PDP-11 FORTRAN-77/RT-11

User’s Guide
AA-BR70A-TC

March 1984

This document contains the information necessary to create, link and
execute PDP-11 FORTRAN-77 programs on a PDP-11 processor.
Programming information is provided for the RT-11 operating system.

SUPERSESSION/UPDATE INFORMATION: This is a new document
for this release.

OPERATING SYSTEM AND VERSION: RT-11 V5.1

SOFTWARE VERSION: FORTRAN-77/RT-11 V5.0

NWN

Multiware, Inc.

Adapted from PDP-11 FORTRAN-77/RSX by Muitiware, Inc.
139 G Street, Suite 161, Davis, California 95616

digital equipment corporation - maynard, massachusetts

First Printing, March 1984

The information in this document is subject to change without notice
and should not be construed ‘as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibilty
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (:) 1984 by Digital Equipment Corporation

All Rights Reserved

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporations:

DIGITAL DECsystem—10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EduSystem PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAX TYPESET-8
DDT LAB-8 : TYPESET-11
DECCOMM DECSYSTEM-2 TMS-11 :
ASSIST-11 RTS-8 ITPS-10
VAX VMsS SBI
DECnet Ias PDT

DATATRIEVE TRAX ﬂﬂ@ﬂﬁn MW-F77-008

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continentai USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
in Canada call 613-234-7726 (Ottawa-Huil) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital’s local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed with the
local Digital subsidiary (809-754-7575)

International orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532.

CONTENTS

PREFACE vii
SUMMARY OF TECHNICAL CHANGES ix
CHAPTER 1 USING RT-11l FORTRAN-77
1.1 OVERVIEW o e s s o o o » 1=1
1.2 RT-11 FILE SPECIFICATIONS AND SWITCHES e s s & o o 1=2
1.2.1 RT-11 File Specifications . . . « ¢« + « &« « o o 1=2
1.2.2 Command Options (switches) + + & « &« - . 1=4
1.2.2.1 Keyboard Monitor Option Switches 1=5
1.2.2.2 CSI Command Switches . . . e« s s s o s » s e o 1=5
1.3 COMPILING A FORTRAN-77 PROGRAM e s s s s s s+ s s s 1=6
1.3.1 Compiling With The DCL FORTRAN Command s e o o 1=6
1.3.2 Compiling With The RCommand » - - . 1-10
1.3.3 Compiling With The RUN Command . . . » » &« « » 1-11
1.4 LINKING A FORTRAN-77 PROGRAM . . . e s o o s+ « 1-18
l1.4.1 Linking With The DCL LINK Command s e« o s e « 1-18
1.4.2 Linking Using The R Command + « « » » 1-22
1.4.3 Library Usage On RT-11 Systems « . . 1=27
1.4.4 Overlay USage . . « =« « o o s o o o« s« s « » » 1-28
1.4.5 Extended Memory Overlays . . . e o a e s o o 1=30
1.4.6 FORTRAN Programs Run As Vlrtual Jobs 1=31
1.4.7 Using VIRTUAL ACrays . « « « = s s s » » o o « 1-31
1.5 EXECUTING A FORTRAN-77 PROGRAM . . e s e s o 1=32
1.6 EXAMPLES OF FORTRAN-77 COMMAND SEQUENCES e e o o 1=32
1.7 DEBUGGING A FORTRAN~77 PROGRAM - « « o« o 1-33
CHAPTER 2 FORTRAN~-77 INPUT/OUTPUT
2.1 FORTRAN-77 I/0 CONVENTIONS . « « ¢ « = o o o s s o 2=1
2.1.1 Device and File Name Conventions 2-1
2.1.2 Implied-Unit Number Conventions 2=2
2.2 FILES AND RECORDS . + + + « « s s s s o o o o o » 2=3
2.2.1 File Structure . . « o o o o o s s « o s o s« » o 2=3
2.2.2 Access to Records . e s o 8 s s s s o e s & s 2=3
2.3 OPEN STATEMENT KEYWORDS s s o o o o s s s s & s & 2=3
2.3.1 BLANK . « o s o o 5 o s » s s o s 3 o s o o o o+ 2=4
2,3.2 BLOCKSIZE . o « ¢ s ¢ o o o o« o s o s « 2 o 2 + 2=4
2.3.3 BUFFERCOUNT . . &« ¢ = = o o2 s s s o s o o o o » 2-4
2.3.4 DISPOSE s e s s s o s e s s s = s s o 2=5
2.3.5 INITIALSIZE and EXTE DSIZE . + ¢« o s o o s & & » 2=5
2.3.6 REY '+ & 4 ¢ o o o o s s s« o o s o o a a o s o & 2=5
2.3.7 ORGANIZATION . . . + « o s s s s o s s o s » s o« 2=5
2.3.8 READONLY . 2 = o o s s o 2 s s o s o o s o » o o« 2=5
2.3.9 SHARED . & & o o o o s o s o o« s s s o « o s o o 2=5
2.3.10 USEROPEN e s s e & s 4 s s s s o x e s & 2=6
2.4 BACKSPACE AND ENDFILE IMPLICATIONS . . &« « « » o o 2=6

CHAPTER

CHAPTER

CHAPTER

TABLE OF CONTENTS

PDP-11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

FORTRAN-77 OBJECT TIME SYSTEM . .
FORTRAN-77 CALLING SEQUENCE CONVENTION
The Call Site « . .
RetUrn . « o+ o o « « o & o
Return Value Transmission
Register Usage Conventions
Nonreentrant Example . . .
Reentrant Example
Null Arguments . . . « . .
PROGRAM SECTIONS
Compiled-Code PSECT Usage .« . o e
FORTRAN COMMON and RT-11 System Common
OTS PSECT Usage . « o s s o o o = =
OTS ERROR PROCESSING e
Recovering From OTS-Detected Errors
Using ERR= and END= Transfers . .
Using the ERRSNS Subroutine . .
Using the ERRSET Subroutine . .
FORTRAN-77 COMPILER LISTING FORMAT
Source Listing . . . « .
Generated Code Listing . .
Storage Map Listing . . .
VIRTUAL ARRAY OPTIONS . . .
Limits on VIRTUAL Elements . . .
VIRTUAL and DIMENSION Statements .
Memory Allocation for VIRTUAL Arrays
Execution Time of Virtual Arrays . .
Converting a Program to VIRTUAL Array Usage

s o 8 s o s o

.
°
Y
.
°
°
°
.

s o 5 e« 8 @ @
s ® ® e e ° @
s © & ® 3 ° o ®
a & 8 8 8 & e 9 o e ¢

.
.
.
.
°
°
.
-

e © o
e ¢ ® o ° o » @ ® G & & & o @

e o e
wWN -

= s 8 @

¢ o @

NHFFEFE W RHREH WO ~Nous e

e o o

e
®
°

e ° @
o © © ¢ 8 & s 6

e 0 8 © © ©® 6 o & &
e 6 ® @ & © © ® @ @ 6 ¢ @ © & © 6 © 6 & S ® 2 © @ O

.
°
.
.
.
°
s
°
»
-
®
°
B
.
®

oGO aounUuIUIUMEa &R RERWUWWWNNDNNDNDNDNNDE
L L] ®
W N

e ¢ @ e © o © ®© & ® @ © @ 9 e ¥ © ©°© 8 & 8 & e 2 6 v ° o

s

o 8 ® e @

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
g

PDP-11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

INTRINSIC FUNCTIONS . . ¢ ¢ o s s = o .
1 Using EXTERNAL and INTRINSIC Statements
2 Generic Function References
INTEGER*2 AND INTEGER*4 . . . « « s o o =
1 Representation and Relationship of INTEGE
INTEGER*4 Values . .« . « o o o s o s o =
2 Integer Constant Typing
3
4
5

e & o o

*

Octal Constant Typing « « « « &
Integer-Valued Intrinsic Functions . .
Implementatijion-Dependent Integer Typlng

BYTE (LOGICAL*1l) DATA TYPE . . . « + = = &
ITERATION COUNT MODEL FOR DO LOOPS
1 Cautions Concerning Program Interchange
2 Iteration Count Computation

o ¢ s o o o s e o e s o

“« 8 ° @ © e o ® @

s 6 o s 6 s a & ® Ne e o
2]
=}
o & s o fue e

» o & e © 8 8 @

NN B R e WNDNDNN

USING EQUIVALENCE WITH MIXED DATA TYPES . . .
EQUIVALENCE, BYTE DATA, AND STORAGE ALIGNMENT .
ENTRY STATEMENT ARGUMENTS . . . « + « « + ¢ o o

P

e & e

PDP-11 FORTRAN-77/RT-11 PROGRAMMING CONSIDERATIONS

CREATING EFFICIENT SOURCE PROGRAMS
PARAMETER Statement
INCLUDE Statement
OPEN and CLOSE Statements .
INTEGER*2 and INTEGER*4 . .

COMPILER OPTIMIZATIONS
Characteristics of Optimized Programs
Compile~-time Operations on Constants .
Source Program Blocks . . . + « « « &«
Eliminating Common Subexpressions . . .
Removing Invariant Computations From Loop

@ 8 2 o

s+ e o @
o s 8 @
s 8 ® e ®
9 ° © e o

3
°
°
.
-
® o @ °
-
*
°

SR SR SN SN R NE ol ol ol o
e 8 & s 8

s o & & o @ o ® @ & ®
s 8 8 6 o & ® e & ® o
s © © @« © © e ® & © o

s

(S0 S VI S N [V SN

ii

b
i

PN
]
)

UL L |

WWWWWLWwWwWwwWwwwwww
§

i
=i]
COWVWYWWIUWLIVT&E WWNDNDND

ww
4

PN
i
~NN e

[}
1 !
OOWYWO

b
b
H

4-12
4-13
4-13

U

DAV LMIWWN N

TABLE OF CONTENTS

5.3 RUN-TIME PROGRAMMING CONSIDERATIONS . . . « . . . 5=9
5.4 FORTRAN-77 OPTIONAL CAPABILITIES . . « « ».+. « + o 5-9
5.4.1 Non-FPP Operation (F77EIS.OBJ) « 5=10
5.4.2 Optional OTS Error Reporting (F77NER. OBJ) . « 5-=10
5.4.3 Short Error Text (SHORT.OBJ) . . . « 5-10
5.4.4 Intrinsic Function Name Mapping (F77MAP.OBJ) 5-10
5.4.5 Floating-point OQutput Conversion (F77CVF.OBJ) 5-11
CHAPTER 6 USING CHARACTER DATA
6.1 CHARACTER SUBSTRINGS . . . & ¢ o 2 o s « s o o« o« « 6=1
6.2 CHARACTER CONSTANTS . 4 & & o o o o« o o o o « o » 6-1
6.3 DECLARING CHARACTER DATA . . . e s s s s e s » . 8=2
6.4 INITIALIZING CHARACTER VARIABLES o s s & a2 s 2 o « 6=3
6.5 CHARACTER DATA EXAMPLES . . &+ « o o « o o o o o« o 6=3
6.6 CHARACTER LIBRARY FUNCTIONS . . « &« « « s « « » .« 6=3
6.6.1 ICHAR Function . . . o & & & ¢« ¢« ¢ o o o« s« « « o 6=3
6.6.2 INDEX FUnction . . « « « o o 2 « « o o s« o o o = 6=5
6.6.3 LEN Function . « « « & & ¢ & s 5 2 2 « o s o « o 6=6
6.6.4 LGE, LGT, LLE, LLT Functions ¢« « « « . 6-6
6.7 CHARACTER I/O . & ¢ ¢ & o o o o o s o o o o« +» « « 6=6
APPENDIX A FORTRAN-77 DATA REPRESENTATION
A.l INTEGER FORMATS . . . &« & & o s ¢ o o s« o « o o o A=1
A.l.1 INTEGER*2 Format . . & o« & o ¢ o o o o o o o« « o A=1
A.l.2 INTEGER*4 Format ¢ « o o s o o o o o« « o« A=1
A.2 FLOATING-POINT FORMATS . . ©. « + &« o o o = o o o o A=1
"A.2.1 REAL (REAL*4) Format (2-Word Floating Point) . . A=-2
A.2.2 DOUBLE-PRECISION (REAL*8) Format (4-Word
Floating Point) . . . ¢ & ¢ 4 v ¢ o ¢« o« « o « o &=2
A.2.3 COMPLEX Format . .. ® 2 o s s e s e« o« o & « o A=3
A.3 LOGICAL*1 (BYTE) FORMAT o o s o s s s s s s & o « A=3
A.4 LOGICAL FORMATS . . +. < « o o s « o s o o« o o« « . A=3
A.5 CHARACTER REPRESENTATION . . . « « « &« « « « « » . A=4
A.6 HOLLERITH FORMAT & 4 2 2 2 s o s« o« o« o« « « A=4
A.7 RADIX-50 FORMAT « o o o o« s o« o « o« o« . A=5
APPENDIX B ALGORITHMS FOR APPROXIMATION PROCEDURES
B.l REAL-VALUE PROCEDURES . . 4 « + « o o o« o« o « « - B=1
B.l.1 ACOS -- Real Floating-Point, Arc Cosine B=1l
B.1l.2 DACOS -~ Double-Precision Floating-Point Arc
Cosine e ¢ o s s « o B-1
B.1.3 ASIN -- Real Floatlng—P01nt Arc Slne e o s s« o . B=2
B.1l.4 DASIN -- Double-Precision Floatlng-POLnt Arc
Sine . . . « o « o B-2
B.1.5 ATAN -- Real Floatlng—POLnt Arc Tangent e &« « o B=2
B.1.6 ATAN2 -- Real Floating-Point Arc Tangent with
Two Parameters . . . e . . . + s . B-3
B.1l.7 DATAN -- Double-Prec151on Floatlng—P01nt Arc
Tangent . . . s e 6 e e o o . « B=3
B.1.8 DATAN2 == Double-Prec131on Floating-Point Arc
Tangent with Two Parameters B=3
B.1.9 ALOGl0 -- Real Floating=-Point Common Logarlthm . B-4
B.1.10 DLOG10 -- Double-Precision Floating-Point Common
Logarithm . . . e e o e« s o o « » B=4
B.1.1l1 COS =-- Real Floatlng—P01nt C031ne e + s s s « « B=4
B.1.12 DCOS -- Double-Precision Floating-Point Cosine . B-4
B.1.13 EXP ~- Real Floating-Point Exponential B-4
B.1l.14 DEXP -- Double-Precision Floating-~Point
Exponential © o s s & e o @ . » B=5
B.1.15 COSH -- Real Floatlng—P01nt Hyperbolic C051ne . B=-5

iii

TOowEowwwwow KDOoWww Ow Ww Wow

e © ©° 9 ©° @ ¢ ® & & @

APPENDIX C

[eXeleNrNeEeKeXe!
L] ® o ° - ° L] L

WwwpopNoNde-

APPENDIX D

UDUUDUDDOUDUDODODUUOUU

APPENDIX E

[Ro N o)
W N

e o ©

+ o e

s & s s

* @ L] s ° . L[] L]
HEEMEFOONONUN & WN -

WWWRNRNRDNDNEHE PHEEE e e e

o < ®
=
<o

(V= T«]

° o Y
- o

[N

° ° L L]
@ 3 U W

e o 85 o @

N UV W [N] [SE SN SN S NN N

e & °

SN W~

TABLE OF CONTENTS

DCOSH -- Double Floating-Point Hyperbolic Cosine B-5
SINH -- Real Floating-Point Hyperbolic Sine . . B-6
DSINH -- Double-Precision Floating-Point

Hyperbolic Sine . . e s s+ s s s e« -2 o B-6
TANH -~ Real Floatlng-POlnt Hyperbollc Tangent . B-6
DTANH -- Double-Precision Floatlng—P01nt

Hyperbolic Tangent . . . e e e o s o o « o« B=7
ALOG -- Real Floatlng—901nt Natural Logarlthm . B=7
DLOG -~ Double-Precision Floating—-Point Natural
Logarithm . . e s o o s ¢ o s s s o o B=7
SIN -- Real Floatxng—Poxnt Sine e « « B=8
DSIN -- Double-Precision Floating-Point Slne . . B-8
SQRT -- Real Floating-Point Square Root B-9
DSQRT -- Double-Precision Floating-Point Square
Root . . . e o o s s s o s s o = « B=10
TAN -- Real Float1ng—Poxnt Tangent . . . + . . B-=1ll
DTAN -- Double-Precision Floating-Point Tangent B-~1ll

COMPLEX-VALUED PROCEDURES . . &« + + » o o ¢ o « B=1l2
CSQRT -- Complex Square Root Function B=-12
CSIN -- Complex Sine . . « « = o » » o o » » o« B=12
CCOS -=- Complex Cosine . « « « o« ¢« » s o « » o B=12
CLOG -- Complex Logarithm « « » « o B=12
CEXP -- Complex Exponential - » - « « B=13

RANDOM NUMBER GENERATORS B=13

RANDOM -- Uniform Pseudorandom Number Generator B-13
F77RAN - Optional Uniform Pseudorandom Number
Generator . « « o o o o o s o o s = o o o o o« B=l4

DIAGNOSTIC MESSAGES

DIAGNOSTIC MESSAGE OVERVIEW . . ¢ « 2 » » s « « o C=1
COMPILER DIAGNOSTIC MESSAGES . . 4 « « « s o s o« o C=1
Source Program Diagnostic Messages C=1
Compiler-Fatal Diagnostic Messages e » s s« s o C-14
Compiler Limits . . . e s s s s« o C=15
OBJECT TIME SYSTEM DIAGNOSTIC MESSAGES « « o o » C-16
Object Time System Diagnostic Message Format . C-16
Object Time System Error Codes - . . . C-18
SYSTEM SUBROUTINES
SYSTEM SUBROUTINE SUMMARY . . &« « « s o s o o » o D=1
ASSIGN . ¢ « o « o o s o o s s o o s o o » o s o o D=2
CLOSE . & « o o o a = s s s s s s o a o s « « + o D=4
DATE . « o o o s s o s o s o s s« o o o » o o o o o D=d
IDATE . « o « o s o o s 5 o s o s s s s o o« o « o D=4
ERRSET . o« « o « o s s o s« o o s o o o« o o a s s o D=5
ERRSNS . = 2 o o s o« o s s s s s o s o s o o o s » D=5
ERRTST . « o o o o o s o s s s s o a s o s o o o « D=6
EBXIT « ¢ o o« o s o o o s o s o a o o s s o « s o o D=7
USEREX . « « « « o » s o s o s s s s s a o s « o« » D=7
IRADS50 . &« & o s o o o 2 o« s o o o s « o o » o o o« D=8
RADS50 ¢ & o = s o o s s o s s o o s s o o s o » » D=9
RSOASC . &+ + o o o a2 o s o s o s s o o s s« o s » D=10
SECNDS . « 2 « s o s o 2 » s o s s« « s o« « » = o D=10
TIME . « « o « o o o o o » o s o s« o o o o o o« o D=11

COMPATIBILITY: PDP=11 FORTRAN-77 AND PDP~1l FORTRAN
IV-PLUS

DO LOOP MINIMUM ITERATION COUNT . . « <" » s o« o« E=2

EXTERNAL STATEMENT . . . e o s o s s+ s s s o E=2
OPEN STATEMENT BLANK KEYWOQD DFFAULT e+ o s o « o« E-3

iv

TABLE OF CONTENTS

E.4 OPEN STATEMENT STATUS KEYWORD DEFAULT E-3

E.5 BLANK COMMON BLOCK PSECT (.$$$S%.) .« . « « « . . . E-4

E.6 X FORMAT EDIT DESCRIPTOR . . . + 4 + « o« » s « o « E-4
APPENDIX F COMPATIBILITY: RT-11 FORTRAN-77, PDP-11 FORTRAN IV,

VAX-11 FORTRAN

F.l LANGUAGE DIFFERENCES . . . 2 ¢ o = o s o o o s » o« F=1
F.l.1 - Logical TestS v « & &« o « « s =2 o« « o o s o o o F=1
F.l.2 Floating=Point Results . . . o ¢ s « o« o« o o o o F=2
F.1.3 Logical Unit Numbers . . . 2 « « s s « o o o ¢ o F=2
F.l.4 Assigned GO TO Label List . . « &« & o ¢ o o » o F=2
F.1l.5 DISPOSE = 'Print' Specification « « . F=3
F.1.6 Integer Computations . . « « + s o o o « = s « « F=3
F.1.7 Default Record Buffer Size o « « « « » F=3
F.2 "RUN-TIME SUPPORT DIFFERENCES . . « ¢ « 2 « « « s » F=3
F.2.1 Unformatted Data Transfer e s o o s s o o o o F=3
F.2.2 Error Handling and Reporting « - » « « - F=3
APPENDIX G RT-11 FORTRAN-77 EXTENSIONS TO ANSI STANDARD
(X3.9~1978) FORTRAN
G.1 STATEMENT EXTENSIONS . . . o o o o o o s o o s o G=1
G.2 STATEMENT SYNTAX EXTENSIONS e s o s s o s s o « o G=1
G.2.1 Specification Statements . . « . . s 2 s s . . o G-1
G.2.2 ‘Format Statements . . + s o s o s o s s & s s » G=1
G.2.3 Control Statements . « « ¢ 2 « s o o « &« » o o o G=2
G.2.4 I/O Statements . . ¢« « o 2 s s o o o » o s o » o G=2
G.2.5 Miscellaneous Syntax Extensions G-2
G.3 KEYWORD AND KEYWORD VALUE EXTENSIONS . . . « « » » G=2
G.3.1 OPEN Statement Keyword Extensions G-2
G.3.2 CLOSE Statement Keyword Extensions . . . « « « . G-3
G.3.3 Close Statement Reyword Value Extensions G-3
G.4 LEXICAL EXTENSIONS . . 4 o « « s s o s o s o s o« o« G=3

PREFACE

MANUAL OBJECTIVES

The purpose of this document is to help programmers create, link, and
execute PDP-~1l FORTRAN-77/RT-11 programs under the RT-1l1 operating
system. These operating systems must run on a machine with a
Floating-Point Processor or a floating-point microcode option.

The PDP-11 FORTRAN-77/RT~1ll language elements are described in the
PDP~11 FORTRAN-~77 Langquage Reference Manual.

INTENDED AUDIENCE

This manual is intended for programmers who have a working knowledge
of the fundamental elements and interrelationships of the FORTRAN
programming language. A detailed knowledge of the PDP-11
FORTRAN-77/RT-11 version of FORTRAN is not essential. A familiarity
with RT-11 naming conventions and file specifications is assumed.

Building complex FORTRAN-77 applications which run under RT-1ll1 and
which are SYSTEM or VIRTUAL jobs certainly requires a detailed
knowledge of RT-1ll and its operation as will those which make full use
of the RT-11 XM monitor. You are refered to the appropriate RT-11l
reference manual for this information.

STRUCTURE OF THIS DOCUMENT
This manual is organized as follows:

e Chapter 1 contains the information needed to compile, 1link,
and execute a PDP-11 FORTRAN-77/RT-11 program on the RT-11l
operating system.

® Chapter 2 provides information about PDP-11 FORTRAN-77/RT-11
input/output, including details on file characteristics,
record structure, and the use of certain OPEN statement
keywords.

@ Chapter 3 describes the PDP-11 FORTRAN-77/RT-11 run-time
environment, including the calling conventions, error
processing, and program section usage.

® Chapter 4 describes PDP-11 FORTRAN-77/RT-11 implementation
concepts, with particular emphasis on data types, generic
functions, DO loops, and floating-point data representation.

® Chapter 5 covers programming considerations relevant to
typical PDP-11 FORTRAN-77/RT-11 applications.

vii

PREFACE

® Chapter 6 discusses the use of character data, including

character 1/0 and the character library functions.

e Appendixes A through G summarize internal data representation,
diagnostic messages, system—-supplied functions, compatibility

between PDP-11 FORTRAN-77 and other DIGITAL

FORTRAN

implementations, and language extensions incorporated in

PDP~11 FORTRAN-77/RT-11.

ASSOCIATED DOCUMENTS
The following documents are relevant to FORTRAN-77 programming:

& PDP-11 FORTRAN-77/RT-1ll Lanquage Reference Manual

® PDP-11 FORTRAN-77/RT-11 Object Time System Reference Manual

¢ PDP-11 FORTRAN-77/RT-11 Installation Guide/Release Notes for

RT-11

® RT-11 System User's Guide

® RT-1ll Software Support Manual

e RT-11 System Utilities Manual

® RT-11 Programmer‘’s Reference Manual

FPor a complete list of software documents, see the host operating

system documentation directory.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are observed in this manual:

® Uppercase words and letters used in examples indicate that you

should type the word or letter exactly as shown.

e Lowercase words and letters used in examples indicate that you

are to substitute a word or value of your choice.
® Brackets ([]) indicate optional elements.

®@ Braces () are used to enclose lists from which one
is to be chosen.

® Ellipses (...) indicate that the preceding item(s)
repeated one or more times.

® <RET> represents a carriage return.

viii

element

can be

SUMMARY OF TECHNICAL CHANGES

The PDP-11 FORTRAN-77/RSX compiler has been modified to execute under
RT-11 Version 5.0 and 5.1. Several compile-time switches have been
made available to the user. Code generated by this compiler is the
same as that generated by its RSX counterpart. However, no support
for RMS file access is supported under RT-11l. Thus, access to indexed

and relative files, and the ability to extend files is not present in
the RT-11 version.

ix

CHAPTER 1

USING RT-11 FORTRAN-77

DIGITAL's PDP-11 FORTRAN-77/RT-11 operates on PDP-11 minicomputers and
Professional-300 series personal computers equipped with an FP-1l1
floating point unit and running the RT-1l operating system.

The FORTRAN~-77/RT-11 software consists of two principal components:

e A FORTRAN-77 compiler, that translates a source program into
object code.

® A collection of routines (facilities and services) that a
program may need while it is executing. This collection of
routines is called the Object Time System (OTS).

NOTE
Unless otherwise noted, the term

FORTRAN-77 1is wused in this manual to
mean PDP-11 FORTRAN-77/RT-11.

1.1 OVERVIEW

To transform a FORTRAN-77 source program into an executing job, you
need to perform three steps:

1. Compile the program, to create a relocatable object module.

2. Link the program, to bind the object module with necessary
external routines.

3. Execute the program (and debug it if necessary).

You compile a program by invoking the FORTRAN-77 compiler and
specifying the source files to be processed; then you link it into an
executable form, called a memory image by invoking the RT-11 1linker
and specifying the object module to be processed. Finally, you
execute the memory image using the RUN, FRUN, or SRUN command.

Figure 1-1 illustrates the process of transforming a FORTRAN-77 source
program into an executing program.

USING RT-11 FORTRAN-77

LIBRARIES .

SYSTEM
LIBRARIES

[: OBJECT
SOURCE COMPILER LINKER EXECUTING
PROGRAM MODULE Jos

MW-F77-005

Figure 1l-1 Preparing a FORTRAN-77 Program for Execution

You invoke the compiler or the linker by entering a keyboard command
line that specifies the desired function, the input files, the output
files, and any desired command options. Command lines are either
written in Keyboard Monitor format for commands processed directly the
Keyboard Monitor, or in Command String Interpreter (CSI) format for
commands processed directly by utility programs or language
processors. Keyboard Monitor Language is the RT-11 implementation of
Digital Command Language (DCL).

Input files and output files are specified in command 1lines by file
specifications.

Optional command inputs are specified with special command mnemonics

called options or switches. Switches are appended to command words
and file specifications.

1.2 RT-11 FILE SPECIFICATIONS AND SWITCHES
This section details the naming conventions for £files used by the

RT-11 operating system. It also describes the use of various command
line modifiers, called switches.

1.2.1 RT-11l FILE SPECIFICATIONS

For each RT-1l utility program you use, you must specify the input

files to be processed and (optionally for the FORTRAN-77 compiler and

the linker) the output files to be produced.

The format of a file specification for an RT~-1ll program is as follows:
device:filename.filetype

device

The device where a file is stored or is to be written.

USING RT-11 FORTRAN=77

filename-

The name of the file. A filename value can be from zero to six
characters in length.

filetype

An indication of the kind of information stored in the file. A
filetype value can be up to three characters long.

You need not explicitly state all the elements of a file specification
each time you compile, link, or execute a program. The only part of a
file specification that is usually required is the file name. If you
omit any other part of the file specification, a default value is
used. Table 1-1 summarizes the file specification default values.

If you request compilation of a source program specified only by a
file name, the compiler searches for a file with the specified file
name that

e 1is stored on the default device DK:
® has a filetype of FOR

For example, assume that your default device is DLO:, and that you
supply the following input or output file specification to the
compiler:

CIRCLE

For input, the compiler searches device DLO: for CIRCLE.FOR. For
.output, the compiler generates the file CIRCLE.OBJ and stores it on
device DLO:.

Frequently a command will allow a list of files. In many cases, this
list contains only one file specification; however, File Factoring
allows for the simple expression of several different input files that
reside on the same device as in:

DL1l: (TEST1,TESTA,TESTC) .FOR

The command shown above has the same meaning as and is easier to use
than the next command:

DL1:TEST1.FOR,DL1:TESTA.FOR,DL:TESTC.FOR

Factoring is a general method of string replacement. (Note that the
file factoring feature can only be used when commands are typed as
Keyboard Monitor Commands. File Factoring cannot be used with the
Command String Interpreter.) When you use factoring, the device name
outside the parentheses applies to each file specification inside the
parentheses. Without factoring, the system interprets each file
specification to be "DK:filespec" unless you explicity specify another
device name.

The example can be further reduced by the command
DL1:TEST(1,A,C).FOR
which has an identical meaning.
Care must be taken when using command factoring since the expanded

command is limited in length to 80 characters. No error message is
generated when a command line is truncated, but an error message may

L d
1-3

be generated when the truncated command line is executed.
message will most likely not be indicative of the true nature

USING RT-11 FORTRAN-77

This error

of

the

.problem. The following example shows how a command line expands after

factoring.

Original command line:

FORTRAN/SHOW:3/LIST:TT: DY1l:TEST(l,A,B)

Resulting command line (after factoring):

FORTRAN/SHOW:3/LIST:TT:

If all the file names you specify are six characters long, you
specify no more than five files.

NOTE

If the "FORTRAN" command is to be used
as in these examples, then the compiler
file F77.SAV or F77XM.SAV must f£irst be
renamed to FORTRA.SAV. See section 2.11
of the PDP-11 FORTRAN-77/RT=11

Installation Guide/Reléase Notes.

‘the RT-11 System User's Guide.

Table 1-1
RT-11 Default File Specifications

DY1:TEST1,DY1:TESTA,DY1:TESTB

should
You can read more about factoring in

Default Value

Optional

Element

device User's current default device DK:

filetype Depends on usage:
Command file COoM
Input to compiler FOR
Output from compiler OBJ
Input to linker OBJ
Output from linker SAV
Input to RUN command SAV
Compiler source listing LST
linker map listing MAP
linker library input OBJ
Input to executing program DAT
Output from executing program DAT

1.2.2 COMMAND OPTIONS (SWITCHES)

Command switches are option qualifiers you can use in command lines to
specify optional command instructions or inputs -- for example, to
specify that the compiler should produce a listing file.
two distinct forms of switches.

There

are

USING RT-11 FORTRAN-77

One type is used for Keyboard Monitor Commands while the other type is
used with commands that are interpreted by the Command String
Interpreter (CSI). Command switches are appended to other entities in
a command line and have the form:

/switch[:vall
switch

is a mnemonic that specifies a certain instruction to the
compiler or linker.

val

is a parameter consisting of an octal or decimal number, or a
string of characters.

1.2.2.1 KEYBOARD MONITOR OPTION SWITCHES

You use Keyboard Monitor switches to specify optional instructions to
a Keyboard Monitor command or to specify special attributes or
processing commands for input or output files. A Keyboard Monitor
switch consists of a slash followed by an option word and an optional
qualifier separated from the option word by a colon.

For example, the FORTRAN compiler accepts a switch that causes a
listing to be made. The switch used to create this listing is /LIST.
/LIST has an optional qualifier that specifies the listing's filename.
A Reyboard Monitor command line that uses this switch follows:

.FORTRAN/LIST :LSTFIL

Since neither a device nor a filetype were specifically entered, the
default device DK: and the default listing filetype .LST are used to
create the output file DK:LSTFIL.LST.

Certain compiler switches may be followed by a numeric value. This
value 1is always interpreted as a decimal number. There is no method
of specifiying an octal number in a Keyboard Monitor command without
first converting it into its decimal equivalent.

1.2.2.2 CSI COMMAND SWITCHES

The CSI format for switches is more restrictive than Keyboard Monitor
format: the mnemonic for the switch is limited to a single letter and
the qualifier is restricted to signed numeric values or three
character ASCII strings. Numeric arguments are assumed to be octal
unless a decimal point is included in the number. You can use a minus
sign (-) to denote negative octal or decimal numbers.

For example, the CSI compiler switch /C is used to specify the number
of continuation 1lines the FORTRAN-77 compiler will accept. If you
wish the compiler to limit the number of continuation lines to 10
(decimal) lines then you can use either

/C:10. or /C:12

USING RT-11 FORTRAN-=77

In the first case the decimal point establishes 10 as a decimal value
while in the second case the absence of the decimal point causes 12 to
be interpreted as an octal number.

Some examples of valid CSI compiler switches are:

/1
/S :ALL
/C:25.

1.3 COMPILING A FORTRAN-77 PROGRAM

This section contains information for the user who wants to compile a
FORTRAN-77 program on an RT-11l system. The compiler can be run by
using one of three distinct Keyboard Monitor commands:

e the FORTRAN command
® the R command
e the RUN command

You should first determine the filename given to the compiler when it
was installed. It may be stored as F77.SAV, F77XM.SAV, or as
FORTRA.SAV. It must be named FORTRA.SAV in order to use the FORTRAN
command. In the R and RUN command examples below, you should
substitute your compiler‘'s file name in place of "F77". Also note
that the R and RUN commands give you access to all of the compiler's
switches, some of which have no equivalent qualifiers when the FORTRAN
command is used.

1.3.1 COMPILING WITH THE FORTRAN COMMAND

You can use the keyboard monitor's FORTRAN command to compile programs
with FORTRAN-77 if the compiler is stored on the system device under
the name FORTRA,SAV. The Monitor Command switches available for
FORTRAN-77 are a subset of those available for RT—~11 FORTRAN-IV. Use
of FORTRAN keyboard command switches not defined in Table 1-2 can lead
to unpredictable results.

You invoke the FORTRAN-77 compiler with the FORTRAN command as
follows:

FORTRAN [/options] filespec[/option...] [...filespec[/option...]]
or

FORTRAN [/options]
FILES? filespec[/options...] [...filespec[/option]]

/options (or switches)

optionally included to control the output files and the compiler.

-r

filespec

Specifies an RT-11 file or files that contain the source program.
The default file type is .FOR. A concatenated set of input files
may be specified by using the plus (+) operator. The action of
this operator is the same as if all the files were

1-6

USING RT-11 FORTRAN-77

copied together and submitted to the compiler as one file. The
default name of the output file and list file will be that of the
first file named.

There are many compiler option switches. Some of these switches are
available only through lines processed by the Command String
Interpreter using the R or RUN commands. Table 1-2 1lists each
available switch and its action when the FORTRAN command is used.

In order to compile into separate object files a FORTRAN-77 program
MAIN.FOR with subprogram units SUB1.FOR, SUB2.FOR, and UTILS.FOR you
could enter

FORTRAN MAIN,SUB(l,2),UTILS

The result would be four files: MAIN.OBJ, SUBl1.0OBJ, SUB2.0BJ, and
UTILS.OBJd.

If you wanted to compile the same source files into only one object
file you could enter

FORTRAN MAIN+SUB(1,2)+UTILS

The result would be one file, MAIN.OBJ.

Table 1-2

FORTRAN Options Available From Keyboard Monitor Under RT-11

Option Explanation
/ALLOCATE:n Use this option with /LIST or /OBJECT
to reserve space on a device for the
output file. The argument size

represents the number of blocks of
space to allocate. The meaningful
range for this value is from 1 to
65535. A value of -1 is a special case
that creates the largest file possible
on a device.

/EXTEND Use this option to change the right
margin for source input 1lines from
column 72 to 132. If this switch is
specified, the ANSI standard extension
flagger will issue an informational
diagnostic (one per 1line) for source
lines extending beyond column 72

/14 Use this option to allocate two words
for the default integer data type so
that integers with absolute values
greater than 32767 may be represented.
FORTRAN-77 normally uses one-word
integers.

/NOLINENUMBERS You can specify this option to
eliminate the generation of traceback
code in the object file. This 1is
equivalent to using the /S:NON option
in CSI command format.

USING RT-11 FORTRAN-77

Table 1-2

FORTRAN Options Available From Keyboard Monitor Under RT-11

Option

/LIST[:filespec]

/OBJECT[: filespec]

/NOOBJECT

(continued)

Explanation

You must specify this option to produce
a FORTRAN-77 compilation listing.
Anytime you type a colon after the
/LIST option (/LIST:) you must specify
a device or a file specification after
the colon. The /LIST option has
different meanings depending on where
you place it in the command line.

The /LIST option produces a listing on
the device "LP:" when /LIST follows the
FORTRAN command. For example, the
following command line produces a line
printer 1listing after compiling a
FORTRAN source file:

- FORTRAN/LIST MYPROG

Remember that file options apply only
to the file (or group of files that are
separated by plus signs) that they
follow in the command string. For
example:

.FORTRAN A/LIST,B

This command compiles A.FOR, producing
A.OBJ and A.LST. It also compiles
B.FOR, producing B.OBJ. However, it
does not produce any listing file for
the compilation of B.FOR.

Use this option to specify a file ‘name
or device for the object file.

Because FORTRAN creates object files by
default, the following two commands
have the same meaning:

.FORTRAN A
.FORTRAN/OBJECT A

Both commands compile A.FOR and produce
A,OBJ as output. The /OBJECT option
functions like the /LIST option; it
can be either a command option or a
file qualifier.

Use this option to suppress creation of
an object file. As a command option,
/NOOBJECT suppresses all object files;
as a file option, it suppresses only
the object file produced by compilation
of the related input files.

USING RT-11 FORTRAN-77

Table 1-2

FORTRAN Options Available From Keyboard Monitor Under RT-11

Option

/ONDEBUG

/RECORD: length

/SHOW{ : typel

(continued)

Explanation

In this command, for example, the
system compiles A,.FOR and B.FOR
together, producing files A,OBJ and
B.LST. It also compiles C.FOR and
produces C.LST, but does not produce
C.0BJ

.FORTRAN A+B/LIST,C/NOOBJECT/LIST

Use this option to include debug lines
(those that have a D in column one) in
the compilation. Therefore, you do not
have to edit the file to include these
lines in the compilation or to
logically remove them. This option is
useful in debugging a program. You can
include messages, flags, and
conditional branches to help you trace
program execution and find an error.

Use this option to override the default
record length for sequentially
formatted input and output, usually 136
characters. The meaningful range for
length is from 4 to 4095.

Use this option to control FORTRAN
listing output. The argument type
represents a code that indicates which
listings the compiler is to produce.

type has the following allowable
values:

0 Minimal listing file: diagnostic
messages and program section
summary only.

1 Source listing and program section
summary.

2 Source 1listing, program section
summary, and storage map
(default).

3 Source 1listing, assembly code,

program section summary, and
storage map.

If you specify no code, the default
value is 2.

USING RT-11 FORTRAN-77

Table 1-2
FORTRAN Options Available From Keyboard Monitor Under RT-11
(continued)
Option Explanation
/STATISTICS Use this option to obtain compilation
statistics in the listing. The

statistics include workfile access
statistics and the number of pages of
dynamic memory available and used.

/SWAP Use this option to permit the /USR
(User Service Routine) to swap over the
FORTRAN-77 OTS in memory. This is the
default operation.

/NOSWAP This option keeps the USR resident
during execution of a FORTRAN program.
This may be necessary if the FORTRAN
program uses some of the RT-1ll System
Subroutine Library calls (see Chapter 4
of the RT-11] Programmer's Reference
Manual). If the program frequently
updates or creates a large number of
different files, making the USR
resident can improve program execution.
However, the cost for making the USR
resident is 2K words of memory.

/UNITS:n Use this option to override the default
number of logical units (6) that can be
‘ open at one time. The maximum value

you can specify for n is 16.

/WARNINGS Use this option to include warning
messages in FORTRAN compiler diagnostic
error messages. These messages call
certain conditions to your attention,
but do not interfere with the
compilation. A warning message is
printed, for example, if you specify a
variable name with more than six
characters.

/NOWARNINGS Use this option to exclude warning
messages in FORTRAN compiler diagnostic
error messages. This 1is the default
setting.

1.3.2 COMPILING WITH THE R COMMAND

You can invoke the FORTRAN-77 compiler with the Keyboard Monitor
Command

R F77
The R command requires that the compiler reside on the system device

SY: and does not allow for an argument list to be present on the
command line. The presence of an argument list in an R command line

1-10

USING RT-11 FORTRAN-77

will result in an error message from the Keyboard Monitor. When the
FORTRAN-77 compiler is ready to accept a command it will display the
following prompt

*

This prompt is issued by the RT-11 Command String Interpreter (CSI).
When you use the compiler in this fashion, entering command to the *
prompt from the CSI, the compiler is said to be in "Interactive Mode".
To enter a succession of compilation commands to the compiler in
interactive mode, type one command line after each prompt, followed by
a carriage return, until all commands are entered. Each command line
must specify the appropriate input and output files for the program
module to be compiled, and any optional switches desired. Type CTRL/C
to return to the Keyboard Monitor.

For example, to compile the FORTRAN programs WINKN, BLINKN, and NOD
into separate object modules, you can enter a succession of commands
as follows:

.R F77 <RET> (From this point on, the compiler issues the *
prompt.)

*WINKN ,WINKNP=WINKN <RET>
*BLINKN, BLINKN=BLINKN <RET>
*NOD ,NOD=NOD <RET>

*°C

Note that the compiler issues the * prompt each time you enter a
command until a CTRL/C ("C) is typed to return control to the Keyboard
Monitor.

1.3.3 COMPILING WITH THE RUN COMMAND

The RUN command is similar to the R command, but there are some
differences. First, you can use the RUN command to use the compiler
when it resides on a device other than the system vice 8Y:. It also
allows vyou to enter a full command line, in the form accepted by the
Command String Interpreter as part of the RUN command. Finally, the
RUN command can compose a CSI command string from command line text
entered in CCL format.

Note that the RUN command cannot be used on Professional 300 series
computers running the F77XM version of the compiler. Users of these
systems should use the FORTRAN or R commands, described earlier.

The RUN command should be used to invoke the FORTRAN-77 compiler if:
® The compiler is not located on the system disk.

@ A command in Command String Interpreter format is desired on
the same command line.

® A command in Concise Command Language (CCL) format is on the
same command line.

If the FORTRAN-77 compiler is not on the system disk, use the RUN

command to start the compiler. You can use it in exactly the same way
as you would if it were invoked using the R keyboard command.

1-11

USING RT-11 FORTRAN-~77

For example, to run the compiler in interactive mode from the 'current
default device, you enter:

RUN F77

or to run the extended memory version of the F77 compiler from the
virtual disk VM:

RUN VM:F77XM

In either case the compiler responds with the prompt:

*

from the Command String Interpreter and then accepts commands in
exactly the same manner as the R command. For example, if you want to
compile FORTRAN-77 programs WINKN, BLINKN, and NOD into separate
object modules when the compiler is located on the device DL2:, you
could enter a sequence of commands such as

.RUN DL2:F77 (From this point on, the compiler
*WINKN=WINKN issues the * prompt)
*BLINKN=BLINKN

*NOD=NOD

*“c

This succession of commands produces no listings and assumes the input
and output device DK:.

The RUN command also allows a single command string to share the same
command line. To compile the file WINKN into an object module of the
same name, and to produce a listing on the line printer LP:, you could

enter

~RUN SY:F77 WINKN,LP:=WINKN

All of the functionality of the interactive mode is preserved except
that only one command line is allowed.

If the compiler is located on the system device, Concise Command
Language (CCL) allows an even shorter command sequence where the RUN
command can be omitted entirely. The system device is searched for a
memory image and the command 1line treated as a CSI string. This
reduces the command from the example above to:

.F77 WINKN,LP:=WINKN

There is one side effect to the use of CCL that should be understood.
CCL attempts to give some of the functionality of DCL. If you were to

type
.F77 WINKN WINKN.FOR

CCL would construct a command line reversing the positions of
WINKN.OBJ and WINKN.FOR, then inserting an "=" between them, resulting
in an equivalent command of:

.RUN SY:F77 WINKN.FOR=WINKN

The effect would be to replace the FORTRAN source program, WINKN.FOR
with another file, named WINKN.FOR containing the object code. For
further discussion of CCL constructs refer to RT-11 System User's
Guide.

1-12

USING RT-11 FORTRAN-77

Table 1.3 describes the action of the various compiler switches and
the syntax for their modifiers.

Interactive
Mode
Switch

[n]

/A

/B

/C:n

/D

/E

Table 1-3

RT-11 FORTRAN-77 Command String Switches

Explanation

Use this option to reserve space on a device for
the output files. It follows the file name
specification. The argument n represents the
number of blocks of space to allocate. The
meaningful range for this value is from 1 to
32767. A value of -1 1is a special case that
creates the largest possible file on the device.

Produces a statistics report at the end of each
module listing.

Specifies that the compiler is to provide symbol
table information for use by the PDP-11
FORTRAN~77 symbolic debugger. When you use the
/B qualifier, you should also use the /O
qualifier to disable compiler optimization. The
symbolic debugger 1is not currently supported
under RT-11.

Specifies the maximum number of continuation
lines in the program. (You may have fewer than n
continuation lines.) The value of n may range
from 0 to 99; the default value is 19. Note
that each 1level of nesting of an INCLUDE
statement causes the maximum number of
continuation lines to be decreased by two.

Requests compilation of lines with a D in column
one. These lines are treated as comment lines by
the default mode. (see the PDP-1l FORTRAN-77
Language Reference Manual for further
information).

Specifies that the compiler interprets FORTRAN
source text that extends beyond column 72, into
column 132 of an input record. If /E is
specified, and the ANSI standard extension
flagger is invoked by the command switch /Y:SRC,
the compiler 1issues an informational diagnostic
{(one per line) for those source 1lines extending
beyond column 72. This flag is normally off.

1-13

Interactive

Mode

Switch

/F

/1

/K

/L

n

USING RT-11 FORTRAN-77

Table 1-3

RT-11 FORTRAN-77 Command String Switches

(continued)

Explanation

Sets the length of the workfile in disk blocks.
Default is 128 (decimal). Use this switch to
increase the size of the workfile for larger
compilations. The value n is interpreted as an
octal value unless a decimal point is used after
the number. This value may be adjusted when the
compiler is installed. See the PDP-11
FORTRAN-77/RT11 INSTALLATION GUIDE for complete
details.

Specifies that array references are to be checked
to ensure that they are within the array address
boundaries specified. However, array upper
bounds checking is not performed for arrays that
are dqummy arguments for which the last dimension
bound is specified as * or 1. For example:

DIMENSION B(0:10,0:%)
or
DIMENSION A (1)
The switch is OFF by default.

Causes the current switch settings to be retained
(Latched) for subsequent compilations in
interactive mode. Normally, switch settings are
restored to their default values before
processing each command line. This switch is
convenient for compiling a series of programs in
interactive mode with the same switch settings.
Disabled by default.

Specifies listing options. The value of n may
range from 0 to 3. The meaning of each value is
as follows:

0 Minimal listing file: diagnostic
messages and program section summary
only.

1 Source listing and program section
summary.

2 Source listing, program section

summary, and storage map (default).

3 Source listing, assembly code, program
section summary, and storage map.

1-14

Interactive
Mode
Switch

/N:n

/0

USING RT-11 FORTRAN-77

Table 1-3

RT-11 FORTRAN-77 Command String Switches

(continued)

Explanation

Select the number of logical units available to
the compiled program to be n. See chapter 2 for
a discussion of logical wunit numbers. The
default is 6 logical units available.

Precludes optimization of compiler generated
code. Use this switch to defeat any
optimizations the compiler may be making to your
code.

Produces a wide 132~-column map listing instead of
an 80-column listing. The compiler normally
produces the narrower listing.

Specifies the maximum record 1length (in bytes)
for run time I/0 (4 < n < 4095).

Controls the amount of extra code included in the
compiled output for use by the OTS during error
traceback. This code is wused in producing
diagnostic information and in identifying which
statement in a source program caused an error
during execution. /S:xxx can have the following
forms:

/S Same as /S:NON

/S :ALL Error traceback information is
compiled for all source statements
and function and subroutine
entries.

/S:LIN Same as /S:ALL.

/S :BLO Traceback information is compiled
for subroutine and function entries
and for selected source statements.
The source statements selected by
the compiler are initial statements
in sequences called blocks (see
Section 5.2.3 for the definition of
a block).

/S:NAM Traceback information is compiled
only for. subroutine and function
entries.

/S :NON No traceback information is
produced.

The default value is /S:BLO.

1-15

Interactive
Mode
Switch

/T

/u

/v

/W

/%

/Y¥ixxx

USING RT-11 FORTRAN-77

Table 1-3

RT-11 FORTRAN-77 Command String Switches

{(continued)

Explanation

The /S:ALL setting is generally advisable during
program development and testing. The default
setting /S:BLO is appropriate for most programs
in regular use. The setting /S:NON may be used
for obtaining fast execution and minimal code,
but it provides no information to the 0TS for
diagnostic message traceback.

Allocates two words for the default 1length of
integer and logical variables. Normally, single
storage words are the default allocation for all
integer or logical variables not given an
explicit length definition (such as INTEGER*2,
LOGICAL*4). The default setting allocates one
word of storage for integers and logical
variables. See Section 4.2 for further
information.

Inhibits swapping of the USR routines over the
compiled program when it is executed.

Types the FORTRAN-77 compiler identification and
version number on your terminal.

Disables compiler warning diagnostics (W-=class
messages; see Section C.1.1). If /W is set, no
warning messages are issued by the compiler. The
default is /W not set.

Disables the compiler's FORTRAN-77 features. See
Chapter 3 for further discussion of this flag's
action.

Directs the compiler to check your source code
for extensions to ANSI standard (¥X3.9-1978)
FORTRAN at the full-language level. If the
compiler finds extensions, it flags them and
produces informational diagnostics about them.
(To receive informational diagnostics, you must
set the warning switch /W.)

Although RT-11 FORTRAN-77 conforms to the ANSI
FORTRAN standard at the subset 1level, the
compiler flags only those features that are
extensions to the full language. See Appendix G
for a list of the flagged extensions.

The /Y:xxx switch can take the following forms:

/Y Informational diagnostics for
syntax extensions

/Y:ALL Informational diagnostics for all
detected extensions

1-16

USING RT~11] FORTRAN-77

Table 1-3
RT-11 FORTRAN-77 Command String Switches
(continued)
Interactive Explanation
Mode
Switch
/Y :NON No informational diagnostics
/Y¥:SRC Informational diagnostics for
lowercase letters and tab
characters in source code
/Y:SYN Same as /Y
The default value is /Y:NON
See Section C€.2 for a 1list of
compiler diagnostic messages.
/2 Directs the compiler to specify pure code and

pure data sections as read-only. See Section 3.3
for a description of program section attributes.
/2 is off by default.

The default settings of the compiler switches can be summarized as:

/C:19./F:128./L:2/N:6/R:136./S:BLO/Y:NON

which expands to:

® 19 continuation lines

® a work file of 128 blocks

e a source listing with program section summary and storage map
e default maximum formatted record length of 136 characters

® traceback for module names and code at block level

® 6 logical units available

® no special ANSI standards checking

e no debug symbol table is produced

@ lines with D in column 1 are not compiled

® source characters beyond column 72 are not compiled

(continued on next page)

1-17

USING RT-11 FORTRAN-77

Default Compiler Switch Settings
{continued)

e array references are not checked to be within defined bounds
e object code is optimized

e integers occupy 1 16-bit word (INTEGER*2)

e the USR may swap over compiler generated code

® warning messages are not produced

e FORTRAN-77 syntax is accepted

1.4 LINKING A FORTRAN-77 PROGRAM

The linker is a system program that binds relocatable object modules
to form an executable memory image.

You invoke the linker with the Keyboard Monitor's LINK command, or you
may use the R or RUN command. The LINK program is described in
Section 1l.4.1.

The object modules to be linked can come from user-specified input
files, user libraries, or system libraries. The linker resolves
references to symbols defined in one module and referred to in other
modules. Should any symbols remain undefined after all user-specified
input files are processed, the 1linker automatically searches the
system object library SY:SYSLIB.OBJ to resolve them.

The default FORTRAN-77 object time system library is normally part of
either the system object library, SYSLIB.OBJ, or it is a separate
object library that may be named either F770TS.OBJ or FORLIB.OBJ.

You can also use the 1linker to build memory images with overlay
structures. For additional information about the linker and linker
options, refer to the RT-1l System User's Guide.

1.4.1 LINKING WITH THE LINK COMMAND

The RT-11l LINK program combines one or more user-written program units
with selected routines from any user libraries and the default
FORTRAN-77 OTS Library to form an executable memory image file. LINK
generates a single runnable memory image file and an optional load map
from one or more object files created by the FORTRAN-77 compiler,
MACRO assembler, or other language processor.

The default types for the executable file are .SAV for a background or
mapped environment program, and .REL for a foreground program. The
default output device is DK:.

The default name of the .SAV or .REL file 1is that of the first

concatenated input object €file specified. When F770TS resides in
SYSLIB, the required elements of the FORTRAN library will be linked

1-18

USING RT-11 FORTRAN~-77
automatically since any undefined global references are correlated and
resolved through SYSLIB.
The LINK command adhéres to the following syntax:
LINK[/option...] filespec[/option...][,...filespec[/option...]]
or

LINK[/option...]
FILE? filespec[/option...][,...filespec[/option]]

‘where "filespec" represents the file to be linked and "options" are
those described in Table 1-4.

Table 1-4

Linker Options Available from the RT-11 Keyboard Monitor

Option) Explanation

/ALLOCATE :n Guarantee space for a maximum file of n
blocks.

/ALPHABETIZE Lists program's global symbols
alphabetically in the load map.

/BITMAP Creates a memory usage bitmap (default
setting).

/BOTTOM: n Specifies a bottom address for a

background program.

/BOUNDARY:value Starts a specific program section on a
particular address boundary. Argument
value, must be a power of 2. Prompts
you:

Boundary Section?

Enter name of section, then <ret> .,

/DEBUG[:filespec] Links ODT or other debugging utility to
the linked program.

/EXECUTE[:filespec] Designates the executable file.

/EXTEND:n Extends a program section to octal

value n. Prompts you:

Extend Section?

/FILL:n Initializes unused locations in the

load module to n (an octal value).
/FOREGROUND Generates a .REL file for a foreground
[sstacksize] link.

1-19

USING RT-11 FORTRAN-77

Table 1-4

Linker Options Available from the RT-11l Keyboard Monitor

Option

/INCLUDE

/LDA

/LIBRARY

/LINKLIBRARY: [filespec]

/MAP[:filespec]

/NOEXECUTE

/PROMPT

/ROUND:n

/RUN

Explanation

Allows subsequent entry at the keyboard
of global symbols to be taken from any
library and included in the linking
process. When the /INCLUDE option is
typed, the linker prints:

Library search?

Reply with the list of global symbols
to be included in the 1load module.
Press the carriage return key <RET> to
enter each symbol in the list.

Produces executable file in LDA format
for use with the Absolute Loader.

same as /LINKLIBRARY. {Included for
compatibility with other systems).

This option is ignored unless a file
specification is typed. The file
specification is included as an object
module library in the linking
operation.

Produces a link map on the 1listing
device LP: or in the file specified.

Does not create a .SAV file.

Causes the linker and 1librarian to
prompt for CSI formatted commands. The
linker treats the command strings as
continuation 1lines until a // is seen.
/PROMPT is equivalent to // mode of
continuation. Use this option to
specify overlays. For example:

.LINK/PROMPT ROOT
*QVR1/0:1
*OVR2/0:1
*QVR3/0:2
*QVR4/0:2//

This creates two overlay regions with
two segments each.

Rounds up a section so that the root is
a whole number multiple of of n (a
power of 2). Prompt:

Round section:

For background jobs only, executes the
resulting .SAV file.

1-20

USING RT-11 FORTRAN-77

Table 1-4

Linker Options Available from the RT-11 Keyboard Monitor

Option

/SLOWLY

/STACK[:n]

/SYMBOLTABLE ([: filespec]

/TOP:value

/TRANSFER(:n]

/WIDE

/XM

Explanation

Allows largest memory area for symbol
table.

Modifies the stack address (default is
loc. 42). Give an octal value
(:nnnnnn) or else system prompts for a
global symbol:

Stack Symbol?

Creates a file containing symbol
definitions for all global symbols.
Enter the symbol table file
specification as the third output
specification in the LINK command.

Specifies the highest address to be
used by relocatable code. The argument
value represents an unsigned, even,
octal number.

Prompts for a global symbol to be used
as the starting address of the program.
The user can specify a starting address
(represented by n).

Sets the number of columns for the
width of the link map to 6 global name
definitions per 1line. The default
width 1is normally 3 for an 80 column
wide listing.

Enables special .SETTOP features in the
XM monitor. This option allows a
virtual job to map a scratch region in
extended memory with the .SETTOP
program request. See the RT-11
Programmer's Reference Manual for
further information on these special
.SETTOP features.

Examples of linker options under RT-11 are

1) LINK A,B,C

2) LINK/MAP A

Links A.0OBJ, B.OBJ and C.0BJ on DK:
and creates A.SAV on DK:

Links A,.OBJ and creates A.SAV on DK:
and a map on LP:

1-21

USING RT-11 FORTRAN-77

- Examples of linker options under RT-11 (continued)
3) LINK/MAP:RK1:/EXE:RK0: A,B,C

Links A.OBJ, B.OBJ, and C.OBJ. The map
A.MAP goes to RKl: and the executable
file A.SAV goes to RKO:,

4) LINK/MAP/EXE:F00 B,C,D,E,LIB

Links B.OBJ, C.,0OBJ, D.OBJ,E.OBJ, and
the Library LIB.OBJ to create F00.SAV
on DK: and a map on LP:.

1.4.2 LINKING USING THE R COMMAND

You can run the linker using the R command instead of wusing the
Keyboard Monitor LINK command. The format of the R command is

R LINK

The R command searches the system disk SY: for the LINK program and
starts it executing. The linker returns with a prompt when it is
ready to accept input from your terminal:

*

To enter a succession of link commands to the CSI you type one command
line after each prompt, followed by a carriage return, until all
commands are entered. Each command 1line must specify appropriate
files of "the program and subprogram modules to be linked, and any
optional switches desired. After the linker has finished 1linking a
job it prints another asterisk prompt. You can then type CTRL/C to
exit the linker, or you can issue another link command.

For example, if you want the object files WINKN, BLINKN, and NOD
linked into a executable memory image file, you can enter a succession
of commands as follows:

R LINK <RET> (From this point on the compiler
issues the * prompt.)

*WINKN , WINKN=WINKN,BLINKN,NOD

L 2ale]
Note that the linker types the asterisk (*) prompt whenever it awaits
user input. The result in the example is two files, WINKN.SAV, an
executable memory image, and WINKN.MAP, a load map of the memory image
file. Both are placed on the default device DK:.

When invoked with the R command, or the RUN command with no arguments,
the RT~11 linker accepts the first command string in the form

[bin=-filespec] [,map-filespec] [,stb=filespec] = [infiles-list]
Option switches may be included on the command line., Table 1-5 1lists

the various switches and their required location within a command
line.

1-22

USING RT-11 FORTRAN=-77

After the first command line, ensuing lines have the form:
infiles~list[/option]
bin-filespec

The file specification of the linker's ocutput load module file.
This may be a memory image file for execution under RT-1ll or it
may be an absolute loader file.

map~file

The file specification of the map output file. This file
specification may be omitted if no memory image map file is
desired. A file type value of MAP is assumed if no file type |is
specified.

stb-filespec

The file specification for an optional symbol definition file.
This £file, also called the STB file, contains all global symbol
table definitions. See the RT-11 Software Support Manual for
more information on the content and structure of the STB file.

infiles~list

The list of input files that contain compiled FORTRAN-77 object
modules. (This 1list may also contain compiled or assembled
libraries and modules that were written in a language other than
FORTRAN-77, such as MACRO.) In many cases, this list contains
only one file specification; however, when there is more than
one specification, you must separate the individual
specifications with commas. Only a file name is normally
required; a file type value of OBJ is assumed.

The form of the infiles-list is:
obj-£filespec([/option...][,...0obj=filespec[/option]]

If you do not specify an output file, the linker assumes that you do
not want the associated output. For example, if you do not specify
the load module or the load map (by using one comma in £front of the
equal sign) the linker prints only error messages, if any errors
occur .

If the linker detects a syntax error in a command string, it prints an
error message. You can then retype a new command string following the
asterisk. Similarly, if you specify a nonexistent file, a warning
diagnostic 1is printed. Control then returns to the Command String

Interpreter, an asterisk prompt is printed, and you can reenter the
command string.

Table 1-5 lists the options associated with the linker. You must
precede the 1letter representing each option by the slash character.
Options must appear on the line indicated if you continue the input on
more than one line, but you can position them anywhere on the line.
Under the column titled Command Line is listed the line in the command
string in which the option can appear.

1-23

USING RT-11 FORTRAN-77

Table 1-5

Linker Options Available from RT-11 Interactive Mode

Option
(Switch)

/A

/B:n

/C

/D

/Ezn

/F

/G

/H:n

Command
Line

First
First
Any

First

First

First

First

First

Meaning

Lists global symbols in program sections in
alphabetical order.

Changes the bottom address of a program to
n. (invalid with /H and /R)

Continues input specification on another
command line. Used also with /O.

Allows the global symbol you specify to be
defined once in each segment that
references that symbol. These symbols must
be defined in library modules.

Allows a specified program section to be
extended to the value given. When the /E
switch is specified, the linker prints:

EXTEND SECTION?

Reply with the name of the program section,
whose 1length then becomes greater than or
equal to the value given. It will be
"greater than” when the object code
requires a space larger than the value
specified.

Instructs the linker to use the default
FORTRAN library, FORLIB.OBJ, to resolve any
undefined global references. Note that
this option should not be specified in the
command line when FORLIB (F770TS) has been
incorporated into SYSLIB.OBJ.

Adjusts the size of the linker's library
directory buffer to accommodate the largest
multiple definition library directory.

Specifies the top (highest) address to be
used by the relocatable code in the load
module. The high value must be specified
or the error message /H NO VALUE will be
returned. The high value must be an
unsigned even octal number. If the value
is odd, /H ODD VALUE error is returned. If
the wvalue is not large enough £for the
relocatable code, /H VALUE TOO LOW error
message is returned.

1-24

USING RT-11 FORTRAN-77

Table 1-5

Linker Options Available from RT~1ll1 Interactive Mode

Option
(Switch)

/L

/M or
/M:n

/N

/R[:n]

Command
Line

First

First

First

First

First

Any but
the first

First

First

First

First

Meaning

Use care with the /H switch because most
RT-11 programs use the free memory above
the relocatable code as a dynamic working
area for I/0 buffers, device handlers,
symbol tables, etc. The size of this area
varies with different memory configurations
as programs linked to a high address may
not run in a system with less physical
memory. /R, /B, and /H are mutually
exclusive and give the error /x-BAD SWITCH.
/H is the counterpart to /B.

Includes in the memory image the 1library
object modules that declare the specified
global symbols.

Puts the specified value in word 56 of the
image file block 0. This value states that
the program requires nK words of memory.
Range for the required value is 1 through
28.

Produces an output file in LDA format

Specifies the stack address at the terminal
keyboard or via n.

Produces a cross~reference in the locad map
of all global symbols defined during the
linking process.

Indicates that the program has an overlay
structure: n specifies the overlay region
to which the module belongs. Invalid with

/L.

Allows the linker to maintain as many as
"n"™ library routines,

Lets you specify the base addresses of up
to eight root program sections. Invalid
with /H or /R.

Produces an output file in relocatable
image format for execution as a foreground
or system job and optionally indicates
stack size for a foreground job. Invalid
with /B, /H, /K, and /L.

Allows the maximum amount of space in
memory to be available for the linker's
symbol table. (This switch should only be
used when a particular 1link operation
causes a symbol table overflow.)

USING RT-11 FORTRAN-77

Table 1-5

Linker Options Available from RT-11 Interactive Mode

Option
(Switch)

/T[:n]

/X

Command
Line

First

First

First
Any but

first

First

First

First

First

Meaning

Cause the linker to prompt you for a global
symbol that represents the transfer address
or that sets the transfer address to the
value n.

Prompts the user with "ROUND SECTION": The
user replies with the name of the program
section to be rounded up, that must be in
the root segment. The value given must be
a power of 2, The specified section will
be rounded up to a size that is a whole
number multiple of n. For example, to make
the first overlay start on a block boundary
so that the root section and the first
overlay region can be read into physical
memory with only one device read operation
you would use: /U:1000. If the specified
section is not found, the error message
will be "ROUND SECTION NOT FOUND".

Enables special .SETTOP and .LIMIT features
provided by the XM monitor. Invalid with
/L.

Indicates that an extended memory overlay
overlay segment is to be mapped in wvirtual
region n, and optionally in partition m.

Specifies the width of the map to be
produced. The value is the number of ENTRY
or ADDR combinations to print across the
page. If no /W is given, the default is
3 (normal for 80 column paper). If only /W
is given, n defaults to 6, that effectively
utilizes a 132 c¢olumn page. The useful
range is 1 through 7.

Intended for RSTS/E; not normally used for
RT-11. Meaning: do not output (Xmit) the
bitmap if code below 400, Locations
360-377 in block 0 of the load module are
used for the bitmap. The linker nomally
stores the program usage bits in these
eight words. Each bit represents 256-word
block of memory. This information is used
by the R, RUN, an GET commands when loading
the program. Therefore care should be
exercised in using this switch.

Starts a specific program section in the
root on a particular address boundary.
Invalid with /H .

Sets unused locations in the load module to
the value n.

1-26

USING RT-11 FORTRAN-77

Table 1-5

Linker Options Available from RT-11 Interactive Mode

Option Command
(Switch) Line Meaning
// . First This method provides an alternative to the
and /C (Continue) switch that must be given
last on every line except the .last. The "//"

switch allows additional lines of command
string input without the need for a /C at
the end of each continuation line. "//" is
typed on the first command 1line and the
linker will continue to request input until
the next occurrence of "“//". The second
occurrence terminates specification of
command string input, and may be at the end
of the 1last object file name or on a
command line by itself.

CAUTION: The use of /C and // cannot be
mixed in a 1link command string input
sequence.

Example:

.R LINK
*LINK,LP:=MYPROG/B:500/W//
*MODOV1/0:1

*MODOV2/0:1

*MODOV3/0:1

*MODOV4/0:1
. *MODOVS5/0:1//

1.4.3 LIBRARY USAGE ON RT-11 SYSTEMS

You can create a library of commonly used assembly language and
FORTRAN-77 functions and subroutines through the system program LIBR,
which provides for library creation and modification. The Librarian
chapter of the RT-11 System User's Guide describes the LIBR program in
detail.

Include a library file in the LINK command string simply by adding the
file specification to the input file list. LINK recognizes the file
as a library file and links only the required routines. The LINK
command string

*LOAD=MAIN,LIB1l
requests LINK to combine MAIN.OBJ with any required functions or
subroutines contained in LIB1.0BJ. Finally, any unresolved GLOBALS

are resolved through SYSLIB. The entire memory image is output to the
file LOAD.SAV.

1-27

USING RT-11 FORTRAN-77

If the /F option or switch is used, all wuser-created 1libraries are
searched before the default FORTRAN library, FORLIB.OBJ is searched.
Consult the linker chapter of the RT-1l1 System User's Guide for a
detailed description of multilibrary global resolution,

If the linker fails for lack of symbol table space, use the /S linker
option in your next attempt. This could slow the linking process, but
it allows the maximum possible symbol table space.

To maintain the integrity of the distributed FORTRAN and system
libraries, you should create separate user library files rather than
modifying or adding to the FORTRAN-77 Library (F770TS or FORLIB) or to
the System Library (SYSLIB). An exception is the explicit addition of
F770TS to SYSLIB as described in the RT-11] FORTRAN-77 1Installation
Guide and Release Notes.

1.4.4 OVERLAY USAGE

Often the size of available physical memory imposes a constraint on
the size and complexity of a FORTRAN program. You can use the overlay
feature of the linker to segment the memory image so that the entire
program is not memory-resident at one time. This frequently allows
the execution of a program that is otherwise too 1large for the
available memory.

An overlay structure consists of a root segment and one or more
overlay regions. The root segment contains the FORTRAN-77 main
program COMMON, subroutines, function subprograms, and any .PSECT that
has the GBL attribute and is referenced from more than one segment.
An overlay region is an area of memory allocated for two or more
overlay segments, only one of which can be resident at a time. An
overlay segment consists of one or more subroutines or function
subprograms.

When a call is made at run time to a routine in an overlay segment,
the overlay handler verifies that the segment is resident in its
overlay region. If the segment is in memory, control passes to the
routine. If the segment is not resident, the overlay handler reads
the overlay segment from the memory image file into the specified
overlay region. This replaces the previous overlay segment in that
overlay region destroying the contents of all variables stored there.
Control then passes to the routine.

You must give careful consideration to placing routines into a root

segment and overlay regions, and subsequently divide each overlay
region into overlay segments. Remember that it is illegal to call a

routine located in a different segment but in the same region, or a
region with a lower numeric value (as specified by the linker overlay
/0O:n) than the calling routine. Divide each overlay region into
overlay segments that never need to be resident simultaneously.

The FORTRAN-77 main program unit must be placed in the root segment.

In an overlay environment, subroutine calls and function subprogram
references must be limited to the following:

@ A FORTRAN-77 library routine (for example, ASSIGN or COS).

@ A FORTRAN-77 or assembly language routine contained in the
root segment.

1-28

USING RT-11 FORTRAN-77

® A FORTRAN-77 or assembly language routine contained in the
same overlay segment as the calling routine.

e A FORTRAN-77 or assembly language routine contained 1in an
overlay segment whose region number is greater than that of
the calling routine.

In an overlay environment, you must place the COMMON blocks so that
they are resident when you reference them. Blank COMMON is always
resident because it is always placed in the root segment. You must
place all named COMMON either in the root segment or in the segment
whose region number is lowest of all the segments that reference the
COMMON block. A named COMMON block cannot be referenced by two
different segments in the same region unless the COMMON block appears
in a segment of a lower region number. The linker automatically
places a COMMON block into the root segment if it is referenced by the
FORTRAN main program or by a subprogram that is located in the root
segment. Otherwise, the linker place a COMMON block in the first
segment encountered in the linker command sting that references that
COMMON block.)

All COMMON blocks that are data—-initialized (by use of DATA
statements) must be so initialized in the segment in which they are
placed.

The entire overlay initialization process is handled by LINK.. The
command format outlined below (and further explained in the linker
chapter of the RT-1l System User's Guide) is wused to describe the
overlay structure to the linker. LINK combines the runtime overlay
handler with the user program, making the overlay process completely
transparent to the user's program.

The size of the overlay region is automatically computed to be large
enough to contain the largest overlay segment in that overlay region.
The root segment and all overlay segments are contained in the memory
image file generated by the linker.

Two options are used to specify the overlay structure to LINK. The
overlay option is of the form:

/O:n

where n is an octal number specifying the overlay region number. The
command continuation option has two forms:

/C and //

Placing "/C" at the end of command lines allows you to continue 1long
command strings on the next line of input. The "//" notation is used
at the end of the first line and again at the end of the last line of
input (see Table 1-5).

The first line of the LINK overlay structure command string should
contain, as the input list, all object modules that are to be included
in the root segment. This line should be terminated with the "/C" or
"//" option. The /O:n option cannot appear in the first line of the
command string. If all modules that are to be placed in the root
segment cannot be specified on on the first command line, additional
modules can be specified on subsequent command lines, each ending with
a /C (but not "//"). The entire root segment must be specified before
any overlays.

All subsequent lines of the .command string should be terminated with
the /O:n option specifying an overlay region and/or the /C option.

1-29

USING RT-11 FORTRAN-77

The presence of only the /C option (switch) specifies that this 1is a
continuation of the previous line, and therefore a continuation of the
specification of that overlay segment. The object modules on each
line, or set of continuation lines, constitute an overlay segment and
share the specified overlay region with all other segments in the same
numeric wvalue overlay region. All but the last line of the command
string should contain the /C option (switch).

For example, assuming that F770TS has been built into SYSLIB, and
given the following overlay structure description:

1. A main program and the object module SUBl are to occupy the
root segment,

2. The object module SUB2 is to share an overlay region with the
object module SUB3

3. The object modules SUB4 and SUB5 are to share a second
overlay region with the object modules SUB6 and SUB7.

The following command sequence could be used:

.LINK/PROMPT MAIN,SUB1
*SUB2/0:1

*SUB3/0:1

*SUB4/0:2

*SUBS

*SUB6/0:2

*SUB7//

1.4.5 EXTENDED MEMORY OVERLAYS

You can use LINK to create an overlay structure that uses extended
memory for privileged or virtual FORTRAN jobs. You will need an XM
monitor and a hardware confiquration that includes a Memory Management
Unit to run a program having overlays in extended memory, but you can
link such a program on any RT-11 system.

The extended-memory overlay structure is different from the low-memory
overlay structure in that extended-memory overlays can reside
concurrently in extended memory. This difference allows for speedier
execution because, once a program is read in, it requires fewer I/0
transfers with the auxiliary mass-storage volume. In fact, if all
program data 1is resident, and the program is loaded, the program may
be able to run without an auxiliary mass-storage volume.

Note that you must observe with extended-memory overlays the same

restrictions that apply to low-memory overlays, especially those
pertaining to return paths.

1-30

USING RT-11 FORTRAN-77

The following command string illustrates the use of extended-memory
overlays in a privileged FORTRAN-77 Jjob instead of the low-memory
overlays used in the previous example.

.LINK/PROMPT/EXE:LOAD MAIN,SUBl
*SUB2/V:1

*SUB3/V:1

*SUB4/V:2

*SUBS

*SUB6/V:2

*SUB7//

Refer to the RT-11 System User's Guide for more information on
Extended Memory Overlays.

1.4.6 FORTRAN PROGRAMS RUN AS VIRTUAL JOBS

Under RT-1l's Extended Memory (XM) monitor, you can develop FORTRAN-77
programs that can access a full 32K words of address space, and which
you can run as virtual jobs. (Virtual Jobs cannot access the I/0
page.) When a FORTRAN-77 job becomes a virtual job, the FORTRAN-77 OTS
initialization code uses the special features of the .SETTOP
programmed request to allocate a full 32K words of address space. The
initialization code then places the OTS work area in the extended
memory at the high 1limit returned by the .SETTOP request. This
allocation method differs from that of privileged FORTRAN jobs. Even
if they use extended memory overlays, privileged jobs allocate all the
free space in low memory for the OTS work area.

To make a FORTRAN-77 program a virtual job, you compile the
source-program units as usual. You then link the program with the
linker's /XM switch.

The following command links object files VIRFOR.OBJ and SUBS.OBJ to
make a program that can be run as a virtual job:

.LINK/XM VIRFOR,SUBS

For more information on virtual and privileged Jjobs see the RT-1ll
System User's Guide and the RT-11 Software Support Manual.

1.4.7 USING VIRTUAL ARRAYS

VIRTUAL arrays are specially managed arrays that occupy memory outside
a program's normal address space. Programs that use VIRTUAL arrays
can run only on RT-11 XM monitors because they utilize the system's
memory management directives. Thus, when linking a program that uses
VIRTUAL arrays, you must use the /XM switch and the distributed module
VIRTXM.OBJ. The following example links a program called MYPROG with
user subroutines in SUBS.OBJ, the VIRTXM module, and the FORTRAN-77
Object Time System library:

.LINK/XM MYPROG,SUBS,SY:VIRTXM,SY:F770TS

For more details on the use of VIRTUAL arrays see Chapter 3.

1-31

USING RT-11 FORTRAN-77

1.5 EXECUTING A FORTRAN-77 PROGRAM -

Use the monitor RUN command to start execution of the memory image
file generated by LINK, The command

.RUN dev:filnam

causes the file on the device "dev:" to be 1loaded into memory and
executed. The file specification of the memory image file |is
"dev:filnam,SAV".

You can end a job before its normal completion by typing CTRL/C ("C).

A job that terminates as a result of a CALL EXIT statement or by
reaching the end of the main program does not produce any output to
indicate that it is terminating, other than the RT-11 monitor prompt
(n.u).

1.6 EXAMPLES OF FORTRAN-77 COMMAND SEQUENCES
For a FORTRAN-77 job consisting of:
® A main program in file MAIN.FOR
® Subroutines in file SUBR1.FOR
@ Several subprograms in the file UTILTY.FOR

you can use the following sequence of commands for compiling, linking,
and executing:

.R F77
*JOB=JOB,SUBR1,UTILTY
~c

.LINK JOB

.RUN JOB

The R command is used to run the FORTRAN-77 compiler from the system
device. The command line shown compiles three FORTRAN source modules
into a single object file named JOB.OBJ. The LINK keyboard command is
used to produce an executable memory image from the object module
JOB.OBJ. The F770TS library is built into SYSLIB in this case, so no
explicit reference to it is required. The RUN command is then used to
load the newly linked JOB.SAV program into memory and start execution.

If the compiler were named FORTRA.SAV on the system device S5Y:, and
the F770TS library existed separately, also on the system device, then
a DCL command sequence to include a 1listing and load map at the
terminal might be:

.FORTRAN/LIST:TT: JOB+SUBR1
.FORTRAN/LIST:TT: UTILTY
.LINK/MAP:TT: JOB,UTILTY,SY:F770TS
+RUN JOB

In this case, JOB and SUBR1 are compiled into a single module called
JOB.OBJ, while UTILTY is compiled into a separate module called
UTILTY.OBJ. All input and output files except those preceded by "SY:"
are on the default device DK:.

1-32

USING RT-11 FORTRAN-77

1.7 DEBUGGING A FORTRAN-77 PROGRAM

FORTRAN-77 provides several aids for finding and reporting errors:

o]

DEBUG lines in source programs

FORTRAN-77 statements containing a "D" in column 1 can be
added for debugging purposes. DNDuring program development, you
can use these statements with the /D switch to type out
intermediate wvalues and results. After the program runs
correctly, you can treat these statements as comments by
recompiling without the /D switch.

Traceback facility

The compiled code and the OTS provide information on the
program unit and line number of a run-time error. A list
following the error message shows the sequence of calling
program units and line numbers. The amount of information
provided in the list is determined bv the /S switch during
compilation. See Section C.3.1 for the exact format and
content of the traceback.

The debugging program ODT, a user-interactive debugging aid

You can include ODT in a job by linking it with your program.
The LINK/DEBUG:filespec command may be used to specify the
debug utility. When using ODT, you should obtain the machine
language code 1listing of the program (specify the /L:3
compiler switch) and the link map of the memory image.

CHAPTER 2

FORTRAN=-77 INPUT/OUTPUT

This chapter describes input/output (1/0) as implemented in RT-11
FORTRAN-77. In particular, it provides information about FORTRAN-77
I/0 in relation to the RT-1l file system.

2.1 FORTRAN-77 I/0 CONVENTIONS

Certain conventions exist for 1logical device and file name
assignments, and for implied 1logical units. These conventions are
outlined in this section.

2.1.1 Device and File Name Conventions

There is no specific relationship between FORTRAN logical unit numbers
and RT-1ll channel numbers. Channels are mapped to logical units on a
first come first served basis starting with channel 0. If 1logical
unit 4 1is the first logical unit assigned then it will correspond to
channel 0. The next logical unit will correspond to channel 1, and so
on.,

Listed in Table 2-1 are the default 1logical device and file name
assignments. You can change default device assignments at the
following times: (1) prior to execution, by wusing the appropriate
operating system command; (2) at execution time, by using the ASSIGN
system subroutine (see Section D.2) or an OPEN statement.

If a filename is not specified in an ASSIGN or OPEN statement, then a
default name is used. The default file name conventions hold for
logical units not listed below; for example, unit number 12 has a
default file name of FOR012.DAT. The default device assignment for
logical units not listed is the default disk, DK:.

You may use any combination of valid logical unit numbers; however,
there is an imposed maximum number of units that can be active
simul taneously. This number depends on the number of buffers
allocated and the number of buffers required for each logical unit
(usually 1). The number of active logical units can be set at compile
time by using the /UNITS:n or /N:n switches. The default value used
is six.

When a logical unit is closed, the default file name assignment that
existed at the start of task execution is reestablished; the default
device assignment becomes undefined.

FORTRAN-77 INPUT/OUTPUT

Table 2-1
FORTRAN Default Logical Device Assignments
Logical Default Carriage
Unit No. Device File Name Control
1 System device SY: FOROO1.DAT LIST
2 Default device DK: FOR002.DAT LIST
3 Default device DK: FOR003.DAT LIST -
4 Default device DK: FOR004 .DAT LIST
5 User's terminal TT: FOR005.DAT FORTRAN
6 System printer LP: FOR006 .DAT FORTRAN
7 User's terminal TT: FOR0O07.DAT FORTRAN
8 Default device DK: FOR008.DAT LIST
99 Default device DK: FOR(099 .DAT LIST
NOTE

The device assignment to a logical unit
"is not affected by a CLOSE operation.
However, this convention is subject to
change in future releases and should not
be relied on. If the device assignment
of a unit is changed by a CALL ASSIGN or
an OPEN statement, it is recommended
that all CALL ASSIGN or OPEN statements
referencing that unit explicitly specify
the device to be used.

2.1.2 Implied-Unit Number Conventions

Certain I/0 statements do not require explicit logical unit
specifications. These statements, and their equivalent forms, are
listed in Table 2-2.

From Table 2-2, you can see that a formatted READ statement of the
form:

READ f,list
is equivalent to:
READ(1,f)list

In a program, these two forms function identically. If logical unit
number 1 is assigned to a terminal, input comes from this terminal no
matter which of the above READ formats you use.

The PRINT, ACCEPT, and TYPE statements implicitly refer to logical
units 6, 5, and 5, respectively.

On output, logical units 5, 6, and 7 employ FORTRAN carriage control.
The first character 1in each record is used to determine whether the
printer should be advanced by a line or page before the record 1is
printed. All other logical units employ the LIST attribute, meaning
that the first character of each record is passed to the printer, and
not used for interpretation. These default attributes may be changed
by using an OPEN statement with a CARRIAGECONTROL specification, or by
calling the ASSIGN subroutine.

FORTRAN-77 INPUT/OUTPUT

Table 2-2
Implied Unit Numbers

Statement Type Equivalent Form

READ £, list READ (1,£) list
PRINT £, list WRITE (6,£) list
ACCEPT f, list READ (5,£) list
TYPE £, list WRITE (5,f) list

2.2 FILES AND RECORDS

This section discusses file structures, record access modes, and
record formats in the context of the capabilities of the RT-1l file
system.

2.2.1 PFile Structure

A clear distinction must be made between the way files are organized
and the way records are accessed.

The term "file organization®™ refers to the way records are arranged
within a file; the term "record access" refers to the method by which
records are read from a file or written to a £ile. A file's
organization is specified when the file is created, and cannot be
changed. Record access is specified each time a file is opened, and
can be different each time the same file is opened. This section
discusses file organization; Section 2.2.2 discusses record access.
Table 2-3 shows the valid record access modes for each file
organization.

2.2.2 Access to Records
You can select records for processing by the following methods:
® Sequential access

@ Direct access

® Unformatted access

2.3 OPEN STATEMENT XEYWORDS

The following sections supplement the OPEN statement description that
appears in the RT-11 FORTRAN-77 Language Reference Manual. In
particular, implementation-dependent and/or system—dependent aspects
of certain OPEN statement keywords are described. This section does
not discuss all the keywords that apply to the OPEN statement.

2-3

FORTRAN-77 INPUT/OUTPUT

2.3.1 BLANK

BLANK in an OPEN statement controls the interpretation of blanks in
numeric input fields. The default is BLANK='NULL' (blanks in numeric
input fields are ignored).

If a logical unit is opened by means other than an OPEN statement, a
default equivalent to BLANK='ZERO' is assumed (that is, blanks in
numeric input fields are treated as zeros).

The BLANK keyword affects the treatment of blanks in numeric input
fields read with the D, E, P, G, I, O, and Z field descriptors., If
BLANK='NULL' is in effect for these descriptors, embedded and trailing
blanks are ignored; the value affected is converted as if the
nonblank characters were right justified in the field. If
BLANK='2ERO' is in effect, embedded and trailing blanks are treated as
zZeros.

The /X switch determines whether a default of BLANK='NULL' or
BLANK='ZERO' is assumed, as illustrated below:

OPEN (UNIT=1, STATUS='0OLD')
. READ(1,10)I,J
10 FORMAT (215)
END
Data record: 12 12

Assigned values:

normal /X
I= 12 I= 1020
J= 12 J= 12

If your program treats blanks in numeric input fields as zeros, and
you do not want to use the /X switch, include BLANK='ZERO' in the OPEN
statement or use the BZ edit descriptor in the FORMAT statement.

2.3.2 BLOCKSIZE

BLOCKSIZE specifies the physical I/0 transfer size for a file. A
BLOCKSIZE specification has the form:

BLOCKSIZE = bks

BLOCKSIZE is ignored by RT-1l. All channels have a block size of
BUFFERCOUNT*512. bytes.

2.3.3 BUFFERCOUNT

BUFFERCOUNT specifies the number of memory buffers. A BUFFERCOUNT
specification has the form:

BUFFERCOUNT = bc
The value of bc may be 1 or 2.

The default value is one.

FORTRAN-77 INPUT/OUTPUT

2.3.4 DISPOSE

DISPOSE specifies the disposition of a file at the time the file is
closed. A DISPOSE specification has the form:

'SAVE'
DISPOSE= 'KEEP'
DISP= 'DELETE'

DISPOSE cannot be used to save or print a scratch file, or to delete
or print a read-only file. A DISPOSE parameter in a CLOSE statement
always supersedes a disposition specified in an OPEN statement.

2.3.5 INITIALSIZE and EXTENDSIZE

INITIALSIZE specifies the initial storage allocation for a disk file,
and EXTENDSIZE specifies the amount by which a disk file is extended
each time more space is needed for the file. EXTENDSIZE cannot be
used in RT~11l. See note 1 below.

INITIALSIZE is effective only at the time a file is created.

If there is not enough space available to hold the initial size of a
file an error message is issued.

2.3.6 KEY

The KEY keyword cannot be used in RT-11. See note 1 below.

2.3.7 ORGANIZATION

ORGANIZATION specifies the type of organization a file has or 1is to
have. An ORGANIZATION specification has the form:

ORGANIZATION = 'SEQUENTIAL’

All files are organized as sequential, contiguous files on RT-1l. The
ORGANIZATION keyword cannot be used in RT-11l. See note 1 below.

2.3.8 READONLY

READONLY specifies that write operations are not to be allowed on the
file being opened.

2.3.9 SHARED

The SHARED keyword cannot be used in RT-11l. See note 1 below.

Note 1l: This keyword is recognized by the FORTRAN-77 compiler for
purposes of compatibility with PDP-11 FORTRAN-77/RSX and VAX FORTRAN,
However, keyed, indexed, and shared access to files is not supported
under the RT-11 system and a run-time error diagnostic will be
generated by the OTS.

FORTRAN-77 INPUT/OUTPUT

2.3.10 USEROPEN

USEROPEN provides access to features of the supporting I/0 system not
directly supported by the FORTRAN-77 I/0O system.

USEROPEN is intended for experienced users.

2.4 BACKSPACE AND ENDFILE IMPLICATIONS

This section describes implications of the BACKSPACE and ENDFILE I/0
statements, which are supported only for sequential files.

A BACKSPACE operation cannot be performed on a file that is opened for
append access, because under append access the current record count is
not available to the FORTRAN-77 I/O system; backspacing from record n
is done by rewinding to the start of the file and then performing n-1
successive reads to reach the previous record.

The ENDFILE statement writes an end-file record. Because the concept
of an embedded end-file is unique to FORTRAN, the following convention
has been adopted: An end-file record is a l-byte record that contains
the octal code 32 (CTRL/Z). An end-file record can be written only to
sequentially organized files that are accessed as formatted sequential
or unformatted segmented sequential. End-file records should not be
written in files that are read by programs written in a language other
than FORTRAN.

CHAPTER 3

‘PDP-ll FORTRAN-77/RT=11 OPERATING ENVIRONMENT

This chapter'discusses aspects of the PDP-11 FORTRAN-77/RT-1l compiler
and OTS operating environment. Information is provided on the
following:

® The PDP-1l calling sequence convention

® FORTRAN program sections

® FORTRAN COMMON blocks

® FORTRAN-77 OTS error processing

® Compiler listing-file format

3.1 FORTRAN-77 OBJECT TIME SYSTEM

The FORTRAN-77 Object Time System (OTS) is composed of the following
routines: .

® Math routines, including the FORTRAN-77 library functions and
other arithmetic routines (for example, exponentiation
routines)

® Miscellaneous utility routines (ASSIGN, DATE, ERRSET, and so
forth)

® Routines that handle FORTRAN-77 input/output

® Error-handling routines that process arithmetic errors, I/0
errors, and system errors

® Miscellaneous routines required by the compiled code

The FORTRAN-77 OTS is a collection of many small modules that allows
you to omit unnecessary routines during linking. For example, if a
program performs only sequential formatted I/0, none of the
direct-access I/0 routines is included in the job.

3.2 FORTRAN=-77 CALLING SEQUENCE CONVENTION
The PDP-11 FORTRAN-77/RT-11 calling sequence convention is compatible

with all PDP-11 processor options and provides both reentrant and
nonreentrant forms.

3-1

PDP-11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

3.2.1 The Call Site
The MACRO-11 form of the call is:
; IN INSTRUCTION-SPACE

MOV #LIST,R5 ;ADDRESS OF ARGUMENT LIST TO

;REGISTER 5
JSR PC,SUB ;CALL SUBROUTINE
; IN DATA-SPACE
LIST: .BYTE N,O0 ;NUMBER OF ARGUMENTS
.WORD ADR1 ;FIRST ARGUMENT ADDRESS
-WORD ADRN ;N'TH ARGUMENT ADDRESS

The argument 1list must reside in DATA-SPACE and, except for
subprograms and statement label arguments, all addresses in the list
must also refer to DATA-SPACE. The argument list itself cannot be
modified by the called program.

The byte at address LIST+1 should be considered undefined and not
referenced. This byte is reserved for use as defined by DIGITAL.

The called program is free to refer to the arguments indirectly

through the argument list. This argument-passing mechanism is known
as call-by-reference,

3.2.2 Return

Control is returned to the calling program by restoring (if necessary)
the stack pointer to its value on entry and executing the following:

RTS PC

3.2.3 Return Value Transmission

Function subprograms return a single result in the processor general
registers. The register assignments for returning the different
variable types are:

Type Result
INTEGER*2
LOGICAL*1 RO
LOGICAL*2
INTEGER*4 RO -~ low-order result
LOGICAL*4 Rl -- high-order result
REAL R0 -- high-order result
Rl == low-order result
RO == highest-order result
DOUBLE Rl ==
PRECISION R2 ==
R3 ~-=- lowest-order result

PDP-11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

Type Result
COMPLEX R0 -~ high-order real result
Rl -- low—-order real result
R2 -- high-order imaginary result
R3 -- low-order imaginary result

"3.2.4 Register Usage Conventions

Before making a call, a calling program must save any values in
general-purpose registers RO through R4 that it needs after a return
from a subprogram. After a return, a calling program cannot assume
that the argument list pointer value in register R5 is valid.

Conventions for floating-point registers are similar to those for
general-purpose registers. If a Floating Point Processor (FPll) or
the floating-point microcode option (KEFllA) is present on a system,
the calling program must save and restore any floating-point registers
in use by a calling program. The calling program cannot assume that
the floating-point status bits I/L (integer/long integer) or F/D
(floating/double precision) are restored by the called routine. Note
that a floating point option is not required for execution of
FORTRAN-77 programs which do not generate floating point code. The
production of code which does refer to floating point instructions is
flagged in the FORTRAN-77 listing file.

A subprogram that is called by a FORTRAN-77 program can freely use
processor registers RO-RS, FPP registers FO-F5, and the FPP status
register. When returning from a subroutine (when the RTS PC is
executed), the initial (routine entry) value must be restored to the
contents of the processor hardware stack pointer SP.

3.2.5 Nonreentrant Example

In nonreentrant forms, the argument list can be placed either in line
with the call or out of line in an impure data section. (The latter
is recommended and illustrated here, and is the form produced by the
FORTRAN-77 compiler.) Example 3-~1 illustrates assembly language code
implementing a small FORTRAN-77 FUNCTION subprogram that uses the
nonreentrant form of a call. Note that the nonreentrant form is
shorter and generally faster than the reentrant form because addresses
of simple variables can be assembled into the argument list.

Example 3-1: Call Sequence Conventions: Nonreentrant Example

INTEGER FUNCTION FNC(I,J)
INTEGER FNCl
FNC=FNC1 (I+J,5)+I

RETURN
END
.PSECT
.GLOBL FNC,FNC1
FNC: MOV R5,-(SP) ;SAVE ARG LIST POINTER
MOV @2 (RS5) ,~(SP) ;FORM I+J ON STACK
ADD @4 (R5) ,@SP
MoV SP,LIST+2 ;ADDRESS OF I+J TO

;ARG LIST

(continued on next page)

PDP-11 FORTRAN=-77/RT-11 OPERATING ENVIRONMENT

Example 3=1 (Cont.):

MOV
JSR
ADD
MOV
ADD
RTS

- PSECT
+BYTE
+«WORD
-WORD

LIST:

LITS: -WORD

.END

3.2.6 Reentrant Example

Call Sequence Conventions:

#LIST,R5
PC,FNC1
$#2,5pP
(SP)+,R5
@2 (RS) ,RO
PC

DATA
2'0
0
LITS

5,0

;DELETE TEMPORARY I+J

sRESTORE RS

;ADD I TO FNCl1 RESULT

sRETURN VALUE IN RO

;DATA AREA

; TWO ARGUMENTS

Nonreentrant Example

;DYNAMICALLY FILLED IN
;ADDRESS OF CONSTANT 5

; CONSTANT 5

The PDP-11 FORTRAN-77/RT-11 calling convention has a reentrant form in

which the
stack.
the
uses the list.

;ADDRESS OF NTH ARGUMENT

;ADDRESS OF 1ST ARGUMENT

;NUMBER OF ARGUMENTS

; CALL SUBROUTINE

MOV #$ADRn, - (SP)
MOV $ADR2, - (SP)
MOV $ADR1, - (SP)
MOV $n,~ (SP)
MOV SP,RS5

JSR PC,SUB

ADD $2*n+2,SP

Example 3-2 illustrates assembly language
call forms for the same example shown in Example 3-1,

;DELETE ARGUMENT LIST

code

that

uses

argument list is constructed at run time on the execution
Note that the argument addresses must be pushed backwards on
stack to be correctly arranged in memory for the subroutine that
Basically, the technique consists of:

reentrant

The FORTRAN-77 compiler does not produce reentrant call forms.

Example 3-2:

INTEGER FUNCTION FNC(I,J)

Call Segquence Convention:

INTEGER FNC1l

FNC=FNC1(I+J,5)+I

RETURN

END

.PSECT

.GLOBL FNC,FNC1
FNC: MOV R5,- (SP)

MoV @2 (R5) ,~(SP)

ADD @4 (RS5) ,@sP

MOV SP,R4

MOV #CONS5 ,- (SP)

MOV R4,-(SP)

MOV #21"(5?)

MOV SP,RS

Reentrant Example

;SAVE ARG LIST POINTER

;FORM I+J
;ON STACK

: REMEMBER WHERE

;BUILD ARG LIST ON STACK

;ADDRESS OF TEMPORARY
s ARGUMENT COUNT

;ADDRESS OF LIST TO RS

(continued on next page)

PDP-~11 FORTRAN-77/RT=11 OPERATING ENVIRONMENT

Example 3-2 (Cont.): Call Sequence Convention: Reentrant Example

JSR PC,FNC1 ;CALL FNC1
ADD #10,SP ;DELETE ARG LIST AND TEMP I+J
MOV (SP)+,R5 ;RESTORE ARG LIST POINTER
ADD @2(R5) ,RO ;ADD I TO RESULT OF FNC1
RTS PC sRETURN RESULT IN RO
.PSECT DATA ;DATA AREA
CONS5: -WORD 5,0
.END

3.2.7 Null Arguments

Null arguments are represented in an argument list with an address of
-1 (177777 octal). This address is chosen to ensure that using null
arguments in calling routines not prepared to handle null arguments
will result in an error when the routine is called at execution time.
The errors most likely to occur are illegal memory references and/or
word reference to odd byte addresses.

Note that null arguments are included in the argument count, as
follows:

FORTRAN Statement Resulting Argument List
CALL SUB .BYTE 0,0
CALL SUB{() .BYTE 1,0
.WORD -1
CALL SUB(A,) .BYTE 2,0
.WORD A
+WORD =1
CALL SUB(,B) .BYTE 2,0
- .WORD -1
.WORD B

3.3 PROGRAM SECTIONS

Program sections (PSECTs) are named segments of code and/or data.
Attributes associated with each program section (see Table 3-1) direct
the linker when the linker is combining separately compiled FORTRAN
program units, assembly language modules, and library routines into an
executable memory image.

3,3.1 Compiled-Code PSECT Usage

The compiler uses PSECTs to organize compiled output into the
following six sections:

1. Section $CODEl contains all of the executable code for a
program unit.

2. Section $PDATA contains pure data, such as . constants, that
cannot change during program execution.

PDP-11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

3. Section $IDATA contains impure data, such as argument
that can change during program execution.

4. Section $VARS contains storage allocated Ffor variables

arrays used in a program.

5. Section $TEMPS contains temporary storage allocated
compiler.

6. Section $SAVE contains global storage for entities specified

in a SAVE statement.

The attributes associated with each of these sections are shown

Table 3-1.
Table 3-1
Program Section Attributes
Section
Name Attributes
SCODE1l RW, I, LCL, REL, CON
$PDATA RW, D, LCL, REL, CON
SIDATA RW, D, LCL, REL, CON
$VARS RW, D, LCL, REL, CON
STEMPS RW, D, LCL, REL, CON
$SAVE RW, D, GBL, REL, CON, SAV

NOTE

The RO/RW attributes for the sections
SCODEl and $PDATA are controlled by the
compiler /Z command qualifier (see
Section 1.3.3.1).

Section attributes are as follows:

® RW, RO -- read/write, read only

e I, D -- instructions, data

@ CON, OVR -- concatenated, overlaid

e LCL, GBL -- local within overlay segment, global
segments

e SAV -=- unconditionally place PSECT in root segment

Virtual arrays are allocated into a special control section,
that the linker allocates into the mapped array area of a job.

3-6

PDP-11 FORTRAN-77/RT=-11 OPERATING ENVIRONMENT

3.3.2 FORTRAN COMMON and RT-11 System Common

Storage for a common block is placed into a PSECT of the same name as
that of the common block. PSECTs used for common blocks are given the
attributes RW, D, GBL, REL, OVR, and, for saved named common blocks
and blank common, SAV. (The /X switch must be not set for the blank
common block PSECT to have the SAV attribute; named common block
PSECTS have the SAV attribute under /X.) For example, the statement

COMMON /X/A,B,C
produces the equivalent of the following MACRO-11l code:

.PSECT X,RW,D,GBL,REL,OVR, SAV
Az .BLEKW 2
B: .BLEKW 2
C: .BLKW 2

A blank common uses the section name .$$$$. Therefore, without
setting the /X switch, the statement

COMMON T,U,V
produces the equivalent of:

.PSECT .$$$$.,RW,D,GBL,REL,OVR,SAV
T .BLEKW 2
U: .BLKW 2
V: .BLKW 2

When named PSECTs with the OVR attribute are combined by the linker,
all PSECTs with the same name are allocated to begin at the same
address. The resulting PSECT has the length of the largest of the
combined PSECTs.

An example of common communication between a FORTRAN-77 main program
and an assembly language subroutine is shown in Examples 3-3 and 3-4.
In the example, the variable ISTRNG in blank common is filled with
Hollerith data. This wvariable is copied to OSTRNG (with space
characters removed) in the labeled common DATA, and the actual 1length
is returned in the variable LEN.

Note that one word is allocated for each integer in the assembly
language subroutine; this allocation convention is necessary for
compatibility with FORTRAN storage allocation under the default switch
setting for compilation.

PDP-11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

Example 3-3 shows the FORTRAN main program compiled with the /S:NON
option. The assembly language subroutine COMPRS is shown in Example
3-4. .

Establishing a FORTRAN COMMON Area and Assembly Language
Subroutine CALL

Example 3-3:

LOGICAL*1 ISTRNG(80),0STRNG(80)
COMMON ISTRNG

COMMON /DATA/ LEN, OSTRNG

GET INPUT STRING

READ 1, ISTRNG
FORMAT (80Al)

COMPRESS THE STRING

0o = 00

CALL COMPRS

TYPE OUT THE COMPRESSED STRING

oo

TYPE 2, LEN, (OSTRNG(I),I=1,LEN)
2 FORMAT (1X,I3,6X,80Al1)
END

Example 3-4: Use of FORTRAN COMMON Area by Assembly Language Subroutine

+TITLE COMPRS
.IDENT /01/

COMPRESS THE HOLLERITH STRING IN BLANK COMMON
COPYING THE STRING TO LABELLED COMMON DATA AND
RETURNING THE ACTUAL LENGTH AS WELL,

.PSECT .$$$$.,D,GBL,OVR
I: .BLKB 80. : INPUT BUFFER
.PSECT DATA,D,GBL,OVR
L: .BLKW 1 ; ACTUAL LENGTH
0: .BLKB 80. ; OUTPUT BUFFER
.PSECT
COMPRS: :
MOV #I,R0 ; INPUT POINTER
MOV 4#0,R1 ; OUTPUT POINTER
MOV #80.,R2 ; INPUT LENGTH
CLR L ; OUTPUT LENGTH
13: MOVB (RO) +,R3 ; GET INPUT CHARACTER
CMPB #' ,R3 ; IS THIS CHAR A SPACE?
BEQ 28 ; IGNORE IF SO
MOVB R3, (R1)+ ; OUTPUT THE CHARACTER
INC L ; COUNT THE CHARACTER
2$: DEC R2 ; COUNT DOWN THE INPUT
BGT 1$; LOOP IF MORE DATA
RTS PC
.END

PDP-11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

3.3.3 OTS PSECT Usage

All OTS modules consist of at least two program sections: $$OTSI and
$$0TSD. Section $$0OTSI contains pure-code sequences and section
$$0OTSD contains pure-data information.

The OTS module $OTV declares the following sections that are used as
impure working storage by the OTS:

o Section $$SAOTS contains a general work area.

The handling and conversion routines for formatted records are
contained in the following sections: $$FIOC, $SFIOD, $$FI02, $SFIOI,
$SFIOL, $SFIOZ, $SFIOS, and $$FIOR. Special conventions are used so
that the conversion routines are loaded only if they are required by
FORMAT statements in a source program.

3.4 OTS ERROR PROCESSING

The Object Time System detects certain errors in a program (for
example, I/0, arithmetic, and invalid argument errors) and reports
these errors on the user's terminal. An error-control table within
the OTS then determines what action the system is to take for each
error reported; for example, it may call for the system to terminate
the Jjob. The default action for each FORTRAN-specific error is shown
in Table 3-2 (in Section 3.5.1.3).

Three system subroutines (ERRSNS, ERRTST, and ERRSET) are provided to
enable you to control OTS error processing: that is, to obtain
information on specific errors and/or to specify an action to be taken
when a specific error occurs.

The ERRSNS subroutine provides you with information about the error
that has most recently occurred during program execution. It also
provides detailed information on errors detected by the file system.

The ERRTST subroutine allows you to test for the occurrence of a
specific error during program execution.

The ERRSET subroutine allows you to modify the continuation action the
system is to take when an error is detected by the OTS. In many
cases, the particular continuation action to be taken may be changed
from the one specified in the error-control table (see Table 3-2).

The subroutines ERRSNS, ERRTST, and ERRSET are described in detail in

Appendix D. OTS error codes and the format of the OTS diagnostic
messages are shown in Appendix C.

3.4.1 Recovering From O0TS=Detected Errors

You can use three methods to control recovery from errors detected by
- the OTS:

® ERR= and END= transfers
® The ERRSNS subroutine
@ The ERRSET subroutine

The following three sections discuss these methods.

3-9

PDP-11 FORTRAN-77/RT=11 OPERATING ENVIRONMENT

3.4.1.1 Using ERR= and END= Transfers - By including an ERR=label or
END=label specification in an I/O statement, you can transfer control
to error-processing code or to any other desired point in a program.
If you use an END= or ERR= specification to process an 1/0 error,
execution continues at the statement specified by a 1label. However,
if you do not use an END= or ERR= specification to process an I/O
error, the system by default prints an error message and halts
execution.

For example, suppose the following statement is in your program:
WRITE (8,50 ,ERR=400)

If an error occurs during the write operation specified, control
transfers to the statement at label 400.

When an ERR= transfer occurs, file status and record position become
undefined.

You can use the END=label specification to handle an end-of-file
condition. For example, if an end-of=-file condition is detected while
the statement

READ(12,70,END=550)
is being executed, control transfers to statement 550.

If an end-of-file 1is detected while a READ statement is being
executed, and you did not specify END=label, an error condition
occurs. If you specified ERR=label, control 'is transferred to the
specified statement.

3.4.1.2 Using the ERRSNS Subroutine - You can use the ERRSNS system
subroutine to process errors as they are encountered by a program.
When one of the errors listed in Table 3-2 occurs in a program, you
can obtain the number of the error by calling the ERRSNS subroutine;
then, in most situations, you can provide code to react to this
number.

To determine the number of an error, use the ERRSNS routine as
demonstrated in the following example:

CHARACTER*40 FILN
10 ACCEPT 1, FILN

1 FORMAT (A)
OPEN (UNIT=INF, STATUS='OLD', FILE=FILN, ERR=100)
: (process input file)

100 CALL ERRSNS (IERR)
IF (IERR .EQ. 43) THEN
TYPE *, 'FILE NAME WAS INCORRECT; ENTER NEW FILE NAME'
ELSE IF(IERR .EQ. 29) THEN
TYPE *, 'FILE DOES NOT EXIST; ENTER NEW FILE NAME'
ELSE
TYPE *, 'FAILURE ON INPUT FILE; ERROR=', IERR
ENDIF
STOP
END

PDP~11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

In this example, the OPEN statement contains an ERR=100 specification
that causes a branch to the ERRSNS subroutine if an error occurs
during execution of the OPEN. The ERRSNS subroutine returns an
error-number value in the integer variable IERR. The program then
uses the value of IERR to print a message that explains the nature of
the error and to determine whether the program should continue.

A

3.4.1.3 Using the ERRSET Subroutine - You can alter the default
continuation action to be taken upon OTS detection of a particular
error by using the ERRSET subroutine.

Processing each of the errors detected by the OTS is controlled by six
control bits associated with each error. These bits are preset (see
Table 3-2); however, you may alter some of the initial settings --
and thereby the continuation action to be taken upon the detection of
a particular error =-- by using the ERRSET subroutine.

The six control bits and what they control are as follows:

1. Continuation Bit =-- If the Continuation Bit is not set, the
job encountering the error exits. If this bit is set, the
job continues (if the next two conditions permit
continuation).

2. Count Bit -- If the Count Bit is set, the error encountered
is counted against the job error-count 1limit unless an
ERR=transfer is specified. If the error-count limit is
exceeded, the job exits.

3. Continuation Type Bit =-- The Continuation Type Bit provides
for one of the following two types of action for a particular
error:

a. Return to the routine that reported the error, for
appropriate recovery action, then proceed.

b. Take an ERR= transfer in an I/0 statement. (If the
Continuation Type Bit specifies an ERR= transfer, and
no ERR=label was included in the I/0 statement, the job
exits).

Each of the error-control-bit checks above must be satisfied for the
job to continue.

4, Log Bit -~ If a job continues after an error is encountered
(that 1is, if continuation is permitted by each of the above
three control bits), then the Log Bit is tested. 1If the Log

Bit is set, an error message is produced before the job
continues; if the Log Bit is not set, the Jjob continues
without a message.

If processing any of the first three control bits does not permit
continuation, the job exits and the system prints an error message.

Two additional control bits are used to specify the acceptability of
arguments to the ERRSET subroutine.

5. Return Permitted Bit ~- If the Return Permitted Bit 1is set,
ERRSET may set the Continuation Type Bit to specify a return.

6. ERR= Permitted Bit -- If the ERR= Permitted Bit 1is set,
ERRSET may set the Continuation Type Bit to specify that an
ERR= transfer is to occur.

PDP~11 FORTRAN~-77/RT-11 OPERATING ENVIRONMENT

At least one of these two additional bits must be set in order for the
Continuation Bit to be set.

All four of the possible combinations of these two bits occur in the
however, most errors occur as the following:

OTS;

® I/0 errors that generally permit ERR=
not return continuation

continuation

type but

® Errors that permit return continuation but not ERR= transfer
continuation (even
processing)

if they occur

during I/0

Notable exceptions are the synchronous system-trap errors
recursive I/0 error (40), all of which always result in
job termination.
(59, 61, 63, 64, 68) allow both types of continuation.

10)

and the

The format processing and format

statement

(3 through

conversion errors

The initial setting of all six control bits -- the two permitted bits
as well as the Continuation Bit, the Count Bit, the Continuation Type
Bit, and the Log Bit -- is shown in Table 3-2.
subroutine to change the settings for "CONTINUE?", "COUNT?", "CONTINUE
The ERRSET subroutine is described 1in

TYPE",

Appendix D.

and "LOG?".

Table 3-1
Initial Error Control Bit Settings

You can use

the ERRSET

detail 1in

ERROR CONTINUE? COUNT? CONTINUE LOG? PERMITTED TEXT
NUMBER TYPE ERR=? RETURN?
1 NO NO FATAL YES NO NO INVALID ERROR CALL
2 NO NO FATAL YES NO NO NOT ENOUGH MEMORY FOR OTS TABLES
3 NO NO FATAL YES NO NO ODD ADDRESS TRAP
4 NO NO FATAL YES NO NO SEGMENT FAULT
5 NO NO FATAL YES NO NO T-BIT OR BPT TRAP
6 NO NO FATAL YES NO NO IOT TRAP
7 NO NO FATAL YES NO NO RESERVED INSTRUCTION TRAP...
8 NO NO FATAL YES NO NO NON-FORTRAN ERROR CALL
9 NO NO FATAL YES NO NO TRAP INSTRUCTION TRAP
10 NO NO FATAL YES NO NO PDP-11/40 FIS TRAP
11 NO NO FATAL YES NO NO FPP HARDWARE FAULT
12 NO NO FATAL YES NO NO FPP ILLEGAL OPCODE TRAP
13 NO NO FATAL YES NO NO FPP UNDEFINED VARIABLE TRAP
14 NO NO FATAL YES NO NO FPP MAINTENANCE TRAP
20 YES YES ERR= YES YES NO INVALID LOGICAL UNIT NUMBER
21 YES YES ERR= YES YES NO NO AVAILABLE CHANNELS
22 YES YES ERR= YES YES NO INPUT RECORD TOO LONG
23 YES YES ERR= YES YES NO BACKSPACE ERROR
24 YES YES ERR= YES YES NO END-QF-FILE
25 YES YES ERR= YES YES NO RECORD NUMBER OUTSIDE RANGE
26 YES YES ERR= YES YES NO ACCESS MODE NOT SPECIFIED
27 YES YES ERR= YES YES NO TOO MANY RECORDS IN I/O STATEMENT
28 YES YES ERR= YES YES NO CLOSE ERROR
29 YES YES ERR= YES YES NO NO SUCH FILE
30 YES YES ERR= YES YES NO OPEN FAILURE

(continued on next page)

PDP=-11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

Table 3-1 (Cont.)

Initial Error Control Bit Settings

ERROR CONTINUE? COUNT? CONTINUE LOG? PERMITTED TEXT

NUMBER TYPE ERR=? RETURN?
31 YES YES ERR= YES YES NO MIXED FILE ACCESS MODES
32 YES YES ERR= YES YES NO DUPLICATE FILE SPECIFICATIONS
33 YES YES ERR= YES YES YES ENDFILE ERROR
34 YES YES ERR= YES YES NO UNIT ALREADY OPEN
35 YES YES ERR= YES YES NO RANDOM I/O TO NON-FILE...
36 YES YES ERR= YES YES NO ATTEMPT TO ACCESS NON-EXIST...
37 YES YES ERR= YES YES YES INCONSISTENT RECORD LENGTH
38 YES YES ERR= YES YES NO ERROR DURING WRITE
39 YES YES ERR= YES YES NO ERROR DURING READ
40 NO NO FATAL YES NO NO RECURSIVE I/0 OPERATION
41 YES YES ERR= YES YES NO NO BUFFER ROOM
42 YES YES ERR= YES YES NO NO SUCH DEVICE
43 YES YES RETURN YES NO YES FILE NAME SPECIFICATION ERROR
44 YES YES ERR= YES YES NO INCONSISTENT RECORD TYPE
45 YES YES ERR= YES YES NO KEYWORD VALUE ERROR IN OPEN,..
46 YES YES ERR= YES YES NO INCONSISTENT OPEN/CLOSE...
47 YES YES ERR= YES YES NO WRITE TO READONLY FILE
48 YES YES ERR= YES YES NO UNSUPPORTED I/0 OPERATION
49 YES YES ERR= YES YES NO REWIND ERROR
50 YES YES ERR= YES YES NO HARD I/O ERROR
51 YES YES ERR= YES YES NO LIST DIRECTED I/O SYNTAX ERR..
52 YES YES ERR= NO YES NO INFINITE FORMAT LOOP
53 YES YES ERR= YES YES NO FORMAT/VARIABLE-TYPE MISMATCH
54 YES YES ERR= YES YES NO SYNTAX ERROR IN FORMAT
55 YES YES ERR= YES YES NO OUTPUT CONVERSION ERROR
56 YES YES ERR= YES YES NO INPUT CONVERSION ERROR
57 YES YES ERR= YES YES NO FORMAT TOO BIG FOR 'FMTBUF'
58 YES YES ERR= YES YES NO OUTPUT STATEMENT OVERFLOWS...
59 YES YES ERR= YES YES NO RECORD TOO SMALL FOR I/0 LIST
70 YES YES RETURN YES NO YES INTEGER OVERFLOW
71 YES YES RETURN YES NO YES INTEGER ZERO DIVIDE
72 YES YES RETURN YES NO YES FLOATING OVERFLOW
73 YES YES RETURN YES NO YES FLOATING ZERO DIVIDE
74 YES NO RETURN NO NO YES FLOATING UNDERFLOW
75 YES YES RETURN YES NO YES FPP FLOATING TO INTEGER...
80 YES YES RETURN YES NO YES WRONG NUMBER OF ARGUMENTS
8l YES YES RETURN YES NO YES INVALID ARGUMENT
82 YES YES RETURN YES NO YES UNDEFINED EXPONENTIATION
83 YES YES RETURN YES NO YES LOGARITHM OF ZERO OR NEGATIVE...
84 YES YES RETURN YES NO YES SQUARE ROOT OF NEGATIVE VALUE
86 YES YES RETURN YES NO YES INVALID ERROR NUMBER

(continued on next page)

PDP-11 FORTRAN=-77/RT~11 OPERATING ENVIRONMENT

Table 3-1 (Cont.)

Initial Error Control Bit Settings

ERROR CONTINUE? COUNT? CONTINUE LOG? PERMITTED TEXT

NUMBER TYPE ERR=? RETURN?
91 YES NO RETURN NO NO YES COMPUTED GOTO OUT OF RANGE
92 YES YES RETURN YES NO YES ASSIGNED LABEL NOT IN LIST
93 YES YES RETURN YES NO YES ADJUSTABLE ARRAY DIMENSION...
94 YES YES RETURN YES NO YES ARRAY REFERENCE OUTSIDE ARRAY
95 NO NO FATAL YES NO NO INCOMPATIBLE FORTRAN OBJECT...
96 NO NO FATAL YES NO NO MISSING FORMAT CONVERSION...
101 NO NO FATAL YES NO NO VIRTUAL ARRAY INITIALIZATION...
102 YES YES YES NO YES VIRTUAL ARRAY MAPPING ERROR

RETURN

3.5 FORTRAN~77 COMPILER LISTING FORMAT

There are three optional sections that you may include in a compiler
listing file: the source program, the generated machine code, and the
storage map. The source program and storage map are included in a
list file by default. The generated machine language code is excluded
by default. A description of each of these sections is given below.

3.5.1 Source Listing

The source code of a compiled program is written into the source
listing section of the compiler listing file in the same format as
that in which the source code appears in the input file, except that
the compiler adds internal sequence numbers to facilitate ease of
reference. Comment lines and uncompiled debug statements, however, do
not receive internal sequence numbers.

If the text editor you use generates line numbers, these numbers also
appear in the source listing. They appear in the left margin, with
the compiler-generated sequence numbers shifted to the right.
Diagnostic messages always refer to the compiler-generated sequence
numbers.,

3.5.2 Generated Code Listing

The generated code listing section of the compiler 1listing file
contains symbolic representations of object code generated by the
compiler. These representations are similar to a MACRO-1l1 source
listing, but they are not in a form that can be directly assembled by
MACRO-11.

3-14

PDP-11 FORTRAN~77/RT-11 OPERATING ENVIRONMENT

Labels that correspond to FORTRAN source labels are printed with an
initial dot. For example, the source label "300" would appear in a
generated code listing as ".300". Not all labels appearing in a
source program necessarily appear in the corresponding generated code
listing. 1In particular, labels not referenced in a source program are
ignored by the compiler and are not used in resulting generated code.

References to variables and arrays defined in a source program are
shown in the corresponding generated code listing by their FORTRAN
names.

PDP-11 general registers 0 through 5 are represented in a generated
code listing by RO through R5, general register 6 is represented by SP
(for Stack Pointer), and general register 7 is represented by PC (for
Program Counter); the floating-point registers are represented by F0
through FS. These representations are the conventional PDP-11
register names and are used despite the fact that you can alsoc use
these names as FORTRAN variable names.

In some cases, the compiler generates labels for its own use. These
labels are shown in a generated code listing as "L$xxxx", where "xxxx"
is a unique symbol for each label within a program unit.

Addresses for other than 1labels, registers, and variables are
represented by the name of the program section plus the offset within
that section. Program section names used by the compiler are
summarized in Section 3.3.1. Changes from one program section to
another are shown as .PSECT lines. The left column of a listing shows
the offset within the current section to which the remainder of the
line applies.

All numbers are in octal radix.

The first 1line of a generated code 1listing contains a .TITLE
directive; for SUBROUTINE and FUNCTION subprograms, the title is the
same as the subprogram name. If a PROGRAM statement is used in a main
program, the name in that statement is used as the title; otherwise,
the title .MAIN. 1is used. If a name 1is included in a BLOCKDATA
statement, this name is used for the title; otherwise, the title
.DATA. 1is used.

The second line of a generated code 1listing contains an .IDENT
directive in which the date of the compilation is represented.

The lines that follow the second line describe the contents of storage
initialized for FORMAT statements, DATA statements, constants,
subprogram call argument lists, and so forth.

Machine instructions are represented in a generated code listing with
MACRO-11 mnemonics and syntax.

3.5.3 Storage Map Listing

The storage map contains summaries of the following:
® Program sections
® Entry points

® Variables

3-15

PDP~11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

® Arrays
® Virtual arrays
® Labels
® Functions and subroutines referenced
® Total memory allocated
Figure 3-1 illustrates a typical storage map listing.

In each of the following descriptions, when a size is given, this size
is printed as octal bytes followed by decimal words (except for
virtual arrays). For example:

000006 3

A data address is given as a program section number followed by the
octal offset from the beginning of that program section.

For example, in the data address that follows, 1 is the program
section number and 000626 is the offset (in octal) from the beginning
of program section 1:

1-000626

A dummy argument is represented with an F instead of a program section
number, and the offset is the offset from the argument pointer (R5).

The symbol * following an address field specifies that the program
section number (or F), plus the offset, points to the address of the
data rather than to the data itself.

The PROGRAM SECTIONS summary in a storage map contains
information -~ one 1line per program section -- about each of the
program sections (PSECTs) generated by the compiler. Each 1line
contains the number of the PSECT being summarized (used by most of the
other summaries), the name of the section, the size of the section,
and the attributes of the section. The size is shown twice: first,
as the number of bytes in octal radix; and, second, as the number of
words in decimal radix. See Section 3.3.1 for definitions of the
section attributes.,

The ENTRY POINTS summary contains a list of all declared entry points
and their addresses. If the routine containing an entry point being
listed is a function, the declared data type of this entry point is
also included.

The VARIABLES summary contains a 1list of each simple variable,
together with its data type and address.

The ARRAYS summary is the same as the VARIABLES summary, except that
it supplies total array size information and detailed dimension
information. If the array is an adjustable array or assumed-size
array, the size of the array is specified as **, and each
adjustable-dimension bound or assumed-size bound is specified as *.

The VIRTUAL ARRAYS summary is similar to the array summary. The
address of a virtual array is shown as an offset, in 64 byte units,
from the start of virtual array storage. The size is specified as the
number of array elements, not the number of bytes.

3-16

e

PDP-11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

#pP-11 FORTRAN-VT V5.0 08107108 S-Mar-g4 Page 3
Ik sDEMD .FOR AARSCIIO9/F D128/ LIS/ NNGARIL3G6/5RLU
FROGRAM SECTIUNS
MHumber Mame Size Attrioutes
1 $CODEL 432 kW, I,CON,LCL
2 $POATA 1 RW,0,C0N,LCL
4 SVARS 634 RW,0,CON,LCL
8 L3866, 000260 es RW.D,0VR,GEBL, SAY
9 ISTUEEF (000316 103 KW, D0,0UR,GEL
10 FLARS 000007 4 RW,D,0VKR,GRL
VARIABLES
Name Ivpe Address Name IType Address Name Type Address
A Ck3 8-000000 ILARGE IXx4 H-000052 ISDONE Lkl 10-0000006
ISMALL I#2 9-000000 ISOK LA2 10-000004 ISOVER Lix4 10-000000
u RA8. 4=-000000 X Rx4 2-000130 2z R4 5-0002%54
ARRAYTS
Name Type Address Size fHimernsions
B Ck8 8-00001¢ 000120 40 (1G22
IARRAY Ik2 9-000002 000050 20 (2,100
IBRYTE Lkl 9-000176 000120 40 {80)
JARRAY 144 9-000056 000130 40 (2,109
Y kA8 4-000010 001700 480 8,15)
W R48 4-001710 000630 200 {590)
Y Rx4 g§-000134 000120 40 (207
LARELS
Label Address Label thddress Label Address
10 * k

FUNCTIONS AND SUBKROUTINES REFERENCED

EXIT $5 1IN

Total Space Allocated = 003463 9z

tJ
tJ

Workfile reads: 3

Workfile writes: S

Size of workfile required: 24 blochks
Size of core pool: 14 blocks

Figure 3-~1 Storage Map Example

3-17

PDP-11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

The LABELS summary contains a 1list of all user-defined statement
labels. If a 1label 1is marked with an apostrophe, the label is a
format lahel. If the label address field contains **, the label is
neither referenced nor used by the compiled code.

The FUNCTIONS AND SUBROUTINES REFERENCED summary contains a list of
all external-routine references made by the source program.

If the text NO FPP INSTRUCTIONS GENERATED appears in the storage map,
the FORTRAN-77 object module may not require the Floating Point
Processor (FPP) for execution. See Section 5.4.1 for further
information.

At the end of the above summaries, the total amount of memory
allocated by the compilation for all program sections is printed as
follows:

TOTAL SPACE ALLOCATED = 000502 161

If any virtual arrays are declared in the program, the total size in
64-byte units is given as follows:

TOTAL VIRTUAL ARRAY STORAGE = 632

If a summary section has no entries in a particular compilation, the
summary headings are not printed.

3.6 VIRTUAL ARRAY OPTIONS

The VIRTUAL statement declares arrays that are assigned space outside
a program's address space and that are manipulated through the VIRTUAL
array facility of PDP-11 FORTRAN-~77/RT-11. The VIRTUAL array facility
allows arrays to be stored in large data areas that are accessed at
high speed.

NOTE

VIRTUAL arrays are supported only on the
RT-11 Extended Memory Monitor (XM). See
PDP-11 FORTRAN-77/RT-11 Installation
Guide and Release Notes for information
regarding systems support of VIRTUAL
arrays.

3.6.1 Limits on VIRTUAL Elements

VIRTUAL arrays are limited by the number of elements, not by the
available storage. The maximum number of elements in a VIRTUAL array
is 65535; there is no limit to the total size of the VIRTUAL arrays a
program can access. The 1limit on elements is 65535 because PDP-11
FORTRAN-77/RT-11 requires that the number of elements in an array not
exceed the size of an unsigned integer*2, which is 2**16-1.

The largest LOGICAL*1 VIRTUAL array is 32K words, or 65535 bytes; and
the largest REAL*8 VIRTUAL array is 256K words, or 624280 bytes.

PDP-11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

3.6.1.1 VIRTUAL and DIMENSION Statements - The syntax of the VIRTUAL
statement 1is 1identical to that of the DIMENSION statement. However,
there is a significant semantic difference between the two because of
the limitations imposed on the DIMENSION statement. Local arrays
declared by the DIMENSION statement are limited by the maximum memory
available to the program. Section 3.7.2 demonstrates how to use the
VIRTUAL feature in an existing program.

3.6.1.2 Memory Allocation for VIRTUAL Arrays - The linker allocates a
mapped array area below a job's header; this mapped array area is
large enough to contain all the VIRTUAL arrays declared in a program.

A window of 4K words initially maps the first 4K words of the VIRTUAL
array region. When a VIRTUAL arravy element lies outside the window, a
Memory Management directive causes a remap operation to allow access.

3.6.1.3 Execution Time of Virtual Arrays - Using VIRTUAL arrays
increases the execution time of a job because VIRTUAL array elements
must be mapped to memory addresses. In general, the 1larger the
VIRTUAL array, the greater the number of times mapping occurs;
therefore, larger arrays generally take longer to execute than do
smaller arrays.

The following example illustrates how using VIRTUAL arrays increases
execution time:

PARAMETER N=3500
VIRTUAL A(N), B(N), C(N)
po 10 1= I,N
A(I)=1234.
B(I)=5678
10 C(I)=A(I)/B(I)
STOP
END

As declared in the program above, the VIRTUAL arrays A, B, and C are
each too large (7000 words) to fit within a 4K-word window of memory.
Each time an element outside the 4K-word window is accessed, remapping
occurs. Thus, executing the DO loop requires 17,500 (3500%*5)
mappings. If only array C were VIRTUAL, however, then only two
mappings would be needed to execute the loop.

The operations in the program above can require as long as 1l4.1
seconds for execution on a PDP-11/60. By contrast, if arrays A, B,
and C were declared with a DIMENSION statement in directly addressable

memory, the same operations could require as little as 0.12 seconds in
the same operating environment.

You can reduce the mapping of VIRTUAL arrays by breaking large arrays
into smaller ones and/or by keeping consecutive accesses of array
elements within the current 4K-word window.

3.6.2 Converting a Program to VIRTUAL Array Usage

You can convert an existing program to use VIRTUAL arrays simply by
declaring the array with VIRTUAL statements instead of DIMENSION
statements. In doing this, however, be sure to observe the usage
restrictions for VIRTUAL arrays described in the PDP-1l FORTRAN-77 |
Language Reference Manual.

PDP-11 FORTRAN=-77/RT-11 OPERATING ENVIRONMENT

The following example illustrates general program conygersion.

1.

2.

Identify the non-VIRTUAL arrays that are to he converted to
VIRTUAL arrays.

Locate the DIMENSION and the type declaration statements in
which these arrays are declared. Replace DIMENSION
statements with equivalent VIRTUAL statements. Replace
array—-declarative type declaration statements with VIRTUAL
statements to define the array dimension, and remove the
dimensioning information from the type declaration
statements.

Compile the program and observe all compilation errors.
These errors occur where the syntax restrictions outlined in
the PDP-11 FORTRAN-77 Lanquage Reference Manual have been
violated. In some cases, to use VIRTUAL arrays effectively
you may need to reformulate the data structures.

Check the code to ensure that VIRTUAL array parameters are
passed correctly to subprograms.

a. If the argument list of a subprogram call includes an
unsubscripted VIRTUAL array name, the argument list of the
SUBROUTINE or FUNCTION statement must have an
unsubscripted VIRTUAL array name in 1its corresponding
dummy argument. This corresponding VIRTUAL array name
establishes access to the VIRTUAL array for the
subprogram. The declaration of the VIRTUAL array in the
subprogram must be dimensionally compatible with the
VIRTUAL declaration in the calling program. All changes
to the VIRTUAL array that occurred during subprogram
execution are retained when control returns to the calling
program.

When you pass entire arrays as subprogram parameters, be
certain that the matching arguments are defined as both
VIRTUAL or both non-VIRTUAL. Mismatches of array types
are not detectable at either compilation or execution
time, and the results are undefined.

b. If the argument list of a subprogram reference includes a
reference to a VIRTUAL array element, the matching formal
parameter in the SUBROUTINE or FUNCTION statement must be
a non-VIRTUAL variable. Value assignments to the formal
parameter occurring within the subprogram do not alter the
stored value of the VIRTUAL array element in the calling
program. To alter the wvalue of that element, the calling
program must include a separate assignment statement that
references the VIRTUAL array element directly.

The process of changing non-VIRTUAL arrays to VIRTUAL arrays is
demonstrated below.

PDP-11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

The following program contains two arrays, A and B.

DIMENSION A(1000,20)
INTEGER*2 B(1000)

DATA B/1000*0/

CALL ABC(A,B,1000,20)

WRITE (2,*) (A(I,1),I=1,1000)
END

SUBROUTINE ABC (X,Y,N,M)
DIMENSION X (N,M)
INTEGER*2 Y (N)
Do 10, I=1,N

10 X(I,1l)=Y(I)
RETURN
END

Array A is declared in'a DIMENSION statement and is of the default
data type. Therefore, substituting the keyword VIRTUAL for the
keyword DIMENSION is sufficient for its conversion.

Note, however, that array B and its dimensions are declared in a type
declaration statement (in the second line of the program).

To convert B into a VIRTUAL array, its declarator must be moved to a
VIRTUAL statement; also, the variable B must remain in the type
declaration statement, but without a dimension specification.

A and B are both passed to subroutine ABC as arrays, rather than array
elements. Therefore, the associated subroutine parameters must also
be converted to VIRTUAL arrays.

The following listing shows the program after the conversion is
completed.

VIRTUAL A(1000,20), B(1000)
INTEGER*2 B
DO 5 I=1,1000

5 B(I) =0
CALL ABC(A,B,1000,20)
WRITE(2,*) (A(I,1),I=1,1000)
END

SUBROUTINE ABC(X,Y,N,M)
VIRTUAL Y(N), X(N,M)
INTEGER*2 Y
DO 10, I=1,N

10 X(I,1)=¥(I)
RETURN
END

PDP-11 FORTRAN-77/RT-11 OPERATING ENVIRONMENT

3.6.3 Virtual Arrays in the RT-1l1l Environment

If you want to use VIRTUAL arrays in a program under the RT-11
operating system, you must Dbe running the RT11XM monitor. This is
because the virtual array 1indexing code in the OTS employs the
extended monitor's Memory Management Directives.

When linking a program that uses VIRTUAL arrays, you must include the
distributed module VIRTXM.OBJ in the LINK command line. This module
allocates extra queue elements in your job and sets the virtual bit in
RT-11's Job Status Word. If VIRTXM.OBJ is not present on your system
device, you should locate it on the FORTRAN-77/RT-11 distribution
volume and make a copy of it on SY:, for use when you perform the LINK
operation.

In addition, because programs that use virtual arrays are 1linked as
virtual Jjobs, you must use the 1linker's /V switch or the LINK
command’s /XM switch on the command line. An example follows:

LINK/XM MYPROG,MYSUBS,SY:VIRTXM,SY:F770TS

This command links user-written routines in MYPROG.OBJ and MYSUBS.OBJ
with the distributed module VIRTXM.OBJ and the FORTRAN~-77 Object Time
System Library. The distributed modules are assumed to be stored on
the system device SY:.

When you RUN a program that uses VIRTUAL arrays, you must be aware of
the physical memory requirement you impose, based on the dimensions of
your VIRTUAL statements. Sufficient extended memory must be available
or an error message will be printed. It might be necessary to ABORT
and UNLOAD foreground or system jobs that are not currently being used
to free required space.

If you are using the VM: virtual memory device, you must make sure
that it is not occupying all of extended memory. You can use the
SET VM BASE=nnnn command to alter the amount of extended memory that
is governed by the VM handler. Or you can disable VM: entirely by
typing UNLOAD VM and REMOVE VM. See the RT-11 System User's Guide for
more information on this SET command and the VM handler in general.

Note that users of Professional 300 series computers might find it
necessary to run large virtual jobs by using the 'R' command. This
requires that the job's SAV file be placed on the system device SY:.

See section 1.4.7 in this manual for additional information about how
to link programs that use VIRTUAL arrays.

CHAPTER 4

PDP-11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

This chapter discusses several of the fundamental design and
implementation concepts of PDP-~11 FORTRAN-77/RT-11 that are different
from those of other FORTRAN systems, or that are likely to be new to
many FORTRAN programmers.

4.1 INTRINSIC FUNCTIONS

As it processes a program unit, the compiler determines (without any
information about other program units that may be added later) whether
a function referenced in the program unit is an intrinsic function
(processor-defined) or a user-defined function. The compiler invokes
an intrinsic function with a symbolic name, called an internal name,
that is different from any name the user can define. For example, the
intrinsic real-valued sine function is invoked by the compiler with
the internal name $SIN.

In general, an internal name is a FORTRAN name with a dollar sign
prefixed. Where the FORTRAN name is six characters 1long, a
5-character contraction is combined with the dollar sign. A complete
list of the intrinsic names and their corresponding internal names
appears in Table 4-1.

Using the IMPLICIT statement to change the default data type rules has
no effect on the data type of intrinsic functions.

4.1.1 Using EXTERNAL and INTRINSIC Statements

The EXTERNAL statement identifies symbolic names as user-supplied
functions and subroutines. The INTRINSIC statement identifies
symbolic names as system-supplied functions or subroutines. For
example, the statement

EXTERNAL INVERT
identifies a subroutine named INVERT as user-supplied, and
INTRINSIC ABS
identifies a function named ABS as system-supplied.
Once a symbolic name has been identified in an EXTERNAL statement, it

is no 1longer available in the same program unit for use in an
INTRINSIC statement.

PDP-11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

4.2.1 Representation and Relationship of INTEGER*2 and INTEGER*4
Values

INTEGER*2 values are stored as two's complemen:t binary numbers in one
word of storage. INTEGER*4 values are represented in two's complement
binary form in two words of storage: the first word (lower address)
-contains the low-order part of the value, and the second word (higher
address) contains the high-order part of the value (including sign).

An INTEGER*2 wvalue 1is, then, a subset of an INTEGER*4 value.
Therefore, the address of an INTEGER*4 value within the range -32768
to +32767 can be treated as the address of an INTEGER*2 value; and
conversion from INTEGER*4 to INTEGER*2 (without overflow checking)
consists simply of ignoring the high-order word of the INTEGER*4
value. (In certain situations where you can determine at compile time
that the results will not be affected, you can generate INTEGER*2 code
to perform INTEGER*4 operations.)

Table 4-1
Generic and Intrinsic Functions

Number of Generic Specific Type of Type of

Functions Arguments Name Namel Argument Result
Square Root(2) 1 SQRT SQRT Real Real
DSQRT Double Double
a(l/2) CSQRT Complex Complex
Natural Logarithm(3) 1 LOG ALOG Real Real
DLOG Double Double
log(e)a CLOG Complex Complex
Common Logarithm(3) 1 LOG10 ALOG10 Real Real
DLOG10 Double Double
log(10)a
Exponential 1 EXP EXP Real Real
DEXP Double Double
e(a) CEXP Complex Complex
Sine(4) 1 SIN SIN Real Real
DSIN Double Double
sin a CSIN Complex Complex
Cosine(4) 1 cos cos Real Real
DCOS Double Double
¢cos a CCos Complex Complex
Tangent(4) 1 TAN TAN Real Real
DTAN Double Double v
tan a
Arc Sine(5,6) 1 ASIN ASIN Real Real
DASIN Double Double
arc sin a
Arc Cosine(5,6) 1 ACOS ACOS Real Real
. DACOS Double Double
arc cos a

(continued on next page)

PDP-11 FORTRAN-77/RT~-11 IMPLEMENTATION CONCEPTS

Table 4-1 (Cont.)
Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Namel Argument Result
Arc Tangent(6) 1 ATAN ATAN Real Real
DATAN Double Double
arc tan a
Arc Tangent(6,7) 2 ATAN2 ATAN2 Real Real
DATAN2 Double Double
arc tan a(l)/a(2)
Hyperbolic Sine 1 SINH SINH Real Real
DSINH Double Double
sinh a
Hyperbolic Cosine 1 COSH COSH Real Real
DCOSH Double Double
Cosh a
Hyperbolic Tangent 1 TANH TANH Real Real
DTANH Double Double
Tanh a
Absolute value(8) 1 ABS ABS Real Real
DABS Double Double
[a] CABS Complex Real
IIABS Integer*2 Integer*2
JIABS Integer*4 Integer*4
IABS IIABS Integer*2 Integer*2
JIABS Integer*4 Integer*4
Truncation(9) 1 INT IINT Real Integer*2
JINT Real Integer*4
[al] IIDINT Double Integer*2
JIDINT Double Integer*4
IDINT IIDINT Double Integer*2
JIDINT Double Integer*4
AINT AINT Real Real
DINT Double Double
Nearest Integer(9) 1 NINT ININT Real Integer*2
JNINT Real Integer*4
[a+.5*sign(a)] IIDNNT Double Integer*2
: JIDNNT Double Integer*4
IDNINT IIDNNT Double Integer*2
JIDNNT Double Integer*4
ANINT ANINT Real Real
DNINT Double Double

(continued on next page)

4-3

PDP~11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

Table 4-1 (Cont.)
Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Namel Argument Result
Fix (10) 1 IFIX IIFIX Real Integer*2
(real-to~integer conversion) JIFXI Real Integer*4
Float(10) 1 FLOAT FLOATI Integer*2 Real
(integer-to~real conversion) FLOATJ Integer*4 Real
Double Precision Float(10) 1 DFLOAT DFLOTI Integer*2 Double
(integer-to-double conversion) DFLOTJ Integer*4 Double
Conversion to Single 1 SNGL - Real Real
Precision(10) SNGL Double Real

FLOATI Integer*2 Real
FLOATJ Integer*4 Real

Conversion to 1 DBLE DBLE Real Double
Double Precision(10) - Double Double
- Complex Double

DFLOTI Integer*2 Double
DFLOTJ Integer*4 Double

Real Part of Complex or 1 REAL REAL Complex Real
Conversion to Single FLOATI Integer*2 Real
Precision(10) FLOATJ Integer*4 Real
SNGL Real Real
SNGL Double Real
Imaginary Part of Complex 1 - AIMAG Complex Real
Conversion to Complex 1,2 CMPLX - Integer*2 Complex
or 1,2 - Integer*4 Complex
Complex from Two 1,2 - Real Complex
Arguments(11l) 1,2 CMPLX Real Complex
1,2 - Double Complex
1 - Complex Complex
Complex Conjugate 1 - CONJG Complex Complex
(if a=(X,Y)
CONJG (a)=(X,Y¥)
Double Product of Reals 2 - DPROD Real Double
a(l)*a(2)
Maximum n MAX AMAX1 Real Real
DMAX1 Double Double
max(a(l),a(2),...a(n)) IMAXO Integer*2 Integer*2
(returns the maximum value JMAXO Integer*4 Integer*4
from among the argument
list; there must be at least MAXO0 IMAXO Integer*2 Integer*2
two arguments) JMAX0 Integer*4 Integer*4d
MAX1 IMAX1 Real Integer*2
JMAXL Real Integer*4
AMAX0 AIMAXO Integer*2 Real

AJMAXO Integer*4 Real

(continued on next page)

PDP~11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

Table 4-1 (Cont.)
Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Namel Argument Result
Minimum n MIN AMIN1 Real Real
DMIN1 Double Double
min(a{(l),a(2),..a(n)) IMINO Integer*2 Integer*2
(returns the minimum value JMINO Integer*4 Integer*4
among the argument list;
there must be at least two MINO IMINO Integer*2 Integer*2
arguments) JMINO Integer*4 Integer*4
MIN1 IMIN1 Real Integer*2
JMINL Real Integer*4
AMINO AIMINO Integer*2 Real
AJMINO Integer*4 Real
Positive Difference 2 DIM DIM Real Real
DDIM Double Double
a(l)-(min(a(l),a(2))) IIDIM Integer*2 Integer*2
(returns the first argument JIDIM Integer*4 Integer*4
minus the minimum of the
two arguments) IDIM IIDIM Integer*2 Integer*2
JIDIM Integer*4 Integer*4
Remainder 2 MOD AMOD Real Real
DMOD Double Double
a(l)-a(2)*({a(l)/a(2)] IMOD Integer*2 Integer*2
(returns the remainder : JMOD Inetger*4 Integer*4
when the first argument
is divided by the second)
Transfer of Sign 2 SIGN SIGN Real Real
DSIGN Double Double
a(l) *Sign a(2) IISIGN Integer*2 Integer*2
JISIGN Integer*4 Integer*4
ISIGN IISIGN Integer*2 Integer*2
JISIGN Integer*4 Integer*4
Bitwise AND 2 IAND IIAND Integer*2 Integer*2
(performs a logical AND on JIAND Integer*4 Integer*4
corresponding bits)
Bitwise OR 2 IOR IIOR Integer*2 Integer*2
(performs an inclusive OR on JIOR Integer*4 Integer*4
corresponding bits)
Bitwise Exclusive OR 2 IEOR IIEOR Integer*2 Integer*2
(performs an exclusive OR on JIEOR Integer*4 Integer*4
corresponding bits)
Bitwise Complement 1 NOT INOT Integer*2 Integer*2
(complements each bit) JINOT Integer*4 Integer*4

(continued on next page)

PDP-11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

Table 4-1 (Cont.)
Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Namel Argument Result

Bitwise Shift ’ 2 ISHFT IISHFT Integer*2 1Integer*2
JISHFT Integer*4 Integer*4

(a(l) logically shifted left
a(2) bits)

Random Number (12) 1 - RAN Integer*4 Real
(returns the next number

from a sequence of pseudo-

random numbers of uniform

distribution over the range 2 - RAN Integer*2 Real
0 to 1) -
Length 1 - LEN Character Integer*2

(returns length of the
character expression)

Index (C(1),C(2)) 2 - INDEX Character Integer*2

{returns the position of the
substring ¢(2) in the character
expression c(l))

ASCII Value 1 - ICHAR Character Integer*2

(returns the ASCII value of
the argument; the argument

must be a character expres-
sion that has a length of 1)

Character relationals 2 - LLT Character Logical*2
(ASCII collating sequence) 2 - LLE Character Logical*2
2 - LGT Character Logical*2
2 - LGE Character Logical*2

1. See Section 4.2.4 for definitions of "I" and "J" forms.

2. The argument of SQRT and DSQRT must be greater than or equal to 0. The
result of CSQRT is the principal value with the real part greater than or
equal to 0. When the real part is 0, the result is the principal value with
the imaginary part greater than or equal to 0.

3. The argument of ALOG, DLOG, ALOGl0, and DLOGl0 must be greater than 0. The
argument of CLOG must not be (0.,0.).

4. The argument of SIN, DSIN, COS, DCOS, TAN, and DTAN must be in radians. The
argument is treated modulo 2*pi.

5. The absolute value of the argument of ASIN, DASIN, ACOS, and DACOS must be
less than or equal to 1.

6. The result of ASIN, DASIN, ACOS, DACOS, ATAN, DATAN, ATAN2, and DATAN2 is in
radians.

7. The result of ATAN2 and DATAN2 is 0 or positive when a(2) is 1less than or

equal to 0. The result is undefined if both arguments are 0.

PDP-11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

8, The absolute value of a complex number, (X,Y), is the real value:
(X(2)+Y(2)) (1/2)

9., [x] is defined as the largest integer whose magnitude does not exceed the
magnitude of x and whose sign is the same as that of x. For example [5.7]
equals 5. and [-5.7] equals -5.

10. Functions that cause conversion of one data type to another type provide the
same effect as the implied conversion in assignment statements. The function
SNGL with a real argument and the function DBLE with a double precision
argument return the value of the argument without conversion.

11. When CMPLX has only one argument, this argument is converted into the real
part of a complex value, and zero is assigned to the imaginary part. When
CMPLX has two arguments, the first arqument is converted to the real part of
a complex value, the second to the imaginary part.

12. The argument for this function must be an integer variable or integer array
element. The argument should initially be set to 0. The RAN function stores
a value in the 'argument that it later uses to calculate the next random
number. Resetting the argument to 0 regenerates the sequence. Alternate
starting values generate different random-number sequences.

4.1.2 Generic Function References

A generic function is similar to an intrinsic function, but instead of
being a single function it is a set of similar functions called
specific functions. The specific functions in a generic set differ
from each other only in that each function manipulates data of one
specific type. For example, SIN() is a generic function that includes
the specific functions SIN, DSIN, and CSIN, where SIN manipulates real
data, DSIN double-precision data, and CSIN complex data. The data
type of the argument in a generic reference determines which specific
function is actually invoked. For example, SIN(X) invokes SIN if X is
real and DSIN if X is double precision. The compiler makes a separate
determination of the specific function to be referenced each time it
encounters the same generic reference.

Those intrinsic functions that can be referenced by generic references
are listed in Table 4-1 under the heading "Generic Name." Many generic
function names are also intrinsic function names. However, in a few
cases (for example, the generic function name MIN), the generic
function name is not an intrinsic function name.

4.2 INTEGER*2 AND INTEGER*4

PDP-11 FORTRAN-77/RT-11 provides two integer data types: INTEGER*4 ,
for purposes of high precision; and INTEGER*2 , for purposes of
efficiency. INTEGER*4 operations are performed to 32 bits of
significance; however, because these operations require more
instructions and storage than INTEGER*2 operations, they are less
efficient in terms of both time and memory.

To encourage efficiency, the FORTRAN-77 compiler assumes all integer
variables to be of INTEGER*2 types unless you explicitly declare them
to be INTEGER*4 within a program, or unless you set the /T compiler
switch (see Section 1.3.3.1).

When in INTEGER*4 mode, the compiler treats all integer (and logical)
variables as INTEGER*4 (and LOGICAL*4) types unless you explicitly
declare them otherwise within a program.

4-7

PDP-11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

The FORTRAN rules state that corresponding actual and dummy arguments
must agree in type. In the following example, however, if the
compiler supplies an INTEGER*2 constant as the actual argument, SUB
executes correctly even if its dummy argument is of INTEGER*4 data

type:
CALL SUB(2)

4.2.2 Integer Constant Typing

In general, typing integer constants as either INTEGER*2 or INTEGER¥*4
is based on the magnitude of the constant; and in most contexts,
INTEGER*2 and INTEGER*4 variables and integer constants may be freely
mixed. However, the programmer is responsible for ensuring that
integer overflow conditions that might adversely affect the program do
not occur, Consider the following example:

INTEGER*2 I
INTEGER*4 J
I 32767
J I+ 3

In this example, I and 3 are INTEGER*2 values, and an INTEGER*2 result
is computed. The 16-bit addition, however, overflows the valid
INTEGER*2 range, and the resulting bit pattern represents -=32766, a
valid INTEGER*2 value that is converted to INTEGER*4 type and assigned
to J. This overflow is not detected.

Compare the above example with the following apparently equivalent
program, which produces an entirely different, and logically correct,
result:

INTEGER*4 J
PARAMETER I = 32767
J=1+3

In this example, the compiler adds the constant 3 and the parameter
constant 32767 and produces a resulting constant of 32770. The

compiler recognizes this constant as an INTEGER*4 value and assigns it
to J. .

4.2.3 Octal Constant Typing
Octal constants can take either of two forms:
'Cl C2 C3...Cn'0
"Cl C2 C3...Cn
Octal constants of the form 'Cl C2 C3...Cn'O are typeless numeric
constants that assume data types on the basis of the way they are

used. See the PDP~11 FORTRAN-77 Language Reference Manual for the
rules on the typing of octal constants of this form.

Octal constants of the form "Cl C2 C3...Cn, however, are typed as
either INTEGER*2 or INTEGER*4 , and are typed on the basis of the
magnitude of the constant.

4-8

PDP~11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

An octal constant of the form "C(l) C(2) C(3)...C(n) 1is typed as
INTEGER*2 if bits 16 through 31 of the value are the same as bit 15;
otherwise, it is typed as INTEGER*4 . Because octal constants are
treated as unsigned values, they are interpreted as positive values
unless bit 31 is set. The octal constants "100000 through "177777 are
typed as INTEGER*4 and interpreted as the decimal values 32768 through
65535, rather than as the negative signed decimal values ~32768
through -1.

Because octal constants are positive values, you must take care when
you compare octal constants with negative signed INTEGER*2 values.

Consider the following example:

INTEGER*2 I
IF (I .EQ. "105132) STOP

The comparison made here always results in an inequality (and the STOP
statement is not executed). The reason for this is that the INTEGER*2
value of I is converted to INTEGER*4 before the comparison (to conform
with the type of "105132); therefore, whenever I contains the bit
pattern "105132, this pattern will be interpreted after conversion as
the negative decimal value -30118. «

The above example is equivalent to:

INTEGER*2 I
IF (I .EQ. 35418) STOP

If INTEGER*2 values must be compared with octal constants of the form
"]xxxxx, the octal constant should be 4assigned to an INTEGER*2
temporary. An INTEGER*2 temporary could be used in our example as
follows:

INTEGER*2 I, ICONST
DATA ICONST/"105312/
IF (I .EQ. ICONST) STOP

4.2.4 Integer-Valued Intrinsic Functions

A number of the intrinsic functions provided by FORTRAN-77 (for
example, IFIX) produce integer results from real or double-precision
arquments. These intrinsic functions are called "result generic
functions.” Because the compiler operates in two different modes,
INTEGER*2 mode and INTEGER*4 mode, the system provides two internal
versions of each of these integer-producing functions: an INTEGER*2
version and an INTEGER*4 version. The compiler selects the proper
version on the basis of the current compiler mode setting rather than
-- as it does for the other intrinsic functions -- on the basis of the
data type of arguments in the function reference.

In some cases, you may need to use the version of an integer intrinmsic
function that is the opposite of the one that would be invoked under
the current compiler mode setting. For example, a program that
predominantly uses INTEGER*2 values may at some point need to get an
INTEGER*4 result from a intrinsic function. To satisfy this need, the
system provides an additional pair of intrinsic function names that
can reference the two internal versions of each integer-producing
intrinsic function no matter what the current compiler mode setting
may be. By convention, these additional names are created by

PDP-11 FORTRAN~-77/RT-11 IMPLEMENTATION CONCEPTS

prefixing I and J to the intrinsic function name. For example, I is
prefixed to IFIX to create the INTEGER*2 version of this function
name, and J is prefixed to create the INTEGER*4 version. IIFIX
references the INTEGER*2 internal function $IFIX, and JIFIX references
the INTEGER*4 internal function $JFIX.

The complete set of names and corresponding internal routines is shown
in Table 4-1 (in Section 4.1).

4.2.5 Implementation-Dependent Integer Typing

The FORTRAN-77 compiler performs a number of integer-typing
optimizations by taking advantage of certain properties of the PDP-11
and/or the operating system. These optimizations are generally
transparent to a FORTRAN user and include the following:

® Array addressing calculations

Because the entire virtual address space of the PDP-11 can be
represented in one word, array bounds expressions and array
"subscript expressions are always converted to INTEGER*2 before
being used 1in an array address calculation. Therefore, even
when the compiler is operating in /T mode, the code generated
for array addressing is performed with INTEGER*2 operations.

@ Input/output logical unit numbers

Because logical unit numbers can always be represented by a
l-word integer, the compiler converts all unit numbers to
INTEGER*2 when producing calls to the I/O section of the OTS.

e Direct access record numbers

For simplicity of implementation, and to provide to programs
that predominantly use l-word integers the capability of using
very large files, all direct access record numbers are
processed as INTEGER*4 values.

4.3 BYTE (LOGICAL*l) DATA TYPE

FORTRAN-77 provides the byte data type (BYTE) to take advantage of the
byte-processing capabilities of the PDP-11. Although LOGICAL*1 is a
synonym for BYTE, a BYTE value is actually a signed integer. In
addition to storing small integers, the byte data type is useful for
storing and manipulating Hollerith information.

In general, when data of two different types are used in a binary
operation, the lower-ranked type is converted, before any
computations, to the higher-ranked type. However, in the case of a
byte variable and an integer constant that can be represented as a
byte variable, the integer constant is treated as a byte constant;
therefore, the result of the operation is of type byte rather than of
type integer, as it would be under the more general convention. The
overflow possibilities under this convention, however, are similar to
those previously discussed in Section 4.2.2 for mixed INTEGER*2 and
INTEGER*4 variables and constants.

4-10

PDP-11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

4.4 ITERATION COUNT MODEL FOR DO LOOPS

FORTRAN-77 provides an extended form of the DO statement. This
statement has the following features:

® The control variable may be an INTEGER*2 , INTEGER*4 , REAL,
or DOUBLE PRECISION variable. -

® The initial value, step size, and final value of the control
variable can be represented by any expressions whose resulting
types are INTEGER*2 , INTEGER*4 , REAL, or DOUBLE PRECISION.

® The number of times the loop is executed (the iteration count)
is determined when the DO statement is initialized and is not
reevaluated during successive executions of the loop. Thus,
the number of times the loop is executed is not affected by
changing the values of the parameter variables used in the DO
statement. i

4.4.1 Cautions Concerning Program Interchange

Three common practices associated with the use of DO statements on
other FORTRAN systems may not have the intended effects when used with
FORTRAN-77. These are as follows:

® Assigning a value to the control variable within the body of
the loop that is greater than the final value does not always
cause early termination of the loop.

® Modifying a step size variable or a £inal value variable
within the body of the loop does not modify the loop behavior
or terminate the loop.

® Using a negative step size (for example, DO 10 I = 1,10,-1) in
order to cause an arbitrarily long loop that is terminated by
a conditional control transfer within the loop results in zero
iterations of the loop body. A zero step size may result in
an infinite loop at run time.

4.4.2 Iteration Count Computation
Given the following generic DO statement:
DO label V=ml,m2,m3

(where ml, m2, and m3 are any expressions), the iteration count is
computed as follows: i

count= MAX (INT (m2-ml+m3)/m3,0)
This computation does the following:

® DProvides that the body of the DO loop will be executed zero
times if the iteration count given by the above formula is
zero (Under the /X switch, the loop is executed one time if
the iteration count is zero.)

® Permits the step size (m3) to be negative or positive, but not
zero

PDP-11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

® Gives a well-defined and predictable value of an iteration
count that results from any combination of values of the
allowed result types

Be aware, however, that overflow of INTEGER*2 control variables is not
detected and can result in an infinite loop at run time. Consider the
following program unit:

DO 10 I=1,32767

10 CONTINUE

This program unit always results in an infinite loop when I is of
INTEGER*2 type. See Section 4.2.2 for more information on integer
overflow conditions.

You should also be aware that the effects of round-off error inherent
in any floating-point computation, when real or double-precision
values are used, may cause the count to be greater than, or less than,
desired.

Under certain conditions, it is not necessary actually to compute the
iteration count to obtain the required number of iterations; if all
the parameters in an iteration computation are of type integer, and
the step size is a constant (so that the sign of the increment value
is known), the FORTRAN-77 compiler generates the necessary code to
compare the control variable directly with the final value in order to
control the number of iterations of the loop.

4.5 USING EQUIVALENCE WITH MIXED DATA TYPES

You can readily foresee the effects of EQUIVALENCE statements
involving variables and/or arrays of mixed type when you consider the
actual storage (in bytes) of each type of variable involved.

Example 4-~1 illustrates the relationships that result when an
EQUIVALENCE statement uses byte, integer, real, and complex elements.

Character data must not be equivalenced to data of any type other than
character, BYTE, or LOGICAL*],

Example 4~-1: EQUIVALENCE Using Mixed Data Types

BYTE B (0:9)

COMPLEX C (4)

REAL R(3)

INTEGER*2 I (3)

EQUIVALENCE (C(2),R(3),I),(I(3),B(9))

Address Storage Alignment
n C(1) R(1)

n+l . .

n+2 . .

n+3 o . B(0)
n+4 . R(2) B(1)
n+5 . . B(2)

(continued "on next page)

PDP-11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

Example 4-1 {(Cont.): EQUIVALENCE Using Mixed Data Types

Address Storage Alignment
n+6 . . B(3)
n+7 o . B(4)
n+8 C(2) R(3) I(1) B(5)
n+9 . . . B(6)
n+10 . . I(2) B(7)
n+ll . . . B(8)
n+l2 . I(3) B(9)
n+l3 . .

n+1l4 .

n+l5 .

n+l6é C(3)

4.6 EQUIVALENCE, BYTE DATA, AND STORAGE ALIGNMENT

The PDP-11 hardware requires that storage for all data elements éxcept
byte elements begin at an even address. This requirement can be
satisfied in all except the following two cases:

® Equivalence relationships involving byte elements and nonbyte
elements can make it logically impossible to allocate
variables in a manner that satisfies the even-byte alignment
constraint for all elements involved in an equivalence. An
example of such an equivalence relationship is as follows:

BYTE B(2)
INTEGER*2 I,J
EQUIVALENCE (B(1),I),(B(2),J)

® Using a COMMON block in more than one program unit constitutes
an implied relationship of equivalence among the sets of
elements declared in that block. If a strict interpretation
of the sequence of variable allocations causes a nonbyte
variable to start at an odd address, a compiler adjustment is
not made because it could destroy alignment properties
expected in another program unit.

The compiler begins allocating each common block, and each group of
equivalenced variables that are not in common, at an even address. 1If
an allocation results in an element not of type byte being stored
beginning at an odd address, an error message is produced. If this
happens, to avoid fatal errors during execution, you must modify the
common and/or EQUIVALENCE statements to eliminate the odd-byte
addressing. -

Variables and arrays not in common and not used in EQUIVALENCE
statements are always correctly aligned.

4.7 ENTRY STATEMENT ARGUMENTS

The FORTRAN-77 implementation of argument association in ENTRY
statements varies from that of some other FORTRAN systems.

As mentioned in Chapter 3 of this manual, FORTRAN-77 uses the
call-by-reference method of passing arguments to called procedures.
Some other FORTRAN implementations use the call-by-value/result
method. This difference in approach is important to keep in mind when
you reference dummy arguments in ENTRY statements.

4-13

PDP-11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

Although standard FORTRAN allows you to use the same dummy arguments
in different ENTRY statements, it allows you to reference only those
dummy arguments that are defined for the ENTRY point being called.
For example, given the subprogram unit

SUBROUTINE SUBL(X,Y,32)

ENTRY ENT1 (X,A)

ENTRY ENT2(B,2,Y)

you can make the following references:

CALL Valid References
SUBL1 X Y Z
ENT1 X A

ENT2 B Z b4

FORTRAN implementations that use the call-by-value/result method,
however, permit you to reference dummy arguments that are not defined
in the ENTRY statement being called. For example, consider the
following device for initializing dummy variables €£for subsequent
referencing:

SUBROUTINE INIT(A,B,C)
RETURN

ENTRY CALC(Y,X)

Y = (A*X+B)/C

END

You can use this nonstandard device in call-by-value/result
implementations because a separate internal variable is allocated for
each dummy argument in the called procedure. When the procedure is
called, each scalar actual-argument value is assigned to the
corresponding internal variable, and these internal variables are then
used whenever there is a reference to a dummy argument within the
procedure. On return from the procedure, modified dummy arguments are
copied back to the corresponding actual-argument variables.

When an entry point is referenced, all the dummy arguments of the
entry point are defined with the values of the corresponding actual
arguments and can be referenced on subsequent calls to the subprogram.
However, you should avoid such subsequent referencings in programs
that are to be compiled under FORTRAN-77, as they will not have the
intended effect will produce programs that are not transportable to
other systems that use the call-by-reference method.

FORTRAN-77 creates associations between dummy and actual arguments by
passing the address of each actual arqument to the called procedure.
Bach subsequent reference to a dummy argument generates an indirect
address reference through the actual-argument address. When control
returns from the called procedure, the association between actual and
dummy arguments ends. The dummy arguments do not retain their values,
and therefore cannot be referenced on subsequent calls. Therefore, to
perform the kind of nonstandard references shown in the previous
example, the subprogram would have to copy the values of the dummy

PDP-11 FORTRAN-77/RT-11 IMPLEMENTATION CONCEPTS

arguments to other variables. For example, if subroutine INIT is
rewritten as follows, it will work on FORTRAN-77 as well as on systems
that use the call-by-value/result method:

SUBROUTINE INIT(Al,Bl,Cl)
SAVE A,B,C

A = Al

B = Bl

c=2cCl

RETURN

ENTRY CALC(Y,X)

Y = (A*X+B)/C

END

CHAPTER 5

PDP-11 FORTRAN-77/RT-11 PROGRAMMING CONSIDERATIONS

This chapter discusses techniques for writing effective FORTRAN-77
programs. Topics discussed are as follows:

¢ Efficient use of program statements and data types
¢ Compiler optimizations
® Program size and speed considerations

® Optional OTS capabilities

5.1 CREATING EFFICIENT SOURCE PROGRAMS

The following sections discuss the wuse of the PARAMETER, INCLUDE,
OPEN, and CLOSE statements in relation to writing efficient source
programs; they also discuss the efficient use of the INTEGER*2 and
INTEGER*4 data types.

5.1.1 PARAMETER Statement

The PARAMETER statement provides a way for you to write programs
containing easily modified parameters, such as array bounds and
iteration counts, without losing the efficiency of using constant
expressions to manipulate these parameters. Because the FORTRAN-77
compiler can optimize constants more efficiently than it can optimize
variables (see Section 5.2.2), programs that use PARAMETER statements
are generally more efficient than programs that initialize parameters
with DATA or assignment statements. For example, the first program
fragment below compiles into more efficient code than the second or
third:

(1) PARAMETER (M=50 ,N=100)
DIMENSION X (M) ,Y(N)
DO 5, I=1,M
DO 5, J=1,N
5 X(I) = X(I)*Y(J) + X(M)*Y(N)

(2) DIMENSION X(50),Y(100)
DATA M,N/50,100/
DO 5, I=1,M
DO 5, J=1,N
5 X(I) = X(I)*Y(J) + X(M)*Y(N)

PDP-11 FORTRAN-77/RT-11 PROGRAMMING CONSIDERATIONS

(3) DIMENSION X(50),Y(100)
M 50
N 100
DO 5, I=1,M
DO 5, J=1,N
5 X(I) = X(I)*Y(J) + X(M)*Y(N)

5.1.2 INCLUDE Statement

The INCLUDE statement provides a way for you to eliminate duplication
of source code and to facilitate program maintenance. Because of the
availability of the INCLUDE statement, you can create and maintain a
separate file for a section of program text used by several different
program units, and then include this text in the individual program
units at compile time. For example, rather than duplicate the
specification for a common block referenced by several program units,
you can write the specification a single time in a separate file;
then each program unit referencing the common block merely executes an
INCLUDE statement to incorporate the specification into the unit. In
addition to increasing programming efficiency, wusing the INCLUDE
statement fosters reliability, modular programming, and ease of
maintenance.

The following example shows the use of the INCLUDE statement.

The file COMMON.FTN defines the size of the blank common block and the
size of the arrays X,Y, and Z.

Main Program File File COMMON.FTN
INCLUDE ‘COMMON.FTN' PARAMETER M=100
DIMENSION Z (M) COMMON X (M) ,¥ (M)
CALL CUBE

DO 5 I=1,M

5 Z(I)=X(I)+SQRT(Y(I))

SUBROUTINE CUBE
INCLUDE 'COMMON.FTN'®

DO 10 I=1,M
10 X(I)=Y(I)**3

RETURN

END

5.1.3 OPEN and CLOSE Statements

The OPEN and CLOSE statements provide you with precise and explicit --
as well as efficient =-- control of 1I/0 devices and files. Some
examples follow:

® OPEN (UNIT=1, STATUS='NEW', INITIALSIZE=200)

This statement creates a sequential file and allocates the
space required for the file. Dynamic extension of a file is
not allowed in RT-11l.

@ OPEN (UNIT=J, STATUS='NEW'...)

PDP-11 FORTRAN-77/RT-11 PROGRAMMING CONSIDERATIONS

IF (IERR) CLOSE(UNIT=J, STATUS='DELETE')

CLOSE (UNIT=J, STATUS='SAVE')

If an error (denoted by IERR) occurs that makes the file
created by the OPEN statement invalid or useless, the file is
efficiently deleted.

® CHARACTER*14 FILNAM
1 TYPE 100
100 FORMAT('$INPUT FILE?')
ACCEPT 101,FILNAM
101 FORMAT (A)

OPEN (UNIT=3, FILE=FILNAM, STATUS='OLD', ERR=9)

LAY

9 TYPE 102, FILNAM
102 FORMAT (' ERROR OPENING FILE ',A)
GO TO 1

This program fragment reads a file specification ‘into the
character variable FILNAM, The specified file is then opened
for processing.

5.1.4 INTEGER*2 and INTEGER%*4

Because the PDP-1l1 is a 1l6-bit computer, the code sequences generated
for INTEGER*4 computations are larger and slower than those for their
INTEGER*2 counterparts. Therefore, the use of INTEGER*4 should be
limited to those data items requiring 32-bit representation;
INTEGER*2 should be used elsewhere. 1In general, it is advisable to
minimize use of the /T compiler option.

5.2 COMPILER OPTIMIZATIONS

Optimization is producing the greatest amount of processing with the
least amount of time and memory.

The primary goal of FORTRAN-77 optimization is to produce an object
program that executes faster than an unoptimized version of the same
source program. A secondary goal is to reduce the size of the object
program.

The language elements you use in a source program directly affect the
compiler's ability to optimize the object program. Therefore, you
should be aware of the ways in which you can assist compiler
optimization. The FORTRAN~-77 compiler performs the following
optimizations:

® Constant folding: 1Integer constant expressions are evaluated
at compile-time.

® Compile-time constant conversion.

e Compile-~time evaluation of constant subscript expressions in
array calculations.

@ Argument-list merging: If ¢two function or subroutine

references have the same arguments, a single copy of the
argument list is generated.

5-3

PDP-11 FORTRAN-77/RT-11 PROGRAMMING CONSIDERATIONS

Branch instruction optimizations for arithmetic and logical IF
statements.

Eliminating unreachable ("dead") code: An optional warning
message 1is issued to indicate unreachable statements in a
source program.

Recognizing and Replacing common subexpressions.

Removing invariant computations from DO loops.

Local register assignment: Frequently referenced variables
are retained (if possible) in registers to reduce the number
of load and store instructions required.

Assigning frequently used variables and expressions to
registers across DO loops.

Constant pooling: Storage is allocated for only one copy of a
constant in the compiled program. Constants, including most
numeric constants, used as immediate-mode operands are not
allocated storage.

Inline code expansion for some intrinsic functions.

Fast calling sequences for the real and double-precision
versions of some intrinsic functions.

Reordering the evaluation of expressions to minimize the
number of temporary values required.

Delaying unary minus and .NOT. operations to eliminate unary
negation and complement operations.

Partially evaluating Boolean expressions. For example, if el
in the following expression has the value ,FALSE., e2 is not
evaluated:

IF (el.AND.e2) GO TO 20

The order in which el and e2 appear in the source statement
has no effect on partial evaluation.

Peephole optimization of instruction sequences: examining

code on an instruction-by~instruction basis to find operations
that can be replaced by shorter, faster operations.

5-4

PDP-11 FORTRAN-77/RT~11 PROGRAMMING CONSIDERATIONS

5.2.1 Characteristics of Optimized Programs

An optimized FORTRAN-77 program is computationally equivalent to an
unoptimized program; therefore, identical numerical results are
obtained and equivalent (in meaning, not quantity) run-time diagnostic
messages are produced. An optimized program, however, can produce
fewer run-time diagnostic messages and the diagnostics can occur at
different statements in the source program.

Example 5-1: Effects of Optimization on Error Reporting

Unoptimized Program Optimized Program

A = X/Y t = X/¥Y
B = X/Y A = ¢t
DO 10, I = 1,10 B =t
10 C(I) = C(I) * (X/Y) po 10, I =1,10

10 C(I) =C(I) * t

In Example 5~1, if Y has the value 0.0, the unoptimized program
produces 12 zero-divide errors at run time; the optimized program,
however, produces only one zero~divide error because the calculation
that produces the error has been moved out of a loop. (Note that t is
a temporary variable created by the compiler.)

Note that optimizations such as eliminating redundant calculations and
moving invariant calculations out of loops can affect the use of the
ERRTST system subroutine. For example, in the above program, a call
to ERRTST from inside the loop does not detect a zero-divide error in
the 1loop calculation because the compiler has moved the
error-producing part of the calculation outside the loop.

5.2.2 Compile-~time Operations on Constants

The compiler performs the following computations on expressions
involving constants (including PARAMETER constants):

® Negation of constants: Constants preceded by unary minus
signs are negated at compile time. For example:

X = -10.0

is compiled as a single move operation.

PDP-11 FORTRAN=-77/RT-11 PROGRAMMING CONSIDERATIONS

® Type conversion of constants: Lower-ranked constants are
converted to the data type of the higher-ranked operand at
compile time. For example:

X = 10*Y
is compiled as:
X = 10.0*Y

® Integer arithmetic on constants: Expressions involving +, -,
*, / or ** operators are evaluated at compile time. For
example:

' PARAMETER (NN=27)
I = 2%NN+J

is compiled as:
I = 54+J

Array subscript calculations involving constants are simplified at
compile time where possible. For example:

DIMENSION I(10,10) |

I(1,2) = I(4,5)

is compiled as a single move instruction.

5.2.3 Source Program Blocks

FORTRAN~77 performs some optimizations only within the confines of a
single "block®™ of a source program. A block is a sequence of one or
more source statements. The start of a new block is generally defined
by a 1labeled statement that is the target of a control transfer from
another statement (for example, a GO TO, an arithmetic IF, or an ERR=
option). An ENTRY statement also defines a new block. Some
occurrences of statement labels do not define the start of a new
block; these occurrences are as follows:

& Unreferenced statement labels.

® A label terminating a DO loop, provided the only references to
the label occur in DO statements.

® Labels of FORMAT statements. FORMAT statements must be

labeled, but control cannot be transferred to a FORMAT
statement.

e Labels such that the only reference to the label occurs in the
immediately preceding arithmetic IF statement. For example:

IF(A) 10,20,20
10 X = 1.

® Singly referenced labels. A jump to a singly referenced label
may be equivalent to an IF THEN/ENDIF structure. If it is,
the IF THEN/ENDIF structure is used and the block is extended
past the labeled statement.

The compiler imposes a limitation on the size of a single block.
Therefore, a very 1long straight-line sequence of FORTRAN statements
can be treated as several "blocks™ during optimization.

PDP-11 FORTRAN-77/RT-11 PROGRAMMING CONSIDERATIONS

A block can contain oﬁe or more DO loops, provided none of the labels
within the 1loops defines the start of a new block. Therefore, the
following are considered single blocks and are optimized as complete
units:

Example 1 Example 2
X = B*C po 20, I=1,N
po 10, I=1,N Do 20, J=1,N
10 A(I) = A(I)/(B*C) SUM = 0.0
Do 20, J=1,N Do 10, K=1,N
20 Y (J) = ¥Y(J)+B*C 10 SUM = SUM+A(I,K)*B(K,J)

20 C(I,J) = SUM

If the label specified as the target of a GOTO in a 1logical IF is
referenced only once, the structure may be equivalent to a block IF.
For example, the following examples are equivalent:

Example 1 Example 2
IF (I .LT. J) GOTO 20 IF (I .GE. J) THEN
A(I) = A(I)*J A(I) = A(I)*J
J=J-1 J=J-1
20 I=I+1 ENDIF
I=I+1

However, even though these two examples are equivalent, Example 2 is
more easily optimized. Therefore, as long as Example 1 is valid (that
is, as long as both the GOTO and the label are in the same block, and
the nesting rules are not violated), FORTRAN-77 transforms Example 1
into the form shown in Example 2.

Optimizations can be done most effectively over complete structures.
Therefore, if a block would otherwise be ended within either a block
IF or DO structure, the block is instead ended at the beginning of the
DO structure or the conditional block of the block IF structure.

Also, a more thoroughly optimized object program is produced if the
number of separate blocks is minimized. The common-subexpression,
code motion, and register allocation optimizations are performed only
within single blocks.

Multiple block IF structures, as well as nested DO and block IF
structures, can occur within a single block.

5.2.4 Eliminating Common Subexpressions

Often a subexpression appears in more than one computation within a
program. If the wvalues of the operands of such a subexpression are
not changed between computations, the value of the subexpression can
be computed once and substituted for each occurrence of the
subexpression. For example, B*C is a common subexpression in the
following sequence:

A = B*C+E*F

H = A+G-B*C

IF ((B*C)-H) 10,20, 30

. The preceding sequence is compiled as:

PDP-11 FORTRAN-77/RT-11 PROGRAMMING CONSIDERATIONS

t = B*C
A = t+E*F
H = A+G-t

IF ((t)~-H)10,20,30

where t is a temporary variable created by the compiler. Two
computations of the subexpression B*C are eliminated from the
sequence.

In the above example, you can modify the source program to eliminate
the redundant calculation of (B*C). In the following example,
however, you cannot reasonably modify the source program to achieve
the same optimization wultimately effected by the compiler. The
statements

DIMENSION A(25,25), B(25,25)
A(I,J)= B(1,J)

are compiled, without optimization, to a sequence of instructions of
the form:

tl = J*25+1
£2 = J*25+1
A(tl) = B(t2)

where the variables t1 and t2 represent equivalent expressions.
Recognizing the redundancy, the compiler optimizes the sequence into
the following shorter, faster sequence:

t = J*25 + I
A(t) = B(t)

If a common sSubexpression is created within a conditional block of a
block IF, this subexpression can be used anywhere within the
conditional block in which it was created, including within any nested
inner blocks; but it cannot be used outside that conditional block.

5.2.5 Removing Invariant Computations From Loops‘

Execution speed is enhanced if invariant computations are moved out of
loops. For example, in the sequence

DO 10, I=1,100
10 F = 2.0*Q*A(I)+F

the value of the subexpression 2.0*Q is the same during each iteration
of the loop. Transformation of the sequence to:

t = 2.0%Q
DO 10, I=1,100
10 F = t*A(I)+F

moves the «calculation 2.0*Q outside the body of the 1loop and
eliminates 99 multiply operations.

However, invariant computations cannot be moved out of a zero-trip DO
loop. For example, in the sequence

PDP~-11 FORTRAN~-77/RT-11 PROGRAMMING CONSIDERATIONS

DO 10, I=1,N
10 F=2.0*Q*A(I)+F

statement 10 is not executed for certain values of n; therefore, the
invariant computation 2.0%Q cannot be moved out of the loop.

5.3 RUN=-TIME PROGRAMMING CONSIDERATIONS

You can often reduce the execution time of programs by making use of
the following facts relevant to the FORTRAN-77 run~time environment.

® Unformatted I/0 is substantially faster and more accurate than
formatted 1I/0. The unformatted data representation usually
occupies less file storage space as well. Therefore, you
should use unformatted I/0 for storing intermediate results on
secondary storage.

@ Specifying an array name in an I/0 list is more efficient than
using an equivalent implied DO list. A single 1I/0
transmission call passes an entire array; however, an implied
DO 1list can pass only a single array element for each 1I/0
call.

® Implementing the BACKSPACE statement involves repositioning
the file and scanning previously processed records. If a
reread capability is required, it is more efficient to read
the record into a temporary array and DECODE the array several
times than to read and backspace the record.

® Array subscript checking is time-consuming and requires
additional compiled code. It is primarily wuseful during
program development and debugging.

® To obtain minimum direct access I/0 processing, the record
length should be an integer factor or multiple of the device
block size of 512 bytes (for example, 32 bytes, 1024 bytes,
and so on).

® Using run-time formats should be minimized. The compiler
preprocesses FORMAT statements into an efficient internal
form. Run-time formats must be converted into this internal

form at run-time. In many cases, variable format expressions
allow the format to vary at run time as needed.

5.4 FORTRAN-77 OPTIONAL CAPABILITIES
The FORTRAN-77 system, as distributed, contains several optional
capabilities supported by alternate OTS modules. These capabilities
include:

® Running FORTRAN-77 without a Floating Point Processor

® Choosing alternate run-time error reporting

® Obtaining an alternate floating-point output conversion

routine

® Choosing an alternate random-number generator for
compatibility with previous versions of the OTS (see Appendix
B).

These options are described below. You can choose which options are

5-9

PDP-11 FORTRAN-77/RT-11 PROGRAMMING CONSIDERATIONS

available on your system when you install F77. See, the PDP-11
FORTRAN-77/RT-11 Installation Guide and Release Notes for complete
information. None of these options is required for normal use of the
FORTRAN~-77 system.

5.4.1 Non-FPP Operation (F77EIS.0OBJ)

The FORTRAN-77 compiler does not require a floating-point processor
(FP11 or KEF1llA) to compile a FORTRAN-77 program; the compiler can
run on any PDP-11 with the EIS instruction set. However, the code
generated by the FORTRAN-77 compiler is intended to run on a PDP-11
with FPP and may therefore contain FPP instructions.

A FORTRAN-77 source program containing no real, double-precision, or
complex constants, variables, arrays, or function references is
compiled into a PDP-1ll program that contains no FPP instructions. If
this program is 1linked using the module F77EIS.OBJ and the standard
FORTRAN-77 OTS, as shown below, the resulting job executes no FPP
instructions. Such programs can therefore run on any PDP-11 with the
EIS instruction set.

LINK INT,SY:F77EIS.OBJ

If a compiled program unit contains no FPP instructions, the program
listing contains the statement: NO FPP INSTRUCTIONS GENERATED.

5.4.2 Optional OTS Error Reporting (F77NER.OBJ)

An optional OTS module that does not perform any run-time diagnostic
message reporting is available; it is several hundred words smaller
than the standard error-reporting module. Error processing and calls
to ERRSET, ERRSNS, and ERRTST continue to operate normally, only the
logging of the diagnostic message to the wuser terminal being
suppressed. If this option is used, STOP and PAUSE messages are not
produced.

5.4.3 Short Error Text (SHORT.OBJ)

The error message text for run-time error reports is contained in
memory and requires over 1000 words. An alternative version is
available that requires only one word. If the alternative is used,
the error report is complete except for the l-line English text
description of the error. This module, $SHORT, is included in the job
at link time. For example:

LINK MAIN,SY:SHORT.OBJ

5.4.4 Intrinsic Function Name Mapping (F77MAP.OBJ)

As discussed in Section 4.1, references to FORTRAN intrinsic functions
are transformed at compile time into calls that use internal names.
Therefore, if a program written in MACRO-11l uses a FORTRAN name
instead of an internal name to reference an intrinsic function, an
unresolved reference results during link.

To prevent such unresolved references during the linking of a MACRO

program, a set of concatenated object modules is provided for
transforming FORTRAN-77 intrinsic-function names into internal names

5-10

PDP=11 FORTRAN-77/RT-11 PROGRAMMING CONSIDERATIONS

at link time. For example, the name SIN is transformed at link time
by means of the following module:

.TITLE $MSIN
SIN:: JMP $SIN
.END

The object module similar to the one for SIN 1is available for each
intrinsic~function name.

An FP77MAP library may be nécessary to provide function mapping.

5.4.5 PFloating—point Output Conversion (F77CVF.O0OBJ)

An alternative module for performing formatted output of
floating-point values under control of the D, E, F, and G format codes
is provided. The standard module uses multiple-precision, fixed-point
integer techniques to maintain maximum accuracy during the conversion.
(FPP hardware is not used.) The alternative module performs the same
functions using the FPP hardware; it is Substantially faster but in
some cases less accurate than the standard module. The standard
module is accurate to 16 decimal digits; the optional module is
accurate to 15 digits.

CHAPTER 6

USING CHARACTER DATA

The character data type facilitates the manipulation of alphanumeric
data. You can use character data in the form of character variables,
arrays, constants, and substrings.

6.1 CHARACTER SUBSTRINGS
You can select certain segments (substrings) from a character variable
or array element by specifying the variable name, followed by
delimiter wvalues that indicate the leftmost and/or rightmost
characters in the substring. For example, if the character string
NAME contains:
ROBERT WILLIAM BOB JACKSON
and you want to extract the substring BOB, specify the following:
NAME (16 :18)
If you omit the first value, you are indicating that the first
character of the substring is the first character in the variable.
For example, if you specify:
NAME (:18)
the resulting substring is:
ROBERT WILLIAM BOB

If you omit the second value, you are specifying the rightmost
character to be the last character in the variable. For example:

NAME (16:)
encompasses:

BOB JACKSON

6.2 CHARACTER CONSTANTS

Character constants are strings of characters enclosed in apostrophes.
You can assign a character value to a character variable in much the
same way you would assign a numeric value to a real or integer
variable. For example, as a result of the statement

XYZ = 'ABC'

USING CHARACTER DATA

the characters ABC are stored in location XYZ. Note that if X¥Z2's
length 1is less than three bytes, the character string is truncated on
the right. Thus, if you specify:

CHARACTER¥*2 XYZ
XYz = 'ABC'

the result is AB. If, on the other hand, the variable is longer than
the constant, it is padded on the right with blanks. For example, the
statements

CHARACTER*6 XYZ

XYz = 'ABC?
result in having:

ABC
stored in X¥2. If the previous contents of XY¥Z were CBSNBC, the
result would still be ABC because the previous contents are

overwritten.

You can ¢give character constants symbolic names by using the PARAMETER
statement. For example, if you specify:

CHARACTER*17 TITLE
PARAMETER (TITLE = 'THE METAMORPHOSIS')

you can use the symbolic name TITLE anywhere a character constant is
allowed.

You can include an apostrophe as part of the constant by specifying
two consecutive apostrophes. For example, the statements

CHARACTER*15 TITLE
PARAMETER (TITLE = 'FINNEGANS''S WAKE')

result in the character constant FINNEGAN'S WAKE.

The value assigned to a character parameter can only be a character
constant.

6.3 DECLARING CHARACTER DATA

To declare variables or arrays as character type, you use the
CHARACTER type declaration statement, as demonstrated in the following
example:

CHARACTER*10 TEAM(12),PLAYER

This statement defines a 1l2-element character array (TEAM), each
element of which is 10 bytes long; and a character variable (PLAYER),
which is also 10 bytes long.

You can specify different 1lengths for wvariables in a CHARACTER
statement by including a 1length value for specific variables. For
example:

CHARACTER*6 NAME,AGE*2,DEPT

In this example, NAME and DEPT are defined as 6-byte _variables, and
AGE is defined as a 2~byte variable.

6-2

USING CHARACTER DATA

You can place CHARACTER data in FORTRAN-77 COMMON blocks, however,
numeric data and CHARACTER data must not be combined in the same named
or unnamed COMMON block. You should make certain that all COMMON
blocks contain either all numeric or all CHARACTER data.

6.4 INITIALIZING CHARACTER VARIABLES

Use the DATA statement to preset the value of a character variable.
For example:

CHARACTER*10 NAME, TEAM (5)
, DATA NAME/' '/,TEAM/'SMITH','JONES',
1 "DOE', '"BROWN', 'GREEN'/

Note that NAME contains 10 blanks, but that each array element in TEAM
contains a character value, right-padded with blanks.

To initialize an array so that each of its elements contains the same
value, use a DATA statement of the following type:

CHARACTER*5 TEAM(10)
DATA TEAM/10%*'WHITE'/

The result is a l0-element array in which each element contains WHITE.

6.5 CHARACTER DATA EXAMPLES
An example of character data usage 1is shown in Example 6-1. The

example is a program that manipulates the letters of the alphabet.
The results are shown in Example 6-2.

6.6 CHARACTER LIBRARY FUNCTIONS

The FORTRAN-77 system provides the following character functions:

e ICHAR
® INDEX
® LEN

¢ LGE, LGT, LLE, LLT

6.6.1 ICHAR Function

The ICHAR function returns an integer ASCII code equivalent to the
character expression passed as its argument. It has the form:

ICHAR(c)

A character expression. If ¢ is longer than one byte, the ASCII
code equivalent to the first byte is returned and the remaining
bytes are ignored.

90

10

10

10

91

USING CHARACTER DATA

Example 6~1: Character Data Usage

CHARACTER C,ALPHA*26

DATA ALPHA/'ABCDEFGHIJKLMNOPQRSTUVWXYZ'/
WRITE (6,90)

FORMAT (' CHARACTER EXAMPLE PROGRAM OUTPUT')

DO 10 I = 1,26
WRITE (6,*) ALPHA
C = ALPHA(1:1)
ALPHA(1:25) = ALPHA(2:26)
ALPHA (26:26) = C
CONTINUE

CALL REVERS (ALPHA)
WRITE (6,*) ALPHA

CALL FIND ('UVW',ALPHA)
CALL FIND('AAA‘', 'DAAADHAJDAAAJAAA CEUEBCUEI')

WRITE (6,*) ' END OF CHARACTER EXAMPLE PROGRAM'
END

SUBROUTINE REVERS (S)
CHARACTER T*1,5%26

K = 26

DO 10 I = 1, K/2
T = S(I:I)
S(I:I) = S(K:K)
S(K:K) = T
K=K -1

CONTINUE

RETURN

END

SUBROUTINE FIND (SUB,S)
CHARACTER*3 SUB, S5*26
CHARACTER*132 MARKS

I =1

MARKS = ' !

J = INDEX(S(I:),SUB)
IF (J .NE. 0) THEN
I =1I+ (J-1)

MARKS (I:I) = '#'

I = I+1

IF (I .LE. LEN(S)) GO TO 10
ENDIF

WRITE (6,91) S, MARKS
FORMAT (2 (/1X,A))
RETURN

END

USING CHARACTER DATA

Example 6-2: Output Generated by Example Program

CHARACTER EXAMPLE PROGRAM OUTPUT
ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA
CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZABCDEF
HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTUVWXYZABCDEFGHI
KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCDEFGHIJKL
NOPQRSTUVWXYZABCDEFGHIJKLM
OPQRSTUVWXYZABCDEFGHIJKLMN
PQRSTUVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMNOP
RSTUVWXYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR
TUVWXYZABCDEFGHIJKLMNOPQRS
UVWXYZABCDEFGHIJKLMNOPQRST
VWXYZABCDEFGHIJKLMNOPQRSTU
WXYZABCDEFGHIJKLMNOPQRSTUV
XYZABCDEFGHIJKLMNOPQRSTUVW
YZABCDEFGHIJKLMNOPQRSTUVWX
ZABCDEFGHIJKLMNOPQRSTUVWXY
ZYXWVUTSRQPONMLKJIHGFEDCBA

ZYXWVUTSRQPONMLKJIHGFEDCBA

DAAADHAJDAAAJAAA CEUEBCUEI
%
END OF CHARACTER EXAMPLE PROGRAM

6.6.2 INDEX Function

The INDEX function is used to determine the starting position of a
substring. It has the form:

INDEX (cl,c2)
cl

A character expression that specifies the string to be searched
for a match with the value of c2.

c2

A character expression representing the substring for which a
match is desired.

If INDEX finds an instance of the specified substring (c2), it returns
an integer value corresponding to the starting location in the string
(cl). For example, if the substring sought is CAT and the string that
is searched contains DOGCATFISHCAT, the return value of INDEX is 4.

If INDEX cannot find the specified substring, it returns the value 0.

USING CHARACTER DATA

If there are multiple occurrences of the substring, INDEX locates the
first (left-most) one. Use of the INDEX function is illustrated in
Examples 6-1 and 6-2. Note that the FORTRAN-77 INDEX function is
distinctly different from the RT-11 SYSLIB INDEX function. See
section 6.6.5 below.

6.6.3 LEN Function

The LEN function returns an integer value that indicates the length of
a character expression. It has the form:

LEN (c)

A character expression.

Note that the FORTRAN-77 LEN function is distinctly different from the
RT-11 SYSLIB LEN function. See section 6.6.5 below.

6.6.4 LGE, LGT, LLE, LLT Functions

The lexical comparison functions (LGE, LGT, LLE, and LLT) compare two
character expressions, using the ASCII collating sequence. The result
is the logical value .TRUE., if the lexical relation is true, and
.FALSE. if the lexical relation is not true. The functions have the
forms:

LGE (cl,c2)
LGT (cl,c2)
LLE (cl,c2)
LLT (cl,c2)

cl,c2
Character expressions.

You may wish to include these functions in FORTRAN programs that can
be used on computers that do not use the ASCII character set. In
FORTRAN-77, the lexical comparison functions are equivalent to the
.GE., .GT., .LE., .LT. relational operators. For example, the
statement

IF (LLE (stringl, string2)) GO TO 100
is equivalent to:

IF (stringl.LE.string2) GO TO 100

6.6.5 RT-11 SYSLIB INDEX and LEN Functions

RT-11 provides in its system subroutine 1library (SYSLIB), string
handling functions LEN and INDEX, as well as numerous others that can
be used to manipulate NULL~terminated BYTE strings. The FORTRAN-77
INDEX and LEN functions are different functions, and generally employ
in-line code rather thah calling external library subroutines. The
two data structures are not compatible, as CHARACTER data is not
terminated by a NULL byte.

6-6

USING CHARACTER DATA

The FORTRAN-77 compiler senses whether the reference to LEN or INDEX
is to be made to its own routines or to external routines (SYSLIB or
USER provided) by virtue of the calling argument type. If the
argument is not of type CHARACTER, then an external function is
assumed and an error 72 is generated. This error is really only a
warning, ‘and should be ignored if you intend to use the SYSLIB
functions.

In a given program or subprogram ﬁodule, you can use either SYSLIB's
functions, with NULL-terminated BYTE strings, or FORTRAN-77's
functions with CHARACTER data. However, you should not attempt to use
both.

6.7 CHARACTER 1/0

The character data type simplifies transmitting alphanumeric data.
You can read and write character strings of any length from 1 to 255
characters.

For example; the statements

CHARACTER*24 TITLE

READ (12,100) TITLE
100 FORMAT (A)

cause 24 characters to be read from logical unit 12 and stored in the
24-byte character wvariable TITLE. If instead of character data you
were to use Hollerith data stored in numeric variables or arrays, the
following code is necessary:

INTEGER*4 TITLE (6)

READ (12,100) TITLE
100 FORMAT (6A4)

Note that you must divide the data into lengths suitable for real or
(in this case) integer data, and specify I/O and FORMAT statements to
match. In this example, a one~dimensional array comprising six 4-byte
elements is filled with 24 characters from logical unit 12.

APPENDIX A

FORTRAN-77 DATA REPRESENTATION

A.l1 INTEGER FORMATS

A.l1l.1 INTEGER*2 Format

Sign
0=+

1=~

15 14 0

Binary number

MW-F77-001

Integers are stored in two's complement representation. INTEGER*2
values lie in the range -32768 to +32767. For example:

+22 = 000026 (Octal)
-7 = 177771 (Octal)

A.l1.2 INTEGER*4 Format

- word 1:] low order j
15 0
word 2: S l high order 1
15 14 0

INTEGER*4 values are stored in two's complement representation. The
first word contains the low-order part of the value; the second word
contains the sign and high-order part of the value. Note that if the
value 1is in the range of an INTEGER*2 value (-32768 to +32767), then
the first word may be referenced as an INTEGER*2 value.

A.2 FLOATING-POINT FORMATS

The exponent for both 2-word and d4-word floating-point formats 1is
stored in excess-128 notation. Binary exponents from -128 to +127 are
represented by the binary equivalents of 0 through 255. Fractions are
represented in sign-magnitude notation, with the binary radix point to
the left. Numbers are assumed to be normalized; therefore, because
it would be redundant, the most significant bit is not stored (the
practice of not storing the most significant bit is called "hidden bit
normalization"). The unstored bit 1is assumed to be a 1 unless the
exponent is 0 (corresponding to 2**-128), in which case the unstored
bit is assumed to be 0. The value 0 is represented by an exponent

FORTRAN-77 DATA REPRESENTATION

field of 0 and a sign bit of 0. For example, +1.0 would be
represented in octal by:

40200
0

in the 2-word format, or:
40200
0
0
0
in the 4-word format. The decimal number -5,0 is:

140640
0

in the 2-word format, or:
140640
0

0
0

in the 4-word format.

A.2.1 REAL (REAL*4) Format (2-Word Floating Point)

Sign
0=+ Binary excess High-order
word 1: |1=— 128 exponent mantissa
15 14 76 0
word 2: { Low-order mantissa | MW-ET7.002
15 0

The form of a single-precision real number is sign magnitude, with bit
15 the sign bit, bits 14:7 an excess 128 binary exponent, and bits 6:0
and 15:0 in the second word a normalized 24-bit fraction with the
redundant most significant fraction bit not represented. The value of
a single-precision real number is in the approximate range .29*10**-38
through 1.7*¥10**38. The precision is approximately one part in
2*%*23--0or typically seven decimal digits.

A,2.2 DOUBLE-PRECISION (REAL*8) Format (4-Word Floating Point)

Sign

word 1: 0= Binary excess High-order
= 128 exponent mantissa

15 14 7 6 0
word 2: | Low-order mantissa }

15 0
word 3: | Lower-order mantissa I

15 0
word 4: | Lowest-order mantissa

15 0

FORTRAN~-77 DATA REPRESENTATION

The form of a double-precision real number is identical to that of a
single-precision real number except for an additional 32
low-significance fraction bits. The exponent conventions and
approximate range of valudes are the same as for a single-precision
real value. The precision is approximately one part in 2**55--o0r
typically 16 decimal digits.

A.2.3 COMPLEX Format

Sign
word 1l: 0=+ | Binary excess High-order
1=-1] 128 exponent mantissa
15 14 ‘ 7 6 0
Real
Part
word 2: | Low-order mantissa |
15 0
Binary excess High-order
word 3: 128 exponent mantissa
15 14 7 6 0
Imaginary
Part
word 4: | Low-order mantissa |
15 0

The form of a complex number is an ordered pair of real numbers. The
first real number represents the real part of the imaginary number;
the second represents the imaginary part.

A.3 LOGICAL*1l (BYTE) FORMAT

l Data item I MW-F77-003

7

The logical values true or false (see Section A.4), a single Hollerith
character, or integers in the range of numbers from +127 to -128 can
be represented in LOGICAL*1 format. LOGICAL*]l array elements are
stored in adjacent bytes.

A.4 LOGICAL FORMATS

LOGICAL*1

TRUE: byte 1 |1 undefined |
7 6 0

FALSE: byte 1 [0 undefined |
76)

FORTRAN=-77 DATA REPRESENTATION

LOGICAL*2
TRUE: word 1 |1 undefined
15 14 0
FALSE: word 1 | 0 undefined |
15 14 0
LOGICAL*4
TRUE: word 1 | undefined]
15 0
word 2 1 1 undefined
15 14 0
FALSE: word 1 | undefined]
15 0
word 2 [0 undefined]
15 14 0

A,5 CHARACTER REPRESENTATION

A character string is a contiguous sequence of bytes in memory.

A character string is specified by two attributes: the address A of
the first byte of the string, and the length L of the string in bytes.
The length L of a string is in the range 1 through 255.

A.6 HOLLERITH FORMAT

word 1: ' char 2 I char 1 I
15 87 0
word 2: I Char 4 I char 3 I
15 87 0
I blank =40 octal char n (n<255) I MW.F77-004
15 87

Hollerith constants are stored one character per byte. Hollerith
values are padded on the right with blanks, if necessary, to fill the
associated data item.

FORTRAN=-77 DATA REPRESENTATION

A.7 RADIX-50 FORMAT

Radix-50 character set

Value (Octal) Octal ASCII A Character Equivalent
Radix-50
(space) 40 0
A-7Z 101-132 1-32
$ 44 33
. 56 34
(unused) 35
0-9 60-71 36-47

Radix-50 values are stored, up to three characters per word, by
packing the Radix-50 values into single numeric values according to

the formula:
((1*50+73) *50+k)
i, 3. k
The code values of three Radix-50 characters.

The maximum Radix-50 value is, therefore:
47*50**2+447*50+47=174777 (8)

The following table provides a convenient means of translating between
the ASCII character set and Radix-50 equivalents. For example, given
the ASCII string X2B, the Radix-50 equivalent 1is (arithmetic is
performed in octal):

X=113000
2=002400
B=000002
X2B=115402

FORTRAN-77 DATA REPRESENTATION

Single Character

First Character

e MNKXECCHVDOWOZRDNRUHTIQRNBNUOOW M

VOO WNHO

or

000000
003100
006200
011300
014400
017500
022600
025700
031000
034100
037200
042300
045400
050500
053600
056700
062000
065100
070200
073300
076400
101500
104600
107700
113000
116100
121200
124300
127400
132500
135600
140700
144000
147100
152200
155300
160400
163500
166600
171700

Second

c MNHKXE<SCHRIOWORZRINRNUNEQEINUOOW P

Voo WNDEHO

Character

000000
000050
000120
000170
000240
000310
000360
000430
000500
000550
000620
000670
000740
001010
001060
001130
001200
001250
001320
001370
001440
001510
001560
001630
001700
001750
002020
002070
002140
002210
002260
002330
002400
002450
002520
002570
002640
002710
002760
003030

¢ MNHKXE<SAHNMUOWOZRODRUHTNQAMEBIOW)

WONOTUVWNOFHO

Third

Character

000000
000001
000002
000003
000004
000005
000006
000007
000010
000011
000012
000013
000014
000015
000016
000017
000020
000021
000022
000023
000024
000025
000026
000027
000030
000031
000032
000033
000034
000035
000036
000037
000040
000041
000042
000043
000044
000045
000046

000047 -

(space)

{unused)

APPENDIX B

ALGORITHMS FOR APPROXIMATION PROCEDURES

This appendix contains brief descriptions of the algorithms used in
intrinsic functions that involve approximations.

Some of the descriptions below give relative error bounds. These
relative error bounds are for the approximating polynomials involved
in the algorithms, and assume exact arithmetic. Possible additional
sources of errors not reflected in these error bounds are:

® Rounding and truncation errors that can occur when a given
argument is reduced to the range in which approximations for a
polynomial or rational fraction are valid

@ Rounding errors that can occur as a result of using

finite-precision, floating-point arithmetic in polynomial or
rational-fraction computations

B.l REAL-VALUE PROCEDURES
B.1.1 ACOS -- Real Floating-Point, Arc Cosine

ACOS (X) is computed as:

If X = 0, then ACOS(X) = pi/2

If X = 1, then ACOS(X) =0

If X = -1, then ACOS(X) = pi

If 0 < X < 1, then ACOS (X) ATAN (SQRT (1L~-X**2) /X)

If ~1 < X <0, then ACOS (X)

ATAN (SQRT (1-X**2) /X) + pi
If 1 < ABS(X) , error

B.1.2 DACOS -- Double-Precision Floating-Point Arc Cosine

DACOS (X) is computed as:

If X = 0, then DACOS(X) = pi/2

If X = 1, then DACOS(X) = 0

If X = -1, then DACOS(X) = pi

If 0 < X < 1, then DACOS(X) = DATAN (DSQRT (1-X**2)/X)

If -1 < X < 0, then DACOS(X) = DATAN (DSQRT(1-X**2)/X) + pi
If 1 < ABS(X), error

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.1.3 ASIN ~- Real Floating-Point Arc Sine

ASIN(X) is computed as:

If X = 0, then ASIN(X) =0
If X = 1, then ASIN(X) = pi/2
If X = -1, then ASIN(X) = -pi/2 :
If 0 < ABS(X) < 1, then ASIN(X) = ATAN(X/SQRT(1=-X**2))
If 1 < ABS(X), error
B.l1l.4 DASIN -- Double-Precision Floating-Point Arc Sine

DASIN(X) is computed as:

If X = 0, then DASIN(X) = 0

If X = 1, then DASIN(X) = pi/2

If X = -1, then DASIN(X) = -pi/2

If 0 < ABS(X) < 1, then DASIN(X) = DATAN (X/DSQRT(1-X**2))
If 1 < ABS(X), error

B.1.5 ATAN -- Real Floating-Point Arc Tangent
ATAN (X) is computed as:

1. If X < 0, then:

Begin
Perform Steps 2, 3, and 4 with arg = ABS(X)
Negate the result since ATAN (X) = -ATAN(-X)
Return End

2. If ABS(X) > 1, then:
Begin
Perform Steps 3 and 4 with arg = 1/ABS(X)
Negate result and add a bias of pi/2 since
ATAN (ABS (X)) = pi/2 - ATAN(1/ABS (X))
Return End

3. At this point the argument is 1 >= X >= 0
If ABS(X) > TAN(pi/12), then:
Begin
Perform Step 4 with arg = (X * SQRT(3) - 1)/
(SQRT (3) + X)
Add pi/6 to the result
Return End

Note: (X * SQRT(3) ~1)/(X + SQRT(3)) <= TAN(pi/12) for
ABS (X) »>= TAN(pi/l2)

4, Finally, the argument is ABS(X) <= TAN(pi/12)
Begin
ATAN(X) = X * SUM(C[i] * xX**(2[i]l)), i = 0:4
Return End

The coefficients C[i] are drawn from Hart #4941.l
The relative error is <= 10*%*-9,54,

1l gart, J. F. et al., Computer Approximations (John Wiley &
Sons, 1968), P. 267.

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.l.6 ATAN2 -- Real Floating-Point Arc Tangent with Two Parameters

ATAN2(X,Y) is computed as:

If Y =0 or X/Y > 2%*25, ATAN(X,Y) = pi/2 * (sign X)
If Y > 0 and X/Y <= 2**25, ATAN2(X,Y) = ATAN(X/Y)
If Y < 0 and X/Y <= 2*%%*25, ATAN2(X,Y) = pi * (sign X)
+ ATAN(X/Y)
B.1.7 DATAN -- Double-Precision Floating-Point Arc Tangent

DATAN (x) is computed as:

1. If X < 0, then:

Begin
Perform Steps 2, 3, and 4 with arg = ABS (X)
Negate the result since DATAN (X) = -DATAN (-X)
Return

End

2, If ABS(X) > 1, then:
Begin
Perform Steps 3 and 4 with arg = 1/ABS (X)
Negate result and add a bias of pi/2 since
DATAN (ABS (X)) = pi/2 - DATAN(1/ABS (X))
Return
End

3. At this point the argument is 1 >= X >= 0

If ABS(X) > DATAN(pi/l12) then:

Begin
Perform Step 4 with arg = (X*DSQRT(3) - 1)/
(DSQRT(3) + X)
Add pi/6 to the result
Return

End

Note: (X*DQRT(3) -1)/(X + DQRT(3)) <= DATAN(pi/l2 for
AB(X) >= DATAN(pi/12)

4, Finally, the argument is ABS(X) <= DATAN(pi/12):
Begin
DATAN (X) = X * SUM(C[i] * X**(2*i)), i = 0:8
Return
End

The coefficient C[i]'s are drawn from Hart #4941.1
The relative error is <= 10**-9,54,

B.1.8 DATAN2 -- Double-Precision Floating-Point Arc Tangent with Two
Parameters

If Y =0 or X/Y > 2*%*25, DATAN2(X,Y) = pi/2 * (sign X)

If Y > 0 and X/Y <= 2*%%25, DATAN2(X,Y) = DATAN(X/Y)

If Y < 0 and X/Y <= 2**25, DATAN2(X,Y) = pi * (sign X)
+ DATAN (X/Y)

1 Hart, Computer Approximations p. 267.

B-3

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.1.9 ALOGl0 =-- Real Floating—-Point Common Logarithm
ALOG10(x) is computed as:

ALOGl0(E) * ALOG(X)
where:

E = 2,718, the base of the natural log system.

See the description of ALOG (Section B.1.21) for the complete
algorithm.,

B.1.10 DLOGl0 -- Double-Precision Floating-Point Common ﬁogarithm
DLOG10 (X) is computed as:

DLOG1l0 (E) * DLOG (X)
where:

E = 2.718, the base of the natural log system.

See the description of DLOG (Section B.1.22) for the complete
algorithm.

B.l1.11 COS =~ Real Floating-Point Cosine
COS (X) is computed as:
SIN(X+pi/2)

See the description of SIN (Section B.1.23) for the complete
algorithm.

B.1.12 DCOS -- Double-Precision Floating-Point Cosine
DCOS (X) is computed as:
DSIN (X+pi/2).

See the description of DSIN (Section B.l1.24) for the complete
algorithm.

B.1.13 EXP -- Real Floating~Point Exponential
EXP(X) is computed as:
If X > 88.028, overflow occurs

If X <= -88.5, EXP(X) = 0
If ABS(X) < 2**-28, EXP(X) = 1

ALGORITHMS FOR APPROXIMATION PROCEDURES

Otherwise:

EXP(X) = 2%*Y * 2%%7 % 2%y

where:
Y = INTEGER(X*LOG2(E))
V = FRAC(X*LOG2(E)) * 16
2 = INTEGER(V)/16
W = FRAC(V)/1l6
P+wQ
2*%*y =
P-wQ

P and Q are first degree polynomials in W**2,
The coefficients of P and Q are drawn from Hart #1121.l

Powers of 2**(1/16) are obtained from a table. All arithmetic is done

in double precision and then rounded to single precision at the end of
calculation. The relative error is less than or equal to 10**-16.4.

B.1.14 DEXP -- Double-Precision FPloating-Point Exponential
See the description of EXP (Section B.1l.13). The approximation is

identical except that there is no conversion to single precision at
the end.

B.1.15 COSH ~-- Real Floating~Point Hyperbolic Cosine
COSH(X) is computed as:
If ABS(X) < 2*%*-11, COSH(X) =1
If 2**~11 <= ABS(X) < 0.25,
COSH(X) = DIGITAL's approximation?
If 0.25 <= ABS(X) <= 87.0,
COSH(X) = (EXP(X) + EXP(-X))/2
If 87.0 < ABS(X) and ABS(X) - LOG(2) < 87,
COSH(X) = EXP(ABS(X) - LOG(2))

If 87.0 < ABS(X) and ABS(X) - LOG(2) >= 87, then overflow

B.1.16 DCOSH -~ Double Floating-Point Hyperbolic Cosine
DCOSH(X) is computed as:
If ABS(X) < 2**-27, DCOSH(X) =1

If 2%*-27 <= ABS(X) < 0.25,
DCOSH(X) = DIGITAL's approximation?

1 Hart, Computer Approximations, p. 206.

This approximation is proprietary.

B=-5

1f
If
1f
B.1.17
SINH (X)
1f
If
1f

If

If

B.1l.18

ALGORITHMS FOR APPROXIMATION PROCEDURES
0.25 <= ABS(X) <= 87.0,
DCOSH(X) = (DEXP(X) + DEXP(-X))/2

87.0 < ABS(X) and ABS(X) - LOG(2) < 87,
DCOSH(X) = DEXP(ABS(X) - LOG(2))

87.0 < ABS(X) and ABS(X) - LOG(2) >= 87, then overflow

SINH ~- Real Floating-Point Hyperbolic Sine
is computed as:
ABS(X) < 2%*=]1], SINH(X) = X

2%*-11 <= ABS(X) < 0.25,
SINH(X) = DIGITAL's approximation?

0.25 <= ABS (X) <= 87.0,
SINH(X) = (EXP(X) - EXP(-X))/2

87.0 < ABS(X) and ABS(X) - LOG(2) < 87,
SINH(X) = sign(X) * EXP(ABS(X) =~ LOG(2))

87.0 < ABS(X) and ABS(X) - LOG(2) >= 87, then overflow

DSINH -~ Double~Precision Floating=-Point Hyperbolic Sine

DSINH(x) is computed as:

If
If

If

if

If

B.1.19

TANH (X)

If

If
If

If

ABS (X) < 2**-27, DSINH(X) = X

2*%*-.27 <= ABS(X) < 0.25,
DSINH(X) = DIGITAL's approximation

0.25 <= ABS (X) <= 87.0,
DSINH(X) = (DEXP(X) - DEXP(-X))/2

87.0 < ABS(X) and ABS(X) - LOG(2) < 87,
DSINH(X) = sign(X) * DEXP(ABS(X) - LOG(2))

87.0 < ABS(X) and ABS(X) - LOG(2) >= 87, then overflow

TANH -- Real Floating-Point Hyperbolic Tangent

is computed as:

ABS (X) <= 2**-14, then TANH(X) = X

2**~14 < ABS(X) <= 0.25, then TANH(X) = SINH(X) / COSH(X)

0.25 < ABS(X) < 16.0, then
TANH (X) = (EXP(2*X) - 1)/(EXP(2*X) + 1)

16.0 <= ABS(X), then TANH(X) = sign(X) * 1

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.1.20 DTANH -- Double-Precision Floating-Point Hyperbolic Tangent
DTANH (X) is computed as:

If ABS(X) <= 2*%*-14, then DTANH(X) = X

If 2*%*~14 < ABS(X) <= 0.25, then DTANH(X) = DSINH(X)/DCOSH(X)

If 0.25 < ABS(X) < 16.0, then
DTANH (X) = (DEXP(2*X) - 1)/(DEXP(2*X) + 1)

If 16.0 <= ABS(X), then DTANH(X) = sign(X) * 1

B.1.21 ALOG -- Real Floating-Point Natural Logarithm
ALOG(x) 1s computed as:

If X <= 0, an error is signaled.

Therefore, let X = Y * (2%*A)

where:

1/2 <= Y <1

Then LOG(X) = A * LOG(2) + LOG(Y)

If ABS(X~-1) <= 0.25, let W = (X-1)/(X+1)

Then, LOG(X) = W * SUM(C[i] * W**(2*i))

(Y-SQRT(2)/2) / (¥+SQRT (2) /2)

Otherwise, let W

Then, LOG(X) = A * LOG(2) - 1/2 * LOG(2) +
W * SUM C[i] * W**(2*i)

The coefficients are drawn from Hart #2662.1
The polynomial approximation used is of degree 4.

The relative error is less than or equal to 10**-9.9.

B.1.22 DLOG -~ Double-Precision Floating-Point Natural Logarithm
DLOG(x) is computed as:
If X <= 0, an error is signaled.
Therefore, let X = Y * (2%*3)
where:
1/2 <= Y <1

Then, DLOG(X) = A * DLOG(2) + DLOG(Y)

1 Hart, Computer Approximations, p. 227.

B-7

ALGORITHMS FOR APPROXIMATION PROCEDURES

If ABS(X-1) <= 0.25, then let W = (X-1)/(X+1)
Then DLOG(X) = W * SUM (C[i] * W¥*(2%i))
Otherwise, let W = (Y - DSQRT(2)/2)/(Y + DSQRT(2)/2)

Then DLOG(X) = A * DLOG(2) - 1/2 * DLOG(2) +
W * SUM(C[i] * Wx*(2%j)

The coefficients are drawn from Hart #2662.1
The polynomial approximation used is of degree 6.

~ The relative error is less than or equal to 10**-9,9,

B.1.23 SIN -- Real Floating-Point Sine
SIN(X) is computed as:
Let Q = INTEGER(ABS (X)/(pi/2))

where:

0 for first quadrant
1 for second gquadrant
2 for third quadrant
3 for fourth quadrant

[eJ ool e]
[I |

Let Y = FRACTION((ABS(X)/(pi/2))
If ABS(Y) < 2**-14, the sine is computed as:

SIN(X) = S * (pi/2)

S =Y ifQg=20

S = 1-Y if Q=1

S = ~Y if Q=2

S = ¥Y-1 if Q=3

For all other cases:

SIN(X) = P(Y*pi/2) ifQg=20
SIN(X) = P((1l-Y)*pi/2) ifQq=1
SIN(X) = P(=Y*pi/2) ifQg=2
SIN(X) = P((Y-1)*pi/2) if Q=3

where:
P = Y*SUM(C[i]*(Y**(2*i))) for i = 0:4

The coefficients are taken from Hastings.2
The polynomial approximation used is of degree 4.

The relative error is less than or equal to 10**-8. The result
guaranteed to be within the closed interval -1.0 to +1.0.

1 Hart, Computer Approximations, p. 227.

2 Hastings, C. et al., Approximation for Digital Computers
(Princeton University Press, 1955), Sheet 16 (Part 2, p. 140).

B-8

is

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.1.24 DSIN -- Double-Precision Floating-Point Sine
DSIN(X) is computed as:

Let Q = INTEGER(ABS (X)/(pi/2))

where:
Q = 0 for first guadrant
Q = 1 for second gquadrant
Q = 2 for third quadrant
Q = 3 for fourth quadrant

-Let Y = FRACTION ((ABS(X)/(pi/2))
If ABS(Y) < 2**-28, the sine is computed as:

DSIN(X) = 8 * (pi/2)

S =Y ifQ=20

s = 1-Y ifog=1

S = =Y ifQ=2

s = ¥-1 if Q=3

For all other cases:

DSIN(X) = P(¥Y*pi/2) ifQg=0
DSIN(X) = P((1-Y)*pi/2) ifQg=1
DSIN(X) = P(-Y*pi/2) if Q=2
DSIN(X) = P((¥Y-1)*pi/2) if Q=3

where:
P = Y*SUM(C[Li]*(Y**(2%i))) for i = 0:8
The coefficients are take£ from Hastings.
The polynomial approximation used is of degree 8.

The relative error is less than or equal to 10**-18.6. The result
guaranteed to be within the closed interval =-1.0 to +1.0.

No loss of precision occurs if X < 2 * pi *256,

B.1.25 SQRT == Real Floating-Point Square Root

SQRT (X) is computed as:
If X <= 0, an error is signaled. Therefore, let X = -X .
Let X = 2%*K * P
where:

K is the exponential part of the floating-point data.
F is the fractional part of the floating—-point data.

is

ALGORITHMS FOR APPROXIMATION PROCEDURES

If K is even:

X = 2%*(2P) * P
SQRT (X) = 2**P * SQRT (F)

1/2 <= F <1
where:
P = K/2.
If K is odd:

X = 2%%(2P+1) * F = 2**(2P+2) * (F/2)
SQRT (X) = 2**(P+1) * SQRT(F/2)

1/4 <= F/2 < 1/2

Let F'

A*F + B, when K is even:

.453730314 (octal)
.327226214 (octal)

w >
uon
co

Let P’ A* (F/2) + B, when K is odd:

.650117146 (octal)
.230170444 (octal)

[
[1]
oo

Let K' P, when K is even
Let K' = P+1, when K is odd

Let Y[0] = 2%*K' * FP' be a straight line approximation within the

given interval wusing coefficients A and B, which minimize the

absolute error at the midpoint and endpoint.

Starting with Y[0], two Newton-Raphson iterations are performed:
Y[n+l] = 1/2 * (Y[n] + X/Y[n])

The relative error is < 10%**-8.

B.1.26 DSQRT ==~ Double-Precision Floating-Point Square Root
DSQRT (x) is computed as:
If X <= 0, an error is signaled. Therefore, let X = =X .
Let X = 2**K * P where:

K is the exponential part of the floating-point data.
F is the fractional part of the floating data.

If K is even:

X = 2*%%(2P) * F
DSQRT (X) = 2**P * DSQRT (F)

1/2 <= F < 1

ALGORITHMS FOR APPROXIMATION PROCEDURES

If K is odd:

X = 2*%% (2P+1) * F = 2%%(2P+2) * (F/2)
DSQRT (X) = 2**(P+1) * DSQRT(F/2)

1/4 <= F/2 < 1/2

Let F' = A*F + B, when K is even:
A = 0.453730314 (octal)
B = 0.327226214 (octal)
Let F' = A*(F/2) + B, when K is odd: .
A = 0.650117146 (octal)
B = 0.230170444 (octal)
Let K' = P, when K is even.
Let K' = P+1, when K is odd.

Let Y[0] = 2%*K' * F' be a straight line approximation within the
given interval using coefficients A and B, which minimize the
absolute error at the midpoint and endpoint.

Starting with Y([0], three Newton-Raphson iterations are
per formed:

Y{n+l] = 1/2 * (Y[n] + X/¥[n])

The relative error is < 1l0**-17.

B.1.27 TAN =-- Real Floating-Point Tangent
TAN (X) is computed as:
SIN (X)/COS (X)

If COS(X) = 0 and SIN(X) 0; error, return +
If COS(X) = 0 and SIN(X) < 0; error, return -

where:

is the largest representable number.

B.1l.28 DTAN -- Double~Precision Floating-Point Tangent
DTAN (X) is computed as:
DSIN (X)/DCOS {X)

If DCOS(X) = 0 and DSIN(X) O0; error, return + If DCOS(X) = 0 and
DSIN(X) < 0; error, return -

where:

is the largest representable number.

B-11

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.2 COMPLEX~VALUED PROCEDURES
B.2.1 CSQRT -- Complex Square Root Function

CSQRT is computed as:
ROOT = SQRT ((ABS (r) + CABS ((r,i))) / 2)

Q=1 / (2 * ROOT)

r i CSQRT ((r,i))
>=0 any (ROOT, Q)

<0 >=0 (Q, ROOT)

<0 <0 (~Q, -ROOT)

B.2.2 CSIN == Complex Sine

CSIN(2) is computed as:
(SIN(X) * cosh(Y), iCOS(X) * sinh(Y))

where:
Z = X = i¥
cosh(Y) = (EXP(Y) + (L.0/EXP(Y)))/2
sinh(Y) = (EXP(Y) - (1.0/EXP(Y)))/2

B.2.3 CCOS -- Complex Cosine

CCOS (Z) is computed as:
(COS (X) * cosh(Y), i(~SIN(X) * sinh(Y))

where:
Z =X + i¥
cosh(Y) = (EXP(Y) + (1L.0/BEXP(Y)))/2.0
sinh(Y) = (EXP(Y) - (1.0/EXP(Y)))/2.0

B.2.4 CLOG =-- Complex Logarithm

CLOG(Z) is computed as:
(ALOG(CABS (Z)), iATAN2(X,Y))

where:

zZ =X+ iY

B-12

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.2.5 CEXP -- Complex Exponential
CEXP(2) is computed as:

EXP(X) * (COS(Y) +iSIN(Y))
where:

Z =X+ iy

B.3 RANDOM NUMBER GENERATORS

Two random number generators are available with FORTRAN-77: RANDOM
and F77RAN. They are described in the following sections.

B.3.1 RANDOM -- Uniform Pseudorandom Number Generator

This procedure is a general random number generator of the
multiplicative congruential type. This means that it tends to be
fast, but prone to nonrandom sequences when considering triples of
numbers generated by this method. This procedure is called again to
obtain the next pseudorandom number. The 32-bit seed 1is updated
automatically. The result is a floating-point number that Iis
uniformly distributed in the range between 0.0 inclusive and 1.0
exclusive. There are no restrictions on the seed, although it should
be initialized to different values on separate runs in order to obtain
different random sequences. RANDOM uses the following to update the
seed passed as the parameter:

SEED = 69069 * SEED + 1 (MOD 2**32)

The value of SEED is a 32-bit number whose high-order 24 bits are
converted to floating point and returned as the result.

RANDOM is invoked in one of three ways:
£ RAN (Jj)

£ RAN(il,1i2)
CALL RANDU(il,i2,f)

where:

f is a real, floating-point, random number
j is an INTEGER*4 seed
i1,i2 are INTEGER*2 seeds.

Notes:

1. Because the resuit is never 1.0, a simple way to get a
uniform random integer selector is to multiply the value
returned by the random number function by the number of

€3888¢tions" O%s EX3™BL®/nadf, 2enBRITRRT EB21S51nd"ONForthXR
statement will work:

GO ™0 (1,2,3,4,5),1 + IFIX(5.*RAN(ISEED))
The explicit IFIX is necessary before adding 1 in order to

avoid a possible rounding during the normalization after the
addition of floating-point numbers.

B~-13

ALGORITHMS FOR APPROXIMATION PROCEDURES

AN

2. For further information on congruential generators and their
limitations, see:

G. Marsaglia, "Random Number Generation", in The
Encyclopedia of Computer Science, ed., Anthony Ralston
(Petrocelli/Charter, 1976), pp. 1192-1197.

B.3.2 - F77RAN -~ Optional Uniform Pseudorandom Number Generator

This optional procedure is a general random number generator of the
multiplicative congruential type. This procedure was the standard
random number generator previous to Version 3.0 of PDP-11 FORTRAN and ,
is included only for compatibility purposes as the file F77RAN.OBJ.

If I2=0, SEED = 2**16+3
otherwise, SEED = (2**16+3) * SEED (MOD 2*%*3])

The value of SEED is a 32~bit number whose high-order 24 bits are
converted to floating point and returned as the result.

F77RAN is invoked in one of two ways:

f= RAN (il,i2)
CALL RANDU (il,i2,f)

where:

f is a real floating-point, random number.
il, i2 are INTEGER*2 seeds. Op

APPENDIX C

DIAGNOSTIC MESSAGES

C.1 DIAGNOSTIC MESSAGE OVERVIEW

Diagnostic messages related to a FORTRAN-77 program can come from the
compiler or from the OTS . The compiler detects syntax errors in a
source program -- that is, such errors as unmatched parentheses,
illegal characters, misspelled keywords, and missing or 1illegal
parameters. The OTS reports errors that occur during execution.

C.2 COMPILER DIAGNOSTIC MESSAGES

Compiler diagnostic messages are generally self-explanatory; they
specify the nature of a detected error and the action taken by the
compiler. Besides reporting errors detected in source-program syntax,
the compiler issues messages for errors such as I/0 errors and stack
overflow that involve the compiler itself.

C.2.1 Source Program Diagnostic Messages

The compiler distinguishes three classes of source-program errors,
reported as follows:

F - Fatal errors that you must correct before a program can be
compiled. If any F-class errors are reported in a
compilation, the compiler produces no object file.

E - Errors that should be corrected. The program is not 1likely
to run as intended with E-class errors; however, an object
file is produced.

W - Warning messages that are issued for statements using
nonstandard, though accepted, syntax and for statements
corrected by the compiler. These statements may not have the
intended result and you should check them before attempting
execution. These messages are produced only when the warning
switch (/W) is set.

I - Information messages that although they do not call for
corrective action, inform you that a correct FORTRAN-77
statement may have unexpected results. These messages are
produced only when the warning switch (/W) is set.

Errors detected during the initial phase of compiling appear
immediately after the source line in which the error is presumed to
have occurred; all other diagnostic messages appear immediately after
the source listing.

DIAGNOSTIC MESSAGES

Diagnostic messages issued by the compiler consist of two lines: The
first line gives the error number and error message text; the second
line contains a short section of the source line or the 1line number
and/or the symbol that caused the diagnostic message.

One of the most frequent reasons for syntax errors, typing mistakes,
can sometimes cause the compiler to give misleading diagnostic
messages. You should avoid the following common typing mistakes:

® Missing commas or parentheses in complicated expressions or
FORMAT statements.

® Particular instances of misspelled variable names. Because
the compiler usually cannot detect these errors, execution may
also be affected.

® Inadvertent line continuation marks, which can cause error
messages for the preceding lines.

® Typing the uppercase letter O for the digit 0, or the reverse.
If your terminal does not differentiate between the number and
the letter, you may find it difficult to detect this error.

The presence of invalid ASCII characters in the source program can
also cause misleading diagnostics. Nonprinting ASCII control
characters except tab and form feed are not permitted in a FORTRAN=-77
source program. If such control characters are detected, they are
replaced by the question mark (?). However, because a question mark
cannot occur in a FORTRAN-77 statement, this replacement can cause a
syntax error.

Example C-1 shows the form of source-program diagnostic messages as
they are displayed at your terminal in interactive mode. Example C-2
shows how these messages appear in listings.

Example C~=l: Sample Diagnostic Messages (Terminal Format)

R F77
*COMERR=COMERR/W/X

F77 -- ERROR 63-E Format item contains meaningless character
[RSTUVWXYZ',I4,M] in module ERRCHK at line §
F77 -- ERROR 85-W Name longer than 6 characters
[,LONGIDENTIFIER] in module ERRCHK at line 12
ERROR 26-W No path to this statement
in module ERRCHK at line 17
F77 -- ERROR 10-E Multiple definition of a statement label, second
ignored [FORMAT] in module ERRCHK at line 20
F77 -- ERROR 50-F Undefined statement label
[102] in module ERRCHK
F77 == 5 Errors COMERR,FOR; 3

F77 -

DIAGNOSTIC MESSAGES

Example C-2: Sample Diagnostic Messages (Listing Format)

0001 PROGRAM ERRCHK
0002 PARAMETERS T=,.TRUE. ,F=.FALSE.
0003 INTEGER*4 TT,FF,I,J,II
0004 DATA TT,FF/S,F/
C
0005 501 FORMAT ('1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ' ,I14,M)
F77 -- ERROR 63-E Format item contains meaningless character
[RSTUVWXYZ',I4,M] in module ERRCHK at line §
0006 OPEN (UNIT=1,NAME='FILEl.DAT’ ,ACCESS='DIRECT',
1 RECORDSIZE=2) ,
0007 WRITE(1'1l)TT,FF
c
0008 TYPE 501,TT,FF
0009 TYPE 501,TT,FF
c
0010 CALL SUBR
0011 READ(1,102)1,J,K
0012 READ(1,102,ERR=24)1,J,LONGIDENTIFIER

F77 -- ERROR 85-W Name longer than 6 characters
[,LONGIDENTIFIER] in module ERRCHK at line 12

0013 24 ASSIGN 92 TO K
0014 I=0

0015 J=3

0016 GO TO 24

0017 II=J/T

F77 -- ERROR 26~W No path to this statement
in module ERRCHK at line 17

0018 73 XX=Y/X
0019 TYPE 502,1II,XX,ZZ
0020 501 FORMAT (2X,L2,2X,L2)

F77 -- ERROR 10-E Multiple definition of a statement label, second
ignored [FORMAT] in module ERRCHK at line 20

0021 502 FORMAT (2X,I5,2X,F,2X,F)
0022 CLOSE (UNIT=1,DISP="'DELETE")
0023 92 STOP 'OK’

0024 END

F77 == ERROR 50-F Undefined statement label
[102] in module ERRCHK

F77 == 5 Errors COMERR,.FOR;3

The compiler diagnostic messages are as follows:
1 W Redundant continuation mark ignored

A continuation mark is present where an initial 1line is
required. The continuation mark is ignored.

2 W Invalid statement number ignored

An improperly formed statement number is present in columns 1-5
of an initial line. The statement number has been ignored.

3 E Too many continuation lines, remainder ignored
More continuation lines are present than were specified by the

/C:n qualifier. Up to 99 continuation lines are permitted.
The default value is 19,

10

11

12

13

14

DIAGNOSTIC MESSAGES

Source line too long, compilation terminated

A source line contains more than 88 characters. Note: The
compiler examines only the first 72 characters of a line.

Statement out of order, statement ignored

Statements must appear in the order specified in the PDP-11
FORTRAN-77 Language Reference Manual.

Statement not valid in this program unit, statement ignored

A program unit contains a statement that is not allowed; for
example, an executable statement in a BLOCK DATA subprogram.

Missing END statement, END is assumed

An END statement is missing at the end of the last input file
and has been inserted.

Extra characters following a valid statement

Extraneous text is present at the end of a syntactically valid
statement. Check the entire statement for typing or syntax
errors.

Invalid initialization of variable not in COMMON

An attempt was made in a BLOCK DATA subprogram to initialize a
variable that is not in a COMMON block..

Multiple definition of a statement label, second ignored

Two or more statements have the same statement 1label. The
first occurrence of the label is used.

Compiler expression stack overflow

An expression is too complex to be compiled. This error occurs
in the following cases:

® An arithmetic or logical expression is too complex.

® There are too many actual arguments in a reference to a
subprogram.

® There are too many parameters in an OPEN statement.

The expression, subprogram reference, or OPEN statement must be
simplified.

Statement cannot terminate a DO loop

The terminal statement of a DO loop cannot be a GO TO,
arithmetic IF, RETURN, DO, or END statement.

Count of Hollerith or Radix50 constant too large, reduced

The integer count preceding H or R specifies more characters
than remain in the source statement.

Missing apostrophe in character constant

A character constant must be enclosed by apostrophes.

15

16

17

18

19

20

21

22

23

24

25

26

Manual.

DIAGNOSTIC MESSAGES

Missing variable or subprogram name
A required variable name or subprogram name was not found.
Multiple declaration of data type for variable, first used

A variable cannot appear in more than one type declaration
statement. The first type declaration is used.

Constant in format item out of range

A numeric value in a FORMAT statement exceeds the allowable
range. Refer to the PDP-11 FORTRAN-77 Language Reference

Invalid repeat count in DATA'statement, count ignored

The repeat count in a DATA statement is not an unsigned nonzero
integer constant. It has been ignored.

Missing constant
A required constant was not found.
Missing variable or constant

An expression, or a term of an expression, has been omitted.
Examples:

WRITE ()
DIST = * TIME

Missing operator or delimiter symbol
Two terms of an expression are not Separated by an operator, or
a punctuation mark (such as a comma) has been omitted.
Examples:

CIRCUM = 3.14 DIAM

Multiple declaration of name

A name appears in two or more inconsistent declaration
statements,

Syntax error in IMPLICIT statement

Improper syntax was used in an IMPLICIT statement. Refer to
the PDP-11 FORTRAN-77 Language Reference Manual.,

More than 7 dimensions specified, remainder ignored
An array may have up to seven dimensions.
Non-constant subscript where constant required

In the DATA and EQUIVALENCE statements, subscript expressions
must be constant.

No path to this statement

Program control cannot reach the statement. The statement is
deleted.

27

28

29

30

31

32

33

34

35

DIAGNOSTIC MESSAGES

Adjustable array bounds must be dummy arguments or in COMMON

Variables specified in dimension declarator expressions must
either be subprogram dummy arguments or appear in COMMON.

Overflow while converting constant or constant expression

The specified value of a constant is too large or too small to
be represented.

Inconsistent usage of statement label

Labels of executable statements have been confused with 1labels
of FORMAT statements.

Missing exponent after E or D

A floating-point constant is specified in E or D notation, but
the exponent has been omitted.

Invalid character used in hex, octal, or Radix-50 constant
® The valid Radix-50 characters are the 1letters A-Z, the
digits 0-9, the dollar sign, the period, and the space,
A space is substituted for the invalid character.
@ The valid hexadecimal characters are 0-9, A-F, a-f,.
® The valid octal characters are 0-7.

Program storage requirements exceed addressable memory

The storage space allocated to the variables and arrays of the
program unit exceeds the addressing range of the PDP-11.

Variable inconsistently equivalenced to itself

The EQUIVALENCE statements of the Program specify inconsistent
relationships among variables and array elements., Example:

EQUIVALENCE (A1), A(2))
Undimensioned array or function definition out of order
Either a statement function definition has been found © among
executable statements, or an assignment statement has been
detected that involves an array for which dimension information
has not been given.

Format specifier in error

The format specifier in an I/0 statement is invalid. It must
be one of the following:

® Label of a FORMAT statement
® * (list-directed)

® A run-time format specifier: variable, array, or array
element

@ Character constant containing a valid FORMAT
specification

Mg

36

37

38

39

40

41

42

43

44

45

46

47

48

49

DIAGNOSTIC MESSAGES

Subscript or substring expression value out of bounds

An array element has been referenced which is not within the
specified dimension bounds.

Invalid equivalence of two variables in COMMON
Variables in COMMON cannot be equivalenced to each other.
EQUIVALENCE statement incorrectly expands a COMMON block

A COMMON block cannot be extended beyond its beginning by an
EQUIVALENCE statement.

Allocation begins on a byte boundary
A non-BYTE quantity has been allocated to an odd byte boundary.
Adjustable array used in invalid context

A reference is made to an adjustable array in a context where
such a reference is not allowed.

Subscripted reference to non-array variable

A variable that is not defined as an array cannot appear with
subscripts.

Number of subscripts does not match array declaration

More or fewer dimensions are referenced than were declared for
the array.

Incorrect length modifier in type declaration

The length specified in a type declaration statement is not
compatible with the data type specified. Example:

INTEGER PIPES*8
Syntax error in INCLUDE file specification

The file name string is not acceptable (invalid syntax, invalid
qualifier, undefined device, and so forth).

Missing separator between format items

A comma or other separator character has been omitted between
fields in a FORMAT statement.

Zero-length string

The length specification of a character, Hollerith, or Radix-50
constant must be nonzero.

Missing statement label

A statement-label reference 1is not present where one is
required.

Missing keyword

A keyword, such as TO, is omitted from a statement such as
ASSIGN 10 TO I.

Non~-integer expression where. integer value required

c-7

50

51

52

53

54

55

56

57

58

59

60

61

62

DIAGNOSTIC MESSAGES

An expression required to be of type INTEGER is of another data
type.

Undefined statement label

A reference is made to a statement label that is not defined in
the program unit.

Number of names exceeds number of values in DATA statement

The number of constants specified in a DATA statment must match
the number of variables or array elements to be initialized.
The remaining variables and/or array elements are not
initialized.

Number of values exceeds number of names in DATA statement

The number of constants specified in a DATA statement must
match the number of variables or array elements to be
initialized. The remaining constant values are ignored.
Statement cannot appear in logical IF statement

The statement contained in a logical IF must not be a DO,
logical IF, or END statement.

Unclosed DO loops or block IF

The terminal statement of a DO loop or the ENDIF statement of
an IF block was not found.

Assignment to DO variable within loop

The control variable of a DO loop has been assigned a value
within the loop.

Variable name, constant, or expression invalid in this context

A quantity has been incorrectly used: £for example, the name of
a subprogram where an arithmetic expression is required.

Operation not permissible on these data types

An invalid operation, such as .AND. on two real variables, is
specified.

Left side of assignment must be variable or array element

The symbolic name to which the wvalue of an expression is
assigned must be a variable or array element.

Syntax error in I/O list
Improper syntax was detected in an I/O list.
Constant size exceeds variable size in DATA statement

The size of a constant in a DATA gtatement is greater than that
of its corresponding variable.

String constant truncated to maximum length

The maximum length of a Hollerith constant or character
constant is 255 characters; of a Radix~50 constant, 12.

Lower bound greater than upper bound in array declaration

Cc-8

63

64

65

66

67

68

69

70

71

72

73

74

DIAGNOSTIC MESSAGES
The upper bound of a dimension must be greater than or equal to
the lower bound.
Format item contains meaningless character

An invalid character or a syntax error is present in a FORMAT
statement.

Format item cannot be signed
A signed constant is valid only with the P format code.
Unbalanced parentheses in format list

The number of right parentheses does not match the number of
left parentheses.

Missing number in format list
Example: FORMAT (F6.)

Extra number in format list
Example: FORMAT (I4,3)

Extra comma in format list
Example: FORMAT (I4,)

Format groups nested too deeply

Too many parenthesized format groups have been nested. Formats
can be nested to eight levels.

END= or ERR= specification given twice, first used

Two instances of either END= or ERR= were found. Control is
transferred to the location specified in the first occurrence.

Invalid I/0 specification for this type of I/0 statement

A syntax error is in the portion of an I/0 statement preceding
the I/0 list.

Arguments incompatible with function, assumed user supplied

A function reference has been made using an intrinsic function
name, but the argument list does not agree in order, number, or
type with the intrinsic function requirements. The function is
assumed to be supplied by you as an external function.

ENTRY within DO loop or IF block statement ignored

An ENTRY statement is not permitted within the range of a DO
loop.

Statement too complex

The statement is too large to compile. It must be subdivided
into several statements.

75

76

77

78

79

80

81

82

83

84

85

86

87

DIAGNOSTIC MESSAGES

Too many named COMMON blocks

Reduce the number of named COMMON blocks.

INCLUDE files nested too deeply

Reduce the level of INCLUDE nesting or increase the number of
continuation lines permitted. Each INCLUDE file requires space
for approximately two continuation lines.

Duplicated keyword in OPEN/CLOSE statement

A keyword subparameter of the OPEN or CLOSE statement cannot be
specified more than once.

DO and IF statements nested too deeply

DO loops and IF blocks cannot be nested more than 20 levels.

DO or IF statements incorrectly nested

The terminal statements of a nest of DO loops or IF blocks are
incorrectly ordered, or a terminal statement precedes its DO or
block IF statement.

UNIT= keyword missing in OPEN/CLOSE statement

The UNIT= subparameter of the OPEN and CLOSE statement must be
present.

Letter mentioned twice in IMPLICIT statement, last used

An initial letter has been given an implicit data type more
than once. The last data type given is used.

Incorrect keyword in CLOSE statement

A subparameter that can be specified only in an OPEN statement
has been specified in a CLOSE statement.

Missing I/0 list
An I/0 list is not present where one is required.
Open failure on INCLUDE file

The file specified could not be opened. Possibly the file
specification is incorrect, the file does not exist, the volume
is not mounted, or a protection violation occurred.

Name longer than 6 characters
A symbolic name has been truncated to six characters.
Invalid virtual array usage

A virtual array has been used in a context that is not
permitted.

Invalid key specification

The key value in a keyed 1I/0 statement must be a character
constant, a BYTE array name, Or an integer expression.

88

89

90

91

92

93

94

DIAGNOSTIC MESSAGES

Non-logical expression where logical value required

An exéression that must be of type LOGICAL is of another data
type.

Invalid control structure using ELSEIF, ELSE, or ENDIF
The order of ELSEIF, ELSE, or ENDIF statement is incorrect.

ELSEIF, ELSE, and ENDIF statements cannot stand alone. ELSEIF
and ELSE must be preceded by either a block IF statement or an
ELSEIF statement. ENDIF must be preceded by either a block IF,
ELSEIF, or ELSE statement. Examples:

DO 10 I=1,10
J=J+1I
ELSEIF (J.LE.K)THEN
ERROR: ELSE IF preceded by a DO statement.
IF (J.LT.K)THEN
J=I+J
ELSE
J=I-J
ELSEIF (J.EQ.K)THEN
ENDIF

ERROR: ELSEIF preceded by an ELSE statement.
Name previously used with conflicting data type

A data type is assigned to a name that has already been used in
a context that required a different data type.

Character name incorrectly initialized with numeric value

Character data with a length greater than 1 is initialized with
a numeric value in a data statement. Example:

CHARACTER*4 A
DATA A/14/

Substring reference used in invalid context

A substring reference to a variable or array that is not of
data type CHARACTER has been detected. Example:

REAL X (10)
Y=X(J:K)

Character substring limits out of order

The first character position of a substring expression is
greater than the last character position. Example:

C(5:3)
Mixed numeric and character elements in COMMON

A COMMON block must not contain both numeric and character
data.

C-11

95

96

97

98

99

100

101

102

103

104

105

106

107

DIAGNOSTIC MESSAGES

Invalid ASSOCIATEVARIABLE specification

An ASSOCIATEVARIABLE specification in an OPEN or DEFINE FILE
statement is a dummy argument or an array element.

ENTRY dummy variable previously used in executable statement
The dummy arguments of an ENTRY statement must not have been
used previously in an executable program in the same program
unit.

Invalid use of intrinsic function as actual argument

A generic intrinsic function name was used as an actual
argument.

Name used in INTRINSIC statement is not an intrinsic function

A function name that appears in an INTRINSIC statement is not
an intrinsic function.

Non-blank characters truncated in string constant

A character or Hollerith constant was converted to a data type
that was not large enough to contain all significant digits.

Non-zero digits truncated in hex or octal constant

An octal or hexadecimal constant was converted to a data type
that was not large enough to contain all significant digits.

Mixed numeric and character elements in EQUIVALENCE

Numeric and character variable and array elements cannot be
equivalenced to each other.

Arithmetic expression where character value required

An expression that must be of data type CHARACTER was another
data type.

Assumed size array name used in invalid context

An assumed size array name was used where the size of the array
was also required -- for example, in an I/O list.

Character expression where arithmetic value required

An expression that must be arithmetic (integer, real, logical,
or complex) is of data type character.

Function or entry name not numeric
Functions of data type character are not allowed.
Default STATUS='UNKNOWN' used in OPEN statement

The OPEN statement default STATUS='UNKNOWN' may cause an old
file to be modified inadvertently.

Extension to FORTRAN-77: tab indentation or lowercase source

The use of tab characters or lowercase source letters in the
source code is an extension to the ANSI FORTRAN standard.

108 1

109 I

110 I

111 I

112 1

113 1

114 1

DIAGNOSTIC MESSAGES

Extension to FORTRAN-77: non-standard comment

The ANSI FORTRAN standard allows only the characters C and * to
begin a comment 1line; D, d, and ! are extensions to the
standard.

Extension to FORTRAN-77: non-standard statement type

A nonstandard statement type was used. See Appendix G.
Extension to FORTRAN-77: non-standard lexical item

One of the following nonstandard lexical items was used:

® The single-quote form of record specifier in a direct
access I/0 statement

¢ A variable format expression
Extension to FORTRAN-77: non-standard operator

The operator .XOR. is an extension to the ANSI FORTRAN
standard. The standard form of .XOR. 1is .NEQV..

Extension to FORTRAN-77: non-standard keyword
A nonstandard keyword was used. See Appendix G.
Extension to FORTRAN~77: non-standard constant

The following constant forms are extensions to the ANSI FORTRAN
standard:

Hollerith nH..co.

Typeless 'xxxx'X or '0000'O
Octal "oooo or Ooocoo
Hexadecimal ZXXXX

Radix-50 NR.eeos

Complex with
PARAMETER components

Extension to FORTRAN-77: non-standard data type specification

The following data type specifications are extensions to the
ANSI FORTRAN standard. The acceptable equivalent in the
standard language is given where appropriate. This message is
issued when these type specifications are used in the IMPLICIT
statement or in a numeric type statement that contains a data
type length override.

Extension Standard

BYTE

LOGICAL*1

LOGICAL*2 LOGICAL

LOGICAL*4 LOGICAL (with /T specified only)
INTEGER*2 INTEGER

INTEGER*4 INTEGER (with /T specified only)
REAL*4 REAL

REAL*8 DOUBLE FPRECISION

COMPLEX*8 COMPLEX

C-13

DIAGNOSTIC MESSAGES

115 I Extension to FORTRAN-77: non-standard syntax
One of the following syntax extensions was specified:

PARAMETER name = value No parentheses around
name = value.

IMPLICIT type letter See Section G.2.1 for
explanation.

CALL name (argl,,arg3) Null actual argument.

READ (...),iolist Comma between I/O control
and element lists.

el * -e2 Two consecutive operators.
116 I Extension to FORTRAN-77: non-standard FORMAT statement item

The following format field descriptors are extensions to the
ANSI FORTRAN standard:

S, Q, o s 2 All forms
(A,L,I,F,E,G,D) Default field width forms
P Without scale factor

C.2.2 Compiler-Fatal Diagnostic Messages

Certain error conditions can occur during compilation that are so
severe that the compilation must be terminated immediately. The
following messages report such errors. Included are hardware error
conditions, conditions that may require you to modify the source
program, and conditions that are the result of software errors.

F77 -- FATAL 0l * Open error on work file
F77 -- FATAL 02 * Open error on temp file

During the compilation process, FORTRAN-77 creates a temporary
work file and zero, one, or two temporary scratch files; the
compiler was unable to open these required files. Possibly the
volume was not mounted, space was not available on the volume, or
a protection violation occurred.

F77 -- FATAL 03
F77 -- FATAL 04
F77 -- FATAL 05
F77 -- FATAL 06
F77 =-- FATAL 07

I/0 error on work file
I/0 error on temp file
I/0 error on source file
I/0 error on object file
I/0 error on listing file

* % % * W%

I/0 errors report either hardware I/O errors or such software
error conditions as an attempt to write on a write-protected
volume.

F77 -- FATAL 08 * Compiler dynamic memory overflow
Reduce the number of continuation lines allowed, reduce the

INCLUDE file nesting depth, unload handlers, set USR SWAP, SET SL
OFF, remove FOREGROUND and SYSTEM jobs.

C-14

DIAGNOSTIC MESSAGES

F77 =-- FATAL 09 * Compiler virtual memory overflow

A single program unit is too large to be compiled. Use the /F:n
switch to increase workfile size or divide the program into
smaller units.

F77 -- FATAL 10 * Compiler internal consistency check

An internal consistency check has failed. This error should be
reported to DIGITAL in a Software Performance Report; see
Appendix G.

F77 -- FATAL 11 * Compiler control stack overflow

The compiler's control stack overflowed. Simplifying the source
program will correct the problem.

C.2.3 Compiler Limits

There are limits to the size and complexity of a single FORTRAN-77
program unit. There are also 1limits on the complexity of FORTRAN
statements. In some cases, the limits are readily described; see
Table C-l. In other cases, however, the limits are not so easily
defined.

For example, the compiler uses an external work file to store the
symbol table and a compressed representation of the source program.
The /F:n qualifier controls the size of the work file. The maximum
work file size 1is 256 decimal blocks, which provides space for
approximately 1000 lines of source code in a typical FORTRAN program
unit. If you run out of work file space, compiler fatal error 9
occurs.

Table C-1 defines the limits of the distributed compiler.

Table C-1
Compiler Limits

Language Element Limit

DO nesting 20
Block if nesting 20
Actual arguments per CALL

or function reference 32
OPEN statement keywords 16
Named COMMON blocks 45
Saved named COMMON blocks 45

(continued on next page)

DIAGNOSTIC MESSAGES

Table C-1 (Cont.) ‘
Compiler Limits

Language Element Limit
Format group nesting 8
Labels in computed or
assigned GOTO list 250
Parentheses nesting
in expressions 24
INCLUDE file nesting 10
Continuation lines 99
FORTRAN source line length 88 characters
Symbolic name length 6 characters
Constants:
Character 255 characters
Hollerith 255 characters
Radix~50 12 characters
Array dimensions 7

* C.3 OBJECT TIME SYSTEM DIAGNOSTIC MESSAGES

The following sections provide information on the formats and
contents of OTS diagnostic messages, and a list of OTS error
messages arranged by error code.

C.3.1 Object Time System Diagnostic Message Format

An OTS diagnostic message consists of several lines of information
formatted as follows:

[EXITING DUE TO] ERROR number

text

[AT PC = address]

[I/0: 1ioerr iocerrl unit filespec]
IN xxxxxx [AT [OR AFTER] yyyl
FROM xxxxxx [AT [OR AFTER] yyyl

FROM xxxxxx [AT [OR AFTER] yyyl

(In the above message prototype, fixed parts of the message are
shown in uppercase letters and variable parts in lowercase letters.)

The variable parts of the message are:
number The error number.
text A One~line description of the error.
The phrase "EXITING DUE TO" is included only when the error is

causing program termination. If a program is terminated by the 0TS,

C-16

DIAGNOSTIC MESSAGES

the termination status value is severe error.

If the OTS error results from one of the synchronous system traps or
a Floating-Point Processor trap, the program counter is shown in the

line AT PC =.

This line is produced only for errors numbered 3

through 14 and 72 through 75.

If the OTS error results from an I/O error condition detected by the
file system, the line beginning I/0: is included.

iocerr

icerrl

unit

filespec

The primary error code; this value is the F.ERR
value in the OTS work area.

The secondary error code; this wvalue 1is the
F.ERR+1 value in the OTS work area.

The logical unit on which this error occurred.

The file name, file type, and version number of
the file,

Next follows a traceback of the subprogram calling nest at the time

of the error.
shows

XXXXXX

yyy

Each line represents one level of subprogram call and

The name of the subprogram.

The name of the main program is shown as .MAIN.
unless a PROGRAM statement has been used. The
name of a subprogram is the same as the name
used in the SUBROUTINE, FUNCTION, or ENTRY
statement. Statement functions, OTS system
routines, and routines written in assembly
language are not shown in the traceback.

A prodgram unit compiled with the /S:NON switch
in effect is not included in the traceback list.

The internal sequence number of the subprogram
at which the error, call statement, or function
reference occurred.

If a program unit is compiled with the /S:ALL
switch in effect, then the text AT yyy indicates
the exact internal sequence number at which the
error occurred.

If a program unit is compiled with the /S:BLO
switch in effect, then the text AT OR AFTER yyy
indicates that the error occurred in the block
starting at sequence number yyy.

If a program unit is compiled with the /S:NAM
option in effect, then no sequence information

is available and no text or seguence number
follows the routine name.

NOTE

the case of the Floating—-Point

Processor errors, it is possible for the
internal sequence number shown in the
first traceback line to be the sequence
number of the next statement. This
results from the asynchronous

C-17

DIAGNOSTIC MESSAGES

relationship between the central
processor and the FPP, and occurs when
the CPU has started execution of the
next statement before the FPP error trap
is initiated.

Example C-3 depicts a sample terminal listing of several object time
system diagnostic messages.

Example C=3: Sample of Object Time System Diagnostic Messages

ERROR 37
Inconsistent record length
IN "ERRCHK" AT 00022

ERROR 34

Unit already open
IN "SUBR2 " AT OR AFTER 00002
FROM "SUBR1 "
FROM "ERRCHK" AT 00025

ERROR 64
Input conversion error
IN "ERRCHK" AT 00026

ERROR 24
End-of-file during read
LUN 1,DK: FILE)l.DAT

IN "ERRCHK" AT 00028

ERROR 73
Floating zero divide
at PC = 024656
IN "ERRCHK" AT 00036

ERROR 84

Square root of negative value
IN "FUNC " AT 00002
FROM "ERRCHK" AT 00037

Exiting due to ERROR 29
No such file

LUN 4,DK:TMPFIL.DAT
IN "ERRCHK" AT 00042

C.3.2 Object Time System Error Codes
The following messages result from severe run-time error conditions
for which no error recovery is possible. Consult the RT-11 System
User's Guide for a more complete discussion of error traps to the
monitor.
1 Invalid error call
A TRAP instruction has been executed whose low byte is within the
range used by the OTS for error reporting but for which no error
condition is defined.
2 Not enough memory for OTS tables

Not enough dynamic memory remains for the OTS to establish its

Cc-18

10

11

DIAGNOSTIC MESSAGES
buffers. Unload handlers, SYSTEM or FOREGROUND jobs, or use
overlay techniques to provice more space for the OTS.
0dd address trap
The program has made a word reference to an odd byte address.
Segment fault

The program has referenced a nonexistent address, most likely due
to a subscript value out of range on an array reference.

T=-bit or BPT trap

A trap has occurred as a result of the trace bit being set in the
processor status word or of the execution of a BPT instruction.

IOT trap

A trap has occurred as a result of the execution of an IOT
instruction.

Reserved instruction trap

The program has attempted to execute an illegal instruction.

Non=-FORTRAN error call

This message indicates an error condition (not internal to the

FORTRAN-77 run-time system) that may have been caused by one of

four situations:

1. A foreground job using SYSLIB completion routines was not
allocated enough spaaced (using the FRUN /U option) for the
initial call to a completion routine.

Check the RT-11 Programmer's Reference Manual for the
formula used to allocate more space.

2. There was not sufficient memory for the background job.

Make more memory available by unloading unnecessary
handlers, deleting unwanted files, compressing the device.

3. Under the single~job monitor, a SYSLIB completion routine
interrupted another completion routine.

Use the FB Monitor to allow more tha one active completion
routine.

4. An assembly language module linked with a FORTRAN program
issued a TRAP instruction with an error code that was not
recognized by the FORTRAN-77 error handler.

Check the program logic.

TRAP instruction trap

A TRAP instruction has been executed whose low byte is outside

the range used for OTS error messages.

PDP-11/40 FIS trap

FPP hardware fault

12

13

14

DIAGNOSTIC MESSAGES

The FPP Floating Exception Code (FEC) register contained the
value 0 following an FPP interrupt. This is probably a hardware
malfunction.

FPP illegal opcode trap

The FPP has detected an illegal floating—-point instruction.

FPP undefined variable trap

The FPP loaded an illegal value (-0.0). This trap should not
occur since the OTS initialization routine does not enable this
trap condition. A negative zero value should never be produced
by any FORTRAN operation.

FPP maintenance trap

The FPP Floating Exception Code register contained the value 14

(octal) following a FPP interrupt. This is probably a hardware
malfunction.

The following messages result from errors related to the file system:

20

21

22

23

24

25

26

Invalid logical unit number

® A logical unit number was used that is greater than 99, less
“than 0, or outside the range specified by the compiler

UNITS option (see Section 1.2.6.2).

No available channels

All available channels are already in use.

Input record too long

A record too large to fit into the user record buffer has been

read. Recompile with the /R switch and specify a larger record

length.

BACKSPACE error

One of the following errors has occurred:

® BACKSPACE was attempted on a relative or indexed file or a
file opened for append access (see Section 2.3).

® an error condition while rewinding the file has been detected.

® an error condition while reading forward to the desired record
has been detected.

End-of-file during read

Either an end-file record produced by the ENDFILE statement or an
end-of-file condition has been encountered during a READ
statement, and no END= transfer specification was provided.
Record number outside range

A direct access I/0 statement has specified a record number
outside the range specified in a DEFINEFILE statement or in the
MAXREC keyword of the OPEN statement.

Access mode not specified

The access mode of an I/0 statement was inconsistent with the

Cc-20

27

28

29

30

31

32

33

34

35

36

DIAGNOSTIC MESSAGES
access specified by a DEFINEFILE or OPEN statement for the
logical unit.
Too many records in I/O statement

An attempt was made to process more than a single record in a
REWRITE statement or in an ENCODE or DECODE statement.

Close error

An error condition has been detected during the close, delete, or
print operation of an attempt to close a file.

No such file

A file with the specified name could not be found during an open
operation.

Open failure

An error condition during an open operation was detected. (This
message is used when the error condition is not one of the more
common conditions for which specific error messages are
provided.)

Mixed file access modes

An attempt was made to use both formatted and unformatted
operations, or both sequential and direct access operations, on
the same unit.

Duplicate file specifications

Multiple attempts to specify file attributes have been attempted,
without an intervening close operation, by one of the following:

e DEFINEFILE followed by DEFINEFILE

® DEFINEFILE, CALL ASSIGN, or CALL FDBSET followed by an OPEN
statement.

ENDFILE error

An end-file record may not be written to a direct access file, a
relative file, an indexed file, or an unformatted file that does
not contain segmented records.

Unit already open

An OPEN statement or DEFINEFILE statement was attempted that
specified a logical unit already opened for input/output.

Random I/O to non-file structured device

Random access I/0 was illegally attempted to a device incapable
of this activity.

Assign the logical unit inquestion an appropriate device using
the ASSIGN keyboard monitor command, OPEN statement, the ASSIGN
or OPEN FORTRAN-77 library routine, or the IASIGN SYSLIB routine.
Attempt to access non-existent record

One of the following conditions has occurred:

® A nonexistent record was specified in a direct access READ or

c-21

37

38

39

40

41

42

43.

44

45

DIAGNOSTIC MESSAGES
FIND statement. The nonexistent record might have been
deleted or was never written.

® A record located beyond the end-of-file was specified in a
direct access READ or FIND statement.

Inconsistent record length

An invalid or inconsistent record length specification occurred
for one of the following reasons:

o The record length specified is too large to fit in the user
record buffer. Rebuild the task with a larger Task Builder
MAXBUF value.

® The record length specified does not match the record 1length
attribute of an existing fixed-length file.

® The record length specification was omitted when an attempt
was made to create a relative file or a file with fixed-length
records.

Error during write

An error condition has been detected during execution of a WRITE
statement.

Error during read

The file system has detected an error condition during execution
of a READ statement.

Recursive I/0 operation

An expression in the I/O list of an I/O statement has caused
initiation of another I/O operation. This can happen if a
function that performs I/0 is referenced in an expression in an
I/0 list.

No buffer room

There is not enough free memory left in the OTS buffer area to
set up required I/O control blocks and buffers.

No such device

A file name specification has included an invalid device name or
a device for which no handler is available when an open operation
is attempted.

File name specification error

The file name string used in a CALL ASSIGN or OPEN statement is
syntactically invalid, contains a qualifier specification,
references an undefined device, or is otherwise not acceptable to
the operating system.

Inconsistent record type

The RECORDTYPE specification does not match the record type of an
existing file.

Keyword value error in OPEN statement
An OPEN statement keyword that requires a value has an illegal

value. The following values are accepted:

Cc-22

46

47

48

49

50

52

53

DIAGNOSTIC MESSAGES

BLOCKSIZE: 0 to 32767
EXTENDSIZE: -32768 to 32767
INITIALSIZE: -32768 to 32767

MAXREC: 0 to 2*%%*31-1

BUFFERCOUNT: 0 to 127

RECL: up to 32766 for sequential
organization

16360 for relative or
indexed organ-
ization

9999 for magnetic tape

Inconsistent OPEN/CLOSE parameters

The specifications in an OPEN and/or subsequent CLOSE statement
have incorrectly specified one or more of the following:

® A 'NEW' or "SCRATCH' file which is "READONLY®

® 'APPEND' to a 'NEW', '"SCRATCH', or 'READONLY' file
@ 'SAVE' or 'PRINT' on a 'SCRATCH' file

¢ 'DELETE' or 'PRINT' on a 'READONLY' file.

Write to read-only file

A write operation has been attempted to a file which was declared
to be READONLY.

Unsupported I/0 operation

An I/0 operation (such as direct or keyed access) has been
specified which is not supported by the OTS being used.

REWIND error

Hard I/O error

A hardware error was detected during an I/0 operation.

Check the volume for an off-line or write-locked condition, and
retry the operation. Try another unit or drive if possible, or
use another device.

51 List-directed I/0 syntax error

The repeat count of the input record has the wrong type or value.
The repeat count must be a positive non-zero integer.

Infinite format loop

The format associated with an I/0 statement, which includes an
I/0 1list, had no field descriptors to use in transferring those
variables.

Correct the FORMAT statement in error.

Format/variable~type mismatch

An attempt was made to input or output a real variable with an
integer field descriptor (I or L), or an integer or logical
variable with a real field descriptor (D, E, F, or G). The data

type of the value is ignored, and the value is processed as if it
were of the correct data type.

C-23

54

55

56

57

58

59

60

. DIAGNOSTIC MESSAGES

Syntax error in format

A syntax error was encountered while the OTS was processing a
format stored in an array.

Output conversion error

During a formatted output operation, the value of a particular
number could not be output in the specified field length without
loss of significant digits. The field is filled with asterisks
(*).

Input conversion error

During a formatted input operation, an invalid character was
detected in an input field, or the input value overflowed the
range representable in the input wvariable. The wvalue of the
variable is set to zero.

Format too big for 'FMTBUF'

The OTS has run out of memory while scanning an array format that
was generated at run time. The default internal format buffer
length is 64 bytes.

Output statement overflows record

An output operation has specified a record that exceeds the
maximum record size specified. The maximum record length is
specified by the DEFINEFILE statement, by the RECL keyword of the
OPEN statement, or by the record length attribute of an existing
file. See Section F.1l.7.

Record too small for I/O0 list

A READ statement has attempted to input more data than existed in
the record being read. For example, the I/O list might have too
many elements.

Variable format expression value error

The value of a variable format expression is not within the range

acceptable for its intended use: for example, a field width that
is less than or equal to zero. A value of 1 is used.

The following messages result from arithmetic overflow and underflow
conditions:

70

71

72

Integer overflow

During an arithmetic operation, an integer's value has exceeded
INTEGER*4 range. (Note: Overflow of INTEGER*2 range involving
INTEGER*2 variables is not detected.) ~

Integer zero divide

During an integer mode arithmetic operation, an attempt was made
to divide by zero. (Note: A zero-divide operation involving
INTEGER*2 variables is rarely detected.)

Floating overflow

During an arithmetic operation, a real value has exceeded the
largest representable real number. The result of the operation
is set to zero.

73

74

75

DIAGNOSTIC MESSAGES

Floating zero divide

During a real mode arithmetic operation, an attempt was made to
divide by zero. The result of the operation is set to zero.

Floating underflow

During an arithmetic operation, a real value has become less than
the smallest representable real number and has been replaced with
a value of zero.

FPP floating to integer conversion overflow

The conversion of a floating~-point wvalue to an 1integer has

resulted in a value that overflows the range representable in an
integer. The result of the operation is zero.

The following messages result from incorrect calls to FORTRAN-77
supplied functions or subprograms:

80

81

82

83

84

85

Wrong number of arguments

One of the FORTRAN library functions or system subroutines has
been called with an improper number of arguments (see Table 4-1
or Appendix D).

Invalid argument

One of the FORTRAN library functions or system subroutines has
detected an invalid argument value. (see Table 4-1 or Appendix
D).

Undefined exponentiation

An exponentiation (for example, 0.**0.) has been attempted that
is mathematically undefined. The result returned is zero.

Logarithm of zero or negative value

An attempt was made to take the logarithm of zero or a negative
number. The result returned is zero.

Square root of negative value

An argument required the evaluation of the square root of a
negative value. The square root of the absolute value is
computed and returned.

Invalid error number

The following miscellaneous errors are detected:

91

92

93

Computed GOTO out of range

The integer variable or expression in a computed GO TO statement
was less than 1 or greater than the number of statement label
references in the list. Control 1is transferred to the next
executable statement.

Assigned label not in list

An assigned GOTO has been executed in which the label assigned to
the variable 1is not one of the labels in the list. Control is
transferred to the next executable statement.

Adjustable array dimension error

C-25

94

95

96

101

102

DIAGNOSTIC MESSAGES

Upon entry to a subprogram, the evaluation of dimensioning
information has detected an array in which one of the following

occurs:
® An upper dimension bound is less than a lower dimension bound

® The dimensions imply an array which exceeds the addressable
memory.

Array reference outside array

An array reference has been detected that is outside the array as
described by the array declarator. Execution continues. (This
checking is performed only for program units compiled with the /I
switch in effect.)

Incompatible FORTRAN object module in job

An object module produced by another PDP-11 FORTRAN compiler has
been linked with a FORTRAN-77 job (see Section 1.2.5.1).

Missing format conversion routine

e A format conversion code has been used for which the
corresponding conversion routine 1is not loaded (see Section
3.4).

Virtual array initialization failure

The mapped array area could not be initialized. The operating

system does not support the memory management directives

required, or no memory management registers are available for

use.

Virtual array mapping error

A virtual~array address was invalid, probably due to a subscript
out of bounds. Execution continues.

APPENDIX D

SYSTEM SUBROUTINES

D.1 SYSTEM SUBROUTINE SUMMARY

The FORTRAN-77 library contains, in, addition to functions intrinsic to
the FORTRAN language, subroutines that the user may call in the same
manner as a user-written subroutine. These subroutines are described
in this appendix.

The subroutines supplied with FORTRAN-77 are:

ASSIGN

CLOSE

DATE

IDATE

ERRSET

ERRSNS

ERRTST

EXIT

USEREX

RADSO

IRADS0

R50ASC

SECNDS

TIME

Specifies, at run time, device and/or file name
information to be associated with a logical unit
number.

Closes a file on a specified logical unit.

Returns a 9-byte string containing the ASCII
representation of the current date.

Returns three integer values representing the current
month, day, and year.

Specifies the action to be taken on detection of
certain errors.

Returns information about the most recently detected
error condition.

Returns information about whether a specific error
condition has occurred during program execution.

Terminates the execution of a program, reports
termination status information, and returns control to
the operating system.

Specifies a user subprogram to be called immediately
prior to job termination.

Converts 6-character Hollerith strings to Radix-50
representation and returns the result as a function
value.

Converts Hollerith strings to Radix-50 representation.
Converts Radix-50 strings to Hollerith strings.

Provides system time of day or elapsed time as a
floating~point function value, in seconds.

Returns an 8-byte string containing the ASCII
representation of the current time, in hours, minutes,
and seconds.

SYSTEM SUBROUTINES

References to integer arguments in the following subroutine
descriptions refer to arguments of type INTEGER*2, In general,
INTEGER*4 variables or array elements may be used as input wvalues to
these subroutines, if their wvalue 1is within the INTEGER*2 range.
However, arguments that receive return values from these subroutines
must, for correct operation, be INTEGER*2 variables or array elements.

D.2 ASSIGN

The ASSIGN subroutine allows the association of device and file name
information with a logical unit number. The ASSIGN call, if present,
must be executed before the logical unit is opened for I/O operations
(by READ or WRITE) for sequential access files, or before the
associated DEFINE FILE statement for random access files. The
assignment remains in effect until the end of the program or until the
file is closed by CALL CLOSE or the CLOSE statement, and a new CALL
ASSIGN performed. The CALL ASSIGN statement should not be used in
conjunction with the OPEN statement. The call to ASSIGN has the
general form:

CALL ASSIGN(n, name, icnt, mode, control, numbuf)

CALL ASSIGN requires only the first argument, all others are optional,
and if omitted, are replaced by the default values as noted in the
argument descriptions. However, if any argument is to be included,
all arguments that precede it must also be included.

A description of the arguments to the ASSIGN routine follows:
n
logical unit number expressed as an integer constant or variable
name
Hollerith or literal string containing any standard RT-11 file
specification. If the device is not specified, then the device
remains unchanged from the default assignments, If a £file name

is not specified, the default names are used. The three options
that can be included in the file specification are:

/N
specifies no carriage control translation. This option
overrides the value of the 'control' argument.

/C
specifies carriage control translation. This option
overrides the value of the ‘control' argument.

/B:n

specifies the number of buffers, n, to use for /0
operations. The single argument, n, should be of value 1 or
2. This option overrides the value of the ' numbuf'
argument.

If name is simply a device specification, the device is opened in
a non-file-structured manner, and the device is treated in a
non-file-~structured manner. Indiscriminate use of this feature
on directory devices such as disk or DECtape can be dangerous
(for example, damage the directory structure).

ient

mode

SYSTEM SUBROUTINES

specifies the number of characters 1in the string 'name'. If
‘icnt' is zero, the string 'name' is processed until the first
blank or null character is encountered. If 'icnt' 1is negative,
program execution 1is temporarily suspended. A prompt character
(*) is sent to the terminal, and a file name specification, with
the same form as 'name' above, terminated by a carriage return,
is accepted from the keyboard.

specifies the method of opening the file on this unit. This
argument can be on the of the following:

IRDOI

the file is read only. A fatal error occurs if a FORTRAN
write 1is atttempted on this unit. If the specified file
does not exist, run-time error 28 (OPEN FAILED FOR FILE) is
reported.

'NEW'

A new file of the specified name is created; this file does
not become permanent until the associated logical unit is
closed via, the CALL CLOSE routine, the CLOSE statement or
program termination. If execution is aborted by typing
CTRL"C, the file is not preserved.

'OLD"

the file already exists. If the specified £file does not
exist, run-time error 28 (OPEN FAILED FOR FILE) is reported.

'SCR'

the file is only to be used temporarily and is deleted when
it is closed.

If this argument is omitted, the default is determined by the
first I/0 operation performed on that unit. If a WRITE operation
is the first I/0 operation performed on that unit, 'NEW' |is
assumed. If a READ operation is first, 'OLD' is assumed.

control

specifies whether carriage control translation is to occur. This
argument can be one of the following:

INC!
all characters are output exactly as specified. The record
is preceded by aline feed character and followed by a
carriage return character.

ICCI

the character in column one of all output records is treated
as a carriage control character. (See the PDP-~11l FORTRAN-77
Language Reference Manual.)

If not specifically changed by the CALL ASSIGN subroutines, the
terminal and line printer assume by default 'CC', and all other
devices assume 'NC',

SYSTEM SUBROUTINES

numbuf
specifies the number of internal buffers to be used for the I/0
operation. A value of 1 is appropriate under normal
circumstances. If this argument is omitted, one internal buffer
is used.

D.3 CLOSE

The CLOSE subroutine closes the currently open file on a logical unit.
The call to CLOSE has the form:

CALL CLOSE(n)

An integer value that specifies the logical unit number.

When the close is completed, the logical unit reacquires the default
file name attributes in effect when program execution was initiated.

See also the discussion in Section 2.1.1 concerning default device
assignments.

D.4 DATE

The DATE subroutine obtains the current date as set within the system.
The call to DATE has the form:

CALL DATE (buf)
buf
An array or array element.

The date is returned as a 9-byte ASCII string of the form:

dd-mmm-yy
dd

The 2-digit date.
mmm

The 3-letter month specification.
Yy

The last two digits of the year.
D.5 IDATE

The IDATE subroutine returns three INTEGER*2 values that represent the
current month, day, and year. The call to IDATE has the form:

CALL IDATE(i,3j,k)

If the current date is March 19, 1979, the values of the integer
variables upon return are:

i=3

SYSTEM SUBROUTINES

19
79

PN
wou

D.6 ERRSET
The ERRSET subroutine specifies the action to be taken when an error
is detected by the OTS. The error action to be taken is specified

individually for each error--that is, independently of other errors.
The call to ERRSET has the form:

CALL ERRSET (number, contin, count, type, log, maxlim)

number

An integer value that specifies the error number to which the
following parameters apply.

contin

A logical value that specifies whether to continue after an
error. .TRUE. means continue after the error is detected:;
.FALSE. causes an exit after the error.

count

A logical value that specifies whether to count this error
against the job's maximum error limit. .TRUE. causes the error
to be counted; .FALSE. causes it not to be counted.

type
A logical value that specifies the type of continuation to be
performed after error detection. .TRUE. passes control to an
ERR= transfer label if available; .FALSE. causes a return to
the routine that detected the error for default error recovery.
log
A logical value that specifies whether to produce an error
message for this error. .TRUE. produces a message; .FALSE.
suppresses the message.

maxlim

A positive INTEGER*2 value used to set the job's maximum error
limit. The default value is set at 15 at job initialization.

Null arguments are permitted for all but the first argument and cause
no change in the current state of that control code.

See Section 3.5 for a discussion of the control effects obtained by

these subroutine arguments. Table 3-2 shows the initial settings of
the error control bits.

D.7 ERRSNS

The ERRSNS subroutine returns information about the most recent error
that has occurred during program execution. The call to ERRSNS has
the form: :

CALL ERRSNS (num,iunit)

SYSTEM SUBROUTINES

num

An INTEGER*2 variable or array element name in which the most
recent error number is stored. A zero will be returned if no
error has occurred since the last call to ERRSNS, or if no error
has occurred since the beginning of job execution.

If the last error occurred as a result of an I/0 error, the next three
parameters receive selected values. Otherwise, values of 0 are
returned.

iunit

An INTEGER*2 variable or array element in which the logical unit
number is stored.

From zero to four arguments may be specified. After the call to
ERRSNS, the error information is reset to 0.

To determine if an error occurs in a given section of a program, the
following technique is suggested:

1. Call ERRSNS immediately prior to the segment in order to
clear any previous error data.

2. Execute the section.

3. Call ERRSNS again and branch on a nonzero return value to
error analysis code.

For example:

CALL ERRSNS

CALL ASSIGN (1,'NAME.DAT')

CALL ERRSNS (IERR,IFCS,IFCS]1,ILUN)
IF (IERR.NE.O) GOTO 100

D.8 ERRTST

The ERRTST subroutine tests for the occurrence of a specific error
during program execution. The call to ERRTST has the form:

CALL. ERRTST (i, j)

The INTEGER*2 error number, and the value of j is returned as:

1 if error number i has occurred
2 1if error number i has not occurred

For example, the sequence

L)

CALL ERRTST(43,J)
GO TO (10,20),J
20 CONTINUE

transfers control to statement 10 if error 43 has occurred.

D=6

SYSTEM SUBROUTINES

The ERRTST routine also resets to 0 the error flag for an occurring
error. For example, in the sequence

CALL ERRTST(I,J)
CALL ERRTST(I,J)

°
.

Y

the second call is guaranteed to return J=2. The ERRTST subroutine is
independent of the ERRSET subroutine; neither subroutine directly
influences the other except that ERRSET can cause execution to
terminate.

D.9 EXIT

The EXIT subroutine causes program termination, closes all files,
reports termination status to the operating system, and returns
control to the operating system. The call to EXIT has the form:

CALL EXIT [(istat)]
istat

An INTEGER*2 value that is the termination status wvalue to be
reported to the operating system.

If istat is not specified, the termination status value is success.

D.10 USEREX

The USEREX subroutine specifies a routine that is to be called as part
of the program termination process. Using USEREX allows clean-up
operations in non-FORTRAN routines. The call to USEREX has the form:

EXTERNAL name
CALL USEREX (name)

name

The routine that is to be be called. This name must appear in an
EXTERNAL statement in the program unit.

SYSTEM SUBROUTINES

The user exit subroutine is called with a JSR PC instruction after all
procedures required for FORTRAN program termination have been
completed--that is, when all files have been closed, and any attempt
to perform FORTRAN I/O operations produces unpredictable results. 1In
addition, all OTS error handling is disabled; so if an error occurs
in the USEREX-specified routine, the job is immediately aborted by the
operating system. The transfer of control takes place immediately
preceding the exit to the operating system; return from the
subroutine by an RTS PC results in a normal exit to the operating
system,.

D.11 IRADSO
The IRAD50 subprogram performs conversions of ASCII data to Radix-50
representation. Radix-50 representation is required by the RT-11 file
system for specifying file names.
IRADS50 may be called as a FUNCTION subprogram if the return value is
desired, or as a SUBROUTINE subprogram if no return value is desired.
The call to IRADS50 has the form:

n = IRAD50 (icnt,input,output)
or

CALL IRADSO(icnt,input,output)
ient

The INTEGER*2 maximum number of characters to convert.
input

An ASCII (Hollerith) text string to be converted to Radix-50.
output

The location for storing the results of the conversion.

The INTEGER*2 number of characters actually converted.

Three characters of text are packed into each word of output. The
number of output words modified 1is computed by the expression (in
integer mode)

(icnt+2)/3

Therefore, if a count of four is specified, two words of output are
written even if only a one-character input string is given as an
argument.

Scanning of input characters terminates on the first non-Radix-50
character encountered in the input string.

SYSTEM SUBROUTINES

D.12 RADS0
The RAD50 function subprogram provides a simplified way to encode
RT-11 job names in Radix-50 notation (see Section A.5). This function
converts six characters of ASCII data to two words of Radix-50 data.
The call to RADS50 has the form:
RADS50 (name)
name
The variable name or array element corresponding to an ASCII
string
The RADS0 function is equivalent to the following FORTRAN function:
FUNCTION RADSO0(A)
CALL IRADS5(0(6,A,RAD50)

RETURN
END

D.13 RS50ASC

The RS50ASC subprogram provides decoding of Radix-50 encoded values
into ASCII strings. The call to RS50ASC has the form:

CALL R50ASC (icnt,in,out)
icnt
The INTEGER*2 number of output characters to be produced.
in
The variable or array that contains the encoded input. Note that
(icnt+2) /3 words are read for conversion.
out

The variable or array in which icnt characters (bytes) are
placed.

If the undefined Radix-50 code 1is detected, or the Radix-50 word
exceeds maximum value 174777 (octal), question marks are placed in the
output.

D.14 SECNDS

The SECNDS function subprogram returns the system time in seconds as a
single-precision, floating-point value less the value of its
single-precision, floating=-point argument. The call to SECNDS has the
form:

REAL SECNDS
y = SECNDS (x)

Set equal to the time in seconds since midnight, minus the
user-supplied value of x.

D-9

SYSTEM SUBROUTINES

You can use the SECNDS function to perform elapsed-time computations.
For example:

C START OF TIMED SEQUENCE

Tl

= SECNDS(0.0)

C
C CODE TO BE TIMED
C

DELTA = SECNDS (T1)

where DELTA gives the elapsed time.

The value of SECNDS is accurate to the resolution of the system clock:
0.0166... seconds for a 60-cycle clock, 0.02 seconds for a S50-cycle

clock.
Notes

1. The time is computed from midnight. SECNDS also produces
correct results for time intervals that span midnight.

2. The 24 bits ofkprecision provide accuracy to the resolution
of the system clock for about one day. However, loss of
significance can occur if you attempt to compute very small
elapsed times late in the day.

D.15 TIME

The TIME subroutine returns the current system time as an ASCII

string.

The call to TIME has the form:

CALL TIME (buf)

buf

An

8-byte variable, array, or array element.

The TIME call returns the time as an 8-byte ASCII character string of
the form:

hh:mm:ss

hh

The 2-digit hour indication,

The 2~digit minute indication.

ss

The 2-digit second indication.

For example:

10:

45:23

A 24-hour clock is used.

D-10

APPENDIX E

COMPATIBILITY: PDP-11 FORTRAN-77 AND PDP-11l FORTRAN IV-PLUS

PDP-11 FORTRAN-77 is based on American National Standard FORTRAN-77,
X3.9-1978. As a result, it contains certain incompatibilities with
the PDP-1l FORTRAN IV-PLUS language, which is based on the previous
standard, X3.9-1966. The areas affected are:

® DO loop minimum iteration count

® EXTERNAL statement

® OPEN statement BLANK keyword default
® OPEN statement STATUS keyword default
@ Blank common block PSECT

@ X format edit descriptor

The PDP-11 FORTRAN-77 compiler selects ANSI FORTRAN-77 language
interpretations by default. In the following discussion general
reference is made to a F77 or NOF77 compiler option or switch. The
F77 switch is ON as the default. The /X compiler switch is used to
produce the NOF77 action. If you are compiling PDP-11 FORTRAN IV-PLUS
programs, there are several actions you can take to compensate for
language incompatibilities:

@ You can modify your programs so that they produce the intended
result with the F77 switch. Compiler diagnostics help you
identify OPEN statements in which an explicit STATUS keyword
should be added. Linker diagnostics help you locate EXTERNAL
statements that must be changed to INTRINSIC statements.

@ You can specify the NOF77 switch to select PDP-11l FORTRAN
IV-PLUS language interpretations. The NOF77 switch affects
the interpretation of DO loop minimum iteration counts,
EXTERNAL statements, and OPEN statement BLANK and STATUS
defaults. It does not affect the X format edit descriptor.

® You can build the PDP-1l FORTRAN-77 compiler with the NOF77
switch as the default, thereby selecting PDP-11l FORTRAN
IV~-PLUS language interpretations as defaults.

This appendix discusses each of the 1language differences. When
possible, it gives an example of how you can modify your PDP-11
FORTRAN IV-PLUS programs to make them compatible with both PDP-11
FORTRAN-77 and PDP-11 FORTRAN IV-PLUS.

COMPATIBILITY: PDP~1l FORTRAN-77 AND PDP-ll FORTRAN IV-PLUS

E.1l DO LOOP MINIMUM ITERATION COUNT

In PDP-11 FORTRAN-77, the body of a DO loop is not executed if the end
condition of the 1loop is already satisfied when the DO statement is
executed (see Section 4.4.2). 1In PDP-11l FORTRAN IV-PLUS, however, the
body of a DO loop is always executed at least once.

If you are running a PDP-11 FORTRAN IV-PLUS program with the F77
switch, you may want to ensure a minimum loop count of one by
modifying the program's DO statements. As an example, assume that a
FORTRAN IV-PLUS program contains this statement:

DO 10, J = ISTART,IEND

This DO statement specifies that the body of the loop is executed only
when IEND is greater than or equal to ISTART. However, you could
modify the statement to handle a situation in which IEND might be less
than ISTART. For example:

DO 10 J = ISTART, MAX(ISTART,IEND)

The body of this modified DO loop is executed at least once in both
PDP-11 FORTRAN=-77 and PDP-11 FORTRAN IV-PLUS.

The F77 switch controls the interpretation of the DO loop minimum
iteration count.

E.2 EXTERNAL STATEMENT

Under PDP=-11 FORTRAN IV-PLUS, a function specified in an EXTERNAL
statement with the name of a FORTRAN processor-defined (intrinsic) or
library function was assumed to refer to the named processor-defined
or 1library function, not to a user-defined function with that name.
If, however, a function name appeared in an EXTERNAL statement
preceded by an asterisk, that function was assumed to be a
user-defined function, regardless of any name conflicts.

Under ANSI FORTRAN~-77 and PDP-11l FORTRAN-77, a function specified in
an EXTERNAL statement with the name of a processor-defined (intrinsic)
or library function is assumed to refer to a user-defined function.

Under PDP-11 FORTRAN-~77, the function name fname in the statement
EXTERNAL fname [, fname ...]
is interpreted to refer to a user-defined function by default.

If the NOF77 switch is specified, and fname is the same as one of the
processor-defined or library functions, fname is interpreted to refer
to the processor-defined or library function.

If fname appears preceded by an asterisk, it is interpreted to refer
to a user-defined function if the NOF77 switch is set, but it is an
error if the F77 switch is set.

All functions declared with the new INTRINSIC statement are
interpreted to be processor-defined (intrinsic) or library functions,
regardless of the setting of theNOF77 switch.

COMPATIBILITY: PDP-~11l FORTRAN-77 AND PDP~11 FORTRAN IV-PLUS

E.3 OPEN STATEMENT BLANK KEYWORD DEFAULT

In PDP-11l FORTRAN-77, the OPEN statement BLANK keyword controls the
interpretation of blanks in numeric input fields. The PDP-11
FORTRAN~77 default is BLANK='NULL'; that is, blanks in numeric input
fields are ignored. The PDP-11 FORTRAN IV-PLUS OPEN statement does
not have a BLANK keyword. However, the PDP-11 FORTRAN IV-PLUS
interpretation of blanks in numeric input fields is equivalent to
BLANK='ZERO',

If a logical unit is opened without an explicit OPEN statement, PDP-11
FORTRAN=-77 and PDP-11 FORTRAN 1IV-PLUS both provide a default
equivalent to BLANK='ZERO',

The BLANK keyword affects the treatment of blanks in numeric input
fields read with the D,E,F,G,I,0, and Z field descriptors. If
BLANK='NULL' is in effect, embedded and trailing blanks are ignored;
the value is converted as if the nonblank characters were right-
justified in the field. If BLANK='ZERO' is in effect, embedded and
trailing blanks are treated as zeros. The following example
illustrates the difference in how blanks in numeric input fields are
interpreted in PDP-11 FORTRAN-77 and in PDP-11 FORTRAN IV-PLUS:

Program:

OPEN (UNIT=1, STATUS='OLD') READ(1,10)I, J
10 FORMAT (215) END

Data record:

12 12
FORTRAN-77 values FORTRAN IV-PLUS values
I =12 I = 1020
J =12 J = 12

The F77 switch controls the default value for the BLANK keyword. If
your program treats blanks in numeric input fields as zeros and you do
not want to use the NOF77 switch, include BLANK='ZERO' in the OPEN
statement or use the BZ edit descriptor in the FORMAT statement.

E.4 OPEN STATEMENT STATUS KEYWORD DEFAULT

In PDP~11 FORTRAN-77, the OPEN statement STATUS keyword specifies the
initial status of the file ('OLD', 'NEW', 'SCRATCH', or 'UNKNOWN'),
The PDP-11 FORTRAN-77 default is STATUS='UNKNOWN'; that is, an
existing file is opened, or a new file is created if the file does not
exist. The PDP-11 FORTRAN IV-PLUS keyword TYPE is a synonym for
STATUS; however, the PDP-11l FORTRAN IV-PLUS default is TYPE='NEW'.

If you use the F77 switch and you do not specify STATUS (or TYPE) in
an OPEN statement, the compiler issues an informational message to
warn you that it is using a default of STATUS='UNRNOWN'. It is
advisable to include an explicit STATUS (or TYPE) keyword in every
OPEN statement.

The F77 switch controls the default value for the STATUS (or TYPE)
keyword.

COMPATIBILITY: PDP-11 FORTRAN-77 AND PDP-~11l FORTRAN IV-PLUS

E.5 BLANK COMMON BLOCK PSECT (.$$$$.)

Under PDP-11 FORTRAN-77, the blank common block PSECT (.$$$$.) has the
SAV attribute; it does not have this attribute under PDP-11 FORTRAN
IV-PLUS. The SAV attribute on a PSECT has the effect of pulling that
PSECT into the root segment of an overlay.

The F77 command switch controls the default assignment of the SAV
attribute; under F77, the blank common block PSECT is assigned the
SAV attribute by default.

E.6 X FORMAT EDIT DESCRIPTOR

The nX edit descriptor causes transmission of the next character to or
from a record to occur at the position n characters to the right of
the current position. In a PDP-11] FORTRAN-77 output statement,
character positions that are skipped are not modified, and the length
of the output record is not affected. However, in a PDP-11 FORTRAN
IV-PLUS output statement, the X edit descriptor writes blanks and may
extend the output record. For example, the statements

WRITE (1,10)
10 FORMAT (1X, 'ABCDEF', T4, 2X, '12345°', 3X)

produce the output records:
FORTRAN=77 FORTRAN 1IV-PLUS
ABCD12345 AB 12345
The F77 switch does not affect the interpretation of the X edit

descriptor. To achieve the PDP-11 FORTRAN IV-PLUS effect, change nX
to n(" ").

APPENDIX F

COMPATIBILITY: RT-11 FORTRAN-77, PDP-11 FORTRAN IV, VAX-1l1l FORTRAN

RT-11 FORTRAN-77 is a compatible superset of PDP-11 FORTRAN IV and a
compatible subset of VAX-1l FORTRAN.

Generally speaking, any RT-11 FORTRAN-77 program that does not use
superset features runs correctly in PDP-11 FORTRAN IV, and any RT-11
FORTRAN-77 program runs correctly in VAX-11 FORTRAN.

Differences in execution, however, may be encountered because of
differences in compiler architecture, hardware architecture, or
operating system environment.

The following sections discuss differences among PDP-~11 FORTRAN IV,
PDP-11 FORTRAN-77, and VAX-11l FORTRAN.

There are both language differences and run-time support differences
among PDP-11 FORTRAN IV, RT-1l1 FORTRAN-77, and VAX-11 FORTRAN.

F.l1 LANGUAGE DIFFERENCES
Differences related to language involve:
® Logical tests
® Floating-point results
® Logical unit numbers
® Assigned GO TO label list
® Integer computations

@ Effect of DISPOSE = 'PRINT' specification

F.1.1 Logical Tests

The logical constants .TRUE. and .FALSE. are defined, respectively,
as all 1s and all zeros by both VAX-11l FORTRAN and PDP-11 FORTRAN,
The test of .TRUE. and .FALSE. differs, however.

RT-11 FORTRAN-77 tests the sign bit of a logical value: bit 7 for
LOGICAL*1l, bit 15 for LOGICAL*2, and bit 31 for LOGICAL*4. PDP-~1ll
FORTRAN 1V tests the low-order byte: All zeros 1is LFALSE.; any
nonzero pattern is .TRUE.. And VAX-1ll FORTRAN tests the low—-order bit
(bit 0) of a 1logical wvalue. (This 1is the system-wide VAX-1l1l
convention for testing logical values.)

COMPATIBILITY: RT-11 FORTRAN-77, PDP=1l1 FORTRAN IV, VAX-1ll FORTRAN

In most cases, these differences have no effect on compatibility.

.They are significant only for nonstandard FORTRAN programs that
perform arithmetic operations on logical values and then make logical
tests on the result.

In the example:

LOGICAL*1 BA
BA = 3
IF (BA) GO TO 10

RT-11 FORTRAN-77 produces a value of .FALSE., but PDP-11 FORTRAN 1V
and VAX-1l FORTRAN produce a value of .TRUE.

F.l.2 Floating-Point Results

Differences in math library routine results may occur between
different arithmetic hardware configurations on PDP-11l processors and
between PDP-11 and VAX-ll hardware due to the hardware architecture
differences. Equivalent accuracy is provided but there may be
differences in the least-significant digits.

F.1.3 Logical Unit Numbers

If you specify a logical unit number in an I/0 statement, a default
unit number is used. The defaults used by RT-11 FORTRAN-77 and PDP-1ll
FORTRAN IV differ from those used by VAX-1l FORTRAN, as shown in Table
F=-1.

Table F-1
Default Logical Unit Numbers

I/0 Statement PDP-11 Unit VAX-1l Unit
READ 1 -4
PRINT 6 -1
TYPE 5 -2
ACCEPT 5 -3

Note that PDP-11l FORTRAN uses normal logical unit numbers, but VAX-11
FORTRAN uses unit numbers that are not available to users.

F.l.4 Assigned GO TO Label List

RT-11 FORTRAN-77 checks at run time that the label is in the 1list of
labels specified. If not, execution continues at the next statement.

PDP-11 FORTRAN IV and VAX-1ll FORTRAN check only that the labels
specified in the list are valid statement labels in the program unit.
No check is made at run time, and execution continues at the label
specified. :

COMPATIBILITY: RT-11 FORTRAN-77, PDP-11 FORTRAN IV, VAX-1l FORTRAN

F.1.5 DISPOSE = 'Print' Specification

On some PDP-11 systems, the file is deleted after being printed if
DISPOSE = 'PRINT' was specified. On VAX~-ll systems and some PDP-1ll
systems, the file is retained after being printed.

F.1.6 1Integer Computations

In RT-11 FORTRAN-77 and VAX-11 FORTRAN, INTEGER*4 computations are
carried out using 32-bit arithmetic. 1In PDP-11 FORTRAN IV, INTEGER*4
data occupies 32 bits of storage (4 bytes) but only 16 bits are used
for computation.

F.1.7 Default Record Buffer Size

In RT-11 FORTRAN-77, if there was no RECL specification when a file
was created, the FORTRAN-77 OTS uses the default record size (see
Section 2.3.8) as the size of the user record buffer. FORTRAN 1V,
however, allows the user record buffer to be as large as the value
specified in the MAXBUF option in the link command line.

In FORTRAN-77, when you attempt to write more bytes to a record than

the default record size, you should use an explicit OPEN statement
with a RECL specification.

F.2 RUN-TIME SUPPORT DIFFERENCES

Run-time support differences involve unformatted data transfer and
error handling and reporting.

F.2.1 Unformatted Data Transfer

For unformatted input/output operations, four bytes of data are
transferred for INTEGER*4 and LOGICAL*4 data. However, because the
high-order part is undefined in PDP-11 FORTRAN IV, INTEGER*4 and
LOGICAL*4 values written by a PDP-1ll FORTRAN IV program may not
reliably be read by RT~11 FORTRAN-77 or VAX-1ll FORTRAN.

F.2.2 Error Handling and Reporting

Error handling and reporting differ significantly between PDP-11
FORTRAN and VAX-1l FORTRAN. In PDP-1l FORTRAN, program execution
normally continues after errors such as floating overflow until 15
such errors have occurred, at which point execution is terminated.
VAX-1l FORTRAN, however, sets a limit of one such error; program
execution normally terminates when the first such error occurs.

VAX-11 FORTRAN neither generates an error message nor increments the
image error count when an I/0 error occurs, if an ERR=specification is
included in the I/O statement. PDP-11 FORTRAN both reports the error
and increments the job error count.

APPENDIX G

RT-11 FORTRAN-77 EXTENSIONS TO ANSI STANDARD (X3.9-1978) FORTRAN

The following are RT-11 FORTRAN-77 extensions to ANSI standard
(X3.9-1978) FORTRAN at the full-~language level.

G.1l STATEMENT EXTENSIONS

The following statements appear in RT-11 FORTRAN-77 but not in ANSI
standard FORTRAN:

ACCEPT DELETE REWRITE
BYTE ENCODE TYPE

DECODE FIND UNLOCK
DEFINE FILE INCLUDE VIRTUAL

G.2 STATEMENT SYNTAX EXTENSIONS

The following sections contain RT-11 FORTRAN-77 syntactic variations
of statements present in ANSI standard FORTRAN.

G.2.1 Specification Statements
Data type *1len (Except CHARACTER *len)
IMPLICIT (Examples of extended syntax follow)

IMPLICIT INTEGER A,B
IMPLICIT INTEGER (A-C), (P-T)

PARAMETER (Alternative syntax, see Section A.4, RT—ll FORTRAN-=-77
Language Reference Manual)

typ FUNCTION nam *len (Length specifier in function declaration)

G.2.2 Format Statements
Default formats for I, F, E, D, G, L, O, A, 2
Ow, Ow.m, Q, 2w, Zw.m, $ format descriptors

P without scale factor

RT=11 FORTRAN=-77 EXTENSIONS TO ANSI STANDARD (X3.,9-1978) FORTRAN

Variable format expressions

G.2.3 Control Statements
Null actual argument (Examples follow)
CALL name (,arg2)
CALL name (argl,,arg3)

CALL name (argl,)
CALL name (argl,,,,arg5)

G.2.4 1I/0 Statements

READ and WRITE (Comma between I/O control and element lists;
example follows)

READ (...), iolist

G.2.5 Miscellaneous Syntax Extensions

The following are present in RT-11 FORTRAN-77 but not in ANSI standard
FORTRAN :

Consecutive operators in expressions
D-line comments
End-of-line comments

Parameter constants for the real or imaginary part of a complex
constant

Tab-character formatting

G.3 KEYWORD AND KEYWORD VALUE EXTENSIONS
G.3.1 OPEN Statement Keyword Extensions

ASSOCIATEVARIABLE NAME

BLOCKSIZE NOSPANBLOCKS
BUFFERCOUNT ORGANIZATION
CARRIAGECONTROL READONLY
DISPOSE RECORDSIZE
DISP RECORDTYPE
SHARED

INITIALSIZE TYPE
USEROPEN

MAXREC

RT-11 FORTRAN-77 EXTENSIONS TO ANSI STANDARD (X3.9-1978) FORTRAN

G.3.2 CLOSE Statement Keyword Extensions
DISP

DISPOSE

G.3.3 Close Statement Keyword Value Extensions
STATUS = 'SAVE'

STATUS = 'PRINT'

G.4 LEXICAL EXTENSIONS

The following lexical elements are present in RT-11 FORTRAN-77 but not
in ANSI standard FORTRAN:

Hollerith constants Radix-50 constants

Lowercase source letters ‘rec in direct access I/O statements
"nn octal constants .XOR. operator

O octal constants Z hexadecimal constants

‘oct'O, 'hex'X constants

INDEX

$SIN., 4-1 CALL IDATE, D-4
.DATA., 3-15 CALL R50ASC, D-9
.IDENT, 3-15 CALL RADS50, D-9
~LIMIT, 1-26 CALL SECNDS, D-9
.MAIN., 3-15 CALL TIME, D-10
.PSECT, 3-15 CALL USEREX, D=7
.PSECT extension, 1-24 Call-by-reference, 3-2, 4-14
.REL, 1-18 Call-by-result, 4-14 to 4-15
.SAV, 1-18 Call-by-value, 4-14 to 4-15
.SETTOP, 1-21, 1-26, 1-31 Calling Sequence
.TITLE, 3-15 argument list, 3-2
return, 3-2
Absolute loader, 1-23 Calling Sequence Conventions,
ACCEPT, 2-3 3-1
ACCEPT,, 2-2 Call Site, 3-2
ACOS, CCL, 1-11 to 1-12
algorithm, B-1 cautions, 1-12
Alignment Channels
odd address problems, 4-13 mapping
Alignment, Storage, 4-13 changing, 2-1
ALOG, default, 2-1
algorithm, B-7 mapping to LUNs, 2-1
ALOG10, maximum active, 2-1
algorithm, B-4 Characer declarations, 6-2
ANSI standard flagging, 1-13 Character data, 6-1
Arrays constants, 6-1
bounds checking, 1-14 examples, 6-3
compile time, 1-14 initializing, 6~3
default, 1-14 internal representation, A-4
limitations, 1-14 ' substrings, 6-1
subscript checking, 5-9 Character expressions, 6-6
ASIN, Character 1/0, 6-6
algorithm, B-2 Character Library Functions, 6-3
ASSIGN, 2-1 to 2-2, D-1 ICHAR, 6-3
ATAN, INDEX, 6-3, 6-5
algorithm, B-2 LEN, 6-3, 6-6
ATAN2, LGE, 6-~3, 6-6
algorithm, B-3 LGT, 6-3, 6-6
LLE, 6~-3, 6-6
Background, 1-18 LLT, 6-3, 6-6
BACKSPACE, 2-6, 5-9 CLOSE, 2-2, 5-2 to 5-3,
BLANK, 2-4 D-1 to D-2, D-4
BLOCK DATA, C-4 keyword
BLOCKDATA, 3-15 DISPOSE, 2-5
Blocks, 5-6 Command Options, 1-2
defined, 5-6 defined, 1-4
optimizations of, 5-=7 general form, 1-5
Blocks, 1-15 parameters, 1-5
Bottom load address, 1-24 Command Options(Switches), 1-4
BYTE, 4-10 Command String Interpreter, 1-5
BYTE format Command Switches, 1-2
internal representation, A-3 COMMON, 4-13, C-4, C=6 to C-7
autoplacement, 1-29
CALL ASSIGN, D=2 Blank, 1-29
CALL CLOSE, D-2 Named, 1-29
CALL DATE, D-4 placement restrictions, 1-29
CALL ERRSET, D-5 Common Blocks
CALL ERRSNS, D-5 allocation of, 4-13
CALL ERRTST, D=6 COMMON., C=-6
CALL EXIT, 1-32, D-7 COMMONs, 3-7

Index-1

BLANK, 3-7
Compile, 1-1
compile, 1-1
Compiler

option

/D, 1-33
/T, 1-33

traceback, 1-33
Compiler 1-6
Compiler Limits, C-15
Compiler Listings, 3-14
Assembly Code, 3-14
Generated Code, 3-14
Source, 3-14
Storage Map, 3-15
Compiler Optimizations, 5-3
Argument-list merging, 5-3
Branch optimizations, 5-4
Common subexpression
elimination, 5-4
recognition, 5-4
Common Subexpressions, 5-7
Constant conversion, 5-3
Constant folding, 5-3
Constant Pooling, 5-4
effects of
on error reporting, 5-5
effects on
constants, 5-5
expression reordering, 5-4
Fast calling sequences, 5-4
Goals, 5-3
Inline code expansion, 5-4
Invariant Code, 5-4
Local register usage, 5-4
Loop Invariance, 5-8
partial Boolean evaluations,
5-4
Peephole optimization, 5-4
Register variable assignment,
5-4
Subscript Calculation, 5-3
unary operations delay, 5-4
Unreachable code elimination,
5-4
Compiler options, 1-7
/A' 1—13
/B, 1-13
/Cc, 1-13
/D, 1-13
/E, 1-13
/Fl 1'14
/I, 1-14
/K, 1-14
/L, 1-14
cop, 1-14
MAP, 1-14
SRC, 1-14
/MN:n, 1-15
/0’ 1-15
/Q, 1-15
/Rl l—lS
/S, 1-15
/sLIN, 1-15

INDEX

/ILL, 1-15
:NAM, 1-15
:NON, 1-15
default, 1-15
/T, 1-16, 4-7, 5-3
/U, 1-16
/v, 1-16
/W, 1-16, C~-1
/X, 1-16, 2-4, E-1
/¥, 1-16
tALL, 1-16
¢:NON, 1-17
:SRC, 1-17
:SYN, 1-17
/%, 1-17, 3-6
Defaults, 1-17
reserving space, 1-13
table of, 1-13
Compiler switch latch, 1-14
Compiler Switches
examples, 1-6
Complex values
internal representation, A-3
Concise Command Language, 1-12
Constant Typing
Integer, 4-8
Constants
Octal, 4-8
precautions, 4-9
Continuatien lines
default, 1-13
specifying number of, 1-13
tradeoff with INCLUDE, 1-13

Control Bits

OTS error, 3-1l1
Continuation, 3-11
Continuation Type, 3-11
Count, 3-11
ERR=, 3-11
Log, 3-11
Return Permitted, 3-11

cos,

algorithm, B-4

COSH,
algorithm, B-5

Cross Reference
Linker, 1-25

¢csi, 1-5, 1-11 to 1-12
radix points, 1-5
switches, 1-5

CSIN, 4-2

CSQRT,
algorithm, B-12

DACOS,

algorithm, B-1
DASIN,

algorithm, B-2
DATA, 3-15, C=5
DATA-SPACE, 3-2
DATE, D-1
DCL

FORTRAN

options available, 1-7

Index~-2

LINK, 1-18
command syntax, 1-19
options available, 1-19
DCOS,
algorithm, B-4
DCOSH,
algorithm, B-5
Debug, 1-1
DEBUG lines, 1-13, 1-33
Debugger
RT-11 Support, 1-13
symbol table, 1-13
DECODE, 5-9
DEFINE FILE, D-2 ‘
DEXP,
algorithm, B-5
Diagnostics messages
compiler generated, C-1
Fatal, C-14
format of, C-2
location of, C-1
source program, C-1
Errors, C-1
Fatal Errors, C-1
Information, C-1
Warnings, C-1
sources of

invalid ASCII characters,

c-2
typing errors, C-2
OTS generated, C-1, C-16
format of, C-16

DIMENSION, 3-19
Direct, 2-3
DLOG,

algorithm, B-7
DLOG10,

algorithm, B-4
DO list

implied, 5-9
DO loops

Iteration count model, 4-11

Double-precision

internal representation, A-~2

DSIN, 4-2
DSIN,

algorithm, B-9
DSINH,

algorithm, B-6
DSQRT,

algorithm, B-10
DTAN,

algorithm, B-11
DTANH,

algorithm, B-7

EIS instruction set, 5-10
END, C-4
END=, 3-9
using, 3-10
ENDFILE, 2-6
ENTRY, 4-13 to 4-14

EQUIVALENCE, 4-13, C-5 to C-7

Equivalence

INDEX

BYTE, 4-13
ERR=, 3-9, 3-11
using, 3-10
Error Reporting

effects of compiler optimization,

5-5
Errors

synchronous system-trap, 3-12

ERRSET, 3-9, 3-11, D-1
ERRSET), 3-9

ERRSET,, 5-10

ERRSNS, 3-9 to 3~11, D-1
ERRSNS,, 3-9, 5-10

ERRTST, 3-9, 5-5, 5-10, D-1

ERRTST,, 3-9
Execute, 1-1
EXIT, D-1
EXP,
algorithm, B-4
Extension Flagging, 1-16
/:ALL, 1-16
/W requirement, 1-16
Extension Flagging/:NON,
Extension Flagging/:SRC,
Extension Flagging/:SY¥YN,
'EXTERNAL, 4-1

F77
Interactive mode, 1-10
argument list, 1-10
R command, 1-10
RUN command, 1-11
F77CVF.0BJ, 5-11
F77EIS.OBJ, 5-10
F77MAP, 5-11
F77MAP.OBJ, 5-10
F77NER.OBJ, 5-~10
F770TS, 1-32
P77XM
Interactive mode, 1-10
R command, 1-10
RUN command, 1-11
File Factoring, 1-3
error messages, 1-3
example, 1-3
referal, 1-3
restrictions, 1-4
File organization, 2-3
File Specifications, 1-2
Compiler defaults, 1-3
default summary, 1-3

1-17
1-17
1-17

device specification, 1-2

File Factoring, 1-3
filename, 1-3
Filetype, 1~4
filetype, 1-3
format, 1-2

input files, 1-2

minimum requirements, 1-3

output files, 1-2

RT-11 Default Values,

User's default, 1-4
File Structures, 2-3
File system, 2-1

Index~3

1-4

INDEX

Floating Point Processor, 3-3
foreground, 1-18
FORLIB, 1-24, 1-27 to 1-28
automatic linking with, 1-24
FORMAT, 3-15, 5-9, C=5 to C-6
FORTRAN
/ALLOCATE, 1-7
/EXTEND, 1-7
keyboard command options, 1-7
FORTRAN command, 1-6
general form, 1-6
input list, 1-6
option switches, 1-7
FPll, 5-10
FPP, 5-10 to 5-11
FPU, 3-3
FRUN, 1-1

Generic function, 4-2
Global Symbol Option, 1-24
Global Symbol Table, 1-23
Hollerith data, 4-10
Hollerith format

internal representation, A-4

I/0, C=-6
Character data, 6-6
direct access, 5-9
unformatted, 5-9
ICHAR, 6-3
IDATE, D-1
IERR, 3-11, 5-3
IMPLICIT, 4-1, C-5
INCLUDE, 5-2
tradeoff with Continuation lines,
1-13
INCLUDE statement, 5-2
INDEX, 6-3, 6-~5 to 6-6
Infiles~list, 1-23
Integer typing, 4-10
INTEGER*2, 4-7 to 4-8, 4-12, 5-3
internal representation, A-1l
representation, 4-7
INTEGER*4, 4-7 to 4-9, 5-3
internal representation, A-1
representation, 4-7
INTEGER4, 1-16
Internal Names
formats of,
INTRINSIC, 4-1
Intrinsic function,
Intrinsic Functions,
Integer-~Values, 4-9
IRADS50, D-1

4-1

4-2
4-1

Job
execution,
virtual

creating, 1-31

Jobs
privileged, 1-30 to 1-31
virtual, 1-30 to 1-31

limitations, 1-31

1-6

KEFllaA, S5-10
Keyboard Monitor options, 1-5
octal values, 1-5
radix points, 1-5 ’
Keyboard Monitor switches, 1-5
LEN, 6-3, 6-6
LEN{(c), 6-6
LGE, 6-6
LGT, 6-6
LIBR, 1-27
reference, 1-27
Libraries, 1-27
default, 1-27
linking with, 1-27
example, 1-27

LINK
/ALLOCATE, 1-19
/ALPHABETIZE, 1-19

/BITMAP, 1-19

/BOTTOM, 1-19

/BOUNDARY, 1-19

/DEBUG, 1-19

/EXECUTE, 1-19

/EXTEND, 1-19

/FPILL, 1-19

/FOREGROUND, 1-19

/INCLUDE, 1-20

/LDA, 1-20

/LIBRARY, 1-20

/LINKLIBRARY, 1-20

/MAP, 1-20

/NOEXECUTE, 1-20

/PROMPT, 1-20

example, 1-20

/ROUNT, 1-20

/RUN, 1-20

/SLOWLY, 1-21

/STACK, 1-21

/SYMBOLTABLE, 1-21

/TOP, 1-21

/TRANSFER, 1-21

/WIDE, 1-21

/XM, 1-21

example commands, 1-21

keyboard command options, 1-19
Link, 1-1

input file specs, 1-23

map-file, 1-23

stb-file spec, 1-23
Link/infiles~list, 1-23
Linker, 1-18

/S, 1-28

Action of, 1-18

Cross Reference, 1-25

input modules, 1-18

invoking, 1-18

overlays, 1-18

reference, 1-18

symbol table space, 1-28

syntax error

messages,

Linker Options

//I 1-27

1-23

Index-4

caution, 1-27
example, 1-27
/A, 1-24
/B, 1-24
/C, 1-24
/D, 1-24
/B, 1-24
/F, 1-24, 1-28
/G, 1-24
/H, 1-24
warning, 1-25
/1, 1-25 :
/K, 1-25
/L, 1-25
/M, 1-25
/N, 1-25
/0, 1-25
/P, 1-25
/R, 1-24 to 1-25
/S, 1-25
/T, 1-26
/U, 1-26
/V, 1-26
/W, 1-26
/X, 1-26
/Y, 1-26
/Z. 1"26
Interactive Mode, 1-24 to 1-27
Linker prompt, 1-22
Listing Options, 1-14
/Aource _summary, 1-14
/Source, 1-14
generated code, 1l-14
minimal, 1-14
Listings
width control, 1-15
LLE, 6-6
LLT, 6-6
Load Address
bottom specification, 1-24
Load Map
alphabetized, 1-24
Load map, 1-18
Logical unit numbers, 2-1
Logical Units
compile time, 1-15
LOGICAL*1, 3-18, 4-10
internal representation, A-3
LOGICAL*4, 4-~7
LOGICAL4, 1-16
LUNs, 2-1
allocation, 2-1
closure of, 2-1
Implied, 2-2

Map-file, 1-23
Memory image, 1-1, 1-6, 1-18,
1-22 to 1-23
execution, 1-6
Memory Management Unit, 1-30
MIN, 4-2
MMU, 1-30
Monitor
XM, 1-30

INDEX

NOF77 switch, 1-16
Null arguments, 3-5

Object module, 1-6
Object Time System
see OTS
OoDT, 1-33
OPEN, 2-1 to 2-4, 3-11, 5-2
ERR=, 3-11
keyword
BLANK, 2-4
BLOCKSIZE, 2-4
BUFFERCOUND, 2-4
DISPOSE, 2-5
EXTENDSIZE, 2-5
INITIALSIZE, 2-5
KEY, 2-5
OPEN
DELETE, 2-5
KEEP, 2-5
SAVE, 2-5
ORGANIZATION, 2-5
SEQUENTIAL, 2-5
READONLY, 2-5
SHARED, 2-5
USEROPEN, 2-6
OPEN statement, 2-3
Operating Environment, 3-1
Optimizatin
defeating of, 1-15
Optimization, 1-15
ors, 1-1, 1-15, 3-1, C~1
alternate modules, 5-9
alternate error reports, 5-9
floating-point output, 5-9
no FPP, 5-9 .
diagnostic messages, 3-9
error codes, 3-9
error detection
control bits, 3-11
error processing, 3-9
error recovery, 3-9
function of, 3-1
0TS library, 1-18
0TS work area, 1-31
Overlay handler, 1-28
Overlay region, 1-28
Overlay segments, 1-28
Overlay Structure, 1-28
design of, 1-28
restrictions, 1-28
root segment, 1-28
Overlay Usage, 1-28
reasons to use, 1-28
Overlays
building, 1-22
examples, 1-30
extended memory, 1-30
advantages, 1-30
example, 1-31
restrictions, 1-30

PARAMETER, 4-8, 5-5, 6-2, C-13
PAUSE, 5-10

Index~-5

PRINT, 2-3
PRINT,, 2~2
Processor-defined Functions, 4-1
PROGRAM, 3-15
Program Interchange
cautions, 4-11
PSECTs, 3-5, 3-7, 3-16
SCODEl, 3-5
$IDATA, 3-6
$PDATA, 3-5
$SAVE, 3-6
STEMPS, 3-6
$VARS, 3-6
$VIRT, 3-6
attributes of, 3-6
COMMONs, 3-7

oTs, 3-9
$$A°Ts r 3-9
SFI02, 3-9
$$SFIOC, 3-9
$$FI0D, 3-9
$SFIOI, 3-9
$SFIOR, 3-9
$SFIOS, 3-9
3F10Z, 3-9
soTv, 3-9

Pure code, 1-17
Pure data, 1-17

R LINK, 1-22
command syntax, 1-22
R50ASC, D-1
RADS50, D-1
RADIX~-50 format
internal representation, A-5
READ, 2-2 to 2-3, 3-10
READ(1,f)1list, 2-2
Real valued functions, B-1
REAL*4
internal representation, A-2
REAL*8, 3-18
internal representation, A-2
Record
end-file, 2~-6
Record Access, 2-3
valid modes, 2-3
Record Formats, 2-3
Record Length
coTpiée time specification of,
Reentrancy, 3-3
Registers
floating-point, 3-3
general-purpose, 3-3
Return Value Transmission, 3-2
COMPLEX, 3-3
DOUBLE, 3-2
INTEGER*4, 3-2
INTEGER-2, 3-2
LOGICAL*1l, 3-2
LOGICAL*4, 3-2
REAL, 3-2
RUN, 1-1

INDEX

RUN command
when to use, 1l-11
RUN F77
example, 1-12
examples, 1-4
RUN F77XM
example, 1-12
Run-Time efficiency, 5-9

SECNDS, D=1
Sequential, 2-3
SHORT.OBJ, 5-10
SIN, 4-2
SIN(X), 4-2
SIN,

algorithm, B-8
SINH,

algorithm, B-6
Source Program Blocks, 5-6
SQRT,

algorithm, B-9
SRUN, 1-1
Statistics

compile time, 1-13
STB file, 1-23
STOP, 5-10
Storage Alignment, 4-13
Switches, 1-2
Symbol definition file, 1-23
Symbols

unresolved global, 1-18
SYSLIB, 1-27, 1-32
SYSLIB.OBJ, 1-18

TAN,
algorithm, B-11
TANH,
algorithm, B-6
TIME, D-1
Top address specification, 1-24
Traceback, 1-33
blocks, 1-15
error, 1-15
names, 1-15
none, 1-15
Traceback, 1-15
TYPE, 2-2 to 2-3

Unformatted, 2-3
USEREX, D-1
USR, 1l-16

Version
displaying compiler,, 1-16
VIRTUAL, 3-18 to 3-19
array mapping, 3-19
arrays, 3-6
size limits, 3-18
converting to, 3-19
execution time, 3-19
LOGICAL*1l, 3-18
memory allocation, 3-19
REAL*8, 3-18
statement, 3-18

Index-6

INDEX

syntax, 3~19
Virtual job, 1-21

Warnings
compile time, 1-16
width
valid source,, 1-13
window, 3-19
Work File, 1-14
default size, 1-14

M, 1-21
XM monitor, 1-26

Index-7

