

10.5.14 LPASIGTBUF - Return Buffer Number
The LPASIGTBUF subroutine returns the number of the next buffer to be
processed by the application program, that is, the buffer at the head
of the user queue (see Figure 10-4). LPASIGTBUF should be called by a
completion routine at AST level to determine the next buffer to
process. If an event flag was specified in the start sweep call,
LPASIWTBUF, not LPASIGTBUF, should be called.
The formats of the LPASIGTBUF call are as follows:

CALL LPASIGTBUF (IBUF, IBUFNO)
or,

IBUFNO=LPASIGTBUF (IBUF)

10-27 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Arguments are as described in Section
additions:

IBUF The IBUF array

Iinitiated the sweep.

IBUFNO

10.5.1.2,

specified

with the following

in the call that

Returns the number of the next buffer to be filled

or emptied by the application program.

Table 10-6 lists the possible combinations of IBUFNO and IOSB contents

on the return from a call to LPA$IGTBUF. The first four words of the
IBUF array contain the IOSB. If IBUFNO is -1, the IOSB must be
checked to determine the reason.
Table 10-6
LPASIGTBUF Call - IBUFNO and IOSB Contents
IBUFNO| IOSB(1) I0SB(2) IOSB(3),(4) Meaning
n 0 (byte count) 0 Normal buffer complete.
-1 0 0 0 No buffers in queue.
Request still active.
-1 1 0 0 No buffers in queue.
Sweep terminated
normally.
-1 VAX/VMS 0 LPAll-K No buffers in queue.
error code ready-out Sweep terminated due to
and maint. error condition.
registers Section 10.6 describes
. (only if the VAX/VMS error codes;
Ss$_DEVREQERR, Appendix A of the
SS$_CTRLERR, LPAll1-K Laboratory
or Peripheral Accelerator
Ss$_DEVCMDERR |User's Guide lists
is returned) the LPAll1-K error codes.
10.5.15 LPASINXTBF - Set Next Buffer to Use
The LPASINXTBF subroutine alters the normal buffer selection algorithm
to allow the user to specify the next buffer to be filled or emptied.
The specified buffer is reinserted at the head of the device queue.
The two formats of the LPASINXTBF call are as follows:
CALL LPASINXTBF (IBUF,IBUFNO,IND)
or,

IND=LPASINXTBF (IBUF,IBUFNO)

10-28

February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF The IBUF array specified in the call that
initiated the sweep.

IBUFNO Specifies the number of the next buffer to be
filled or emptied. The buffer must already be in
the device queue,

IND Returns the result of the call:

0 Specified buffer was not in the device queue

1

Next buffer was successfully set

10.5.16 LPASIWTBUF - Return Next Buffer or Wait

The LPASIWTBUF subroutine returns the next buffer to be processed by
the application program, that is, the buffer at the head of the user
queue. If the user queue is empty, LPASIWTBUF waits until a buffer is
available. If a completion routine was specified in the call that
initiated the sweep, LPASIGTBUF, not LPASIWTBUF, should be called.

The two formats of the LPASIWTBUF call are as follows:
CALL LPASIWTBUF (IBUF,[IEFN],IBUFNO)

or,
IBUFNO=LPASIWTBUF (IBUF, [IEFN])

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF The IBUF array specified in the call that
initiated the sweep.

IEFN Not used. This argument is present for
compatibility only. (The event flag is the one
specified in the start sweep call.)

IBUFNO Returns the number of the next buffer to be filled
or emptied by the application program.

Table 10~7 lists the possible combinations of IBUFNO and IOSB contents
on the return from a call to LPASIWTBUF. The first four words of the
IBUF array contain the IOSB. If IBUFNO is -1, the IOSB must be
checked to determine the reason.

10-29 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-7
LPASIWTBUF Call - IBUFNO and I0SB Contents
IBUFNO| IOSB(1) I0SB(2) I0OSB(3),(4) Meaning
n 0 (byte count) 0 Normal buffer complete.
-1 1 0 0 No buffers in queue.
Sweep terminated
normally.
-1 VAX/VMS 0 LPAll-K No buffers in queue.
error code ready-out Sweep terminated due to
and maint. error condition.
registers Section 10.6 describes
(only if the VAX/VMS error. codes;
SS$_DEVREQERR |Appendix A of the LPAl1-K
SS$_CTRLERR, |Laboratory Peripheral
or Accelerator User's Guide
SS$_DEVCMDERR lists the LPAll-K error
is returned) codes.

10.5.17 LPASRLSBUF - Release Data Buffer

The LPASRLSBUF subroutine declares one or more buffers availablé to be
filled or emptied by the LPAll-K. LPASRLSBUF inserts the buffer at
the tail of the device queue (see Figure 10-4).

The format of the LPASRLSBUF call is as follows:
CALL LPASRLSBUF (IBUF,[IND],INDEXO,INDEXl,...,INDBXN)

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF The IBUF array specified in the call that
initiated the sweep.

IND Returns the success or failure status:

0 = Illegal buffer number or incorrect number of
arguments specified, or a double buffer overrun
occurred. A double buffer overrun can occur if
buffer overrun was specified as a non-fatal error,
a buffer overrun occurs, and buffer 0 was not
released (probably on the user queue after a
previous buffer overrun). LPAS$_RLSBUF can return
a double buffer overrun error only if buffer
overrun was specified as a non-fatal error.

1 = Buffer(s) released successfully
INDEXO, etc. Specify the indexes (0-7) of the buffers to be

released. A maximum of eight indexes can be
specified.

10-30 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

The LPASRLSBUF subroutine must be called to release a buffer (or
buffers) to the device queue before the sweep is initiated. (See
Section 10.5.1.1 for a discussion on buffer management.) Note that
LPASRLSBUF does not verify whether or not the specified buffers are
already in a queue. If a buffer is released when it is already 1in a
queue, the queue pointers will be invalidated. This can cause
unpredictable results.

10.5.18 LPASRMVBUF - Remove Buffer from Device Queue
The LPASRMVBUF subroutine removes a buffer from the device queue.
The format of the LPASRMVBUF call is as follows:

CALL LPASRMVBUF (IBUF,IBUFNO, [IND])

Arguments are as described in Section 10.5.1.2, with the following
additions:

IBUF The IBUF array specified in the call that
initiated the sweep.

IBUFNO Specifies the number of the buffer to remove from
the device queue.

IND Returns the success or failure status:
0 = Buffer not found in the device queue

1 = Buffer successfully removed from the device
queue

10.5.19 LPASCVADF - Convert A/D Input to Floating Point

The LPASCVADF subroutine converts A/D input values to floating point
numbers. LPASCVADF is provided for compatibility reasons.

The formats of the LPASCVADF call are as follows:
CALL LPASCVADF (IVAL,VAL)

or,
VAL=LPASCVADF (IVAL)

Argument descriptions are as follows:

IVAL Contains the value (bits 11:0) read from the A/D
input. Bits 15:12 are 0.

VAL Receives the floating point value.

10-31 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.5.20 LPASFLT16 - Convert Unsigned 16-bit Integer to Floating Point

The LPASFLP16 subroutine converts unsigned 16-bit integers to floating
point. LPASFLT16 is provided for compatibility reasons.

The formats of the LPASFLT16 call are as follows:
CALL LPASFLT16 (IVAL,VAL)

or,
VAL=LPA$FLT16(IVAL)

Argument descriptions are as follows:
IVAL An unsigned 16-bit integer.

VAL Receives the converted value.

10.5.21 LPASLOADMC - Load Microcode and Initialize LPAll-K
The LPASLOADMC subroutine provides a program interface to the LPAll1-K
microcode 1loader. LPASLOADMC sends a load request through a mailbox
to the loader process to load microcode and initialize an LPAl1-K
(Section 10.7.1 describes the microcode loader process).
The format of the LPASLOADMC call is as follows:

CALL LPASLOADMC ([ITYPE] [,NUM] [,IND] [, IERROR])

Argument descriptions are as follows:

ITYPE " The type of microcode to be loaded. VAX/VMS
defines the following values:
Value Meaning
1 Multirequest mode
2 Dedicated A/D mode
3 Dedicated D/A mode

If the ITYPE argument is defaulted, multirequest
mode microcode is loaded.

NUM The number to be appended to the 1logical name
LPAl1l1$. If defaulted, NUM is 0.

IND Receives the completion status:
1 = Microcode loaded successfully.
nnn = VAX/VMS error code

IERROR Provides additional error information. Receives
the second longword of the 1IOSB if either
SS$ CTRLERR, SS$_DEVCMDERR, or SS$_DEVREQERR is

returned in IND. Otherwise, the contents of
IERROR is undefined.

10-32 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.6 I/0 STATUS BLOCK
The I/0 status block format for the load microcode, start

microprocessor, initialize LPAll-K, set clock, and start data transfer
request QIO functions is shown in Figure 10-5.

31 16 15 0

byte count status

LPA11-K

maintenance status LPA11-K ready-out

Figure 10-5 1I/0 Functions IOSB Content

VAX/VMS status values and the byte count are returned in the first
longword. Status values are defined by the $SSDEF macro. The byte
count is the number of bytes transferred by a IO$_LOADMCODE request.
If SS$__CTRLERR, SS$ DEVCMDERR, or SS$_DEVREQERR is returned in the
status word, the second longword contains the LPAl1-K Ready-out
Register and LPAll-K Maintenance Status Register values present at the
completion of the request. The high byte of the Ready-out Register
contains the specific LPAll-K error code (see Appendix A of the
LPAll-K Laboratory Peripheral Accelerator User's Guide). Table 10-8
lists the status returns for LPAll-K I/0 functions.

If high level language library procedures are used, the status returns
listed in Table 10-8 can be returned from the resultant QIO functions.
Since buffers are filled by these procedures asynchronously, two I/0
status blocks are provided in the IBUF array: one for the high level
language procedures and one for the LPAll-K driver. The first four
words of the IBUF array contain the IOSB for the high level language
procedures.

Table 10-8
LPAl11-K Status Returns for I/0 Functions

Status Meaning

SS$_ABORT Request aborted. A request 1in progress was
cancelled by the SCANCEL system service. (Only
for start data transfer request functions.)

(continued on next page)

10-33 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-8 (Cont.)

LPAll-K Status Returns for I/0 Functions

Status

Meaning

SS$_BUFNOTALIGN

SS$_CANCEL

SS$_CTRLERR

SS$_DATACHECK

S8$_DEVACTIVE

SS$_DEVCMDERR

Alignment error. If this error occurs for an
initialize LPAl11-K request, the initialize
command table was not word-aligned. If this
error occurs for a start data transfer request,
there are several possible causes:

° User status word (USW) not word-aligned
. Buffer area not longword-aligned
® Random Channel List (RCL) not word-aligned

Request cancelled by the S$CANCEL system service
before it started. (Only for the initialize
LPAl1-K, set «clock, and start data transfer
request functions.)

Controller error. This is a fatal error that
affects all LPAll-K activity. If this error
occurs, the LPAll-K terminates all active
requests. The third and fourth words of the
IOSB contain the LPAll1-K Ready-out Status
Register and Maintenance Register contents. In
particular, the high byte of the third word
contains the specific LPAll-K error code (see
Appendix A in the LPAll-K Laboratory Peripheral
Accelerator User's Guide). (Only for the start
microprocessor, initialize LPAll-K, set clock,
and start data transfer request functions.)

Data check error. A mismatch between the
microcode in memory and the microcode loaded
into the LPAll-K was detected. The second word
of the IOSB contains the number of bytes
successfully 1loaded. (Only for the load
microcode function.)

Device 1is active, The microcode cannot be
loaded or the microprocessor cannot be started
because there 1is an active data transfer
request, (Only for the load microcode and start
microprocessor functions.)

LPAll-K command error. This error is associated
with the issuance of a new LPAll-K command. The
third and fourth words of the IOSB contain the
LPAll1-K Ready-out Status Register and
Maintenance Register contents. In particular,
the high byte of the third word contains the
specific LPAll-K error code (see Appendix A in
the LPAll-K Laboratory Peripheral Accelerator
User's Guide). (Only for the initialize
LPAll-K, set «clock, and start data transfer
request functions.)

(continued on next page)

10-34 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-8 (Cont.)

LPAl1l1-K Status Returns for I/0 Functions

Status

Meaning

SS$_DEVREQERR

SS$_EXQUOTA

SS$_INSFBUFDP

SS$_INSFMAPREG

SS$_INSFMEM

SS$_IVBUFLEN

LPAl1l1-K user request error. The third and
fourth words of the 1I0SB contain the LPAll-K
Ready-out Status Register and Maintenance
Register contents. In particular, the high byte
of the third word contains the specific LPAll-K
error code (see Appendix A in the LPAll-K
Laboratory Peripheral Accelerator User's Guide).
(Only for start data transfer requests.)

AST quota exceeded. An AST cannot be queued for
a buffer full/empty AST. Normally, a start data
transfer request can require no more than three
AST blocks at a time. (Only for start data
transfer requests.)

A UBA-buffered datapath was not available for
allocation. (Only for start data transfer
requests in dedicated mode.)

Insufficient UBA map registers to map the
command table or buffer areas. If the map
registers were preallocated when the driver was
loaded, the preallocation should be increased.
(Only for the initialize LPAll-K and start data
transfer request functions.)

Insufficient dynamic memory to start request or
allocate an AST block. (Only for start data
transfer requests.)

Incorrect length. If this error occurs for an
initialize LPAll1-K request, the initialize
command table length is not the required 278
bytes. If this error occurs for a start data
transfer request, there are several possible
causes:

. Command table length is not the required 40
bytes

° Buffer area size is not evenly divisible by
the number of buffers assigned

° Individual buffer size is 0

° Individual buffer size is not a multiple of
2 for a multirequest mode request, or 4 for
a dedicated mode request

. Random Channel List length is 0 or not a
multiple of 2

° Bit 15 in the last word of the Random
Channel List is not set

(continued on next page)

10-35 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Table 10-8 (Cont.)
LPAll-K Status Returns for I/0 Functions

Status Meaning

SS$_IVMODE Incorrect mode, The first three bits (2:0) 6f

S§S$_MCNOTVALID Microcode has not been successfully loaded.

SS$_PARITY Parity error. A parity error occurred in a

SS$_POWERFAIL A power failure occurred while a request was

SSS_TIMEOUT Device timeout. An interrupt was not received

the first word in the command table, that is,
the mode word, are not 0. (Only for the
initialize LPAl1l-K function.) ‘

(Only for the start microprocessor, initialize
LPAll1-K, set <clock, and start data transfer
request functions.)

UBA-buffered datapath. (Only for start data
transfer request in dedicated mode.)

active, (Only for the start microprocessor,
initialize LPAll-K, set clock, and start data
transfer request functions.)

within one second after the request was issued.
(Only for the start microprocessor, initialize
LPAl11-K, set clock, and start data transfer
request functions.)

10.7 LOADING LPAll-K MICROCODE

The microcode loading and device initialization routines automatically

load

microcode on system initialization (if specified in the system

manager's startup file) and on power recovery. These routines also
allow a non-privileged user to load microcode and restart the system.

The LPAll-K loader and initialization routines consist of three parts:

A microcode loader process which 1loads any of the three
microcode versions, initializes the LPAll1-K, and sets the
clock rate., Loading is initiated by either a mailbox request
or a power recovery AST. This process requires permanent
mailbox (PRMMBX) and physical I/0 privileges.

An operator process which accepts operator commands or
indirect file commands to load microcode and initialize an
LPAll-K. This process uses a mailbox to send a load request
to the loader process; temporary mailbox (TMPMBX) privilege
is required.

An LPAll-K procedure library routine that provides a program
interface to the LPAl1-K microcode loader. The procedure
sends a load request through a mailbox to the loader process
to load microcode and initialize an LPAll-K. Section 10.5.21
describes this routine in greater detail.

10~-36 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.7.1 Microcode Loader Process

The microcode loader process loads microcode, initializes a specific
LPAll1-K, and sets the <clock at the default rate (10 kHz interrupt
rate). A bit set in a controller bitmap indicates that the specified
controller was loaded. The process specifies a power recovery AST,
creates a mailbox whose name (LPASLOADER) is entered in the system
logical name table, and then hibernates.

The correct device configuration is determined automatically. When
LPAll-K initialization is performed, every possible device (see Table
10-1) is specified as present on the LPAll1-K. If the LPAll-K returns
a device not found error, the LPAll-K is reinitialized with that
device omitted.

On receipt of a power recovery AST, the loader process examines the
controller bitmap to determine which LPAll-Ks have been loaded. For
each LPAll-K, the loader process performs the following functions:

e Obtains device characteristics

e Reloads the microcode previously loaded

e Reinitializes the LPAll-K

e Sets Clock A to the previous rate and preset value

10.7.2 Operator Process

The operator process loads microcode and initializes an LPAll-K
through the use of either terminal or indirect file commands. The
command input syntax is as follows:

devname/type

Devname is the device name of the LPAll-K to be 1loaded. A logical
name can be specified. However, onhly one 1level of logical name
translation is performed. 1If devname is omitted, LAAO is the default
name. /type specifies one of three types of microcode to load:

/MULTI_REQUEST = multirequest mode
/ANALOG_DIGITAL dedicated A/D mode
/DIGITAL_ANOLOG dedicated D/A mode

If /type is omitted, /MULTI_REQUEST is the default.

After receiving the command, the operator process formats a message
and sends it to the loader process. Completion status is returned
through a return mailbox.

10.8 RSX-11M VERSION 3.1 AND VAX/VMS DIFFERENCES

This section lists those areas where the VAX/VMS and RSX-11lM Version
3.1 LPAll-K high level language support routines differ. The RSX-11M
I/0 Drivers Reference Manual provides a detailed description of the
RSX-11M LPA11-K support routines. The exact differences between the
VAX/VMS and RSX-11M routines can be determined by comparing the
descriptions in the RSX-11M manual with the descriptions for the
VAX/VMS routines in the preceding sections of this guide.

10-37 February 1979

10.8.1

LABORATORY PERIPHERAL ACCELERATOR DRIVER

Alignment and Length

In VAX/VMS:

10.8.2

“

Buffers must be contiguous,
Buffers must be longword-aligned.
The Random Channel List must be word-aligned.

The IBUF array length is 50 longwords and must be
longword-aligned.

Status Returns

In VAX/VMS:

10.8.3

The I/0 Status Block 'length is 8 bytes; numeric values of
errors are different.

Several routines return:
1l - Success
0 - Failure detected in support routine

nnn - VAX/VMS status code. Failure detected in system
service,

Sweep Routines

In VAX/VMS:

10.8.4

If an event flag is specified, it must be within a SVAL()
construction.

A tenth argument, IND, has been added to return the success or
failure status,

Qeneral

In VAX/VMS:

The LUN argument is not wused. Instead, the NUM argument

specifies the number to be appended to the logical name
LPAllS.

All routine names have the prefix LPAS.

In the LPASSETIBF routine, buffer addresses are checked for
contiguity.

In the LPASLAMSKS routine, the IUNIT argument is not used.

10-38 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

In the LPASIWTBUF routine, the IEFN argument is not used. The
event flag specified in the sweep routine is used.

The combinations of IBUFNO and I/0 Status Block values
returned by the LPASIWTBUF and LPASIGTBUF routines are
different.

If buffer overrun is specified as a non-fatal error, buffer 0
must be released. However, buffer 0 is set aside (placed on a
queue) until a buffer overrun occurs. If a buffer overrun
occurs and buffer 0 was not released, the LPASRLSBUF routine
returns an error the next time buffer 0 is released.

10.9 PROGRAMMING EXAMPLES

The

following program examples. use LPAll-K high 1level 1language

procedures and LPAll~K Queue I/O0 functions.

10-39 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.9.1 LPAll-K High Level Language Program (Program A)

This program is an example of how the LPAll1-K high level 1language
procedures perform an A/D sweep using three buffers. The program uses
default arguments whenever ©possible to illustrate the simplest
possible calls. The program assumes that dedicated mode microcode has
previously been loaded into the LPAll-K. Table 10-9 1lists the
variables used in this program.

Table 10-9
Program A Variables

Variable Description

BUFFER The data buffer array. BUFFER is a common area to
guarantee longword-alignment.

IBUF The LPAll-K high level language procedures use the
IBUF array for local storage.

BUFNUM BUFNUM contains the buffer number returned by
LPASIWTBUF. 1In this example, the possible values are
0, 1, and 2.

ISTAT ISTAT contains the status return from the high 1level
language calls.

C ***
c
C PROGRAM A |
c : !
C **
INTEGER*2 BUFFER(1000,0:2) , IOSB (4)
INTEGER* 4 IBUF (50) ,ISTAT,BUFNUM
COMMON/AREA1/BUFFER
EQUIVALENCE (I0SB(1) ,IBUF (1))
c
C SET CLOCK RATE TO 100 KHZ, CLOCK PRESET TO -10
C
CALL LPA$CLOCKA(2,-10,ISTAT)
IF (.NOT. ISTAT) GO TO 950
C
C INITIALIZE IBUF ARRAY FOR SWEEP
C
CALL LPA$SETIBF (IBUF,ISTAT,,BUFFER(1,0),BUFFER(1,1),BUFFER(L,2))
IF (.NOT. ISTAT) GO TO 950
C
C RELEASE ALL THE BUFFERS. NOTE USE OF BUFFER NUMBERS RATHER THAN
C BUFFER NAMES.
C
CALL LPA$RLSBUF (IBUF,ISTAT,0,1,2)
IF (.NOT. ISTAT) GO TO 950
C
C START A/D SWEEP
C

10-40 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

CALL LPASADSWP (IBUF,1000,50,,,,,,,ISTAT)
IF (.NOT. ISTAT) GO TO 950

C
C GET NEXT BUFFER FILLED WITH DATA. 1IF BUFNUM IS NEGATIVE, THERE
C ARE NO MORE BUFFERS AND THE SWEEP IS STOPPED.
C
100 BUFNUM = LPASIWTBUF (IBUF)
IF (BUFNUM .LT. 0) GO TO 800
C

C PROCESS DATA IN BUFFER(1,BUFNUM) TO BUFFER (1000,BUFNUM)

(Application dependent code is inserted at this point)

C RELEASE BUFFER TO BE FILLED AGAIN

C
200 CALL LPASRLSBUF (IBUF,ISTAT,BUFNUM)
IF (.NOT., ISTAT) GO TO 950
GO TO 100
C
C THERE ARE NO MORE BUFFERS TO PROCESS. CHECK TO ENSURE THAT THE
C SWEEP ENDED SUCCESSFULLY. IOSB(l) CONTAINS EITHER 1 OR A
C VAX/VMS STATUS CODE.
C
800 IF (.NOT. IOSB(l)) CALL LIBSSTOP(%VAL(IOSB(1)))
PRINT *,'SUCCESSFUL COMPLETION'
GO TO 2000
C

C ERROR RETURN FROM SUBROUTINE. ISTAT CONTAINS EITHER 0 OR
C VAX/VMS ERROR CODE.
C
950 IF (ISTAT .NE. 0) CALL LIB$STOP(%VAL (ISTAT))
PRINT * ,'ERROR IN LPAl1l1-K SUBROUTINE CALL'
2000 STOP
END

(o] khkhkhkhkhhhkhkhhhhkhkhhhhhhhkhkhkhhkhkhhkhkhhhkkkhhhhkkkhdhkhhhhhhhhkhhhkxrhdhhkhdd

10-41 February 1979

10.9.2

LABORATORY PERIPHERAL ACCELERATOR DRIVER

LPAll-K High Level Language Program (Program B)

This program is a more complex example of LPAll-K operations performed

by the LPAll-K
operations are demonstrated:

high 1level 1language procedures. The following

Program requested loading of LPAll-K microcode

Setting the clock at a specified rate

Use of non-default arguments whenever possible

An A/D sweep that uses an event flag

A D/A sweep that uses a completion routine

Buffer overrun set (buffer overrun is a non-fatal error)

Random Channel List addressing

Sequential

Channel addressing

Table 10-10 lists the variables used in this program.

Table 10-10
Program B Variables

Variable Description

AD An array of buffers for an A/D sweep (8 buffers of
500 words each)

DA An array of buffers for a D/A sweep (2 buffers of
2000 words each)

IBUFAD The IBUF array for an A/D sweep

IBUFDA The IBUF array for a D/A sweep

RCL The array containing the Random Channel List

ADIOSB The array that contains the I/0 status block for the
A/D sweep. Equivalenced to the beginning of IBUFAD.

DAIOSB The array that contains the I/0 status block for the
D/A sweep. Equivalenced to the beginning of IBUFDA.

ISTAT Contains the status return from the high 1level
language calls

10-42

February 1979

[eXeNeXKeKe!

QOO0 000 [eXeNeKe!

oo XoKe]

eNeXe ke N Ko KoKk Ke!

LABORATORY PERIPHERAL ACCELERATOR DRIVER

ARk kkhkhkhkhhkhhkkhhkhkhhhhhhhkhhhhhhhhhhhhhhhhhkhhhhhhhhkhhhkhhdhkdkhhhhhdd

PROGRAM B

hhkkkhkhkkhkkhkhkkkhkhkhhkhhhhhhkhhkhhkhkhkhhkhkkkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhkhhkkk

EXTERNAL FILLBF
REAL*4 LPASXRATE

INTEGER*2 AD(500,0:7),DA(2000,0:1) ,RCL(5) ,MODE,IPRSET
INTEGER*2 ADIOSB(4) ,DAIOSB (4)

INTEGER*4 IBUFAD(50) ,IBUFDA(50) ,LAMSKB(2)
INTEGER*4 ISTAT,IERROR,IRATE,BUFNUM

REAL*4 PERIOD

COMMON /SWEEP/AD,DA,IBUFAD,IBUFDA

EDUIVALENCE (IBUFAD(l),ADIOSB(1l)),(IBUFDA(1l),DAIOSB(1))
PARAMETER MULTI=1, HBIT='8000'X, LSTCHN=HBIT+7

SET UP RANDOM CHANNEL LIST. NOTE THAT THE LAST WORD MUST HAVE BIT
15 SET.

DATA RCL/2,6,3,4,LSTCHN/

dhkhkhkkhhkhhkhhhkhhhkhhhhhrhohhkhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhkkkhkhkhkhdhkid

LOAD MULTIREQUEST MODE MICROCODE AND SET THE CLOCK OVERFLOW RATE
TO 5 KHZ

L Iy T I T
LOAD MICROCODE ON LPAll-K ASSIGNED TO LPAl1§$3

CALL LPASLOADMC (MULTI,3,ISTAT,IERROR)
IF (.NOT. ISTAT) GO TO 5000

COMPUTE CLOCK RATE AND PRESET. SET CLOCK 'A' ON LPAll-K
ASSIGNED TO LPAl11S$3.

PERIOD = LPASXRATE(.0002,IRATE,IPRSET,O0)
IF (PERIOD .EQ. 0.0) GO TO 5500

CALL LPAS$CLOCKA (IRATE,IPRSET,ISTAT,3)
IF (.NOT. ISTAT) GO TO 5000

I 2 XSRS RS RS S SRR S AR SRR AR R R AR R RS SRR EEE X

SET UP FOR A/D SWEEP

hhkhkhhhhhhhhhhhhkhhhhhhhhhhhhhhkhkhhhhhhhhhhhhhhhhhhkhhhkdhhhhhhhhrhhhkkk

INITIALIZE IBUF ARRAY. NOTE THE USE OF THE LAMSKB ARGUMENT BECAUSE
THE LPA11-K ASSIGNED TO LPA11$3 IS USED.

CALL LPASSETIBF(IBUFAD,ISTAT,LAMSKB,AD(1,0),AD(1,1),AD(1,2),
1 AD(1,3),AD(1,4) ,AD(1,5),AD(1,6),AD(1,7))
IF (.NOT., ISTAT) GO TO 5000

CALL LPASLAMSKS (LAMSKB, 3)

10-43 February 1979

LABORATORY. PERIPHERAL ACCELERATOR DRIVER

SET UP RANDOM CHANNEL LIST SAMPLING (20 SAMPLES IN A SAMPLE
SEQUENCE)

aonn

CALL LPASSETADC(IBUFAD, ,RCL,20,0,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

RELEASE BUFFERS FOR A/D SWEEP

[eXeXe!

CALL LPAS$RLSBUF (IBUFAD,ISTAT,0,1,2,3,4,5,6,7)
IF (.NOT. ISTAT) GO TO 5000

khhkkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhkhh A AA A AR RAR AR A AA R KA AR Rk hhh b kb h ke k&

SET UP FOR D/A SWEEP

******************************{************************************

NOTE THAT THE SAME LAMSKB ARRAY CAN BE USED BECAUSE THE LAMSKB
CONTENTS APPLY TO BOTH A/D AND D/A SWEEPS

leXe Koo Ne Ko Ko K2 K?)

%

CALL LPASSETIBF (IBUFDA,ISTAT,LAMSKB,DA(1,0),DA(1,1))
IF (.NOT. ISTAT) GO TO 5000

SET UP SAMPLING PARAMETERS AS FOLLOWS: INITIAL CHANNEL = 1,
NUMBER OF CHANNELS SAMPLED EACH SAMPLE SEQUENCE = 2, CHANNEL
INCREMENT = 2, THAT IS, SAMPLE CHANNELS 1 AND 3 EACH SAMPLE

SEQUENCE,

[eXeKeNo e Ko

CALL LPAS$SETADC(IBUFDA,,1,2,2,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

FILL BUFFERS WITH DATA FOR OUTPUT TO D/A

[eNoNe]

(Application dependent code is inserted here to fill buffers
DA(1,0) through DA(2000,0) and DA(1l,1) through DA(2000,1) with data)

RELEASE BUFFERS FOR D/A SWEEP

[eNeXe]

CALL LPASRLSBUF (IBUFDA,ISTAT,0,1)
IF (.NOT. ISTAT) GO TO 5000

hhRkhhkhkhhhhhhkhhhhhhhhhhhhhhhhhohhhhhhkhhkdbrkkhhhhhkhhhhhhhhvkhhhhk

START BOTH SWEEPS

AR SRR A R R R R TR Y Y Y 2 R R i)

START A/D SWEEP. MODE BITS SPECIFY BUFFER OVERRUN IS NON-FATAL AND
MULTIREQUEST MODE. SWEEP ARGUMENTS SPECIFY 500 SAMPLES/BUFFER,
INDEFINITE SAMPLING, DWELL = 10 CLOCK OVERFLOWS, SYNCHRONIZE USING
EVENT FLAG 15, AND A DELAY OF 50 CLOCK OVERFLOWS.

eXeXe ke Ne ke Ko XeKeKe Ke!

MODE = 16384 + 64
CALL LPASADSWP(IBUFAD,500,0,MODE,10,%VAL(15),50,,,ISTAT)
IF (.NOT. ISTAT) GO TO 5000

START D/A SWEEP. MODE SPECIFIES MULTIREQUEST MODE. OTHER
ARGUMENTS SPECIFY 2000 SAMPLES/BUFFER, FILL 15 BUFFERS, DWELL = 25

leXeKe!

10-44 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

C CLOCK OVERFLOWS, SYNCHRONIZE BY CALLING THE COMPLETION ROUTINE
C 'FILLBF', AND DELAY = 10 CLOCK OVERFLOWS. (SEE THE FILLBF LISTING
C AFTER THE PROGRAM B LISTING.)
C

MODE = 64

CALL LPASDASWP (IBUFDA,2000,15,MODE,25,FILLBF,10,,,ISTAT)

IF (.NOT. ISTAT) GO TO 5000
R R R R R e s L
c .
C WAIT FOR AN A/D BUFFER AND THEN PROCESS THE DATA IT CONTAINS. D/A
C BUFFERS ARE FILLED ASYNCHRONOUSLY BY THE COMPLETION ROUTINE FILLBF.
C
C Fkhkkhhkkh ko hhhhk ko kh kAR Ak Ik hhkh kAR Ak hh Ak kA Xk dkkh Ak kA hrhhhkk
C
C WAIT FOR A BUFFER TO BE FILLED BY A/D. IF BUFNUM IS LESS THAN
C ZERO, THE SWEEP HAS STOPPED (EITHER SUCCESSFULLY OR WITH AN ERROR).
C
100 BUFNUM = LPASIWTBUF (IBUFAD)

IF (BUFNUM .LT. 0) GO TO 1000
C
C THERE IS A/D DATA IN AD(1l,BUFNUM) THROUGH AD(500,BUFNUM)
C

(Process the A/D data with the application dependent code inserted
here)

C
C ASSUME SWEEP SHOULD BE STOPPED WHEN THE LAST SAMPLE IN BUFFER
C EQUALS 0. NOTE THAT THE SWEEP ACTUALLY STOPS WHEN THE BUFFER
C CURRENTLY BEING FILLED IS FULL. ALSO NOTE THAT LPASIWTBUF
C CONTINUES TO BE CALLED UNTIL THERE ARE NO MORE BUFFERS TO PROCESS.
C
IF (AD(500,BUFNUM) .NE. 0) GO TO 200
CALL LPASSTPSWP (IBUFAD,1,ISTAT)
IF (.NOT. ISTAT) GO TO 5000
C
C AFTER THE DATA HAS BEEN PROCESSED, THE BUFFER IS RELEASED TO BE
C FILLED AGAIN. THEN THE NEXT BUFFER IS OBTAINED FROM A/D.
C
200 CALL LPASRLSBUF (IBUFAD,ISTAT ,BUFNUM)
IF (.NOT. ISTAT) GO TO 5000
GO TO 100
c .
C ENTER HERE WHEN A/D SWEEP HAS ENDED. CHECK FOR ERROR OR
C SUCCESSFUL END. (NOTE: ASSUME THAT THE D/A SWEEP HAS ALREADY
C ENDED - SEE COMPLETION RQUTINE FILLBF)
C
1000 IF(ADIOSB(1)) GO TO 6000
' CALL LIBS$STOP($VAL (ADIOSB(1)))
C
C ENTER HERE IF THERE WAS AN ERROR RETURNED FROM ONE OF THE
C LPAll-K HIGH LEVEL LANGUAGE CALLS. ISTAT CONTAINS EITHER 0
C OR A VAX/VMS STATUS CODE.
C
5000 IF (ISTAT .NE., 0) CALL LIBS$STOP (%VAL(ISTAT))

5500 PRINT *,'ERROR IN LPAll-K SUBROUTINE CALL'

10-45 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

GO TO 7000

6000 PRINT *,'SUCCESSFUL COMPLETION'
7000 STOP
END

SUBROUTINE FILLBF

khhhhhhkkhhhhdhhkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhkkhkhkhhhdhhkhi

THE FILLBF SUBROUTINE IS CALLED WHENEVER THE D/A HAS EMPTIED A
BUFFER, AND THAT BUFFER IS AVAILABLE TO BE REFILLED. THIS
SUBROUTINE GETS THE BUFFER, FILLS IT, AND RELEASES IT BACK TO THE
LPAll-K. NOTE THAT THE D/A SWEEP IS STOPPED AUTOMATICALLY AFTER

15 BUFFERS HAVE BEEN FILLED., ALSO NOTE THAT FILLBF IS CALLED BY

AN AST HANDLER. IT IS THEREFORE CALLED ASYNCHRONOUSLY FROM THE
MAIN PROGRAM AT AST LEVEL. CARE SHOULD BE EXERCISED WHEN ACCESSING
VARIABLES THAT ARE COMMON TO BOTH LEVELS.

eXoNeXokeKeXoKe KeXke Ne o X Xo X!

INTEGER*2 AD(500,0:7),DA(2000,0:1) ,DAIOSB (4)
INTEGER*4 IBUFAD(50),IBUFDA(50) ,BUFNUM,ISTAT
EQUIVALENCE (IBUFDA(1),DAIOSB(1l))
COMMON /SWEEP/AD,DA,IBUFAD,IBUFDA

GET BUFFER NUMBER OF NEXT BUFFER TO FILL

[eXeKe!

BUFNUM = LPASIGTBUF (IBUFDA)
IF (BUFNUM .LT. 0) GO TO 3000

C FILL BUFFER WITH DATA FOR OUTPUT TO D/A

(Application dependent code is inserted here to fill buffer
DA (1,BUFNUM) through DA(2000,BUFNUM) with data)

C
C RELEASE BUFFER
C
CALL LPAS$RLSBUF (IBUFDA,ISTAT,BUFNUM)
GO TO 4000
C
C CHECK FOR SUCCESSFUL END OF SWEEP
C
3000 IF(DAIOSB(1l)) GO TO 4000
C
C ERROR IN SWEEP
C
CALL LIBS$STOP(%VAL(DAIOSB(1)))
4000 RETURN

END
(B S s R R E R R R R s

10-46 February 1979

LABORATORY PERIPHERAL ACCELERATOR DRIVER

10.9.3 LPAll-K QIO Functions Program (Program C)

This sample program uses QIO functions to start an A/D data
from an LPAll-K.

transfer
(The program assumes multirequest mode microcode has
been loaded.) Sequential channel addressing is used. The data
transfer is stopped after 100 buffers have been filled; no action is
taken with the data as the buffers are filled. Note that this program
starts the data transfer and then waits until the QIO operation
completes.

Ak kkdkkkkhhhhhhhhhhhkhhkkdhhhhkhkhhhhhhdhhhkhhhhhhhhhhkkkhhhhhdhhhhhhk

PROGRAM C

~o we we W we

khkkhkhkhkhkhhhhhhhhhhhhkhhhkhhhkhhhhhhhhhhhhhhkkhhhhrhhhhhkhhhhkkkkkhrddrd

.TITLE LPAll-K EXAMPLE PROGRAM

.IDENT

«PSECT

IOSB:
COUNT:

.BLKQ
. LONG

CBUFF:

.WORD

.WORD

. LONG
. LONG
. LONG
. LONG

. LONG

«WORD
.BYTE
.BYTE
+WORD

-WORD
.BYTE
.BYTE
-WORD
«WORD
«WORD

USW: «WORD

«ALIGN

DATA_BUFFERO:
DATA_BUFFERL:
DATA_BUFFER2:
DATA_BUFFER3:

DEVNAME: .LONG

/vol/

LADATA,LONG

o

“X20A

3

USW

4000

DATA BUFFERO
0

0

10

[y)

[eNoNoNoal

0

LONG

«BLKW
-BLKW
«BLKW
«BLKW

500
500
500
500

4,LANAME

10-47

~

e NE e Ne We We Wo We Ne W Ve Ve W e We W N0 We Wo Ve Ve e W We o ~

~e weo -

-

I/0 STATUS BLOCK
COUNT OF BUFFERS FILLED

COMMAND BUFFER FOR START
DATA QIO

MODE = SEQUENTIAL CHANNEL
ADDRESSING, A/D, MULTI-
REQUEST MODE

VALID BUFFER MASK (4
BUFFERS)

USER STATUS WORD ADDRESS
AGGREGATE BUFFER LENGTH
ADDRESS OF DATA BUFFERS
NO RANDOM CHANNEL LIST
LENGTH

NO RANDOM CHANNEL LIST
ADDRESS

DELAY

START CHANNEL

CHANNEL INCREMENT

NUMBER OF SAMPLES IN
SAMPLE SEQUENCE

DWELL
START
EVENT
START
EVENT
FILLS

WORD NUMBER

MARK WORD

WORD MASK

MARK MASK

OUT COMMAND BUFFER

USER STATUS WORD

BUFFERS MUST BE

LONGWORD ALIGNED

DATA BUFFERS

February 1979

CHANNEL: .BLKW

LANAME: .ASCII
.PSECT

START: .WORD

1

/LAAO/

LACODE ,NOWRT

0

SASSIGN S DEVNAME,CHANNEL

BLBS
BRW

$QIOW_S

BLBC
MOVZWL
BLBC
CLRW

MOVL

$QIOW_S

BLBC

R0O,5$
ERROR

,CHANNEL, #10$_SETCLOCK, -
IOSB,,,,#1,#7X143,#-500
RO ,ERROR

I0SB,RO

RO,ERROR

USW

#100,COUNT
+CHANNEL, #I0$_STARTDATA,

105B,,,CBUFF,#40,#BFRAST

RO ,ERROR

-

~ we o

~e wo we ~e wo we

§ we w0 S s

I

LABORATORY PERIPHERAL ACCELERATOR DRIVER

CONTAINS CHANNEL NUMBER

ASSIGN CHANNEL
NO ERROR
ERROR

SET CLOCK OVERFLOW RATE
TO 2 KHZ. (1 MHZ RATE
DIVIDED BY 500 PRESET)

ERROR
PICK UP I/0 STATUS
ERROR

START DATA TRANSFER
CLEAR USW (START WITH
BUFFER 0)

FILL 100 BUFFERS

ERROR

;7 NOTE THAT THE QIO WAITS UNTIL IT FINISHES. NORMALLY, THE DATA IS
; PROCESSED HERE AS THE BUFFERS ARE FILLED. CHECK FOR ERROR WHEN
; THE QIO COMPLETES.

MOVZWL
BLBC
RET

ERROR:

PUSHL
CALLS

BFRAST:

-WORD
INCB
CMPZV

BLEQ

CLRB
108: DECL
BGTR
BISB
208: BICB
RET

.END

10SB,R0
RO ,ERROR

RO
#1,LIBSSTOP

0
USW+1
#0,#3,USW+1,4#3

10$
USW+1

COUNT
208
#7X40,USW+1

#°X80,USW+1

START

~e we we

~e wp s

~ e . we N

-

~

w~e wo wa

PICK UP 1I/0 STATUS
ERROR
ALL DONE - EXIT

ENTER HERE IF ERROR.
STATUS IN RO.

PUSH ONTO STACK
SIGNAL ERROR

BUFFER AST ROUTINE.
BFRAST IS CALLED WHENEVER
A BUFFER IS FILLED.

ADD 1 TO BUFFER NUMBER
HANDLE WRAPAROUND

USE BUFFER 0

DECREMENT BUFFER COUNT
ENOUGH BUFFERS FILLED -

SET STOP BIT
CLEAR DONE BIT

; KEEKRARI KR RR AR I AR AR AR IR AR A AR KR AN AR AR b A A Ak A Ak b Ak bk bk ARk kK

10-48

Febryary 1979

APPENDIX B

I/0 FUNCTION CODES

This appendix lists the function codes and function modifiers

in the $IODEF macro.
listed.

B.l1 TERMINAL DRIVER
Function

I0$_READVBLK
I10$_READLBLK
I0$_READPBLK
I0$_READPROMPT

I0$_WRITEVBLK
I0$_WRITELBLK
I0$_WRITEPBLK

10$_SETMODE
L0$_SETCHAR

I0$_SETMODE!IO$M_HANGUP
I0$_SETCHAR!IO$M_ HANGUP

I0$_SETMODE!IOSM_CTRLCAST
I0$_SETMODE!IO$M_CTRLYAST
I0$_SETCHAR!IO$M_CTRLCAST
10$__SETCHAR!IO$M_CTRLYAST

10$_SENSEMODE
10$_SENSECHAR

lonly for 10$_READPROMPT

The

arguments for these functions a

defined
re also

Arguments Modifier
Pl - buffer address I0$M_NOECHO
P2 - buffer size IOS$SM_CVTLOW
P3 - timeout IOS$SM_NOFILTR
P4 ~ read terminator I0S$M_TIMED
block address I0$M_PURGE
P5 - prompt string I0OSM_DSABLMBX
buffer addressl I0$M_TRMNOECHO
P6 - prompt string
buffer size
Pl - buffer address IO$M_CANCTRLO
P2 - buffer size I0$M_ENABLMBX
P3 - (ignored) I0O$M NOFORMAT
P4 - carriage control -
specifier2
Pl - characteristics
buffer address
P2 - Characteristics
buffer size
P3 - speed specifier
P4 - fill specifier
P5 - parity flags
(none)
Pl - AST service routine address
P2 - AST parameter
P3 - acc¢ess modeé to deliver AST
Pl - Characteristi¢s buffér address
P2 - Characteristics buffer size

20nly for I0$_WRITELBLK and 10$_WRITEVBLK

B~1l February 1979

I/0 FUNCTION CODES

B.2 DISK DRIVERS

Functions Arguments

I0S$_READVBLK Pl - buffer address
I0$_READLBLK P2 - byte count
I0$_READPBLK P3 - disk address
I0$_WRITEVBLK

I0$_WRITELBLK

I0$_WRITEPBLK

I0$_SETMODE Pl - characteristic buffer

I0$_SETCHAR address

I0$_CREATE Pl - FIB descriptor address

I0$ ACCESS P2 - file name string

I0$_DEACCESS address

I0$_MODIFY P3 - result string length

10$ DELETE address

- P4 - result string descriptor

address

P5 - attribute list address

l0n1y for IO$_READPBLK and IO$_WRITEPBLK
20n1y for I0$_CREATE and IO$_ACCESS

3 -

only for IO$_CREATE and I0$_DELETE

B.3 MAGNETIC TAPE DRIVERS

Functions Arguments

I0$S READVBLK Pl - buffer address
I0$_READLBLK P2 - byte count

10$~ READPBLK

I0$ WRITEVBLK

I0$ WRITELBLK

I0$_WRITEPBLK

I0$_SETMODE Pl - characteristics buffer
10$_SETCHAR address
I10$_CREATE Pl - FIB descriptor address
I10$_ACCESS P2 - file name string
I05_DEACCESS address
I0$_MODIFY P3 - result string length
I0$_ACPCONTROL address
P4 - result string descriptor
address

P5 - attribute list address
I10$_SKIPFILE Pl - skip n tape marks

I0$_SKIPRECORD Pl

skip n records

lOnly for read functions

2Only for write functions
3Only for IO$_CREATE and IOS_ACCESS

4Only for IO$_ACPCONTROL

Modifiers

I0$M_DATACHECK
IO$M_INHRETRY
IO$M_INHSEEKL

I0$_INHRETRY

IO$M_CREATEZ
I0$M_ACCESS2
I0$M_DELETE3

Modifiers

I0$M_DATACHECK
I0$M_INHRETRY
I0$M_REVERSE1
I0$M_INHEXTGAP2

IOSM_INHRETRY
IO$M_INHEXTGAP

I0$M CREATE3

IOS$SM_ACCESS3
IO$M_DMOUNT4

IOSM_INHRETRY

IO$M_INHRETRY

Functions
I0$_MOUNT

10$_REWIND
10$_REWINDOFF

I0$_WRITEOF

I0$_SENSEMODE

I/0 FUNCTION CODES

Arguments

(none)

(none)

(none)

(none)

lOnly for read functions

2Only for write functions

30nly for I0$_CREATE and I0$_ACCESS
4only for IO$_ACPCONTROL

B.4 LINE PRINTER DRIVER

Functions

I0$_WRITEVBLK
I0$_WRITELBLK
I0$_WRITEPBLK

10$_SETMODE
10$_SETCHAR

Pl
P2
P3
P4

Pl

Arguments

buffer address
buffer size
(ignored)
carriage control
specifierl

characteristics buffer
address

lonly for I0$_WRITEVBLK and 10$_WRITELBLK

B.5 CARD READER DRIVER

Functions
I0$_READLBLK
I10$_READVBLK
I10S_READPBLK

10$_SETMODE
10$_ SETCHAR

10$_SENSEMODE

B.6 MAILBOX DRIVER

Arguments

Pl - buffer address
P2 - byte count

Pl - characteristics

buffer address

(none)

Functions

I0$_READVBLK
I0$_READLBLK
I0$_READPBLK
I0$_WRITEVBLK
I0$_WRITELBLK
I0$_WRITEPBLK

I0$_WRITEOF

I0$_SETMODE!IO$M_READATTN
I10$_SETMODE!IOSM_WRTATTN

Arguments

Pl - buffer address
P2 - buffer size

(none)

B-3

Pl - AST address
Pl - AST parameter

Modifiers

I0$M_INHRETRY
I0$M_NOWAIT

IO$SM_INHEXTGAP
IO$M_INHRETRY

I0$M_INHRETRY

Modifiers

(none)

(none)

Modifiers

I0OSM_BINARY
I0$M_PACKED

(none)

Modifiers

I0$SM_NOW

I/0 FUNCTION CODES

B.7 DMCll DRIVER

Functions Arguments Modifiers
I0$_READLBLK Pl - buffer address I0$M DSABLMBX1
I10$__READPBLK P2 - message size I0SM_NOwl
10$_READVBLK P6 - diagnostic buffer? IO$M_ENABLMBX3

10$_WRITELBLK
I0S_WRITEPBLK
10$_WRITEVBLK

I0S_SETMODE Pl - characteristics
I10$_SETCHAR buffer address

I0$_SETMODE!IOSM_ATTNAST Pl - AST service
I0$_SETCHAR!IOS$M ATTNAST routine address
P2 - (ignored)
P3 - AST access mode

I0$ SETMODE!IOSM SHUTDOWN Pl - characteristics

I10$_SETCHAR!IO$M_SHUTDOWN block address
I0$_SETMODE!IQSM_STARTUP Pl - characteristics
I0$_SETCHAR!IOS$M_STARTUP block address
- P2 - (ignored)
P3 - receive message
blocks

lonly for I0$_READPBLK and IO$_WRITEPBLK
20nly for IO$_READLBLK and I0$_READPBLK
3only for IO$_WRITELBLK and IO$_WRITEPBLK

B.8 ACP INTERFACE DRIVER

Functions Arguments Modifiers
I0$_CREATE Pl - FIB descriptor address I0$M_CREATE1
I0$_ACCESS p2 - file name string 10$M_AcCEssl
10$_DEACCESS address I0$M_DELETE?
10$_MODIFY P3 - result string length I0$M_DMOUNT3
I0$ DELETE address

I0$_ACPCONTROL P4

result string descriptor
address
P5 ~ attribute list address

I0$_MOUNT (none)
lonly for IO$ CREATE and IO$_ACCESS

20nly for IO$_CREATE and IOS$_DELETE
3only for IO$_ACPCONTROL

B.9 LPAll-K DRIVER

QIO Functions

10$_LOADCODE

I10$_STARTMPROC

I0S$_INITIALIZE

I0 _SETCLOCK

I0$_STARTDATA

High Level Language
Subroutines

LPASADSWP
LPASDASWP
LPASDISWP
LPASDOSWP
LPASLAMSKS
LPASSETADC
LPASSETIBF
LPASSTPSWP
LPASCLOCKA
LPASCLOCKB
LPASXRATE
LPASIBFSTS
LPASIGTBUF
LPASINXTBF
LPASIWTBUF
LPASRLSBUF
LPASRMVBUF
LPASCVADF
LPASFLT16
LPASLOADMC

I/0 FUNCTION CODES

Arguments

Pl - starting address of
microcode to be loaded

P2 - load byte count

P3 - starting microprogram
address to receive
microcode

(none)

Pl - address of Initialize
Command Table

P2 - initialize command
buffer length

P2 - mode of operation

P3 - clock control and
status

P4 - real-time clock preset
value (2's complement)

Pl - Data Transfer Command
Table address

P2 - Data Transfer Command
Table length

P3 - normal completion AST
address

P4 - overrun completion AST
address

Functions

Start A/D converter sweep
Start D/A converter sweep
Start digital input sweep
Start digital output sweep

Modifier

(none)

(none)

(none)

(none)

I0O$SM_SETEVF

Specify LPAll-K controller and digital mask words

Specify channel select parameters
Specify buffer parameters

Stop sweep

Set Clock A rate

Set Closk B rate

Compute clock rate and present value
Return buffer status

Return next available buffer

Alter buffer order

Return next buffer or wait

Release buffer to LPAll-K

Remove buffer from device queue
Convert A/D input to floating point

Convert unsigned integer to floating point

Load microcode and initialize LPA-11K

B-5 February 1979

$ASSIGN, 1-13, 2-3, 7-2, 8-2

$CREMBX, 1-14, 7-2

$GETCHN, 1-24

$GETDEV, 1-24

S$INPUT, 1-19

$OUTPUT, 1-19

$QI0 and $QIOW device/function
independent arguments, 1-16

$QI0 macro, 1-15

$QIOW macro, 1-16

SWAITFR, 1-15

026 code, 6-2
029 code, 6-2

8-bit ASCII, 2-13

A

Access, 1-5, 1-6, 1-14
Access file, A-2
ACP functions, 9-1
ACP interface driver I/0
functions, B-4
ACP QIO functions, 9-1, 9-9
arguments, 9-2
attributes, 9-12
disk magnetic tape and, A-1
function modifiers, 9-2
status returns, 9-14
Allocate contiguous space, 9-7
Allocate Device ($ALLOC) system
service, 1-14
ALTMODE, 2-~8 .
Ancillary control process (ACP),
9-1
Analog to digital, 10-1
Arguments, 1-15
ACP QIO functions, 9-2
device/function dependent,
1-18
device/function independent,
1-16
I/0 function codes, B-1
Assign I/0 Channel ($ASSIGN)
system service, 1-13, 7-2
Assigning channels, 1-13
AST address, 1-18
AST parameter, 1-18
AST quota, 1-4, 7-5
Asynchronous System Traps, 1-23

INDEX

Attention AST,

enable DMCll, 8-8

read, 7-7

write, 7-7
Attribute control block, 9-11
Attributes, ACP QIO, 9-12

Beginning-of-tape (BOT), 4-10

Block~addressable devices, 1-8,
1-10

Buffer overrun, 10-10, 10-11

Buffered I/0 byte count quota,
1-4

Buffered I/0 quota, 1-3, 7-5

C

CALL, 1-23
Card punch combinations, 6-2
Card reader,
device characteristics, 6-4
end-of-file, 6-2
I/0 functions, 6-5, B-3
I/0 status block, 6-8
read function, 6-6
set characteristic, 6-7
set mode, 6-7
status returns, 6-8
translation mode, 6-2
Carriage control,
line printer, 5-5
terminal, 2-17
Channels, 1-13
Channel assignments, 1-13
Channel number, 1-17
Character bit mask,
terminator, 2-16
Character formatting, line
printer, 5-2
Character interpretation, 2-8
Characteristics (see Device
characteristics)
Close check, 9-5
Completion status, 1-19, 1-22
Console terminal, 2-1
Contiguous space,
allocate, 9-7
Control characters,
terminal, 2-5
Create file, A-1
Create Mailbox and Assign
Channel ($CREMBX) system
service, 1-14, 7-2

Index-1 February 1979

CTRL/C,

2-5, 2-23

CTRL/C AST,

enable, 2-23

CTRL/I, 2-
CTRL/J, 2-5
CTRL/K, 2-6
CTRL/L, 2-6
CTRL/O, 2-6
CTRL/Q, 2-6, 2-12
CTRL/R, 2-6
CTRL/S, 2-6, 2-12
CTRL/U, 2-7
CTRL/Y, 2-7, 2-23

CTRL/Y AST,
enable, 2-23

CTRL/Z,

2-7

D

Data check,

disk,

3-2, 3-9,

INDEX (Cont.)

magnetic tape, 4-2, 4-9, 4-10

Device/function dependent bits,
1-13
Device/function independent

bits,
Devices,

1-13
1-1

Dial-in message, 2-10
Dial-up, 2-10, 2-13, 2-23
DIGITAL data communications
message protocol (DDCMP),
8-1
Digital to analog, 10-1
Direct I/O quota, 1-4, 8-3
Directory file, 9-6
Disk, magnetic tape, and ACP
QIO functions, A-1l
Disk,
device characteristics, 3-4
devices, 3-1
drivers, 3-1
error recovery, 3-4, 3-9,
3-10
I1/0 functions, 3-6, B-2
I/0 status block, 3-12
read function, 3-9

Data interpretation, 2-8, 2-13 set characteristic, 3-11

Data overrun, 10-10

Data Transfer Command Table,
10-10, 10-11

Data Transfer Stop Command,
10-12

DDCMP, 8-1, 8-4

Deaccess file, A-4

Deaccess lock, 9-5

Deassign I/0O channel (DEASSGN)
system service, 7-3

Dedicated mode (LPAll-K), 10-2

DELETE, 2-8

Delete file, A-6

Delete mailbox ($DELMBX) system
service, 7-3

Device allocation, 1-14

Device characteristics,

set mode, 3-10
status returns, 3-12
write function, 3-10
DMC1ll synchronous
communications line
interface driver, 8-1
DMC11,
device characteristics,

enable attention AST, 8-

error summary bits, 8-6
I/0 functions, 8-6, B-4
I/0 status block, 8-10
mailbox usage, 8-2
message size, 8-4

read function, 8-6

set characteristics, 8-8

8-3
8

set mode,

card reader,

disk,

3-4

6-3

DMC1l, 8-3
line printer, 5-3, 5-4
LPAll-X, 10-4
magnetic tape, 4-3
mailbox, 7-4
terminal, 2-10
Device information, 1-23
Device-dependent
characteristics, line
printer, 5-4
Device-independent
characteristics, line
printer, 5-3
Device/function dependent
arguments, 1-18

Index~2

8-7, 8-8

shut down unit,
start unit, 8-9

8-9

status returns, 8-10
unit characteristics, 8-5
write function, 8-7
DZ-11 Asynchronous Serial Line
Multiplexer, 2-1

E

ECC correction, 3-3
Enable attention AST,
DMC11l, 8-9
mailbox, 7-7
Enable CTRL/C AST, 2-23
Enable CTRL/Y AST, 2-23

February 1979

INDEX (Cont.)

End-of-file, card reader, 6-2
End-of-file message, write, 7-7
End-of-file status, 4-9
End-of-tape status, 4-9, 4-10
Error recovery,
disk devices, 3-3, 3-9, 3-10
line printer, 5-2
magnetic tape, 4-3
Error severity level, 1-20
Error summary bits, DMCll1,
ESCAPE, 2-8
Escape sequences, 2-2,
Event flags, 1-15, 1-22
Event flag number, 1-17
Extend control, 9-7

8-6
2-12

F

FIB argument usage,

FIB fields, 9-3

File attributes, 9-11

File identification, 9-6

File Information Block (FIB),
9-3

Fill specifier, 2-21

Foreign volume, 1-10

FORM FEED, 2-6

Form feeds, 2-17,

Free list,

9-9

5-4

receive buffer, 8-3, 8-10
Full-duplex, 2-10
Function codes, 1-12, 1-17, B-1

Function modifiers, 1-12, B-1

G

Get Channel Information
(SGETCHN) system service,
1-23

Get Device Information
(SGETDEV) system service,
1-23

H

Half-duplex, 2-10

Hang-up, 2-10, 2-13

Hang-up function modifier, 2-23

Hang-up,

terminal, 2-4

Holdscreen Mode, 2-12

Host/terminal synchronization,
2-12

Index-3

I/0 completion, 1-21

I/0 function code,
arguments, B-1

I/0 function codes, 1-12, B-1

I/0 functions, 1-6, 1-12, B-1
card reader, 6-5
disk, 3-6
DMC11l, 8-6
line printer,
LPAll-K, 10-9
magnetic tape, 4-5
mailbox, 7-5
terminal, 2-13

I/0 operations,
logical, 1-8
physical, 1-6
virtual, 1-10

I/0 quota,
buffered, 1-3,
byte count, 1-4
direct, 1-4, 8-3

I/0 requests, 1-1, 1-13, 1-15

5-4

1-6

7-5

I/0 status block, 1-15, 1-18,
1-22
ACP QIO interface, 9-14

6-8
3-12

card reader,
disk devices,
DMC11l, 8-10
line printer,
LPA1l-K, 10-33
magnetic tape devices, 4-14
mailbox, 7-9
terminal, 2-24
I/0 status returns, 1-21
I/0 system services, 1-2
Inhibit retry, 3-9, 3-10,
4-7
Initialize Command Table, 10-9
Input/output operations, 1-1
Interactive terminal, 2-5
IOSM_ACCESS, 3-7, 4-6, 9-2
I0$M _BINARY, 6-1
I0$M CREATE, 3-7, 4-6, 9-2
I0$M DATACHECK, 3-7, 4-6
IO$M_PELETE, 3-7, 9-2
I0$M DMOUNT, 4-7, 9-2
I0$M INHERLOG, 1-8
I0$M_INHEXTGAP, 4-6
IO$M_INHRETRY, 3-7, 4-6
IOS$SM INHSEEK, 3-7
I0SM NOWAIT, 4-7
IOSM PACKED, 6-1
IO$M_REVERSE, 4-6
IOSM_SETEVF, 10-10, 10-12

5-9

4-6,

February 1979

INDEX (Cont.)

I/0 functions (Cont.),
I0$_ACCESS, 3-7, 4-6, 9-9, 9-10
IO$_ACPCONTROL, 4-7, 9-11
I0$_CREATE, 3-7, 4-6, 9-9

I0$ DEACCESS, 3-7, 4-6

I10$ DELETE, 3-7, 9-10
I0$_MODIFY, 3-7, 4-6, 9-10

10$ MOUNT, 4-7, 9-2

I0SB, 1-22

Issuing QIO requests, 1-13

K

Keywords, 1l-15

L

Laboratory Peripheral
Accelerator (LPAll-K), 10-1
LINE FEED, 2-5
Line feeds, 2-17
Line printer,
carriage control, 5-5
character formatting, 5-1
device-dependent
characteristics, 5-4
device-independent
characteristics, 5-3
driver, 5-1
error recovery, 5-2
I/0 functions, 5-4, B-3
I/0 status block, 5-9
set characteristics, 5-8
set mode, 5-8
status returns, 5-9
write function, 5-4
Line,
remote, 2-4, 2-10, 2-13
Logical I/O operations, 1-8
Logical I/O privilege, 1-4, 1l-6,
1-8
Logical name, 1-14
Lowercase, 2-12, 2-17, 5-2, 5-4
LPAll-K,
AST addresses, 10-12
buffer overrun, 10-10, 10-11
buffer queue control, 10-14

data acquisition devices, 10-2,

10-4

Data Transfer Command Table,
10-10,10-11

Data Transfer Stop Command,
10-13

device characteristics, 10-4

device configurations, 10-2

device initialization
routines, 10-4, 10-36

Index-4

driver, 10-1, 10-3

errors, 10-2

high level language support
routines, 10-3, 10-13

I/0 functions, 10-7

I/0 status block, 10-33

Initialize Command Table, 10-9

initialize function, 10-8

load microcode function, 10-7

LPASADSWP subroutine, 10-18

LPASCLOCKA subroutine, 10-24

LPASCLOCKB subroutine, 10-25

LPASCVADF subroutine, 10-31

LPASDASWP subroutine, 10-19

LPASDISWP subroutine, 10-20

LPASDOSWP subroutine, 10-21

LPASFLT16 subroutine, 10-32

LPASIBFSTS
LPASIGTBUF
LPASINXTBF
LPASIWTBUF
LPASLAMSKS
LPASLOADMC
LPASRLSBUF
LPASRMVBUF
LPASSETADC
LPASSETIBF
LPASSTPSWP
LPASXRATE

subroutine,
subroutine,
subroutine,
subroutine,
subroutine,
subroutine,
subroutine,
subroutine,
subroutine,
subroutine,
subroutine,
subroutine,

10-27
10-27
10-28
10-29
10-22
10-32
10-30
10-31
10-22
10-23
10-24
10-26

Maintenance Status Register,

10-33

microcode loading routines,

10-4, 10

-36

modes of opqration, 10~-2
Random Channel List (RCL),

10-12

Ready-out Register, 10-33

Request Descriptor Array (RDA),

10-18
RSX-11M di

fferences, 10-37

set clock function, 10-9

set event flag modifier, 10-10,
10-12

start data transfer request
function, 10-10

start microprocessor function,
10-8

status returns, 10-38

subroutine arguments, 10-15

supporting software, 10-3

Magnetic tape and ACP QIO
functions, A-1l
Magnetic tape,
device characteristics, 4-3
driver, 4-1

February 1979

INDEX (Cont.)

Magnetic tape (Cont.)
error recovery, 4-3
I/0 functions, 4-5, B-2
I/0 status block, 4-14
read function, 4-8
set characteristics, 4-12
set mode, 4-12
status returns, 4-14
write function, 4-10
Mailbox,
creation, 1-14
device characteristics, 1-24,
7-4
driver, 7-1
I/0 functions, 7-5, B-3
I/0 status block, 7-9
message format, 7-3
protection, 1-5
QIO requests, 7-5, 7-6
read attention AST, 7-7
set attention AST QIO
requests, 7-7
status returns, 7-9
terminal, 2-3
usage (DMC1ll), 8-2
usage (LPAll-K), 10-32, 10-36
write attention AST, 7-7
write end-of-file message, 7-7
Master adapter, 4-2
Mechanical form feed, 5-4
Mechanical tabs, 2-12
Message format, mailbox, 7-3
Message size, DMCl1ll, 8-4
Modem control, 2-1, 2-10
Modify file, A-5
MOUNT, 1-14
Mount privilege, 1-5
Mounted foreign, 1-8, 1-10, 3-9,
3-10
Multirequest mode (LPAll-K),
10-2

Name string, 9-6
Network, 1-24

o)

Offset recovery, 3-3

P

Page length, 2-11
Page width, 2-11

Index-5

Parity flags, terminal, 2-22
PASSALL, 2-12, 2-13, 2-15
Physical device name, 1-14
Physical I/O operation, 1-6
Physical. I/0 privilege, 1-4,
1-6, 1-8
Printer (see Line printer)
Privilege, 1-3
logical 1/0, 1-4, 1-6, 1-8
mount, 1-5
physical 1/0, 1-4, 1-6, 1-8
Prompt buffer, terminal, 2-14
Protection, 1-3, 1-5
Protection mask, 1-5, 1-6, 1.-8,
1-10
Protocol (DDCMP), 8-1, 8-9

Q

QIO interface to ACPs, 9-1

QIO macro, 1-15

QIOW macro, l1l-16

Queue I/O ($QIO0) system service,
1-1, 1-14

Queue I/0 Request and Wait For
Event Flag ($QIOW) system
service, 1-16

Quotas, 1-3, 3-6, 4-5, 7-5, 8-3

R

Random Channel List (RCL), 10-12
Read access, 9-5
Read attention AST, 7-7
Read binary, 6-1, 6-6
Read checking, 9-5
Read function,
card reader, 6-6
disk devices, 3-9
DMC1ll1l, 8-6
magnetic tape devices, 4-8
terminal, 2-14
Read mailbox QIO requests, 7-5
Read packed Hollerith, 6-1, 6-6
Read QIO function, 1-6
Read with prompt, 2-14
Read with timeout, 2-14
Receive buffer free list, 8-3,
8~-10
Receive-message blocks, 8-10
Record-oriented devices, 1-8,
1-10
Remote line, 2-4, 2-10, 2-13
Resource wait mode, 1-3, 7-2,
10-3
RETURN, 2-8

February 1979

INDEX (Cont.)

Rewind offline, 4-12

RMS, 1-1

RSX-11M Version 3.1, differences
with VAX/VMS LPAll-K, 10-37

S

Seek operations, 3-3
Sense card reader mode, 6-7
Sense tape mode, 4-12
Set attention AST QIO requests,
7-7, 8-8
Set characteristics,
card reader, 6-7
disk devices, 3-10
pMCll, 8-7
line printer, 5-8
magnetic tape devices, 4-12
terminal, 2-21
Set mode QIO function, 1-6
Set mode,
card reader, 6-7
disk devices, 3-10
DMC11l, 8~7
line printer, 5-8
‘magnetic tape devices, 4-12
terminal, 2-21
Set Resource Wait Mode ($SETRWM)
system service, 1-3
Set Terminal command, 2-11
Severity level,
error, 1-20
Shut down unit (DMCll1l), 8-9
Skip file, 4-11
Skip record, 4-11
Slave formatter, 4-2
Software channels, 1-1
Software mailboxes, 7-1
Spaces (terminal), 2-17
Speed specifier (terminal),
2-21
Spooled device characteristics,
1-24
SS$ ABORT, 2-25, 5-9, 8-11,
10-33
SS$_ACCONFLICT, 9~15
SS$_ACCVIO, 1-20, 1-26
SS$_ACPVAFUL, 9-15
SS$_BADATTRIB, 9-15
SS$_BADCHKSUM, 9-15
SS$ BADESCAPE, 2-25
SS$_BADFILEHDR, 9-15
SS$_BADFILENAME, 9-15
SS$_BADFILEVER, 9-15
SS$_BADIRECTORY, 9-15
SS$_BADPARAM, 9-15
SS$TBLOCKCNTERR, 9-15
SS$_BUFFEROVF, 1-26

Index-6

SS$_BUFNOTALIGN, 10-34
SS$_CANCEL, 10-34
SS$__CONTROLC, 2-26
SS$__CONTROLO, 2-25
SS$_CONTROLY, 2-26
SS$_CREATED, 9-15
SS$_CTRLERR, 3-12, 4-14, 10-2,
10-34
SS$_DATACHECK, 3-12, 4-15, 10-34
SS$_DATAOVERUN, 4-16, 6-9, 8-11
SS$_DEVACTIVE, 8-11, 10-34
SS$_DEVCMDERR, 10-2, 10-34
SS$_DEVFOREIGN, 1-10
SS$_DEVICEFULL, 9-15
SS$_DEVNOTMOUNT, 1-10
SS$_DEVOFFLINE, 8-11
SS$_DEVREQERR, 10-2, 10-35
SS$_DIRFULL, 9-15
SS$_DRVERR, 3-12, 4-15
SS$_DUPFILENAME, 9-16
SS$_ENDOFFILE, 4-15, 6-9, 7-10,
8-11, 9-16
SS$_ENDOFTAPE, 4-15
SSs$_EXQUOTA, 1-20, 10-35
SSs$_FCPREADERR, 9-16
SS$_FCPREWINDERR, 9-16
Ss$_FCPSPACERR, 9-16
SS$_FCPWRITERR, 9-16
SS$_FILELOCKED, 9-16
SS$_FILENUMCHK, 9-16
SS$_FILESEQCHK, 9-16
Ss$_FILESTRUCT, 9-16
Ss$_FILNOTEXP, 9-16
SS$_FORMAT, 3-13, 4-15
SS$”HEADERFULL, 9-16
Ss$_IDXFILEFULL, 9-16
SS$_ILLCNTRFUNC, 9-16
§s$”_ILLEFC, 1-20
SS$_INSFBUFDP, 10-35
SS$_INSFMAPREQ, 10-35
SS$”_INSFMEM, 1-20
SS$__IVADDR, 3-13
Ss$__IVBUFLEN, 10-35
SS$__IVMODE, 10-36
SS$_IVCHAN, 1-21, 1-26
SS$_MCNOTVALID, 10-36
SS$_MEDOFL, 3-13, 4-15
SS$_ NOMOREFILES, 9-17
SS$_NONEXDRV, 3-13, 4-15
SS$_NOPRIV, 1-6, 1-8, 1-10,
1-21, 1-26, 9-17
SS$ NORMAL, 1-20, 1-26, 2-25,
3-12, 4-14, 5-9, 6-9, 7-10,
8-11
S§S$ NOSUCHFILE, 9-17
SS$_NOTAPEOP, 9-17
SS$_NOTLABELMT, 9-17
SSs$_PARITY, 2-26, 3-13, 4-16,
10-36

February 1979

~

INDEX (Cont.)

SS$_PARTESCAPE, 2=-25
SS$_POWERFAIL, 10-36
SS$__SUPERSEDE, 9-17
SS$_¢APEPOSLOST, 9-17
§s$_TIMEOUT, 2-25, 10-36
SS$_TOOMANYVER, 9-17
SS$_UNASEFC, 1-21
SS$_UNSAFE, 3-13, 4-16
SS$"VOLINV, 3-13, 4-16
SS$_WASECC, 3-13
SS$_WRITLCK, 3-13, 4-16
SS$_WRTLCK, 9-17
Start unit (DMC11l), 8-9
Status returns,

ACP QIO interface, 9-14

card reader, 6-8

disk devices, 3-12

DMC11l, 8-10

I1/0, 1-21

line printer, 5-9

LPAll-K, 10-33

magnetic tape devices, 4-14

mailbox, 7-9

system services, 1-20

terminal, 2-24
Status,

completion, 1-19, 1-22
System services, I/0, 1-2
System services status returns,

1-20

T

TAB, 2-5

Tabs, 2-12, 2-17

Tape (see Magnetic tape)

Terminal,
carriage control, 2-17
characteristics, 2-10
control characters, 2-5
driver, 2-1
enable CTRL/C AST, 2-23
enable CTRL/Y AST, 2-23
function modifiers, 2-15
hang-up, 2-4
hang-up function modifier,

2-23

I/0 functions, 2-13, B-1
I/0 status block, 2-24
mailbox, 2-3
read function, 2-14
read terminator set, 2-16

Terminal (Cont.),
set characteristic, 2-~20
set mode, 2-20
status returns, 2-24
write function, 2-16
Terminal/host synchronization,
2-12
Terminator character bit mask,
2-16
Terminator set, 2-16
Transfer count, I/0, 1-22
Translation mode, card reader,
6-2
Truncation, 9-7, 9-14
Type-ahead, 2-1, 2-4, 2-13, 2-15

U

Unsolicited data, 2-4
Uppercase, 2-12, 2-17, 5-2, 5-4

\'J

VAX-11 Record Management
Services (RMS), 1-1

VAX/VMS System Services
Reference Manual, 1-3

Version number, 9-6

VERTICAL TAB, 2-6

Virtual I/0 operations, 1-10

Volume protection, 1-5

w

Wait for Single Event Flag
(SWAITFR) system service,
1-15

Wild card directory, 9-6

Write access, 9-5

Write attention AST, 7-7

Write checking, 9-5

Write end-of~file, 4-11

Write end-of-file message, 7-7

Write function,

disk, 3-10

DMCl1ll, 8-7

line printer, 5-4

magnetic tape, 4-10

terminal, 2-16
Write mailbox QIO requests, 7-6
Write QIO function, 1-6

Index-7 February 1979

JO0A65 YL

