TOPS-20
BASIC-PLUS-2
Language Manual

AA-H654A-TM

October 1979

This document describes the BASIC-PLUS-2 programming language
as implemented on the TOPS-20 Operating System.

This new document replaces the document of the same name,

Order Number AA-0153A-TK, and the TOPS-20 BASIC-PLUS-2
User’s Guide, Order Number AA-0152A-TM.

OPERATING SYSTEM: TOPS-20 Version 3A

SOFTWARE: BASIC-PLUS-2 Version 2

Software and manuals should be ordered by title and order number. in the United States, send orders to the nearest
distribution center. Outside the United States, orders should be directed to the nearest DIGITAL Field Sales Office
or representative.

NORTHEAST/MID-ATLANTIC REGION CENTRAL REGION WESTERN REGION

Technical Documentation Center Technical Documentation Center Technical Documentation Center
Cotton Road 1050 East Remington Road 2525 Augustine Drive

Nashua, NH 03060 Schaumburg, tllinois 60195 Santa Clara, California 95051
Telephone: (800) 258-1710 Telephone: (312) 640-5612 Telephone: (408) 984-0200

New Hampshire residents: (603) 884-6660

digital equipment corporation ® marlboro, massachusetts

First Printing, October 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (:) 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET~8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11

ASSIST-11 RTS-8 ITPS-10

CONTENTS

Page
PREFACE xXi
CHAPTER 1 ELEMENTS OF BASIC 1-1
1.1 STRUCTURE OF A BASIC PROGRAM 1-1
1.1.1 Character Set 1-2
1.1.2 Line Format 1-2
1.2 STATEMENTS 1-3
1.2.1 Single-Statement, Multi-Statement, and
Continuation Lines 1-4
1.3 PROGRAM DOCUMENTATION 1-5
1.3.1 The REM Statement 1-5
1.3.2 The Comment Field of a BASIC Statement 1-6
1.4 CONSTANTS 1-7
1.4.1 Real Constants 1-7
1.4.2 Integer Constants 1-8
1.4.3 String Constants 1-9
1.5 VARIABLES 1-10
1.5.1 Real Variables 1-10
1.5.2 Integer Variables 1-11
1.5.3 String Variables 1-11
1.5.4 Subscripted Variables 1-12
1.6 EXPRESSIONS 1-13
l1.6.1 Arithmetic Expressions 1-13
1.6.2 String Expressions 1-14
1.6.3 Relational Expressions 1-15
1.6.4 Logical Expressions 1-17
1.6.5 Functions 1-20
1.6.6 Evaluating Expressions 1-20
1.7 ASSIGNING VALUES TO VARIABLES 1-21
1.8 ARRAYS 1-23
1.8.1 The DIM Statement 1-24
CHAPTER 2 USING BASIC-PLUS-2 2-1
2.1 BASIC COMMAND LEVEL 2-1
2.1.1 BASIC Command Format 2-2
2.1.2 Entering BASIC Command Level (BASIC,
HELP) 2-2
2.1.3 Returning to System-Command Level 2-3
2.1.4 Logging off from BASIC Command Level 2-4
2.1.5 Creating a Program (NEW) 2-4
2.1.5.1 Syntax Checking 2-5
2.1.6 Checking Input (LIST) 2-5
2.1.7 Correcting Mistakes 2-6
2.1.7.1 Using the DELETE Key 2-7
2.1.7.2 Deleting a Partially Typed Line 2-7
2.1.7.3 Deleting a Field Within a Line 2-8
2.1.7.4 Deleting Lines by Line Number 2-8

iii

CONTENTS (CONT.)

.
w

Using the DELETE Command
Executing a Program (RUN)
Interrupting Execution (CTRL/O) (CTRL/C)
Clearing Memory (SCRATCH)
Changing Line Numbers (RESEQUENCE)
Saving a Program in a File (SAVE)
Saving an Executable Program in a File
(BUILD)

WORKING WITH EXISTING FILES
Using Line-Sequenced ASCII Files (LSA)
Recalling Saved Source Programs in LSA
Files (OLDSA)
Recalling Saved Source Programs in
Regular ASCII Files (OLD)
Renaming a Program (RENAME)
DELETING a SAVED PROGRAM (UNSAVE)
Checking Your Directory (CATALOG)
Combining Programs (WEAVE)
Issuing BASIC Commands from a File (DO)
BASIC Compiler Switches (STATUS)

.1 Disabling Compiler Switches

.2 Enabling Compiler Switches

.3 Controlling Compiler Mode

0 Listing a Compiled Program (MLIST)

1 A Sample Program

BASIC IMMEDIATE MODE
Immediate-Mode Statements
Immediate-Mode Contexts
Immediate-Mode Variables
Halting an Immediate-Mode Program (STOP)
Clearing the Work Area
Using the START Command
Using the DEBUG Command

NESTING IMMEDIATE-MODE STATEMENTS

IMMEDIATE MODE AND BASIC-PLUS-2 COMMANDS

DO N
. L] . L] L] L] .
[
e o o o o o o

= = = O 0
WO

L . .
N NN

o o

[Sl

.
w

=0 W WWOo U

MbWwWwWwWwwwwwwhonpppNodddbdbNdbDNDNN
. . L] . . L] .
NV e WN -

e ® e ® 6 o & 0 e 5 * o e o o o o o s s o

WWwwwwwww wWwww w NDNONNONNONMNODNMNNODNONDNODODNDNDNDNDODNDNDN [\N) NN

CHAPTER INPUT AND OUTPUT TO THE TERMINAL
.1 INPUTTING DATA
1.1 INPUT Statement
.1.2 INPUT LINE Statement and LINPUT Statement
.1.3 READ, DATA, RESTORE, and NODATA
Statements
.1.3.1 The READ Statement
.1.3.2 The DATA Statement
.1.3.3 THE RESTORE Statement
.1.3.4 The NODATA Statement
.2 PRINTING OUTPUT - THE PRINT STATEMENT
2.1 Formatting with the Comma and Semicolon
2.2 Output Format for Numbers and Strings
.2.3 The TAB Function
CHAPTER 4 PROGRAM CONTROL
4.1 UNCONDITIONAL TRANSFER - THE GOTO STATEMENT
4.2 MULTIPLE BRANCHING - THE ON-GOTO STATEMENT
4.3 CONDITIONAL TRANSFER - THE IF-THEN-ELSE

STATEMENT

iv

NN
[]

w W
N>

[} |
N

WOV

[
NN

WWwwwwwwww www w

L3
|
=

LN
i
W

>

-3

CONTENTS (CONT.)

Page
4.4 LOOP EXECUTION 4-7
4.4.1 The FOR and NEXT Statements 4-7
4.4.2 Nested Loops 4-10
4.4.3 The Conditional FOR Statement 4-11
4.4.4 The FOR Statement with an Additional
Termination Test 4-12
4.4.5 The WHILE and UNTIL Statements 4-13
4.5 TIME-LIMIT STATEMENTS 4-14
4.5.1 The SLEEP Statement 4-14
4.5.2 The WAIT Statement 4-14
4.6 STOPPING PROGRAM EXECUTION - THE STOP AND
END STATEMENTS 4-15
4.7 USING SUBROUTINES 4-17
4.7.1 The GOSUB and RETURN Statements 4-18
4.7.2 The ON-GOSUB Statement 4-19
4.8 ERROR HANDLING 4-20
4.8.1 The ONERROR GOTO Statement 4-20
4.8.2 The RESUME Statement 4-22
4.8.3 The BASIC Error Variables 4-23
4.8.4 ‘The LINO Function 4-24
4.9 STATEMENT MODIFIERS 4-25
4.9.1 The IF Modifier 4-26
4.9.2 The UNLESS Modifier 4-27
4.9.3 The WHILE Modifier 4-28
4.9.4 The UNTIL Modifier 4-29
4.9.5 The FOR Modifier 4-29
CHAPTER 5 PROGRAM SEGMENTATION 5-1
5.1 USING SUBPROGRAMS 5-1
5.1.1 Executing a Subprogram - The CALL
Statement 5-2
5.1.2 Using Dummy and Actual Arguments 5-3
5.2 TRANSFERRING CONTROL TO ANOTHER PROGRAM -
THE CHAIN STATEMENT 5-5
5.3 DECLARING COMMON VARIABLE STORAGE - THE
COMMON STATEMENT 5-6
5.3.1 Sharing COMMON Variables across a CALL
Statement 5-7
5.3.2 Sharing COMMON Variables across a CHAIN
Statement 5-9
CHAPTER 6 USING FUNCTIONS 6-1
6.1 NUMERIC FUNCTIONS 6-1
6.1.1 Trigonometric Functions (PI, SIN, COS,
TAN, COT, ATN, ATN2) 6-2
6.1.2 Algebraic Functions 6-4
6.1.2.1 Square Root Function (SQR) 6-5
6.1.2.2 Exponential and Log Functions (EXP, LOG,
and LOG10) 6-5
6.1.2.3 Integer Function (INT) 6-7
6.1.2.4 Absolute Value Function (ABS) 6-8
6.1.2.5 SIGN(SGN) and FIX(FIX) Functions 6-9
6.1.3 Random Numbers (Function RND and
RANDOMIZE Statement) 6~-10
6.1.4 MOD Function 6-12
6.2 STRING FUNCTIONS 6-13

CONTENTS (CONT.)

Page
6.2.1 Finding the Length of a String (LEN) 6-13
6.2.2 Trimming Trailing Blanks (TRMS) 6-14
6.2.3 Finding the Position of a Segment (POS,
INSTR) 6-14
6.2.4 Extracting a Segment from a String (SEGS) 6-15
6.2.5 The MID$ Function 6-17
6.2.6 The LEFT$ and RIGHTS$ Functions 6-18
6.2.7 The STRING$ and SPACE$ Functions 6-19
6.2.8 The EDITS$ Function 6-20
6.3 CONVERSION FUNCTIONS 6-22
6.3.1 Converting a Character to ASCII Code
(ASCII) 6-22
6.3.2 Converting ASCII Code to a Character
(CHRS) 6-22
6.3.3 Converting an Integer to RADIX-50 (RAD) 6-23
6.3.4 Translating from one Storage Code to
Another (XLATE) 6-24
6.3.5 The CHANGE Statement 6-24
6.3.6 Numbers and their String Representation
(VAL%,VAL, NUM$ and STRS) 6-26
6.4 DATE, TIME, AND DIRECTORY FUNCTIONS 6-28
6.4.1 Returns Current Clock Time (CLKS) 6-28
6.4.2 Returns Current Date in the Format:
dd-mmm-yy (DATS) 6-29
6.4.3 Returns Date in the Format: mm/dd/yy
(DATES) 6-29
6.4.4 Returns Time in the Format: hh:mm (TIMES) 6-30
6.4.5 Returns Clock, CPU, or Job Connect Time
(TIME) 6-30
6.4.6 Returns Connected Structure and Directory
(USRS) 6-31
6.5 TERMINAL-FORMAT FILE FUNCTIONS 6-31
6.5.1 Returns Margin Width (MAR%) 6-31
6.5.2 Returns Horizontal Print Position (POS%) 6-32
6.5.3 Returns Vertical Print Position (VPS%) 6-33
6.5.4 Returns Current Page Count (PPS%) 6-34
6.6 SYSTEM FUNCTIONS 6-34
6.6.1 Resume Program Output (RCTRLO) 6-34
6.6.2 Disable and Enable Echoing (NOECHO and
ECHO) v 6-35
6.6.3 Enable and Disable Trapping of CTRL/C
Interrupts (CTRLC And RCTRLC) 6-36
6.6.4 Exit from a Program (ABORT) 6-37
6.7 USER-DEFINED FUNCTIONS - THE DEF STATEMENT 6~37
6.7.1 Single-Line DEF Statement 6-38
6.7.2 Multi-Line DEF Statement 6-41
6.7.3 Multi-Line DEF* Statement 6-43
CHAPTER 7 USING ARRAYS 7-1
7.1 DIMENSIONING AN ARRAY 7-1
7.2 INITIALIZING AN ARRAY 7-1
7.3 MATRIX OPERATIONS 7-4
7.3.1 Matrix Assignment 7-4
7.3.2 Matrix Addition and Subtraction 7-4
7.3.3 Matrix Multiplication 7-4
7.3.4 Matrix Transposition 7-5

vi

CHAPTER

CHAPTER

CONTENTS (CONT.)

7.3.5 Inverting and Finding the Determinant of
a Matrix
ARRAY INPUT AND OUTPUT
.1 MAT INPUT Statement
.2 MAT PRINT Statement
.3 MAT READ Statement

8 USING TERMINAL-FORMAT AND VIRTUAL-ARRAY
FILES

TERMINAL-FORMAT FILES
Opening Terminal-Format Files
Closing Terminal-Format Files
Reading Data from a Terminal-Format File
The INPUT LINE # and LINPUT # Statements
Writing to a Terminal-Format File
Restoring a Terminal-Format File
Truncating a Terminal-Format File
Checking for the End of a Terminal-Format
File
1 IFEND # Statement
2 IFMORE # Statement
3 NODATA # Statement
Changing Margins in a Terminal-Format
File
.1.9 Setting Page Size in a Terminal-Format
File
VIRTUAL~ARRAY FILES
.1 Dimensioning a Virtual-Array File
.2 Opening and Closing Virtual-Array Files
FILE RENAMING AND DELETING
.1 The NAME-AS Statement
.2 The KILL Statement

- . .
b b e b e
. .

CO0 CO 0O 0O 00 CO OO OO O

NOYUT W W N
—

USING RECORD FILES

FILE ORGANIZATION
Sequential Organization
Relative Organization
Indexed Organization
ACCESS METHODS
Sequential Access
Sequential Access to Sequential Files
Sequential Access to Relative Files
Sequential Access to Indexed Files
Random Access
Random Access to Relative Files
Random Access to Indexed Files
RECORD FORMATS
Fixed-Length Records
Variable-Length Records
Stream-Format Records
RECORD MAPPING
FILE CPERATIONS
Creating and Accessing a File
Opening a Sequential File
Opening a Relative File
Opening an Indexed File

o« o o
wWN -

NN N
. o .
W N =

¢ e
N =

® e e o o s+ s e e s e s e o
CUUULEBEWWWWENNNDNDNNDNN

« e e
w N -

. e e

WWOWWOWWWWYWWWOWWWWWVILOWWYWWYWOYWYWYWLYLY

.....
« e o o
[
« e

w N -

vii

CO 00 00 0O 00 OO CO
[
OO0 ~JO b >N~

!

@ w © ©
1
[WRARVCRY-1

| U T O T I B |

WWOWOWWOWWOWYWOLWOWWOWWYWWWWYWIWYWOWIOWWYWY
1
HHEHEONNNOUTUEeBLE B WWWNNN

CONTENTS (CONT.)

Page
9.5.2 Closing a File 9-18
9.5.3 Restoring a File 9-18
9.5.4 Truncating a File 9-18
9.6 RECORD OPERATIONS : 9-19
9.6.1 Sequential Record Operations 9-19
9.6.2 Relative Record Operations 9-20
9.6.3 Indexed Record Operations 9-21
9.6.4 Record Locking 9-23
9.7 DYNAMIC MAPPING OF AN I/0 BUFFER 9-24
9.8 EXAMPLES 9-26

CHAPTER 10 FORMATTED OUTPUT - THE PRINT USING STATEMENT 10-1
10.1 THE PRINT USING STATEMENT 10-2
10.2 FORMATTING NUMBERS WITH PRINT USING 10-2
10.2.1 Specifying the Number of Digits 10-3
10.2.2 Specifying the Decimal Point Location 10-4
10.2.3 Printing a Number that is Larger than the

Field 10-4
10.2.4 Printing Numbers With Special Symbols 10-5
10.2.4.1 Printing Numbers with a Trailing Minus

Sign 10-5
10.2.4.2 Printing Numbers in Asterisk-Fill Fields 10-6
10.2.4.3 Printing Numbers with Floating Dollar

Signs 10-7
10.2.4.4 Printing Numbers with Commas 10-7
10.2.5 Printing Numbers in E (Exponential)

Format 10-8
10.2.6 Fields that Exceed BASIC's Accuracy 10-8
10.3 FORMATTING STRINGS WITH PRINT USING 10-8
10.3.1 One-Character String Fields 10-9
10.3.2 Printing Strings in Left-Justified Format 10-9
10.3.3 Printing Strings in Right-Justified

Format 10-9
10.3.4 Printing Strings in Centered Fields 10-10
10.3.5 Printing Strings in Extended Fields 10-10
10.4 SUMMARY OF FORMAT CHARACTERS 10-11
10.5 THE IMAGE STATEMENT 10-13
10.6 PRINT USING STATEMENT ERROR CONDITIONS 10-14
10.6.1 Fatal Error Conditions 10-14
10.6.2 Warning Conditions 10-14

APPENDIX A DIAGNOSTIC MESSAGES A-1
A.l COMMAND ERROR MESSAGES A-1
A.2 COMPILATION ERROR MESSAGES A-2
A.2.1 Compilation Error Messages (Fatal) A-3
A.2.2 Compilation Error Messages (Warning) A-11
A.3 EXECUTION MESSAGES A-12
A.3.1 Trappable Error and Warning Messages A-12
A.3.2 Nontrappable Error and Warning Messages A-17

APPENDIX B USING THE TOPS-20 OPERATING SYSTEM B-1
B.1 CONTACTING THE TOPS-20 OPERATING SYSTEM B-1
B.1.1 What is a Job? B-2
B.1.2 Logging In (LOGIN) B-2
B.2 IF THE SYSTEM STOPS B-3

viii

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

TABLE

T
e o o
W N -

e - P‘deﬁdhdHrd
[1
N b bt b b = 00 <1 OV U1 s W N

om0 DO WO 00O U

CONTENTS (CONT.)

Page
LOGGING OFF THE SYSTEM B-4
FILE SPECIFICATIONS B-4

Protection Codes B-7
RUNNING BASIC-PLUS-2 THROUGH BATCH Cc-1
CREATING A CONTROL FILE c-1
SUBMITTING A JOB TO BATCH Cc-2
A BATCH EXAMPLE c-3
BASIC RESERVED WORDS D-1
ASCII CODE E-1
SUMMARY OF BASIC-PLUS-2 STATEMENTS,
FUNCTIONS, AND OPERATORS F-1
STATEMENTS F-1
FUNCTIONS F-13
OPERATORS F-16
Index-1

TABLES

Keywords and Spaces

Number Notations

Arithmetic Operators

Relational Operators

String Relational Operators

Logical Operators

Truth Tables

Operator Precedence

BASIC Statements

Argument Data Types

EDIT$ Conversions

ACCESS-Clause Keywords of the OPEN Statement
Record-File Access Methods

Record Formats

Format Characters for Numeric Fields
Sample Formats for Numeric Fields
Format Characters for String Fields
System Device Names

ASCII Table

Arithmetic Operators

Logical Operators

Relational Operators

ix

PREFACE

This manual is a complete reference to the BASIC-PLUS-2 programming
language as it is implemented on the TOPS-20 operating system. This
manual is neither a primer nor a user's guide. If you are unfamiliar
with the BASIC language, refer to DIGITAL's Introduction to BASIC.

If you are unfamiliar with the TOPS-20 operating system or the TOPS-20
batch system, refer to the following:

Getting Started With TOPS-20
TOPS-20 User's Guide

TOPS-20 Commands Reference Manual
Getting Started With Batch (TOPS-20)
TOPS-20 Batch Reference Manual

This manual describes all elements of BASIC-PLUS-2 in the following
chapters:

e Chapter 1 contains descriptions of the elements of BASIC
programs and the BASIC language.

® Chapter 2 provides descriptions of how language elements are
combined to create programs. This chapter also describes how
you manipulate programs from BASIC command level.

® Chapter 3 provides descriptions of input and output to and
from the terminal.

® Chapter 4 describes the BASIC program-control statements.
These statements enable you to direct the order in which BASIC
executes statements within a program.

® Chapter 5 describes the techniques for segmenting large BASIC
programs into smaller, more manageable units.

® Chapter 6 describes all the BASIC functions. In addition,
this chapter describes the methods for defining your own
functions.

® Chapter 7 describes the statements and techniques for
manipulating numeric and character data in arrays.

® Chapters 8 and 9 describe a variety of techniques for
performing program input and output to and from files.
Chapter 8 describes two types of BASIC files called
terminal-format and virtual-array files; Chapter 9 describes
a third type of file, the record file.

® Chapter 10 describes how to format output with the PRINT USING
statement.

X1

For easy reference, the first page of each chapter contains a 1listing
of that chapter's major subsections. 1In addition, Appendix F contains
a brief summary of the BASIC statements, functions, and operators.

Conventions Used in this Manual

Symbol

CTRL/x

[]
t

lowercase letters

UPPERCASE LETTERS
Examples

Red print

Represents

Pressing the CTRL key and another key
simultaneously (for example, CTRL/C).

Pressing the RETURN key (carriage
return/line feed).

Brackets indicating optional information
that can be omitted from a statement or
command .

Braces indicating a choice. Choose one
from the enclosed options.

Lowercase characters in a command string
or statement indicate variable
information you must supply.

Uppercase characters in a command string

or statement indicate literal
information that you must enter as
shown.

When you 1list a BASIC-PLUS-2 program
from storage, leading zeroes are added
to the number (for example, 10 becomes
00010).

Where examples contain wuser input and
computer output, all wuser input is
printed in red. Unless otherwise noted,
all 1lines printed 1in red are ended by
the RETURN key.

Xii

CHAPTER 1

ELEMENTS OF BASIC

BASIC (Beginner's All-purpose Symbolic Instruction Code) is a computer
language developed at Dartmouth College under the direction of
Professors John G. Kemeny and Thomas E. Kurtz. It is one of several
programming languages used to translate symbolic language programs
into machine language. Because the BASIC 1language is composed of
easily understood statements and commands, it is one of the simplest
programming languages to learn.

BASIC allows you to communicate directly with the language processor.
It is a conversational programming language that uses simple
English-like statements and familiar mathematical notations to perform
operations.

The BASIC-PLUS-2 language is an outgrowth of Dartmouth BASIC. It
encompasses both the elementary statements used to write simple
programs and many new and advanced features. These new features, not
found in standard Dartmouth BASIC, allow you to produce more complex
and efficient programs.

This chapter is divided into the following sections:

1.1 Structure of a BASIC Program
Statements

Program Documentation
Constants

Variables

Expressions

Assigning Values to Variables
Arrays

=
L] L] . L] . .
LU WN

1.1 STRUCTURE OF A BASIC PROGRAM

A BASIC program consists of a set of statements constructed with the
language elements and syntax described in the following chapters. The
next sections describe line numbers, statements and expressions used
in BASIC.

ELEMENTS OF BASIC

1.1.1 Character Set
BASIC-PLUS-2 uses the full ASCII (American Standard Code for
Information Interchange) character set for its alphabet. This set
includes:
1. Letters A through Z and a through z
2. Numbers 0 through 9
3. Special characters (see the ASCII Table in Appendix E)
This character set enables you to include any ASCII character as part
of a program. BASIC translates the characters that you type into
machine language; some characters are processed and some are ignored.
When BASIC does ignore an ASCII character, it prints a warning message
to that effect.
BASIC translates characters in the following manner:
1. Letters A through Z and a through z - BASIC treats the same
alphabetic 1in uppercase and lowercase as the same character,
for example, I is the same as i.
2. Non-printing characters - BASIC interprets the code during
input, prints a warning message, then ignores them during
execution.

3. NUL characters - BASIC interprets the code during input,
prints a warning message, and ignores them during execution.

BASIC translates string constants differently (See Section 1.4.3.).
Everything you type into a string constant is interpreted literally by
BASIC. Consequently, in a string constant:

1. All lowercase alphabetics (a,b,c) remain in lowercase.

2. All non-printing characters are processed.

3. All null characters are processed.
BASIC ignores all characters in a REMARK during execution.
System-editing characters affect terminal-input format only.
Therefore, you need not be concerned with the way BASIC handles them.

System-editing characters, such as CTRL/U, are described fully in the
TOPS-20 User's Guide.

1.1.2 Line Format

The format of a BASIC program line is as follows:

line number keyword statement line terminator
10 FRINT R=8QR(X"2+Y"2) RET
Most lines in a BASIC program must begin with a number. (Only
continuation lines do not; see Section 1.2.1.) This line number must
be a positive integer within the range of 1 to 99999. A BASIC line

number is a label that distinguishes one line from another within a
program. Consequently, each 1line number in the program must be
unique. If you type a line number that is outside the valid range,
BASIC prints an error message and the line number and its contents are
ignored.

1-2

ELEMENTS OF BASIC

Leading zeros (as well as leading and trailing spaces) have no effect
on the number. However, you cannot have embedded spaces within a line
number. For example, these numbers are the same to BASIC:

00010
10

But this number is invalid:

010

BASIC ignores leading and trailing blanks, spaces, and tabs within a
line (unless in a string enclosed by quotation marks). Therefore, you
need not worry about leading and trailing blanks when typing in a
program. For example:

10 LET A=R+C
can also be typed:

10 LET A= R + C
Both lines are the same to BASIC.

However, embedded spaces in line numbers, keywords or variable names
are illegal. For example, BASIC rejects the previous statement if you
type it as follows:

10 LET A =g+ C

The longest line you can type into a BASIC program is 2,560 characters
including spaces, tabs, line terminators, continuation characters, and
line numbers.

1.2 STATEMENTS

BASIC statements consist of keywords (words recognized by BASIC) that
you use in conjunction with elements of the languadge set: constants,
variables, and operators. BASIC statements divide into two major
groups: executable statements and non-executable statements.

At least one space or tab must follow all statement keywords in order
for BASIC to recognize the keyword as such. For example:

This is acceptable 10 FRINT A

This is not 10 FRINTA
Certain keywords consist of two or more English words. Some keywords
allow an optional space between words, some keywords require a space

between words, and some keywords do not permit a space at all. Table
1-1 lists these keywords.

ELEMENTS OF BASIC

Table 1-1
Keywords and Spaces
Optional Space Mandatory Space No Space
GO TO MAT INPUT FNEND
GO SUB MAT PRINT SUBEND
ON ERROR MAT READ
INPUT LINE

Keywords are reserved and, therefore, cannot be used as variable names
(See Section 1.5.). Appendix D contains a complete list of reserved
keywords.

1.2.1 Single-Statement, Multi-Statement, and Continuation Lines
You have the option, with BASIC-PLUS-2, of typing either one statement
on one line, several statements on one line, or one or more statements
on several lines.
A single-statement line consists of:

1. A line number (from 1 to 99999)

2. A statement keyword

3. The body of the statement

4. A line terminator
This is a single-statement line:

10 LET A=RXC
To enter more than one statement on a single 1line (multi-statement
line), separate each complete statement with a backslash (\). The
backslash symbol is the statement separator (or terminator). You must
type it after every statement except the last in a multi-statement
line. For example, the following line contains three complete PRINT
statements:

10 PRINT AFNFPRINT Uy \FRINT G
The line number labels the whole line. Consequently, if you plan to
transfer control to a particular line within a program and that line
contains more than one statement, all statements will be executed.
For instance, 1in the previous example, you cannot execute just the
statement

FRINT V»
without executing PRINT A; and PRINT G.

Most statements can appear in a multi-statement line. The exceptions
are noted in the descriptions of individual statements in this manual.

o
|
-3

ELEMENTS OF BASIC

The rules for structuring a multi-statement line are:
1. Only the first statement in a series can have a line number.
2. Successive statements must be separated with a backslash (\) .
BASIC also provides a continuation character (an ampersand (&)) in
case the 1length of the statement or multi-statement line exceeds the
line.
If you are at the end of a line and you want to continue it, type an
ampersand (&) and then a line terminator. The next character you type
prints in column one of the following line. The continuation 1line
cannot have a 1line number. You reference the entire line by the
original line number.
If the character immediately preceding the 1line terminator is an
ampersand, BASIC continues executing the line as if all information
were on the same line.
Consider the following example:

60 FRINT “ARC’y 2 &
v 4y Z%22.9

You can continue any statement. You cannot, however, continue a
comment field (See Section 1.3.2.).

1.3 PROGRAM DOCUMENTATION
BASIC allows you to document your methods by inserting descriptive
text 1in the source program. This type of documentation is known as a
remark or comment. There are two ways of inserting information within
a BASIC source program:

1. With the REM statement

2. With the comment field

1.3.1 The REM Statement
The REM statement has the following format:
REM comment
where:
comment is anything you want to write.

You may place a REM statement anywhere in your program because it does
not affect program execution.

A REM statement may be the only statement on the line:

10 REM THIS IS AN EXAMFLE

ELEMENTS OF BASIC

It can also be one of several statements in a multi-statement line.
BASIC ignores anything in a line following the keyword REM. The only
character that ends a REM statement is a line terminator. Therefore,
a REM statement should be the only statement on the line or the last
statement in a multi-statement line.

20 LET A=0\REM THE VALUE OF A I8 &

You can use the line number of a REM statement in a reference from
another statement, for example, from a GOTO. 1In this, however, BASIC
ignores the REM statement and proceeds to execute the next non-REM
statement following the line referenced. For example:

00010 REM SQUARE ROOT FUNCTION

00020 INFUT A

00030 IF A=0 GOTO 40

00040 FRINT "THE SQUARE ROOT OF*FAF"IG"7;SQR(A)
00050 GOTO 10

000460 END

Line 50 sends BASIC back to line 10. BASIC ignores the comment on
line 10 and continues execution at line 20.

Remember that BASIC prints the remarks on the terminal only when you
list the source program.

1.3.2 The Comment Field of a BASIC Statement

The second method for adding comments to a program 1is to wuse the
comment field. You mark the beginning of the comment with an
exclamation point (!). For example:

10 A = R+C ! THIS IS A TEST.

The comment has no effect on the execution of the statement. You <can
end the comment with either an exclamation point (!) or a line
terminator.

You can place a comment between statements on a multi-statement line
if you terminate the comment with an exclamation point. A backslash
does not terminate a comment field because BASIC interprets it as part
of the comment.

You cannot continue a comment field to another 1line. You can,
however, continue the statement preceding the comment. For example:

10 IF A=R ! THIS IS A COMMENT &
THEN FRINT R

BASIC ignores the comment and continues the IF statement on the next
line.

The DATA statement and the IMAGE statement are the only BASIC
statements that cannot have comment fields. Each must be the only
statement on its respective line.

ELEMENTS OF BASIC

1.4 CONSTANTS

There are three types of constants in BASIC:
1. Real (also called floating-point numbers)
2. Integer (whole numbers)

3. string (alphanumeric and/or special characters)

1.4.1 Real Constants

A real constant is one or more decimal digits, either positive or
negative, in which the decimal point is optional.

The following are all valid real constants (real numbers):

5 42861
74 -125
6. .95

BASIC accepts real constants in the range of 1.70142 x 107-38 to
1.70141 x 107 +38.

If you type a real constant into the source text that is outside the
range of real values, BASIC prlnts a warning message and 1nternally
substitutes zero (if the number is too small), or 1.70141 x 107+38 (if
the number is too large).

You can, however, enter very large numbers and very small numbers
within this range by using a method similar to scientific notation.
To do so, use the following format:

+ Or - X.XXXXXE + or - n

5.24016E-3
where:

+ or - is the sign of the number. The plus sign (+) is
optional with positive numbers; the minus sign (-) is
mandatory with negative numbers.

X is the number which may be carried to eight decimal
places.

E represents the words "times 10 to the power of".

+ or -n is the positive or negative exponential value (the
power of 10).

This method of mathematical shorthand is called E notation or
floating-point notation. It is BASIC's way of representing scientific
notation. To use this format, append the letter E to the number, then
follow the E with an optionally signed integer constant. This
constant is the exponent. It can be 0 but never blank. Thus you can

type:
6000000 as 6E6 and .000005 as 5E-6

ELEMENTS OF BASIC

With E notation you are actually positioning the decimal point
internally. A positive exponent moves the decimal point to the right;
a negative exponent moves the decimal point to the left. For
instance, if you type the number

5.2041E-3
BASIC interprets it as .0052041.

Table 1-2 shows the different methods of writing real constants.

Table 1-2
Number Notations

Standard Notation Scientific Notation E Notation
1000000 1 X 1076 1.00000E+06
10000000 1 X 1077 1.00000E+07
100000000 1 X 1078 1.00000E+08
1000000000000 1 X 10712 1.00000E+12

The following are examples of real constants:

.84103E-06 -377 -12345
6.64 SE+03 8.0E-03
-9.4177 6562 25

BASIC uses single-precision floating-point format when storing and
calculating most numbers. Integers, however, are handled 1in a
slightly different manner.

1.4.2 Integer Constants

An integer constant is a whole number (no fractional part) written
without a decimal point. To type an 1integer constant, type an
optional sign followed by one or more decimal digits terminated by a
percent sign (%). For example, the following numbers are all integer
constants (whole numbers):

29% -8%
3432% 1%
12345% 205%

The following are not integer constants:

1.6 .08%
754.2% 5.2041E+06

In BASIC, you can type integer constants within the range of
(-2**35)-1 to (2**35)-1.

If you type an integer constant into the source text that is outside
the range of integer values, BASIC prints a warning and internally
substitutes (2**35)-1, if the number is too big, and -(2**35), if the
number is too small.

e
|
co

ELEMENTS OF BASIC

1.4.3 String Constants

A string constant (also called a literal) is one or more alphanumeric
and/or special characters enclosed by double quotation marks ("text")
or single quotation marks ('text'). You can include double quotation
marks within a string constant delimited by single quotation marks and
vice versa. Include both the starting and ending delimiters when
typing a string constant in a source program. These delimiters must
be of the same type (both double quotation marks or both single
quotation marks).

A character in a string constant can be a letter, a number, a space,
or any ASCII <character except a line terminator. The value of the
string constant 1is determined by all its <characters, including
leading, embedded, or trailing spaces. For example, because of the
number of spaces between the quotation marks and the characters in the
following example

" DIGITAL " is not the same as "DIGITAL"

BASIC prints every character between gquotation marks exactly as you
type it into the source program, including:

® Lowercase letters (a-2z)
® Leading, trailing, and embedded spaces
® Tabs

Note, however, that BASIC does not print delimiting gquotation marks
when the program is executed.

00010 FRINT *DIGITAL"
00020 END

READY
RUNNH

DIGITAL

In order to make BASIC print qguotation marks, you must enclose them
within a pair of quotation marks, either double or single, as follows:

00010 FRINT ‘HE SAIDLy *GO0OD MORNING!*’
00020 END

REALDY
RUNNH

HE SAIDy "GOOD MORNING!®
Here are some examples of string constants:

"This is a8 String Constant®

‘80 I8 THIS’
*GARY’S TENNIS RACKET®

The following are examples of invalid string constants:
"WRONG TERMINATOR’
‘SAME HERE*®
*NO TERMINATOR

ELEMENTS OF BASIC

1.5 VARIABLES

Depending on the operations you specify in a program, the value of a
variable may change from statement to statement. BASIC uses the most
recently assigned value of a variable when performing calculations.
This value remains the same until a statement is executed that assigns
a2 new value to that variable.

BASIC has three types of variables:
1. Real
2. Integer
3. String
Variable names cannof be keywords because all keywords are reserved

(See Appendix D). The following sections describe the formation of
legal variable names.

1.5.1 Real Variables

A real variable is a named location in which a single real value 1is
stored. You name a real variable with a single letter followed by 29
optional <characters consisting of letters, digits, or periods.
Therefore, the maximum length of a real variable name is 30
characters:

1 letter
29 optional characters

Do not embed spaces between characters. The following are legal real
variable names:

C L...5
M1 BIG47
F67T.J z2.

The following are not legal real variable names:

6 225
.A G*T
4D 8/3

Before program execution, BASIC sets all real variables to 0 except
for those 1in a virtual array. If you require an initial value other
than 0, you can assign it with the LET statement (See Section 1.7.).
Otherwise, you can declare the value implicitly by just typing the
variable in a program.

NOTE

Because other BASIC implementations may
not set all variables to zero before
program execution, you should not rely
on this feature. Good programming
practice dictates that you initialize
all wvariables at the beginning of the
program.

ELEMENTS OF BASIC

1.5.2 1Integer Variables

An integer variable (like a real variable) is a named 1location in
which a single value can be stored. Using an integer variable in your
program indicates that space is reserved for the storage of a whole
number (no fractional part).

You name an integer variable with a single letter followed by 29
optional characters consisting of letters, digits, or periods, and you
terminate the name with a percent sign (%). No embedded spaces are
allowed. Therefore, the maximum length of an integer variable name is
31 characters:

1 letter
29 optional characters
1 percent sign (%)

The following are legal integer variable names:

ABCDEFG% C.8%
B% D6E7%

The following are not legal integer variable names:

A B2S$
1B% 123%

If you include an integer variable in a program, then the wvalue vyou
supply for it must be an integer value. 1If a real value (real number)
is assigned to an integer variable, BASIC drops the fractional portion
of the value. The number is not rounded to the nearest integer; it
is truncated. Consider the following example:

BASIC assigns the value -5 to the integer variable, not -6. This
method of truncating can lead to serious inaccuracies.

If you assign an integer value to a real variable, BASIC stores the
integer as a real number internally.

1.5.3 String Variables

A string variable is a named location used to store strings. You name
a string variable with a letter, followed by 29 optional characters
consisting of letters, digits, or periods, and you terminate the name
with a dollar sign ($). No embedded spaces are allowed between
characters. The dollar sign ($) must be the last character in the
name. Therefore, the maximum length of a string variable name is 31
characters:

1 letter
29 optional characters
1 dollar sign ($)

The following are examples of legal string variable names:

Cls M$
L.6S F34GS
ABC1S T..S

ELEMENTS OF BASIC

These are not legal string variable names:

C1l 123458$
6.LS .$8
$56A AB

Strings have a value and a length. During execution, the length of a
character string associated with a string variable can vary from O
(signifying a null or empty string) to 262,143 characters.

Note that when all three variables -- a simple real variable, an
integer variable, and a string variable -- have the same name, each
one represents a different variable. The following names are all

valid within the same BASIC program:

A5 a simple real variable
A5% an integer variable
A5$ a string variable

NOTE

One of the most frequent errors made in
BASIC programs is to forget the percent
sign on an integer variable when the
program also contains a real variable
with the same spelling. Be sure to
include a percent sign at the end of an
integer variable name when your program
contains a real variable name with the
same spelling.

1.5.4 Subscripted Variables

A subscripted variable is a real, integer, or string variable with one
or two subscripts appended to it. The subscripts can be any positive
expression. BASIC converts non-integer expressions to integer by
truncating the fraction.

The subscript in a subscripted variable is a pointer to a specific
location in a list or table in which a value is stored. (See Section
1.8 for more information on 1lists and tables.) You designate the
pointer with either one or two subscripts enclosed by parentheses. If
there are two subscripts, separate them with a comma. The value
stored can be real, integer, or string data.

To name a subscripted variable, start with a real, integer, or string
variable name:

A A% AS

To refer to an element in a list (one dimension), follow the variable
name with one subscript within parentheses. For example:

A(6) A% (6) AS(6)
A(6) refers to the seventh item in this list:

A(0) A(1) A(2) A(3) A(4) A(5) A(6)
10 20 30 40 50 60 70

[
i
)
[0%}

ELEMENTS OF BASIC

To refer to an element in a table (two dimensions), follow the
variable name with two subscripts. The first subscript designates the
row number, and the second subscript designates the column number.
Separate the two subscripts with a comma. For example:

A(7,2) A% (4,6) AS$(17,23)
BASIC accepts the same alphanumeric characters for a simple real
variable and a subscripted variable within the same program. However,
do not use the same alphanumeric characters for two arrays (See
Section 1.8.) with a different number of subscripts.
For example, these names are acceptable in the same program:

D simple real variable

D(8) subscripted variable
These names are not acceptable in the same program:

D(8) one subscript

D(8,6) two subscripts

1.6 EXPRESSIONS

An expression can be a constant, variable, function (See Section
l.6.5.), array reference (See Section 1.8.), or any combination of
these, separated by any of the following operators:

® Arithmetic operators
® String operators
e Relational operators

e Logical operators

1.6.1 Arithmetic Expressions

BASIC allows you to perform addition, subtraction, multiplication,
division, and exponentiation of integer variables, real variables, and
constants with the following operators:

~

** or Exponentiation
Multiplication
Division

Addition, Unary +
Subtraction, Unary -

I+ *

Performing an arithmetic operation on two arithmetic expressions of
the same data type yields a result of that same type. For example:

A%+B%
G3*M5

an integer expression
a real expression

ELEMENTS OF BASIC

If you combine an integer quantity with a real quantity, the result
will be real. For example:

A*B% = a real expression

6.83 * 5% = 34.15
Note that, in general, you cannot place two arithmetic operators
consecutively in the same expression. The exceptions are the unary
plus and unary minus. For example, both of the following are valid
expressions:

A*-B A* (-B)
Table 1-3 provides examples of arithmetic operators and their meaning.

Table 1-3
Arithmetic Operators

Operator Example Meaning
- -A Negate A.
+ +A Has no effect.
+ A+ B Add B to A.
- A -B Subtract B from A.
* A * B Multiply A by B.
/ A/B Divide A by B.
- A"B Calculate A to the power B.
* % A**pB Calculate A to the power B.

1.6.2 String Expressions

BASIC provides the plus sign (+) and the ampersand (&) as operators
for string expressions. By using either of these operators you can
append one string to another. This operation is called concatenation.

Consider the following example:
10 C¢ = *"GOOD" + "RYE"

20 FRINT C¢
30 END

During execution, BASIC prints the following:
GOODRYE

AS + BS$ or AS$ & BS mean concatenate or append string B$ to the end of
string AS.

ELEMENTS OF BASIC

1.6.3 Relational Expressions

A relational operator is a symbol used to compare the value of one
variable or expression to another variable or expression within a
BASIC program, thus creating a relational expression. As explained in
Section 4.3, one of the uses of relational expressions is with the
IF-THEN-ELSE statement to create conditional transfers.

When a relational operator is used its value is -1 if the relation is
true, and 0 if the relation is false. The value -1 is logically true
and 0 is false. See Section 1.6.4 for a description of logical
expressions.

NOTE

BASIC issues an error message if you try
to compare a real or integer expression
to a string expression using a
relational operator.

Table 1-4 provides examples of relational operators and their meaning.

Table 1-4
Relational Operators
Operator Example Meaning
= A =B A is equal to B.
< A < B A is less than B.
> A >B A is greater than B.
<=, =< A<= B A is less than or equal to B.
>=, => A>= B A is greater than or equal to B.
$#, <>, >< A<>B A is not equal to B.
== A==B A is approximately equal to B if the
difference between A and B is less
than 107 (-6).

When you use a relational operator to compare the value of two string
expressions, you create a relational string expression. BASIC uses
the ASCII character collating sequence to determine which character is
greater or 1lesser in value than the other. (See Appendix E for the
ASCII Table.) The comparison is made, character by character, left to
right, by ASCII value until BASIC finds a difference in value.

When applied to strings, relational operators compare characters for
alphabetic sequence. Consider the following program:

00010 A% = "ARC"

00020 ER$ = "DEF"

00030 IF A$<E$ GOTO &0
00040 FRINT A%

00050 FRINT E¢

00060 END

ELEMENTS OF BASIC

When BASIC executes line 30, it compares string A$ with BS to
determine if AS$ occurs first in alphabetic sequence. 1In this case, it
does, and the program transfers control to 1line 60. If string BS
occurred before string A$, program execution would have continued to
the next statement following the comparison, that is, line 40.

BASIC compares strings just as you compare words to be placed in
alphabetical order. BASIC compares the first character 1in each
string, A and D. The letter A precedes the letter D in the ASCII

table; therefore, string A$ precedes string B$ in alphabetic
sequence. If the first two characters are equal, BASIC proceeds to
the second two characters, until a difference is found. For example:
ABC
AEF
BASIC compares A to A and finds them equal in wvalue. Then BASIC

compares B and E and finds B less than E. The comparison ends here,
and BASIC concludes that ABC occurs before AEF in alphabetic sequence.

Table 1-5 provides examples of string operators and their meaning.

Table 1-5
String Relational Operators

Operator | Example Meaning
= AS = BS Strings A$ and B$ are equal after removing
trailing blanks and nulls.
< AS < BS String A$ occurs before string BS in
alphabetic sequence.
> AS > BS String AS$ occurs after string BS in
alphabetic sequence.
<=,=< AS<=BS$ String A$ is equal to, or precedes, string
BS in alphabetic sequence.
>=,=> AS$>=BS string A$ is equal to, or follows, string BS
in alphabetic sequence.
#, <>,>< | AS#BS String AS$ is not equal to string BS.
== A$==BS Strings AS$ and B$ are identical (exactly the

same length without padding and the same
composition of all characters).

Note that the relational operator == has a different meaning when
applied to strings than when applied to numbers. When comparing
strings of different lengths, BASIC treats the shorter string as if it
were padded with trailing blanks to the length of the longer string.
In order to perform character-to-character comparison, - BASIC needs two
characters to compare. This is where the trailing blanks serve their
purpose.

-16

[

ELEMENTS OF BASIC

Consider the following example:

00010 As "ANTONY"
00020 R$% "CLEOFATRA"
00030 IF A%$<R$ GOTO S0
00040 A% = A% + E¢
00050 FRINT As

00060 ENID

it n

BASIC compares the A in ANTONY and the C in CLEOPATRA. The ASCII
value of A is 65; the ASCII value of C is 67. Therefore string A$
precedes string B$ in alphabetic sequence. Control shifts to line 50.
If AS were greater than B$, the program would continue to line 40.
This is what happens when BASIC executes the program:

RUNNH
ANTONY

1.6.4 Logical Expressions

A logical expression consists of either one operand preceded by a
logical operator or two operands separated by a logical operator.
Logical expressions are used in statements 1like the IF-THEN-ELSE
statement (See Section 4.3.) where a condition is tested to determine
subsequent operations within the program. The operands in this case
are wusually relational expressions. Logical expressions can also be
used with integer data. Logical operations on strings, however, are
invalid. Logical operations on real data although allowed will
probably not produce the expected results due to the internal
representation of real numbers.

BASIC determines whether the condition is true or false by testing the
result of the logical expression for non-zero and zero, respectively.
(That is, a non-zero result is true, and a 3zero result is false.)
BASIC supplies the value -1 for true when it evaluates a relational
expression, but BASIC accepts any non-zero value when performing a
test. Therefore in the following example

A% = 10%
B% = NOT A%
both A% and B% can be true, if, for example, A% = 10 and B% = -11.

Logical -operators perform bit-wise operations. 1In the above example,
B% is -11 (true) and not 0 (false). Logical operators are reserved
words (See Appendix D.).

Table 1-6 provides a list of logical operators and their meaning.

ELEMENTS OF BASIC

Table 1-6
Logical Operators

Operator Example Meaning

NOT NOT A% The logical opposite of A%. If A% 1is
false, NOT A% is true.

AND A% AND B% The logical product of A% and B%. A%
AND B% is true only if both A% and B%
are true.

OR A% OR B#% The logical sum of A% and B%. A% OR
Bt is false only if both A% and B% are
false; otherwise A% OR B% is true.

XOR A% XOR B% The logical exclusive OR of A% and B%.
A% XOR B% is true if either A% or B%
is true but not Dboth; and false
otherwise.

EQV A% EQV B% A% is logically equivalent to B%. A%
EQV B% has the value true if A% and B%
are both true or both false; and has
the value false otherwise.

IMP A% IMP B% The logical implication of A% and B%.
A$ IMP B% is false if, and only if, A%
is true and B% 1is false; otherwise
the value is true.

Logical expressions are valid wherever real expressions are valid
BASIC. Both operands, however, must be integers.

in

ELEMENTS OF BASIC

Table 1-7 contains tables called truth tables. They describe
graphically the results of the above 1logical operations on a
bit-by-bit basis. Every possible combination of bits for A% and B% is
given. 1In these tables, 1 equals true and 0 equals false.

Table 1-7
Truth Tables

A% NOT A% A% B% A% OR B%
0 1 00 0
1 0 01 1
10 1
11 1
A% B% A% AND BS% A% B% A% EQV B%
00 0 00 1
01 0 01 0
10 0 10 0
11 1 11 1
A% B% A% XOR B% A% B% A% IMP B%
00 0 00 1
01 1 01 1
10 1 10 0
11 0 11 1

Notice that the two operators XOR and EQV are exact opposites.

ELEMENTS OF BASIC

1.6.5 Functions

Functions are predefined sequences of instructions. A function can be
accessed in a program by including its name in an expression. When
BASIC evaluates an expression containing a function name, the sequence
of instructions associated with that function name is automatically
executed. BASIC has two types of functions: library functions and
user-defined functions. Library functions are those supplied with the
BASIC software; user-defined functions are those defined by you.
(For more information on both types of functions, see Chapter 6.)

A function name is used just like a variable name. When you type a
function name into a program, you are actually calling a pre-written
routine. Consider the following example that uses a BASIC library
function:

00010 FRINT SAR(49)
Q0020 END

READY
RUNNH
7

SQR is the function that defines the square root of the number within
parentheses, in this case 49.

Using and creating BASIC functions are described in Chapter 6.

1.6.6 Evaluating Expressions

BASIC determines a value for expressions according to operator
precedence. Each arithmetic, relational, and string operator in an
expression has a predetermined position in the hierarchy of operators.
The operator's position tells BASIC when to evaluate the operator in
relation to the other operators in the same expression. Parentheses
may be used to alter the order of precedence.

In the case of nested parentheses (one set of parentheses within
another), BASIC evaluates the innermost expression first, then the one
immediately outside it, and so on. The evaluation proceeds from the
inside out until all parenthetical expressions have been evaluated.
For example:

B = (25+(16%(972)))

Because (972) 1is the innermost parenthetical expression, BASIC
evaluates it first, then (16*81), and then (25+1296).

ELEMENTS OF BASIC

Table 1-8 lists all operators in the order BASIC evaluates them:

Table 1-8
Operator Precedence

*x FIRST
- (unary minus)

*,/

+,-

+ (concatenation)

all relational operators
NOT

AND

OR, XOR

IMP

v

EQV LAST

Operators shown on the same line have equal precedence. Except for
the operators + and *, BASIC evaluates operators of the same
precedence level from left to right. All relational operators are on
the same precedence level. The operators + and * are evaluated in any
order since that 1is algebraically correct. For example, BASIC
evaluates A"B"C as (A"B)"C.

BASIC evaluates expressions enclosed in parentheses first, even when
the operator enclosed in parentheses is on a lower precedence level
than the operator outside the parentheses. Consider the following
example:

A = 1572+1272%(35-8)

BASIC evaluates this expression in five ordered steps:

1. 1572 = 225 Exponentiation (leftmost expression)
2. 1272 = 144 Exponentiation

3. 35-8=27 Subtraction

4. 144*27=3888 Multiplication

5. 225+3888=4113 Addition

1.7 ASSIGNING VALUES TO VARIABLES

The LET statement enables you to assign a value to a variable or 1list
of variables. The LET statement has the following format:

[LET] variable(s) = expression

1-21

ELEMENTS OF BASIC

where:
LET is an optional keyword.
variable(s) is a variable or list of variables separated
by commas.
expression can be a string, numeric, relational, or

logical expression.

The LET statement replaces the variable on the left of the equal sign
(=) with the value on the right. Hence, the equal sign signifies the
assignment of a value and not algebraic equality. BASIC evaluates the
expression from left to right and assigns the values from right to
left. Here is an example:

10 LET A=482.5

This statement assigns the value 482.5 to the variable A. You can
also write the statement this way:

10 A=482.5
BASIC also evaluates any expression you assign:

10 A=(X+Y) -84

BASIC calculates the expression (X+Y)-84 and then assigns the
resulting value to the variable A.

In addition, you can assign a value to more than one variable at a
time, as in the following example:

10 ArByC=64%82

This statement has the same effect as:
10 C=64%82

20 RB=64%82
30 A=64X%82

BASIC also converts the data type of the value (integer or real) to
the data type of the associated variable. 1In the following example

10 A%y By C¥s I = 9.5

is the same as

100 = 9.5
20C%4 = 9
30 B = 9.5
40 AZ = 9

Moreover, if you reference an array element as a variable, BASIC
calculates the value of the subscript before assigning values to the
other variables in the list. For example, the following lines assign
the value 5 to the list element A(2), then change the value of I to 5:

10 I=2
20 A(I)y I=5

ELEMENTS OF BASIC

You can also assign a string expression to a variable. You cannot,
however, mix strings and numeric expressions in the same LET
statement. If you do, BASIC prints an error message on the terminal.
Here is an example of a string assignment:

10 A$="HELLO"
20 PRINT A%
30 ENID

RUNNH
HELLO

You can place a LET statement anywhere in a multi-statement line:
00010 FRINT *THE VALUE OF I IS:"i\LET I=42\PRINT I

READY
PN
THE VALUE OF I I8! 42

READY

1.8 ARRAYS

BASIC automatically reserves storage space for arrays with maximum
subscripts of 10, for example, A(10) or A(10,10). If you require a
larger amount of reserved space, define the dimensions with the DIM
statement (See Section 1.8.1.). Conversely, if you do not require the
space that BASIC supplies by default, save space for your program by
using the DIM statement to reserve a smaller area.

When you establish the size of the array, BASIC stores the dimensions
in a particular area for future reference. BASIC starts counting
elements from 0, not 1; therefore, you have an additional element for
a list and an additional row and column for a table. For example,
dimensioning the array A(6) gives you seven storage areas in the list,
not six:

ROW 1 A(0)
2 A(1)
3 A(2)
4 A(3)
5 A(4)
6 A(5)
7 A(6)

Array B(3,3) contains storage space for 16 elements. This 1is the
layout of array B(3,3):

COLUMN 1 2 3 4
ROW 1 B(0,0) B(0,1) B(0,2) B(0,3)
2 B(1,0) B(1,1) B(1,2) B(1,3)
3 B(2,0) B(2,1) B(2,2) B(2,3)
4 B(3,0) B(3,1) B(3,2) B(3,3)

ELEMENTS OF BASIC

If you reference an array with the wrong number of subscripts, BASIC
prints an error message.

Remember that it is possible to use the same alphanumerics to name
both a simple variable and an array within the same program. But
using the same name for two arrays with a different number of
subscripts is invalid within the same program, that is, you could not
name A(5) and A(3,4) in the same program.

1.8.1 The DIM Statement

The DIM statement allows you to define the dimensions of an array in
your program. By using the DIM statement, you reserve storage space
to be filled with values of either numeric or string data.

Because the DIM statement is not executed, you may place it anywhere

in the program. It can also be one of several statements in a
multi-statement line.

NOTE

It is good programming practice to
dimension all arrays used by a program
prior to referencing them. This
practice not only makes the program
easier to understand, but it also causes
references to array elements to be
executed faster at execution time.

The DIM statement has the following format:
DIM subscripted variable(s)
or
DIMENSION subscripted variable(s)

where:

subscripted variable(s) is one or more subscripted real,
integer, or string variable(s)
separated by commas (See Section
1.5.4.). The subscripts themselves
must be unsigned real or integer
constants.

Each subscripted variable name represents a distinct list or table.
Because BASIC automatically reserves storage for arrays with max imum
subscripts of 10, that is, A(10) and B(10,10), the DIM statement only
needs to be used to reserve storage for lists with 11 or more elements
and matrices with more than 121 elements, or, to save space, for lists
with subscripts less than 10.

ELEMENTS OF BASIC

In the DIM list, you are specifying:
1. The name of the array
2. The number of subscripts (one or two)
3. The maximum value of each subscript

4. The data type of the array - real, integer, or string

Here is an example of a DIM statement:

10 BIM AC2EY » RIS T2 CU(Tv16) s G (15)

No array can have more than two subscripts. If you do not specify a
subscript in the second position, only one subscript is permitted for
that variable name in future references. When using the DIM statement
to set the maximum values for the subscripts, you are not obligated to
fill every storage space you allocate.

Arrays are stored as if the rightmost subscript varied the fastest.
For example, the following DIM statement sets up 20 contiguous storage
areas:

10 DIM A(3,4)

The storage addresses look like this:

0,0 0,1 0,2 0,3 0,4
1,0 1,1 1,2 1,3 1,4
2,0 2,1 2,2 2,3 2,4
3,0 3,1 3,2 3,3 3,4
Notice that reading across 1left to right, the second subscript

increases first.

As stated previously, the first element of every array begins with a
subscript of 0. If you dimension a matrix C(6,10), you set up storage
for 7 rows and 11 columns. The 0 element is illustrated in the
following program:

LISNH

00010
00020
00030
Q0040
00050
00060
00070
00080
00090

REM
nIM
FOR
LET
FOR
LET

MATRIX CHECK FROGRAM
Cio6210)

I=0 TO 6

CCIsOd)= 1

J=0 TO 10

COs)=

FRINT C(Is+Jdds
NEXT UNFRINT\NEXT I

END

ELEMENTS OF BASIC

READY
RUNNH

oD UNEO
SO OO0 =
COOCOOON
QOO OO0 W
SCOOCOOO D
COCOOoOU
COO OO
OO OO O N
QOO OCOCW
OO COO0
COODOCOO

READY

A real or integer variable has a value

of

0

until you

assign

it

another value. A string variable has the value of a null string, that

is, it has a non-printing value of 0.

You can also use the DIM statement to dimension

example:

00010 DIM A$(S)

00020 INFUT A$(1)sA$(2)sA$(3)sA$(4)yAS(D)

00030 MAT FPRINT A$(3)
00040 END

READY
RUNNH
P HeEel. oL o0

Qrrmax

NOTE

There is a set of statements
operate on arrays and matrices.

string

which
These

are the MAT statements (See Chapter 7.)
(See

and the MOVE statement
9.7.). These statemen

ts

Section
not

recognize elements in the zero row and

column of an array and, in

some

cases,

destroy the contents of these elements.

If you use these statements,

it is

important not to use array elements in

the zero row and column for data.

arrays,

for

CHAPTER 2

USING BASIC-PLUS-2

This chapter describes all of the BASIC commands. These commands
enable you to perform a variety of tasks from BASIC command level,
including: creating, executing, and saving BASIC programs. Also,
this chapter describes the BASIC immediate mode. In immediate mode,
you can test and debug BASIC programs. These topics are described in
the following sections:

2.1 BASIC Command Level

2.2 Working with Existing Files

2.3 BASIC Immediate Mode

2.4 Nesting Immediate-Mode Statements

2.5 Immediate Mode and BASIC-PLUS-2 Commands

2.1 BASIC COMMAND LEVEL

BASIC has several commands that allow you to:
1. Create, edit, and manipulate files
2. Run BASIC programs
3. Enter system command level
4. Obtain information

The commands affect an entire BASIC program, and, therefore, are
functionally different from the BASIC statements that constitute the
program. For example, typing the RUN command (See Section 2.1.8.)
causes BASIC to compile and execute the current program in memory.
If, however, you include the RUN command as a statement in a BASIC
program, an error is generated and the program cannot run. BASIC
commands are executed after the RETURN key (or other line terminator)
is pressed. BASIC statements, on the other hand, are executed after a
program has been created and you issue the RUN command.

When BASIC is run (by typing BASIC (&)), it allocates a portion of
memory for your use. This portion of memory is known as the work
area. Any work done on a program, such as creating, editing, and
running BASIC programs, is done within the work area. You cannot,
however, store your BASIC programs in the work area; devices such as
disks provide a place for permanent storage.

To create a new file or program, to edit an existing file, or to run a
file containing a program, the file must be established in the BASIC
work area. The NEW command, OLD command, and the default to NONAME
provide the means by which a file is named and established in the
BASIC work area.

USING BASIC-PLUS-2

2.1.1 BASIC Command Format
Each BASIC command must be contained on a single line and terminated
by a line feed, form feed, vertical tab, or carriage return/line feed.

The command name may not contain spaces or tabs. The general command
syntax is:

command {line number (s) —
file spec }

where:

line number (s) represents one line number, or a series of up
to 20 1line numbers separated by commas (See
description below.)

file spec is a TOPS-20 file specification (See Section
B.4). Many commands assume the default type
of .B20 unless otherwise specified.

RET indicates pressing the RETURN key (carriage
return/line feed) . In all BASIC-command
formats and examples pressing the RETURN key
at the end of the line is assumed.

A command can be either a fully specified command name, for example,
RENAME, or a unique abbreviation with a minimum of three letters. The
minimum accepted abbreviation is given with the command.
A line number list may consist of:

1. A single line number, for example, 80.

2. A pair of line numbers, separated by a hyphen, denoting an
inclusive range, for example, 90-210.

3. A list of line numbers and ranges separated by commas, for
example, 10, 85, 70-90, 60, 40-55. Line numbers can also be
reversed, for example, 98-46.

If the command you type is not recognized, BASIC prints

T oWhat

on the terminal. You must then retype the entire command string.

2.1.2 Entering BASIC Command Level (BASIC, HELP)
To enter BASIC command level and access the BASIC compiler, type:
@RASIC
This action clears the memory area and establishes contact with the
BASIC compiler. When BASIC is ready to accept commands, it prints the
prompt:
READRY
After this message appears, you can type any acceptable BASIC-PLUS-2
command or statement and start inputting your program. If you need a

summary of all BASIC commands, type:

HELF

[\S]
1
8]

USING BASIC-PLUS-2

The HELP command prints the following text:

REALY
HELF

The following commands are available!

EBUIld ~ Comrile rrogram and save code on dishk

RYE - Exits from BASIC and lods the user off the sustem
CATalog ~ List files in directoru

DERus =~ Comrile and initislize (but do rnot rum) Frodram

IElLete ~ Delete lines of the rrodram

o ~ Accert and execute limes from srecified command file
GO0dbwe — (Same as RYE.)

HELF -~ Ture out this text

LISt - List lines of the rrodgram

LISTNH ~ Same as LIST but without hesder

LISNH - Same as LIST but without header

MOhe DEF X - The Frogsram has G0T0’s out of DEF %8

MODle NODEF x - The orrosite of MODE DEF % (default)

MONitor —~ Return to the EXEC {(continue or reenter allowed)

NEW - SCRATCH rFrodgrem and dget new srodgram name

oLn -~ SCRATCH rrodgram and read in new one from disk

oLnLsA - Same as OLD for Line Seauenced ASCII files

QUIet ~ Turn off everwuthing

QUlet HEAder = Turrn off headers and trzilers for LIST and RUN
QUIet Checkh = Turn of f SYNTAX CHECKING

AUIet WARN - Silence comrile time warnindgs

QUIet COMmand -~ Turn off echoing of command file inerut (default)
REName - Chande name of current rrogram

RESecuence - Resecuence line numbers in the erodram

RUN - Comrile and rur rrogram

RUNNB - Same as RUN but without header

SAVe - Save corv of rrodgram on disk

SCRatch ~ DNelete 2ll lines of eprodgram

SCRatch ALL - Delete denerated code (do mot touch source rrodgram)
SCRatch IMMediate - Reset immediate mode (zero immediste mode varisbles)
SCRatch RESET - Reset immediate mode (do not touch variables)
STATus -~ Ture out status of QUIET amnd MODE fladgs

STArt = Imitialize and run rrogram (don’t comrile)

S8YStem -~ Return to the EXEC {(continue or reenter allowed)

UNSave ~ lelete a disk file

VERbose = Turn on eversthing (default excesrt for COMmand)
VERhose HEAder = Turn on headers and trailers for LIST and RUN
VERbose CHEck =~ Turn on SYNTAX CHECKING

VERbose WARnN - Enable warning messadges during comrile

VERbose COMmand Echao inrFut from command file on user’s terminal

i

READY

2.1.3 Returning to System-Command Level

To return to system command level, type:

SYS[TEM]
or

MON[ITOR]

USING BASIC-PLUS-2

The system responds with the prompt character (the "at" sign (@)),
returns you to system-command level, and awaits a system command.
When you are at system-command level, you can give only TOPS-20 system
commands. BASIC commands will not be recognized.

If you plan to return to BASIC level after wusing the system
facilities, be sure you do not issue a system command that will change
or destroy the contents of memory, for example, the PLEASE command
which destroys memory. (Refer to the TOPS-20 User's Guide for more
information on system commands.)

When you decide to return to BASIC level, use one of the following:
sT [ART]

CON[TINUE]
REE [NTER]

BASIC responds with the READY prompt, and you can continue working in
BASIC command level. If memory was destroyed, type BASIC to reenter
BASIC command level. Note that CONTINUE and REENTER preserve the
current BASIC program but START does not.

2.1.4 Logging off from BASIC Command Level
To log off the system while in BASIC command mode, use:
[GOOD]BYE

The system responds by 1logging you off and printing information
concerning your job. For example:

RYE
Killed Job 12s User FORRESTs Account 1, TTY 221
at 9-ArT-79 15122156y Used 01021 in 010120

All the files currently stored are saved on disk but the current
contents of the work area will be lost.

2.1.5 Creating a Program (NEW)

To create a new source program in memory, use the NEW command, as
follows:

NEW [file spec]
where:

file spec is a TOPS-20 file specification (See Section
B.4). The default is NONAME.B20.1.

If you do not type a file spec after the NEW command, BASIC asks for
one by printing:

New Frosgram name—-

If you do not want to specify a name, press the RETURN key again.
BASIC will name your program NONAME.B20.

USING BASIC-PLUS-2

When BASIC executes the NEW command, the old contents in memory are
lost. BASIC waits for your input by signaling READY. For example:

READY
NEW
New rrogram name--TEST.R20

READY

2.1.5.1 sSyntax Checking - BASIC does a check of every program line
you type, after you press the RETURN key. If BASIC finds an error in
the syntax, that is, a misspelled statement keyword, a missing
qguotation mark, or any other syntax error, it prints the incorrect
line and an error message.

For example:

10 FR "ARC®
10 FR "ARC"

7 Statement not recognized

PO BRTNY WAL

10 PRINT "ARC
Z Unterminated literal ~ treated as & comment

You can disable syntax checking with the QUIET command (See Section
2,2.9.1).

2.1.6 Checking Input (LIST)

To print a copy of the current program in memory, use the LIST
command, as follows:

LIS[TN#] line number (s)

where:

LIS is the accepted abbreviation; it prints the
entire program and header.

NH suppresses printing of the program name, the
current time, and the current date. NH
designates NO HEADER.

line number (s) is 1 line number or a series of up to 20 line

numbers.
You can disable the header with the QUIET command.

Arguments after the LIST command are optional. Lines and blocks of
lines may be specified in any order. The lines print in the order you
specify. You can reverse the order and even duplicate 1line numbers.
Up to 20 arguments (19 commas) may be specified.

USING BASIC-PLUS-2

The following example prints a program in sequence:

REAY

LISNH

00010 LET A=62

00020 LET E=735

00030 LLET C=8¢9

00040 LET I=AXR/C

00050 PRINT "= "D

Q00060 PRINT *THIS IS A TEST."
00070 PRINT "NEXT LINE OF TEST."
00080 IF D=24%5 GOTO 50

00090 END

READY

This next example demonstrates using the LISNH command to list a range
of program lines in reverse order:

LISNH 20-10

Q0090 ENI

00080 IF D=245 GOTO S0

00070 FRINT "NEXT LINE OF TEST.®
00060 FRINT *"THIS I8 A TEST."
000350 FRINT "DI= "D

00040 LET D=AXR/C

00030 LET C=8¢9

00020 LET R=73

00010 LET A=42

READY

The following LIST command string prints certain lines in the program
including duplicates:

LIST S0+:70-920530:10-40+5

TEST «R20
Thursdaws March 2y 1979 15126124

Q0050 FRINT “"D= "5D

00070 FRINT "NEXT LINE OF TEST.®
00080 IF D=245 (0TO S0

00090 END

00030 LET C=89

00010 LET A=62

00020 LET R=75

00030 LET C=89

00040 LET Ii=AXE/C

READY

2.1.7 Correcting Mistakes

A program must be in memory before you can edit it. That is, you edit
a program as it is built, or a saved program after it is brought into
memory with the OLD command. You cannot edit a compiled program.

USING BASIC-PLUS-2

There are a number of ways to make <corrections to a BASIC source
program. These editing methods include typing:

1. The DELETE key and retyping
2. The CTRL/U ("U)
3. The CTRL/W ("W)
4. Line number and RETURN key

5. The DELETE command

2.1.7.1 Using the DELETE Key - As you create new programs, you can
erase misspelled or incorrect lines with the DELETE key and then type
the corrections. This must be done before pressing the RETURN key.
For example, to correct a misspelled RESTORE statement, press the
DELETE key once for each character you want to delete. Then type the
correct characters on the same line. Note that the DELETE key erases
characters one at a time in a reverse order from the last character
typed. DELETE also prints a backslash after each deleted character.
For example:

50 RETOREENR\O\T\STORE

[S YT RN ot
SRS R NS

00050 RESTORE

REARYY

NOTE

On a video display terminal, no
backslashes are printed; the deleted
characters are merely removed from the
screen.

2.1.7.2 Deleting a Partially Typed Line - To delete an entire line
that has not been entered into memory, use CTRL/U. A CTRL/U deletes
unwanted lines and performs a carriage return/line feed. When you
type a CTRL/U, the system prints 3X's on the terminal. If you have a
display terminal, the system removes the line from the screen. For
example:

10 PRINT "A = R X C"3A = R % C XXX

USING BASIC-PLUS-2

2.1.7.3 Deleting a Field Within a Line - If you want to erase a field
of a statement or command but not the entire line, type CTRL/W.
CTRL/W erases everything between it and the last preceding space. The
system prints an underline (_) but does not perform a carriage

return/line feed as CTRL/U does. 1Instead, you can continue on the
same line and type the correct information. (The underline may appear
as a backarrow on some terminals.) If you have a display terminal, the
system removes the field from the screen. For example:

10 IF A = 62 GOTO 2030
LISNH 10
00010 IF A = &2 GOTO 30

REALDY

2.1.7.4 Deleting Lines by Line Number - To remove a line entered 1in
memory, simply type the line number and the RETURN key. For example:

00110
You can replace a line in a program by typing it again.
10 LET A = 878
10 LET A = 90
LISNH 10
00010 LET A = 90

READY

2.1.7.5 Using the DELETE Command - To remove a specific line or lines
from a program, use the DELETE command as follows:

DEL[ETE] line number (s)

where:
DEL is the accepted abbreviation.
line numbers(s) is one line number or a series of 1line
numbers separated by commas (See Section
2.1.1).

For example:
DELETE S0
removes line 50 from the program.
DELETE 50,90
removes lines 50 and 90 from the program.
DELETE 50-100
removes lines 50 through and including line 100.
If you do not specify a line number with the DELETE command, no 1lines
are removed and an error message is returned. If you specify a range

of line numbers (20-75) and one of the specified lines does not exist,
all of the lines within that range are removed anyway.

2-8

USING BASIC-PLUS-2

2.1.8 Executing a Program (RUN)

To execute a complete program in memory, use the RUN command as
follows:

RUN[NQ]

where:
RUN cannot be abbreviated.
NH indicates that no header will be printed.

The RUN command compiles (if necessary) and executes the program
currently in the work area. For example:

REALY

10 A = 20Nk = 753
20C = A + B

30 FRINT "C = *5C
40 END

RUNNH

C = 100

If the program can be run, BASIC executes it and prints the results
requested by PRINT statements. The printing of results does not
guarantee that the program is semantically correct (the results could
be wrong), but it does indicate that no syntactical errors exist
(missing line numbers, misspelled words). If errors of this type do
exist, BASIC prints a message (or several messages) naming the errors.
(Appendix A contains a list of the BASIC diagnostic messages.)

2.1.9 Interrupting Execution (CTRL/O) (CTRL/C)

If the results BASIC is printing seem to be incorrect, you may want to
suppress printout or stop execution.

To suppress printout, type CTRL/O ("0). The program continues to run
but the results are not printed on the terminal.

To stop program execution, type CTRL/C twice (°C"C). This action
halts program execution and returns you to BASIC command level. BASIC
responds with:

READY

2.1.10 Clearing Memory (SCRATCH)

To clear memory and start again, use the SCRATCH command as follows:

SCR[ATCH:]

The SCRATCH command is a subset of the NEW command. It deletes the
contents of the current work area and reinitializes the compiler.
However, it retains the file specification associated with the work
area. This file specification 1is the default for certain BASIC
commands (for example, SAVE) that use a default file specification if
one is not explicitly supplied.

USING BASIC-PLUS-2

2.1.11 Changing Line Numbers (RESEQUENCE)
Use the RESEQUENCE command to renumber a program so that you can

insert new lines between existing lines of a program. The format of
this command is as follows:

RES[?QUENC%][bew line #, old line #, increment]

where:
RES is the accepted abbreviation.
new line # is the first line number of the new sequence.
0ld line # is the location of the starting place in the old
file where resequencing begins.
increment is the increment between line numbers in the file.

The new line #, o0ld line #, and increment need not be specified. The
default values are:

new line # = 100

old line #

beginning of current file
increment = 10

If you specify only two out of the three arguments, for example
RES $0.25

the first argument is used as the new line #, and the second argument
is used as the increment (not the o0ld line #).

You can also resequence blocks of 1lines within a file. Use the
following format to edit the current file:

RES new line #, line # - line #, increment

The two line numbers separated by a hyphen represent the beginning and
ending line numbers of the block of lines to be resequenced.

Because the RESEQUENCE command destructively updates the program in
the work area, the following procedure is recommended:

1. Save the current version of the source program (using the
SAVE command) before issuing the RESEQUENCE command.

2. Never interrupt a RESEQUENCE command. If you do, you may
leave the source program in an inconsistent state.

Note that RESEQUENCE does not allow you to delete lines or change the
order of lines within a program. You can change the line number of a
statement while changing the rest of the program but you cannot move
the text to another part of the program. For example, given the
following program

00010 A = B5
00020 R = 72
00030 FRINT AXE
00040 END

USING BASIC-PLUS-2

RESEQUENCE cannot be used to produce:

00010 A = 55
00025 FRINT AXER
00030 B =72

00040 END

2.1.12 Saving a Program in a File (SAVE)

To store a source program on disk, use the SAVE command as follows:

szw[z][file spec:'

where:
SAV is the accepted abbreviation.
file spec is a TOPS-20 file specification (See Section

B.4.). This is optional and, if it 1is not
specified, the current program name and type will
be used as set by the last NEW, OLD, or RENAME

command.

The SAVE command copies the contents of the source file in the work
area to the storage area associated with your directory or the

directory specified in the file specification.

If a file already exists in storage with the name you specify in the
SAVE command, BASIC replaces the o0ld file with the one you are
currently storing, and increments the generation number by 1.

This may, or may not, be what you intended to do. If you do not want
to delete the 0ld file, return to system command level by typing the
SYS command. Then type UNDELETE and the name (including the
generation number) of the file you want to retrieve. Return to BASIC
command level by typing CONTINUE. For example:

CAT

MAIL.TXT.1
NONAME + B20.1

READY
OLLD NONAME .E20.1

READY
S PRINT "THIS IS THE NEW VERSION.®
SAVE

READY
CAT

MAILTXT.1
NONAME . R20.2

READY

s5YS

@UNDELETE (FILES) NONAME.R20.,1
NONAME .820.1 OK

@ CONTINUE

USING BASIC-PLUS-2

REALDY
CAT

MATL . TXT.1
NONAME . R20. 1
NONAME . B20.2

READY

2.1.13 Saving an Executable Program in a File (BUILD)

The BUILD command always compiles the source program currently in the
work area and saves an executable version of the program as a file.

The BUILD command has the following format:

BUIE?ﬁ] file spec

where:
BUI is the accepted abbreviation.
file spec

is a TOPS-20 file specification (See Section
B.4.).

The saved file that the BUILD command creates can be executed outside
the BASIC environment. You can also execute a saved file from within
the BASIC environment by using the CHAIN statement (See Section 5.2.).

The memory-image file that the BUILD command saves has a file type
.EXE. To execute this file, return to system level and type the RUN
command. For example:

RUTLIY PROGRAM

READY
MON
CRUN FROGRAM.EXE

2.2 WORKING WITH EXISTING FILES

The following sections describe the commands for bringing source
programs (both 1line-sequenced ASCII files and regular ASCII files)
back from disk storage to the work area, checking the files in your
directory, renaming files, and deleting files from your directory.

2.2.1 Using Line-Sequenced ASCII Files (LSA)

To create a BASIC-PLUS-2 source program (or data for a program), you
can use either the BASIC-PLUS-2 editor or the system editor, EDIT.
The BASIC-PLUS-2 editor builds a regular ASCII file; EDIT builds a
line-sequenced ASCII (LSA) file. Because LSA files were supported by
a previous BASIC compiler as source input (.BAS), you may have
programs or data files in LSA format. If you plan to use EDIT to
create BASIC source programs or to read LSA data files with
BASIC-PLUS-2, you should be aware of the constraints and problems you
may encounter.

USING BASIC-PLUS-2

EDIT provides a line-sequence number for every line you type into the
file.

For example:

@ CREATE FROG.R20
InFut: FROG.E20.1
00100 A=S
00200 B=6
00300 C=AXER
00400 FRINT C
00500 END$

XE

PROG.R20.1
e

The BASIC-PLUS-2 compiler and object-time system assume that all the
ASCII files are regular ASCII files, not LSA files. When the BASIC
compiler or a BASIC program reads an LSA file believing it to be a
regular ASCII file, the first word (containing the line number) is not
passed to the program. In particular, if you provide the name of an
LSA file to the OLD command (See Section 2.2.3) , the compiler will
not receive the LSA line numbers. You will receive a syntax error
unless the remainder of each line contains a line number.

This example shows an attempt to bring PROG.B20 (created with EDIT)
into memory:

OLT PROG.EBZ2O
? Inrut line to OLD does not have line numbher

READY

To avoid this, you could create a file with extra 1line numbers and
then remove the LSA line numbers when exiting from EDIT. For example:

@ CREATE FROG.ER20
InrFut!: FROG.R20.2
00100 10 A=0
00200 20 B=6
00300 30 C=A%XE
00400 40 FRINT C
00500 S50 END$

¥ EU

FROG.R20.2
@

To avoid retyping LSA files you have already stored, use the OLDLSA
command. See below.

2.2.2 Recalling Saved Source Programs in LSA Files (OLDSA)

The OLDLSA command processes LSA files without losing the
line-sequence numbers. The OLDLSA command has the following format:

OLDLSA[f ile specj

USING BASIC-PLUS-2

where:
OLDLSA cannot be abbreviated.
file spec is a TOPS-20 file specification of a previously

created LSA file. 1If no file is specified, BASIC
prompts you to supply a file by printing: 0ld
file name--.

Once you have the LSA file in memory, you can compile and execute it.
Use the QUIET WARN command (See Section 2.2.9.1.) before bringing the
file into the work area. Otherwise, you will receive the warning
message:

%“Illedal character in inrut stream - idgnored

This warning is generated whenever an LSA file 1is brought into the
work area; it can be safely ignored.

To convert LSA files to ASCII files, bring the LSA file into memory
with OLDLSA, edit the file with the BASIC-PLUS-2 editor (if needed),

then SAVE the file. Since any file generated by BASIC-PLUS-2 1is a
regular ASCII file, the file you SAVE is ASCII, not LSA.

2.2.3 Recalling Saved Source Programs in Regular ASCII Files (OLD)

To retrieve a source program stored on disk, use the OLD command as
follows:

OLD| file spe{]

where:
OLD may not be abbreviated.
\
file spec specifies the TOPS-20 file specificaton of the

file you want to retrieve from storage.
When you type the OLD command, the old contents of the work area are
lost, BASIC searches for the file name in your directory, and, if it
is there, brings it into memory. If the file name is not in your
directory, BASIC prints:
PFile not found

If you do not specify a file name, BASIC prompts you with:

0ld file name——

If you press the RETURN key again, BASIC searches for a file called
NONAME.B20. If such a file does not exist in your directory, BASIC
prints:

TFile not found

[\8]

-14

USING BASIC-PLUS-2

2.2.4 Renaming a Program (RENAME)

To change the name of a program currently in memory, use the RENAME
command as follows:

REN[AMI{l[fi le spec]
where:
REN is the accepted abbreviation.

file spec specifies the new name and type for the file. The
default is NONAME.B20.

2.2.5 DELETING a SAVED PROGRAM (UNSAVE)

To delete a file from storage, use the UNSAVE command as follows:

UNS[AVQ][}ile speé]

where:
UNS is the accepted abbreviation.
file spec specifies the file you want to delete.

The UNSAVE command deletes the specified file. There is no need to
bring it into the work area. 1If no file specification is given, the
current file name and type is assumed.

If there is no program or file currently in memory and you do not
specify a file name, BASIC prints:

?File not found
If you change your mind about deleting a file, you can retrieve it

before you log off (if the operator has not expunged files). Refer to
the TOPS-20 User's Guide for information on expunging files.

To retrieve a file you have UNSAVEd, type:

SYS

@UNDELETE file name.typ.gen#
filename.typ.gen# OK

@CONT

READY

2.2.6 Checking Your Directory (CATALOG)

To check the files you have stored in your directory, use the CATALOG
command as follows:

CAT[?LOG]

USING BASIC-PLUS-2

where:
CAT is the accepted abbreviation.

The CATALOG command prints the names of files that reside in your
directory. The file names are 1listed in alphabetic order on your
terminal.

For example:

READY

CAT

FILE.R20.1
FILE1..3
LOGIN.CMD.2
LOGIN.QMD.2
LOGIN.REL .1
MOD.R20.1

2.2.7 Combining Programs (WEAVE)

To combine the lines of a program in the current work area with a
program in storage, use the WEAVE command as follows:

WEA[Vé]file spec

where:
WEA is the accepted abbreviation.
file spec specifies the TOPS-20 file specification of the

file in storage.
If you do not specify a file spec, BASIC prompts with:

WEA
0ld file nmame-—-

Using the WEAVE command has the same effect as typing the lines of the
OLD program into the current work area. Consider this example:

oLn A

READY
LISNH
00010
00015
00020
Q0025
00030

mITnom

Z oo

SO0 DN

READY
NEW R

READY
]

11

16

21

WEAVE A

amnod
LI I
NN

2-16

USING BASIC-PLUS-2

READY
LIST

B.RB20
Thursdawy June 2y 1979 15141147

00005
00010
00011
00015
00016
00020
00021
00025
00030

0 HH M

Bt

mIeommooOxmd
HONOOU OO

=

READY

If two lines in the programs being combined have the same line number,
the program 1in storage has precedence and overwrites the line in the
work area.

For example, Line 10 in PROGRAM1 (program in storage) has precedence
over line 10 in PROGRAM2 (program in the work area).

D eROoRaAMe

READY

LIST

FROGRAM1 +E20

Thursdaws June 2y 1979 15142116

00010 FRINT "THIS FROGRAM HAS FRECEDENCE.®
00020 END

READY
NEW FROGRAM2

REALY

10 PRINT *"THIS LINE WILL RE REFLACED.*
WEAVE FROGRAMI1

READY

LIST

FROGRAM . E20
Thursdawey June 2y 1979 15142146

00010 FPRINT "THIS FROGRAM HAS FRECEDENCE."
00020 END

READY

2.2.8 1Issuing BASIC Commands from a File (DO)

To instruct BASIC to take its input from a specified command file
rather than from your terminal, use the DO command. The command file
may contain any BASIC command or immediate-mode statement that BASIC
would accept from the terminal. BASIC will not accept another DO
command from within the originally referenced command file. Nested
command files are therefore invalid.

2-17

USING BASIC-PLUS-2

Use a text editor to create a command file. Include in the command
file any BASIC commands (except a DO command) or immediate-mode
statements in the order that you want BASIC to process them. Use the
DO command as follows:

DO [file spec]

where:
DO cannot be abbreviated.
file spec specifies the TOPS-20 file specification of the

file 1in storage. This file contains the commands
you want BASIC to process. If you do not supply a
file type, BASIC uses the default type .CMD.

If you do not specify a file spec, BASIC prompts with:

no
0ld filename-—

If any errors occur while BASIC is processing a command file, BASIC
stops processing the command file, reports the error, echoes the line
that contains the error, and returns the READY prompt. This prompt
signals that BASIC 1is again ready to accept commands from your
terminal.

In this example, the command file is built using the text editor EDIT.

@

@CREATE (FILE) RUILI-FROGRAM.CMD

Inrut! RUILD-FROGRAM.CMD.1

00100 10 ITHIS FROGRAM DEMONSTRATES THE USE
00200 20 10F COMMAND FILE TQ CREATE AND RUN
00300 30 1A FROGRAM IN RBASIC,

00400 40 FRINT ‘FIND THE SQUARE ROOT OF‘5
00500 S50 INFUT A

00600 60 R=8QAR(A)

00700 70 FRINT ‘THE SQUARE ROOT OF “»Ay IS8 sR
00800 80 END

009200 LIST

01000 RUILD SQUARE-ROOT.EXE

01100 RUN

XE

RUILD-FROGRAM.CMD.1

2-18

USING BASIC-PLUS-2

Next, BASIC is run and the command file BUILD-PROGRAM.CMD is specified
using the DO command.

@RASIC

READY
Lo
Command file name-—-RUILI-FROGRAM.CMD

NONAME . B20
Thursdagy March 1y 1979 11312140

00010 !THIS PROGRAM DEMONSTRATES THE USE
00020 !0OF A COMMAND FILE TO CREATE AND RUN
00030 'A FPROGRAM IN RASIC.

00040 FRINT ‘FIND THE SQUARE ROOT OF “»35
00050 INFUT A

00060 E=SQR(A)

00070 FRINT ‘THE SQUARE ROOT OF " 3A3 IS’ SR
00080 ENI

Comrile time! 0.077 secs Elarsed time! 0:100:01

NONAME + R20
Tuesdavyr June 26y 1979 09103156

FIND THE SQUARE ROOT OF 7 16
THE SQUARE ROOT OF 16 IS 4

Rur time! 0.149 secs Elarsed timet! 003100:09

From the above results, you can see that BASIC first compiled the
immediate-mode statements (lines 400-800), then listed the program
(line 900), then saved the executable version of the program in a file
called SQUARE-ROOT.EXE (line 1000), and finally ran the program (line
1100). A TOPS-20 DIRECTORY command finds the new file in the
connected directory:

READY
MON
RIIR SQUARE-ROQT.EXE
FS!<FORREST>
SQUARE-ROOT.EXE.1
@

2.2.9 BASIC Compiler Switches (STATUS)

BASIC provides certain commands that disable and enable various
compiler switches.

The STATUS command lists the current status of the compiler switches.
The STATUS command has the following format:

STAT[bS]

where:

STAT is the accepted abbreviation.

2-19

USING BASIC-PLUS-2

For example, when logging in to the system and accessing BASIC, the
default status of the compiler switches is as follows:

STATUS

VERROSE CHECK
VERROSE HEADER
VERROSE WARN
QUIET COMMAND
MODE NODEF X

READY

In the above list, VERBOSE means that the switch is enabled and QUIET
means that the switch is disabled. The switches are as follows:

CHECK

HEADER

WARN

COMMAND

MODE NODEF * is the

enables 1line-by-line syntax checking of BASIC
source programs. The default status of CHECK is
VERBOSE.

enables printing of program name, current date,
and time statistics. The default status of HEADER
is VERBOSE.

enables printing of compiler warning messages on

the terminal. The default status of WARN is
VERBOSE.
enables echoing of BASIC command file input. The

default status of COMMAND is QUIET.

default setting specifying the compiler mode. For

information on controlling compiler mode, see Section 2.2.9.3.

2.2.9.1 Disabling Compiler Switches - The QUIET command disables the
printing of program headers, compiler warning messages, syntax
checking, and command file input.

The QUIET command has the following format:

oui[ET | cHe[cK]

HEA[DER]
WAR[N]
COM[MAND]
where:
QUI is the accepted abbreviation.
CHE[CK] disables line-by-line syntax checking.
HEA| DER] disables program headers.
WAR[N] disables compiler warning messages.
COM[MAND] disables echoing of command file input.

When you log into the system, the CHECK, WARN, and HEADER features are

enabled (VERBOSE);

the COMMAND feature is disabled (QUIET). By

typing QUIET without arguments, you disable all switches.

2-20

USING BASIC-PLUS-2

2.2.9.2 Enabling Compiler Switches - To enable syntax checking,
program headers, compiler warning messages, and echoing of command
file input, use the VERBOSE command.

The VERBOSE command has the following format:

VER[BOSE | cHE[ck]
WAR[N]
HEAD[DER]]
COM[MAND]
where:
VER is the accepted abbreviation.
CHE[?K] enables line-by-line syntax checking.
HEA[bER] enables program headers.
WAR[ﬁ] enables compiler warning messages.
COM[FAND] enables echoing of command file input.

By typing VERBOSE without arguments, you enable all four features.

2.2.9.3 Controlling Compiler Mode - The MODE command enables and
disables compiler mode.

The MODE command has the following format:

MODE{DEF *
NODEF *

where:
DEF * turns on the DEF * compile mode.

NODEF * turns off the DEF * compile mode. This is the
default.

DEF* is a special type of multi-line user-defined function (See
Section 6.7.3).

To determine the current compiler mode (MODE DEF * or MODE NODEF *)
use the STATUS command described in Section 2.2.9.

2.2.10 Listing a Compiled Program (MLIST)

The MLIST command outputs a listing of the compiled code for the
current program to the specified TOPS-20 file. The format for the
MLIST command is as follows:

MLIST

USING BASIC-PLUS-2

If you type MLIST (&), BASIC prompts you with: Output File--.
Respond to this prompt by typing the file specification where you want
the program listed. If you do not specify a file specification and
file, BASIC places the compiled code in a file that has the filename
currently associated with the work area, and the file type .LST.

The following example shows a compiled program being 1listed on the
terminal:

READY

00010 A=3

00020 END

RUNNH

READY

MLIST

Outrut file! TTYR

3000/ 201040003420 MOVET 1+,3420
3001/ 265240440031 JsP SeMAININIT

00010 A=3

3002/ 200300003400 MOVE 6923400
3003/ 202314000001 MOVEM 6s1(14)

00020 END

3004/ 201700003402 MOVEI AF 3402
3005/ 260740440101 FPUSHJ Fy» DEND
3400/ 202600000000 MOVEM 14,0
3401/ 0 e 0+0

3402/ 0 (@ 0+0

3403/ 0 (e 0+0

3404/ 466031147100 ORCMM 0s2147100C11)
3405/ 502451743644 HLLM 11»(11)
3406/ 406320000000 ANDIM 620
3407/ 2003404 (@ 03404 (VREG)
3410/ 12003002 (e 0s3002¢(12)
3411/ 24003004 (e 0,23004(4)
3412/ 5000000000 0 0s0

3413/ i (@ Or1

3414/ 3403 e 05,3403
3415/ 3404 (@ 053404
3416/ 3407 (@ 03407
3417/ 777773000000 Ps@0OC(13)
3420/ 422400003412 ANDCM 10,3412
3421/ 0 (e 0-0

34227 422440000000 ANDCM 1150
3423/ 422340000000 ANDCM 1350

3424/ 414100000000 SETM VREG» O
3425/ 0 (@ 0s0

READY

USING BASIC-PLUS-2

2.2.11 A Sample Program

The following example illustrates the use of BASIC-PLUS-2 under a
timesharing system:

SYSTEM 2116 THE BIG ORANGE WELCOMES YOU, TOPS-20 Monitor 3A(2013)
PLOGIN (USER) FORREST (PASSWORD) (ACCOUNT) 10400

Job 37 om TTY220 7-Mas-79 15121149

PRASIC

READY
aLn SORT

READY
LIST

SORT.R20
Mondaws Maw 7y 1979 15:22:122

00010 DIM SORT(10) 'ELEMENTS TO SORT
00020 INFUT "NUMBER OF ENTRIES "3iCNT
00025 INFUT SORT(I) FOR I = 1 TO CNT
00030 SORT.FLG = -1

00035 WHILE SORT.FLG*0

00040 SORT.FLG=0

00045 FOR I = 1 TO CNT -1 !FOR EACH ELEMENT EXCEFT LAST
000350 GOTO 80 IF SORT(I)<=SORT(I+1)

00055 TEXCHANGE ELEMENTS T AND I+1

00060 T=G50RT(I)

0004653 SORT(I)=SORT(I+1)

00070 SORT(I+1)=T

00073 SORT.FLG=-1 INOT DONE YET

00080 NEXT I

0008S NEXT
00090 FRINT SORT(I)sFOR I = 1 TO CNT
9999 END

READY
RUN

SORT.R20
Mondays Maw 7y 1979 15122129

NUMERER OF ENTRIES ? 4

T 72

7 31

T 16

a5

23
é 23 31 69 72

[UPR

Comrile time! 0,206 secs
run time! 0.181 secs Elarsed time! 0:0:21

READY

USING BASIC-PLUS-2

This program accepts up to ten numbers as input, sorts them by size,
and prints them in ascending order on the terminal. The procedure by
which the program is typed into the system and executed is detailed
below. The explanations are keyed to the commands and program lines.

OLD SORT

READY

LIST

Line 10

Line 20

Line 25

Lines 30-85

The program named SORT already resides in storage.
The OLD command brings the program into memory.

This is printed by BASIC and indicates that the
compiler is prepared to accept input. It also
indicates that the previous command (OLD) has been
successfully executed.

This command prints the program in the proper
sequence. Notice the preceding 0's in the line
numbers.

This program line dimensions an array named SORT.
Although 10 1is given as the dimension, the array
is dimensioned for 11 elements because BASIC
begins array storage at 0. Notice that the array
name is 4 characters. BASIC-PLUS-2 allows
variable and array names of up to 30 characters.
Also, notice that the comment, ELEMENTS TO SORT,
is delimited by an exclamation point.

This is an INPUT statement that prints requests
for the number of elements that will be sorted.

Another INPUT statement prints a request for the
array elements. The FOR modifier ensures that the
correct number of elements is asked for by the
prompt.

These lines contain a sorting procedure composed
of a bubble-sort algorithm.

Line 90 This line prints the sorted array elements.

Line 99999 This is the highest 1line number possible in a
BASIC-PLUS-2 program. It contains the END
statement.

RUN The RUN command causes execution of the progran.
The RUN command also causes the program name and
date (header) and the compiler and run-time
statistics (trailer) to be printed. To suppress
headers and trailers, append NH (No Header) to the
RUN command.

READY BASIC prints this message to inform you that the
RUN command has been executed and that BASIC is
again ready to accept commands.

Programs can also be submitted through batch. See Appendix C for

information on submitting batch jobs.

2.3

Immediate mode
programs

you terminate the line.

USING BASIC-PLUS-2

BASIC IMMEDIATE MODE

is
BASIC.

an

in In

The ability to debug programs

alternative
immediate
ordinarily found in a program and have BASIC execute them as

The advantages of immediate mode are:

and
can

to writing
mode, you

by stopping and

information during execution

executing
type statements

full

soon as

requesting

The use of a powerful calculator (the CPU) at your disposal

With BASIC immediate mode, you can examine the state of a

various
variables.
routines,

points by stopping
You <can also build
perform calculations

execution

and printing
a program consisting
with

that library, and print the results on the terminal.

The BASIC commands used for immediate-mode operations are:

CONTINUE
DEBUG
RUN
SCRATCH

These commands affect compilation
variables and statements.

2.3.1

Immediate mode allows you to use not only the

Immediate-Mode Statements

SCRATCH ALL
SCRATCH IMMEDIATE
SCRATCH RESET
START

the of

and state

BASIC

above but also the following BASIC statements:

You can also use statement modifiers and function calls

mode.

CALL

CHAIN

CHANGE

CLOSE

DELETE

FIND

FNEXIT

FOR

GET

GOSUB

GOTO

IF

IFEND

IFMORE

INPUT

INPUT LINE
KILL

LET

LINPUT

MARGIN

MAT Arithmetic
MAT Initialization
MAT Input/Output
MOVE

NAME-AS

NEXT
NODATA
ON GOSUB
ON GOTO
ONERROR
OPEN
PAGE
PRINT
PUT
RANDOMIZE
READ
REMARK and !
RESET
RESTORE
RETURN
SCRATCH
SLEEP
STOP
SUBEXIT
TIME
UNSAVE
UNTIL
UPDATE
WAIT
WHILE

in

program
the values of

commands

at

library

immediate-mode variables using

immediate-mode

listed

immediate

USING BASIC-PLUS-2

The following statements are invalid in immediate mode and, if used as
an immediate-mode command, cause an error message to appear on the
terminal:

COMMON FNEND
DATA IMAGE
DEF MAP
DEF* RESUME
DIMENSION SUB
END SUBEND
Also, any action creating an array is invalid in immediate mode. If

you plan to use the CHANGE statement in immediate mode, you must
define the array within a program and the program must be in a context
that can access that array (See Section 2.3.2.).

BASIC distinguishes between lines entered for 1later execution and
those entered for immediate execution solely by the presence (or
absence) of a line number. Statements that begin with 1line numbers
are stored; statements without line numbers are executed immediately.
Therefore, the following line produces no action on the terminal:

10 FRINT *THIS I8 A PROGRAM LINE.®
However, this line is executed immediately:

FRINT *THIS IS IMMEDIATE MODE."
THIS IS IMMEDIATE MODE.

2.3.2 Immediate-Mode Contexts

You may use immediate mode only when certain conditions are present.
The conditions form an immediate-mode "context." The context
determines which lines in a program you can access (if any) with
immediate-mode commands and statements. It also determines whether or
not the variables you use are immediate-mode variables or variables
that have a value within the program.

The four immediate-mode contexts are:
1. No program - you have not compiled or executed a program.

a. All immediate-mode references to line numbers are invalid
since there is no program.

b. All variables referenced in this context are defined as
immediate-mode variables.

2. STOP - the program being executed 1is currently at a STOP
statement.

a. The context is that of the 1line at which the STOP
occurred, that is, main program, subprogram, or function.

b. References to variables and line numbers are treated as
they would be at that line.

c. Variables not defined in the context of the 1line are
considered immediate-mode variables. These
immediate-mode variables are treated as globals by later
immediate-mode statements.

USING BASIC-PLUS-2

d. References to 1line numbers outside this context are
invalid.

3. Compiled Program - the program has been compiled with the
DEBUG command, but not executed. You are in the context of
the main program of that compilation. You can:

a. Reference main-program variables (though their values
will be zero).

b. Transfer to lines in the main program.
c. Define and reference immediate-mode variables.

4. Executed Program ~ the program has been executed. You are in
the context in which the END statement was executed. You

can:

a. Reference main program variables. In this context,
variables retain the values they were assigned in the
program.

b. Transfer to other lines in the program.
c. Define and reference immediate-mode variables.

Keep in mind that the same rules concerning transfers in a BASIC
program apply in immediate-mode operations. When your program is in
an immediate-mode context, you cannot transfer into and out of a
subprogram or user-defined function (except for DEF* functions, see
Section 6.7.3).

2.3.3 Immediate-Mode Variables

During immediate-mode operations, you can use variables that exist
within a program. The context determines which variables are
accessible. However, you can also assign values to variables other
than the ones defined in the program. These are immediate-mode
variables. For example:

READY

10 A=90\NE=72\C=AXE
20 FPRINT *C = "3C
30 ENI

RUNNH

C = 6480

READY
GOT0 10
C = 6480

=9
C=AXR/I
PRINT I
?
FRINT
720

USING BASIC-PLUS-2

The first three variables (A, B, and C) are program variables;
variable D is an immediate-mode variable. A variable not assigned in
the current context of the program is an immediate-mode variable.

You can use immediate-mode variables in subsequent immediate-mode
statements and commands until you type one of the following commands
that erases the immediate-mode buffer:

BUILD SCRATCH

DEBUG SCRATCH ALL
RESEQUENCE SCRATCH IMMEDIATE
RUN START

The rules for determining 1local and global variables in a BASIC
program also apply in immediate-mode situations. If you are at a STOP
in a main program, all subprogram variables are inaccessible and vice
versa. You can, however, assign a value to an immediate-mode variable
while within the subprogram or function (even if a variable of the
same name exists in the main program).

Once you return to the main program, the immediate-mode variable is
erased. For example:

READY

LISNH

00010 A=S\EBE=10\C=15
00020 CALL ARG (R)
00030 CALL ARG (O
00040 FRINT "A= "53Aj"R= *jR;"C= ";iC
000350 ENID

00060 SUR ARG (I
00070 A=30

00080 STOF

00090 D=DXA

00100 SURENI

READY
A=E0
FUNNH
STOF at line 00080 of ARG

READY
FRINT A
30
A=E0
EFRINT A
50
GOTO 90
STOF st lime 00080 of ARG
CONTINUE
A= 5 B= 500 C= 450

READY

2.3.4 Halting an Immediate-Mode Program (STOP)
The STOP statement has the following format:
STOP

This statement causes program execution to halt, at which point BASIC
prints the message:

STOP at line n of program segment

2-28

USING BASIC-PLUS-2

where:
n is the line number of the STOP statement.
Files remain open.
program segment is either the words MAIN PROGRAM, a function
name, or a subprogram name.
When the program stops, you can type immediate-mode statements and
commands and refer to lines in that context. For example:
STOF at line 00050 of MAIN FROGRAM
FRINT A
92
the value contained in the variable A is 92 at line 50.
If the STOP occurs within a subprogram or user-defined function, you
cannot refer to any line outside that context.
To continue program execution from the point where the program left
off, use the CONTINUE command as follows:
CON[TINUE]
where:
CON is the accepted abbreviation.
The CONTINUE command is valid only after a STOP statement has been

executed or after an error occurs that is trappable but no ONERROR

statement is in effect.

In the first case, the program continues from the last STOP executed

by BASIC, 1including STOP statements issued from immediate mode.
example:

READY

LISNH
00010 PRINT “"ARCDE® N\ STOF N\ FPRINT "FGHIJ"

00020 ENI!

READY
RUNNH
ARCIDE
STOF at line 00010 of MAIN FROGRAM

READY
CONTINUE
FGHIJ

REALY

For

USING BASIC-PLUS-2

In the second case, where a trappable error occurred and no ONERROR
statement was 1in effect, you can correct the error and then type
CONTINUE so that the program can resume execution. For example:

8CR

READY
Xz
FRINT X
-1

A=L0G (X)

P G3 Attemrt to take LOG of redastive ardument in immediate mode

PRINT X
-1

K= 4
CONTINUE

REAILlY

FRINT &
1.386294

FRINT EXF (A4)
4

2.3.5 Clearing the Work Area

The SCRATCH command enables you to clear all or a portion of the work
area. The SCRATCH command has four formats, as follows:

SCREATC&] no argument

RESET

IMM[EDIATE_]

ALL
where:

SCR no argument

SCR RESET

is the accepted abbreviation for the SCRATCH
command . The SCRATCH command, with no
argument, deletes the <current source and
executable versions of the program, all
immediate-mode statements, and all
immediate-mode variables. The SCRATCH
command does not close open files.

is the accepted abbreviation for the SCRATCH
RESET command. The SCRATCH RESET command
deletes all immediate-mode statements, but
does not delete any immediate-mode variables.
The SCRATCH RESET command does not delete the
source or executable versions of the program.
The SCRATCH RESET command does not close any
open files.

The SCRATCH RESET command is used primarily
to delete nested immediate-mode statements.
(Nesting immediate-mode statements is
described in Section 2.4.)

USING BASIC-PLUS-2

SCR IMM is the accepted abbreviation for the SCRATCH
IMMEDIATE command. The SCRATCH IMMEDIATE
command deletes all immediate-mode statements
and variables. It does not delete the source
or executable versions of the program. The
SCRATCH IMMEDIATE command does not close any
open files.

NOTE

The RESEQUENCE command (See Section
2.1.11.) automatically performs a
SCRATCH IMMEDIATE command.

SCR ALL is the accepted abbreviation for the SCRATCH
ALL command. The SCRATCH ALL does not delete
the current source program, but does delete
all immediate-mode statements and all
immediate-mode variables. The SCRATCH ALL
commmand also re-initializes the compiler,
thereby erasing the executable version of the
source program. The SCRATCH ALL command
terminates all open files without <closing
them, thereby causing any data output to
these files to be lost.

If you recieve an error message notifying you of an internal
inconsistency, use the SCRATCH ALL command to rectify the situation.

In the first example, the SCRATCH command clears the current source
program from the work area:

LISNH
00010 FPRINT "THIS IS A SOURCE FROGRAM®"
00020 END

READY
SCRATCH

READY
L. IGNH

READY

USING BASIC-PLUS-2

In the second example, the SCRATCH RESET command deletes nested
immediate-mode statements, eliminating the need for the user to issue
successive CONTINUE commands to get back to the top 1level (first
immediate-mode statement):

READY
A=18
E=37 N\ STOF N FRINT "HI®
STOP in immediate mode
FRINT R
37
FRINT A
15
SCRATCH RESET

READY
FRINT AR
15 37
CONT INUE
T Canmot CONTINUE, use RUN or DEBRUG.

READY

In the third example, the SCRATCH IMMEDIATE commmand deletes
immediate-mode variables:

LISNH

00010 PRINT "AT LINE 10°
00020 ENIt

REALY
RLINNH

AT LINE 10

READY
GOTO 10
AT LINE 10
A=l
FRINT A
15

GCRATCH IMMEDIATE

READY
FRINT A
FRINT A

% Reference to uninitialized immediate mode variable A
0

GOTO 10
AT LINE 10

2-32

USING BASIC-PLUS-2

In the fourth example, the SCRATCH ALL command deletes
version of the program and all immediate-mode variables:

LISNH
00010 FRINT "AT LINE 10*
00020 END

READY
RUNNH
AT LINE 10

READY
A=5
FRINT A
5
SCRATCH AL

READY
S1ART

NONAME + B20
Wednesdawry Audust 8y 1979 11119317

? Cannot STARTs use RUN or DERUG.
READY

FRINT A

FPRINT A

the compiled

% Reference to uninitizlized immediate mode variable A

0

2.3.6 Using the START Command

The START command executes a compiled program. If you have edited the
program since the 1last RUN, or have not compiled or executed the

program, BASIC prints a message telling you to use the
command as shown in the example below.

The START command has the following format:
STA[RT |
where:

STA is the accepted abbreviation.

RUN or

DEBUG

The START command causes a SCRATCH of all immediate-mode variables and
statements but does not cause a recompile of the program.

USING BASIC-PLUS-2

For example:

LISNH

00010 REM We cannot START this rrodram until it has
00020 REM been comriled

00030 PRINT "AT LINE 10"
00040 END

READY
START

TEST .R20
Thursdagr August 9y 1979 16120149

? Cannot STARTs use RUN or DERUG.

READY
RUN

TEST.E20
Thursdags Audust 9y 1979 16120156

AT LINE 10

Comrile time! 0.089 secs
Run time! 0,115 secs Elarsed time?: 0:00:05

REALY
START

TEST . R20
Thursdawy Audust 9y 1979 16121108

AT LINE 10
Run time?! 0.129 secs Elarsed time! 0100104

READY

2.3.7 Using the DEBUG Command

THE DEBUG command compiles a program, erases all immediate-mode

variables, stops before the first line of the program, and then prints
READY.

At this point, you can set up initial values for variables and then
"GOTO" any 1line number in the program. However, any command that
modifies the work area terminates the DEBUG command.
The DEBUG command has the following format:

DEB[UG |

where:

DEB is the accepted abbreviation.

USING BASIC-PLUS-2

For example:

00010 PRINT "AT LINE 10"
00020 FPRINT "AT LINE 20°
00030 FRINT "AT LINE 30°
00040 END

READY

GOTO 20

AT LINE 20
AT LINE 30
25 FPRINT A
DERUG

READY

A=137 .0

GOTO 20

AT LINE 20
137.5

AT LINE 30

2.4 NESTING IMMEDIATE-MODE STATEMENTS

If you execute a STOP statement with an immediate-mode command, that
is, 1if you call a function from immediate mode that contains a STOP
statement, at this point you can enter other immediate-mode
statements, causing a nest. For example, the following program is
executed and the GOTO statement 1is wused to create a nest of
immediate-mode statements:

00020 Es$= ‘THIS IS A TEST’
00030 GOTO 99

00038 STOF

00040 GOTO 99

00055 STOF

00099 ENI

REALY

GOTO 5%

STOF at line 00055 of MAIN FROGRAM
FRINT R4

THIS IS A TEST

GOTO 38

STOF a2t line 00038 of MAIN FPROGRAM
The fixed buffer size of all immediate-mode code restricts the number
of immediate-mode statements that can be active at one time. This
buffer holds only 128 executable instructions. Therefore

A(I) = B(I) + FNX(A)

USING BASIC-PLUS-2

compiles into nine executable instructions. If FNX contained a STOP
statement and this statement were re-entered from the STOP every time
you reached it, you would run out of buffer space when your program
becomes nested 14 deep. For example:

READY
NEW DERUG

READY

10 DEF FNS (A)
20 STOF

30 FNEND

LISNH

00010 DEF FNS (A)
00020 STOF

00030 FNENID

READY
DERUG

READY

A=10

FRINT A

15

FRINT A+FNSOA)D
STOF at line 00020 of FNS
FRINT A+FNS(A)
STOF at line 00020 of FNS
FRINT A+FNS(A)
STOF at line 00020 of FNS
FRINT A+FNS (A
STOF at line 00020 of FNS
FRINT A+FNS(A)
STOF at line 00020 of FNS§
PRINT A+FNGIAY
STOF at line 00020 of FNS
FRINT AFFNSOAY
STOF at line 00020 of FNS
FRINT A+FNS(AD
STOF at line 00020 of FNS
BRIMNT ALEMNGOAD
STOF at lime 00020 of FNS
FRINT A+FNSC(A)
STOF at line 00020 of FNS§
FRINT A+FNS(A)
? Too many immediate mode statements - use SCRATCH RESET
FRINT A
? Too many immediate mode statements - use SCRATCH RESET
SCRATCH RESET

REAL'Y
FRINT A
15

2-36

USING BASIC~PLUS-2

Notice that BASIC prints the following message when you run out of
buffer space:

?Too many immediate mode statements - use SCRATCH RESET

If you want to erase all immediate-mode code but you want to retain
the present variable values, use the SCRATCH RESET command as shown in
the last example.

2.5 IMMEDIATE MODE AND BASIC-PLUS-2 COMMANDS

Certain BASIC-PLUS-2 statements, such as SCRATCH, are also the names
of BASIC-PLUS-2 commands. When you type a statement or command in
immediate mode, BASIC-PLUS-2 first looks for a command of that name.
In the case of SCRATCH, for example, you would lose your compiled
program by executing the SCRATCH command instead of performing a
SCRATCH on the file with the BASIC-PLUS-2 SCRATCH statement.

You can avoid this problem by preceding the SCRATCH statement with a
backslash, for example: \SCRATCH

The immediate-mode statements that are also names of BASIC-PLUS-2
commands are:

DELETE
RESET
SCRATCH

In addition, although any BASIC-PLUS-2 command name (including the
ones reserved for DIGITAL) <can be used as a variable name in a
program, you may assign such a variable a value from immediate mode
only if you precede it with a backslash (\) or a LET. For example:

\NLIST = 78
FRINT LIST
75

CHAPTER 3

INPUT AND OUTPUT TO THE TERMINAL

This chapter describes the statements that enable you to supply data
to a BASIC program and to print data on the terminal. These
statements are described in the following sections:

3.1 Inputting Data
3.2 Printing Output - The PRINT Statement

3.1 INPUTTING DATA
BASIC has three methods of inputting data to a program:

1. The INPUT statements -~ require that you interact with the
computer while the program is running.

2. The READ, DATA, RESTORE, and NODATA statements - require that
you build a data block within the source program.

3. The file statements - require that you manipulate files
outside the main program. See Chapter 8 for information on
file input and output.

3.1.1 INPUT Statement

The INPUT statement allows you to enter and process data while the
program is running.

The INPUT statement has the following format:

’

INPUT [?rompt string {;}J variable(s)

where:

prompt string is a quoted string constant followed by either a
semicolon or a comma. For a description of the
semicolon and the comma, see Section 3.2.1.

variable(s) is a list of real, integer, string, or subscripted
variables or any combination of these separated by
commas.

INPUT AND OUTPUT TO THE TERMINAL

The INPUT statement may be used as a means of assigning values to
variables. When you run vyour program, BASIC stops at the line
designated by the INPUT statement and prints a space, a question mark,
and a space. BASIC then waits for you to type one value for each
variable requested in the INPUT statement. When there 1is more than
one variable requiring a value, separate each value with a comma.
Enter a line terminator after you finish typing all the values.

The following example requires that you type three values after the
question mark:

00010 INFUT AsE»C
00020 ENI

READY
RUNNH

P Dedha?

The INPUT statement tells BASIC to accept data from the user terminal
for the variables specified in the INPUT statement. BASIC accepts the
values left to right. After you type all the necessary data, type a
line terminator. The program continues using the values you supply.
Therefore, in the previous example:

A
B
c

wonn
~Nou;m

You must supply the same number of values as there are variables in
the INPUT request. If you do not type enough data, BASIC lets you
know by printing a message (shown in the example below) and another
question mark when you press the RETURN Kkey. After the second
question mark, you can complete entering the correct amount of data.
BASIC will then continue accepting data until the rest of the items
specified in the INPUT request have been entered.

00010 INFUT AsE
00020 END

READY
RUNNH

S

?S9 Insufficieni data at line 00010 of MAIN PROGRAM
? b

On the other hand, if you supply more values than there are variables
to be defined, BASIC ignores the excess and prints a warning message,
as follows:

00010 INPUT A»E,C
00020 FPRINT AsEsC
00030 ENI

READY
RUNNH
P 5269758

% 436 Too much data rresent - igrored at line 00010 of MAIN FROGRAM

5 -3 7

The extra value entered (8) is ignored. (The PRINT statement in 1line
20 caused the accepted data to be printed.)

3-2

INPUT AND OUTPUT TO THE TERMINAL

The values you supply must be the same data type as the variables in
the INPUT statement, that is, strings for string variables, integers
for integer variables, and so forth. You can type strings with or
without quotation marks in response to the question mark. If you
include quotation marks, be sure to type both beginning and ending
delimiters. If you forget the end quotation mark, BASIC generates an
error message. If you exclude quotation marks, BASIC ignores any
leading and trailing spaces or tabs that may be part of the string.
If you want the null string to be valid input to a string wvariable,
you must use the LINPUT statement described in the next section.

Including a string constant in an INPUT statement allows you to prompt
the wuser for the input data. Separate the string constant from the
variable list with a comma or semicolon. For example:

00020 INFUT °*FLEASE TYPE 3 INTEGERS";RZ,CX,D%
00030 AZ=RZ+CH+DZ

00040 PRINT AX%

00050 END

READY

RUNNH

FLEASE TYFE 3 INTEGERS?T 2%5:,50,75
150

READY

The INPUT statement with a string constant but without a variable list
functions the same as a PRINT statement, for example:

00010 INFUT "RASIC-FLUS-2"

READY
RUNNH
RASIC~-PLUS-2
READY

If the variable list specified for the INPUT statement is terminated
with a comma, BASIC assumes that the data line entered in response to
the INPUT request will contain more items than the number of variables
specified. In this case, the excess data will not be ignored, and it
will be used to satisfy any subsequent INPUT requests. For example:

00010 INFUT AsEBsC»
00020 FRINT AsEsC
00030 INFUT I
00040 PRINT D

READY
RUNNH
P 1229354
1
4
READY

3
[}

INPUT AND OUTPUT TO THE TERMINAL

3.1.2 INPUT LINE Statement and LINPUT Statement

The INPUT LINE statement and the LINPUT statement have essentially the
same function as the INPUT statement. However, the INPUT LINE
statement and the LINPUT statement are used exclusively for string
data and read the entire line as the value for a variable. Use the
following format:

4

INPUT LINE [prompt stringéf}]string variable(s)

14

LINPUT [prompt string{;{}string variable(s)

where:
INPUT LINE requires a space between the keywords INPUT
and LINE.
LINPUT is one word.
prompt string is a quoted prompt string constant followed

by a semicolon or a comma. For a description
of the semicolon and the comma, see Section
3.2.1.

string variable(s) are the only variables allowed in INPUT LINE
and LINPUT statements.

The INPUT LINE statement accepts and stores all characters including
quotation marks and commas, up to and including the first line
terminator. LINPUT accepts all characters up to the line terminator,
but does not include the line terminator. For example:

00010 LINFUT E%$
00020 FRINT E$
00030 END

READY
RUNNH
PENOW, LOOK HERE!D"s SAID JOHN
*NOWs LOOK HERE!"y SAID JOHN
READY

If you try to type the string shown above in response to an INPUT
statement (See Section 3.1.1), you will receive a warning message.
The INPUT would take the comma after the word "HERE!", as the
delimiter of the string.

INPUT AND OUTPUT TO THE TERMINAL

Data lines to the INPUT LINE and LINPUT statements can be continued by
typing an ampersand (&) as the last character in the line. For
example:

LISNH

00010 LINFUT B$
00020 FRINT
00030 FRINT E#%$

READY
RUNNH

PTHIS EXAMFLE SHOWS HOW §
THE AMFERSAND IS USED TO &
CONTINUE A DATA INFUT LINE

THIS EXAMFLE SHOWS HOW THE AMFERSAND IS USED TO CONTINUE A DATA
INPUT LINE

READY

3.1.3 READ, DATA, RESTORE, and NODATA Statements

Another way you can supply data to a program is to store data within
the program for BASIC to read during execution. This means that you
do not interact with BASIC while the program is running. Instead, you
supply data to the program in advance. Two statements are involved in
this process: READ and DATA. In addition to the READ and DATA
statements, the RESTORE and NODATA statements enable you to re-read
data in a data statement and transfer control to a specified 1line
after all data is read.

3.1.3.1 The READ Statement - The READ statement has the following
format:

READ variable(s)
where:
variable(s) is one or a list of variables consisting of
numeric, string, subscripted variables, or a
combination of these. All variables should
be separated by commas. For example:

10 READ Ay BRZ%Zsy C¢y D(S5)y E

The READ statement directs BASIC to read from a list of wvalues built
into a data block by a DATA statement.

INPUT AND OUTPUT TO THE TERMINAL

3.1.3.2 The DATA Statement - The DATA statement has the following
format:

DATA constant (s)

where:

constant(s) is one or more real, integer, or string
constants (quoted or ungquoted) listed in the
same order of data type as the wvariable
requested in the READ statement. All
constants are separated by commas.

Programs run faster with READ and DATA than with the INPUT statements
because you do not have to wait the extra time it takes for BASIC to
stop and request data; the data is already within the program.

A READ statement causes the variables listed in it to be given the
next available constants in sequential order from the collection of
DATA statements. BASIC has a data pointer to keep track of the data
being read by the READ statement. Each time the READ statement
requests data, BASIC retrieves the next available constant indicated
by the data pointer.

A READ statement is not valid without at least one DATA statement.
You can, however, have more than one DATA statement. Without a
corresponding READ statement, BASIC ignores the data.

A READ statement can be placed anywhere in a multi-statement line. A
DATA statement, however, must be the last or only statement on a line.
Each list of constants in a DATA statement is local to a program or
subprogram.

BASIC generates error messages during program execution if:
1. You have a READ statement without a DATA statement.
2. You assign a string constant to a numeric variable.

3. You place more variables 1in the READ statement than you
supply data to define them.

You can READ a numeric variable into a string variable. For example:

00010 READ A%
00020 FRINT AS$%
00030 DATA 8.25
00040 ENID

READY
RUNNH

8.25

The following example shows a READ and DATA sequence:

00010 READIl ArEB>C1,D2,E4,Y$7Z2%,71%
00020 DATA 2.3+-4.2654y39-612y"CAT"»D0Gy 'MOUSE“
00030 FRINT ASRICLIiD25EAY$sZ%,71%

INPUT AND OUTPUT TO THE TERMINAL

BASIC assigns values as follows:

A=2.3
B=-4.2654
Cl=3
D2=-6
E4=12
Y$=CAT
Z$=DOG
Z1$=MOUSE

RUNNH
2¢3 -4,2654 3 -6 12 CAT DOG MOUSE

READY

3.1.3.3 THE RESTORE Statement - The format of the RESTORE statement
is:

RESTORE[:line numbe{]

The RESTORE statement resets the data pointer to the beginning of the
first DATA statement in the program. (RESET 1is an equivalent
statement.) The values are read as though for the first time;
therefore, the same variable names may be used the second time through
the data. If the line number is specified, however, the data pointer
is reset instead to the DATA statement on that line. Consider this
example:

00010 READ RyCoD

00015 FRINT EsC»D
00020 RESTORE

00030 READ EsF»G

00035 FRINT E+FyG
00040 DATA 6933497+ 252
00050 END

The READ statement in line 10 reads the first three values in the DATA
statement on 1line 40. The values for B,C, and D are, therefore as
follows:

B=6
C=3
D=4

Then the RESTORE statement on 1line 20 resets the pointer to the
beginning of 1line 40, so that the second READ statement on line 30
also reads the first three values, as follows:

E=6
F=3
G=4

If the RESTORE statement were not there, the READ statement on line 30
would read the last three values, as follows:

E
F
G

LU
[SRY=IEN]

The RESTORE statement affects only the program or subprogram in which
it 1is contained. Also, 1if you have no DATA statements in your
program, the RESTORE statement has no effect.

3-7

INPUT AND OUTPUT TO THE TERMINAL
3.1.3.4 The NODATA Statement - The NODATA statement has the following
format:
NODATA line number
where:

line number is any valid line number in the program.

The NODATA statement transfers program control to the specified 1line
numbers if there is no more data in the program or subprogram.

3.2 PRINTING OUTPUT - THE PRINT STATEMENT

The PRINT statement has the following format:
PRINT expression(s{]

where:

expression(s) can be one or more numeric or string elements
separated by commas or semicolons.

The PRINT statement prints the specified element(s) on the terminal
when you execute your program. In this way, you can see the results
of your computations or add program prompts which clarify your
requests for input. (The PRINT statement can be placed anywhere
within a multi-statement line.)

You can include blank lines in your output to provide better
formatting. Use the PRINT statement without arguments to output a
blank line, for example:

00010 FRINT "THIS EXAMFLE LEAVES A BLANK LINE®
00020 FRINT

00030 FPRINT "RBETWEEN TWO LINES®

00040 ENI

READY

RUNNH

THIS EXAMPLE LEAVES A BRLANK LINE
RETWEEN TWO LINES

READ'Y

NOTE

For greater control over the format of
the output, use the PRINT USING
statement described in Chapter 10.

INPUT AND OUTPUT TO THE TERMINAL

If an element in the list is an expression rather than a simple
variable or constant, BASIC evaluates the expression before printing
the value. The PRINT statement can therefore perform two operations
in a single statement: calculate expressions and print results. For
example:

00010 A = 45 \R = 55
00020 FRINT A + R
00030 END

READY
RUNNH

100

After running this program, BASIC prints 100 on the terminal, not
45+55. If you put quotes around the variables, BASIC treats them as a
string literal, as follows:

00010 A = 45 \ R = G0
00020 FRINT "A + R*
00030 END

READY
RUNNH

A+ E

You can use the PRINT statement to provide instructions for wusing a
BASIC program. To use the PRINT statement in this way, include
literal strings in the PRINT statement, as shown in the following
example:

00010 FRINT *WHAT ARE YOUR VALUES OF XsYsZ*
00020 INFUT XsY»Z

00030 LET R = SQR(X"2 + Y™2 + Z™)

00040 FRINT "THE RADIUS OF THE VECTOR EQUALS"HR
00050 END

When you run this program, the PRINT statement prompts you to type
values for X, Y, and Z, as follows:

RUNNH

WHAT ARE YOUR VALUES OF XsYsZ
? 24y405350
THE RADIUS OF THE VECTOR EQUALS 68.381:28

READY

Note that you enclose the strings in quotation marks so that BASIC
prints them exactly as you type them in.

3.2.1 Formatting with the Comma and Semicolon

Each line printed by the PRINT statement consists of a number of
zones. Each zone is 14 spaces wide. The default TOPS-20 line, which
is 80 characters long, contains five full print zones on each line.

INPUT AND OUTPUT TO THE TERMINAL

NOTE

The number of print zones per 1line is
directly proportional to the currently
defined TOPS-20 terminal width. (The
TOPS-20 TERMINAL command, used to change
the terminal line width, is described in
the TOPS-20 User's Guide.)

You can control the placement of your output within the print zones by
using the separators: comma (,) and semicolon (;).

The comma signals BASIC to start printing at the beginning of the next
print zone. If the last print 2zone on the line is filled, BASIC
prints the output beginning at the first print zone on the next line.
For example:

Q0005 INFUT AsRyCrIisEsF
00010 PRINT AsEsCrDvEsF

00020 ENI

READY

RUNNH
7 591091 5,20528,30

S 10 15 20 25
30

If you place more than one comma between list elements, you will skip
one print zone for each extra comma. The following example prints the
value of A in the first zone and the value of B in the third zone:

00010 A=3\E=10
Q0020 FRINT As»R

00030 END

READY

RUNNH

S 10

To print an output line in a more compact format, ignoring print
zones, use a semicolon as the separator between variables. A
semicolon causes BASIC to print a number with a preceding and a
following space; thus, two spaces occur between numbers. For
example:

00010 FPRINT 10320
00020 END

REALY
RUNNH

10 20

BASIC does not print spaces between strings separated by a semicolon:

00010 FRINT "10"3*20"
00020 END

READY
RUNNH

1020

INPUT AND OUTPUT TO THE TERMINAL

Placing a comma or semicolon after the last item in a PRINT statement
causes the terminal printer to remain at the same print position in
anticipation of another PRINT or INPUT statement. If, however, the
next item to be printed will not completely fit in the space remaining
between the current print position and the right margin, BASIC will
print the additional output at the beginning of the next line.

In the following example, BASIC prints the current values of X,Y and Z
on one terminal line because a comma appears as the last item in line
20:

00010 INFPUT XrYsZ
00020 FRINT XsYy»
00030 FRINT Z
00040 END

READY
RUNNH
T Dy lUrLD
5] 10 15

The following example illustrates the three options you have for
placing either a comma, a semicolon, or a line terminator after the
last item of the PRINT statement:

00010 FOR I=1 TO 10

00020 FRINT I 'LINE TERMINATOR
00030 NEXT INPRINT

00040 FOR J=1 TO 10

00050 FRINT J» A COMMA

00060 NEXT JNFRINT

00070 FOR K=1 TO 10

00080 FRINT K3 4 SEMICOLON
000920 NEXT K
00100 END
READY
RUNNH
1
2
3
4
S
é
7
8
@
10
1 2 3 4 S
6 7 8 ? 10
1 2 3 4 5 6 7 8 9 10

Commas and semicolons also allow you to use or not use print zones for
printing string output. For example:

00010 FPRINT *FIRST ZONE"»s»"THIRD ZONE®"s»s»"FIFTH ZONE®
00020 END

READLY
RUNNH
FIRST ZONE THIRD ZONE FIFTH ZONE

INPUT AND OUTPUT TO THE TERMINAL

Because of the extra comma between strings, BASIC skips every other
printing zone before stopping to print each string.

3.2.2 Output Format for Numbers and Strings

BASIC prints numbers and strings according to a specific format.
Strings are printed exactly as you type them in with no leading or
trailing spaces. Leading and trailing spaces can, however, be added
within the quotation marks by using the keyboard space bar.
(Quotation marks are not printed unless delimited by another pair of
qguotation marks.)

00010 FPRINT ‘FRINTING "QUOTATION® MARKS~
00020 END

READY
RUNNH
FRINTING "QUOTATION®" MARKS

BASIC precedes negative numbers with a minus sign and positive numbers
with a space. A space is always placed after the rightmost digit of a
number.

00010 FRINT -1
0020 PRINT 205350
0030 END

READY
RUNNH
-1

25 50

The number of spaces occupied by the decimal representation of a
number varies according to the magnitude and type of the number.
BASIC prints the results of computations as decimal numbers (either
integer or real) if they are within the range: .0001<n<999999, where
n is the number BASIC prints. Otherwise, BASIC prints them in E
notation.

BASIC prints decimal digits as illustrated below:

Value You Type Value BASIC Prints
.000099 9.9E-05

.0001 0.0001

.01 0.01

999999 999999

1000000 1E+06

If more than six digits are generated during a computation, BASIC
prints the result of that computation in E notation.

3.2.3 The TAB Function

Another method of positioning the terminal printer is to use the TAB
function in conjunction with the PRINT statement.

This function has the following format:

14

PRINT TAB(n) {,}

3-12

INPUT AND OUTPUT TO THE TERMINAL

where:

n is an expression indicating the desired print position.
BASIC evaluates the expression and truncates the result to
an integer.

H causes printing to start at the position indicated by the
expression in the TAB function.

’ causes printing to begin at the first free printing zone
after the position indicated by the expression in the TAB
function.

The TAB function does not cause characters to be ©printed: it only

returns a string of spaces. The PRINT statement then prints those
spaces returned by the TAB function. The number of spaces returned by
TAB is n minus the current column number. If n is less than the
current column number, the TAB function returns a null string.

With the TAB function, you move the terminal printer to the right to
any desired column. The first column at the left margin is column 0.
Therefore, n can be 0 to whatever the right margin is.

The TAB function can be used only to position the terminal printer
from 1left to right, not right to left. 1If you specify a column that

is to the left of the current column position, BASIC returns a null
string.

You can use more than one TAB function in the same PRINT statement by
placing them between elements. The following examples contain several
TAB functions in conjunction with one PRINT statement:

00010 FRINT "NAME®" FTAR(15)3 "ADDRESS"TAR(30)3 "FPHONE NO.*
00020 END

READY
RUNNH

NAME ADDRESS FHONE NO,
Without tabs 15 and 30, BASIC would print:
NAMEALIDRESSFHONE NO.
Here is an example of using the TAB function to position numbers:

00010 A=100\R=29\C=35
00020 FRINT Aj TAR(15)iRs TAR(30)3iC

00030 END
READY
RUNNH
100 29 35
(Column 0) (Column 15) (Column 30)

Notice that semicolons act as separators in the preceding example;
but the TAB function determines the position at which the numbers are
printed.

Compare

INPUT AND OUTPUT TO THE TERMINAL

the following examples. The first one wuses commas as

separators; the second one uses semicolons.

00010 A=100

00020 B=200

00030 C=300

00040 PRINT AsTAR(30)»RsTAR(40),C
00050 PRINT ASTAR(30)FiBSTAE(40)3iC
00060 ENI

READY
FUNNM

100
100

200 300
200 300

You can also place a TAB function outside a PRINT statement. However,
the value of the function depends on whether or not you did place it
in a PRINT statement:

1.

If TAB has not been placed in a PRINT statement, then
TAB(n) is the same as SPACES$(n).

The SPACES$ function allows you to add spaces in a string;
see Section 6.2.7.

If a PRINT statement is executed with TAB, TAB(n) is a string
of spaces whose 1length is equal to the number of spaces
between the last print position and n.

CHAPTER 4

PRQGRAM CONTROL

The order in which BASIC executes statements in a program 1is termed
"program control." If you do not include any statements in your
program that alter the order in which BASIC executes the statements,
BASIC executes the statements from top to bottom.

There are, however, a variety of statements that allow you to alter
the default top-to-bottom program control. For example, the simplest
statement for altering the program control is the unconditional GOTO.
This statement directs BASIC to transfer execution to the line number
specified in the GOTO statement.

BASIC also has a variety of more complicated program control
statements that allow you to:

e transfer control based on the value of an expression

® create sequences of statements that are repeated a specified
number of times

e halt and end program execution
® create subroutines

e transfer control to a sequence of statements if an error
occurs in the program

In addition to the program-control statements themselves, BASIC has a
set of statement modifiers, which qualify or restrict the execution of
the statements they modify. The BASIC program-control statements and
modifiers are described in the following sections:

Unconditional Transfer - The GOTO Statement

Multiple Branching - The ON-GOTO Statement

Conditional Transfer - The IF-THEN-ELSE Statement

Loop Execution

Time-Limit Statements

Stopping Program Execution - The STOP and END Statements
Using Subroutines

Error Handling

Statement Modifiers

e I A
e o .
WO WN -

4.1 UNCONDITIONAL TRANSFER - THE GOTO STATEMENT

The GOTO statement causes control to be transferred to the statement
it specifies.

PROGRAM CONTROL

The format of the GOTO statement is:
GOTO line number
where:
line number is the line to be executed next.

This line number can be smaller or larger than the line number of the
GOTO statement. Therefore, you have the option to skip any number of
lines in either direction. BASIC executes the statement at the 1line
number specified by GOTO and continues the program from that point.
The line number must be accessible to this program or subprogram (for
example, a GOTO cannot direct control from a main program to a
subprogram). Consider the example:

00030 GOTO 110

When BASIC executes line 30, it transfers control to line 110. BASIC
interprets the statement exactly as it is written: go to line 110.

Consider the following sample program with a GOTO statement:

00010 A =2

00020 GOTO 40

00030 A = SQAR(A+14)

00040 FRINT ArA%A

00050 END

READY

RUNNH

s 4

In this program, control passes in the following sequence:

1. BASIC starts at line 10 and assigns the value 2 to the
variable A.

2. Line 20 sends BASIC to line 40.

3. BASIC executes the PRINT statement.

4. BASIC ends the program at line 50.
Notice that line 30 is never executed.
Make sure that the GOTO statement is either the only statement on the
line or the last statement in a multi-statement line. If you place a
GOTO in the middle of a multi-statement line, BASIC does not execute

the rest of the statements on the line. For example:

00025 A = ATN(R2)\GOTO SO\FRINT A

BASIC never executes the PRINT statement on line 25 because the GOTO
statement transfers control to line 50.

PROGRAM CONTROL

If you specify a line number in a GOTO statement and that line
contains a non-executable statement, such as a REM statement, BASIC
transfers control to the next executable statement after the one
specified. For example:

00010 REM SQUARE ROOT FUNCTION

00020 INFUT A

00030 IF A=0 GOTO &0

00040 FRINT *THE SQUARE ROOT OF";A3"IS"$SAR(A)
00050 GOTO 10

00060 END

At line 40, BASIC transfers control to line 10. Because line 10 is a

non-executable statement, BASIC ignores it and control passes to line
20.

4.2 MULTIPLE BRANCHING - THE ON-GOTO STATEMENT

The ON-GOTO statement is another means of transferring control within
a program. Like the GOTO statement, ON-GOTO allows you to transfer
control to another line of the program; however, ON-GOTO also allows
you to specify several line numbers as alternatives, depending on the
result of the expression.

The ON-GOTO statement has the following format:

ON numeric expression {GOTO line number (s)
THEN

where:

numeric expression is any valid BASIC numeric expression.

GOTO are interchangeable keywords.
THEN
line number (s) is one or more line numbers. Line numbers

must be separated by commas.

The ON-GOTO statement is also known as a computed GOTO because of its
dependency on the value of the numeric expression. When BASIC
executes the ON-GOTO statement, it first evaluates the numeric
expression. The value is then truncated to integer (if necessary).
If the value of the expression is equal to 1, BASIC passes control to
the first 1line number in the list, if the value of the expression is
equal to 2, BASIC passes control to the second line number in the list
and so on. This process continues until the list is exhausted or
there are no more values. If the value is less than 1 or greater than
the number of line numbers in the list, BASIC prints an error message.

In the following example:

200 ON A GOTO 5092051005300
if A=1, GOTO line 50 (first line number in the 1list),
if A=2, GOTO line 20 (second line number in the list),

if A=3, GOTO line 100 (third line number in the list),
if A=4, GOTO line 300 (fourth line number in the list),

PROGRAM CONTROL

if A1
or

if A>4, BASIC prints an error message.
Notice that the line numbers in the list can be in any order. The
numeric expression 1is evaluated, and if the value of the expression
is:

1, control branches to the first line number specified.

2, control branches to the second line number specified.

3, control branches to the third number specified.

4.3 CONDITIONAL TRANSFER - THE IF-THEN-ELSE STATEMENT

The IF-THEN-ELSE statement provides a transfer of control depending on
the truth of a conditional expression (See Relational and Logical
Expression in Sections 1.6.3 and 1.6.4, respectively).

There are four valid formats for the IF-THEN-ELSE statement:

IF conditional expression [,

{THEN} line number
GOTO

IF conditional expression}t , THEN statement (s)

IF conditional expression
GOTO statement (s)

[

] {THEN} line number ELSE{line number}

I
IF conditional expression| , THEN statement (s) ELSE{line number}

statement (s)

where:
conditional expression can be any 1logical or relational
expression. It can also be a
variable where the value 0 is false
and anything else is true.
statement (s) can be one or more BASIC statements

except DIM, FNEND, END, COMMON,,
DATA, DEF, MAP, IMAGE, REM, SUBEND,
and SUB.

Using the IF-THEN-ELSE statement, you may specify a conditional
transfer of control to another statement 1line, or you may cause
another statement to execute without transferring control, that is,
another line may be executed but control remains with the IF-THEN-ELSE
statement.

If the value of the conditional expression is true, BASIC transfers
control to the specified line number (as in the first format) or
executes the statements following the THEN (as in the second format).
If the relation is not true, the next executable statement following
the IF-THEN-ELSE statement is performed. For example:

00020 IF A=3 THEN 200

PROGRAM CONTROL

If A is equal to 3 (that is, if the relation is true), control passes

to 1line 200. If A is not equal to 3, control does not pass to line
200. Instead, control passes to the next sequential instruction after
line 20.

Here is a complete program illustrating the IF-THEN-ELSE statement:

00005 REM FROGRAM TO COMPARE TWO NUMBERS

00010 PRINT "INFUT VALUE OF A"3\NINPUT A

00015 FRINT "INFUT VALUE OF E"S\INFUT R

00020 IF A=0 AND E=0 THEN 80

00030 IF A=R THEN FRINT "A EQUALS R"\GOTO 75
00040 IF A<E THEN 60

00050 FRINT "B IS LESS THAN A*\GOTO 75

00060 FRINT "A IS LESS THAN R*®

00075 IF AXE:>=B¥X(E+1) THEN LET D4=D4+1\GOTO 10
00080 END

READY

RUNNH

INFUT VALUE OF A 7 2
INFUT VALUE OF B ? 4
A IS LESS THEN R

[+
ot
3

If you include the ELSE clause, as in the third format, BASIC executes
the ELSE clause if the THEN or GOTO clause preceding it is not
executed. This means that if the conditional expression 1is false,
BASIC executes the ELSE clause.

The following example illustrates the ELSE clause:
00010 IF Ax=90 THEN G$="A" ELSE G$=F

You can also use string expressions, as in this example:
00300 IF C$="0QUTFUT" GOTO 10

If the value of the string variable C$ 1is equal to the string
"OUTPUT", control passes to line 10.

Be careful when placing the IF-THEN-ELSE statement in a
multi-statement 1line. The following rules govern the transfer of
control:

1. Execution of the physically 1last THEN or ELSE clause
determines the execution of the rest of the statements on the
line. If the THEN or ELSE clause 1is executed, the next
statement or statements following it are executed. If the
THEN or ELSE clause is not executed, the statements following
it are not executed, and control passes to the next line
number. For example:

000035 INFUT A

00010 IF A=1 THEN PRINT A#\FRINT "TRUE CASE"\GOTO 20
00015 FRINT "NOT=1°

00020 ENID

If A is equal to 1, BASIC prints:

RUNNH
?

(|
1 TRUE CASE

PROGRAM CONTROL

Because the relation is true, BASIC executes the rest of line
10, which includes a branch to line 20.

If A is not equal to 1, BASIC prints:

RUNNH
? 3

NOT=1

Because the relation is false, BASIC skips the rest of the
statements on line 10 following the keyword THEN and proceeds
to execute line 15.

All other ELSE and THEN clauses in a multi-statement 1line
must be true for the remainder of that line to be executed.
If any THEN or ELSE clause is not true, then control passes
to the next line number.

00010 INFUT AsEYC

00020 IF AR THEN IF R<C THEN FRINT *"R<C"\GOTO 30
00025 FRINT ®"A<R"

00030 END

The statement GOTO 30 is executed only if A is greater than B
and B is less than C. If A is either less than or equal to B
or B is greater than or equal to C, then line 25 is executed:

RUNNH
? 10y15.20
AR

If the statement following the THEN or ELSE clause is a FOR
statement, you must include the corresponding NEXT statement
in the same THEN or ELSE clause. In the following example,
the FOR statement creates a program loop (See Section 4.4)
on the second 1line after the ELSE statement; the
corresponding NEXT statement occurs at the end of the second
line:

00010 IF A=3 THEN FOR X=1 TO 10\R(X)=R(X)XA\NEXT X&
ELSE FOR X=1 TO 10\R(X)=R(X)+C\NEXT X

An ELSE clause is paired with the 1last unmatched IF-THEN
clause. In the following example, the ELSE clause is paired
with the second IF-THEN clause and is executed only if A is
greater than 6:

00010 IF Ax5 THEN IF A=6 THEN FRINT ‘=6’ ELSE &
FRINT ‘<67

A null ELSE clause may be used if the first IF-THEN clause
requires an ELSE clause and the second IF-THEN clause has no
ELSE clause paired with it. For example:

00010 IF A>S5 THEN IF A=6 THEN FRINT '=6‘%

ELSEZ2
ELSE PRINT ‘<6’

4-6

PROGRAM CONTROL

4.4 LOOP EXECUTION

A loop is the repeated execution of a set of statements. Placing a
loop in a program saves you from duplicating and enlarging a program
unnecessarily. The following section describes how to build a 1loop
with the FOR and NEXT statements.

4.4.1 The FOR and NEXT Statements

Without some sort of terminating condition, a program can run through
a loop indefinitely. The FOR and NEXT statements allow you to design
a loop wherein BASIC tests for a condition each time it runs through
the loop. You decide how many times you want the loop to run, and you
set the terminating condition accordingly.

The FOR statement has the following format:

FOR variable = num expr 1 TO num expr Z[KSTEP}num expr 3]

BY
where:

variable is a numeric wvariable known as the 1loop
index. It represents the counter for the
loop.

num expr 1 is the first numeric expression - the initial
value of the index.

num expr 2 is the second numeric expression - the
maximum value of the index.

num expr 3 is the incremental value of the 1loop index

known as the step size. This wvalue Iis
optional; if specified, it can be positive
or negative. If not specified, the default
is +1.

BASIC evaluates all numeric expressions in the FOR statement before
assigning a value to the loop variable. For example:

00010 T.-= 3
00020 FOR M = 10%T TO 30%T STEF T
00030 NEXT M

M, the loop index, is given the initial value of 30, and BASIC tests
to determine if M is less than or equal to the terminating value of
90. The loop is executed because M is less than 90. When the NEXT
statement 1is encountered, the value of M is incremented by 3. BASIC
tests again to see if M is greater than or equal to 90. When the
value of M 1is greater than 90, control passes to the statement
following the NEXT statement.

The NEXT statement has the following format:

NEXT numeric variable(s)

PROGRAM CONTROL

where:

numeric variable(s) must be the same loop index(es) named in
the corresponding FOR statement. With
multiple wvariables, the last loop
variable must be specified first. Refer
to Section 4.4.2 for nested loops.

The FOR and NEXT statements must be used together. If you use one
without the other, an error condition results. The FOR statement
defines the beginning of the loop; the NEXT statement defines the
end. You are building a counter into your program to determine the
number of times the loop is to execute.

Place the statements you want repeated between the FOR and NEXT
statements. Consider the following example:

00010 FOR I = 1 TO 10
00020 FRINT I

00030 NEXT I

00040 PRINT I

00050 ENI

In this program, the initial value of the 1loop index is 1. The
terminating value is 10, and the STEP size is +1 (the default).

Every time BASIC goes to line 30, it increments the loop index by 1
(the STEP size) until the terminating condition is met. Therefore,
this program prints the values of I ten times. When the 1loop is
completed, execution proceeds to 1line 40. The following is the
resulting output:

RUNNH

N ONOU DN

10
10

Notice that when control passes from the loop, the last value of the
loop index is retained. Therefore, I equals 10 on line 40.

You can modify the loop index within the loop:

2 to 44 STEF 2
44

00010 FOR I
00020 LET I
00030 NEXT I
00040 END

Hou

The loop in this program only executes line 20 once because at line 20
the value of I is changed to 44 and the terminating condition is
reached.

If the initial value of the loop index is greater than the terminal
value and the step size is positive, the loop is never executed.

00010 FOR I = 20 TO 2 STEP 2

PROGRAM CONTROL

This loop cannot execute because you cannot decrease 20 to 2 with
increments of +2. You can, however, accomplish this with decrements
of -2.

00010 FOR I = 20 to 2 STEF -2
The STEP size can also be a number with a fractional part:

00010 FOR K = 1.5 TO 7.7 STEF 1.32

NOTE

You should not transfer control into a
loop that has not been initialized by a
FOR statement. The results would be
unpredictable. The following 1is not
recommended in a BASIC program:

00010 REM THIS IS A FOOR FROGRAM
00020 GOTO 40

Q0030 FOR I = 1 TO 20

00040 FRINT I

00030 NEXT I

00060 END

Line 20 transfers control to 1line 40,
bypassing 1line 30. This is invalid in
BASIC.

You can place FOR and NEXT statements anywhere in a multi-statement
line. For example:

00010 FOR I = 1 TO 10 STEF S\PRINT "I = "FI\NEXT I
00020 END

RUNNH

I i

I é

ito#

The calculation of the index values (initial, final, and step size) is
subject to the precision 1limitations of the computer. These index
values are represented in the computer by binary numbers. When the
values are integer, they can be represented exactly in binary;
however, it is not always possible to represent decimal values exactly
in binary when they contain a fractional part. Consider the following
example:

00020 FOR X = 0 TO 10 STEF 0.1
00030 A = 73\R = 473\C = A/R
00040 FRINT "THE ANSWER IS *iC
00050 NEXT X

00060 ENI

The loop established in line 20 executes 100 times instead of 101
because the internal value of 0.1 is not exactly 0.1. After the 100th
execution of the loop, X is not exactly equal to 10. It is slightly
larger than 10, so the loop stops. Whenever possible, it is advisable
to use indexes that have integer values which ensure that the loop is
executed the correct number of times.

PROGRAM CONTROL

Note that changing the termination value of a loop within the loop has
no effect. For example:

00010 K = 10

00020 FOR I = 1 TO K
00030 K = &

00040 FRINT I#

00050 NEXT I

READY
RUNNM

123456782910

4.4.2 Nested Loops

A loop can contain one or more loops provided that each inner loop is
completely contained within the outer loop. Using one loop within
another is called nesting. Each loop within a nest must contain its
own FOR and NEXT statements, and the inner loop must terminate before
the outer loop, that is, the one that starts first must be completed
last. Loops cannot overlap.

The following example shows valid and invalid forms of nested loops:

valid valid Invalid
1 TO 10 10 FOR A

10 FOR A TO 10 10 FOR M = 1 TO 10
[:20 FOR R 270 20 20 FOR R TO 20 [E20 FOR N = 2 TO 20

ou

i
[R

30 NEXT R 30 NEXT R 30 NEXT M
40 NEXT A ——40 FOR C 40 NEXT N
50 FOR LI
60 FOR E
70 NEXT E
80 NEXT It
—— 90 NEXT C
—— 100 NEXT A

TO 30
TO 40
T0 S50

HoitoH
b

The following is a program with a nested loop:

00010 FRINT "I","J"
00015 PRINT

00020 FOR I=1 TO 2
00030 FOR J=1 TO 3
00040 FRINT IsJ
00050 NEXT J

00060 NEXT I

00070 ENI

READY

RUNNH

I J
1 1
1 2
1 3
2 1
2 2
2 3

PROGRAM CONTROL

FOR and NEXT statements are commonly used to initialize arrays, as
illustrated in this example:

00005 DIM X(5,10)

00010 FOR A=1 TO S

00020 FOR B=2 TO 10 STEF 2
00030 X(A»R)=A+R

00040 NEXT BRsA

00035 PRINT X(S5s10)

00060 END

READY
RUNNH

15

4.4.3 The Conditional FOR Statement

Another method of creating 1loops in a program 1is to use the
conditional FOR statement. The conditional FOR statement has the
following format:

FOR variable=num expr 1 STEP} num expr 2 {WHILE}conditional expr
BY UNTIL

where:

variable is a numeric variable known as the 1loop
index. It represents the counter for the
loop.

num exprl is the first numeric expression which
determines the initial value of the index.

num expr2 is the incremental value of the 1loop index
known as the step size. This value is
optional; if specified, it can be ©positive
or negative. If not specified, the default
is +1.

conditional is the condition tested. The expression can
expr be a relational or logical expression.

This form of loop 1is similar to the normal FOR statement. The
difference 1lies 1in the termination test for the loop. Each time the
loop is about to begin, BASIC evaluates the conditional expression and
tests it for its truth value. The loop terminates if the conditional
expression is true and the clause 1is an UNTIL clause, or if the
conditional expression is false and the clause is a WHILE clause. The
NEXT statement is required with this form of the FOR statement.

PROGRAM CONTROL

When BASIC exits from the conditional loop, the wvalue of the 1loop
index is the wvalue that terminates the loop. In contrast, when the
normal FOR-NEXT loop terminates, the value of the loop index 1is the
last value used in the FOR statement, not the terminating value.
Consider the following example:

00010 FOR I=1 TO 10 INORMAL FOR LOOF
00015 PRINT I3

00020 NEXT I

00025 PRINT "I="3I

00030 FOR I=1 UNTIL Ix10 ICONDITIONAL FOR LOOF
00035 FRINT I3

00040 NEXT I

00045 FRINT "I=*31

00050 ENI

READY

RUNNH
1 2 3 4 5 6 7 8 9 10 I= 10
1 2 3 4 5 6 7 8 9 10 1I= 11

Both loops print the numbers 1 through 10. Notice, however, the
difference in the values of I. When the first loop terminates, the
loop variable is set to the last value BASIC used (10). In the second
loop beginning on line 30, the loop variable is set to the value which
caused the loop to terminate (11).

The following example illustrates the WHILE clause:

00010 FOR I=1 WHILE I+10
00015 PRINT I3

00020 NEXT I
00025 PRINT *"I="31I
00030 END

READY

RUNNH
1234567 8¢9 1I=10

4.4.4 The FOR Statement with an Additional Termination Test

The FOR statement with an additional termination test has the
following format:

FOR variable=num expr 1 TO num expr 1:{STEP}num expr %]{WHILE}conditional expr

BY UNTIL
where:

variable is a numeric variable (loop index).

num expr 1 is the initial wvalue of the index
variable.

num expr 2 is the terminating value of the index
variable.

STEP num expr 3 is the increment value of the index.

BY This is optional; the default is +1.

WHILE conditional expr is a logical or relational expression.
UNTIL This is the additional termination test.

4-12

PROGRAM CONTROL

This type of loop is equivalent to the normal FOR-NEXT statements
except for the addition of the conditional test. Each time BASIC
encounters the NEXT statement, the loop index is incremented. After
incrementing the 1loop index, BASIC checks it to see if the TO
expression has been exceeded. If the TO expression has not been
exceeded, BASIC checks the conditional expression. The termination
test on the conditional expression is the same as in the Conditional
FOR statement, Section 4.4.3.

Consider the following example:

00010 Y=0

00020 FOR I=1 TO 10

00030 FPRINT I$ I NORMAL FOR LOOF
00040 Y=I

00050 NEXT I

000460 FRINT "I="31I

00070 FOR I=1 TO 10 UNTIL Y> 10 'FOR WITH ARDITIONAL TEST
00080 FRINT Ij

00090 Y=Ix%x2

00100 NEXT I

00110 FRINT "I="31

00120 END

READY

RUNNH
1 2 3 4 5 6 7 8 9 10 I= 10
1 2 3 4 5 6 1I=7

In the above example, the normal FOR loop prints the numbers 1 through
10. Line 110 of the conditional FOR statement, however, causes the
loop to print the numbers 1 through 6. Before the seventh iteration
of the loop, the value of Y is greater than 10, making the conditional
expression in line 70 true.

4.4.5 The WHILE and UNTIL Statements

The WHILE and UNTIL statements have the following format:
WHILE conditional expression
UNTIL conditional expression

where:

conditional expression is any numeric, logical, or
relational expression.

Like the FOR statement, the WHILE and UNTIL statements require a
corresponding NEXT statement. However, the NEXT statement, in this
case, does not contain a variable; rather, by itself it acts as the
loop terminator.

PROGRAM CONTROL

The conditional expression is evaluated before each 1loop iteration.
If the expression 1is true, BASIC executes the statements within the
loop. If the expression 1is false, BASIC executes the statement
following the NEXT statement. For example:

00010 WHILE AX<10%Z
00020 LET AX=A%Z+IX%
00030 IZ%=1 TO 5
00040 NEXT

00030 FRINT AX
00060 ENI

As long as A% is less than 10%, BASIC will execute the statements
within the loop.

With the UNTIL statement, the loop executes until the expression is
true. For example:

00010 I=12
00020 UNTIL I=0
00030 FRINT I

00040 I=I-1
00050 NEXT

4.5 TIME-LIMIT STATEMENTS

BASIC provides statements to suspend program execution for a specified
amount of time. These statements are SLEEP and WAIT.

4.5.1 The SLEEP Statement
The SLEEP statement has the following format:

SLEEP numeric expression

where:
numeric expression is the number of seconds to delay
further execution of the program or
subprogram.

For example:
00010 SLEEP 120x%10

At the end of 1200 seconds (20 minutes) BASIC continues execution.

4.5.2 The WAIT Statement
The WAIT statement has the following format:

WAIT numeric expression

PROGRAM CONTROL

where:

numeric expression specifies the maximum number of seconds
BASIC will wait for input from the
terminal before an error condition is
signaled.
For example:
00010 WAIT 60

When this line is executed, BASIC waits for 60 seconds for the current
terminal input request to be satisfied before generating an error.
The input request is satisfied only when a line terminator is entered.
If data is partially entered (but no line terminator is typed) and the
time specified in the WAIT statement elapses, all data is discarded.

The WAIT statement is used in conjunction with the INPUT statement so
that you can set time limits for responses to your program.

A WAIT statement with a value of 0 or no value, indicates that no WAIT
error condition exists no matter how long it takes for a response.
Thus, WAIT 0 turns off a previous WAIT.

You must place the WAIT statement before the respective INPUT
statement. For example:

00010 WAIT 15
00020 INFUT AsksC
00030 D=A%R/C
00040 FRINT It

BASIC waits 15 seconds for a response to the INPUT statement. If no
response is typed, BASIC prints an error message.

4.6 STOPPING PROGRAM EXECUTION - THE STOP AND END STATEMENTS
There are three methods of halting program execution:

1. Executing all the statements

2. Using the STOP statement

3. Using the END statement
The first method is shown in the following example. The program
executes completely and then BASIC closes all files:

00010 FOR I=1 TO 10

00020 FRINT I

00030 NEXT I
The STOP statement has the following format:

STOP

This statement causes program execution to halt, at which point BASIC
prints a message:

STOP at line n in program segment

PROGRAM CONTROL

where:
n is the line number of the STOP statement.
program segment is either MAIN PROGRAM or the name of the
function or subprogram in which the program
stopped.

You can place several STOP statements at various points in a single
program. This is a useful debugging tool in determining program flow
in large programs.

The STOP statement halts execution but it does not close files. When
you use STOP and you want BASIC to close files at program termination,
you must use the END statement or explicitly close the file with the
CLOSE statement (See Section 9.5.2).

The END statement has the following format:
END

The END statement is optional unless there are subprograms in the
program. See Section 5.1 for information on subprograms. If you
include an END, it must have the largest 1line number in the main
program. Any reference to an END statement via a GOTO or IF-THEN-ELSE
statement terminates program execution and closes all files.

An END statement does not cause BASIC to print a message on the
terminal. If a message is desired, use the STOP statement.

I1f you do not include a STOP or an END statement in a program, the
execution of the last statement of the program terminates program
execution and closes all files. That 1is, the STOP statement is
optional, and END is necessary only when you reference the end of the
program with a transfer statement or place subprograms after the main
program.

The following examples show all three options of ending a program. In
the first example, BASIC executes all statements and closes all files:

00010 REAL AYR«C

00020 FRINT "A="iA
00030 FRINT *R="5R
00040 PRINT "C="3C
00050 DATA 100+s30054350

READY
RUNNH
A= 100
E= 300
C= 4350

PROGRAM CONTROL

In the second example, BASIC executes all statements and stops
executions at line 60; the files are not closed:

00010 READ A»RsC

00020 PRINT "A=";A
00030 PRINT "B="jiR
00040 FRINT "C="3C
00050 DATA 100,300,450
00060 STOF

READY
RUNNH
A= 100
E= 300
C= 450

STOF at line 00060 of MAIN FROGRAM

In the third example, BASIC executes all statements and closes all
files:

00010 READ AsEsC

00020 PRINT *A="iA
00030 FRINT "E="jR
00040 FRINT "C="3iC
00050 DATA 100,300,450
00060 END

READY
RUNNH
A= 100
R= 300
C= 4350

As you can see, the first, second, and third examples have the same
output.

4.7 USING SUBROUTINES

Subroutines are like functions in that you reference them in another
part of the program. However, they are unlike functions in that you
do not name a subroutine or specify an argument. Instead, you include
the GOSUB statement, which transfers control of the program to a
subroutine, and the RETURN statement, which returns control from that
subroutine back to normal program execution.

In BASIC, you can enter more than one subroutine in the same program.
Subroutines are easier to locate (for debugging purposes) if you place
them near the end of the program, before any DATA statements and
before the END statement (if present). You <can also assign
distinctive line numbers to subroutines. For example, if the main
program has line numbers ranging from 10 to 190, begin the subroutines
with line numbers 200, 300, 400 and so on.

The first line of a subroutine can be any wvalid BASIC statement,
including a REM statement. You do not have to transfer to the first
line of the subroutine. 1Instead, you can include several entry points
and RETURNs into and out of the same subroutine. Similarly, you can
nest subroutine calls (one subroutine within another) up to a
system-defined limit.

PROGRAM CONTROL

The following sections describe the building of subroutines with the
GOSUB and RETURN statements.

4.7.1 The GOSUB and RETURN Statements

When BASIC begins executing a program, it continues in sequence until
it encounters a transfer statement, such as a GOSUB statement. The
GOSUB statement has the following format:

GOSUB line number

where:
line number is either the first line of the subroutine or
a line used as an entry point into the
subroutine.

BASIC transfers control to the specified line. For example:

00010 GOSUR 200

BASIC stops executing sequentially at line 10 and transfers control to
line 200. BASIC executes the subroutine until it encounters a RETURN
statement, which <causes BASIC to transfer control back to the
statement immediately following the calling GOSUB statement.

A subroutine can be exited only through a RETURN statement. The
RETURN statement has the following format:

RETURN

Before it transfers control to a subroutine, BASIC records the next
sequential statement following the GOSUB statement. The RETURN
statement signals BASIC to return to the statement previously
recorded. In this way, no matter how many subroutines there are or
how many times they are called, BASIC always knows where to transfer
control. For example:

00010 INFUT AsR»C

00020 GOSUE 40

00030 FRINT D

00035 GOTO 70

00040 REM THIS IS A SURROUTINE
00050 I = A X B - C

00060 RETURN

00070 END

Line 20 sends BASIC to line 40; then line 60 returns execution to
line 30. The resulting output is:

RUNNH
? 5910515
35

PROGRAM CONTROL

The following is an example of several calls to the same subroutine:

00010 DIM R(100)
00020 GOSUR 60
00030 GOSUR 40
00040 GOSUR 60
00050 GOTO 110

00060 LET A = 0
00070 FOR I = 1 TO S
00080 LET A = A+B(I)

00090 NEXT I
00100 RETURN
00110 END

The same subroutine on line 60 is called three times. Notice that
only one RETURN statement is necessary.

4.7.2 The ON-GOSUB Statement
The ON-GOSUB statement is used to conditionally transfer control to
one of several subroutines or to one of several entry points in one or
more subroutines. The ON-GOSUB statement has the following format:

ON numeric expression GOSUB line number (s)
where:

numeric expression is any valid BASIC numeric expression.

line number (s) one or a list of line numbers contained
in the program, separated by commas.

The ON-GOSUB statement works like the ON-GOTO statement (See Section
4.2). When BASIC executes the ON-GOSUB statement, it first evaluates
the numeric expression. The value is then truncated to integer, if
necessary.

If the value of the expression is

1, control passes to the first line number specified.

2, control passes to the second line number specified.

3, control passes to the third line number specified, and so
on.

If the expression is less than 1 or greater than the number of line
numbers in the 1list, BASIC prints an error message to that effect.
The following is an example of an ON GOSUB statement:

00020 ON A+R GOSUR 200y300,120
When:

A+B=1, go to the subroutine on line 200, (first line number in
the list)

4-19

PROGRAM CONTROL

A+B=2, go to the subroutine on line 300, (second line number
in the list)

A+B=3, go to the subroutine on line 120, (third line number
in the 1list)

(A+B)<1, print error message,
(A+B) >4, print error message.

The line number to which BASIC branches can be either the first 1line
of a subroutine or a 1line number used as an entry point into a
subroutine.

4.8 ERROR HANDLING

The BASIC system error handler detects errors that occur during
program execution. When an error occurs in an executing program, the
system error handler, depending on the type of error detected, either
prints a warning message (preceded by a %) and continues execution, or
prints a fatal error message (preceded by a ?) and terminates
execution.

There are two categories of execution errors: nontrappable and
trappable. The nontrappable errors always cause an immediate
termination of program execution. The trappable errors include all
non-fatal errors (warnings) and certain fatal errors, which can be
detected by an error routine that you have built into the program.
(The trappable and nontrappable error messages are listed in Sections
A.3.1 and A.3.2, respectively.)

By using a combination of BASIC statements, you can set up
error-handling routines within your program that take precedence over
the system error handler when a trappable error occurs. These
routines enable the program to evaluate and optionally proceed with
program execution. BASIC supplies the following elements for creating
error routines:

1. the ONERROR GOTO statement

2. the ONERROR GO[@@] BACK statement

3. the RESUME statement

4. the BASIC error variables: ERR, ERL, and ERNS

5. the LINO function

4.8.1 The ONERROR GOTO Statement

The ONERROR GOTO statement indicates to BASIC that an error-handling
routine exists in your program at a specified line number. The
ONERROR GOTO statement has the following format:

ONERROR GOTO line number

PROGRAM CONTROL

where:

line number specifies the number of the line that begins
the routine. If you specify 0, then the
system error handler responds to any errors.

If a trappable error occurs before an ONERROR statement is executed,
the system error handler responds to the error. If a trappable error
occurs after an ONERROR statement (with a nonzero 1line number) is
executed, BASIC transfers control to the line specified in the ONERROR
statement.

If an error occurs within your error-handling routine, then the system
error handler responds to both errors by printing the following
message and terminating program execution:

? 437 error er2 occured while processing error erl at line nn of name
where:

er2 is the number of the error that occurred in your error
routine. The trappable error messages and their numbers
are listed in Section A.3.1.

erl is the number of the error that originally caused BASIC to
execute your error routine.

nn is the line number in your error routine where the error
(er2) occurred.

name is the name of the program segment in which er2 occurred.

A typical situation in which you receive this error message is if your
program stops because of an error and you execute an immediate-mode
statement that causes a second error.

The ONERROR GOTO statement is local to the program in which it is
contained. If an error occurs in a function that does not have an
error routine, BASIC automatically checks the calling program for an
error routine. If BASIC does not find an error routine in the calling
program, the system error handler responds to the error.

If an error occurs within a subprogram, BASIC checks only that
subprogram for an error routine before handling the error itself. You
can, however, direct BASIC to check the calling program when an error
occurs in a subprogram. To do this, include the following statement
in the subprogram:

ONERROR GO[TO] BACK

PROGRAM CONTROL

The ONERROR GO statement with the BACK clause passes error control
from a subprogram to the calling program. For example:

READY

LISNH

00100 ONERROR GOTO 150

00110 FRINT *FIND THE ROOT OF*®j
00120 INPUT NX%

00130 CALL SQUARE (NZ)

00140 GOTO 170

00150 FRINT *"INVALID ENTRY -—-— TRY AGAIN'
00160 RESUME 110
00170 END

00180 SUE SQUARE(NX)

00190 ONERROR GO RACK

00198 MA=SQR(NX)

00200 PRINT "THE SQUARE ROOT IS8"iMX
00210 SUREND

READY

RUNNH

FINDN THE ROOT OF 7 -9
INVALIDR ENTRY ~—-— TRY AGAIN
FINII THE ROOT OF 7 A STRING
INVALID ENTRY --~ TRY AGAIN

FIND THE ROOT OF 7 81
THE SQUARE ROOT IS 9

READRY

In this example, the ONERROR GO BACK statement sends BASIC back to the
error routine in the main program when an error occurs in subprogram
ROOT. The RESUME statement (line 160) 1is described in the next
section.

4.8.2 The RESUME Statement

The RESUME statement must be the last statement of your error-handling
routine. When executed, the RESUME statement terminates the error-
handling routine, and either returns control to a specified 1line
number or back to the beginning of the line that caused the error.
The RESUME statement has the following format:

RESUME 1line number
where:

line number is an optional 1line number specifying the
line to which control passes. If no line
number is specified, control passes to the
beginning of the 1line where the error
occurred.

PROGRAM CONTROL

If the line to which control passes is a multi-statement 1line, BASIC
begins execution at the beginning of the line. For example:

READY
OLD MULT.R20

READY

LISNH

00010 ONERROR GOTO 40

00020 INFUT A \ E=AXA \ FRINT Aj"SQUARED ISR
00030 GOTO &0

00040 FRINT *INVALID ENTRY —--- TRY AGAIN®
00050 RESUME

000460 END

READY
RUNNH

P STRING

INVALID ENTRY —--- TRY AGAIN
7?8

8 SQUARED 18 &4

READY

In this example, the error occurs at line 20. The RESUME statement
(line 50) returns execution to the first statement on line 20.

4.8.3 The BASIC Error Variables

When BASIC detects an error in a program, it supplies three variables
with data regarding the error. These variables are:

ERR contains the number of the trappable error message. (These
messages are listed in Section A.3.1.)

ERL contains the number of the line at which the error occurred.
(The LINO function, described in Section 4.8.4, is used in
expressions with the ERL function to maintain correct
line~number references after a RESEQUENCE command.)

ERN$ contains the name of the program or subprogram in which the
error occurred.

You can use these variables within your error-handling routine. For
example:

READY

LISNH

00010 ONERROR GOTO 50

00020 INPUT *"TYFPE A FLOATING-FOINT VALUE®:A

00030 FRINT A

00040 GOTO 70

00050 IF ERR = 52 THEN FRINT "STRING VALUE NOT ALLOWEDS
AT LINE®FERL{"0F *3ERN$;" —--— TRY AGAIN"

00060 RESUME

00070 END

PROGRAM CONTROL

READY

RUNNH

TYFE A FLOATING-FOINT VALUE 7 A STRING

STRING VALUE NOT ALLOWED AT LINE 20 OF MAIN FROGRAM —-- TRY AGAIN

TYPE A FLOATING-FOINT VALUE ? ANOTHER STRING

STRING VALUE NOT ALLOWED AT LINE 20 OF MAIN FROGRAM --- TRY AGAIN

TYFE A FLOATING-FOINT VALUE 7 5.678

5.678

READY
This example makes use of all three BASIC error variables when the
program traps an error. The IF statement in line 50 uses the ERR
variable to determine if the trapped error was error number 52. If

you type a string into an INPUT statement when the variable in the
INPUT statement takes only a floating-point value, error number 52 is
generated.

If you do not include an error routine in this program and you type a
string when a floating-point value is required, BASIC prints error
message 52 and terminates the program, as follows:

READY

LISNH

00010 INFUT *TYFE A FLOATING-FOINT VALUE®iA
00020 FRINT A

00030 END

READY

RUNNH

TYFE A FLOATING-FOINT VALUE ? A STRING

? 52 Invalid floating roint rumber at line 00010 of MAIN FROGRAM

READY

4.8.4 The LINO Function

The LINO function indicates to BASIC that a number represents a
statement line number. For the RESEQUENCE command to properly alter a
line number that appears in an expression, the line number must appear
as an argument to the LINO function.

Although you can use the LINO function in any expression, it is most
useful when used 1in conditional expressions involving the ERL error
variable. The format of this function is as follows:

LINO(line number)

where:

line number is a valid line number.

PROGRAM CONTROL

The following example shows the LINO function used to maintain the
same line reference before and after a RESEQUENCE command.

READY
oLDn LINO.R20O

REALY

LISNH

00010 ONERROR GOTO 50

00020 INFUT *FLEASE ENTER A VALUE'jA

00030 FRINT A

00040 GO TO 70

00050 IF ERL = LINO(20) THEN FRINT *TRY AGAIN"
00060 RESUME

00070 ENI

READY
RESEQUENCE

READY

LISNH

00100 ONERROR GOTO 140

00110 INFUT *FLEASE ENTER A VALUE®"j#A

00120 PRINT A

00130 GO TO 160

00140 IF ERL = LINO(110) THEN FRINT "TRY AGAIN®
00150 RESUME

00160 ENI

READY

Note that after the RESEQUENCE command is given, the expression in
line 140 refers to the same line as it did before the RESEQUENCE.

4.9 STATEMENT MODIFIERS

THE BASIC statement modifiers are a collection of five keywords that
are used with certain BASIC statements to qualify or restrict the
execution of that statement. These modifiers enable you to:

1. Indicate conditional execution of a statement (IF, UNLESS,
WHILE, UNTIL modifiers)

2. Create an implied loop (FOR modifier)

These statement modifiers cannot stand alone; they must be appended
to a statement. Most BASIC statements can have modifiers. There are
some, however, that cannot. Table 4-1 lists the BASIC statements that
can and cannot have modifiers.

PROGRAM CONTROL

Table 4-1
BASIC Statements
Can Have Modifiers Cannot Have Modifiers
CALL NAME-AS COMMON
CHAIN NODATA DATA
CHANGE ONGOSUB DEF
CLOSE ONGOTO DIM
DELETE ONERROR END
FIND OPEN FNEND
FNEXIT PAGE FOR
GET PRINT IFEND
GOSUB PUT IFMORE
GOTO RANDOMIZE IMAGE
IF-THEN-ELSE READ MAP
INPUT RESET NEXT
INPUT LINE RESTORE REM
KILL RESUME SUB
LET RETURN SUBEND
LINPUT SCRATCH UNTIL
MARGIN SLEEP WHILE
Matrix STOP
Initialization SUBEXIT
MAT INPUT WAIT
MAT PRINT UPDATE
MAT READ
MOVE
When you use statement modifiers with the various formats of the IF
statement, the following rules apply:
1. Append statement modifiers to either the THEN clause or the
ELSE clause of an IF statement.
2. The statement modifier applies only to the clause it is
appended to and not to the statement as a whole.
If you have more than one statement on a line, the modifier applies

only to

the statement immediately preceding it.
more than one statement modifier to a single statement.
BASIC processes the modifiers from right to left.

You can also append
In this case,
Statement modifiers

are reserved words. See Appendix D for a 1list of BASIC reserved
words.
4.9.1 The IF Modifier

The IF modifier has the following format:

statement IF condition
where:
statement is any statement from the first two columns of the
above table.
condition is any numeric expression.

PROGRAM CONTROL
BASIC tests to see if the condition is true or false: the statement
executes only if the condition is true. For example:
00010 FRINT X IF X <>0

BASIC prints the value X only if X is not equal to 0. The example is
the same as the IF-THEN-ELSE statement:

00010 IF X <> O THEN FRINT X
You cannot add an ELSE or a THEN clause to the IF modifier. However,
the reverse 1is true: you can add the IF modifier in a THEN or ELSE
clause. The IF modifier in the following example applies only to the
statement PRINT B:

00010 IF A=K THEN FRINT B IF R<100

BASIC prints the value of B only when both the following conditions
are true:

1. A is equal to B, and

2. B is less than 100.

4.9.2 The UNLESS Modifier
The UNLESS modifier has the following format:

statement UNLESS condition

where:
statement is any statement from the first two columns of the
Table 4-1.
condition is any valid numeric expression.
BASIC tests to see if the condition is true or false; the statement

executes only if the condition is false. For example:
00010 PRINT A UNLESS A=0
BASIC prints the value of A only if A is not equal to 0.

The following statements each produce the same results as the UNLESS
modifier:

PRINT A IF NOT A=0
IF NOT A=0 THEN PRINT A
IF A <> 0 THEN PRINT A

The UNLESS modifier simplifies the negation of a logical condition.

PROGRAM CONTROL

4.9.3 The WHILE Modifier
The WHILE modifier has the following format:

statement WHILE condition

where:
statement is any statement from the first two columns of
Table 4-1.
condition is any valid numeric expression.

BASIC tests to see if the condition is true or false; the statement
executes repeatedly as long as the condition is true.

For example:

00010 Y=2
00020 Y=Y"(2) WHILE Y<1Eé
00030 FRINT Y

Line 20 executes over and over as long as Y (2) 1is less than 1E6.
When Y™ (2) is greater than or equal to 1E6, BASIC executes line 30.

The WHILE modifier sets up a loop wherein one statement executes
iteratively if the condition 1is +true. There is no formal control
variable as in a FOR-NEXT loop. Instead, the structure of the 1loop
modifies the values which determine when to terminate the loop.

The previous example is equivalent to:

00010 Y=2

00020 Y=Y"(2)

00030 IF Y~ (2)<1Eé6 GOTO 40 ELSE GOTO 50
00040 FRINT Y

00050 END

Be careful not to create an infinite loop with the WHILE modifier.
The following sequence never terminates properly:

00010 X=X+1 WHILE I<1000

I is automatically set to 0 at the beginning of program execution as
usual; therefore I 1is 1less than 1000. The condition of the WHILE
modifier is unrelated to the assignment X=X+1l. Because 0 1is always
less than 1000, the statement causes an infinite loop.

In the following example, line 10 reads the data in line 30 until it
reaches the constant 10. Then the WHILE condition is no longer true,
and line 20 executes.

00010 READL Z WHILE Z < 10

00020 IF Z >= 10 THEN PRINT "7?WHILE ON REAI FAILED."
00030 DATA 1+2+394y5969798+9510

00040 ENI

READY
RUNNH

PWHILE- ON READ FAILED.

PROGRAM CONTROL

4.9.4 The UNTIL Modifier
The UNTIL modifier has the following format:

statement UNTIL condition

where:
statement is any statement from the first two columns of
Table 4-1.
condition is any valid numeric expression.
BASIC tests to see if the condition is true or false; the statement

executes repeatedly as long as the condition is false. For example:

00003 X 40
00010 X X + 1 UNTIL X >795
00020 FRINT X

i oH

Line 10 executes repeatedly as long as X is less than or equal to 795.
The statement continues until the condition becomes true.

The UNTIL modifier is similar to the WHILE modifier in that it does
not need a formal control variable to determine loop termination.

The previous example is equivalent to:

00003 X = 40

00010 IF X 795 THEN GOTO 25
00015 X = X + 1

00020 GOTO 10

00025 FPRINT X

Be careful not to create an infinite loop with the UNTIL modifier:
00010 A=1i\ E=2\ (=3
00020 LET D=C+2%A UNTIL D»=50
00030 IF Dx=50 THEN FRINT I

In the above example, line 20 continues to execute as long as D is

less than 50. Since D 1is never greater than or equal to 50, this
example is an infinite loop at line 20.

4.9.5 The FOR Modifier

The FOR modifier has two formats:

statement FOR variable = num exprl STEP} num expr2 {WHILE} conditional expr
BY UNTIL

statement FOR variable = num exprl TO num expr2 [{STEP} num expr3]
BY

PROGRAM CONTROL

The FOR modifier is used to create an implied loop on a single line.
For example:

00010 FPRINT Is SQR(I) FOR I=1 TO 10
is equal to:

00010 FOR I= 1 TO 10
00020 FRINT Is 8SQR (D)
00030 NEXT I

By using the FOR modifier for simple loops, you eliminate the need for
the FOR-NEXT statement. Keep in mind that the FOR modifier applies
only to one statement on the line. Hence, it iterates only one
statement, even in multi-statement lines. You can have many FOR
modifiers in a single program.

The STEP and BY clauses increment the loop index just as they do in
the FOR statement. The default is +1.

00010 FRINT A=R¥C FOR I=1 TO 50 STEF 3

If you use the WHILE or UNTIL option, the loop continues as long as
the WHILE condition is true, or as long as the UNTIL condition is
false.

The following is an example of a FOR modifier and an IF modifier:

00010 IIM X (100)
00020 PRINT Iy X(I) IF X(I) «»0 FOR I=1 TO 100

With more than one modifier, BASIC reads from right to left.
Therefore, the implied loop, I=1 TO 100, executes first, then the IF
modifier is tested. Appending more than one modifier to a statement
is known as nesting modifiers.

In the following example, the modifiers are tested from right to left.
If the first modifier fails, BASIC continues execution at the next
statement of the program (not the next modifier on the line).

00010 LET A=A+J FOR J=1 TO 10 IF A+J<10

00020 LET B=R-J FOR J=1 TO 10 UNLESS R>-10

00030 LET C=C+J%2 FOR J=1 TO 4 WHILE C-<10

00040 LET D=D-J FOR J=2 TO 10 STEF 2 UNTIL D=-10
00050 LET F=I+J FOR I=1 TO § FOR J=2 TO 6

00060 END

CHAPTER 5

PROGRAM SEGMENTATION

The methods of dividing large programming tasks into a series of
smaller and more easily managed modules are refered to as program
segmentation. Program segmentation is useful when you have a large
program that you want to divide into a series of smaller program
segments or discrete programs. BASIC offers two methods for dividing
large programs. They are subprogramming and chaining.

A subprogram is a series of statements which are executed only when
called from the main program or another subprogram. Often an
efficient way to structure a BASIC program is to have a main program
that calls individual subprograms when certain tasks must be
performed. Structuring a program in this way makes it clear and easy
to debug.

The second method of program segmentation, chaining, enables you to
transfer control from the current program in the work area to a second
program, which is brought into the work area to replace the first
program. By dividing a program into two separate programs, connected
by a CHAIN statement, you can avoid any size limitations imposed by
the system. :

You can define common variable storage in memory that enables you to
retain variable values when control passes from a one program segment
to another, or when control passes from one program to another.
Program segmentation is described in the following sections:

5.1 Using Subprograms

5.2 Transferring Control to Another Program - The CHAIN Statement
5.3 Declaring Common Variable Storage ~ The COMMON Statement

5.1 USING SUBPROGRAMS

A subprogram allows you to divide a 1large task 1into smaller, more
manageable units which in turn can be accessed individually.

You can use subprograms in two ways:

1. As a segment of a main program which can be called several
times from the main program

2. As a mini program, which can be called by several different
main programs

In both cases, the subprogram 1is executed by a CALL statement
contained in the main program.

PROGRAM SEGMENTATION

The SUB statement is the first 1line of a subprogram and has the
following format:

SUB name E(dummy argument(s)):l

where:
name is the unique name for the subprogram.
(The length of the name is
system-specific.)
(dummy argument (s)) represent one or more parameter

variables and file references separated
by commas. The variables must agree 1in
type and number with those of the
calling sequence.

If you use the SUB statement in a multi-statement line, it must be the
first statement in that line.

The body of the subprogram may contain any valid BASIC statement
except for statements which affect transfer out of the subprogram.
Transfers into a subprogram must be to a SUB statement; transfers out
of a subprogram must be from a SUBEXIT or SUBEND statement.

All variables in a subprogram are local to that subprogram. These
local variables are initialized to 0 or a null string upon each entry
to the subprogram. Also, any data used from DATA statements are local
to the subprogram. The DATA pointer in the main program is not
affected by subprogram values.

To exit from a subprogram, use a SUBEND statement or SUBEXIT
statement. The SUBEND statement has the following format:

SUBEND
The SUBEND statement must be the final statement of a subprogram.
The SUBEXIT statement has the following format:
SUBEXIT
SUBEXIT returns control to the calling program via the SUBEND
statement. It has the same effect as GOTO n, where n is the line

number of the appropriate SUBEND statement.

SUBEXIT is invalid in a main program or multi-line function
definition.

5.1.1 Executing a Subprogram - The CALL Statement

The CALL statement transfers control to the subprogram, provides
transfer of parameter values, and saves the state of the calling
program.

The CALL statement has the following format:

CALL name [(actual argument(s))]

w
I
N

PROGRAM SEGMENTATION

where:
name is the subprogram name defined 1in the
SUB statement.
(actual argument(s)) is one or more variables, constants, and

expressions, separated by commas. These
parameters must agree in position, type,
and number with the dummy list in the
SUB statement.

You can place the CALL statement anywhere in a main program,
subprogram, or multi-line DEF. When you reference a subprogram with
the CALL statement, BASIC replaces the dummy arguments with the
corresponding actual arguments listed with the CALL. The subprogram
then works with these parameters.

The following is a SUB statement:
00500 SUR TEST (AsR$)

This is a corresponding CALL statement that transfers control to the
subprogram TEST:

00050 CALL TEST (CrA$)

Upon returning to the main program, BASIC executes the statement
following the CALL statement.

5.1.2 Using Dummy and Actual Arguments

Because you can reference subprograms at more than one point
throughout a program, many of the values used by the subprogram may
change each time it is used. Dummy arguments in subprograms take the
place of the actual values passed to the subprogram when it is called.

Dummy arguments indicate the data type of the actual arguments they
represent. The position, number, and type of each dummy argument in
the SUB statement list must agree with the position, number, and type
of each actual argument in the CALL statement list.

Items passed to subprograms can be any wvalid variable, constant,
expression, array, or array element. The value of any item can be
used as a file number in the subprogram. BASIC passes items from the
main program to the subprogram either by (1) value or by (2) reference
or address.

When passing by value, BASIC makes a temporary copy of the value 1in
the calling program and uses the copy for calculations 1in the
subprogram. The value in the calling program remains unchanged. The
following items are passed by value:

1. constants

2. expressions

3. array elements

PROGRAM SEGMENTATION

When passing by reference or address, BASIC takes the actual value
from the 1location in the main program, uses the value in the
subprogram, then replaces the value in the main program. In this
case, because of calculations in the subprogram, the value passed by
reference could change in the main program. The following items are
automatically passed by reference:

1. wvariables
2. entire arrays

It is not possible to pass entire arrays by value. Individual
elements of a 1list or table, however, are always passed by value.
When an individual entry in an array is passed to a subprogram, it is
received as a numeric or string variable depending on its type. For
example:

20 CALL ELEMENTS (RCD(3I))
50 SUR ELEMENTS (ARRAY)

The CALL passes the copy of the value in array element BCD(5) to the
subprogram. The SUB statement, in subprogram ELEMENTS, accepts the
value in the variable name ARRAY.

If you specify an entire array in either argument 1list, you do not
include the subscript. For example:

C() is a l1list, that is, a one-dimensional array
C(,) is a matrix, that is, a two-dimensional array

When you pass an entire array to a subprogram, its dimensions remain
the same as in the main program, although its values may have changed.
It is invalid to use a DIM (dimension) statement on an array you
specify in the SUB statement. You can, however, redimension such an
array with a MAT statement (See Section 7.1). The array will then be
redimensioned in the main program as well. Arrays local to the
subprogram must appear in DIM statements within the subprogram.

Functions can be defined inside subprograms. A function definition is
local to the subprogram in which it is defined. However, you can pass
the value of a function as an expression.

You can also pass files to a subprogram. BASIC passes the position of
the file pointer to the subprogram unchanged from its position after
the last operation affecting the file in the main program. Any
operation on a file in a subprogram also affects the file in the main
program.

You can also open a file within a subprogram. The file remains open
after BASIC returns to the main program. When you include a file
reference in a SUB statement, the reference must be a variable name.

PROGRAM SEGMENTATION

The following example illustrates argument lists in the SUB and CALL
statements:

LISNH

00010 AZ=SA\RZ=10%\C%=15%

00020 CALL ARG (BRX)

00030 CALL ARG (C%)

00040 PRINT "AZ= "3AXi "Ri= *"$R%$ "CX= "iCX
00050 END

00060 SUR ARG (D%)

00070 A% = 30%

00080 DX = DZLXAZL

00090 SUREND

READY
RUNNH
AZ= 5 BRZ= 300 CxZ= 450

The subprogram ARG is called twice in this program with the CALL
statements on 1lines 20 and 30. The first time the subprogram is
referenced, the value stored in B% is passed to the integer wvariable
D%. The second CALL statement passes the value stored in C% to the
integer variable D%. Notice that wvariables are 1local to the
subprogram. Consequently, you <can use the same variable name in a
main program and a subprogram without interference.

The following table summarizes the proper form for variable names,
functions, arrays, and files references in SUB and CALL statements.

Table 5-1
Argument Data Types
Data Type Dummy Argument Actual Argument
SUB Statement CALL Statement

real A B
integer A% B%
string AS BS
entire list A(), A%(), AS() B(), B%(), BS$()
entire matrix A(,), A%(,), AS(,) B(,), B%(,), BS(,)
file A,C 1, N
array element A D(I)

5.2 TRANSFERRING CONTROL TO ANOTHER PROGRAM - THE CHAIN STATEMENT

The CHAIN statement transfers control from the current program to a
program stored in a file. CHAIN first closes all files and erases all
program lines, arrays, and variables. It does not necessarily erase
variables in blank common; see Section 5.3.2. Finally, it loads the
program from the file, compiles it if necessary, and starts the
execution of the new program. Thus, the CHAIN statement has the same
effect as an END statement followed by an OLD command and then a RUN
command.

The format of the CHAIN statement is:

CHAIN string [ﬁINE line number]

PROGRAM SEGMENTATION

where:

string is a file specification for the file
containing the new program. The string can
be any string expression. If no file type is
specified, .EXE is assumed.

LINE line number specifies the line to start execution in the
new program. If no line number is specified,
then execution starts at the lowest numbered
line.

Consider the following example:

The file specified by "SEGl" contains:

00005 FRINT "SEG1 IS WORKING®" IPRINTS IDENTIFYING MESSAGE
00010 OPEN "DATA1®* FOR OUTFUT AS #1 OPENS OUTPUT FILE

00020 FOR I=1 TO 100 IWRITES 0OUT ALL THE

00030 PRINT #1, IX2 IEVEN NUMERERS 2 TO 200
00040 NEXT I ITO THE FILE

00050 CLOSE #1 ICLOSES THE FILE

00060 CHAIN "SEG2.R20° ICHAINS TO THE NEXT

00070 ENID ISEGMENT

The file specified by "SEG2" contains:

00005 FRINT "SEG2 IS WORKING® 'PRINTS IDENTIFYING MESSAGE
00010 OFEN "DATA1" FOR INFUT AS #1 TOPENS EXISTING FILE

00020 FOR I=1 TO 100 FINFUTS THE NUMEERS

00030 INFUT #1,» J IFROM THE FILES

00040 T=T+J FAND ARG THEM TOGETHER
00050 NEXT I ISTORING THE TOTAL IN T
00060 FRINT *THE TOTAL IS"i7T IFRINTS THE TOTAL ON THE
00070 CLOSE #1 ICLOSES INFUT FILE

00080 END

A run of these programs produces the following output:

RUNNH

SEG1 IS WORKING
SEG2 IS WORKING
THE TOTAL IS 10100

If the file specified by the CHAIN statement does not exist, BASIC
prints an error message. To allow error recovery, BASIC does not
erase the current program lines, variables, or arrays from the work
area. However, all files are closed as they normally would be.

Be sure to SAVE a program containing a CHAIN statement before running
it; otherwise, the program will erase itself from memory.

5.3 DECLARING COMMON VARIABLE STORAGE - THE COMMON STATEMENT

The COMMON statement defines variables whose values are shared among
program segments (for example, a main program and subprograms)
connected by a SUB statement or between two programs connected by a
CHAIN statement.

PROGRAM SEGMENTATION

The variables declared within a COMMON statement (COMMON variables)
may be any BASIC variable, including arrays. Arrays are declared in a
COMMON statement the same way they are declared in a DIMENSION
statement. Do not, however, define the same array in the same program
segment using both a DIMENSION statement and a COMMON statement. This
redundency causes a fatal compiler error.

The format of the COMMON statement is as follows:

COM [MON]Bname)]varl:,var ,var..]

where:

COM is the unique abbreviation.

name is an optional variable name given to the COMMON area.
If a name 1is included, the resulting area defined by
the statement is termed "named" COMMON. If a name 1is
not included, the resulting area defined by the
statement is termed "blank" COMMON.

var is a real, integer, string, or array variable, or any

combination of these. Separate multiple wvariable
declarations with commas.

The conventions to follow when wusing the COMMON statement vary
depending on whether you want to declare COMMON variables whose values
are retained across a CALL statement or across a CHAIN statement.

To declare COMMON variables across a CALL statement, see Section
5.3.1. To declare COMMON variables across a CHAIN statement, see
Section 5.3.2.

5.3.1 Sharing COMMON Variables across a CALL Statement

The COMMON statement declares variables whose values are retained when
one program segment transfers control to another program segment using
a CALL statement. Unlike when arguments are passed to a subprogram
using the CALL statement (Section 5.1.2), the COMMON statement
declares that variables are local to all program segments that include
a COMMON statement accessing the same area.

The following list of rules pertains to sharing variable values across
a CALL statement.

1. Each program segment must contain a COMMON statement
referencing a COMMON area by name. All COMMON statements
referencing the blank COMMON area must have no name.

2. The variables in corresponding COMMON statements must agree
positionally in data type, although the variable names may be
different. If the data types do not match positionally,
BASIC equivalences the data values without issuing an error
message.

3. A variable used in a COMMON statement must be declared in the
COMMON statement before it can be used anywhere else in the
program segment.

4. Variables in a COMMON area retain their values when a program
segment 1is called that contains a COMMON statement declaring
the same area.

PROGRAM SEGMENTATION

5. COMMON string variables are fixed length. The string length
must be specified in the same manner as it is specified in
the MAP statement, for example:

00010 COMMON LINE$=80%sMY.ARRAY$(SZ)=10%sXX$

In this example, LINES has a fixed length of 80 characters;
each element of MY.ARRAYS has a length of 10 characters; the
variable XX$, however, has a default length of 16 characters.

If the string 1is larger than the defined 1length, BASIC
left-justifies and truncates the string to the defined
length. 1If the string is smaller than the defined 1length,
BASIC left-justifies and pads the string on the right with
blanks.

6. COMMON variables retain their values until BASIC executes an
END or a CHAIN statement.

7. The initial COMMON statement must be larger than all other
statements referencing the same COMMON area.

8. COMMON statements that are on multiple lines but that declare
the same COMMON area can have no other intervening BASIC
statements or COMMON statements declaring other COMMON areas.
For example:

valid Invalid
00010 COMMON (FIRST) AYR 00010 COMMON (FIRST) AsE
00020 COMMON (FIRST) C Q0020 COMMON (SECOND) Z%
00030 COMMON (SECOND) Z% 00030 COMMON (FIRST) C

In the valid example, the declaration of COMMON area FIRST is
equivalent to:

00010 COMMON (FIRST) AsEsC

The following example shows how the COMMON statement is used to share
variable values between a program and a subprogram:

00010 COM (CAT) ArX$sM%
00020 COM (DOG)Z

00030 A=1

00040 X$='HELLO’

00050 M%Z=7

00060 PRINT AsX$§M%Z
00070 CALL SUEFRG
00080 ENI

00090 !

00100 SUR SUERFRG

00110 COM (CATIFsT$sLZ
00120 PRINT FiT$s5L%
00130 SUREND

5-8

PROGRAM SEGMENTATION

Note that the variable names in the two COMMON statements do not need
to be the same. Execution of this program demonstrates that the three
variables have been passed from the main program to the subprogram.
The program also contains the variable Z in the main program. Since
COMMON (DOG) has not been declared in the subprogram, the subprogram
cannot reference the location containing Z in the main program.

RUN

NONAME . B20

Fridawy March 2y 1979 15116144
1 HELLO 7
1 HELLO 7

5.3.2 Sharing COMMON Variables across a CHAIN Statement

When creating COMMON statements to share variable values across a
CHAIN statement, adhere to the rules 1listed in Section 5.3.1 in
addition to the rules for using blank COMMON statements listed in this
section.

The following list of rules pertains to using the COMMON statement to
retain variable values across a CHAIN statement.

1. A blank COMMON statement must be the first COMMON statement
in both programs for the variable values to be retained
across a CHAIN statement.

2. The COMMON variable declarations in both programs must agree
in data type, position, and number. If the variables do not
agree in data type, position, and number, BASIC prints a
warning message indicating that the variable values have not
been preserved and initializes each variable in the second
COMMON statement to zero, if the variable is numeric, or to a
null string, if the variable is a string.

3. Multiple blank COMMON statements declaring variables whose
values will be retained across a CHAIN statement can have no
other intervening BASIC statements or any COMMON statements
declaring other areas.

The following example demonstrates the use of blank COMMON statements
for retaining variable values across a CHAIN statement:

NONAME , R20
Mondadsy March Sy 1979 00151344

00010 COMMON A$r RZy C
00020 A% ‘A String’
00030 EX 12345

00040 C = 123.34

HoH

000350 FRINT ‘The lines below will he the same if COMMON Frreserved,

00060 FRINT

00070 FRINT A$s RZy C
00080 CHAIN ‘CHNFRG,E20’
00090 ENID

READY
RUN

NONAME . E20
Mondags March Sy 1979 00151849

5-9

The lines below will be the same if COMMON is rreserved.,

A String
A Strindg

Comrile time?

Run time!

PROGRAM SEGMENTATION

12345
12345

0.129 secs
0,217 secs

123.34
123,34

Elarsed time!?

READY

LIST

CHNFRG.B20

Mondaygy March Sy 1979 00151154
00010 COMMON A%» BXZy C

00020 FRINT A$s BRI, C

00030 FRINT
00040 END

0:00:01

In this example, a blank COMMON area is used in the first

declare
CHAIN statement.

The

blank COMMON

statement

must

be

program to

the

statement in any program which accesses the blank COMMON area.

variables that will be available to the program called by the

first

CHAPTER 6

USING FUNCTIONS

Functions perform a series of numeric or string operations on the
arguments you specify and return a result to BASIC. You can use
functions which return numeric values in numeric expressions and
functions which return string values in string expressions. BASIC
provides numeric functions; string functions; conversion functions;
date, time, and directory functions; terminal-format file functions;
and user-defined functions.

The BASIC functions are described in the following sections:

Section 6.1 Numeric Functions

Section 6.2 String Functions

Section 6.3 Conversion Functions

Section 6.4 Date, Time, and Directory Functions
Section 6.5 Terminal-Format File Functions
Section 6.6 System Functions

Section 6.7 User-Defined Functions

6.1 NUMERIC FUNCTIONS

The BASIC-PLUS-2 numeric functions perform standard mathematical
operations.

BASIC provides the following trigonometric functions:
1. SIN - sine
2. COS - cosine
3. TAN - tangent
4. COT - cotangent
5. ATN - arctangent
6. ATN2 - two-argument arctangent
In addition, BASIC has a special function, PI, which returns the value

of a transcendental number frequently used as a trigonometric
constant.

USING FUNCTIONS

BASIC also has algebraic functions:
1. SQR - the square root of a number

2. EXP - the value of e, an algebraic constant, raised to any
power

3. LOG and LOGl0 - the natural and common logarithms of a number
4. INT - the integral part of a number

5. ABS - the absolute value of a number

6. SGN - the sign of a number

7. FIX - the truncated value of a number

All BASIC numeric functions return real numbers (internally) as
opposed to integer numbers. A numeric argument to a function is
converted to integer by truncation before it is used in calculations.

6.1.1 Trigonometric Functions (PI, SIN, COS, TAN, COT, ATN, ATN2)
The format of these functions is:

PI

SIN (expression)

COS (expression)

TAN (expression)

COT (expression)

ATN (expression)

ATN2 (expression,expression)

BASIC provides functions, SIN and COS, to find the sine and cosine of
an angle in radians. The PI function returns a numeric constant,
3.141593. Do not include an argument with PI; if you do, BASIC
prints an error message.

Consider the following example that wuses the SIN, COS, and PI
functions:

READY

LISNH

00010 REM ~ CONVERT ANGLE (X) TO RADIANSs AND
00020 REM — FIND SIN AND COS

00030 FRINT "DEGREES"y"RADIANS"»"SINE®y"COSINE"
00040 INFUT X \ GOTO 999 IF X0

00050 LET Y=X%FI/180

00060 FRINT XsY»SINCY)»COSC(Y)

00070 GO TO 40

00999 END

USING FUNCTIONS

READY

RUNNH

DEGREES RADIANS SINE COSINE
? 0

0 0 0 1
? 10
10 0.1745329 0.1736482 0.9848078
? 20

20 0.3490658 0.3420201 0.9396926
? 30
30 0.5235988 0.5 0.8660254
? 360
360 6.283185 0 1
? 45

45 0.7853982 0.7071068 0.7071068
? -1

READY

Note that in this example, PI is used to convert degrees to radian
measure (line 50).

The TAN function returns the tangent of the argument you supply. The
TAN function has the following format:

TAN (expression)
where:
expression is given in radians.

The COT function returns the cotangent of the specified argument. The
COT function has the following format:

COT (expression)
where:

expression is given in radians. The functions COT(X)
and TAN(PI/2-X) are equivalent.

The ATN function returns the value in radians of the angle whose
tangent is equal to the specified expression. The format of the ATN
function is:

ATN (expression)
The ATN function returns a value in the range +PI/2 to -PI/2.
The ATN2 function returns the value of the angle whose tangent is
equal to expressionl divided by expression2. The ATN2 function has
the following format:

ATN2 (expressionl,expression2)
where:

expression (both expressions) must be given in radians.

If the division causes an underflow, a

warning message is printed and the function
returns a zero.

USING FUNCTIONS

The following example tests the ATN function. The user inputs an
angle in degrees, converts it to radians, and calculates the tangent
of the angle according to this formula:

TAN(X) =SIN(X)/COS(X)

Then the program converts the tangent to an angle using the ATN
function and prints the results. The angles returned by the ATN
function should be the same as the angles supplied by the user.

LISTNH

20 PRINT “SUFFLY AN ANGLE IN DNEGREES*

23 PRINT "ANGLE"» "ANGLE"» *TAN(X) " » "ATAN(X) " "ATAN(X) "
26 PRINT “(DEGS)"y"(RADNS)"yy " (RADRS) "y " (NEGS) "

30 INFUT X\GO TO 200 IF X0

40 Y=X%PI/180

45 IF ABS(COS(Y))<.01 THEN 100

50 Z=8SINC(Y)/COS(Y)

70 FRINT XsYsZyATN(Z)yATN(Z)%180/F1 ICOMFUTE ARCTANGENT ANI FRINT

85 FRINT ! RESULTS.
?0 GO TO 30

100 PRINT "“ANGLE ERROR"

110 GO TO 30

200 END

READY

RUNNH

SUPFLY AN ANGLE IN DEGREES

ANGLE ANGLE TANCX) ATAN(X) ATAN(X)
(DEGS) (RADIS) (RADS) (DEGS)
? 0

0 0 0 0 0

? 45

45 . 785398 1 . 785398 45

? 10

10 + 174533 176327 + 174533 10
? -1

READY

6.1.2 Algebraic Functions

BASIC has several algebraic functions that you can use in
calculations:

SQR Square root function

EXP Exponential function

LOG Logarithm function

LOG10 Common logarithm function
INT Integer function

ABS Absolute value function
SGN Sign function

FIX Fix function

USING FUNCTIONS

6.1.2.1 Square Root Function (SQR) - The SQR function returns the
square root of the expression you specify. The format of the SQR
function is:

SQR T (expression)

The T in the function name 1is optional. If the wvalue of the
expression is negative, BASIC prints a warning message and the
function returns the square root of the absolute value of the
expression.

READY

LISNH

00010 INFUT X \ GOTO 999 IF X=-1
00020 LET Z=SQR(X)

00030 FRINT Z

00040 GO TO 10

00999 END

READY
KUNNH

? 14

4

? -100

% 54 Attemrt to take SOGR of 3 nedative ardument at lime 00020 of MAIN FROGRAM
10
? 1000
31.62278
P 1234%
111,1081
AT
S50
P 1970
44.38468
? —-1

READY

6.1.2.2 Exponential and Log Functions (EXP, LOG, and LOGl0) - The
exponential function, EXP, returns e, an algebraic constant, raised to
the power specified by the expression, where e is the base of the
natural logarithm system. The value of e is approximately 2.71828.
The format of the exponential function is:

EXP (expression)

The logarithm function LOG returns the logarithm to the base e of the
expression.

The format of the LOG function is:
LOG (expression)

EXP and LOG are related functions. Specifically, EXP is the inverse
of LOG. The following formula describes their relationship:

LOG(EXP (X)) = X

USING FUNCTIONS

Consider the following examples. Note that the output from one
example is used as the input for the other.

READY READY
LISNH LISNH
00010 INFUT X\GOTO 999 IF X-0 00010 INFUT X\GOTO 999 IF X0
00020 FRINT EXF(X) 00020 FRINT LOG(X)
00030 GO TO 10 00030 GO TO 10
00999 ENI 00999 END
READY REALY
RUNNH RUNNH
T4 ? 54.59815
54.59815 4
? 10 P 22026.47
22026.47 10
T 2.42100 P 12344.92
12344,92 ?.421
P 4.,6051704 ? 100
100 4.60517
P23 ? 7.20049E10
7+20049E410 28
? -1 7 -1
REALY READY

The LOGl0 function returns the common logarithm (base 10) of the
specified value. The form of the LOGl1l0 function is:

LOG1l0 (expression)

Programs that require the computation of logarithm (base 10) do not
have to use the conversion formula described above. For example:

READY

LISNH

00010 INFUT X

00020 FRINT * X*s* LOG1O(X)*
00030 FOR I=1 TO 3

00040 PRINT X"IsLOG1O(X™I)
00050 NEXT 1

00999 ENI

READY

RUNNH
7?5732
X LOG1O(X)
S5.732 0.7583062
32.85582 1.516612
188.3296 2.274919
1079.505 3.033225
6187.723 3.791531
READY

If the expression supplied for the EXP function is less than or equal
to -89.415, BASIC prints a warning message and returns a zero. If the
EXP expression is greater than or equal to 88.029, BASIC prints a
warning message and returns the largest positive number.

If the expression supplied for the LOG or LOGl0 function is equal to
or less than zero, BASIC prints a warning message, and the function
returns either a zero if the expression is negative or the smallest
negative number.

USING FUNCTIONS

6.1.2.3 Integer Function (INT) - The integer function returns the
value of the greatest integer that is less than or equal to the
expression you specify. The format of the integer function is:

INT (expression)
For example:

READY

LISNH

00010 FPRINT INT(34.47)
00020 FRINT INT(33000.9)
00999 END

READY

RUNNH
34
33000

READY

The INT function always returns the value of the greatest integer that
is less than the value of the specified expression when the value is
positive; however, when you specify a negative number, INT produces a
number whose absolute value is larger. For example:

READY

L.ISNH

00010 PRINT INT(-23.45)
00020 FRINT INT(-14.7)
00030 FRINT INT(-11)
Q0999 END

READY
RUNNH
-24
~13
-11

READY
Note that the value returned by INT is a real number.

You can use the INT function to round off numbers to the nearest
integer by adding .5 to the argument. For example:

READY

L.ISNH

00010 PRINT INT(36.67+.5)
00020 PRINT INT(-5.,1+4.5)
00999 END

READY
RUNNH

37
-9

READY

You can also use INT to round off a number to any given decimal place
or any integral power of 10. Do this by using the formula:

rounded off number = INT(number*10"P+.5)/10"P

USING FUNCTIONS

where P represents the number of places of accuracy and is positive
for accuracy to the right of the decimal point and negative for
accuracy to an integral power of 10.

Consider the following example, which rounds numbers to the number of
decimal places specified (line 80):

READY

LISNH

00010 REM PROGRAM TO ROUND' OFF DECIMAL NUMERERS
00020 FRINT "WHAT NUMEER DO YOU WISH TO ROUND OFF"3
00030 INFUT N

00040 IF N = ~9999 GO TO 999

00050 FRINT "TO HOW MANY FPLACES®;

00060 INFUT F

00070 PRINT

00080 LET A=INT(NX10"F+.5)/(10"F)

00090 FRINT N3*="3A3"TO"$F35 "DECIMAL FLACES.®
00100 PRINT

00110 GO TO 20

00999 END

READY

RUNNH

WHAT NUMEER N0 YOU WISH TO ROUND OFF % 56,1237
TO HOW MANY FLACES 7 2

S56.1237 = 56,12 TO 2 DECIMAL FLACES.

WHAT NUMEBER DO YOU WISH TO ROUND OFF 7 8.44%
TO HOW MANY FLACES 7 1

8,449 = 8.4 TO 1 DECIMAL PLACES.
WHAT NUMERER DO YOU WISH TO ROUND OFF 7 -9999
READY

6.1.2.4 Absolute Value Function (ABS) - The ABS function returns the

absolute value of the specified expression. The form of the ABS
function is:

ABS (expression)

USING FUNCTIONS

The absolute value of a number is always positive. If the expression
is a positive number, the absolute value is equal to that number. If
the expression is a negative number, the absolute value is equal to -1
times the number. For example:

REALDY

LISNH

00010 INFUT X \ GO TO 999 IF X=0
00020 X=ARS(X)

00030 FRINT X

00040 GO TO 10

00999 END

READY
RUNNH
? -35.7
35.7

2

2BE20
2.,8E421

T 10555567
1.055557E4+07
7T 10.12345
10,12345

T ~44.5556668
44 .55567

7?0

3 Y

READY

Note that the ABS function returns a real number even if the argument
is an integer.

6.1.2.5 Sign(SGN) and Fix (FIX) Functions - The sign function
determines whether an expression is positive, negative, or equal to 0.
The format of the SGN function is:

SGN (expression)

If the expression is positive, SGN returns a value of +1. If the
expression 1s negative, SGN returns a value of -1. TIf the expression
is equal to zero, SGN returns a value of zero. For example:

READY

LISNH

00010 A=~7,32

00020 R=.,44

00030 C=0

00040 PRINT "A=23iAy"RB=23By"C=23C
00050 FRINT "SGN(A)="iSGN(A)
00060 FRINT *SGN(R)="§iSGN(R)y
00070 PRINT "SGN(C)I="3i8GN(C)
00999 END

READY

RUNNH

==7.32 B= 0.44 C= 0
SGN(A)=-1 SGN(R)= 1 SGN(C)= 0

READY

USING FUNCTIONS

Note that the SGN function returns the values as real numbers.
The FIX function has the following format:
FIX (expression)

The FIX function returns the truncated value of the expression you
supply as a real number not an integer. For example:

FIX(~-.5) returns a 0.
FIX(2.6) returns a 2.

The FIX function is equivalent to:

SGN (X) *INT (ABS (X))

6.1.3 Random Numbers (RND Function and RANDOMIZE Statement)

The RNLD function supplies a series of random numbers to a BASIC
program. This function is useful if you want to simulate a situation
that involves input of an unknown quantity, for example, a roll of the
dice. When you include the RND function in a program, it produces a
predictable sequence of numbers that are seemingly unrelated. Because
a computer always produces the same results given the same starting
conditions, the RND function does not create a truly random series of
numbers. Every time you execute the same program you will receive the
same series of random numbers. Therefore, the RND function 1is known
as a pseudo random number generator.

The RND function has the following format:

RND

The RND function returns a random number between 0 and 1 but never
returns the extremes of the range, 0 and 1. (This kind of range is
called an open range, or open interval.) For example:

REALY

L ISNH

00010 FRINT KRNIy RNI«RNIy KNI
00999 END

READY
RUNNH

0.1948187 Q7324636 0.46087399 0.3225764
READY

The program requests four random numbers so BASIC prints 4 numbers in
the open range 0 to 1.

The RND function has the same starting location each time you run the
same program. However, you can change the starting point by adding
the RANDOMIZE statement before the RND function in the program. Each
time BASIC executes the RANDOMIZE statement, it starts the RND
function at a new unpredictable location in the series. This location
is determined by the current time of day according to the computer's
clock.

USING FUNCTIONS

NOTE

You should not include the RANDOMIZE
statement wuntil you have debugged your
program. If you do, you will not know
if changes in the results are caused by
changes in the program or changes in the
starting 1location of the random number
generator.

The RANDOMIZE statement has the following format:

RANDOM
RANDOMIZE

Consider the following examples which contrast RND without
RANDOMIZE.

RND without RANDOMIZE

READY

. TGNH

00010 FRINT RNDsyRNDyRNDyRND
00999 ENI

READY
FOLENMH
0.1948187 0.7324636 0.6087399 0.3225784

READY
RUNNH
0.1948187 0.7324636 0.6087399 0.3225784

READY
RUNNH
0.1948187 0.7324636 0.6087399 0.3225784

READY

Notice every time the program without RANDOMIZE is run, RND
the same series of values.

RND with RANDOMIZE

READY

LISNH

00010 RANDOMIZE

00020 FRINT RNIs RNDyRNIly RND
00999 ENI

READY
RUNNH
0.5267071 0.6324583 0.6848936 0.04149863

READVY

RUNNH
0.6112094 0.3614544 0.5410995 0.52085%94

and with

produces

USING FUNCTIONS

READY
RUNNH
0.1922475 0.5580706 0.8

&)
i8]

2094 0.4213777

READY

Each time the program with RANDOMIZE is run, RND produces a different
random series of numbers.

You can also use the RND function to produce a series of random
numbers over any given open range. To produce random numbers in the
open range A to B, use the following general expression:

(B-A) * RND+A

For example, to produce ten numbers in the open range 4 to 6, use this
program:

READY

LTSN

00010 FOR I=1 TO 10

00020 FRINT (6-4) X RNI+4,
00030 NEXT I

00999 END

READY

RUNNH
4.,389637 5.464927 D.21748 4.645157 4,216904
4.376965 4.1234446 5.426511 H.275825 4.097507

READY

6.1.4 MOD Function

The MOD function has the following formats:

MOD% (A,B)
MOD (A,B)
where:
A,B represent numeric constants you supply.

MOD% (A,B) returns the integer result of A mod B, which is the
remainder of A/B.

MOD (A,B) returns the real result of A mod B, which 1is equal to
A-B*INT (A/B) . If A/B produces an underflow, the value of A is
returned. If the division produces an overflow, or if the quotient is
greater than or equal to 2**26, a warning message is printed and a
value of zero is returned.

USING FUNCTIONS

6.2 STRING FUNCTIONS

BASIC provides string functions that allow you to modify strings.
With these functions you can:

1. Determine the length of a string (LEN)
2. Trim off trailing blanks from a string (TRMS)

3. Search for the position of a set of characters within a
string (POS, INSTR)

4. Extract a segment from a string (SEG$, MIDS, LEFTS$, RIGHTS)
5. Create a string of a certain length (STRINGS)

6. Insert spaces into a string (SPACES)

7. Alter the contents of a string (EDITS)

Another group of BASIC string functions allows you to convert strings
to numbers and numbers to strings. In particular, you can convert:

1. Character to ASCII code (ASCII)

2. ASCII code to character (CHRS)

3. String representation of a number to a number (VAL%, VAL)
BASIC's relational operators allow you to concatenate and compare
strings; string functions allow you to analyze the composition of a
string. The following sections describe these string functions.

The functions LEFT$, RIGHT$, MID$, and SEG$ all return the null string

if their string argument is null. No further range checking is done
in this case.

6.2.1 Finding the Length of a String (LEN)

The LEN function returns an integer equal to the number of characters
in the specified string (including trailing blanks). The format of
the LEN function is:

LEN (string)

USING FUNCTIONS

For example:

READY

LISNH

00010 A$="ARCDEFGHIJKLMNOFQRSTUVWXYZ"
00020 FPRINT LEN(A%)

00999 END

READY
RUNNH

26

READY

6.2.2 Trimming Trailing Blanks (TRMS)

The TRMS$ function returns the specified string with all trailing
blanks, tabs, and backspace characters removed. The format of the
TRM$ function is:

TRMS$ (string)

Consider the following example in which two strings are concatenated
and printed, both before and after trailing blanks have been trimmed:

READY

LISNH

00010 As="ARCD .

00020 R$="EFG"

00030 FRINT "REFORE TRIMMING:"s»A$+BR%$

00040 FRINT "AFTER TRIMMING:"y TRM&(A$)+ER$

00999 END

READY

FRUNNH

REFORE TRIMMING? ARCI EFG
AFTER TRIMMING? ARCIDEFG
READY

6.2.3 Finding the Position of a Segment (POS, INSTR)

Use the POS or INSTR function to find the position of a group of
characters (called a segment) in a string. The formats of the
functions are:

POS(stringl, string2, expression)
INSTR (expression,stringl,string2)

where:
stringl is the string being searched.
string2 is the segment.
expression is the character position at which BASIC starts

the search.

USING FUNCTIONS

These functions search for and return the position of the first
occurrence of string2 in stringl, starting with the character position
specified by expression. If the specified segment is found, the
character position of the first character of the segment is returned.
If the specified segment is not found, the function returns 0.

You can use these functions to map a string of characters to a
corresponding integer which can then be used in calculations. This
technique is called a table look-up: the table string is stringl and
the string to be mapped is string2 in the POS function. Consider the
following example which translates month names to numbers.

READY

LISNH

00010 REM FROGRAM TO TRANSLATE MONTH NAMES TO NUMRERS
00020 Té="JANFEEMARAFRMAY JUNJULAUGSFEFOCTNOVLEC
00030 FRINT “TYFE THE FIRST 3 LETTERS OF A MONTH"j
00040 LINFUT M4

00030 IF M$="" (GO TO 999

00060 IF LEN(M$)<:>3 GO TO 200

00070 M=(FOS(Ts+Mbs124+22/3

00080 IF M<>INT(M) GO TO 200

00090 FRINT M$5" IS MONTH NUMRER®$M

00100 GO TO 30

00200 FRINT *INVALID ENTRY ~ TRY AGAIN"

00210 G0 TO 100 FAND GET ANOTHER STRING
00999 END

REAY

FUNNH

TYFE THE FIRSY 3 LETTERS OF A MONTH
NOV I8 MONTH NUMRER 11

TYFE THE FIRST 3 LETTERS OF A MONTH 7 DEC
LDEC I8 MONTH NUMRER 12

TYFE THE FIRSYT X LETTERS OF A MONTH 7 .JAN
JAN I8 MONTH NUMEBER 1

TYFE THE FIRST 3 LETTERS OF A MONTH 7 AUl
INVALID ENTRY - TRY AGAIN

TYFE THE FIRST 3 LETTERS OF A MONTH 7

READY

-}

 NOY

There are certain possible error conditions dependent on the values of
the strings and the expression.

1. 1If stringl (the table string) is null, an error message is
given.

2. If stringl is non-null and string2 (the segment) is null, 1
is returned.

3. If neither 1. nor 2. holds, and if the value of the

expression is greater than the length of stringl or less than
l, an error is given.

6.2.4 Extracting a Segment from a String (SEGS$)

The SEG$ function is used to extract a segment from a string. The
original string remains unchanged. The format of the SEG$ function
is:

SEG$ (string, expressionl, expression2)

6-15

USING FUNCTIONS

where:
string is the string from which the segment is
copied.
expressionl specifies the starting character position of
the segment.
expression2 specifies the last character position of the
segment.
Forjexample:
READIY
L. ISNH
Q0010 FRINT SEG$("ARCIEF*y3s5)
00999 END
READY
RUNNH
CIE
READIY

If expressionl equals expression2, SEG$ returns the character at
expressionl.

There are several error conditions based on the values of the
expressions and the string:

1. 1If expression2 equals 0, a null string is returned.

2. If string is null and expressionl is less than 1, an error is
given.

3. If expressionl is greater than the length of the string, an
error is given.

4. 1If expression2 is less than 0, an error is given.

5. If expressionl plus expression2 is greacer than the length of
the string, an error is given.

By using the SEGS$ function and the string concatenation operator (+),

you can replace a segment of a string. Consider the following
example:

READY

LISNH

00010 A$="ARCLEFG"

00020 C$=8EG$(AE» 1y 2)+"XYZ " +SEG$(AS+6+7)
00030 PRINT C¢

00999 END

READY
RUNNH

ARXYZFG

READY

Line 20 replaces the characters CDE in the string A$ with XYZ.
Examine line 20:

20 C$¢ = SEG$(ASsy1,2)1+"XYZ "+SECGS(AS1657)

N
|
[
N

USING FUNCTIONS

You can use similar string expressions to replace any given characters
in a string.

A general formula to replace the characters in positions n through m
of string A$ with BS$ is:

C$ = SEG$(AS$,1,n-1)+BS$S+SEGS (AS,m+1,LEN (AS))

For example, to replace the sixth through ninth characters of the
string "ABCDEFGHIJK" with "123456", enter the following program:

READY

LISNH

00010 A$="ARCDEFGHIJK"

00020 R$="123456"

00030 CH=SEGH(A$ry1syS)+RS+SECE(AS»10yLENC(AS))
00040 FRINT C%

00999 END

READY
RUNNH
ARCIE123456.UK

READY

6.2.5 The MIDS$ Function
The MIDS$ function has the following format:

MID[{](string,expressionl%,expressionZ%)

where:

S is an optional, but recommended, dollar sign.
string is a string constant or string variable.
expressionlg is a positive integer designating the

starting position of the substring.
expression2g is a positive integer designating the number

of characters in the substring.

Starting with the character at expressionls, the MID$ function returns
a substring with a length of expression2%.

For example:

READY

LISNH

00010 ALPHA$="ARCIEFGHIJKLMNOFQRSTUVWXYZ®
00020 FRINT MID$S(ALFHA$»15%s5%)

Q0030 FRINT

00040 FRINT MID$("ENCYCLOFEDIA®y3%sb%)
00999 ENI

READY
RUNNH
OFQRS
CYCLOF

READY

USING FUNCTIONS

The following error conditions apply to the MID function:

1. If expression2 is zero, BASIC returns the null string.

2. If expression2 is less than zero, an error message is given.

3. If string is not null and expressionl is 1less than 1, an
error message is given.

4. If expressionl is greater than the string length, an error
message is given.

5. If expressionl plus expression2 is greater than the string
length, an error message is given.

If expression2 is greater than zero, then

MID(string,expressionl,expression2)

is equivalent to

SEG$ (string,expressionl,expressionl+expression2-1)

6.2.6 The LEFT$ and RIGHTS$ Functions

The LEFTS$ function has the following format:

LEFT[$](string, expression)

where:

$

string

expression

is an optional, but recommended, dollar sign.

represents the string that contains the
substring.

represents an integer constant denoting the
character position where the copying should
stop.

BASIC returns a substring of the string you specify, from the first
character in the string to the character position you specify in the

expression. For example:

READY
LISNH

00010 FRINT LEFT$("ARCIEFG"»s»4%)

00999 END

READIY

RUNNH
ARCI

READY

The RIGHT$ function has the following format:

RIGHT[S](string, expression)

where:

$

string

expression

USING FUNCTIONS

is an optional, but recommended, dollar sign.

represents the string that contains the
substring.

represents the character position where the
copying begins.

BASIC returns a substring of the string you specify, starting with the
character position in the expression up to the last character in the

string. For example:

REALY
LISNH

00010 FRINT RIGHT$("ARCIHEFGY &%)

00999 END
REALY
FRUNNH

FG

READY

If expression is less than one or greater than the 1length of the
string, an error message is given. Two particular cases that return a
null string instead of an error message are:

LEFTS (string,0) and

RIGHTS (string, 1+LEN(string))

6.2.7 The STRINGS and SPACES Functions

The STRINGS function has

the following format:

STRINGS (expressionls,expression2$g)

where:

expressionlg

expression2g

is a positive integer constant representing
the length of the string you want to create.

is a positive integer constant representing
the decimal ASCII value of the character you
want in the string.

BASIC creates a string of length expressionl® with characters whose
ASCII wvalue 1is expression2g. For example, to create a string
consisting of ten uppercase A's, use the following:

READY
LISNH

00010 FRINT STRING$(10%s65%)

00999 ENI
READY
RUNNH
AAAAAAAAAA

READY

USING FUNCTIONS

The SPACES$ function has the following format:
SPACES (expressiong)
where:

expressiong is an integer constant representing the
number of spaces you want to add to a string.

For example:

READY

LISNH

00010 A$="ARC"+SFACE$(5%)
00020 FRINT A$+"DEF"

00999 END
READY

RUNNH

ARC DEF
READY

For both the STRINGS and SPACES$ functions, if the number of characters
is less than 0, an error message is given.

6.2.8 The EDIT$ Function
The EDITS$ function has the following format:

string var = EDIT$(string,expression$)

where:
string var contains the new string after alterations.
string is a string constant or string variable
representing the original string.
expression$g is one of the integers in the following table, or
a sum of the integers.
Table 6-1
EDIT$ Conversions
Expression% Effect
2% Discard all spaces and tabs.
43 Discard excess characters: CR, VLF, FF, ESC,
RUBOUT, and NULL.
8% Discard leading spaces and tabs.
16% Reduce spaces and tabs to one space.
32% Convert lowercase to uppercase.
64% Convert to (and to).
128% Discard trailing spaces and tabs.
256% Do not alter characters inside quotes.

USING FUNCTIONS

The EDIT$ function converts the source character string according to
the decimal value of the integer represented by expressiong.

For example:

READY

LISNH

00010 E$="DRISCARD ALL SFACES AND TARS,"
00020 A$=ERITH(RE»2%)

00030 FRINT ER%

00040 FRINT A$

00050 FRINT

00060 CH="REDUCE SFACES AND TARSG TO ONE SFACE.®
00070 D$=EDRITH(CE»16%)

00080 FRINT ¢

00090 FRINT D¢

00999 END

READY

FUNNH

DNISCARD ALL SFACES AND TARS.
DISCARDALLSFACESANDTARS .

REDUCE SFACES AND TARG TQ ONE SFACE.
REDUCE SFACES AND TARS TO ONE SFACE.

READY

You can also specify the sum of two or more integers in the table for
a multiple effect. For example:

REALY

LISNH

00010 FRINT "TYFE THE INFUT STRINGYS
00020 LINFUT A%

Q0030 R$=EDITS(A%$,80%)

00040 FRINT "Ré="iR%

Q0999 END

REALY

RUNNH

TYFE THE INFUT S8TRING 7 DATA IS OUTFUT WITH FRINT EXFRESSION
EB$=DATA T8 QUTFUT WITH FRINT EXPRESSION

READY

In line 30, the expression% 80% is a combination of 16% and 64%.

If the EDITS conversion expression 256% has been selected and the
corresponding string contains unpaired quote characters, an error
message will be given.

USING FUNCTIONS

6.3 CONVERSION FUNCTIONS

BASIC provides several functions to do string-to-numeric and
numeric-to-string conversions. The ASCII and CHR$ functions convert a
one-character string to the character's ASCII number and vice versa.
These functions are often useful in analyzing the characters in a
string. The RAD function converts integer values into RADIX-50
format. The XLATE function converts data in one storage format to
another. The CHANGE statement converts decimal values to ASCII
characters and vice versa.

The VAL%, VAL, NUMS$, and STRS functions convert a string
representation of a number to the number and vice versa. You should

use them when you want to input a numeric value as a string or to
print a number without spaces around it.

6.3.1 Converting a Character to ASCII Code (ASCII)

The ASCII function returns the decimal ASCII value of the first
character in the string specified.

The ASCII function has the following format:
ASCII(string)
where:

string is either a string constant, a string variable, or
string expression.

For example, ASCII ("D") is equal to 68, the decimal ASCII value of D.
You can also use a string variable as an argument:

READY
LISNH
00010 A$="D10G"
00020 FRINT ASCII(A%)
00999 END
READY
RUNNH
68
READY
This program prints the value of the first character in AS.

The ASCII function returns an integer value.

6.3.2 Converting ASCII Code to a Character (CHRS)
The CHR$ function returns a one-character string having an ASCII value
of the specified expression. Only one character is generated at a
time. The format of the function is:

CHRS (expression)

The expression is treated as modulo 128.

USING FUNCTIONS

For example:

READY

L. ISNH

00010 REM THIS FROGRAM WILL RETURN AN INFUT LETTER AND THE 2
00020 REM FOLLOWING IT ALFHARETICALLY

00030 FRINT "ENTER A LETTER A THRU Zy ENTER ENI' WHEN FINISHEDR®
00040 FRINT "LETTER®s "NEXT LETTER"y "3RI LETTER"

Q00030 INFUT X$

00060 IF X$="END" GO TO 999

00070 IF X$<"A" GO TO 200

00080 IF Xs$x=*Z" GO TO 200

00090 FOR F=ASCII(X%) TO ASCII(X$)+2 IRETURNS ASCII VALUE OF $X
00100 IF CHR$(F):"Z" GO TO 150 TUSES CHR$ TO FRODUCE NEXT
00110 FRINT CHR$(F)y3j

00120 NEXT F

00130 PRINT

00140 GO TO 50

00150Q FPRINT "ENI OF ALPFHARET®

00160 GO TO 50

00200 FRINT "ENTRY 135 NOT A LETTER A THRU Z°

00210 GO TO 30

Q099? ENI

READY
RUNNH
ENTER A LETTER A THRU Z» ENTER END WHEN FINISHED
LETTER NEXT I FTYER ZRD LETTER

?E
E F

PoA
A B o

P Y
Y z ENDC OF ALFHARET

ENTRY IS NOT A LETTER A THRU Z

ENTER A LETTER A THRU Zy ENTER END WHEN FINISHED
LETTER NEXT LETTER JRIN LETTER

? END

READY

6.3.3 Converting an Integer to RADIX-50 (RAD)
The RAD function has the following format:
RAD (expressiong)
where:
expression% represents an integer constant that you supply.

The RAD function converts the integer you specify to its RADIX-50
equivalent. RADIX-50 is a character set similar to the ASCII code.

USING FUNCTIONS

6.3.4 Translating from one Storage Code to Another (XLATE)

The XLATE function converts a string from one storage code to another.
For example, you may want to use data from a file written in EBCDIC
format. Before you can use this data, you must first convert it to
ASCII format. You do this by using the following format:

XLATE (stringl, string2)

where:
stringl is a string expression called the source string.
string2 is a string expression called the table string.

XLATE takes characters sequentially from the source string and uses
the wvalue of the character (0 to 127) as an index into the table
string (0 meaning the first character of the table string, 1 the
second, etc.). The character selected from the table string is
appended to the resultant string value unless the selected table
string character has a value of 0, or the index value is one greater
than the length of the table string.

For example, the following program requests a string, removes all
characters except 0 through 9, and translates 8 and 9 to A and B,
respectively.

READY

L. YVBNH

00010 TH=8TRING$(48%,»0%)+’'01234567AR"
00020 LINFUT 8% \ IF S¢ = ‘/ GO TO 999
00030 FRINT XLATE(S$,T$)

00040 FRINT

00050 GO TO 20

00999 ENI

READY

RUNNH

7 01234546789
01234567AR

? LAOTS OF DATA AND 878709877246561296 AND MORE DIATA
A7A70RA77265612R6

7

REAI'Y

6.3.5 The CHANGE Statement
The CHANGE statement converts a string of alphanumeric characters into
their ASCII decimal values and a list of decimal numbers into a string
of alphanumeric characters (see Appendix E for the ASCII Table).
The CHANGE statement has two formats:

CHANGE list TO string variable

CHANGE string variable TO list
{string expression}

USING FUNCTIONS

where:

list is a numeric or integer variable representing a 1l- or
2-dimensional array of decimal values.

In the first format, the CHANGE statement converts a list of integers
(real numbers are truncated) into a string of characters. The length
of the string is determined by the value found in element 0 of the
list. For example:

READY

L.ISNH

00010 FOR I=0 TO 5

00020 READ ACID)

00030 NEXT I

00040 DATA SrbSabbrb7968969
00050 CHANGE A TO A%

00060 FRINT A%

00999 END

READY
RUNNH

ARCIE
READY

In this example, the CHANGE statement uses the first value in the list
(5) to determine the length of the character string. It then converts
the next five values into their ASCII representations (see Appendix
E).

In the second format, the CHANGE statement converts a string of
characters into a 1list of integers. The 1length of the string
determines the value placed in element 0 of the list. For example:

REALDY

LISNH

00010 DIM A(S0)
00020 READ A%

00030 CHANGE A% TO A
00040 FRINT ACO)
00050 FOR I=1 TO ACQ)
00060 FRINT ACID
00070 FRINT

00080 NEXT I

00090 DATA ARCIEFG
00999 END

REALY

RUNNH
7
65
66
67
68
69
70
71

REALY

Notice that A(0) is equal to 7 because there are 7 characters in the
string.

USING FUNCTIONS

6.3.6 Numbers and their String Representation (VALS$,VAL, NUM$ and STRS)

Three functions - VAL%, VAL, and STRS$ - convert numbers to their
string representation and vice versa.

Consider these programs:

String Representations Numbers

READY READIY

L.ISNH LISNH

00010 FRINT *25°" 00010 FRINT 25
00020 FRINT "25+41°* 00020 PRINT 2541
00999 END 00999 END

READY REALY

RUMNNH FUNNH

25 25

2541 26

REALY READY

The program on the left prints the string representation of numbers,
but the program on the right prints the numbers themselves. Note how
"25+1" on the left is printed as it is, while the 25+1 on the right is
evaluated as 26.

The VAL% function converts an integer string expression to an integer
number. The VAL function converts a real number string expression to
a real number.

NOTE

Since the VAL% function operates about
ten times faster than the VAL function,
it is suggested that VAL% be used in
place of VAL wherever possible.

The formats for VAL% and VAL are as follows:
VAL% (string expression)

where:

string expression may contain the digits 0 through 9,
optionally prefixed by the symbols "+" and
"-", may be suffixed by the "%" character,
and must be a string representation of an
integer.

VAL (string expression)
where:

string expression may contain the digits 0 through 9, the
letter E (for E format numbers) and the
symbols "+", "-", and ".", and must be a
string representation of a number.

USING FUNCTIONS

NOTE

For the VAL% and VAL functions, if the
string expression does not constitute
the proper type of number, or if it
contains a number which is too large or
too small to be represented by BASIC, an
error message will be given.

The examples that follow are simple demonstrations of how VAL% and VAL
are used to convert integer- and real-number strings (respectively)
into their equivalent numeric values.

REALDY

LISNH

00010 !THIS FROGRAM DEMONSTRATES THE VALZXZ FUNCTION
00020 !

00030 FRINT

00040 FRINT ‘ENTER AN INTEGER STRING}

00050 INFUT A%

00060 BZ=VALZ(A$)

00070 PRINT

00080 FRINT ‘THE VALZ FUNCTION CONVERTS STRING ‘5A%$5’ TO INTEGER’RX
00999 END

READY
RUNNH

ENTER AN INTEGER STRING 7 34544
THE VALZ FUNCTION CONVERTS STRING 34564 TO INTEGER 34564
READY

READY

LISNH

00010 !THIS FROGRAM DEMONSTRATES THE VAL FUNCTION
00020 !

00030 FRINT

00040 FRINT 'ENTER A REAL NUMERER STRING’;

00050 INFUT A$

00060 B=VAL (A%$)

00070 PRINT

00080 FRINT ‘THE VAL FUNCTION CONVERTS STRING ‘3sA%5’ TO REAL NUMERER'$E
00999 END

READY
RUNNH

ENTER A REAL NUMBRER STRING 7 45.67
THE VAL FUNCTION CONVERTS STRING 45.67 TO REAL NUMERER 45.67

READY

The NUM$ and STRS functions convert a number to its string
representation. The formats for NUM$ and STRS are as follows:

NUMS (expression)

STRS (expression)

USING FUNCTIONS

where:
expression is any valid integer floating-point number.

The NUM$ function returns the value of expression as it would have
been printed by a PRINT statement. The STR$ function returns the same
value, but without a leading or trailing space.

Consider the following example:

READY

L.ISNH

00010 FRINT *"FPROGRAM TO CALCULATE 5% INTEREST®
00020 FRINT “"TYFE IN AMOUNT"j

00030 INPUT M$

00040 IF FOS(M$,"$"y1)<>1 GO TO 999

00050 A$=SEGH(M$y2H>LEN(M$))

00060 M=VAL(A%)

00070 I=.05%M +.0085 ICALCULATE SZ% AND ROUND
00080 I$=STR$(I)

00090 I$=SEG$(I$+1s24F0S(I$»","v1))

00100 FRINT *S5% INTEREST OF *iM$5® IS $°71%
00999 ENID

READY

RUNNH

PROGRAM TO CALCULATE SZ INTEREST
TYFE IN AMOUNT 7 $100.00

5% INTEREST OF 4$100.00 IS 4%5.00

READY

6.4 DATE, TIME, AND DIRECTORY FUNCTIONS

The BASIC function library includes a number of functions that return
the current or a specified time and/or date in both string and numeric
formats, the job time, and the connected structure and directory.

6.4.1 Returns Current Clock Time (CLKS)

The CLKS function takes no argument and returns the current time of
day as an 8-character string in the format: hh:mm:ss. The format of
the CLKS$ function is as follows:

CLKS
For example:

READY

LISNH

00010 FRINT "THE CURRENT TIME OF DAY IS "iCLK$
00999 END

READY
RUNNH
THE CURRENT TIME OF DAY IS 12:21:131

READY

USING FUNCTIONS

6.4.2 Returns Current Date in the Format: dd-mmm-yy (DATS)

The DATS function takes no arguments and returns the current

date 1in

the format: dd-mmm-yy . The format of the DAT$ function is as

follows:
DATS
For example:
READY
LISNH
00010 PRINT °*THE DATE TODAY IS! *iDATS
00999 END
READY
RUNNH
THE DATE TODAY IS: 24-Magy-79

READY

6.4.3 Returns Date in the Format: mm/dd/yy (DATES)

The DATES$ function returns a date 1in the format: mm/dd/yy. The

format of the DATES function is as follows:
DATES (n%)
where:

ng 1is any integer. The formula for n% is: the day of

the year

+ (the number of years since 1970*1000). If you supply a 0,

the DATES function returns the current date.

If you only specify the day of the year, the year
1970, unless n%=0. If you do not specify a day of
the date will be the current month and day,
indicated year.

For example:

REALY
LISNH

00010 FRINT *THE DATE FOR THE 123RD DAY IN 1973 I8! "iDATE$(31237%)

00020 FPRINT
00030 FRINT *TODAY’S DATE IS! "iDATE$(0X)
00040 ENID

READY

RUNNH

THE DATE FOR THE 123RD DAY IN 1973 I8! G5/03/73
TODAY 'S DATE IS: &/20/79

READY

will be
the year,
with the

USING FUNCTIONS

6.4.4 Returns Time in the Format: hh:mm (TIMES)

The TIMES function returns the current time or a specified time n
minutes before midnight. The format of the TIMES$ function is as
follows:

TIMES (n%)
where:

nt is an integer from 1 to 1440 specifying that many minutes
before midnight. Specify 0 to print the current time.

For example:

READY

LISNH

00010 FRINT *“THE TIME 143 MINUTES REFORE MIDNIGHT WILL RE: "iTIME$(143%)
00020 PRINT

00030 FRINT *"THE CURRENT TIME IS: "FTIME$(0%)

00040 ENI

READY

RUNNH

THE TIME 143 MINUTES REFORE MIDNIGHT WILL RE: 21337
THE CURRENT TIME IS! 11:13

READY

6.4.5 Returns Clock, CPU, or Job Connect Time (TIME)
The TIME function returns the clocktime (in seconds) since midnight,
the amount of CPU time for the current job (in tenths of seconds), or
the total connect time for the job (in minutes). The format for the
TIME function is as follows:

TIME (n%)
where:

ng 1is any of the following values:

0% returns the clocktime (in seconds) since midnight as a
floating-point number.

1% returns the CPU time used by the 3job (in tenths of
seconds) .

2% returns the total connect time (in minutes) for the
current job.

USING FUNCTIONS

For example:

LISNH

00010 FRINT "THE NUMEBER OF SECONDIS SINCE MIONIGHT 183 "3 TIME(O)
00020 FRINT

00030 FRINT *THIS JOE'S CPU TIME I8 *"3TIMECL)/10%3" SECONDS®
00040 FRINT

00050 TZ=TIME(2X)

00060 HA=TZ/60%

00070 MA=TH-HARSOX

00080 FRINT "THIS 0B HAS REEN LOGGED IN"iHX; "HOURS®M%Zs "MINUTES®
00090 ENID

READY

RUNMH

THE NUMRER OF SECONDS SINCE MIIONIGHT I8! 485465
THIS JOR‘S CFU TIME I8 37.6 GECONDS

THIS JOB HAS BEEN LOGGED IN X HOURS 20 MINUTES

6.4.6 Returns Connected Structure and Directory (USRS$)

The USRS function returns a string containing the currently connected
structure and directory. The format of this function is as follows:

USRS
For example:

READY

LISNH

Q001G FRINT “THE CURRENT CONNECTED DIRECTORY IW: "sUSRS$
00999 END

READY

RUNNH

THE CURRENT CONNECTED DIRECTORY IS! RASIC!<MAGRATH:

READY

6.5 TERMINAL-FORMAT FILE FUNCTIONS

BASIC contains a number of functions that are used specifically with
terminal-format files. These functions enable you to find the margin
width, the horizontal and vertical print position, and the current
page count of any terminal-format file.

6.5.1 Returns Margin Width (MAR%)

The MAR% function takes the channel number of a terminal-format file
as an argument and returns 1its margin width. The format for this
function is as follows:

MAR% (channel number)

USING FUNCTIONS

where:

channel number is the channel number of a terminal-format file.
This is the same number assigned to the file in
the OPEN statement. If you specify 0, BASIC
returns the margin width of your terminal.

For example:

READY

LISNH

00010 !THIS PROGRAM CHANGES THE RIGHT MARGIN SETTING ON THE TERMINAL
00020 'AND REFORTS THE NEW SETTING WITH THE MARXZ FUNCTION
00030 FRINT ‘THE DEFAULT TERMINAL WIDTH IS!’ 35MARZ(OX)
00040 FRINT ’X‘§F FOR IXZ=1%Z TO 75Z

00050 MARGIN 50

00060 FRINT \ FRINT

00070 FPRINT ‘THE NEW TERMINAL WIDTH IS: iMARZ(0Z)

00080 FRINT ‘X’% FOR IZ=1%Z TO 73%

00090 FRINT

00999 ENID

READY

FUNNH

THE DEFAULT TERMINAL WIDTH I8! 72

)040.0 9000080008009 090 9690900090083 0098000000000 0000800809090008099979.9009H
XXX

THE NEW TERMINAL WIDTH IS: S0
0 93.699.06.90.0.0009.009009990908008 88098000996 8900000904
00000089009 00¢0080 9908909

REALY

6.5.2 Returns Horizontal Print Position (POS$%)

The POS% function returns the current horizontal print position of the
specified terminal-format file. The format of this function is as
follows:

POS% (channel number)

channel number is the channel number of a terminal-format file.
This is the same number assigned to the file in
the OPEN statement. If you specify 0, BASIC
returns the current horizontal print position of
the terminal.

USING FUNCTIONS

For example:

READY
LISNH

00010 FRINT “X’5 FOR IZ=0Z TO 20%

Q0020 FZ=FOS(O%)

G0030 FRINT

00040 PRINT ‘THE HORIZONTAL FRINT FOSITION WAS’iFX%
00999 ENI

READY

KUNNH

XXXXXXXXKXXXXKXXXXKXXX
THE HORIZONTAL FRINT FOSITION WAS 21

REALY

6.5.3 Returns Vertical Print Position (VPS$%)

The VPS% function returns the current vertical print position of the
specified terminal-format file. This function has the following
format:

VPS% (channel number)

where:
channel number is the channel number of a terminal-format file.
This is the same number assigned to the file in
the OPEN statement. If you specify 0, BASIC

returns the current vertical print position of
the terminal.

For example:
READY

L.ITSNH

00010 FRINT I% FOR IXZ=0Z TO 10X%
Q0020 FRINT ‘“THE VERTICAL FRINT FOSITION IS NOW/SVFSZ(0OX)
00999 END

READY
FUNNM

NN UDLHNE=O

10
THE VERTICAL PRINT FOSITION IS NOW 11

READY

USING FUNCTIONS

6.5.4 Returns Current Page Count (PPS%)

The PPS% function returns the total page count of the specified
terminal-format file.

PPS% (channel number)

where:

channel number is the channel number of a terminal-format file.
This is the same number assigned to the file in
the OPEN statement.

For example:

READY
L.TSNH

00010 PAGE 5%

00020 FRINT I%Z FOR I%=1%Z TO 11%

00030 PRINT ‘THE CURRENT FAGE NUMBER IS NOW’3;FPS%(0%)
00999 END

READY
RUNNH

)

NN UD LN~

10
“L 11
THE CURRENT FAGE NUMBER IS NOW 2
READY

In the above example "L represents a formfeed.

6.6 SYSTEM FUNCTIONS

The BASIC system functions provide you with a way of controlling a
number of TOPS-20 operating system capabilities from within a BASIC
program.

6.6.1 Resume Program Output (RCTRLO)
The RCTRLO function cancels the effect of CTRL/O on the specified
channel. Typing CTRL/O supresses program output on terminals. If the
device is not a terminal, this function has no effect. The format of
this function is as follows:

variable=RCTRLO (channel number)

variable is any BASIC variable.

6-34

USING FUNCTIONS

channel number is a numeric expression specifying an open
terminal-format file which is on a terminal
device.

For example:

REAL'Y
L. TSNH

00010 FRINT I%s FOR I%=1% TO 300%

00020 FRINT

00030 X=RCTRLO(0X)

00040 FRINT *TERMINAL OUTFUT RESUMED RY RCTRLO®
00050 ENI

REALY
RUNNM
1 2 3 4 4]
6 7 a 9 10
11 12 13 14 1%
16 17 18 19 20
21 22 23 24 2%
26 27 28 29 30
31 32 33 34 a5
36 37 38 1§ FYPEN

TERMINAL OUTFUT RESUMED RY RCTRLO

REALY

6.6.2 Disable and Enable Echoing (NOECHO and ECHO)

The NOECHO function disables echoing on the specified channel; the
ECHO function reverses the effect of the NOECHO function. These
functions have the following formats:

variable = NOECHO(channel number)

variable = ECHO(channel number)
where:

variable is any BASIC variable.

channel number is a numeric expression specifying the channel
number of an open terminal-format file which is on
a terminal device.

For example:

READY

LISNH

00010 FRINT "ENTER YOUR NAME";
00020 INFUT N$

00030 FRINT "ENTER THE FASSWORD®;
00040 X=NOECHO(0%)

00030 INFUT F$

00060 X=ECHO(O0X)

00070 FRINT

00080 FPRINT "ENTER YOUR ACCOUNT";
000920 INFUT A%

00100 PRINT *THE DATA ENTERED WAS! "iN$,FP$,A$
00999 ENI

USING FUNCTIONS

READY

RUNNH

ENTER YOUR NAME 7 FORREST

ENTER THE FASSWORD 7

ENTER YOUR ACCOUNT 7 341

THE DATA ENTERED WAS: FORREST FASSWORD 341

READY

6.6.3 Enable and Disable Trapping of CTRL/C Interrupts (CTRLC And RCTRLC)

The CTRLC function enables the trapping of CTRL/Cs by a user-supplied
error handler. After executing this function, a CTRL/C typed by the
user will invoke an enabled error handler and will generate error code
28. Use of this facility can prevent a user from returning to BASIC
command level. The RCTRLC function disables the trapping of CTRL/C.
The formats of these functions are as follows:

variable=CTRLC
variable=RCTRLC

where:
variable is any BASIC variable.
For example:

READY

LISNH

00010 ON ERROR GO TO 50

00020 X=CTRLC

00030 FRINT “X‘y \ GO TO 30

00050 IF ERR=28 THEN RESUME 60 ELSE ON ERROR GO TO O
00060 FRINT ’LOOF ARORTED - CONTINUING’

00070 X=RCTRLC

00080 FRINT ‘Y’» \ GO TO 80

00999 END

REALY

RUNNH

X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X LOOF ARORTED ~ CONTINUING

Y Y Y Y Y
Y Y Y Y Y
Y Y Y Y Y
Y Y Y Y Y
Y Y Y Y Y
Y Y Y Y Y
Y Y Y Y ~C

€ at line 00080 of MAIN FROGRAM

READ'Y

USING FUNCTIONS

6.6.4 Exit from a Program (ABORT)

The ABORT function causes an exit from the running program. If you
supply an argument of 0 to the function, it will exit to BASIC command
level and will inhibit the printing of the READY prompt. If vyou
supply an argument of 1, the function will erase the program from the
work area and will also not print the READY prompt. The format of the
ABORT function is as follows:

variable=ABORT (n)
where:
variable 1is any BASIC variable.

n is either 0 or 1. Use 0 to exit from the program
to BASIC command level and supress printing of the
READY prompt. Use 1 to exit from the program,
supress the READY prompt, and erase the program
from the work area.

For example:

REALY

LISNH

00010 PRINT *NOTICE THAT NO ‘READY’ FROMFT IS TYFED WHEN®
QOO20 FPRINT *THIS FROGRAM ENDS.®

00030 FRINT *ALSQy THE FROGRAM WILL HAVUE REEN FRASFD A8 IF®
QOQ40 PRINT *A “GURATCH” COMMAND HAD REEN TYFED, "

QOOSD X=ARORT (1%

00999 END

REALY

FUNNKH

NOTICE THAT NO “REALY PFROMPT IS TYFED WHEN
THIS FROGRAM ENDS.

ALEOy THE FROGRAM WILL HAVE RBEEN ERABED AS IF
A 'BCRATCH COMMAND HADR REEN TYFED,

LISNH

REATY

6.7 USER-DEFINED FUNCTIONS - THE DEF STATEMENT
In some programs you may want to execute the same sequence of
statements in several places. You use the DEF statement to define a
sequence of operations as a user-defined function. You can then use
this function as you would use the functions BASIC provides. There
are three ways of defining functions:

1. single-line DEF statement

2. multi-line DEF statement

3. multi-line DEF* statement

USING FUNCTIONS

6.7.1 Single-Line DEF Statement

A single-line DEF statement consists of the keyword DEF followed by a
function name consisting of the letters FN followed by 1 to 29
letters, digits, or periods optionally followed by a % or a S§.
Therefore, the function name can have a total of 33 characters.

Valid User-Defined Invalid User-Defined
Function Names Function Names
FN NF1
FNC¢% FN A2
FNR.BS FNA%S

The format of the single-line DEF statement is:

DEF FNa [(bl ,b2,b3,.. .bn)] =expression

where:

a is 1 to 29 letters, digits, or periods
followed by an optional percent sign (%) or
dollar sign ($) to represent an integer or
string wvalue. If the function name does not
end in either a % or a $§, then it returns a
floating-point number.

(bl,b2,b3,...bn) can be integer, floating-point, or string
dummy variables.

expression may contain any of the dummy variables or any

other variables in the program.

Be sure to use an expression that is the same data type, string or
numeric, as indicated by the function name. If the expression is
floating point and the function name is integer or vice versa, then
the expression 1is <converted to the type specified by the function
name.

After the function has been defined, it can be called, or evaluated.
The format for calling the function is:

FNa (expressionl [,expressionz,...,expressionS])

where the number of expressions must be the same as the number of
dummy variables in the DEF statement.

When evaluating the function, BASIC substitutes the values for the
dummy variables in the DEF statement, then evaluates the expression,
and returns the result.

USING FUNCTIONS

Consider the following two programs:

Program #1 Program #2
REALY READY
LLISNH LLISNH
00010 DEF FNS(A) = A"A 00010 DEF FNG(X) = X"X
00020 FOR I=1 TO 5 00020 FOR I=1 TO 5
00030 FRINT IsFNS(I) 00030 PRINT IsFNSC(I)
00040 NEXT I 00040 NEXT I
00999 ENI 00999 ENI
REALY REALY
FRUNNMH FRUNNH
1 1 1 1
2 4 2 4
3 27 K 27
4 256 4 256
] 3125 5 312%
READY REALY

These two programs produce the same output. The actual names of the
arguments in the DEF statement have no significance; they are
strictly dummy variables. But the data types of the variables are
significant. = If the DEF statement specifies a string variable, then
the corresponding argument must be a string. If the DEF statement
specifies a numeric variable, then the corresponding argument must be
numeric. BASIC converts, as necessary, a numeric argument to the type
(floating point or integer) specified by the variable in the DEF
statement.

The defining expression can contain any constants, variables,
BASIC-supplied functions, or any other user-defined functions except
the function you are defining. For example:

10 DEF FNA(X) = X"2+3%X+4
20 DEF FNR(X) = FNA(X)/2 + FNA(X)
30 DEF FNC(X) = SQR(X+4)+1
You can include any variables in the defining expression. If the

expression contains variables that are not in the dummy variable 1list,
they are not dummy variables. That is, when the user-defined function
is evaluated, the variables have the value currently assigned to them.

Consider the following example:

READY

L ISNH

00010 DEF FNR(AYER) = A+X"2 'DEFINE FUNCTION...
00020 X=1 'ASSIGN. ..

00030 FRINT FNE(14587) 'EVALUATE. . .

00040 X=2 TCHANGE . + »

00050 FRINT FNE(14,87) TEVALUATE. ..

00999 END

READY
RUNNH
15

18

REA'Y

6-39

USING FUNCTIONS

Note that in this example the second argument (the dummy variable B
and the actual argument 87) is unused.

The expression does not have to contain any of the variables. For
example:

READY

LISNH

00010 DEF FNA(X) = 442
00020 LET R=FNA(103)+1
00030 FRINT R

00999 END

READY
RUNNH

7
READY

Consider the following example:

REALY

LISNH

00010 REM MOIULUS ARITHMETIC FROGRAM

00020 REM FIND X MOD M

00030 DEF FNM(XsM)=X-MXINT(X/M) IDEFINE FNM MODULUS FUNCTION
00040 REM

00050 REM FIND A+R MOD M

00060 DEF FNAC(AsRysM)=FNM(A+RsM) TUSE MODULUS FUNCTION FNM
00070 REM

00080 REM FIN AXR MOL M

00090 DEF FNE(AyBsyM)=FNM(AXEBsM) TUSE MODULUS FUNCTION FNM
00100 REM

00110 FPRINT

00120 FPRINT "ADDITION AND MULTIFLICATION TABLES MODIn M®
00130 FRINT "GIVE ME AN M"F \ INFUT M

00140 FRINT N\ FRINT "ADDITION TARLES MOD"iM

00150 GO SUER 300

00160 FOR I=0 TO M-1

00170 FRINT Is3" "3

00180 FOR J=0 TO M-1

00190 FRINT FNA(IsJsM)§

00200 NEXT J N FRINT \ NEXT I

00210 FPRINT N\ PRINT \ PRINT *MULTIFPLICATION TAERLES MOD®iM
00220 GO SUR 300

00230 FOR I=0 TO M-1

00240 FRINT I5" °3

00230 FOR J=0 TO M-1

00260 FPRINT FNE(IsJyM)$ 'CALL FNE

00270 NEXT J N PRINT \ NEXT I

00280 GO TO 999

00300 REM SUBROUTINE TO FRINT TAERLE HEADINGS

00310 PRINT \ PRINT TAEK(4)i

00320 FOR I=0 TO M-1

00330 PRINT Is N NEXT I \ PRINT

00340 FOR I=1 TO 3%M+4

00350 FRINT *~*§ N\ NEXT I \ FRINT

00360 RETURN

00999 ENI

USING FUNCTIONS
READY
RUNNH

ALDITION AND MULTIFLICATION TABLES MOD M
GIVE ME AN M 7 7

ANDITION TARLES MOD 7

6 1 2 3 4 5 &

0 0O 1 2 3 4 5 4
1 1 2 3 4 5 &6 0
2 2 3 4 35 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
] 3 6 0 1 2 3 4
é 6 0 1 2 3 4 5

MULTIFLICATION TARLES MOn 7

O 1 2 3 4 5 4
o O 0 0 0 0o 0 O
1 0O 1 2 3 4 5
2 0O 2 4 6 1 3 5
3 0O 3 6 2 5 1 4
4 0O 4 1 5 2 & 3
5 O 5 3 1 6 4 2
é 0O 6 5 4 3 2 1
READY

6.7.2 Multi-Line DEF Statement

Some calculations are so complex that they require more than the one
line wused in the single-line DEF statement. BASIC's multi-line DEF
statement allows you more flexibility in defining complicated function
values.

The multi-line DEF statement has the following format:
DEF FNa [(bl,b2,b3, .. .)] ,[cl,c2,c3. .]
where: a represents 1 to 29 letters, digits, or
periods followed by an optional percent

sign (%) or dollar sign ($) to represent
an integer or string function value.

(bl1,b2,b3,...) represents the dummy argument list.

cl,c2,c3,... represents a list of variables local to
the function definition. This list is
optional.

Single- and multi-line DEF statements are similar in format. However,
multi-line DEFs do not have the equal sign expression on the first
line. Instead, the function name must appear in a defining position
(such as an assignment Statement) within the function definition.
Otherwise, the function value will be set to 0 or null string.

USING FUNCTIONS

Multi-line functions can have from zero to any number of parameters.
The variables specified in the function definition (or DEF statement)
can be used only within the body of the function. Any variable
referred to in the definition that is not a local variable refers to
the variable of the same name outside the body of the DEF. This means
that variables in the main program are global as opposed to variables
specified in the DEF statement.

The FNEND statement signals the physical and 1logical end of the
function definition. The FNEND statement has the following format:

FNEND

When BASIC executes the FNEND statement, it returns the function value
to the calling statement.

You can also end a function definition with the FNEXIT statement.
FNEXIT has the following format:

FNEXIT

The FNEXIT statement is equivalent to a GOTO n where n is the 1line
number of the FNEND for the current multi-line DEF. The FNEXIT
statement is valid only inside a multi-line DEF.

Most statements can be used within the function definition (between
the DEF and FNEND statements). However, multi-line DEFs are local to
the main program or subprogram in which they are contained. No
transfers are allowed into or out of a multi-line DEF. If you attempt
to transfer into the body of a multi-line DEF, BASIC will execute the
next statement following the FNEND statement and issue a warning
message.

DATA statements are global throughout the program. Therefore, even
though they may reside within a function definition, the main program
can still access them and vice versa. DIM statements within a
function are 1local to the function definition if they apply only to
local variables.

You can place a multi-line DEF anywhere in a program. The entire body
of the multi-line DEF, as well as the single-line DEF, does not
produce code in straight-line execution until it is called.

You call a function into action by wusing its name in a statement
expression. With the name, you must include the actual argument list,
one with the same number of arguments as in the DEF statement. The
actual arguments can be constants, variables, array elements, or
expressions. They must be the same data type as the dummy arguments
they replace. (Whole arrays are not valid arguments.)

BASIC uses the actual arguments within the function to define the
function value. Using dummy arguments in the multi-line DEF statement
allows you to use the function definition many times with a different
set of actual arguments.

USING FUNCTIONS

The following example illustrates the use of the multi-line DEF
statement:

READY

LISNH

00010 DEF FNXZ(AYR)»C

00020 REM C IS5 INITIALIZED TO O AT FUNCTION ENTRY
00030 IF A*R THEN C=2.5

00040 FNXZ=A+E+C

Q0050 FNENID

00060 FRINT FNXZ(3»2,5)

00070 FRINT FNXZ%Z(1.,1+3.1)

00?99 END

REALY
FLINNH
8
4

REAIlY

BASIC ignores the function definition, lines 10 through 50, and begins
execution at 1line 60. The PRINT statement calls the function with
actual arguments to be substituted in the definition. A 1is larger
than B; therefore, C 1is set equal to 3.4. At line 40, BASIC
calculates the value to be 10.53. Because the function name is
integer (%), the value returned to FNX% is 10.

6.7.3 Multi-Line DEF* Statement

Using standard multi-line DEFs you cannot transfer into and out of a
function definition and retain global values for variables. There is
another method of writing multi-line DEFs that allows you to transfer
from a function and retain global variables. This method also uses
the DEF statement; however, an asterisk (*) has been added to the
keyword.

DEF* FNa [(bl,b2,b3,...):| ,|:cl,c2,c3,...:|

The asterisk tells BASIC that the BASIC-PLUS compatible form of the
function definition is being used. This form allows you to include
the GOTO, ONGOTO, GOSUB, and ONGOSUB statements within the body of the
function in order to transfer outside the function definition. The
variables you define as dummy variables during execution of the
function are global while the function is still open (that is, before
BASIC reaches the FNEND statement).

USING FUNCTIONS

The following example illustrates the DEF* method of multi-line DEFs:

READY

LISNH

00010 DEFX FNX(A)

00020 FRINT ‘FUNCTION FARAMETER A=’jA
00030 IF A<3 GO TO 50

00040 A=6 \ GO TO 200

00050 FNEND

00100 A=3

00110 FRINT ‘MAIN ROUTINE INITIAL A='jA
00120 FRINT

00130 C=FNX{(4)

00140 D=FNX(2)

00150 PRINT

00160 FRINT ‘MAIN ROUTINE FINAL A='jiA
00170 GO TO 999

00200 FRINT ‘FUNCTION MODIFIED A='5A
00210 GO TO 350

00999 ENI

READY

STATUS

VERROSE CHECK
VERROSE HEADER
VERBOSE WARN
QUIET COMMAND
MODE DEF %

READY
FRUNNH
MAIN ROUTINE INITIAL A= 3

FUNCTION FARAMETER A= 4
FUNCTION MODIFIED A= 6
FUNCTION FARAMETER A= 2

MAIN ROUTINE FINAL A= 3

READY
This example demonstrates the operation of a multi-line DEF*. Note
that prior to executing the program, the STATUS command is used to
ensure that MODE DEF* is turned on. The status of MODE (DEF* or

NODEF*) is controlled by the MODE command (See Section 2.2.9.3.).

When the program is executed, the variable A is given the value 3
(line 100), and is printed at line 110.

Next, line 130 calls the FNX function and replaces the dummy argument
in 1line 10 with the value 4. This value is printed at line 20. A is
greater than 3 (condition tested at 1line 30); therefore, A 1is
assigned a new value of 6 (line 40). BASIC then transfers out of the
function and prints the current value of A within the function, 6.
Execution continues at the next line following the function call.

6-44

USING FUNCTIONS

The second function call (line 140) sends BASIC back to the function
definition. The new value of A, 2, is printed at line 20. This time,
because A is less than 3, BASIC transfers to the FNEND statement (line
50) . Once the function ends, the value of A is no longer global.
BASIC prints the value of A outside the function, 3, and then stops.

You can define multi-line functions in either the standard (DEF) or
non-standard (DEF*) way. However, all DEFs in the same program must
be written the same way throughout. Functions defined either way must
have argument lists agreeing in both data type and number.

CHAPTER 7

USING ARRAYS

BASIC provides a special set of statements for working with arrays.
The statements each contain the keyword MAT. The MAT statements apply
to both 1lists and matrices (that is, to one-dimensional and
two-dimensional arrays), except where noted in the text. If you
specify an array without subscripts (MAT A), the default 1is two
dimensions.

For information on using arrays, refer to the following sections:

Dimensioning an Array
Initializing an Array
Matrix Operations

Array Tnput and Output

.
W N -

7
7

7.
7.

7.1 DIMENSIONING AN ARRAY
In a BASIC program, you dimension an array in one of two ways:

1. Explicitly, by using the DIM, MAP, or COMMON statement

2. Implicitly, by declaring a subscripted variable
Although every list has an element 0, and every matrix has a row 0 and
a column 0, the MAT statements ignore and, in some cases, destroy the
contents of these locations. Data should, therefore, begin in row or
column 1 and never row or column 0 if MAT statements are to be used.
The MAT statements allow you to alter the number of elements in each
row and column of an array as long as the total number of elements
does not exceed the number originally defined. A one-dimensional

array cannot be made a two-dimensional array or vice versa. Changing
the size of an array in this way is called redimensioning an array.

7.2 INITIALIZING AN ARRAY

MAT statements allow you to assign .values to individual array
elements. The values can be set to all ones, all zeros, or zeros with
ones along the main diagonal (upper left to lower right).

The MAT statement has the following format:

MAT name=value [(DIMI,[DIMZ]):]

USING ARRAYS

where:
name is an array already dimensioned either
implicitly or explicitly.
(DIM1,DIM2) are new dimensions for the array. These
dimensions are optional.
value is one of the following:

Value Meaning

ZER sets the value of all elements in the
array to zero. All arrays, except for
those in a virtual array, MAP, or COMMON
area, have a value of zero when first
created. ZER does not set row 0 and
column 0.

CON sets the value of all elements in the
array to one. CON does not set row 0 or
column 0.

IDN sets the value of all elements in the
array to zero except for those on the
diagonal (upper 1left to lower right)
which are set to one. This is called an
identity matrix. The matrix must be
square. IDN does not set row O or
column 0.

NULS sets the value of all elements in a
string array to a null string. NULS
does not set row 0 or column O.

The first three values apply to real and integer arrays; the fourth

applies to string arrays.

If you do not specify new dimensions with the (DIM1,DIM2) option, the
existing dimensions remain unchanged.

USING ARRAYS

Consider the following examples:

00010 DIM A(10+10)y B(1S)s C(20520)

00020 MAT A=ZER ISETS ALL ELEMENTS OF A TO ZERO

00030 MAT EB=CON(10) !SETS ALL ELEMENTS OF E TO ONE ANI' REDIMENSIONS E
00040 MAT C=IDN(10s10) ICREATES AN IDENTITY MATRIX 10X10

00050 MAT FRINT Aj

00060 MAT FRINT Ej

00070 MAT FRINT Cs

00080 ENI

READY
FLINNE

O 0 0 0 0 0 0 0 0 0 ARRAY A

O 0 0 0 0 0 0 0 0 0

O 0 ¢ 0 0 9 0 0 0 0

i+ 1 1 1t r 1 1 1 1 ARRAY B

0O 0 0 0 1 0 0 0 0 0 ARRAY C

0O 0 0 0 0 0 1t o 0 0
O 0 0 0 0 0 0 1 0 0
o 0 0 0 0 O 0 0 1 0
O 06 0 0 0 0 0 0o 0 1

USING ARRAYS

7.3 MATRIX OPERATIONS

With the MAT statement, you can perform the following operations with
arrays:

1. Assignment

2. Addition

3. Subtraction

4. Multiplication

5. Transposition

6. Inverting and Finding the Determinant

Each MAT operation statement begins with the keyword MAT followed by
an expression to be evaluated.

7.3.1 Matrix Assignment

You can assign the value of one array to another array as in the
following example:

00010 MAT A=R

This statement sets each entry of array A equal to the corresponding
entry of array B. A is redimensioned also automatically to the size
of array B.

7.3.2 Matrix Addition and Subtraction
You can add and subtract arrays as shown in the following lines:

00010 MAT A=E+C
00020 MAT D=E-C

The first statement assigns the sum of corresponding elements in
arrays B and C to corresponding elements in array A. The second
statement assigns the difference between arrays B and C to array D. B
and C «can be either lists or matrices; however, they both must have
identical dimensions.

7.3.3 Matrix Multiplication
You can multiply two arrays as shown in the following line:

00010 MAT A=EXC

This statement causes array A to be set equal to the product of arrays
B and C. A, B, and C must all be 2-dimensional arrays, and the number
of columns in array B must be equal to the number of rows in array C.
BASIC redimensions A to the number of rows in B and the number of
columns in C.

~)
|
F=S

USING ARRAYS

The following statements are invalid in BASIC:

00010 MAT A=AXA
00020 MAT A=AXE
00030 MAT A=BRXA

Elements in array A are needed for the calculation of the expressions
after they have already been destroyed. These invalid statements
cause BASIC to print an error message.

However, this statement
00010 MAT C=AX%A

is valid if A is a square matrix.

You can also perform scalar multiplication of a matrix:
00010 MAT A=(K)XR

where each entry in array B is multiplied by the value of K. K is any
arithmetic expression and must be enclosed in parentheses. Array A is
automatically redimensioned to array B if enough space is reserved.

7.3.4 Matrix Transposition

The TRN function transposes the dimensions of an array and renames it.
A matrix with m rows and n columns will be renamed and redimensioned
to n rows and m columns. The format of this function is as follows:

MAT array=TRN(array)
For example:

00010 IIM B(3»5)

00020 MAT READ' R

00030 MAT A=TRN(R)

00040 NATA 19293545
00030 NATA 697989910
00060 DATA 11+12+13514,15
00070 MAT FRINT k3

00080 MAT PRINT As

READY

RUNNH
123475

67 89 10

11 12 13 14 15
1 6 11

2 7 12

3 8 13

4 9 14

3 10 15

Note that the array name on the left of the equal sign must be
different from the array name on the right of the equal sign: for
example, MAT A=TRN(A) is invalid.

USING ARRAYS

7.3.5 Inverting and Finding the Determinant of a Matrix

If you want to find the determinant of a matrix, you must
the inverse. Use the INV function for this purpose.

is used as in the following example:

00010 MAT A=INV(R)

The INV function allows matrix A to be the inverse of

B.

find

The INV function

(B

must be a square matrix.) BASIC redimensions A to be the same size as

B.

NOTE

Although matrix inversion does
operate on the elements of row 0 and

column 0 of a matrix, BASIC does

intermediate results in these elements

of an inverse.

Therefore, the values of the elements in
row 0 and column 0 of an inverse matrix

may change.

The function DET is available after the inversion.

then

use

DET as a variable set equal to the value of the determinant of B.

Consequently, you can obtain the determinant of a matrix by
the matrix and then noting the value of DET. For example:

00010 MAT A
00020 MAT R
00030 IF D1
00040 FRINT

INVOONDL=DET
INVCAI\DZ2=DET

Ho#oy

=

1

NOTE

If you specify a 1list rather

matrix, BASIC cannot complete

inversion. Therefore, DET is set
to 0.

7.4 ARRAY INPUT AND OUTPUT

Elements in an array can be accessed with the statements

MAT PRINT, and MAT READ.

02 THEN FPRINT "RELATIONSHIF TRUE®

inverting

INPUT,

USING ARRAYS

7.4.1 MAT INPUT Statement

The MAT INPUT statement reads the values you type at the terminal and
enters the values for each element of a list or matrix.

The MAT INPUT statement has the following format:
MAT INPUT array(s)
where:
MAT INPUT must have a space between MAT and INPUT.

array can be one or several lists or matrices separated by
commas.

BASIC reads data from the terminal the same way it does with the
normal INPUT statement. The question mark signals that BASIC is ready
to accept input.

Unlike the INPUT statement, however, the MAT INPUT statement allows
you to enter a variable number of values into an array. You need not
supply the same number of elements as are requested in the MAT INPUT
statement; you can include fewer elements but not more than
requested.

You can also continue typing data on more than one line by wusing the
continuation character, the ampersand(&). In this case, you terminate
the input with a line terminator.

The values you type are entered into successive array elements in row
order starting with the first element. If you type a variable number
of values, you can determine the number of rows and columns you filled
by using the two variables NUM and NUM2.

If the array is a list, BASIC sets NUM equal to the number of elements
you enter. If the array is a matrix, BASIC sets NUM to the number of
rows you enter and NUM2 to the number of elements in the last row. By
printing these variables, you can see the size of the array.

If you specify more than one array in the MAT INFUT statement, only
the 1last array can have a variable number of elements. You can also
redimension an array by specifying a new size in the MAT INPUT
statement.

The following is an example of the MAT INPUT statement:

00010 DIM ACS)
00020 MAT INFUT A
READY

RUNNH

T 192939445

You cannot include a string constant within the MAT INPUT statement as
you can in the INPUT statement. You can print the results of your
input with the MAT PRINT statement.

USING ARRAYS

NOTE
The MAT INPUT # statement is wused to

enter list or matrix values from a
terminal-format file.

7.4.2 MAT PRINT Statement

The MAT PRINT statement prints the specified array element(s) or
entire array(s) at the terminal.

The MAT PRINT statement has the following format:

MAT PRINT array(s)

where:
MAT PRINT must have a space between the two words.
array(s) without subscripts causes the printing of the

entire array. Subscripted array name(s)
cause the maximum size of the array (defined
by the subscript) to be printed. (It does
not redimension the array.)

If you follow the array with a semicolon, the data values print in a
packed fashion. 1If you follow the array with a comma, the data values
print across the line with one value per print zone. If neither
character follows the array, each element prints on a separate line.
All but the last array in a list must have a comma or a semicolon,
separating it from the next array on the list.

Each row of a matrix starts printing on a new 1line. You can print
one-dimensional arrays (lists) in either row or column format. For
example:

00010 INIM A(S)
00020 MAT INFUT A
00030 MAT FRINT A
00040 MAT FRINT A
00050 MAT PRINT Aj
00060 ENDI

READY
RUNNH

7?3

SCCTSOoOW

S 0 0 0 0

USING ARRAYS

Notice that only one value was typed in response to the MAT INPUT.
The remaining elements retain a value of 0.

When you specify more than one array, BASIC begins printing each array
starting on a new line. (BASIC never prints row 0 and column 0 when
using the MAT PRINT statement.)

7.4.3 MAT READ Statement

The MAT READ statement reads the values into elements of a 1- or
2-dimensional array from DATA statements. The MAT READ statement has
the following format:

MAT READ array(s)
where:
MAT READ must have a space between the two words.

array(s) without subscripts cause the entire array to be
read. Arrays with subscripts cause the array to
be redimensioned accordingly.

The maximum size of the redimensioned array cannot exceed the previous
dimensions. '

BASIC reads the values from DATA statements in the same manner as the
READ statement. (Row 0 and column 0 are not read.) The DATA statement
must contain enough data. You cannot input a number of elements that
varies from the corresponding MAT READ statement.

Consider the following example:

00010 DM R(2+2)y C(2+2)
00020 MAT READ E

00030 MAT READ C

00040 MAT A=R+C

Q0050 MAT FRINT Aj

00060 MAT PRINT Ej

00070 MAT PRINT Cj

00080 DATA 152+35445564748

READY

FUNNH

6 g Matrix A
10 12

1 2 Matrix B
3 4

5 6 Matrix C
7 8

CHAPTER 8

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

There are three types of files in BASIC:

1. Terminal-Format files - files whose elements are stored in
line; the elements are accessed
sequentially.

2. Virtual-Array files - files whose elements are stored in
arrays; the elements are stored
randomly.

3. Record files - files whose elements are stored in
records; the elements can be accesed
sequentially, randomly, or by index.

Record files are described in Chapter 9. Terminal-format files and
virtual-array files are described in this chapter in the following
sections:

8.1 Terminal-Format Files
8.2 Virtual-Array Files

Section 8.3 describes topics common to all three file types: file
renaming and deleting.

8.1 TERMINAL-FORMAT FILES

A terminal-format file is a collection of ASCII characters stored in
lines of various lengths. The end of a line is determined by a line
terminator, that is, a 1line feed. BASIC stores these ASCII
characters, including spaces and line terminators, exactly as they
would appear on the terminal; hence the name terminal-format file.

Terminal-format files are sequential-access files. Sequential-~access
files are those files that contain information that must be read or
written one item after another from the beginning of the file. This
means that you cannot retrieve an item from the file without first
retrieving all the items preceding it.

BASIC has a file pointer that keeps track of where you are in the
file. To add new items to an existing file without overwriting
current information, you can either read the entire file or use a
special access mode called APPEND. Both methods place the file
pointer at the end of the file where you can then add data.

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

8.1.1 Opening Terminal-Format Files

Before you can access a terminal-format file, you must open it. The
OPEN statement allows you to open a new file, or an existing file, and
associate the file with a file number.

The OPEN statement has the following format:

OPEN filename exp FOR {INPUT } AS | FILE # | expression
OUTPUT

[ACCESS (READ] ALLOW {NONE}
;WRITE READ

MODIFY
lSCRATCH;
APPEND

,INVALID line no.:l ,LOCKED line no{]

where:

filename exp is a string expression representing a TOPS-20
file specification.

INPUT specifies an existing file from which data
can be taken.

OUTPUT specifies creation of a new file to which
data can be sent. If a file exists with the
same file specification, the existing file is
superseded.

expression is the file number you want to associate with
the files. It can be any real or integer
expression.

INPUT and OUTPUT are both optional. If you omit this part of the
statement from the OPEN statement, BASIC checks first for an existing
file (INPUT). If no file exists with the name specified, BASIC
creates a new file (OUTPUT). The ACCESS, ALLOW, INVALID, and LOCKED
clauses are optional attributes that you can specify (in any order)
when opening a file.

The ACCESS clause defines both the position of the file pointer and
the operations you can perform:

READ The file pointer is at the beginning of the file.
You <can only read the file. A READ operation can
only be performed on an existing file.

WRITE The file pointier is at the beginning of the file.
You can only add data to the file.

MODIFY This is the default. The file pointer is at the
beginning of the file. You can read and write to
the file.

SCRATCH The file pointer is at the beginning of the file.

You have complete access to the file; you can
read, write, and truncate the file.

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

APPEND The file pointer is at the end of the file. You
can read and write to the file at this point. An
APPEND operation is valid only for an existing
file.

The ALLOW clause defines what you allow other users to do to the file
while you are using it.

NONE No one can read or write data while you have the
file open.

READ is the default. It allows others to read the file
while you are using it.

You cannot specify an ALLOW clause if you use ACCESS SCRATCH.

The INVALID clause specifies the line number to which control passes
if the operation is unsuccessful. This transfer takes effect only if
the OPEN fails, that 1is, if you specified an illegal file
specification. If you do not include INVALID or any active error
handler, BASIC takes over the error handling.

The LOCKED clause also specifies the 1line number to which control
passes 1if the operation is unsuccessful. This transfer takes effect
only if the file is locked because another user specified ALLOW NONE.
If you do not specify a LOCKED clause (or any active error handler),
BASIC takes over the error handling.

Table 8-1 describes the results of specifying the keywords in ACCESS
clause of the OPEN statement.

Table 8-1

ACCESS-Clause Keywords of the OPEN Statement
Access Initial File Position | I/0 Operation
READ beginning read only
WRITE beginning write only
MODIFY beginning read or write
SCRATCH beginning read, write, truncate
APPEND end read or write

Consider the following example:

00010 OFEN "DATALl® FOR INFUT AS FILE 1y ACCESS AFFEND
00015 N=35 '

00020 OPEN "MONEY" FOR QUTFUT AS FILE N

00030 ENID

Line 10 opens an existing file at the end and associates it with file
1. Line 20 creates a new file specified by MONEY and associates it
with file 5. If a file named MONEY already exists, BASIC supersedes
it with the new request. When you open a file and associate a file
number to it, you use that number when referencing the file, for
example, DATA]l is 1, MONEY is 5.

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

To save files for future use, you must close them.

8.1.2 Closing Terminal-Format Files

All programs that open files should <close them before terminating
execution. Most systems do not save files unless they are closed. An
existing file with the same file specification as a new file will not
be superseded until the new file is closed.
BASIC closes all files:

1. when executing a CHAIN statement

2. when executing an END statement

3. after executing the highest numbered line in the program

Note that BASIC does not automatically close files after executing a
STOP statement.

A more specific way to close files is with the CLOSE # statement. The
CLOSE # statement closes the files you specify and disassociates them
from their file numbers. After you close a file, you cannot access it
without reopening it.

Unlike the three methods listed above, the CLOSE # statement allows
you to specify which files you want closed.

The CLOSE 4 statement has the following format:

CLOSE[[#]expression(s{]

where:

expression(s) specifies one or more file numbers, separated
by commas. The number sign, preceding each
expression, is optional.

If no expressions are specified, BASIC closes all open files.

The following examples illustrate the CLOSE # statement:
00010 CLOSE #1 !CLOSES FILE ASSOCIATED WITH FILE 1
00020 E=4

00030 CLOSE 2sHs6+1 !CLOSES FILE NUMBERS 2y 4y 7
00040 CLOSE !CLOSES ALL FILES

8.1.3 Reading Data from a Terminal-Format File

The INPUT # statement reads data stored in a terminal-format file and
assigns a value to each variable listed.

The INPUT # statement has the following format:

INPUT[#]expression, [prompt string {;{] variable (s)

’

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

where:

expression, is the file number of the terminal-format
file. If the value of the expression is
zero, data is input from the terminal rather
than a file. The comma is required. The
number sign, preceding the file expression,
is optional.

prompt string is an optional quoted string constant which
is printed only if input is being taken from
the terminal. A semicolon placed after the
prompt causes BASIC to accept input right
after the prompt. A comma placed after the
prompt causes BASIC to tab over to the first
available print zone before accepting input.

variable (s) is one or more variable names separated with
commas.

The INPUT # statement acts very much as the INPUT statement described
in Section 3.1.1. However, the INPUT # statement requests data from a
terminal-format file rather than from the user's terminal. In order
to INPUT # from a file, you must OPEN it for ACCESS READ, MODIFY,
APPEND, or SCRATCH. 1If you OPEN the file with ACCESS APPEND, you must
RESTORE # it before you can read it (See Section 8.1.5.).

Consider the following example:

READY

LISNH

00010 OFEN "DATA.E20" AS FILE 2
00020 INFUT #2+A%sR

00025 PRINT

00030 FRINT A%$sK

00040 GOTO 20

00050 ENI

READY

RUNNH

SARAH 187.2
JOE 117.45
NORMA 200
MICHAEL 89
JANET 125
SARA 63,6

? 11 End of file found on INFUT at line 00020 of MAIN FROGRAM
READY

If this example had been written with an INPUT statement (rather than
INPUT #), BASIC would have stopped and printed a question mark to
request data from you. Instead, the INPUT # read the data into the
program from a previously stored terminal-format file (DATA.B20) .

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

BASIC starts reading data from the beginning of the file. If the line
of data in the file contains more data than there are variables in the
INPUT # statement, BASIC prints the error message

% 436 Too much data present - ignored

and ignores the excess data. If, however, there is not enough data in
the line, BASIC prnts the error message

? 59 Insufficient data

and does not attempt to satisfy the INPUT # request for the remaining
variable. An input list that is terminated by a comma indicates that
subsequent INPUT # requests may read more data from the current data
line. Additionally, the ampersand character (&) immediately followed
by a line terminator indicates that the data line is continued, for
all forms of the INPUT # statement. If you try to INPUT # from a new
file or a file OPENed with either ACCESS WRITE or ACCESS APPEND
(before a RESTORE # is done), BASIC prints an error message.

8.1.3.1 The INPUT LINE # and LINPUT # Statements - The INPUT LINE #
and LINPUT # statements have the following format:

’

INPUT LINE[f]expression, [Prompt string {;}] variable(s)

LINPUT[f]expression, [prompt string f}] variable(s)

14

where:

expression is the file number of the file where the data
resides. If the number is zero, BASIC inputs
data from the terminal. The comma is
required. The number sign, preceding the
file expression, is optional.

prompt string is a quoted string constant which is printed
only if input 1is being taken from the
terminal. A semicolon placed after the
prompt causes BASIC to accept input right
after the prompt. A comma placed after the
prompt causes BASIC to tab over to the first
available print zone before accepting input.

variable (s) one or more string variables separated by
commas.

The INPUT LINE # statement reads a string of characters from a
terminal-format file into each respective string variable in the list.
All characters on the input line including commas, quotation marks,
and the line terminator are assigned to the string variable.

The LINPUT # statement also reads an entire line of data into each
respective string variable in this list; however, it does not include
the line terminator.

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

The following example illustrates both statements:

00010 OFEN *TEST" AS FILE 1

00020 FRINT # 1y "DATA» FOR A FROGRAM."
00030 FRINT # 1y "SECOND LINE.*

00035 RESTORE #1

00040 INFUT LINE # 1y A%

00050 FPRINT A%

00060 LINFUT # 1, A%

00070 FRINT A%

00080 ENI

FRUNNH

DATAYy FOR A FROGRAM.
SECOND LINE.
READY

Line 10 opens a file named TEST and associates it with FILE 1. Lines
20 and 30 write data into the file. Line 35 restores the file pointer
to the beginning of the file. The INPUT LINE # statement requests a
line of data from the file. BASIC reads the entire line, including
the line terminator, into the program. If an INPUT # statement had
been wused, BASIC would have read only "DATA" into the string variable
AS.

The LINPUT # statement on line 60 requests another line of data. This

time BASIC reads all characters into the program except for the line
terminator.

8.1.4 Writing to a Terminal-Format File

The PRINT # statement writes data into the specified terminal-format
file. The PRINT # statement has the following format:

PRINT[{]expression, list

where:

expression is the file number of the terminal-format
file. If the value of the expression is
zero, BASIC prints the data on the terminal.
The number sign, preceding each file
expression, is optional.

list contains the items you want printed. The

items can be any real, integer, or string
expressions. Separate the items with commas
or semicolons. The resulting output format
is the same as the simple PRINT statement.

If there are no items in the list, BASIC sends a blank 1line to the
file. To PRINT # to a file, you must OPEN with ACCESS WRITE, MODIFY,
SCRATCH or APPEND.

The PRINT # expression USING statement prints formatted data to a file
(See Chapter 10.).

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

Consider the following example that writes to a terminal-format file
from data stored in DATA statements:

00010 OPEN °"NAMES®" FOR OUTFUT AS FILE 1

00020 REAIl A%y A 'READIl IATA FROM FROGRAM
00030 IF A%$="" THEN 90 !CHECK FOR LAST ITEM
00040 FRINT # 1, A%7 "» "5 A IFRINT TWO ITEMS
00050 GOTO 20

00060 DATA "SARAH"y 187.2y "JOE"sy 117.45
00070 DATA "JANE®"y 200, *JIM"» 89

00080 DATA "'+ O

00090 CLOSE # 1

00100 END
RUNNH

READY

After you run this program, the file NAMES contains the following:

SARAH, 187.2
JOE, 117.45
JANE, 200
JIM, 89

Note that the commas between data items are not automatically
generated by the PRINT statement. If you want to read individual data
items back in with the INPUT statement, the commas must be there to
separate the items.

NOTE

The MAT INPUT # statement reads array
elements from a terminal-format file.
It allows a variable number of data
items to be read from one data record.
The MAT READ # statement also reads
array elements from a terminal-format
file. With MAT READ 4, however, all
elements of the array must be filled by
data items from one data record.

The MAT PRINT # statement outputs all
elements in an array to a

terminal-format file. (The MAT
statements are described in Chapter 7.)

8.1.5 Restoring a Terminal-Format File

The RESTORE # statement resets the file pointer of the specified
terminal-format file to the beginning of the file.

The RESTORE # statement has the following format:
RESTORE[#]expression
where:
expression is the file number of the terminal-format
file. The number sign, preceding the file

expression, is optional.

8-8

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

After writing into a file, you can bring the file pointer back to the
beginning with the RESTORE # statement.

00010 OPEN "NEW®" AS FILE 1
00020 FRINT#1y 655°5"3805"y"595
00030 RESTORE#1

00040 INFUT#1s» Ay By C

00050 FRINT Ay By C

000460 CLOSE#1

00070 END

FUNNH

65 80 95

8.1.6 Truncating a Terminal-Format File

The SCRATCH # statement truncates the specified terminal-format file
at the current position of the file.

The SCRATCH # statement has the following format:

SCRATCH[#]expression
where:
expression is the file number of the terminal-format
file. The number sign, preceding the file

expression, is optional.

You may truncate a file at any position. The file, however, must
first be opened with ACCESS SCRATCH.

8.1.7 Checking for the End of a Terminal-Format File

To test for the end of a terminal-format file, you can use the IFEND
#, IFMORE #, or a NODATA # statement.

8.1.7.1 IFEND # Statement - The IFEND statement has the following
format:

THEN line number

IFEND[#]expression {THEN statement }
GOTO line number

where:
expression is the file number of a terminal-format file.
The number sign, preceding the file
expression, is optional.
statement is any BASIC statement.
line number is any line number in the program.

With the IFEND # statement you check for the end of the file. If the
file pointer 1is at the end, you can transfer control to another line
of the program or execute a statement.

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

8.1.7.2 IFMORE # Statement - The IFMORE statement has the following
format:

THEN line number

IFMORE[#]expression {THEN statement
GOTO line number

where:
expression is a file number of a terminal-format file.
The number sign, preceding the file
expression, is optional.
statement is any valid BASIC statement.
line number is any line number in the program.

IFMORE tests whether the file pointer is at the end of the file
specified. 1If not at the end, BASIC executes the statement or goes to
the line number specified.

8.1.7.3 NODATA # Statement - The NODATA # statement has the following
format:

NODATﬂl}]expression,]line number

where:

expression is a terminal-format file number. The number
sign, preceding the file expression, is
optional.

line number is any valid line number in the program.

When you specify NODATA #, such as:

NODIATA #6» 4S5
BASIC checks for the end of the file, that is, no data. 1If at the end
of the file, BASIC transfers control to the specified line number. If
no file number is specified, BASIC transfers control to the specified
line only if the data pointer is at the end of all DATA-statement data
for this program segment.
For example:

NODATA 100

8.1.8 Changing Margins in a Terminal-Format File
The MARGIN # statement allows you to modify the margin setting of a

terminal-format file or the margin setting of your terminal. The
MARGIN # statement has the following format:

MARGI!{[#] expression ,}num exp

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

where:
expression, is the file number of an open terminal-format
file. If you do not specify this arqument
(or you specify file number 0), your terminal
margin is changed. The number sign,
preceding the file expression, is optional.
num exp is the numeric expression that determines the
margin. (If it 1is a real number, it is
truncated.)
The default margin for a terminal-format file is 72; the default

margin width for a terminal is the current terminal width.
Consider these examples:

00010 MARGIN ©

00020 FPRINT *4"3% FOR I = 1 TO 10
00030 ENID

RUNNH

L2222

313

READY

This example changes the terminal width to 5. To change it back to
the default, type:

00010 MARGIN 0

The following example changes the margin of the terminal-format file
number 4 to 132 columns:

00010 MARGIN #4y 132

8.1.9 Setting Page Size in a Terminal-Format File

Normally, output to a terminal-format file and to a terminal are not
divided 1into pages. The PAGE # statement allows you to set a page
size of any positive number of lines.

The PAGE # statement has the following format:

PAGEE}]expressioni]num exp

where:

expression is the file number of an open terminal-format
file. If the file number is 0 or is omitted,
the PAGE # setting affects the user's
terminal. The number sign, preceding the
file expression, is optional.

num exp is any numeric expression. It 1is truncated

before the page size is set. It represents
the number of lines per page.

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

The page size remains in effect until:

1. The page size is set again with the PAGE statement. A page
size of 0 disables paging.

2. Execution ends.
3. The file is closed.

At the end of program execution, the terminal page size 1is reset to
what it was before program entry.

When a PAGE # statement is executed, BASIC ends the current output
line (if necessary), outputs a form feed, and starts counting lines
beginning with the next line of output. As soon as a new page is
necessary, a form feed is output.

8.2 VIRTUAL-ARRAY FILES

A virtual-array file, like a terminal-format file, 1is information
stored on a system device (disk). Once you open a virtual-array file,
the similarity with terminal-format files ends. There is no need for
the INPUT #, INPUT LINE #, LINPUT # PRINT #, or RESTORE # statements
with virtual-array files. You access elements in a virtual-array file
exactly as you access elements in an array in memory. (See Sections
1.8 and 1.8.1.) 1In fact, you can use virtual arrays just as you would
regular arrays.

Virtual-array files are random-access files. You can read or write
any element in the file no matter where it is located. The last
element in a virtual array can be accessed as quickly as the first.
Contrast this with a terminal-format file where you must read the
entire file to get to the last element.

When BASIC stores data in a virtual-array file, it does not convert
them to ASCII characters but rather stores them in the internal binary
representation. Consequently, there is no loss of precision caused by
data conversion.

You define storage space for a virtual-array file just as you do for a
regular array. The DIM # statement (Section 8.2.1) allows you to set
parameters for the file. Unlike when you specify arrays in memory,
you must specify the maximum character 1length of strings in a
virtual-array file. Strings longer than the maximum are truncated.
Strings shorter than the maximum are padded with trailing nulls.

8.2.1 Dimensioning a Virtual-Array File

To use a virtual-array file, you must first define its size with a DIM
statement. The DIM # statement has the following format:

DIM[#]expression, array(s)[%number]
where:
expression, is the file number associated with the

virtual-array file. The number sign,
preceding the file expression, is optional.

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

array(s) is one or more 1- or 2-dimensional arrays
separated by commas. These arrays are within
the virtual-array file.

=number is the maximum length of a string array if
any are specified. The default is 16
characters.

For example:

00010 DIM #2» A(15,20)y B(50)y C$(18)=10

The DIM # statement establishes the number of subscripts allowed for
each virtual array, and the maximum values for each. In addition, the
DIM # statement allocates all space for the virtual arrays associated
with a particular file number. Storage allocation always starts at
the beginning of the file. Therefore:

00100 DIM #1s ACL100)y R(100)
and

00010 DIM #1y AC100)
00020 DIM #1, RB(100)

do not perform the same function. Line 100 allocates 202 elements
(101 elements 1in each array) on file number 1. Lines 10 and 20
allocate only 101 elements on file number 2, because the DIM #
statement in 1line 20 causes storage allocation to start at the
beginning of the file. Thus, file 2 contains 101 elements that have
two array names. For example, A(97) and B(97) would reference the
same element.

When you specify a virtual array of strings, you should indicate the
maximum length of each string. If no maximum is specified, the
default is 16.

To correctly access the data in an existing virtual-array file, ensure
that the DIM # statement specifies the same data type and subscript as
in the program which created the file. The variable name associated
with the file can be different from the original as long as the data
type is the same.

8.2.2 Opening and Closing Virtual-Array Files

To open a virtual-array file, you use the OPEN statement with a few

variations. The wvirtual-array OPEN statement has the following
format:
OPEN filename exp FOR {INPUT} AS |FILE || # | expression
OUTPUT
,[bRGANIZATION] VIRTUAL +ACCESS READ
MODIFY
WRITE
,ALLOW {NONE} [/ INVALID line no.]
READ

I:, LOCKED line no]

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

where:

filename exp is a string expression which Iis a
TOPS-20 file specification.

FOR INPUT specifies an existing file from which
data can be taken.

FOR OUTPUT specifies the creation of a new file to
which data can be sent.

expression is the file number. It can be any real
or integer expression.

ORGANIZATION VIRTUAL specifies a virtual array file. The
keyword ORGANIZATION is optional.

ACCESS READ allows read only.

ACCESS WRITE allows write only.

ACCESS MODIFY allows read and write operations. This
is the default.

ALLOW NONE allows no simultaneous access.

ALLOW READ allows others to read while you have the
file. This is the default.

INVALID line no. specifies a line in the program to which
control passes if the OPEN statement
fails.

LOCKED line no. specifies a line in the program to which

control passes if the OPEN statement
fails because the file is locked.

The ORGANIZATION clause defines the file to be a virtual-array file as
opposed to a terminal-format file. (The ORGANIZATION clause is not
allowed in a terminal-format OPEN statement.) The rest of the clauses
may be specified in any order.

Consider these two program lines:

00010 DIM #2y F(100+10)
00020 OPEN "VARAY" FOR OUTPUT AS FILE 2y VIRTUAL

These lines open a virtual-array file as file 2 and allocate 1,111
elements of storage space, that is, 100 x 10 plus the 0 elements.

As an example of a use of virtual-array files, consider the problem of
an information retrieval system for a small organization. Assume
there are 1000 employees each needing a 255-character record
containing the name, home address, home phone, work station and phone
extension. If this information is maintained in a terminal-format
file, it would take a long time to locate the information for any
employee and it would be impossible to update. Alternatively, these
records can be maintained in a virtual-array file. 1In this case some
index is needed to associate a particular employee with a record.

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

In the following example, an index file containing badge numbers is
used to find the record in the master file. The employee's badge
number is in the same position in the index file as the record 1is in
the master file. It is much faster to search through the index file
because the data elements are much shorter, and 1less time is spent
reading data from the file. This example program prints the
employee's name based on the badge number.

00010 DIM #1y RZ(1000) 11000 ELEMENTS IN ERADGE
INUMBER FILE.

00020 DIM #2» B$(1000)=25%5 11000 ELEMENTS IN MASTER
'FILE.,

00030 OPEN "BRADGE®" AS FILE 1y VIRTUAL 'OFEN BADGE FILE.

00040 OPEN "MASTER" AS FILE 2y VIRTUAL '0PEN MASTER FILE,
00050 FRINT "WHAT IS THE BADGE NUMEBER®F !REQUEST A BAIGE NUMEER.
00060 INPUT N

00070 FOR IX=1 TO 1000 'SEARCH FOR A MATCH IN
00080 IF RXZ(IX)=N THEN 200 !THE BRADGE NUMEER

00090 NEXT IX% 'FILE

00100 PRINT "NO SUCH EMFPLOYEE® 'CAN NOT FIND MATCH»
00110 GO TO 32700 'PRINT MESSAGE AND
00200 FRINT "NAME IS"F SEG$(R$(I)»s10,30) ITERMINATE. AFTER
32700 CLOSE #1,4%#2 'A MATCH IS FOUNDs GET
32767 END !RECORD OF EMPLOYEE»

'B$(IZ) s AND EXTRACT THE
INAME FROM THE RECORD
! CTHE NAME IS STORED
'FROM THE 10TH TO THE
'30TH CHARACTERSs THEN
'TERMINATE.,

To close a virtual-array file, use the CLOSE statement described in
Section 9.5.2.

8.3 FILE RENAMING AND DELETING

The following sections describe the process of renaming and deleting
terminal-format, virtual-array, and record files from storage.

8.3.1 The NAME-AS Statement
The NAME-AS statement has the following format:

NAME string 1 AS string 2

where:
string 1 is a string expression which is the file
specification of the file to be renamed.
string 2 is a string expression which is the new file

specification.
For example:
00010 NAME *"MONEY*®* AS "ACCNTS"

This statement changes the file named MONEY to ACCNTS.

USING TERMINAL-FORMAT AND VIRTUAL-ARRAY FILES

The NAME-AS statement does not alter the contents of the file. It
renames the first file specified to that of the second file without
changing the file number. If you use the NAME-AS statement on an open
file, the new name does not take effect until the file is closed.

8.3.2 The KILL Statement

The KILL statement has the following format:
KILL string expression

where:

string expression is the file specification of the file you
want deleted from storage.

After you delete a file, you cannot open it or access it in any way.
For example:

00010 KILL "DATA®

deletes the file DATA from storage.

NOTE

If you want to undelete a file that has
been deleted by the KILL statement, use
the TOPS-20 UNDELETE command. (See the
TOPS-20 Commands Reference Manual.)

8-16

CHAPTER 9

USING RECORD FILES

In addition to terminal-format and virtual-array files, BASIC provides
another type of file for storing information, the record file. A
BASIC record file is a collection of related data stored in the form
of records. You determine the size and content of the records and the
structure and access properties of the file.

Programs can write records into a file and subsequently retrieve them.
Each record is treated as a separate unit. All input and output is
performed on a record-by-record basis via a buffer between the file
and the program.

In order to write BASIC programs that deal with record files, refer to
the following sections:

File Organization

Access Methods

Record Formats

Record Mapping

File Operations

Record Operations

Dynamic Mapping of an I/0 Buffer
Examples

\O WO W WLWWIWLY
OOV WN -

Section 8.3 describes renaming and deleting files.

9.1 FILE ORGANIZATION

The manner in which BASIC stores and retrieves records in a file is
determined by the structure, or organization, of the file. When you
Create the file, you specify its organization. The organization in
turn determines the operations and access methods that you can use on
the file. The three organizations you can specify for a record file
are:

1. Sequential

2. Relative

3. Indexed
The organization you specify when the file is created is permanently
assigned to the file. When an existing file is opened for processing,

you must again specify the organization. An organization that does
not match the file's initial organization results in an error.

USING RECORD FILES

9.1.1 Sequential Organization

A record file with sequential organization contains records that are
stored in series. The order in which the records occur in the file is
always the order in which they are written to the file. To read a
particular record in the file, for example the fifteenth record, a
program must open the file and successfully read the first 14 records
before accessing the desired record.

Consequently, records can be added only to the end of a sequential
file because the location of each record is fixed in relation to the
record preceding and succeeding it. Sequential files are allowed on
disk.

9.1.2 Relative Organization

A record file with relative organization contains records that are
stored in numbered locations. BASIC structures the file into a series
of record positions with each position capable of containing a single
record. The number associated with a position represents its location
relative to the beginning of the file. Thus, record number 1 occupies
the first record position, record number 2 occupies the second record
position, and so forth.

Access to a record can be made sequentially or randomly by record
number. Relative files are allowed only on disk.

9.1.3 1Indexed Organization

A record file with indexed organization contains records that are
stored according to a field, called a key field, within each record.
BASIC sets part of the file aside as an index, or key, in order to
locate these records. Records are retrieved by a particular key
depending on the contents of the key field in each record.

Indexed files require that at least one key, called the primary key,
be associated with every record. In addition to a primary key, you
can optionally define up to 254 alternate keys for a record.
Alternate keys represent secondary data fields and are defined in the
same manner as a primary Kkey. Your program can also use these
alternate keys to identify and retrieve records.

When you create an indexed file, you must specify which field in the
record is to be used as the primary key. Access to a record can be
made sequentially or randomly by reference to the primary key.
Indexed files are allowed only on disk.

USING RECORD FILES

9.2 ACCESS METHODS

The methods that you use to store or retrieve records in a file are
determined by the file's organization. The organization of a file is
fixed at the time you create it, but, depending on the access allowed,
an access method can change each time the file is opened. 1In some
cases, you can vary the access from record to record during program
execution. BASIC allows you to specify one of two access methods:

1. Sequential

2. Random
Sequential access indicates that records are accessed in serial order.
Random access indicates that records are accessed by record number or

key.

Table 9-1 shows the relationship between file organization and access
methods.

Table 9-1
Record-File Access Methods
Access Methods

File Organization .

Sequential Random
Sequential yes no
Relative yes. yes
Indexed yes yes

The following sections describe each type of record access.

9.2.1 Sequential Access

All file organizations allow you to access records sequentially.
Sequential record access 1is employed when you issue a series of
requests for the next record. The record operations are performed in
terms of a predecessor-successor record relationship. For each
successfully accessed record (except the last) there is a succeeding
record somewhere in the file.

9.2.1.1 Sequential Access to Sequential Files - Sequentially
organized files allow only sequential access. In these files, the
predecessor-successor relationship is physical (that is, each record,
except the 1last, 1is physically adjacent to the next record).
Sequential access to a sequential file means that records are accessed
in the order of their insertion into the file. A record can be
processed only after each preceding record has been successfully
accessed. Similarly, once a record is processed, the program must be
repositioned to the beginning of the file before preceding records can
be accessed. A RESTORE operation, or re-opening the file, positions
the record pointer at the beginning of the file.

USING RECORD FILES

For sequential files, a PUT operation requires that the current record
pointer be positioned at the end of the file. A FIND operation moves
the pointer to the next sequential record position. Therefore, a
series of FIND operations can be used to locate the end of the file
(an unsuccessful FIND usually indicates end-of-file). A GET causes
the program to locate the next record and perform a read operation. A
succeeding GET or FIND operation moves the pointer to the next record.
An UPDATE operation must be preceded by a FIND or a GET, which moves
the pointer to the record to be modified.

9.2.1.2 Sequential Access to Relative Files - Relative file
organization allows sequential access as established by the contents
of record positions. Sequential access to a relative file means that
records are accessed in ascending order according to record numbers.
Relative files allow empty record positions that can be caused by a
record deletion or by a program that purposely leaves the position
empty. BASIC's record I/0 maintains the predecessor-successor
relationship through its ability to recognize empty or occupied record
positions.

A sequential PUT operation to a relative file causes a record to be
placed in a 1location whose ©position number is one higher than the
previous operation.. If that position 1is occupied, the operation
fails.

9.2.1.3 Sequential Access to Indexed Files - Indexed file
organization also supports sequential access. In indexed files, the
predecessor-successor relationship exists among the entries in the
index. ‘Sequential access to an indexed file means that records are
accessed by their key field according to the ASCII collating sequence.
The search 1is made through a specified index in serial fashion. The
records are retrieved in the same order that key values appear in the
index.

PUT operations on indexed files write the record and place its key
value in the appropriate index. On GET operations, the first record
in the collating sequence (according to the appropriate index) is made
available to the program. The next GET updates the pointer to the
record whose key appears next in that index, and accesses the record.
FIND operations perform in the same manner but without reading the
record. UPDATE and DELETE operations require a successful GET or
FIND.

9.2.2 Random Access

Random access allows the BASIC program rather than the file
organization to control the order of record access. The
predecessor-successor relationship has no effect on random access.
The program identifies each record of interest in each operation.
This procedure allows you to access records in any. order at any point
in the file.

Random access is not permitted on sequential files because of the
strict physical relationship maintained among records. Relative and
indexed files do allow random access.

USING RECORD FILES

The capability to shift from random to sequential access (or vice
versa) 1is only allowed on relative and indexed files. Sequential
files do not support random access.

Relative and indexed file organizations impose their own restrictions
on the sequence of operations. For example, a GET operation always
shifts the current file position to the target record. If you follow
a series of sequential GET operations with a random PUT, the current
file position remains at the location of the last GET. A sequential
GET after the random PUT will resume at the point of the previous GET
operation.

9.2.2.1 Random Access to Relative Files - Programs employ random
access to relative files through the specification of a particular
record number. BASIC record I/0 interprets the number as representing
a record position in the file. 1If the operation is a GET or a FIND
and no record exists in the specified location, you will receive an
error. If the operation is a PUT and a record already exists in that
location, you will also receive an error.

Note that random access DELETE and UPDATE operations do not allow the
specification of a record number. Also note that you must do a
successful GET or FIND before performing these operations.

9.2.2.2 Random Access to Indexed Files - Programs initiate random
access on indexed files by means of a key specification. You specify
a key-of-reference number and key value in a manner determined by the
desired operation. The specified key value indicates the contents of
a record data field, and the key-of-reference number identifies the
index used to locate that record.

On GET and FIND operations, you must specify the content of the
desired key field. BASIC's Record Management Services (RMS)
automatically searches the appropriate index, finds the desired key
value (if present), 1locates the record in the file, and passes the
record to the program.

A PUT operation does not allow an explicit key specification.
Instead, the BASIC program provides RMS with a new data record. RMS
retrieves the primary-key definition in the file, extracts the new
record key value, and finally places the record into the file
according to the value of the primary key.

Indexed files allow you to specify one of three types of key values
for record retrieval. These are: exact key, approximate key, and
generic key. You specify an exact key by indicating that the desired
record's key field must be equal to the specified key. You specify an
approximate key in your program by indicating that the desired
record's key field can be equal to or greater than, or simply greater
than the specified key. You specify a generic key in the program by
indicating an initial portion of a key field. These three methods are
described in Section 9.6.3.

USING RECORD FILES

9.3 RECORD FORMATS

In addition to specifying record organization and access for record
files when you create a file, you must also specify the record format.
Record format determines the general structure of each record in the
file. The format 1is specified when the file 1is created and is
permanently assigned to each record placed into that file.

BASIC allows you to specify one of three formats:

Fixed The file contains records of equal and fixed
length.

Variable The file may contain records of different
lengths.

Stream The file contains a series of contiguous

ASCII characters. A record is defined as a
set of <characters delimited by a line
terminator.

The file organization determines which of the formats you can select.
Table 9-2 shows the relationship between file organization and record
formats.

Table 9-2
Record Formats

File Organization | Fixed~Length | Variable-Length | Stream-Format
Records Records Records
Sequential yes yes yes
Relative yes yes no
Indexed yes yes no
You must specify record format when you create a file. In a BASIC

program, the record format 1is specified as an element of the file
organization.

Stream format is supported only for sequential files on disk devices.
A stream specification creates a file containing ASCII stream data.
If you attempt to create a stream file on a non-disk device, an error
is returned.

Variable format is the default for all three file organizations. The
maximum record length is indicated by a count field or reference to a
MAP.

USING RECORD FILES

9.3.1 Fixed-Length Records

Fixed-length describes an attribute of a file in which records are of
equal and nonvarying length. Under fixed-length format, each record
in a file occupies an identical amount of space.

In the BASIC program, you specify the length of records when the file
is created. The 1length can be explicitly stated in the RECORDSIZE
clause or implicitly defined by a map reference in the MAP clause.
When a program requests a record from the file, the desired record is
passed to the program within the length restrictions defined for that
file. The record length you specify in your program is dependent on
the data stored in the records. See Section 9.4 for a description of
how to determine the length of a record.

Fixed-length format is optional for sequential, relative, and indexed
files. However, relative files store records in fixed-length
positions, regardless of the format specification. Relative file
records are stored 1in positions that are each equal to the maximum
record size specified when the file is created. This condition is
true whether the format is fixed or variable.

9.3.2 Variable-~Length Records

Variable-length format describes an attribute of a file in which the
length of each record can differ. Variable-length format is the
default for sequential, relative, and indexed file organizations.

When you use variable-length format, you must specify the 1length of
the 1longest record in the file with the RECORDSIZE clause or the MAP
clause. The length is dependent on the data stored in the record.
See Section 9.4 for a description of how to determine record size.

Because record operations require that the record size be known, a
count field 1is prefixed to each record as it is written to the file.
The count field identifies the individual record size 1in characters,
but this is transparent to the BASIC program.

Relative files are an exception 1in that variable-record format is
allowed but record-position 1length is fixed. The length of each
record position 1is defined by the size of the 1largest record.
However, the size of each variable-format record may vary up to the
size of this position. Thus, a record operation causes a transfer of
only as many characters as the record contains, not the entire record
position.

9.3.3 Stream-Format Records
Stream format describes an attribute of a file that contains a
contiguous group of ASCII characters. A record in such a file is a
set of characters delimited by one of the following:

1. Line feed (LF)

2. Form feed (FF)

3. Vertical tab (VT)

USING RECORD FILES

Stream format is allowed only for sequential files. To create a
sequential file with stream format, you specify the STREAM attribute
in the SEQUENTIAL clause, as follows:

OPEN file name exp FOR OUTPUT AS FILE # expression
, SEQUENTIAL STREAM, RECORDSIZE 80

Stream-format records are usually of variable lengths; however, no
count field precedes the record. During output operations (PUT), RMS
moves as many characters from the program buffer to the file as were
specified in the COUNT or MAP specifier in the PUT statement. No
checking is made of the value of the data in the record.

For input operations, RMS scans the record for the first occurrence of
a LF, FF, or VI. If the scan is terminated by a LF, FF, or VT, RMS
passes the entire string (including the terminator) to the program.
Each successive input operation causes the scan to resume at the
character following the last LF, FF, or VT encountered.

Do not PUT a record whose last character is not LF, FF, or VT. If you
do a subsequent GET of that record, it will access all characters in
the file up to the next LF, FF, or VT.

9.4 RECORD MAPPING

To access records in a file, you must establish a buffer for input and
output. You can establish and name the buffer and describe the
characteristics of the records in a particular file with the MAP
statement. The MAP statement specifies that certain variables are
contained in the buffer. The MAP clause in an OPEN statement, on the
other hand, references a MAP statement and associates it with a
particular file.

The MAP statement has the following format:

MAP (name) [{ALIGNED }]element(s)

UNALIGNED
where:

(name) is the name you give to the buffer. Parentheses
are optional.

ALIGNED is optional. These keywords refer to the way data

UNALIGNED is placed in the buffer. ALIGNED is the permanent
setting; UNALIGNED is not currently supported and
will be ignored.

element (s) is a 1list of elements, separated by commas,

defining the characteristics of the record. Each
element represents a field in the record.

A valid element in a MAP statement can be any numeric, integer, or
string variable, an entire array, or a FILL. (FILL, FILL%, FILLS,
FILLS=n, FILL(n), FILLS(n)=m).

FILL acts as a space holder allowing you to mask parts of a record or
to hold space for future use. FILLS$=m is a string of m characters and
FILLS(n)=m is n strings of m characters.

USING RECORD FILES

The length of a string variable is specified by the syntax:
AS$=n

where:
AS$ is the string variable.

n is the number of characters in the string. n must be a
constant.

For example:
00025 MAF (BUFF1) NAME$=25, S58%s FILL» AGEY

This statement sets up a buffer area named BUFFl1 and describes four
data fields:

1. A string field containing up to 25 characters (NAMES$=25)
2. An integer field (SS%)

3. A floating-point place holder (FILL)

4. Another integer field (AGE%)

When specifying a string field, you should define the number of
characters in the field. The default is 16 characters. Strings in a
string field are fixed length. BASIC stores them left-justified and
padded with blanks. For example:

00010 MAF (TEST) R$ = 7

00020 OFEN "FILE" AS FILE 1y SEQUENTIAL, ACCESS AFFENIy MAF TEST
00030 R%=‘'ARC”

00040 CXA=LLEN(E$)

00045 FRINT CX%

00050 FUT #1

00060 CLOSE #1

00070 END

READY

RUNNH
7

Although the value assigned to B$ is three characters long, the length
of the string field contains those three characters plus four trailing
blanks. 1Its length is seven.

NOTE

Variables that are parameters to
subprograms are all passed by reference.
Therefore, if an actual parameter is a
variable that 1is MAPed, execution of a
GET inside the subprogram will change
the value of the dummy parameter.

The format of the data within a record is:

1. String data is stored in 7-bit ASCII, five characters per
word.

USING RECORD FILES

2. Elements of string arrays and successive string elements in a
given MAP are packed together.

3. 1Integer and real values are always word-aligned. Each
occupies one word.

4. There may be unused character positions between a string
value and the numeric value that follows it. The contents of
these character positions is unspecified.

For example:
MAF FILEIMAF A$=2y R$=2y C

specifies that A$ is stored in the first two characters of the first
word of the record. The next two characters in that word contain BS.
Because numeric values are always word-aligned, character position 5
in that word 1is not used. C occupies all five characters in the
second word of the record.

The RECORDSIZE clause of an OPEN statement should always be specified
as a character count. If a record contains real or integer data, this
count must include:

1. The number of characters contained in string items in the
record

2. Five characters per real or integer item in the file

3. Any unused characters between a string item and the numeric
item that follows it

Because the MAP statement defines the data content of the record, it
also defines the position and 1length of indexed-file keys. Both
primary and alternate key clauses in an indexed file OPEN statement
refer to elements in a MAP statement.

A MAP statement must appear in your program before the OPEN statement
that references it and before any references to variables it defines.

Because the MAP statement defines the amount of data in the record, it
can also be used in the OPEN statement to define record size. 1In
addition, a map reference and a RECORDSIZE specification can both
appear in the same OPEN statement. This enables you to specify a
smaller record (buffer) for a particular operation when the
record-length format 1is variable. When both a map reference and a
RECORDSIZE specification are used, the RECORDSIZE takes precedence.

NOTE

Because a RECORDSIZE specification
overrides a MAP, it is possible to
define a record size that overwrites
mapped areas. You should never specify
a RECORDSIZE that is larger than
previously defined MAP statements for
the same file.

USING RECORD FILES

A file may contain several different types of records, each composed
of different data fields. A BASIC program can manipulate such a file
if you specify more than one MAP statement to describe the
corresponding buffer. Each such MAP statement, in this case, has the
same MAPname.

If a particular variable is contained in records of more than one
format, that wvariable can be declared 1in each corresponding MAP
statement. For example:

LLISNH

00010 MAF INVENTORY.RECORD PART.NUM$=4yTOTAL STOCKsSTOCK.IN.AySTOCK.INLWR
00020 MAF INVENTORY.RECORD PART NUM$=65TOTAL .STOCK
00030 OFEN *INVENTORY" AS $1, SEQUENTIALyMAF INVENTORY.RECORD

The file "INVENTORY" contains some records that have a 6-character
part number, a count of the total number in stock, and a breakdown of
those available at locations A and B. Other records only contain a
6-character part number and a count of the total number in stock.

Note that if a given variable apppears in more than one MAP statement,
that variable must appear at the same location in the record in both
declarations. Also, if it is a string variable, the string lengths
must be the same.

PUT and UPDATE operations allow a MAP line reference in the statement.
This allows you to specify the 1length of a record when there are
multiple MAP declarations.

The following rules apply to MAP statements in a BASIC program:

1. All MAP statements must appear before the OPEN statement in a
program and before their variables are referenced.

2. You can have multiple MAP statements with the same name. The
largest buffer (longest element 1list) must be specified
first. The first MAP statement sets up storage allocation.

3. The same variable can appear on the element 1lists of
different MAP statements with the same MAP name. In this
case, the variable must occur in the same position 1in each
MAP statement. For example:

00100 MAF (RUFFL) AvyERsC
00200 MAF (RUFF1) AQsC

4. 1If you specify an array in a MAP statement, you must
dimension it in that statement. If the same array occurs in
two different MAP statements for the same buffer, the
dimensions must be the same.

5. The length of a string field should be defined; otherwise,
the default is 16 characters.

6. MAP statements are local to the MAIN program or subprogram in
which they are defined.

The MAP statement is referenced in the OPEN statement when you create
a new file or access an existing file.

USING RECORD FILES

9.5 FILE OPERATIONS
When dealing with record files, you are either working with the file
as a whole or working with an individual record in the file. The
following sections describe how to:

1. Create a new file - OPEN statement

2. Access an existing file - OPEN statement

3. Close a file - CLOSE statement

4, Return the file pointer to the beginning - RESTORE statement

5. Truncate an entire file - SCRATCH statement

Section 9.6 describes working with individual records in a file.

9.5.1 Creating and Accessing a File

The OPEN statement enables you to create a new file or access an
existing file. With this statement you can define, explicitly, all
the important aspects of each data transfer operation including the
structure of the file and its file-sharing capabilities. You can also
provide for transfer of control if the OPEN statement fails.

The syntax of the OPEN statement includes keywords that describe
attributes of the file. These keywords are followed, in general, by a
name, numeric expression, or line number, and are separated by commas.
The following is the general syntax of the OPEN statement for a record
file:

OPEN filename exp [%OR {INPUT }1 AS [fILé] Dﬂ expression

OUTPUT
SEQUENTIAL FIXED
[OrRGANIZATION] (RELATIVE VARIABLE
INDEXED STREAM
READ NONE
+ACCESS |WRITE ,ALLOW)READ
MODIFY WRITE
lSCRATCHs lMODIFY
APPEND
{,MAP mapname } [, INVALID line no. |
,RECORDSIZE num exp
[/LOCKED line no.] {,DOUBLEBUF
,BUFFER [#] num exp

{,SPAN } [,BLOCKSIZE num exp]
, NOSPAN

9-12

USING RECORD FILES

[BUCKETSTZE num exp | [,CLUSTERSIZE num exp |

, MODE num exp] [ZDENSITY num ex?]
 PRIMARY [KEY] name] {DUPLICATES }
— NODUPLICATES

[ALTERNATE [keY) name:l [{DUPLICATES }] [{CHANGES }]

NODUPLICATES NOCHANGES

where:

filename exp is a string expression representing a TOPS-20 file
specification.

FOR INPUT requires that the specified file exist. If the
file does not exist, an error results. This error
causes the OPEN statement to transfer control to
the 1line specified by the INVALID clause if
present.

FOR OUTPUT creates a new file with the name you specify.

If you leave the FOR clause out entirely, BASIC searches for an
existing file of the specified name. If the search fails, BASIC
creates a new file.

AS [FILE] [#] expression

associates the file with a file number. File number 0
(user's terminal) is invalid.

,[bRGANIZATION] SEQUENTIAL

arranges the records in the file by order of input, that is,
in serial order.

,EQRGANIZATION:]RELATIVE

arranges records by numbered position in the file.

,[pRGANIZATION:]INDEXED

arranges records so that they can be accessed by reference
to a keyed index.

[Fixep |

specifies that the records are fixed length.

I:VARIABLE]

specifies variable-length records in the file. Note that if
records are variable length, the buffer is padded with 0's
(nulls) after a GET of a record that 1is smaller than the
buffer. This format is the default for all three
organizations.

[sTrEAM |

specifies ASCII stream records (Sequential files only).

USING RECORD

READ
WRITE
MODIFY
SCRATCH
APPEND

,ACCESS ‘

l

|
i

specifies the operations tha
on the file.

READ

allows read only.
WRITE

allows write only.
MODIFY

allows read, write, delete,
the default for sequential,

SCRATCH
allows full access; read
truncate. (Note that a fil

users if it is open with ACC
APPEND

allows read, write, delete,
file pointer initially set t

|
5

defines what you allow other
you are using it.

,ALLOW ([NONE
READ
WRITE
IMODIFY

NONE
specifies a protected file.
READ

allows read only. This 1is
relative, and indexed files.

WRITE
allows write only.

MODIFY

FILES

t the current user can perform

and update operations. This is

relative and indexed files.

, write, delete, update and
e cannot be accessed by multiple
ESS SCRATCH.)

and update operations with the
o the end of file.
users to do to the file while

the default for sequential,

allows read and write access.

yMAP mapname

references a MAP statement. The map buffer you reference
defines the buffer used to store the file's data
temporarily. The MAP clause can also be used to define the

record size.

9-14

USING RECORD FILES

NOTE

If you use the RECORDSIZE clause in the same OPEN
statement as a MAP clause and define two different
record sizes, the size specified in the RECORDSIZE
clause overrides the size specified in the MAP
clause.

,RECORDSIZE num exp

defines the maximum length of records (in characters) in the
file. RECORDSIZE must be specified when no MAP clause is
specified.

EINVALID line no]

specifies the line number to which control transfers if the
OPEN statement fails.

EL@CKED line no]

also specifies the line number to which control transfers if
the OPEN statement fails because the file 1is locked
(protected).

ESPAN, NOSPAN]

signifies whether or not records are allowed to cross block
boundaries. The default is SPAN.

,BUCKETSIZE num exp]
specifies the number of TOPS-20 file pages to be associated
with each indexed file bucket. The default is 1.

yBUFFER [#] num exp

,DOUBLEBUF

,BLOCKSIZE num exp

yMODE num exp

,DENSITY num exp

,CLUSTERSIZE num exp

These attributes have no effect for BASIC-PLUS-2 running
under the TOPS-20 operating system; they are for
compatibility with other versions of BASIC. If used in a
TOPS-20 BASIC program, BUFFER, DOUBLEBUF, and CLUSTERSIZE
are ignored. Use of the others will generate errors.

[:, PRIMARY [KEY:I name]

is required for an indexed file. It defines the name of the
primary index Kkey. The size and location of this key is
specified in the MAP statement. The name 1is one of the
elements in the list. The key must be a string and cannot
be an array element. DUPLICATES are allowed but CHANGES are
not.

[,ALTERNATE EKEY] name:l

allows you to optionally define the names of one to 254
alternate index keys. Alternate keys must also be strings.

9-15

USING RECORD FILES

{NODUPLICATES}
DUPLICATES
NODUPLICATES is the default. If DUPLICATES is specified for

a given key of reference, the file can contain more than one
record with the same value for that key.

{CHANGES }

NOCHANGES
NOCHANGES is the default. If CHANGES 1is specified for a
given key of reference, the value of the field for that key
in a given record can be changed. Alternate keys may have

changes but the primary Kkey may not. Note that the
combination CHANGES and NODUPLICATES is invalid.

The ORGANIZATION clause must be the first attribute specified. If it
does not appear first, an error is generated. The other attributes
may be specified in any order.

The following sections describe the OPEN statement as it applies to
each file organization.

9.5.1.1 Opening a Sequential File - The following syntax is used when
opening an existing file or creating a new sequential file:

OPEN filename exp [FOR {INPUT }] AS |FILE # | expression
OuUTPUT

,[ORGANIZATION:‘ SEQUENTIAL I:{FIXED }:]

VARIABLE
STREAM
,ACCESS READ +ALLOW NONE
WRITE READ
MODIFY WRITE
SCRATCH MODIFY

APPEND

{,MAP mapname }
,RECORDSIZE num exp [}INVALID line no.] [,LOCKED line no.]

{,SPAN }
,NOSPAN
The following example opens a sequential file:

00020 OPEN °*CASE" AS FILE #5 &
yORGANIZATION SEQUENTIAL STREAM &
yACCESS AFFENDy ALLOW NONEs MAF MAF1 &
y INVALID 120y LOCKED 90

This statement opens an existing file named CASE, positions the file
pointer at the end of the file, and associates the file with file
number 5.

The SCRATCH statement allows you to truncate the file at any point.
This statement is only valid for a file OPENed with ACCESS SCRATCH.
See Section 9.5.4 for a description of the SCRATCH statement.

USING RECORD FILES

9.5.1.2 Opening a Relative File - The following syntax opens a
relative file:

OPEN filename exp [FOR {INPUT }] As [FILE] [#] expression
OUTPUT

,[ORGANIZATION] RELATIVE {FIXED }
VARIABLE

WRITE READ
MODIFY WRITE
MODIFY

,ACCESS {READ } ,ALLOW [NONE

{,MAP (mapname)
+RECORDSIZE num exp

, SPAN } , INVALID line no. ,LOCKED line no.
,NOSPAN

The following example opens a relative file:

00110 OFEN "FOO" FOR OUTFUT AS FILE #1 &
sORGANIZATION RELATIVE FIXEDy ACCESS MODIFYy &
ALLOW READY MAP TESTy LOCKED 230

This statement creates a new file named FOO and associates it with
file number 1. Each record in the file has a fixed length. The user
of the file has read and write access capabilities, while other people
can only read records.

9.5.1.3 Opening an Indexed File - The following syntax opens an
indexed file:

OPEN filename exp [FOR {INPUT }] AS [?ILE] [#] expression
OUTPUT

,[pRGANIZATIoN] INDEXED [{FIXED }]

VARIABLE
,ACCESS READ ,ALLOW { NONE
WRITE READ
MODIFY WRITE
MODIFY
,MAP mapname } [}BUCKETSIZE nuﬁ'exp] [,LOCKED line no.]
yRECORDSIZE num exp

, PRIMARY [yEY] name| (DUPLICATES } [ZINVALID line no.]
NODUPLICATES

[,ALTERNATE [KEY] name] {DUPLICATES } {CHANGES }
NODUPLICATES NOCHANGES

The PRIMARY KEY is mandatory for an indexed file. The following

example illustrates the opening of an indexed file:

00030 OFEN "ACCOUNT" FOR INPUT AS FILE #4 2
sORGANIZATION INDEXEDR VARIARLE &
yACCESS MODIFY» ALLOW NONE &
sFRIMARY KEY E$sy ALTERNATE KEY WAGES$ &
+MAF RBUFF1

USING RECORD FILES

This statement opens an existing file named ACCOUNT and associates the
file with file number 4. The records are variable length. The
primary index key is in the data field B$, and there is one alternate
key named WAGESS.

9.5.2 Closing a File

Files should be closed when no longer needed. The CLOSE statement,
closes all types of files.

The CLOSE statement has the following format:

CLOSE[I#]file number(sﬂ

where:

file number (s) represent one or several files separated by
commas. The number sign, preceding each file
number, is optional.

For example:

00065 CLOSE #3

If you do not specify any file number, BASIC closes all files.

9.5.3 Restoring a File

The RESTORE # statement allows you to bring the file pointer back to
the beginning of a record file without disturbing the data.

The RESTORE # statement has the following format:

RESTORE[{]file number [,KEY # num exp]

where:
$# file number is the file whose pointer you want to restore
to the beginning. The number sign, preceding
the file number, is optional.
(KEY # num exp is for indexed files only. This allows you

to establish a new key of reference.
For example:
00025 RESTORE #6y KEY #0

This example brings the file pointer to the key designated by 0. This
is the primary key.

9.5.4 Truncating a File

The SCRATCH statement erases the contents of a sequential file from
the current file pointer position to the end of the file. The SCRATCH
statement has the following format:

SCRATCﬂ:#]file number (s)

USING RECORD FILES

where:

file number (s) is one or more open sequential files.
Separate each file number with a comma. The
number sign, preceding each file number, is
optional.

To use the SCRATCH statement, the file must be OPENed, with ACCESS
SCRATCH.

9.6 RECORD OPERATIONS
There are several operations that you can perform on individual
records in a file, depending on its organization. Record-file
operations allow you to add, remove, examine, and modify the records
within a file. When writing into a file, a program builds records and
passes them for storage in the file. When reading a file, a program
requests records from the file. With BASIC, you can:

1. Read a record - GET statement

2. Write a record - PUT statement

3. Locate a record - FIND statement

4. Replace a record - UPDATE statement

5. Remove a record - DELETE statement
The GET statement reads a record from the file into a buffer.

The PUT statement writes a new record from the buffer to the file.

The FIND statement locates the specific record in the file and points
to it.

The UPDATE statement replaces an existing record with a new one. You
must do a FIND or a GET before you can UPDATE.

The DELETE statement erases an existing record from the file. You
must do a FIND or a GET before a DELETE operation.

The following sections describe your options in relation to each file
organization.

9.6.1 Sequential Record Operations

The following are the operations you can perform on a sequentially
organized file:

GET file exp {,LOCKED line no.]
[,INVALID line no.]
PUT file exp {,MAP line no.} [,INVALID Line no.
,COUNT exp [:,LOCKED Line no.

UPDATE file exp [{,MAP line no.} [,INVALID line no.:l
,COUNT exp

FIND file exp I:,LOCKED line no.:] E,INVALID line no.:l

9-19

USING RECORD FILES

In a sequential file, a GET operation 1is performed on succeeding
records starting at the beginning of the file. Each successive GET
statement retrieves the next record in the file and places it in the
buffer identified by the MAP statement. If you retrieve a record that
is smaller than the buffer, BASIC fills the buffer with nulls.

A PUT statement in a sequential file writes the record from the buffer
to the end of the file without truncating records. You can write only
at the end of a sequential file without truncating records. When you
are writing to a file, you must specify the record size with a MAP or
COUNT clause. The MAP line number in the PUT statement specifies the
size of the RECORD to PUT. It cannot be used to specify a different
buffer from the one previously specified in the OPEN statement. If
the MAP or COUNT clause is not specified, the record size is defined
by the MAP or RECORDSIZE clause in the OPEN statement.

In order to replace an existing record with the UPDATE statement, you
must first do a successful GET or FIND. You may also reference a MAP
line number, or give a record size in characters with COUNT clause.
If you do this, however, the new record size must be the same as the
one being replaced.

Because you can only access sequential files sequentially, a FIND
operation locates the next record in sequence.

You cannot DELETE records in a sequential file.

9.6.2 Relative Record Operations
The following operations can be performed with a relative file:

GET file exp [,RECORD num exp
[, LOCKED line no.] [,INVALID line no.]

PUT file exp [, RECORD num exp]
 (,MAP line no.]
L {,COUNT num exp}
[,LOCKED line no.] [,INVALID line no.]

UPDATE file exp [{,MAP line no. }
L |,COUNT num exp
[+LOCKED line no.] [,INVALID line noJ

DELETE file exp [,INVALID line no|]

FIND file exp [,RECORD num exp]
[,LOCKED line no.] [,INVALID line no.]

With relative files, you are allowed random access as well as
sequential access. Therefore, you can specify which record you want
to GET, FIND, and PUT. 1If you leave off the record number in the
statement, BASIC will read, write, or 1locate the next record in
sequence. Each record position in a relative file need not contain a
record. Such record positions are considered to be empty and may
appear anywhere in a relative file. A sequential GET or FIND, with no
record number specified, will locate the next occupied record position
and will bypass empty positions.

New records can be inserted only into empty positions of a file. A
PUT operation can be performed only on an empty position or at the end
of a file.

USING RECORD FILES

Some record operations change the value of the record pointer and some
do not. In a relative file, a sequential GET and a sequential PUT
each modify the value of the record pointer.

For example:

00100 GET #7y RECORD 2 IRandom Retrieves Record 2
00200 GET #7 !Sequential Retrieves Record 3
00300 GET #7 !|Sequential Retrieves Record 4

A random GET operation also modifies the value of the record pointer;
however, a random PUT does not. Consider the following example:

00300 GET #1» RECORDI 15 I!Random Retrieves Record 15

00400 FUT #1,y RECORD 20 I!Random Writes Record 20
00500 PUT #1 ISeauential Write Records 16

Note that line 500 PUTs record 16 (not 21) because the random PUT in
line 400 did not change the value of the record pointer.

A FIND operation is only relevant if the next operation is a GET,
DELETE, or UPDATE. A PUT after a FIND 1invalidates the FIND;
therefore, a subsequent GET retrieves the next record rather than the
record located by the FIND.
In the following example line 600 PUTs record 11:

00400 GET #1s RECORD 10 !Retrieves Record 10

00500 FIND #1y RECORD 20 !Locates Record 20

00600 FPUT #1 Writes Record 11
However, in this example line 800 UPDATEs record 20:

00700 FIND #1s» RECORD 20 !lLocates Record 20
00800 UFPDATE #1 IRerlaces Record 20

9.6.3 1Indexed Record Operations
The following operations deal with indexed files only:
EQ
GET file exp ,KEY #num exp GT string exp
GE
ELOCKED line no.] [,INVALID line no.]

[,MAP line no.
+COUNT num exp
[/LOCKED line no. [,INVALID line noz|

PUT file exp

UPDATE file exp [: /MAP line no. }]
+COUNT num exp
(L INVALID line no.]
DELETE file exp [,INVALID line no.]
— EQ
FIND file exp KEY #num exp GT string exp
GE

[,LOCKED line no.] [,INVALID line no.]

9-21

USING RECORD FILES

In random access to an indexed file, you supply a key of reference
previously specified in a MAP statement and defined in an OPEN
statement as a PRIMARY or ALTERNATE key. To locate a specific record,
specify one of those key matches:

1. Exact key match
2. Approximate key match
3. Generic key match

With the exact key match, BASIC looks for the record that matches the
value you assign to the key.

For example:
00010 MAF (FILEL) SURNAME$=20yGIVENNAME$=10+y55N$=9s ADDRESS$=408%
yZIPCODE$=5
00020 MAFP (FILE1) NAME$=30sID$=%,ADDR$=45
00030 OPEN "ACCOUNT® FOR INPUT AS #5yINDEXED VARIAELEsMAFP FILE1s8
FRIMARY NAME$sALTERNATE SSN$sALTERNATE ZIFCODES$

00040 GET #5s KEY #1 EQ "013445695°
00050 GET #5, KEY #0 EQ "MURPHY"®

The map at line 10 defines the record as follows:

SURNAMES$ GIVENNAMES SSNS$ ADDRESSS$ ZIPCODES

The map at line 20 defines the record as follows:

NAMESS IDS ADDRS

The OPEN statement at line 50 defines the keys within the records as
follows:

KEY# Starting Position Length
0 (PRIMARY) 0 30
1 30 9
2 79 5

When executing line 40, BASIC refers to the keys specified in the OPEN
statement. KEY #1 is the first ALTERNATE key SSN$. This field is
defined in the MAP at line 10. BASIC searches for an exact match of a
record with "013446595" starting at position 30.

When executing line 50, BASIC again refers to the keys in the OPEN
statement. KEY #0 is the PRIMARY key NAME$. This key is part of the
record described in the MAP on line 20. BASIC searches for an exact
match of a record with a field "MURPHY" in starting position 0.

The second type of search, the approximate key match, allows you to
request the record closest to the value you specify. The proximity is
determined by the ASCII collating sequence. The approximate key
search allows your program to select either of the following
relationships:

1. Equal to or greater than (GE)

2. Greater than (GT)

USING RECORD FILES

If the key requested does not exist, BASIC returns the record that
contains the next higher key value. This allows you to retrieve
records without knowing the exact key.

For example:

00040 GET #5»KEY #0 GE "JONES®
00050 GET #Ss.KEY #0 GT “ARRAMSON"

Line 40 defines the key as PRIMARY and searches for a data field that
is greater than or -equal to (GE) the value "JONES", for example,
"KNIGHT".

Line 50 also uses the PRIMARY key but searches for a data field
greater than "ABRAMSON", for example, "ADAMS". "ABRAMSON" is not an
acceptable match in this case.

The third type of search, the generic key match, allows you to effect
a match by specifying a key value with fewer characters than were
specified for the corresponding field in the record. The match occurs
if the first characters in the field are identical to the key value.

If you do not specify a KEY, you effect a sequential GET according to
the previous KEY specified. BASIC will then retrieve the next record
in the index according to the ASCII collating sequence.

When you PUT to an indexed file, you merely specify:
PUT file exp
BASIC places the record in the proper index.

In addition to read, write, and find operations, your program can
delete any record in an indexed file and update any record. However,
during an update operation, be sure that the contents of the modified
record do not change the primary key value. You can change alternate
key values if the CHANGES clause is specified for that alternate Kkey
in the OPEN statement.

9.6.4 Record Locking

If you plan to allow file sharing (simultaneous access) by specifying
ALLOW READ, ALLOW WRITE, or ALLOW MODIFY, you should be aware of the
correlation between an I/0 operation and the 1locked status of a
record. Records are 1locked according to the attributes of the file
specified in the OPEN statement and according to the particular 1/0
operation you perform on the record. The ACCESS clause of the OPEN
statement determines the effect the I/O operation has on the locked
status of a record.

If you OPEN with ACCESS READ,

GET locks the record only for the duration of the
operation. The record is unlocked when the GET is
completed.

FIND locks the record until a GET 1is completed or until
another record is accessed with a FIND or GET
operation.

USING RECORD FILES

If you OPEN with ACCESS WRITE, MODIFY, or APPEND,

GET locks the record until another record is accessed by a
GET, FIND, or PUT operation; or until the current
record is UPDATEd or DELETEAQ.

FIND locks the record until another record is accessed by a
GET, FIND, or PUT operation; or until the current
record is UPDATEd or DELETEd.

Locks are somewhat more complicated for indexed files opened with
ACCESS, WRITE, or MODIFY. 1If you OPEN an indexed file with ACCESS,
WRITE, or MODIFY, an additional lock and unlock is automatically done
to freeze the index structure for the duration of each operation. The
data is locked as mentioned above. The lock, however, is applied to
the entire data bucket in which the desired record is located. This
in effect causes all the records in that data bucket to be 1locked
until the lock is released.

9.7 DYNAMIC MAPPING OF AN I/O BUFFER

The MAP statement (described in Section 9.4) defines the format of a
record when that format can be specified at compile time. When you
cannot specify the record format at compile time, the MOVE statement
can be used to dynamically access the data in a record. For example,
you can use MOVE to access a record in which the lengths of strings or
arrays in the record are specified by fields at the beginning of the
record. The MOVE statement associates the data in a record with the
variables you specify in an I/0 1list. The format of the MOVE
statement is:

MOVE {ALIGNED } {FROM} file exp, 1/0 1list
UNALIGNED TO

where:

ALIGNED ALIGNED is the permanent setting for BASIC-PLUS-2
UNALIGNED running under the TOPS-20 operating system;
UNALIGNED is ignored.

FROM moves the data from the buffer associated with the
file number and places the data in the elements in
the I/0 list.

TO moves the data from the elements in the I/0 list and
places it in the buffer associated with the file
number.

file exp is the file number associated with the file OPENed

previously.

’ the comma is mandatory between file exp and I/0 list.

9-24

USING RECORD FILES

I/0 list is a list of valid elements:

1. numeric, integer, string variables
2. arrays

3. array elements

4. fill specifiers

The length of a string may be defined in the I/O 1list, for example,
AS=n, where n is a valid numeric expression. The default length for
MOVE TO is LEN(AS); the default for MOVE FROM is 16.

An array specified in a MOVE statement must have the following format:

A() list
A(,) matrix

Caution, row zero and column zero are destroyed by the MOVE statement.
You should, therefore, never use these locations in an array.

You specify an array element by name, that is:
A (25)
The following are examples of MOVE statements:

00060 MOVE FROM #5» A%y Ey FILLZy CC)
00085 MOVE TO #%5» A$s» By FILLZ, CC)

Successive MOVE statements to or from the same file each start at the
beginning of the buffer. The size of the buffer is not affected by
MOVE statements. If a MOVE only partially fills a buffer, the rest of
the buffer is unchanged.

To retrieve a record from a file, first read the record with a GET
statement. This places the record in a buffer. This buffer can be
one assigned by the BASIC system buffer or a buffer you have set up
with a MAP statement.

Then a MOVE FROM places the data from the buffer into the elements in
the I/O list. Once the data is associated with the elements, you can
reference them in the program.

A MOVE TO moves the data from the elements in the I/0 1list to a
buffer. To move the data into a file, perform a write operation using
the PUT statement.

Consider the following program:

00010 OPEN "MOVE.DAT®* AS FILE #1,y ORGANIZATION SEQUENTIAL &
ACCESS MODIFYsALLOW NONE

00020 GET #1

00030 MOVE FROM #1y Iy A$=]1

00040 A$=A% + "»°

00050 I = I+1

00060 MOVE TO #1» Iy A%=I

00070 UFDATE #1

00080 CLOSE #1

00090 END

USING RECORD FILES

This program opens an existing file named MOVE.DAT, reads the first
record into the buffer, and associates the data with the variables in
the MOVE FROM statement.

The MOVE TO places the record into the buffer, and the UPDATE
statement writes the record back into file #1. The file is then
closed and the program ends.

9.8 EXAMPLES

The following examples consist of BASIC-PLUS-2 programs using
sequential, relative, and indexed files. Each program is listed and
executed.

Example 1

LISNH

00010 MAF (MAP1) NAME$=30y IDNUMZ» JORCLASS$=8%
00020 OFEN "SEQ" FOR OUTFUT AS FILE #1,0RGANIZATION SEQUENTIAL FIXEID,g%
ACCESS MODIFYs MAF MAF1

00030 INFUT ‘NAME " iNAMES

00040 IF NAME$= ‘END’ THEN 70

00050 INFUT “ID' NUMRER’ s IDNUMZ

00035 INPUT “JOR CLASS’ 5 JORCLASSS

00060 FUT #1

00065 GOTO 30

00070 CLOSE #1

00100 ENI

READY

RUNNH

NAME ? SARAH
ID NUMERER 7 36577
JOE CLASS T 4
NAME 7 TONY
ID NUMBER 7 76545
JOE CLASS 7 4
NAME 7 LORRAINE
ID NUMEBER 7 34766
JOR CLASS 7 4
NAME 7oAy
ID NUMBER 7 54877
JOE CLASS ? 4
NAME T DANNY
ID NUMBER 7 21344
JOE CLASS ? 2
NAME T MATTHEW
ID NUMBER ? 67544
JOR CLASS ? 2
NAME ? ROSE
ID NUMBER 7 65488
JOB CLASS 7 4
NAME T IZZIE
I NUMBER ? 38766
JOB CLASS 7 4
NAME 7 END
READY

USING RECORD FILES
Example 2

oL+ OFEN

READY

LISNH

00005 MAF AREA A$ R$,C¢

00010 OFEN "TONY® FOR OQUTFUT AS FILE #2sRELATIVE VARIARLEsMAP AREA
00020 A$="HI»"\R$="HOW ARE YOU?y"\C$="1I'M FINE."

00025 FUT #2

00030 CLOSE #*2

00035 OFEN "TONY" FOR INFUT AS FILE #2yRELATIVE VARIARLEsMAF AREA
00040 GET #2

00050 FRINT E$

00060 CLOSE #2

00070 END

READ