RSX-11M/M-PLUS

I/0O Drivers
Reference Manual
Order No. AA-H269A-TC

RSX-11M Version 3.2
RSX-11M-PLUS Version 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, May 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment

Corporation.

Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1979 by Digital Equipment Company

The postage-~prepaid READER'S
document requests the user's
paring future documentation.

The following are trademarks

DIGITAL
DEC

PDP

DECUS
UNIBUS
COMPUTER LABS
COMTEX

DDT
DECCOMM
ASSIST-11
VAX

DECnet
DATATRIEVE

COMMENTS form on the last page of this
critical evaluation to assist us in pre-

of Digital Equipment Corporation:

DECsystem=~10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL

INDAC

LAB-8
DECSYSTEM-20
RTS-8

VMS

IAS

TRAX

7/80-14

MASSBUS
OMNIBUS
0s/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS=-10
SBI

PDT

-,

CONTENTS

SUMMARY OF TECHNICAL CHANGES

PREFACE

CHAPTER

CHAPTER

1

NNt S BWN R

L T
N
. e
N =

N =

HREFRH HE RREPRRERERRPRRRERE

* e e

NN
o« e « e e o
[e o IEN] [)WE, NS, 8 | W

HHERFHPFWOW0OWOomoooI

HOOO

Nonbkwh =

L I]

o b b b b e
. .
N

\V]

NN N
o e
=

LI}

N =

RSX-11M/M-PLUS INPUT/OUTPUT

OVERVIEW OF RSX-11M I/O
PHYSICAL, LOGICAL, AND VIRTUAL I/O
RSX-11M DEVICES

LOGICAL UNITS

Logical Unit Number
Logical Unit Table
Changing LUN Assignments

ISSUING AN I/O REQUEST
QIO Macro Format
Significant Events
System Traps

DIRECTIVE PARAMETER BLOCKS

I/0-RELATED MACROS
The QIO$ Macro: Issuing an I/O Request
The QIOWS Macro: Issuing an I/O Request
and Waiting for an Event Flag
The DIR$ Macro: Executing a Directive
The .MCALL Directive: Retrieving System
Macros
The ALUN$ Macro: Assigning a LUN
Physical Device Names
Pseudo-Device Names
The GLUN$ Macro: Retrieving LUN
Information

The ASTX$S Macro: Terminating AST Service
The WTSE$ Macro: Waiting for an Event Flag

STANDARD I/0O FUNCTIONS
IO.ATT: Attaching to an I/O Device
IO.DET: Detaching from an I/O Device
I0.KIL: Canceling I/O Requests
I0.RLB: Reading a Logical Block
IO.RVB: Reading a Virtual Block
IO.WLB: Writing a Logical Block
IO.WVB: Writing a Virtual Block

I/0 COMPLETION

RETURN CODES
Directive Conditions
I/0 Status Conditions

POWERFAIL RECOVERY PROCEDURES FOR DISKS

AND DECTAPE

FULL-DUPLEX TERMINAL DRIVER
INTRODUCTION

ASR-33/35 Teletypes
KSR-33/35 Teletypes

iii

Page
xxiii

XXV

1
HRONOAOUMUINDNDE
et

[

1
=
nwN

HHHHHHHTHHHHHH =

1-15
1-15

1-15
1-16
1-17
1-19

1-20
1-22

e e e e e e e e e e e e e e
Y el

bt ettt e e e e
O ®

* o e e e ® o s
® e o e s e s o o

HEHOWOVUWOVUONAONAAAAOAANAAANNNUIVNTEWWWWWWUWWWWWWWWWWWWNH-E

HOo

e o & s s e e e s @ o o & 8 e o s e 2
« o e e Y
U bW N =

o
oW

NNNNNNNNNNNNNOMNNNNNNOONNNMMNRNNONNNNONNNNONDNONRONNNNONNNNOMONNONNNNONNONDMNOMNMNNONNNNNNMNNODNDNDNODN

\]
[
[9;]

2.16

« o s

DNDONNNNNNNNNONNOMONDNNNNDNDND -

« o s e e o o

HERREHEHEWOONOU & WM

b WNDHFEO

CONTENTS

LA30 DECwriters
LA36 DECwriter
LA120 DECwriter
LA180S DECprinter
RT02 Alphanumeric Display Terminal and
RT02-C Badge Reader/Alphanumeric Display
Terminal
VT05B Alphanumeric Display Terminal
VT50 Alphanumeric Display Terminal
VT50H Alphanumeric Display Terminal
VT52 Alphanumeric Display Terminal
VT55 Graphics Display Terminal
VT61 Alphanumeric Display Terminal
VT100 DECscope
GET LUN INFORMATION MACRO
QIO MACRO
Subfunction Bits
Device-Specific QIO Functions
TO.ATA
IO.ATT!TF.ESQ
I0.CCO
SF.GMC
I0.GTS
TIO.RAL
IO.RNE
IO.RPR
JO.RPR!TF.BIN
I0.RPR!TF.XOF
IO.RST
SF.SMC
IO.RTT
TO.WAL
IO0.WBT
STATUS RETURNS
CONTROL CHARACTERS AND SPECIAL KEYS
Control Characters
Special Keys
ESCAPE SEQUENCES
Definition
Prerequisites
Characteristics
Escape Sequence Syntax Violations
DEL or RUBOUT (177)
Control Characters (0-037)
Full Buffer
Exceptions to Escape-Sequence Syntax
VERTICAL FORMAT CONTROL
AUTOMATIC CARRIAGE RETURN
FEATURES AVAILABLE BY RSX-11M SYSGEN OPTION
Private Buffer Pool Size
Hard Receive Error Detection
TASK BUFFERING OF RECEIVED CHARACTERS
TYPEAHEAD BUFFERING
FULL-DUPLEX OPERATION
PRIVATE BUFFER POOL
INTERMEDIATE INPUT AND OUTPUT BUFFERING
TERMINAL-INDEPENDENT CURSOR CONTROL
TERMINAL INTERFACES

iv

NNONNMNDNDNDNDNNNDNNNONN
|
ROV ULTUTUTOO S B S

CHAPTER

CONTENTS

DH1l Asynchronous Serial Line Multiplexer

DJ11 Asynchronous Serial Line Multiplexer

DL11 Asynchronous Serial Line Interface

DZ11l Asynchronous Serial Line Multiplexer
PROGRAMMING HINTS

ESCape Code Conversion

RT02-C Control Function

Use of IO.WVB Instead of IO.WLB

Remote DL11-E, DH11l, and DZll Lines

Side Effects of Setting Characteristics

Modem Support

« o o o

NNNNNNNOOO Y
.

IO
« o o e
and WP W

(o)

HALF-DUPLEX TERMINAL DRIVER

INTRODUCTION
ASR-33/35 Teletypes
KSR-33/35 Teletypes
LA30 DECwriters
LA36 DECwriter
LA120 DECwriter
LA180S DECprinter
RT02 Alphanumeric Display Terminal and
RT02-C Badge Reader/Alphanumeric Display
Terminal
VTO5B- Alphanumeric Display Terminal
VT50 Alphanumeric Display Terminal
VT50H Alphanumeric Display Terminal
VT52 Alphanumeric Display Terminal
VT55 Graphics Display Terminal
VT61 Alphanumeric Display Terminal
VT100 DECscope
GET LUN INFORMATION MACRO
QIO MACRO
Subfunction Bits
Details on Device=Specific QIO Functions
JO.ATA
JO.ATT!TF.ESQ
I0.CCO
SF.GMC
I0.GTS
TO.RAL
JIO.RNE
I0.RPR
IO0.RPR!TF.BIN
I0.RPR!TF.XOF
I0.RST
SF.SMC
IO.WAL
IO .WBT
STATUS RETURNS
CONTROL CHARACTERS AND SPECIAL KEYS
Control Characters
Special Keys
ESCAPE SEQUENCES
Definition
Prerequisites
Characteristics
Escape Sequence Syntax Violations

o« e

¢ e s e &

WL WWWWWw
.

[T W O W
« e e
Nould W

.................
e e e e v e e e e e
HBP PO

BRI SBWNHO

e o . « 0t e e e e

NMNNNNNNOMNDNNNONDNNDNDNDNDNNE

..........
. . . e
N
e e e e e
HFHEHRFRPOONOUR WN R
BWNRO

.
DW=

Page

2-37
2-38
2-38
2-38
2-38
2-38
2-38
2-38
2-39
2-39
2-39

w
!
=

WWwWwwwww
L T T I |
WWWWwNN

WWWWWWwwwwwwwuwuwww
|
FHFRFOOOJUId OB DSWwW

CHAPTER

CHAPTER

¢« o o
(S 00
« o o
w N =

« e e 9 e
« o .
& W oW N =

HFHEFFEFRFRFEFEFFRFFFFOOOODWOOOOOONOOAAON

WWWLWWWWWWWLwWwWwwwwwwwwwwuwww
OCOO0OO0OOOCOCOCOs ¢ ¢ o

¢« o o o o
oo W

3.10.11
3.10.12
3.10.13

e e o o o o o o
e o o

o e o o

S W=

N

[N N - L=

BLWwWwwwwwwh =

HEWOVONAAUTSE WN =

Ut unnuo o %))
[l =]

o e b e e e S

CONTENTS

DEL or RUBOUT (177 Octal)
Control Characters (0-37 Octal)
Full Buffer

Exceptions to Escape-Sequence Syntax

VERTICAL FORMAT CONTROL

FEATURES AVAILABLE BY SYSGEN OPTION
Automatic Carriage Return
Variable~Length Buffering

Task Buffering of Received Characters

LA30-P Support
TERMINAL INTERFACES

DH11 Asynchronous Serial Line Multiplexer
DJ1l Asynchronous Serial Line Multiplexer
DL11 Asynchronous Serial Line Interface

Dz11 Asynchronous Serial Line Multiplexer

PROGRAMMING HINTS
Terminal Line Truncation
ESCape Code Conversion
RT02-C Control Function
Checkpointing During Terminal Input
Time Required for IO.KIL
Use of IO.WVB
Remote DH1l and DZ1ll Lines
High-Order Bit on Output

Side Effects of Setting Characteristics
Unsolicited-Input-Character AST's for

Tasks Attaching Several Terminals
Direct Cursor Control

DL11 Receiver Interrupt Enable
Loadable Driver Restrictions

VIRTUAL TERMINAL DRIVER

INTRODUCTION
GET LUN INFORMATION MACRO
QIO MACRO
Standard QIO Functions
IO.ATT
IO.DET
IO0.KIL
IO.RLB, IO.RVB, IO.WLB, IO.WVB

Device-Specific QIO Function (IO.STC)

STATUS RETURNS
DISK DRIVERS

INTRODUCTION
RF11/RS11 Fixed-Head Disk
RS03 Fixed-Head Disk
RS04 Fixed-Head Disk
RP11/RP02 or RP03 Pack Disks
RM02/RM03 Pack Disk
RP04, RP05, RP06 Pack Disks
RK11/RK05 or RKOS5F Cartridge Disks
RL11/RLO1 or RLO2 Cartridge Disk
RK611/RK06 or RK07 Cartridge Disk
RX10/RX01 Flexible Disk
RX211/RX02 Flexible Disk

vi

Page

3-24
3-24
3-25
3-25
3-25
3-26
3-27
3-27
3-28
3-28
3-28
3-28
3-29
3-29

N
|
'—I

I UL
WWWwwwwi R HEF = b BWWWN -

b BB DD DD
1

oottt o n (62}
|

CONTENTS

GET LUN INFORMATION MACRO
QIO MACRO
.1 Standard QIO Functions
.2 Device-Specific QIO Functions
STATUS RETURNS
PROGRAMMING HINTS
CHAPTER DECTAPE DRIVER
INTRODUCTION
GET LUN INFORMATION MACRO
QIO MACRO
Standard QIO Functions
Device-Specific QIO Functions
STATUS RETURNS
DECtape Recovery Procedures
Select Recovery
PROGRAMMING HINTS
DECtape Transfers
Reverse Reading and Writing
Speed Considerations When Reversing
Direction
6.5.4 Aborting a Task

s s s s

U WWWNE
. .
N -

N

(el W e We o I e We) Wo o) We W)
N s s s 8 s s s s s

o o o
WN

CHAPTER DECTAPE II DRIVER
INTRODUCTION
.1 TUS58 Hardware
.2 TU58 Driver
GET LUN INFORMATION MACRO
QIO MACRO
Standard QIO Functions
Device-Specific QIO Functions
1 IO.WLC
2 IO.RLC
3 IO.BLS
4 I0.DGN
STATUS RETURNS
CHAPTER MAGNETIC TAPE DRIVERS
INTRODUCTION
TE10/TU10/TS03 Magnetic Tape
TEl6/TUl6/TU45/TU77 Magnetic Tape
TS04 Magnetic Tape
GET LUN INFORMATION MACRO
QIO MACRO
Standard QIO Functions
Device=-Specific QIO Functions
TI0.RLV
IO.RWD
I0.RWU
IO0.ERS
I0.SEC
I0.SMO
STATUS RETURNS
Select Recovery
Retry Procedures for Reads and Writes

.
wN =

e e & & s » & 2
. e e

e s e
.
NN
e s e e e e

AN WwN

s e e

00 00 00 00 0O CO 0D 00 OO 00 G0 0O GO GO 00 0O QO
BEDWWWWWWWWWN R

N

. .

vii

o
)
Q
0]

o

[l) W) We Je W) e We) We) We We) (=)} oot gn
NNNNAWWNN = F~NoUi o

|
[N]

NNSNNNNNNNNNNNN ~ [e))}

[eo]

EFREOOUUBREEBRWWNNNHEFE H SO BBWNNHRHE B

NN

00 00 00 0O 00 00 00 00 CO 0O CO 0O €O 0 O O O

CHAPTER

CHAPTER

CHAPTER

N

.
=

Ao bdbWWWNE
AUl W

10.6:3

11.1
11.2
11.3
11.3.1
11.3.2
11.4
11.4.1
11.4.2
11.4.3
11.5
11.5.1
11.6

CONTENTS

Powerfail Recovery for Magnetic Tapes
PROGRAMMING HINTS

Block Size

Importance of Resetting Tape

Characteristics

Aborting a Task

Writing an Even-Parity Zero-NRZI

Density Selection

CASSETTE DRIVER

INTRODUCTION
GET LUN INFORMATION MACRO
QIO MACRO
Standard QIO Functions
Device-Specific QIO Functions
STATUS RETURNS
Cassette Recovery Procedures
STRUCTURE OF CASSETTE TAPE
PROGRAMMING HINTS
Importance of Rewinding
End-of-File and IO.SPF

The Space Functions, IO.SPB and IO.SPF

Verification of Write Operations
Block Length
Logical End-of-Tape

LINE PRINTER DRIVER

INTRODUCTION
LP1l Line Printer
LS11 Line Printer
LV1l Line Printer
LA180 DECprinter
GET LUN INFORMATION MACRO
QIO MACRO
STATUS RETURNS
Ready Recovery
VERTICAL FORMAT CONTROL
PROGRAMMING HINTS
RUBOUT Character
Print Line Truncation
Aborting a Task

CARD READER DRIVER

INTRODUCTION
GET LUN INFORMATION MACRO
QIO MACRO
Standard QIO Functions
Device-Specific QIO Function
STATUS RETURNS
Card Input Errors and Recovery
Ready and Card Reader Check Recovery
I/0 Status Conditions
FUNCTIONAL CAPABILITIES
Control Characters
CARD READER DATA FORMATS

viii

Page

8-12
8-13
8-13

8-13
8-13
8-13
8-13

O
I
[

@@@@\D@\G\D\D\G@@\;‘J\G\O
| 11 [}
NNNNNNoOoOOGWwWWwNN e

—
[eo]
[}
[

10-1
10-1
10-2
10-2
10-2
10-2
10-3
10-3
10-5
10-5
10-6
10-6
10-6
10-6

11-1

11-1
11-1
11-2
11-2
11-2
11-3
11-3
11-6
11-6
11-8
11-8
11-9

CHAPTER

CHAPTER

11.6.1
11.6.2
11.7

11.7.1
11.7.2

13.5.2.3

CONTENTS

Alphanumeric Format (026 and 0211)
Binary Format
PROGRAMMING HINTS
Input Card Limitation
Aborting a Task

MESSAGE~ORIENTED COMMUNICATION DRIVERS

INTRODUCTION
DAll-B Parallel Interface
DL11-E Asynchronous Line Interface
DMC1l1l Synchronous Line Interface
DP11 Synchronous Line Interface
DQ11 Synchronous Line Interface
DUl11l Synchronous Line Interface
DUP1l Synchronous Line Interface
GET LUN INFORMATION MACRO
QIO MACRO
Standard QIO Functions
Device-Specific QIO Functions
TO.FDX
I0.HDX
I0.INL and IO.TRM
TO.RNS
I0.SYN
IO.WNS
STATUS RETURNS
PROGRAMMING HINTS
Transmission Validation
Redundancy Checking
Half-Duplex and Full-Duplex Considerations
Low-Traffic Sync Character Considerations
Vertical Parity Support
Powerfail with DMC1l1l
Importance of IO.INL
PROGRAMMING EXAMPLE

PCL11 PARALLEL COMMUNICATIONS LINK DRIVERS

INTRODUCTION
PCL11-B Hardware
PCL11 Transmitter Driver
PCL11 Receiver Driver
GET LUN INFORMATION MACRO
QIO MACRO =-- PCL1ll TRANSMITTER DRIVER
FUNCTIONS
Standard QIO Functions
Device-Specific QIO Functions

I0.ATX
I0.SEC
I0.8TC
PCL11 TRANSMITTER DRIVER STATUS RETURNS
QIO MACRO -- PCL1ll RECEIVER DRIVER FUNCTIONS

Standard QIO Functions
Device-Specific QIO Functions
IO.CRX

IO0.RTF

IO.ATF

ix

Page

11-9
11-9
11-9
11-9
11-9

12-1

12-1
12-2
12-2
12-3
12-3
12-3
12-3
12-4
12-4
12-5
12-5
12-5
12-6

13-5
13-5
13-5
13-6
13-9

©13-9

13-9

13-10
13-10
13-10

CHAPTER

CHAPTER

13.5.2.4
13.6

14

14.1
14.1.1
14.1.2
14.2
14.3
14.3.1
14.3.2
14.4
14.4.1

14.4.2
14.4.3
14.4.4

14.4.5

14.4.6
14.4.7
14.5

14.5.1
14.6

14.6.1
14.7

14.7.1
14.7.2
14.7.3
14.7.4

15

15.1
15.1.1
15.1.2
15.1.2.1
15.1.2.2
15.2
15.3
15.3.1
15.3.2
15.3.2.1

15.3.2.2
15.3.2.3

15.3.2.4
15.3.2.5
15.4
15.4.1

15.4.1.1
15.4.1.2

CONTENT'S

I0.DRX
PCL11 RECEIVER DRIVER STATUS RETURNS

ANALOG-TO-DIGITAL CONVERTER DRIVERS

INTRODUCTION
AFCll Analog-to-Digital Converter
AD01-D Analog-to-Digital Converter
GET LUN INFORMATION MACRO
QIO MACRO
Standard QIO Function
Device-Specific QIO Function
FORTRAN INTERFACE
Synchronous and Asynchronous Process
Control I1/0
The isb Status Array
FORTRAN Subroutine Summary
AIRD/AIRDW: Performing Input of Analog
Data in Random $equence
AISQ/AISQW: Reading Sequential Analog
Input Channels
ASADLN: Assigning a LUN to the ADO01-D
ASAFLN: Assigning a LUN to the AFCll
STATUS RETURNS
FORTRAN Interface Values
FUNCTIONAL CAPABILITIES
Control and Data Buffers
PROGRAMMING HINTS
Use of A/D Gain Ranges
Identical Channel Numbers on the AFCll
AFCll Sampling Rate
Restricting the Number of AD01-D
Conversions

UNIVERSAL DIGITAL CONTROLLER DRIVER

INTRODUCTION
Creating the UDCll Driver
Accessing UDCl1l Modules
Driver Services
Direct Access

GET LUN INFORMATION MACRO

QIO MACRO
Standard QIO Function
Device-Specific QIO Functions
Contact Interrupt Digital Input (W733
Modules)
Timer (W734 I1/0 Counter Modules)

Latching Digital Output (M685, M803, and

M805 Modules)
Analog-to-Digital Converter (ADUOL
Module)
ICS1l Analog-to-Digital Converter
(IAD-IA Module)

DIRECT ACCESS
Defining the UDCll Configuration
Assembly Procedure for UDCOM.MAC
Symbols Defined by UDCOM.MAC

Page

13-11
13-11

14-1
14-1

14-1
14-1

A,

CONTENTS

Page
15.4.2 Including UDC1l1l Symbolic Definitions in the
System Object Module Library 15-11
15.4.3 Referencing the UDC1l1l through a Global
Common Block 15-11
15.4.3.1 Creating a Global Common Block 15-11
15.4.3.2 Making the Common Block Resident 15-13
15.4.3.3 Linking a Task to the UDCll Common Block 15-13
15.5 FORTRAN INTERFACE 15-13
15.5.1 Synchronous and Asynchronous Process
Control 1/0 15-14
15.5.2 The isb Status Array 15-14
15.5.3 FORTRAN Subroutine Summary 15-15
15.5.4 AIRD/AIRDW: Performing Input of Analog
Data in Random Sequence 15-17
15.5.5 AISQ/AISQW: Reading Sequential Analog
Input Channels _ 15-17
15.5.6 AO/AOW: Performing Analog Output 15-18
15.5.7 ASUDLN: Assigning a LUN to the UDC1ll 15-18
15.5.8 CTDI: Connecting to Contact Interrupts 15-19
15.5.9 CTTI: Connecting to Timer Interrupts 15-19
15.5.10 DFDI: Disconnecting from Contact Interrupts 15-20
15.5.11 DFTI: Disconnecting from Timer Interrupts 15-20
15.5.12 DI/DIW: Reading Several Contact Sense
Fields 15-21
15.5.13 DOL/DOLW: Latching or Unlatching Several
Fields 15-21
15.5.14 DOM/DOMW: Pulsing Several Fields 15-22
15.5.15 RCIPT: Reading a Contact Interrupt Point 15-22
15.5.16 RDCS: Reading Contact Interrupt Change-of-
State Data from a Circular Buffer 15-23
15.5.17 RDDI: Reading Contact Interrupt Data from
a Circular Buffer 15-24
15.5.18 RDTI: Reading Timer Interrupt Data from a
Circular Buffer 15-25
15.5.19 RDWD: Reading a Full Word of Contact
Interrupt Data from the Circular Buffer 15-25
15.5.20 RSTI: Reading a Timer Module’ 15-26
15.5.21 SCTI: Initializing a Timer Module 15-26
15.6 STATUS RETURNS 15-27
15.6.1 FORTRAN Interface Values 15-29
15.7 PROGRAMMING HINTS 15-29
15.7.1 Numbering Conventions 15-29
15.7.2 Processing Circular Buffer Entries 15-30
CHAPTER 16 LABORATORY PERIPHERAL SYSTEMS DRIVERS 16-1
16.1 INTRODUCTION 1l6-1
16.1.1 AR1l Laboratory Peripheral System 16-2
16.1.2 LPS11l Laboratory Peripheral System 16-2
16.2 GET LUN INFORMATION MACRO 16-2
16.3 QIO MACRO 16-2
16.3.1 Standard QIO Function 16-2
16.3.2 Device-Specific QIO Functions (Immediate) 16-3
16.3.2.1 I0.LED 16-3
16.3.2.2 I0.REL 16-4
16.3.2.3 10.8DI 16-4
16.3.2.4 I0.SDO 16-4

xi

CONTENTS

Page
16.3.3 Device=-Specific QIO Functions
(Synchronous) 16-4
16.3.3.1 IO.ADS 16-5
16.3.3.2 I0.HIS 16-6
16.3.3.3 I0.MDA 16-7
16.3.3.4 I0.MDI 16-7
16.3.3.5 I0.MDO 16-7
16.3.4 Device-Specific QIO Function (IO.STP) 16-8
16.3.4.1 I0.STP 16-8
l6.4 FORTRAN INTERFACE 16-8
16.4.1 The isb Status Array 16-8
16.4.2 Synchronous Subroutines 16-9
16.4.3 FORTRAN Subroutine Summary 16-10
16.4.4 ADC: Reading a Single A/D Channel 16-11
16.4.5 ADJLPS: Adjusting Buffer Pointers 16-11
16.4.6 ASLSLN: Assigning a LUN to LSO: 16-12
16.4.7 ASARLN: Assigning a LUN to ARO: 16-13
16.4.8 CVSWG: Converting a Switch Gain A/D Value
to Floating-Point 16-13
16.4.9 DRS: Initiating Synchronous Digital Input
Sampling 16-14
16.4.10 HIST: Initiating Histogram Sampling
(LPS11 only) 16-15
16.4.11 IDIR: Reading Digital Input 16-17
16.4.12 IDOR: Writing Digital Output 16-17
16.4.13 IRDB: Reading Data from an Input Buffer 16-18
l6.4.14 LED: Displaying in LED Lights (LPS11l only) 16-18
16.4.15 LPSTP: Stopping an In-Progress Synchronous
Function 16-19
16.4.16 PUTD: Putting a Data Item into an Output
Buffer 16-19
16.4.17 RELAY: Latching an Output Relay
(LPS11 only) 16-19
16.4.18 RTS: Initiating Synchronous A/D Sampling 16-20
16.4.19 SDAC: Initiating Synchronous D/A Output 16-22
16.4.20 SDO: Initiating Synchronous Digital Output 16-23
16.5 STATUS RETURNS 16-25
16.5.1 IE.RSU 16-27
16.5.2 Second I/0 Status Word 16-28
16.5.3 I0.ADS and ADC Errors 16-29
16.5.4 FORTRAN Interface Values 16-29
16.6 PROGRAMMING HINTS 16~-30
16.6.1 The LPS11/AR11l Clock and Sampling Rates 16-30
16.6.2 Importance of the I/0O Status Block 16=-31
16.6.3 Buffer Management 16-31
16.6.4 Use of ADJLPS for Input and Output 16-32
CHAPTER 17 PAPER TAPE READER/PUNCH DRIVERS 17-1
17.1 INTRODUCTION 17-1
17.2 GET LUN INFORMATION MACRO 17-1
17.3 QIO MACRO 17-2
17.4 STATUS RETURNS 17-2
17.4.1 Error Conditions 17-4
17.4.2 Ready Recovery 17-4
17.5 PROGRAMMING HINTS 17-5
17.5.1 Special Action Resulting from Attach and
Detach 17-5
17.5.2 Reading Past End-of-Tape 17-5

xii

CHAPTER 18

. o

B

= e
0 oo
Wwww

18.3
18.3
18.3
18.3
18.3

[

el
© o
.« ..
wWww
. . e e e eSSl RN
NNNNNNNOOOONOOAR0 U D WN
e e e e e
NoOUe Wi

=
o
.
w w
.
e
SVUT W

18.4.1
18.4.2

18.4.3
18.4.4

18.4.5
18.4.5.1
18.4.5.2

18.4.6
18.4.7

CONTENTS

INDUSTRIAL CONTROL SUBSYSTEMS

INTRODUCTION
Hardware Configuration
ICS/ICR_Address Assignments
DSS/DRS Address Assignments
Supported ICS/ICR I/O Modules
Alternate ICS11l Support
Software Support
UDCll Software Compatibility
Module Addressing Conventions

LUN INFORMATION

ASSEMBLY LANGUAGE INTERFACE
General Error Status Returns
Directive Conditions
I/0 Conditions
A/D Input - Read Multiple A/D Channels
Analog Output
Momentary Digital Output - Multi-Point
Bistable Digital Output - Multi-Point
Unsolicited Interrupt Processing
Connect to Digital Interrupts
Disconnect from Digital Interrupts
Connect to Counter Module Interrupts
Set Counter Initial Value
Disconnect from Counter Interrupts
Connect to Terminal Interrupts
Disconnect from Terminal Input
Activating a Task by Unsolicited Interrupts
Link a Task to Digital Interrupts
Link a Task to Counter Interrupts
Link a Task to Terminal Interrupts
Link a Task to Error Interrupts
Read Activating Data
Unlink a Task from Interrupts
Terminal Output
Maintenance Functions
Disable Hardware Error Reporting
Enable Hardware Error Reporting
Special Functions
I/0 Rundown
Kill I/0

FORTRAN INTERFACE
Synchronous and Asynchronous Process
Control I/0O
Return Status Reporting
Optional Arguments
Assigning Default Logical and Physical
Units for Input and Output - ASICLN/ASUDLN
(ICS/ICR) and ASISLN (DSS/DRS)
Analog Input
AIRD/AIRDW: Analog Input - Specified
Channel Sequence
AISQ/AISQW: Analog Input - Sequential
Channel Sequence
AO/AOW: Analog Output - Multichannel
DOL/DOLW: Digital Output - Bistable Multiple
Fields

xiii

Page
18-1

18-1
18-1
18-1
18-2
18-3
18-3
18-4
18-6
18-7
18-8
18-8
18-11
18-12
18-12
18-13
18-14
18-15
18-15
18-16
18-18
18-19
18-19
18-20
18-21
18-21
18-22
18-22
18-23
18-24
18-24
18-25
18-25
18-27
18-29
18-29
18-29
18-30
18-30
18-30
18-31
18-31"

18-32

18-33
18-35

18-35
18-37
18-37

18-39
18-41

18-42

CONTENTS

Page o %
18.4.8 Digital Input 18-44
18.4.8.1 DI/DIW: Digital Input - Digital Sense
Multiple Fields 18-44
18.4.8.2 RCIPT: Digital Input - Digital Interrupt
Single-Point 18-45
18.4.9 DOM/DOMW: Digital Output Momentary -
Multiple Fields 18-46
18.4.10 RTO/RTOW: Remote Terminal Output 18-47
18.4.11 Unsolicited Interrupt Data - Continual
Monitoring 18-47
18.4.11.1 CTDI: Connect a Buffer for Receiving
Digital Interrupt Data 18-48
18.4.11.2 Reading Digital Interrupt Data 18-49
18.4.11.3 DFDI: Disconnect a Buffer from Digital
Interrupts 18-52
18.4.11.4 CTTI: Connect a Buffer for Receiving
Counter Data 18-53
18.4.11.5 RDTI: Read Counter Data from the Circular »
Buffer : 18-54 i
18.4.11.6 Miscellaneous Counter Routines ‘ 18-55
18.4.11.7 DFTI: Disconnect a Buffer from Counter
Interrupts 18-~56
18.4.11.8 CTTY: Connect a Circular Buffer to Terminal
Interrupts 18-56
18.4.11.9 RDTY: Read a Character from the Terminal ‘
Buffer 18-57
18.4.11.10 DFTY: Disconnect a Circular Buffer from
Terminal Input 18-58
18.4.11.11 Programming Example ' 18-58 -~
18.4.12 Unsolicited Interrupt Processing - Task o
Activation 18-60
18.4.12.1 LNK: Link a Task to Interrupts 18-60
18.4.12.2 RDACT: Read Activation Data , 18-62
18.4.12.3 UNLNK: Remove Interrupt Linkage. to a Task 18-64
18.4.13 Maintenance Functions 18-65
18.4.13.1 OFLIN: Place Selected Unit in Offline
Status 18-65
18.4.13.2 ONLIN: Return a Device to Online Status 18-65
18.5 ERROR DETECTION AND RECOVERY 18-66 A“P
18.5.1 Serial Line Errors 18-66 ik
18.5.2 Power-Fail at a Remote Site 18-67
18.5.3 Power Recovery at the Processor 18-67
18.5.4 Unit in Offline Status 18-67
18.5.5 Error Data - ICSR and ICAR Registers 18-68
18.6 DIRECT ACCESS 18-69
18.6.1 Linking a Task to the ICS/ICR Common Block 18-71
18.6.2 Accessing the I/O Page 18-71
18.6.2.1 Mapping Table Format 18-71
18.6.2.2 I/0 Page Global Definitions 18-72
18.6.2.3 Sample Subroutine 18-73
18.7 CONVERSION OF EXISTING SOFTWARE 18-75
18.7.1 Features 18-75
18.7.2 Module Support 18-75
18.7.2.1 IAD-IA A/D Converter and IMX-IA Multiplexer 18-75
18.7.2.2 16-Bit Binary Counter 18-76
18.7.2.3 Bistable Digital Output 18-76
18.7.2.4 Momentary Digital Output 18-76
18.7.2.5 Noninterrupting Digital Input 18-76
18.7.2.6 Analog Output 18-77 gg!%
18.7.2.7 Interrupting Digital Input 18-77 17

xXiv

CHAPTER

CHAPTER

CHAPTER

CHAPTER

19
20

20.1
20.1.1
20.1.2
20.2
20.3
20.4
20.5

21

21.1
21.1.1
21.1.2
21.2
21.3
21.3.
21.3.

21.3.1.8

21.3.1.9
21.3.1.10
21.3.1.11
21.3.1.12
21.3.1.13
21.3.1.14
21.3.1.15
21.3.1.16
21.3.1.17
21.3.1.18
21.3.1.19%9
21.3.2
21.3.2.1
21.3.2.2
21.3.3
21.4

21.5

21.6

21.7

21.8

21.9

22
22.1

22.1.1
22.1.1.1

CONTENTS

NULL DEVICE DRIVER
GRAPHICS DISPLAY DRIVER

INTRODUCTION
VT1ll Graphics Display Subsystem
VS60 Graphics Display Subsystem
GET LUN INFORMATION MACRO
QIO MACRO
STATUS RETURNS
PROGRAMMING HINTS

LABORATORY PERIPHERAL ACCELERATOR DRIVER

INTRODUCTION
LPA11-K Dedicated Mode of Operation
LPAll-K Multirequest Mode of Operation
GET LUN INFORMATION MACRO
THE PROGRAM INTERFACE
FORTRAN Interface
ADSWP: Initiate Synchronous A/D Sweep
CLOCKA: Set Clock A Rate
CLOCKB: Control Clock B

CVADF: Convert A/D Input to Floating Point

DASWP: Initiate Synchronous D/A Sweep
DISWP: Initiate Synchronous Digital Input
Sweep

DOSWP: Initiate Synchronous Digital Output
Sweep

FLT16: Convert Unsigned Integer to a Real
Constant

IBFSTS: Get Buffer Status

IGTBUF: Return Buffer Number

INXTBF: Set Next Buffer

IWTBUF: Wait for Buffer

LAMSKS: Set Masks Buffer

RLSBUF: Release Data Buffer

RMVBUF: Remove Buffer from Device Queue
SETADC: Set Channel Information

SETIBF: Set Array for Buffered Sweep
STPSWP: Stop Sweep

XRATE: Compute Clock Rate and Preset
MACRO-11 Interface

Accessing Callable LPAl11-K Support Routines

Device-Specific QIO Functions
The I/O Status Block (IOSB)
BUFFER MANAGEMENT
LOADING THE LPA-11 MICROCODE
UNLOADING THE DRIVER
TIMEOUT OF THE LPAll-K
22-BIT ADDRESSING SUPPORT
SAMPLE PROGRAMS

K-SERIES PERIPHERAL SUPPORT ROUTINES
INTRODUCTION

K-Series Laboratory Peripherals
AAll-K D/A Converter

Xv

Page
19-1
20-1

20-1
20-1
20-1
20-1
20-2
20-2
20-3

21-1
21-1

CHAPTER

b wN

....
T A A N
. e e o4 by

CoONAUTAEWNH

N
N
NNV NONNN R R

¢« o o o
« o o o

22.

22.2.1.
22.2.1.
22.2.1.

22.2.1.
22.2.1.
22.2.1.
22.2.1.
22.2.1.
22.2.1.
22.2.1.
22.2.1.
22.2.1.
22.2.1.

N =

10

11
12

13
14
15
16
17
18
19
20
21
22

22.2.1.23
22.2.1.24
22.2.1.25
22.2.1.26
22.2.2
22.2.2.1

22.2.2.2
22.2.3
22.3
22.4
22.4.1
22.4.2

23

23.1
23.1.1
23.1.2
23.2
23.3
23.3.1
23.3.1.1

CONTENTS

AD11-K A/D Converter
AM11-K Multiple Gain Multiplexer
DR11-K Digital I/O Interface
KW1l1-K Dual Programmable Real-Time Clock
Support Routine Features
Generation and Use of K-series Routines
Generation of K-series Support Routines
Program Use of K-series Routines

THE PROGRAM INTERFACE
FORTRAN Interface]
ADINP: Initiate Single Analog Input
ADSWP: Initiate Synchronous A/D Sweep
CLOCKA: Set Clock A Rate
CLOCKB: Control Clock B

CVADF: Convert A/D Input to Floating Point

DASWP: Initiate Synchronous D/A Sweep
DIGO: Digital Start Event

DINP: Digital Input

DISWP: Initiate Synchronous Digital Input
Sweep

DOSWP: Initiate Synchronous Digital Output

Sweep

DOUT: Digital Output

FLT16: Convert Unsigned Integer to a Real
Constant

GTHIST: Gather Inter-event Time Data
IBFSTS: Get Buffer Status

ICLOKB: Read 1l6-bit Clock

IGTBUF: Return Buffer Number

INXTBF: Set Next Buffer

IWTBUF: Wait for Buffer

RCLOKB: Read 16-bit Clock

RLSBUF: Release Data Buffer

RMVBUF: Remove Buffer from Device Queue

SCOPE: Control Scope
SETADC: Set Channel Information
SETIBF: Set Array for Buffered Sweep
STPSWP: Stop Sweep
XRATE: Compute Clock Rate and Preset
MACRO-11 Interface
Standard Subroutine Linkage and CALL Op
Code
Special-Purpose Macros
The I/O0 Status Block (IOSB)
BUFFER MANAGEMENT
SAMPLE FORTRAN PROGRAMS
Sample Program Using Event Flag
Sample Program Using Completion Routine

UNIBUS SWITCH DRIVER

INTRODUCTION
DT07 UNIBUS Switches
UNIBUS Switch Driver
GET LUN INFORMATION MACRO
QIO MACRO
Standard QIO Functions
IO0.ATT

Xvi

Page

22-2

©22-2

22-2
22-2
22-2
22-3
22-3
22-4
22-5
22-5
22-6
22-7
22-9
22-9
22-11
22-11
22-12
22-13

22-13

22-15
22-16

22-16
22-17
22-18
22-18
22-19
22-19
22-20
22-20
22-21
22-21
22-21
22-22
22-23
22-23
22-24
22-25

22-25
22-25
22-26
22-26
22-27
22-217
22-28

23-1

23-1
23-1
23-1
23-2
23-2
23-2
23-3

APPENDIX

APPENDIX

NN
w W
« & e e e
« o o
.« .
w N

NN
.

NN
WWWwwwww
« o . .
o .
N
« o .
S W

.
UdbdbbdbWLWWWWWLWWW

NN
www
.

.

23.6

N =

o o e “ e o o o s
WWWWWWINONNEFRHE
« o . « e e s o .« .
U W [\o

¥ DEwow CDoototwtwwowomw

w WWwww

= OOION

o

CONTENTS

IO.DET
TO.KIL
Device-Specific QIO Functions
TI0.CON
TO.DIS
IO0.DPT
TIO.SWI
I0.CSR
POWERFAIL RECOVERY
System Powerfail Recovery
UNIBUS Powerfail Recovery
STATUS RETURNS
FORTRAN USAGE

SUMMARY OF I/O FUNCTIONS

ANALOG-TO-DIGITAL CONVERTER DRIVERS

CARD READER DRIVER

CASSETTE DRIVER _

COMMUNICATION DRIVERS (MESSAGE-ORIENTED)

DECTAPE DRIVER

DECTAPE II DRIVER

DISK DRIVER

GRAPHICS DISPLAY DRIVER

INDUSTRIAL CONTROL SUBSYSTEMS

LABORATORY PERIPHERAL ACCELERATOR DRIVER

LABORATORY PERIPHERAL SYSTEMS DRIVERS

LINE PRINTER DRIVER

MAGNETIC TAPE DRIVER

PAPER TAPE READER/PUNCH DRIVERS

PARALLEL COMMUNICATION LINK DRIVERS
Transmitter Driver Functions
Receiver Driver Functions

TERMINAL DRIVER

UNIBUS SWITCH DRIVER

UNIVERSAL DIGITAL CONTROLLER DRIVER

VIRTUAL TERMINAL DRIVER

I/0 FUNCTION AND STATUS CODES

I/0 STATUS CODES
I/0 Status Error Codes
I/0 Status Success Codes

DIRECTIVES CODES
Directive Error Codes
Directive Success. Codes

I/0 FUNCTION CODES
Standard I/O Function Codes
Specific A/D Converter I/O Function Codes
Specific Card Reader I/0 Function Codes
Specific Cassette I/O Function Codes
Specific Communication (Message-Oriented)
I/0 Function Codes
Specific DECtape I/O Function Codes
Specific DECtape II I/O Function Codes
Specific Disk I/O Function Codes
Specific Graphics Display I/O Function
Codes
Specific
Codes

ICS/ICR, DSS/DR I/O Function

xvii

Page

23-3
23-3
23-4
23-4
23-5

NN
WWwwww
[L L
acanoonu

23-6

NN
w W
L
o8]

1
[}

Pa’?ﬁv>:?>’w3’> >
AUV AWWNNNHREH

>
1

owwow mtnmt?wtnmtnwtuw
ool bbb bLWHE

w w
|]

N

CONTENTS

Page
B.3.1l1 Specific LPAll-K I/0 Function Codes B-8
B.3.12 Specific LPS I/0 Function Codes B-9
B.3.13 Specific Magtape I/O Function Codes B-9
B.3.14 Specific Parallel Communications Link
I/0 Function Codes B-10
B.3.14.1 Transmitter Driver Functions B-10
B.3.14.2 Receiver Driver Functions B-10
B.3.15 Specific Terminal I/O Function Codes B-10
B.3.16 Specific UDC I/0 Function Codes B-11
B.3.17 Specific UNIBUS Switch I/0 Function Codes B-12
B.3.18 Specific Virtual Terminal I/O Function
Codes B-12
APPENDIX C RSX-11M PROGRAMMING EXAMPLE c-1
INDEX Index-1
FIGURES
FIGURE 1-1 Logical Unit Table 1-6
1-2 QIO Directive Parameter Block 1-13
8-1 Determination of Tape Characteristics for
the TE10/TU10 8-7
8-2 Determination of Tape Characteristics for
the TEl6/TUl6/TU45/TU77 8-8
9-1 Structure of Cassette Tape 9-6
18-1 Mapping Table Format 18-72
18-2 Mapping Table Entry Format 18-73
19-1 Indirect TKB Command File TESTBLD.CMD 19-1
TABLES
TABLE 1-1 Get LUN Information 1-20
1-2 Directive Conditions 1-30
1-3 I/0 Status Conditions 1-32
2-1 Supported Terminal Devices 2=-2
2=2 Standard Terminal Interfaces 2-3
2-3 Standard and Device-Specific QIO Functions
for Terminals 2-6
2-4 Subfunction Bits 2-10
2-5 Full-Duplex Terminal Driver-Terminal
Characteristics for SF.GMC and SF.SMC
Functions 2-13
2-6 Bit TC.TTP (Terminal Type) Values Set by
SF.SMC and Returned by SF.GMC 2-15
2=7 Information Returned by Get Terminal
Support (IO.GTS) QIO 2-16
2-8 Terminal Status Returns 2-21
2-9 Terminal Control Characters 2-25
2-10 Special Terminal Keys 2-27
2-11 Vertical Format Control Characteristics 2-32
3-1 Supported Terminal Devices 3-1
3=2 Standard Terminal Interfaces 3=2
3-3 Standard and Device-Specific QIO Functions
for Terminals 3-6
3-4 Subfunction Bits 3-8

xviii

TABLE

3-5

I
3N

[E W71
IIIII’II

1
WNEBRWNHWNRWNHES

1

i O
1

[t el
[No N
i
whE

10-4

=

e
i

[

11-2

11-3
11-4
11-5
11-6
12-1
12-2

12-3

12-4
13-1
13-2

13-3
13-4
13-5

CONTENTS

TABLES (Cont.)

Terminal Characteristics for SF.GMC and
SF.SMC Requests

Bit TC.TTP (Terminal Type): Values Set by
SF.SMC and Returned by SF.GMC

Information Returned by Get Terminal Support

(I0.GTS) QIO

Terminal Status Returns

Terminal Control Characters

Special Terminal Keys

Vertical Format Control Characters
Standard and Device-Specific QIO Functions
for Virtual Terminals

Virtual Terminal Status Returns for Offspring

Task Requests

Virtual Terminal Status Returns for Parent
Task Requests

Standard Disk Devices

Standard QIO Functions for Disks
Device-Specific Functions for the RXO01,
RX02, RLO1l, and RL0O2 Disk Drivers

Disk Status Returns

Standard QIO Functions for DECtape
Device-Specific Functions for DECtape
DECtape Status Returns

Standard QIO Functions for the TUS8
Device-Specific QIO Functions for the TUS58
TU58 Driver Status Returns

Standard Magtape Devices

Standard QIO Functions for Magtape
Device-Specific QIO Functions for Magtape
Magtape Status Returns

Standard QIO Functions for Cassette
Device~Specific QIO Functions for Cassette
Cassette Status Returns

Standard Line Printer Devices

Standard QIO Functions for Line Printers
Line Printer Status Returns

Vertical Format Control Characters
Standard QIO Functions for the Card Reader
Device-Specific QIO Function for the Card
Reader

Card Reader Switches and Indicators

Card Reader Status Returns

Card Reader Control Characters

Translation from DEC026 or DEC029 to ASCII

Message-Oriented Communication Interfaces
Standard QIO Functions for Communication
Interfaces

Device-Specific QIO Functions for
Communication Interfaces

Communication Status Returns

Standard QIO Functions for PCLll Transmitters

Device-Specific QIO Functions for PCLll
Transmitters

PCL1ll Transmitter Driver Status Returns
Standard QIO Functions for PCL1ll Receivers
Device-Specific QIO Functions for PCL1ll
Receivers

Xix

Page

(G S, -
1
N

U | !
WWNOBWKHFBWWABWNDNO

PFHRWOOVOVOOOONNJaaoonuT
|

TABLE

13-6
14-1
14-2
14-3

14-4
14-5
14-6

14-7
14-8
15-1
15-2
15-3
15-4
15-5
15-6
15-7
l6-1
16-2

16-3
16-4
16-5

16-6
16-7

l6-8
16-9
le6-10
17-1

17-2
18-1
18-2
18-3
18-4
18-5
18-6
18-7
18-8
18-9
20-1

20-2
21-1
21-2

21-3
22-1

22-2

CONTENTS

TABLES (Ccnt.)

PCL1ll Receiver Driver Status Returns
Standard Analog-to-Digital Converters
Standard QIO Function for the A/D Converters
Device-Specific QIO Function for the A/D
Converters

A/D Conversion Control Word

Contents of First Word of isb

FORTRAN Interface Subroutines for the AFC1ll
and ADO1-D

A/D Converter Status Returns

FORTRAN Interface Values

Standard QIO Function for the UDC1l1
Device-Specific QIO Functions for the UDC1l1
A/D Conversion Control Word

Contents of First Word of isb

FORTRAN Interface Subroutines for the UDCll
UDC1ll Status Returns

FORTRAN Interface Values

Laboratory Peripheral Systems

Standard QIO Function for Laboratory
Peripheral Systems

Device-Specific QIO Functions for the
Laboratory Peripheral Systems (Immediate)
Device-Specific QIO Functions for the
Laboratory Peripheral Systems (Synchronous)
Device-Specific QIO Function for the
Laboratory Peripheral Systems (IO.STP)
Contents of First Word of isb.

FORTRAN Interface Subroutines for Laboratory
Peripheral Systems

Laboratory Peripheral Systems Status Returns
Returns to Second Word of I/0O Status Block
FORTRAN Interface Values

Standard QIO Functions for the Paper Tape
Reader/Punch

Paper Tape Reader/Punch Status Returns
ICS/ICR Address Assignments

Sample ICS/ICR Configuration

Sample DSS/DRS Configuration

Summary of Industrial Control QIO Functions
A/D Conversion Control Word

FORTRAN Interface

Return Status Summary

ICSR Contents

ICAR Contents

Standard and Device-Specific QIO Functions
for Graphics Displays

Graphics Display Status Returns

FORTRAN Subroutines for the LAP11-K
Device-Specific QIO Functions for the
LPAl1l1-K

Contents of First Word of IOSB

FORTRAN Subroutines for K-series Laboratory
Peripherals

Scope Control Word Values

XX

Page

13-11
14-1
14-2

14-2
14-3
14-4

14-4
14-7
14-8
15-3
15-4
15-5
15-15
15-16
15-27
15-29
16-1

l6-2

16

I
w

16-4

16-8
16-9

l6-10
16-25
16-28
16-29

17-2
17-3
18-2
18-7
18-8
18-8
18-14
18-31
18-34
18-68
18-69

20-2
20-3
21-2

21-24
21-26

22-5
22-22

TABLE

22-3
23-1
23-2

23-3

CONTENTS

TABLES (Cont.)

Contents of First Word of IOSB

Standard QIO Functions for UNIBUS Switches
Device-Specific QIO Functions for UNIBUS
Switches

UNIBUS Switch Driver Status Returns

xxi

Page

22-26
23-2

23-4
23-7

SUMMARY OF TECHNICAL CHANGES

This revision of the I/0 Drivers Reference Manual contains changes and
additions to document two operating systems: RSX-11M V3.2 and
RSX-11M-PLUS V1.0. The following list cohtains a brief summary of
technical changes for both operating systems:

e A new full-duplex terminal driver -is available for RSX-11lM
systems. During SYSGEN, the RSX-11lM user can select either
the half-duplex terminal driver (available in previous RSX-11M

systems) or the full-duplex terminal driver. Only the
full-duplex terminal driver 1is available in RSX-11M-PLUS
systems.

Terminal driver support has been added for the following
terminal devices:

VT100
LA120

e Disk driver support has been added for the following new disk
devices:

RHXX/RMO 2
RL11/RLO2
RK611/RK07
RX211/RX02

e DECtape II (TUS58) driver support has been added. .

e Magnetic tape driver support has been added for the TU77 and
TS04.

e LPAll1-K driver support has been expanded to accommodate
systems with 22-bit addressing. While this allows the driver
to run on any system in which RSX-11M/M-PLUS is installed,
user tasks previously written to run on earlier versions of
RSX-11M may not run with the current LPAll-K driver without
modification (see Section 21.7).

e PCL1l1 Parallel Communication Link transmitter and receiver
driver support has been added for RSX-1lM-PLUS systems.
(PCL11l driver support is not available in RSX-11lM systems.)

e UNIBUS switch (DT03/DT07) driver support is provided for
RSX-11M-PLUS systems. (UNIBUS switch driver support is not
available in RSX-11lM systems.)

e Virtual terminal driver support is provided for RSX-11M-PLUS

systems. (Virtual terminals are not supported in RSX-11M
systems.)

xxiii

NOTE

The following devices are not supported
in RSX-11M-PLUS systems:

Synchronous and asynchronous 1line
interfaces:

DAl1l1-B

DL11-E (modem support is
provided in the
full-duplex terminal
driver)

DP11

DQ1ll

DUl1l

Analog~-to-digital converters:

AFCl1
ADO1-D

UDC1l1 universal digital controller
Laboratory peripheral systems:

AR11
LPS11

Industrial control subsystems:

ICS/ICR local and remote
subsystems

DSS/DRS digital input and
output subsystems

Graphics subsystems:

VT1l1
VS60

Terminal support 1is provided via
the full-duplex terminal driver
only; the half-duplex terminal
driver is not supported

xxiv

PREFACE

MANUAL OBJECTIVES

The purpose of this manual is to provide all information necessary to
interface directly with the I/0 device drivers supplied as part of the
RSX-11M/M-PLUS system.

INTENDED AUDIENCE

This manual is intended for wuse by experienced RSX-11M/M-PLUS
programmers who want to take advantage of the time and/or space
savings which result from direct use of the I/O drivers. Readers are
expected to be familiar with the information contained in the
RSX-11M/M-PLUS Executive Reference Manual, and to have some experience
using the Task Builder and either MACRO-1ll or FORTRAN programs and to
be familiar with the manuals describing their use.

STRUCTURE OF THE DOCUMENT

Chapter 1 provides an overview of RSX-11lM input/output operations. It
is somewhat tutorial in its approach in introducing the reader to the
use of logical unit numbers, directive parameter blocks, event flags,
macro calls, etc. The discussions include the standard I/0 functions
common to a variety of devices, and summarizes standard error and
status conditions relating to completion of I/0O requests.

Chapters 2 through 23 describe the use of all device drivers supported
by RSX-11M and/or RSX-11M-PLUS; refer to the preceding Summary Of
Technical Changes to determine which drivers are supported in vyour
operating system. Descriptions by chapter are as follows:

Chapter Device Drivers

2 Full-duplex terminal communications
v line interface

3 Half-duplex terminal communications
line interface

4 Virtual terminal driver
5 Disks
6 DECtape

XXV

Chapter Device Drivers
7 DECtape II
8 Magnetic tape
9 Cassette
10 Line printers
11 Card reader
12 Message-oriented communications

line interfaces

13 PCL11 parallel communications link
transmitter and receiver

14 Analog-to-digital converters

15 Universal digital controller

16 Laboratory peripheral systems

17 Paper tape reader/punch

18 Industrial control subsystems

19 The null device

20 Graphics display terminals

21 LPAll-K laboratory peripheral
accelerator

22 K-series laboratory peripherals

23 UNIBUS switch

Each of these chapters is structured in similar fashion and focuses on
the following basic elements:

Description of the device, including information on physical
characteristics such as speed, capacity, access, and usage

Summary of standard functions supported by the devices and
descriptions of device-specific functions

Discussion of special characters, carriage control codes, and
functional characteristics, if relevant

Summary of error and status conditions returned on acceptance
or rejection of I/O requests

Description of programming hints for users of the device under
RSX-11M

XXVi

Appendixes A through C provide quick reference material on I/0
functions and status codes and an example of RSX-11M I/O operations.
These include the following:

Appendix Contents
A Summary of I/O functions

by device

B I/0 function and status
codes
c Programming example

ASSOCIATED DOCUMENTS

Other manuals closely allied to the purposes of this document are
described briefly in the RSX-11M/RSX-11S Documentation Directory and
the RSX-11M-PLUS Documentation Directory. Each Documentation

Directory defines the intended readership of each manual in the
RSX-11M/RSX-11S or RSX-11M-PLUS set and provides a brief synopsis of
each manual's contents.

CONVENTIONS USED IN THIS MANUAL

There are a number of conventions and assumptions used in this manual
to present syntax and program coding examples. These are described in
the following list.

1.

Brackets ([]) in syntactic models enclose optional
parameters.

The following example illustrates this format:
ASTXS$S [err]
Braces ({}) in syntactic models indicate that one of the

items must be selected, as in the following:

DOM
CALL{ }<inm,icont,idata,[idx],[isb],[lun]>
DOMW

An ellipsis (...) in a syntactic model or coding example
indicates that parameters have been omitted. As used in this
manual, an ellipsis in a QIO macro call indicates omission of
standard QIO parameters described in Section 1.5.1. This is
illustrated below:

QI0O$C IO.RLV,...,<stadd,size>

Consecutive commas in a coding example indicate null
arguments. The following illustrates this usage:

QIo$Cc IO.ATT,6,,,,ASTOl

Commas indicating null trailing optional arguments may be
omitted, as in the following:

QIO$C IO.KIL,9.

xxvii

Certain parameters are required but ignored by RSX-11M or
RSX-11M-PLUS; this is necessary to maintain compatibility
with RSX-11D. For example, in the following, the priority
specification (fourth parameter) is ignored:

QIO$C 1I10.wWLB,8.,EV,,I0SB,ASTX,<IOBUF,NBUF>

With the exception of MACRO-11l coding examples, all numbers
in the text of this manual are assumed to be decimal; octal
radix is explicitly declared as in the following:

An illegal logical block number has been specified
for DECtape. The number exceeds 577 (1101 octal).

In MACRO-11 coding examples, all numbers are assumed to be
octal; decimal radix is explicitly designated by following
the number with a decimal point, as in the following example:

QI0S$C I0.RDB,14.,,,I10S8B,,<IOBUF,80.>

In FORTRAN subroutine models, parameters which begin with the
letters 1 through n indicate integer variables, as in the
following example:

CALL DRS (ibuf,ilen,imode,irate,iefn,imask,isb,
[nbuf], [istart], [istop])

In general, where both i and n prefixes are used in a call,
the i form indicates the name of an array and the n form
specifies the size of the array.

All integer arrays and variables are assumed to occupy one
storage word per variable (i.e., INTEGER*2) and all real
arrays and variables are assumed to occupy two storage words
per variable (i.e., REAL*4),.

xxviii

CHAPTER 1

RSX-11M/M-PLUS INPUT/OUTPUT

1.1 OVERVIEW OF RS5X-11M I/0

The RSX-11M/M-PLUS Real-Time Executives support a wide variety of
PDP-11 input and output devices, including disks, DECtapes, magnetic
tapes, tape cassettes, line printers, card readers, and such
laboratory and industrial devices as analog-to-digital converters,
universal digital controllers, and laboratory peripheral systems.
Drivers for these devices are supplied by Digital Equipment
Corporation as part of the system software. This manual describes all
of the device drivers supported by the system and the characteristics,
functions, error conditions, and programming hints associated with
each. Devices not described 1in this manual can be added to basic
system configurations, but users must develop and maintain their own
drivers for these devices. (See the RSX-11lM Guide to Writing an I/O
Driver, including update No 1, or the RSX-11M-PLUS Guide to Writing an
I/0 Driver, depending upon the system you are using.)

Input/output operations under RSX-11M are extremely flexible and are
as device- and function-independent as possible. Programs issue I/0
requests to logical units which have been previously associated with
particular . physical device units. Each program or task is able to
establish its own correspondence between physical device wunits and
logical unit numbers (LUNs). 1I/0 requests are queued as issued; they
are subsequently processed according to the relative priority of the
tasks which issued them. 1I/0 requests (for appropriate devices) can
be issued from tasks by means of either the File Control Services or
Record Management Services, or can be interfaced directly to an I/0
driver by means of the Queue I/0 (QIO) system directive.

All of the I/0 services described in this manual are requested by the
user in the form of QIO system directives. A function code included
in the QIO directive indicates the particular input or output
operation to be performed. I/0 functions can be used to request such
operations as:

e attaching or detaching a physical device wunit for a task's
exclusive use

e reading or writing a logical or virtual block of data
e canceling a task's I/0O requests
A wide variety of device-specific input/output operations (e.g.,

reading DECtape in reverse, rewinding cassette tape) can also be
specified via QIO directives.

RSX-11M/M-PLUS INPUT/OUTPUT

1.2 PHYSICAL, LOGICAL, AND VIRTUAL I/0

There are three possible modes in which an I/0 transfer can take
place. These are physical, logical, and virtual.

Physical I/0 concerns reading and writing data in the actual physical
units accepted by the hardware (e.g., sectors on a disk). For most
devices, physical 1/0 is identical to logical I/0. For example, the
RK05 disk has sectors of 256 words, the same size as RSX-11M logical
blocks for all disks. Thus, in this case, a logical block maps
directly into a physical block. For other devices, the mapping is not
one to one. The RFll disk, for example, is word-addressable; however
no physical I/0 may be done with the RFll. Data is always written in
256-word logical blocks. Another example is the RX01 flexible disk.
Data for the RX0l is recorded in physical sectors of 64 words each.
Therefore, logical blocks for the RX0l are made up of four physical
sectors.

Logical I/0 concerns reading and writing data in blocks that are
convenient for the operating system. 1In most cases, logical blocks
map directly into physical blocks. For block-structured devices
(e.g., disks), logical blocks are numbered beginning at zero (0). For
nonblock-structured devices (e.g., terminals), logical blocks are not
addressable.

Virtual I/0 concerns reading and writing data to open files, 1In this
case, the -executive maps virtual blocks into logical blocks. For
file-structured devices (disks or DECtapes) virtual blocks are the
same size as logical blocks and are numbered starting from one (1) and
are relative to the file rather than to the device. For

nonfile-structured devices, the mapping from virtual block to logical
block is direct.

1.3 RSX-11M DEVICES
The devices 1listed below are supported by both RSX-11M and
RSX-11M-PLUS, except as indicated. Drivers are supplied for each of
these devices, and I/0 operations for them are described in detail 1in
subsequent chapters of this manual.
1. A variety of terminals, including the following:

e ASR/KSR-33 and ASR/KSR-35 Teletypesl

e LA30 DECwriters (serial and parallel)

e LA36 DECwriter II

e LAl120 DECwriter III

e LAl180S DECprinter

e VTO5B Alphanumeric Display Terminal

e VTS50 Alphanumeric Display Terminal

e VT50H Alphanumeric Display Terminal

e VT52 Alphanumeric Display Terminal

1 Teletype is a registered trademark cof the Teletype Corporation.

RSX-11M/M-PLUS INPUT/OUTPUT

VT55 Graphics Display Terminal

VT61 Alphanumeric Display Terminal
VT100 Alphanumeric Display Terminal
RT02 Data Entry Terminal

RT02-C Badge Reader and Data Entry Terminal

These terminals are supported on the following asynchronous
line interfaces:

DJ11 Asynchronous Communication Line Interface Multiplexer

DH11 and DH11-DM11-BB Asynchronous Communication Line
Interface Multiplexer

pLl1l1-A, DL11-B, DL11-C, DL1l1-D, DL11-E and DL11-W
Asynchronous Communication Line Interfaces

DZ1ll Asynchronous Communication Line Interface Multiplexer
variety of disks, including the following:
RF11/R$11 Fixed-Head Disk

RS03 Fixed-Head Disk

RS04 Fixed-Head Disk

RP11/RP02 or RP03 Pack Disks

RM02, RMO3 Pack Disk

RP04, RP05, RP06 Pack Disks

RK11/RK05 or RKOSF Cartridge Disks
RL11/RL0O1 or RLO2 Cartridge Disk
RK611/RK06 or RKO7 Cartridge Disk
RX11/RX01 Flexible Disk

RX211/RX02 Flexible Disk

TCl1l/TU56 DECtape

TUS58 DECtape II

Three types of magnetic tape:

RH11 or RH70/TM0O2 or TMO3/TEl6, TUl6, TU45 or TU77
Magnetic Tape Controller/Formatter/Drive

TM11/TEl10, TUl0 or TS03 Magnetic Tape Controller/Drive

TS11/TS04 Magnetic Tape Controller/Drive

TAll Tape Cassette

1o0.

11.

12,

13.

14.

15.

>

RSX-11M/M-PLUS INPUT/OUTPUT

variety of line printers:

LPll Line Printers
LS1l Line Printer
LV1l Line Printer

LAl80 Line Printer

CR11 Card Reader

Synchronous and asynchronous line interfaces:

DAl1-B Asynchronous Communication Line Interface
support only)

DL11-E Asynchronous Communication Line Interface
support only)

DMCl1l1l Synchronous Communication Line Interface

DPl1l Synchronous Communication Line 1Interface
support only)

DQll Synchronous Communication Line Interface
support only)

DUll Synchronous Communication Line 1Interface
support only)

DUP1l Synchronous Communication Line Interface

Two analog-to-digital converters:

UDC1l1l Universal Digital Controller

AFCll Analog-to-Digital Converter

(RSX-11M

(RSX-11M

(RSX~-11M

(RSX-11M

(RSX-11M

(R8X-11M support only)

AD01-D Analog-to-Digital Converter (RSX-11lM support only)

Laboratory peripheral systems:

(RSX-11M support only)

ARll Laboratory Peripheral System (RSX-11lM support only)

LPS11l Laboratory Peripheral System (RSX-11M support only)

Paper tape devices:

PCll Paper Tape Reader/Punch

PR11 Paper Tape Reader

Industrial control subsystems:

The

ICS/ICR Local and Remote Subsystems (RSX-11M support only)

eliminating unwanted output

DSS/DRS Digital Input and Output Subsystems (RSX-11M
support only)
"Null Device," a software construct that facilitates

-,

RSX-11M/M-PLUS INPUT/OUTPUT

16. Two graphics subsystems:
e VT1ll Graphies Display System (RSX-11M support only)
e VS60 Graphics Display System (RSX-11M support only)
17. Laboratory Peripheral Accelerator:
e LPAll-K
18. K-series laboratory peripherals:
e AAll-K Digital-to-analog Converter and Display
e ADl1l-K Analog-to-Digial Converter
e AM1l1l-K Multiple Gain Multiplexer
e DR1l1-K Digital I/0 Interface
e KW1l1l-K Programmable Real Time Clock

19. PCL1l1 Parallel Communications Link (RSX-11M-PLUS support
only)

20. UNIBUS switch:
e DTO07 (RSX-11M-PLUS support only)

21. Virtual Terminals (RSX-11M-PLUS support only)

1.4 LOGICAL UNITS

This section describes the construction of the logical unit table and
the use of logical unit numbers.

1.4.1 Logical Unit Number

A logical unit number or LUN is a number which is associated with a
physical device wunit during RSX-11M/M-PLUS 1I/0 operations. For
example, LUN 1 might be associated with one of the terminals in the
system, LUNs 2, 3, 4, and 5 with DECtape drives, and LUNs 6, 7, and 8
with disk units. The association is a dynamic one; each task running
in the system can establish its own correspondence between LUNs and
physical device units, and can change any LUN/physical-device-unit
association at almost any time. The flexibility of this association
contributes heavily to system device independence.

A logical unit number is simply a short name used to represent a
logical-unit/physical-device-unit association. Once the association
has been made, the LUN provides a direct and efficient mapping to the
physical device wunit, and eliminates the necessity to search the
device tables whenever the system encounters a reference to a physical
device unit.

The user should remember that, although a LUN/physical-device-unit
association can be changed at any time, reassignment of a LUN at run
time causes pending I/0 requests for the previous LUN assignment to be
cancelled. It is the wuser's responsibility to wverify that all
outstanding I/0 requests for a LUN have been serviced before that LUN
is associated with another physical device unit.

1-5

RSX-11M/M-PLUS INPUT/OUTPUT

1.4.2 Logical Unit Table

There is one logical unit table (LUT) for each task running in a
system. This table is a variable-length block contained in the task
header. Each LUT contains sufficient 2-word entries for the number of
logical units specified by the user at task build time by the "UNITS="
option.)

Each entry or slot contains a pointer to the physical device unit
currently associated with that LUN. Whenever a user issues an I/0
request, the system matches the appropriate physical device unit to
the LUN specified in the call by indexing into the logical unit table
by the number supplied as the LUN. Thus, if the call specifies 6 as
the LUN, the system accesses the sixth 2-word entry in the LUT and
associates the I/0 request with the physical device unit to which the
entry points. The number of LUN assignments valid for a task ranges
from zero to 255, but cannot be greater than the number of LUNs
specified at task build time.

Figure 1-1 illustrates a typical logical unit table.

Number of LUNs
UCB
w1 | o T
UCB
on 2 [T T o T T
UCB
oy 3 [T o T
. uCcB
wsas | o

Figure 1-1 Logical Unit Table

Word 1 of each active (assigned) 2-word entry in the 1logical unit
table points to the unit control block (UCB) of the physical device
unit with which the LUN 1is associated. This 1linkage may be
indirect - that 1is, the user may force redirection of references from
one unit to another unit via the MCR command, REDIRECT. Word 2 of
each entry is reserved for mountable devices.

1.4.3 Changing LUN Assignments

Logical unit numbers have no significance until they are associated

with a physical device unit by means of one of the methods described
below:

1. At task build time, the user can specify an ASG keyword
option, which associates a physical device unit with a
logical unit number referenced in the task being built.

2. The user or system operator can issue a REASSIGN command to
MCR; this command reassigns a LUN to another physical
device unit and thus changes the LUN-physical device unit
correspondence. Note that this reassignment has no effect
on the in-core image of a task.

(

* RSX-11M/M-PLUS INPUT/OUTPUT

3. At run time, a task can dynamically change a LUN assignment
by issuing the Assign LUN system directive, which changes
the association of a LUN with a physical device unit during
task execution.

1.5 ISSUING AN I/O REQUEST

User tasks perform I/0 in the RSX-11M/M-PLUS system by submitting
requests for I/0 service 1in the form of QIO or QIO And Wait system
directives. See the RSX-11M/M-PLUS Executive Reference Manual for a
complete description of system directives.

In RSX-11M/M-PLUS, as in most multiprogramming systems, tasks do not
normally access physical device units directly. 1Instead, they utilize
input/output services provided by the Executive, since it can
effectively multiplex the use of physical device units over many
users. The Executive routes I/0O requests to the appropriate device
driver and queues them according to the priority of the requesting
task. I/0 operations proceed concurrently with other activities in an
RSX-11M/M-PLUS system.

Before a request is queued, it must pass a battery of acceptance tests
administered by the Executive. If the request fails it is rejected;
this rejection is signalled by the setting of the C-bit when the
statement following the QIO 1is executed. It is good programming
practice to check for directive rejection by following the QIO
directive with a BCS instruction.

After an I/0 request has been queued, the system does not wait for the
operation to complete. If at any time the user task which issued the
QIO request cannot proceed until the I/O operation has completed, it
should specify an event flag (see sections 1.5.1 and 1.5.2) in the QIO
request and should issue a Waitfor system directive which specifies
the same event flag at the point where synchronization must occur.
The task then waits for completion of I/0 by waiting for the specified
event flag to be set. ‘

The QIOW directive, QIO And Wait, is a more economical way to achieve
this synchronization. QIOW automatically waits wuntil 1I/0O has
completed before returning control to the task. Thus, the additional
Waitfor directive is not necessary.

Each QIO or QIOW directive must supply sufficient information to
identify and queue the I/0 request. The user may also want to include
locations to receive error or status codes and to specify the address
of an asynchronous system trap service routine. Certain types of I/0
operations require the specification of device-dependent information
as well. Typical QIO parameters are the following:

e I/0 function to be performed

e Logical unit number associated with the physical device unit
to be accessed

e Optional event flag number for synchronizing I/0 completion
processing (required for QIOW)

e Optional address of the I/0 status block to which information
indicating successful or unsuccessful completion is returned

e Optional address of an asynchronous system trap service
routine to be entered on completion of the I/0 request

RSX-11M/M-PLUS INPUT/OUTPUT

e Optional device- and function-dependent parameters specifying
such items as the starting address of a data buffer, the size
of the buffer, and a block number

A set of system macros which facilitate the issuing of QIO directives
is supplied with the RSX-11M/M-PLUS system. These macros, which
reside in the System Macro Library (LB:[1,1]RSXMAC.SML), must be made
available to the source program by means of the MACRO-11 Assembler
directive .MCALL. The function of .MCALL 1is described 1in Section
1.7.3. Several of the first six parameters in the QIO directive are
optional, but space for these parameters must be reserved.

During expansion of a QIO macro, a value of zero is defaulted for all
null (omitted) parameters. Inclusion of the device- and
function-dependent parameters depends on the physical device unit and
function specified. If the user wanted to specify only an I/O
function code, a LUN, and an address for an asynchronous system trap
service routine, the following might be issued:

QI0$C IO0.ATT,6,,,,ASTOX

where IO.ATT is the I/0 function code for attach, 6 is the LUN, ASTOX
is the AST address, and commas indicate null arguments for the event
flag number, the request priority, and the address of the I/0 status
block. No additional device- or function-dependent parameters are
required for an attach function. The C form of the QIO$ macro is used
here and in most of the examples included in Chapter 1. Section 1.7
describes the three legal forms of the macro.

For convenience, any comma may be omitted if no parameters appear to
the right of 1it. The command above could therefore be issued as
follows, if the asynchronous system trap was not desired.

QI0$C IO.ATT,6

All extra commas have been dropped. 1If, however, a parameter appears
to the right of any place-holding comma, that comma must be retained.

1.5.1 QIO Macro Format

The arguments for a specific QIO macro call may be different for each
I/0 device accessed and for each I/0 function requested. The general
format of the call is, however, common to all devices and 1is as
follows:

QIOS$C fnc,lun, [efn], [pri]l, [isb], [ast](,<pl,pP2,...,P6>]
where brackets ([]) enclose optional or function-dependent parameters.
If function-dependent parameters <pl,...,p6> are required, these
parameters must be enclosed within angle brackets (<>). The following
paragraphs summarize the use of each QIO parameter. Section 1.7
discusses different forms of the QIO$ macro itself.

The fnc parameter is a symbolic name representing the I/0 function to
be performed. This name is of the form:

I0.xxXX
where xxx identifies the particular I/0 operation. For example, a QIO
request to attach the physical device unit associated with a LUN

specifies the function code:

IO.ATT

1-8

RSX-11M/M-PLUS INPUT/OUTPUT

A QIO request to cancel (or kill) all I/0 requests for a specified LUN
begins in the following way:

QIOSC TIOLKIL,...

The fnc parameter specified in the QIO request is stored internally as
a function code in the high-order byte and modifier bits in the
low-order byte of a single word. The function code is in the range
zero through 31 and is a binary value supplied by the system to match
the symbolic name specified in the QIO request. The correspondence
between global symbolic names and function codes is defined in the
system object module library, which is automatically searched by the
Task Builder. Local symbolic definitions may also be obtained via the
FILIO$ and SPCIO$ macros which reside in the System Macro Library and
are summarized in Appendix A. Several similar functions may have
identical function codes, and may be distinguished only by their
modifier bits. For example, the DECtape read logical forward and read
logical reverse functions have the same function code. Only the
modifier bits for these two operations are stored differently.

The lun parameter represents the logical wunit number (LUN) of the
associated physical device unit to be accessed by the I/0 request.
The association between the physical device unit and the LUN is
specific to the task which issues the 1I/0 request, and the LUN
reference is usually device-independent. An attach request to the
physical device unit associated with LUN 14 begins in the following
way:

QIO0$SC IO.ATT,l4.,...

Because each task has its own logical unit table (LUT) in which the
physical device unit-LUN correspondences are established, the legality
of a lun parameter 1is specific to the task which includes this
parameter in a QIO request. In general, the LUN must be in the
following range:

0 < LUN < length of task's LUT (if nonzero)

The number of LUNs specified in the logical unit table of a particular
task cannot exceed 255.

The efn parameter is a number representing the event flag to be
associated with the I/0 operation. It may optionally be included in a
QIO or QIO And Wait request. The specified event flag is cleared when
the I/0 request is queued and 1is set when the I/O operation has
completed. If the task has issued the QIO And Wait directive,
execution is automatically suspended until the I/0 completes. If a
QIO directive has been issued (with no Waitfor directive), then task
execution proceeds in parallel with the I/0. When the.task continues
to execute, it may test the event flag whenever it chooses by using
the Read All Event Flags system directive (if group global event flags
are not being used) or the Read Extended Flags system directive (for
all event flags, 1including group-global event flags). If the user
specifies an event flag number, this number must be in the range 1
through 96. If an event flag specification is not desired, efn can be
omitted or can be supplied with a wvalue of zero. Event flags 1
through 32 are local (specific to the issuing task); event flags 33
through 64 are global (shared by all tasks 1in the system) . Event
flags 65 through 96 are group-global event flags (shared by all tasks
in the same user group). Flags 25 through 32 and 57 through 64 are
reserved for use by system software. Within these bounds, the user
can specify event flags as desired to synchronize I/O completion and
task execution. Section 1.5.2 provides a more detailed explanation of
event flags and significant events.

RSX-11M/M-PLUS INPUT/OUTPUT

The optional pri parameter is supplied only to make RSX-11M/M-PLUS QIO
requests compatible with RSX-11D. An RSX-11M I/0 request
automatically assumes the priority of the requesting task. Thus, it
is recommended that a value of =zero (or a null) be used for this
parameter.

The optional isb parameter identifies the address of the 1I/0 status
block (I/O status double-word) associated with the I/0 request. This
block is a 2-word array in which a code representing the final status
of the 1I/0 request is returned on completion of the operation. This
code is a binary value that corresponds to a symbolic name of the form
IS.xxx (for successful returns) or IE.xxx (for error returns). The
binary error code is returned to the low-order byte of the first word
of the status block. It can be tested symbolically, by name. For
example, the symbolic status IE.BAD is returned if a bad parameter is
encountered. The following 1illustrates the examination of the I/0
status block, IOST, to determine if a bad parameter has been detected.

QIOS$C IO0.ATT,l14.,2,,I0ST

BCS DIRERR
WTSESC 2

CMPB #IS5.SUC,IOST
BNE ERROR

The correspondence between global symbolic names and I/0 completion
codes 1is defined in the system object module 1library, which is
automatically searched by TKB. Local symbolic definitions, which are
summarized in Appendix B, may also be obtained via the IOERRS$ macro
which resides in the System Macro Library.

Certain device-dependent information is returned to the high-order
byte of the first word of isb on completion of the I/0O operation. 1If
a read or write operation is successful, the second word is also
significant. For example, in the case of a read function on a
terminal, the number of bytes typed before a carriage return is
returned in the second word of isb. If a magtape unit is the device
and a write function is specified, this number represents the number
of bytes actually transferred. The status block can be omitted from a
QIO request if the wuser does not intend to test for successful
completion of the request.

The optional ast parameter specifies the address of a service routine
to be entered when an asynchronous system trap occurs. Section 1.5.3
discusses the use of asynchronous system traps, and Section 2.2.5 of
the RSX-11M/M-PLUS Executive Reference Manual describes traps in
detail. If the user wants to interrupt his task to execute special
code on completion of an 1I/0 request, an asynchronous system trap
routine can be specified in the QIO request. When the specified 1I/0
operation completes, control branches to this routine at the software
priority of the requesting task. The asynchronous code beginning at
address ast 1is then executed, much as an interrupt service routine
would be, If the user does not want to perform asynchronous
processing, the ast parameter can be omitted or a value of zero
specified in the QIO macro call.

The additional QIO parameters, <pl,p2,...,p6>, are dependent on the
particular function and device specified in the I/0O request. Typical
parameters may include I/0 buffer address, 1/0 buffer length, etc.
Between zero and six parameters can be included, depending on the
particular I/0 function. Rules for including these parameters and
legal values are described in subsequent chapters of this manual.

RSX-11M/M-PLUS INPUT/OUTPUT

1.5.2 Significant Events

"Significant event" is a term used in real-time systems to indicate a
change in system status. In RSX-1lM/M-PLUS, a significant event is
declared when an I/0O operation completes. This signals the system
that a change in status has occurred and indicates that the Executive
should review the eligibility of all tasks in the system to determine
which task should run next. The use of significant events helps
cooperating tasks in a real-time system to communicate with each other
and thus allows these tasks to control their own sequence of execution
dynamically.

Significant events are normally set by system directives, either
directly or indirectly, by completion of a specified function. Event
flags associated with tasks may be used to indicate which significant
evernt has occurred. of the 26 event flags available in
RSX-11M/M-PLUS, the flags numbered 1 through 32 are 1local to an
individual task and are set or reset only as a result of that task's
operation. The event flags numbered 33 through 64 are common to all
tasks. Flags 25 through 32 and 57 through 64 are reserved for system
software use. The event flags numbered 65 through 96 are group-global
event flags which are common to all tasks running under the same user
group.

An example of the use of significant events follows. A task issues a
QIO directive with an efn parameter specified. A Waitfor directive
follows the QIO and specifies as an argument the same event flag
number, The event flag is cleared when the I/O request is queued by
the Executive, and the task is blocked when it executes the Waitfor
directive until the event flag 1is set and a significant event is
declared at the completion of the I/O request. The task resumes when
the appropriate event flag is set, and execution resumes at the
instruction following the Waitfor directive. During the time that the
task is blocked, tasks with priorities lower than that of the blocked
task have a chance to run, thus increasing throughput in the system.

1.5.3 System Traps

System traps are used to interrupt task execution and to <cause a
transfer of control to another memory location for special processing.
Traps are handled by the Executive and are relevant only to the task
in which they occur. To use a system trap, a task must contain a trap
service routine which is automatically entered when the trap occurs.

There are two types of system traps - synchronous and asynchronous.
Both are used to handle error or event conditions, but the two traps
differ in their relation to the task which is running when they are
detected. Synchronous traps signal error conditions within the
executing task. If the same instruction sequence were repeated, the
same synchronous trap would occur at the same place in the task.
Asynchronous traps signal the completion of an external event such as
an I/0 operation. An asynchronous system trap (AST) usually occurs as
the result of the initiation or completion of an external event rather
than a pregram condition.

The Executive queues ASTs in a first-in-first-out queue for each task
and monitors all -asynchronous service routine operations. Because
asynchronous traps may be the end result of I/O-related activity, they
cannot be controlled directly by the task which receives them.
However, the task may, under certain circumstances, block recognition
of ASTs to prevent simultaneous access to a critical data region.
When access to the critical data region has been completed, the queued

RSX-11M/M-PLUS INPUT/OUTPUT

ASTs may again be honored. The DSARSS (Disable AST Recognition) and
ENARSS (Enable AST Recognition) system directives provide the
mechanism for accomplishing this. An example of an asynchronous trap
condition is the completion of an I/0 request. The timing of such an
operation clearly cannot be predicted by the requesting task. If an
AST service routine is not specified in an I/0 request, a trap does
not occur and normal task execution continues.

Asynchronous system traps associated with I/0 requests enable the
requesting task to be "truly event-driven. The AST service routine
contained in the initiating task is executed as soon as possible,
consistent with the task's priority. The use of the AST routine to
service I/0 related events provides a response time which is
considerably better than a polling mechanism, and provides for better
overlap processing than the simple QIO and Waitfor sequence.
Asynchronous system traps also provide an ideal mechanism for use in
multiple buffering of I/O operations.

All ASTs are inserted in a first-in-first-out queue on a per task
basis as they occur (i.e., the event which they are to signal has
expired). They are effected one at a time whenever the task does not
have ASTs disabled and is not already in the process of executing an
AST service routine. The process of effecting an AST involves storing
certain information on the task's stack, including the task's Waitfor
mask word and address, the Directive Status Word (DSW), the PS, the PC
and any trap dependent parameters. The task's general-purpose
registers RO-R5 are not saved and thus it is the responsibility of the
AST service routine to save and restcre the registers it uses. After
an AST is processed, the trap-dependent parameters (if any) must be
removed from the task's stack and an AST Service Exit directive
executed. The ASTXS$S macro described in Section 1.7.6 of this manual
is used to issue the AST Service Exit directive. On AST service exit,
control is returned to another queued AST, to the executing task, or
to another task which has been waiting to run. The RSX-11M/M-PLUS
Executive Reference Manual describes in detail the purpose of AST
service routines and all system directives used to handle them.

1.6 DIRECTIVE PARAMETER BLOCKS

A directive parameter block (DPB) is a fixed-length area of contiguous
memory which contains the arguments specified in a system directive
macro call. The DPB for a QIO directive has a length of 12 words. It
is generated as the result of the expansion of a QIO macro call. The
first byte of the DPB contains the directive identification code (DIC)
- always 1 for QIO. The second byte contains the size of the DPB in
words - always 12 for RSX-11M/M-PLUS. During assembly of a user task
containing QIO requests, the MACRO-11 Assembler generates a DPB for
each I/0 request specified in a QIO macro «call. At run time, the
Executive wuses the arguments stored in each DPB to create, for each
request, an I/0 packet in system dynamic storage. The packet is
entered by priority into a queue of I/O requests for the specified
physical device unit. This queue is created and maintained by the
Executive and is ordered by the priority of the tasks which issued the
requests. The I/O drivers examine their respective queues for the I/0O
request with the highest priority capable of being executed. This
request is dequeued (removed from the queue) and the I/O operation is
performed. The process is then repeated until the queue is emptied of
all requests.

(

RSX-11M/M-PLUS INPUT/OUTPUT

After the I/0 request has been completed, the Executive declares a
significant event and may set an event flag, cause a branch to an
asynchronous system trap service routine, and/or return the 1I/0
status, depending on the arguments specified in the original QIO macro
call. Figure 1-2 illustrates the layout of a sample DPB.

1 0 Byte
Word O size of DPB — 12 1 «DIC for QIO
directive
1 fnc modifiers | « I/0 function
/7777
2 /fesé?gég lun «+—logical unit number
L LLLLL
3 priority — pri efn «—event flag number
4 isb <« address of I/0

status block

5 ast <«address of
asynchronous trap
service routine

6 device-

. dependent
. parameters
11

Figure 1-2 QIO Directive Parameter Block

1.7 I/O-RELATED MACROS

Several system macros are supplied with the RSX-11M/M-PLUS system to
issue and return information about I/0 requests. These macros reside
in the System Macro Library and must be made available during assembly
via the MACRO-11 assembler directive .MCALL.

Also supplied are FORTRAN-callable subroutines that perform the same
functions as the system macros. See the RSX-11M/M-PLUS Executive
Reference Manual for details.

There are three distinct forms of most of the system directive macros
discussed in this section. The following list summarizes the forms of
QI0$, but the characteristics of each form also apply to QIOWS, ALUNS,
GLUN$, and other system directive macros described below.

RSX-11M/M-PLUS INPUT/OUTPUT

1. QIO$ generates a directive parameter block for the 1I/0
request at assembly time, but does not provide the
instructions necessary to execute the request. This form of
the request is actually executed using the DIR$ macro. It is
useful if the DPB is to be used in several different places
in the task and/or modified or referenced by the task at run
time,

2. QIOSS generates a directive parameter block for the 1I/0
request on the stack, and also generates code to execute the
request. This is a useful form for reentrant, sharable code
since the DPB is generated dynamically at execution time.

3. QIOS$C generates a directive parameter block for the 1I/0
request at assembly time, and also generates code to execute
the request. The DPB is generated in a separate program
section «called S$DPBS$S. This approach incurs little system
overhead and is useful when an I/0 request is executed from
only one place in the program.

Parameters for both the QIO$ and QIOSC forms of the macro must be
valid expressions to be used in assembler data—-generating directives
such as .WORD and .BYTE. Parameters for the QI0$S form must be valid
source operand address expressions to be wused in assembler
instructions such as MOV and MOVB. The following example references
the same parameters in the three distinct forms of the macro call.

QIOS I0.RLB,6,2,,,ASTO1,<RDBUF,80.>
QIOSC I0.RLB,6,2,,,AST01l,<RDBUF,80.>
QIOSS #I0.RLB,#6,%#2,,,#AST01,<#RDBUF,#80.>

Only the QIO$S form of the macro produces the DPB dynamically. The
other two forms generate the DPB at assembly time. The
characteristics and use of these different forms are described in
greater detail in the RSX-11M/M-PLUS Executive Reference Manual.

The following Executive directives and assembler macros are described
in this section:

1. QIO$, which is used to request an I/0O operation and supply
parameters for that request.

2. QIOW$, which is equivalent to QIO$ followed by WTSES.

3. DIRS, which specifies the address of a directive parameter

block as 1its argument, and generates code to execute the
directive.

4. .MCALL, which is used to make available from the System Macro
Library all macros referenced during task assembly.

5. ALUNS, which is used to associate a logical unit number with
a physical device unit at run time.

6. GLUNS$, which requests that the information about a physical
device wunit associated with a specified LUN be returned to a
user-specified buffer.

7. ASTXS$S, which 1is used to terminate execution of an
asynchronous system trap (AST) service routine.

8. WTSE$, which instructs the system to block execution of the
issuing task until a specified event flag is set.

1-14

RSX-11M/M-PLUS INPUT/OUTPUT

1.7.1 The QIO$ Macro: Issuing an I/O Request

As described in Section 1.7, there are three distinct forms of the
QI0% macro. QIOS$S generates a DPB for the I/O request on the stack,
and also generates code to execute the request. QIOSC generates a DPB
and code, but the DPB 1is generated in a separate program section.
QIO$ generates only the DPB for the I/0 request. This form of the
macro call is wused in conjunction with DIRS (see Section 1.7.2) to
execute an I/0 request. In the following example, the DIRS macro
actually generates the code to execute the QIO$ directive. It
provides no QIO parameters of its own, but references the QIO
directive parameter block at address QIOREF by supplying this label as
an argument,

QIOREF: QIO$ I0.RLB,6,2,,,ASTO1 ,<BUFFER,80.>

. ; CREATE QIO DPB
READ1 : DIRS$ #QIOREF ; ISSUE 1I/0 REQUEST
READ2: DIR$ #QIOREF ; ISSUE I/0 REQUEST

1.7.2 The QIOWS$ Macro: 1Issuing an I/O0 Request and
Waiting for an Event Flag

The QIOWS macro is equivalent to a QIO$ followed by a WTSES. It is
more economical to issue a QIO And Wait request than to use the two
separate macros. An event flag (efn parameter) must be specified with
QIOWS.

1.7.3 The DIRS Macro: Executing a Directive

The DIRS (execute directive) macro has been implemented to allow a
task to reference a previously defined directive parameter block. It
is issued in the form:

DIRS {addr] [,err]

where: addr 1is the address of a directive parameter block to be
used in the directive. 1If addr is not included, the
DPB itself or the address of the DPB 1is assumed to
already be on the stack. This parameter must be a
valid source operand for a MOV instruction generated by
the DIRS macro.

err is an optional argument which specifies the address of
an error routine to which control branches if the
directive is rejected. The branch occurs via a JSR PC,
err if the C-bit is set, indicating rejection of the
QIO directive.

1.7.4 The .MCALL Directive: Retrieving System Macros

.MCALL is a MACRO-11 assembler directive which 1is wused to retrieve
macros from the System Macro Library (LB:[1,1]RSXMAC.SML) for use
during assembly. It must be included in every user task which invokes

RSX-11M/M-PLUS INPUT/OUTPUT

system macros. .MCALL 1is usually placed at the beginning of a user
task source module and specifies, as arguments in the call, all system
macros which must be made available from the library.

The following example illustrates the use of this directive:

+.MCALL QIOS$,QIO$S,DIRS,WTSESS MAKE MACROS AVAILABLE

~

ATTACH: QIOSS #I0.ATT,#6,,,10SB,#AST02

ATTACH DEVICE

~

.

QIOREF: QIOS I0.RLB,6,,,I0SB,ASTOl,... ; CREATE ONLY QIO DPB

READ1l: DIRS #QIOREF,DIRERR ISSUE I/0 REQUEST

~

As many macro references as can fit on a line can be included in a
single (MCALL directive. There is no limit to the number of .MCALL
directives that can be specified.

1.7.5 The ALUNS$ Macro: Assigning a LUN

The Assign LUN macro is used to associate a logical unit number with a
physical device unit at run time. All three forms of the macro call
may be used. Assign LUN does not request I/0 for the physical device
unit, nor does it attach the unit for exclusive use by the issuing
task. It simply establishes a LUN-physical device unit relationship,
so that when the task requests 1/0 for that particular LUN, the
associated physical device unit is referenced. The macro 1is issued
from a MACRO-11 program in the following way:

ALUNS lun, dev,unt

where: lun is the logical unit number to be associated with the
specified physical device unit.

dev 1is the device name of the physical device or a 1logical
device name assigned to a physical device (see MCR ASN
command) .

unt is the unit number of that device specified above.

For example, to associate LUN 10 with terminal unit 2, the following
macro call could be issued by the task:

ALUNSC 10.,TT,2

A unit number of 0 represents unit 0 for multi-unit devices such as
disk, DECtape, or terminals; it indicates the single available unit
for devices without multiple units, such as card readers and line
printers.

RSX-11M/M-PLUS INPUT/OUTPUT

Logical devices are SYSGEN options that allow the wuser to assign
logical names to physical devices by means of the MCR command ASN.
See the RSX-11M/M-PLUS MCR Operations Manual for a full description.

The example included below illustrates the-use of the three forms of
the ALUNS macro.

DATA DEFINITIONS

~ we we

ASSIGN: ALUNS 10.,TT,2 ; GENERATE DPB

EXECUTABLE SECTION

. we “»

DIRS #ASSIGN

EXECUTE DIRECTIVE

~

ALUNSC 10.,TT,2

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

~ we we

ALUNSS #10,,#"TI,#0 GENERATE DPB ON STACK, THEN

EXECUTE DIRECTIVE

~ w

1.7.5.1 Physical Device Names - The following list contains physical

device names, listed alphabetically, that may be included as dev
parameters:

Name Device
AD ADO1-D Analog-to-Digital Converter (not supported in
RSX-11M-PLUS systems)
AF AFCll Analog-to-Digital Converter (not supported in
RSX-11M-PLUS systems)
AR AR11 Laboratory Peripheral System (not supported in
RSX-11M-PLUS systems)
BS DT03/DT07 UNIBUS Switch (supported in RSX-11M-PLUS
systems, only)
CD CDl1l Card Reader
(034 Central Processor Unit (CPU) in a multiprocessor system
(supported in RSX-11M-PLUS systems, only)
CR CR11/CM11 Card Reader
CcT TAll/TU60 Tape Cassette
DB RP04, RP05, RP06 Pack Disk
DD TU58 DECtape II

Name
DF
DK
DL
DM
DP
DR
DS
DT
DX
DY

GR

IC

IS

LA
LP

LS

MM
MS
MT
NL
PP
PR

RX

TT

TX

uD

XB

RSX-11M/M-PLUS INPUT/OUTPUT

Device
RF11/RS11 Fixed-Head Disk
RK11/RK05 Cartridge Disk
RL11/RLO1/RL02 Cartridge Disk
RK611/RK06 and RK711/RK07 Cartridge Disk
RP11/RP02/RP03 Pack Disk
RM02/RM03 Pack Disk
RS03 and RS04 Fixed-Head Disks
TC11/TU56 DECtape
RX11/RX01 Flexible Disk
RX211/RX02 Flexible Disk

VT11/VS60 Graphics Systems (not supported in
RSX-11M-PLUS systems)

ICS/ICR Industrial Control Local and Remote Subsystems
(not supported in RSX-11M-PLUS systems)

DSS/DRS Digital 1Input and Output Subsystems (not
supported in RSX-11M-PLUS systems)

LPAll-K Laboratory Peripheral Accelerator
LA180/LP11/LS11/LV11l Line Printers

LPS1l Laboratory Peripheral System‘ (not supported in
RSX-11M-PLUS systems)

TUl6/TE16/TU45/TU77/TM02/TMO 3 Magnetic Tape
TS11/TS04 Magnetic Tape

TM11/TUl0/TUll or TS03 Magnetic Tape

The Null Device

PCll Paper Tape Punch

PCll or PR11l Paper Tape Reader

‘PCL11-A/PCL11-B Receiver Port (supported in

RSX-11M-PLUS systems, only)
Terminals (regardless of interface)

PCL11-A/PCL11-B Transmitter Port (supported in
RSX-11M-PLUS systems, only)

UDCl1l Universal Digital Controller (not supported in
RSX-11M-PLUS systems)

DAll-B Parallel Unibus Link (not supported in
RSX-11M-PLUS systems))

RSX~-11M/M-PLUS INPUT/OUTPUT

Name Device

XL DL11-E Asynchronous Communication Line Interface (not
supported in RSX-11M-PLUS systems)

XM DMC11l Synchronous Communication Line Interface

XP DP1l1 Synchronous Communication Line 1Interface (not
supported in RSX-11M-PLUS systems)

XQ DQl1l Synchronous Communication Line Interface (not
supported in RSX-11M-PLUS systems)

XU DU1l1 Synchronous Communication Line 1Interface (not
supported in RSX-11M-PLUS systems)

XW DUP1ll Synchronous Communication Line Interface
YH DH11 Asynchronous Communications Line Multiplexer
YL pLl1-a/DL11-B/DL11-C/DL11-D/DL11-E Asynchronous

Communications Line Interface (DL11-B, DL11-E, DP1l1,
DQll, and DUll are not supported in RSX-11M-PLUS

systems)
YZ DZ11l Asynchronous Communications Line Multiplexer
ZA-27 Reserved for customer use (not used by DIGITAL)

1.7.5.2 Pseudo-Device Names - A pseudo-device is a 1logical device
which can normally be redirected by the operator to another physical
device unit at any time, without requiring changes in programs which
reference the pseudo-device. Dynamic redirection of a physical device
unit affects all tasks in the system; reassignment by means of the
MCR REASSIGN command affects only one task. The following
pseudo-devices are supported, as indicated:

Code Device

CL Console listing, normally the line printer.

CcO Console output, normally the main operator's console.
LB System library device, normally the device from which

the system was bootstrapped. For example, LB: is the
device which tasks such as TKB and MAC access for
default library files.

NL Null device.

NT Network.

RD Online reconfiguration pseudo device.

SP Spooling scratch disk device.

Sy User default device. On non-multiuser systems, SY: 1is
normally the disk from which the system was
bootstrapped. On multiuser systems, SY: is normally

the default login device.

RSX-11M/M-PLUS INPUT/OUTPUT

Code Device
TI Pseudo-input terminal; the terminal from which a task

was requested.

The pseudo-device TI cannot be redirected, since such
redirection would have to be handled on a per-task
rather than a system-wide basis (i.e., <change the TI
device for one task without affecting the TI
assignments for other tasks).

VT Virtual terminal. Used by some RSX-11M-PLUS offspring
tasks as TI: for command and data I/0. (Supported in
RSX-11M-PLUS systems, only).

1.7.6 The GLUNS$ Macro: Retrieving LUN Information

The Get LUN Information macro requests that information about a
LUN-physical device wunit association be returned in a 6-word buffer
specified by the issuing task. Upon successful completion of the
directive processing, the buffer contains the information listed in
Table 1-1, as appropriate for the specific device. All three forms of
the macro call may be used. It is issued from a MACRO-11l program in
the following way:

GLUNS lun, buf

where: lun 1is the logical unit number associated with the physical
device unit for which information is requested.

buf is the 6-word buffer to which information is returned.

For example, to request information on the disk unit associated with
LUN 8, the following call is issued:

GLUNSC 8.,I0BUF

Table 1-1
Get LUN Information

Numerical Offset Symbolic Offset
Word | Byte [Bit Word Byte Bit Contents
0 G.LUNA Name of device associated with
LUN (ASCII bytes)
1 0 G.LUNU Unit number of associated device
1 G.LUFB Driver flag value. Returned as
200 octal if the driver |is
resident, or as 0 if a 1loadable
driver is not in the system

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-1 (Cont.)
Get LUN Information

Numerical Offset Symbolic Offset
Word [Byte | Bit Word Byte Bit Contents
2 G.Lucwl First device characteristics

word:

0 (U,CW1) (DV.REC) | Unit record-oriented device
(e.g., card reader, line printer)
(1 = yes)

1 (DV.CCL) | Cariage-control device (€.9.,
line printer, terminal) (1 = yes)

2 (DV.TTY) | Terminal device (1 = yes)

3 (DV.DIR) | Directory device (e.g., DECtape,
disk) (1 = yes)

4 (DV.SDI) | Single directory device (e.g.,
ANSI-standard magtape) (1l = yes)

5 DV .SQD) | Sequential device (e.g.,
ANSI-standard magtape) (1 = yes)

6 Reserved

7 . (DV.UMD) | User-mode diagnostics supported
(1 = yes)

8 (DV.MBC) | Massbus device (1 = yes)

9 (DV.SWL) | Unit software write-locked
(1 = yes)

10 (DV.ISP) | Input spooled device (1 = yes)

11 ‘DV.05SP) Output spooled device (1 = yes)

12 (DV.PSE) | Pseudo-device (1 = yes)

13 (DV.COM) | Device mountable as a
communications channel for
Digital network support (e.qg.,
DP11l, DUll) (1 = yes)

14 (DV.F11l) | Device mountable as a FILES-11
device (e.g., disk or DECtape)
1 = yes)

15 (DV.MNT) | Device mountable (logical OR of
bits 13 and 14) (1 = yes)

3 G.LUCW+02 Second device characteristics
word:
(U.CW2) (U2 .xxx) | Device-specific information

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-1 (Cont.)
Get LUN Information

Numerical Offset Symbolic Offset
Word [Byte [Bit Word Byte Bit Contents
4 G.LUCW+04 Third device characteristics
word:
(U.CW3) ’ (U3.xxx) | Device-specific information2
5) G.LUCW+06 Fourth device characteristics
word:
(U.Cw4) Default buffer size (e.g., for
disks, and line length for
terminals).

1 The following word and bit symbols shown in parenthesis are symbols
used in defining and referencing corresponding items in the device
Unit Control Block (UCB)

2. For mass storage devices, such as disks, DECtape, and DECtape 1II,
this is the maximum logical block number. For the proper use of the
RX211/RX02 flexible disk, it is important to be able to test the
fourth device characteristics word to determine media density mode.

The example included below illustrates the use of the three forms of
the GLUNS$ macro.

DATA DEFINITIONS

N e we

GETLUN: GLUNS 6 ,DSKBUF ; GENERATE DPB

EXECUTABLE SECTION

~e wo we

DIRS #GETLUN

EXECUTE DIRECTIVE

-

GLUNSC 6,DSKBUF

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

~ wo we

GLUNSS #46,#DSKBUF GENERATE DPB ON STACK, THEN

EXECUTE DIRECTIVE

~e ~a

1.7.7 The ASTX$S Macro: Terminating AST Service

The AST Service Exit macro 1is used to terminate execution of an
asynchronous system trap (AST) service routine. All forms of the
macro are provided. However, the S-form 1is preferred because it

-

RSX-11M/M-PLUS INPUT/OUTPUT

requires less space and executes at least as fast as the ASTXS or
ASTX$C forms of the macro. The macro is issued in the following way:

ASTXS$SS [err]

where: err is an optional argument which specifies the address of
an error routine to which control branches if the
directive is rejected.

on completion of the operation specified in this macro call, if
another AST is queued and asynchronous system traps have not been
disabled, then the next AST is immediately entered. Otherwise, the
task's state before the AST was entered is restored (it is the AST
service routine's responsibility to save and restore the registers it
uses) .

1.7.8 The WTSE$ Macro: Waiting for an Event Flag

The Wait For Single Event Flag macro instructs the system to suspend
execution of the:. issuing task until the event flag specified in the
macro call is set. This macro is extremely useful in synchronizing
activity on completion of an I/O operation. All three forms of the
macro call may be used. It is issued as follows:

WTSES efn
where: efn 1is the event flag number

WTSE$ causes the task to be blocked from execution until the specified
event flag is set. Frequently, an efn parameter is also included in a
QI0$ macro call, and the event flag is set on completion of the 1I/0
operation specified in that call. The following example illustrates
task blocking until the setting of the specified event £flag occurs.

This example also illustrates the use of the three forms of the macro
call.

DATA DEFINITIONS

~. we =

WAIT: WTSES$ 5
I0SB: «BLKW 2

GENERATE DPB
I/0 STATUS BLOCK

~e S

EXECUTABLE SECTION

~e wo we

ALUNSS #14.,#"MM
QIOsSC I0.ATT,14.,5
DIRS #WAIT

ASSIGN LUN 14 TO MAGTAPE UNIT ZERO
ATTACH DEVICE
EXECUTE WAITFOR DIRECTIVE

~e =y we

QIOSS #I10.RLB,#14.,%#2,,#I0SB, ,<#BUF,#80.>
. ; READ RECORD, USE EFN2

.

RSX-11M/M-PLUS INPUT/OUTPUT

WTSESS #2 ; WAIT FOR READ TO COMPLETE

QIOSC I0.wWLB,14.,3,,10SB,,<BUF,80.>

. ; WRITE RECORD, USE EFN3
WTSESC 3 ;7 WAIT FOR WRITE TO COMPLETE
QIOSC IO.DET,14. ; DETACH DEVICE

1.8 STANDARD I/0 FUNCTIONS

The number of input/output operations that can be specified by means
of the QIO directive 1is 1large. A particular operation can be
requested by including the appropriate function code as the first
parameter of a QIO macro call. Certain functions are standard. These
functions are almost totally device-independent and can thus be
requested for nearly every device described in this manual. Others
are device-dependent and are specific to the operation of only one or
two I/0 devices. This section summarizes the function codes and
characteristics of the following device-independent I/0 operations:

e attach to an I/O device

e detach from an I/O device

e cancel I/0 requests

e read a logical block

e read a virtual block

e write a logical block

° writé a virtual block
For certain physical device units discussed in this manual, a standard
I/0 function may be described as being a NOP. This means that no
operation is performed as a result of specifying the function, and an

I/0 status <code of 1IS.SUC 1is returned in the 1I/0 status block
specified in the QIO macro call. '

In the following descriptions and in formats shown in subsequent
chapters, the five QIO directive parameters lun, efn, pri, isb, and
ast are represented by the ellipsis (...) (see Section 1.5.1).

1.8.1 IO.ATT: Attaching to an I/0 Device

The function code IO.ATT is specified by a user task when that task
requires exclusive use of an I/0 device. This function code is

included as the first parameter of a QIO macro call in the following
way:

QIOSC IO.ATT,...

RSX-11M/M-PLUS INPUT/OUTPUT

Successful completion of an IO.ATT request causes the specified
physical device unit to be dedicated for exclusive use by the issuing
task. This enables the task to process input or output in an unbroken
stream and 1is especially useful on sequential, nonfile-oriented
devices such as terminals, card readers, and line printers. An
attached physical device unit remains under control of the issuing
task until it is explicitly detached by that task. To detach the

device the task can specify any LUN previously assigned to the
attached device.

While a physical device unit is attached, the I1/0 driver for that unit
dequeues only I/0O requests issued by the task that issued the attach.
Thus, a request to attach a device unit already attached by another
task will not be processed until the attachment is broken and no
higher priority request exists for the unit. A LUN that is associated
with an attached physical device unit may not be reassigned by means
of an Assign LUN directive except when at least one LUN is still
assigned to the attached device.

If the task which issued an attach function exits or is aborted before
it issues a corresponding detach, the Executive automatically detaches
the physical device unit.

1.8.2 I0.DET: Detaching from an I/O Device

The function code IO.DET is used to detach a physical device unit
which has been previously attached by means of an IO.ATT request for
exclusive use of the issuing task. This function code is included as
the first parameter of a QIO macro call in the following way:

QIO$C IO.DET,...

The LUN specifications of both IO.ATT and IO.DET must be the same, as
in the following example, which also illustrates the use of "s" forms
of several macro calls.

.MCALL ALUNSS,QIOSS
ALUNS$S #14.,#"CR ; ASSOCIATE CARD READER WITH LUN 14

QIOSS #IQ.ATT,#14. ; ATTACH CARD READER

.

LOOP: QIOSS $#I1I0.RLB,#14.,... ; READ CARD

QIOSS $#T0.DET,#14. ; DETACH CARD READER

1.8.3 I0.KIL: Canceling I/O Requests

The function IO.KIL is issued by a task to cancel all of that task's
1/0 requests for a particular physical device unit.

For I/0 requests waiting for service - that is, in the I/0 driver's
queue - a status code of IE.ABO is returned in the I/0 status block.
An event flag is set, if specified. But any asynchronous system trap
(AST) service routine that may have been specified is not initiated.

RSX-11M/M-PLUS INPUT/OUTPUT

For I/0 requests being processed by an I/0 driver - other than the
disk or DECtape drivers - the IE.ABO status code is returned. Other
status information (byte count, etc.) is also returned in the 1I/0
status block. An AST, if specified, is activated.

For disk, DECtape, or DECtape II I/O requests being processed when an
I0.KIL is issued, the IO.KIL acts as a NOP., The request is allowed to
complete, except in the case in which a DECtape transfer is blocked by
a select error. Because disk and DECtape operate quickly, I0O.KIL
simply causes the return of IS.SUC in the I/0 status block.

This function code is included as the first parameter of a QIO macro
in the following way:

QIOSC IO.KIL,...

IO.KIL is useful in such special cases as canceling an I/0 request on
a physical device unit from which a response is overdue .(e.g., a read
on a paper-tape reader).

1.8.4 1I0.RLB: Reading a Logical Block

The function code IO.RLB is specified by a task to read a block of
data from the physical device unit specified in the macro call. This
function code is included as the first parameter of a QIO macro in the
following way:

QIO0SC I0O.RLB,...,<stadd,size,pn>
where: stadd 1is the starting address of the data buffer.

size 1s the data buffer size in bytes.

pn represents one to four optional parameters, used to

specify such additional information as block numbers
for certain devices.

1.8.5 1I0.RVB: Reading a Virtual Block

The function code IO.RVB is used to read a virtual block of data from
the physical device unit specified in the macro call. A "virtual"
block indicates a relative block position within a file and is
identical to a "logical" block for such sequential, record-oriented
devices as terminals and card readers. For these sequential,
record-oriented devices, IO.RVB is converted to IO.RLB before being
issued.

NOTE .

Any subfunction bits specified in the
IO.RVB request (see Sections 2.3.1 and

3.3.1) are stripped off in this
conversion.

RSX-11M/M-PLUS INPUT/OUTPUT

It is recommended that all tasks use virtual rather than logical
reads. However, if a virtual read is issued for a file-structured
device (disk, DECtape, or DECtape II), the user must ensure that a
file is open on the specified physical device unit. This function
code is included as the first parameter of a QIO macre call in the
following way:

QIONSC I0O.RVB,...,<stadd,size,pn>
where: stadd 1is the starting address of the data buffer.
size 1is the data buffer size in bytes.

pn represents one to four optional parameters, used to
specify such additional information as block numbers
for certain devices.

1.8.6 IO.WLB: Writing a Logical Block

The function code IO.WLB is specified by a task to write a block of
data to the physical device unit specified in the macro call. This
function code is included as the first parameter of a QIO macro call
in the following way:

QIOSC I0O.WLB,...,<stadd,size,pn>
where: stadd 1is the starting address of the data buffer.
size is the data buffer in bytes.

pn represents one to four optional parameters, used to
specify such additional information as block numbers or
format control characters for certain devices.

1.8.7 I0O.WVB: Writing a Virtual Block

The function code IO.WVB is used to write a virtual block of data to a
physical device unit. A "virtual" block indicates a block position
relative to the start of a file. For sequential, record-oriented
devices such as terminals and line printers, the function IO.WVB is
converted to IO.WLB.

NOTE

Any subfunction bits specified in the
I0.WVB request (see Sections 2.3.1 and
3.3.1) are stripped off in this
conversion,

It is recommended that all tasks wuse wvirtual rather than logical
writes. However, if a virtual write is issued for a file-structured
device (disk, DECtape, or DECtape II), the user must ensure that a
file is open on the specified physical device unit. This function
code is included as the first parameter of a QIO macro call in the
following way:

QIo0sC I0.WVB,...,<stadd,size,pn>

RSX-11M/M-PLUS INPUT/OUTPUT

where: stadd is the starting address of the data buffer.
size is the data buffer size in bytes.

pn represents one to four optional parameters, used to
specify such additional information as block numbers or
format control characters for certain devices.

1.9 I/0 COMPLETION

When an I/0 request has been completed, either successfully or
unsuccessfully, one or more actions may be taken by the Executive.
Selection of return conditions depends on the parameters included in
the QIO macro call. There are three major returns:

l. A significant event is declared on completion of an I/0
operation. If an efn parameter was included in the I/0
request, the corresponding event flag is set.

2. If an isb parameter was specified in the QIO macro call, a
code identifying the type of success or failure is returned
in the low-order byte of the first word of the 1I/0 status
block at the location represented by isb.

This status return code is of the form IS.xXXx (success) or
IE.xxx (error). For example, if the device accessed by the
I/0 request is not ready, a status code of IE.DNR is returned
in isb. The section below (Return Codes) summarizes general
codes returned by most of the drivers described in this
manual.

If the isb parameter was omitted, the requesting task cannot

determine whether the I/0 request was successfully completed.
A carry clear return from the directive itself simply means
that the directive was accepted and the I/0 request was
queued, not that the actual input/output operation was
successfully performed.

3. If an ast parameter was specified in the QIO macro call, a
branch to the asynchronous system trap (AST) service routine
which begins at the location identified by ast occurs on
completion of the 1I/0 operation. See Section 1.5.3 for a
detailed description of AST service routines.

1.10 RETURN CODES

There are two kinds of status conditions recognized and handled by
RSX-11M/M-PLUS when they occur in I/0 requests:

e Directive <conditions, which indicate the acceptance or
rejection of the QIO directive itself

e I/0 status conditions, which indicate the success or failure
of the I/0 operation

RSX-11M/M-PLUS INPUT/OUTPUT

Directive conditions relevant to I/0 operations may indicate any of
the following:

e directive acceptance

e invalid buffer specification

e invalid efn parameter

e invalid 19n parameter

e invalid DIC number or DPB size
e unassigned LUN

e insufficient memory

A code indicating the acceptance or rejection of a directive 1is-
returned to the directive status word at symbolic location $DSW. This
location can be tested to determine the type of directive condition.

I1/0 conditions indicate the success or failure of the I/0 operation
specified in the QIO directive. I1/0 driver errors include such
conditions as device not ready, privilege violation, file already
open, or write-locked device. If an isb parameter is included in the
QIO directive, identifying the address of a 2-word I/O status block,
an I/0 status code is returned in the low-order byte of the first word
of this block on completion of the I/0O operation. This code 1is a
binary value which corresponds to a symbolic name of the form IS.xxx
or IE.xxx. The low-order byte of the word can be tested symbolically,
by name, to determine the type of status return. The correspondence
between global symbolic names and directive and I1/0 completion status
codes is defined in the system object module library. Local symbolic
definitions may also be obtained via the DRERR$ and IOERRS macros
which reside in the System Macro Library and are summarized in
Appendix B.

Binary values of status codes always have the following meaning:

Code ' Meaning

Positive (greater than zero) Successful completion
Zero Operation still pending
Negative Unsuccessful completion

A pending operation means that the I/0O request is still in the queue
of requests for the respective driver, or the driver has not yet
completely serviced the request.

1.10.1 Directive Conditions

Table 1-2 summarizes the directive conditions which may be encountered
in QIO directives. The acceptance condition is first, followed by
error codes indicating various reasons for rejection, in alphabetical
order.

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-2
Directive Conditions

Code

Reason

IS.sucC

IE.ADP

IE.IEF

IE.ILU

IE.SDP

IE.ULN

IE.UPN

Directive accepted

The first six parameters of the QIO directive were
valid, and sufficient dynamic memory was available
to allocate an I/0 packet. The directive is
accepted.

Invalid address

The I/0 status block or the QIO DPB was outside of
the issuing task's address space or was not aligned
on a word boundary.

Invalid event flag number

The efn specification in a QIO directive was less
than zero or greater than 96.

Invalid logical unit number

The lun specification in a QIO directive was
invalid for the issuing task. For example, there
were only five logical unit numbers associated with
the task, and tHe value specified for lun was
greater than five.

Invalid DIC number or DPB size

The directive identification code (DIC) or the size
of the directive parameter block (DPB) was
incorrect; the legal range for a DIC is from 1
through 127, and all DIC values must be odd. Each
individual directive requires a DPB of a certain
size. If the size 1is not <correct for the
particular directive, this code is returned. The
size of the QIO DPB is always 12 words.

Unassigned LUN

The logical unit number in the QIO directive was

not associated with a physical device unit. The
user may recover from this error by issuing a valid
Assign LUN directive and then reissuing the
rejected directive.

Insufficient dynamic memory

There was not enough dynamic memory to allocate an
I/0 packet for the I/O request. The user can try
again later by blocking the task with a Waitfor
Significant Event directive. Note that Waitfor
Significant Event is the only effective way for the
issuing task to block its execution, since other
directives that could be used for this purpose
themselves require dynamic memory for their
execution (e.g., Mark Time).

RSX-11M/M-PLUS INPUT/OUTPUT

1.10.2 I/0 Status Conditions

The following list summarizes status codes which may be returned in
the I/0 status block specified in the QIO directive on completion of
the I/0 request. The I/O status block is a 2-word block with the
following format:

e The low-order byte of the first word receives a status code of
the form IS.xxxXx or IE.xxX on completion of the I/O operation.

e The high-order byte of the first word is usually

device-dependent; in cases where the user might find
information in this byte helpful, this manual identifies that
information.

e The second word contains the number of bytes transferred or
processed if the operation is successful and involves reading
or writing.

If the isb parameter of the QIO directive is omitted, this information
is not returned.

The following illustrates a sample 2-word 1I/0 status block on
completion of a terminal read operation:

1 0 Byte
Word 0 0 -10
1 Number of bytes read

where -10 is the status code for IE.EOF (end of file). If this code
is returned, it indicates that input was terminated by typing CTRL/Z,
which is the end-of-file termination sequence on a terminal.

To test for a particular error condition, the user generally compares
the 1low-order byte of the first word of the I/0 status block with a
symbolic value as in the following:

CMPB #IE.DNR,IOSB

However, to test for certain types of successful completion of the I/0
operation, the entire word value must be compared. For example, if a
carriage return terminated a 1line of input from the terminal, a
successful completion c¢ode of IS,.,CR 1is returned in the I/0 status
block. If an Escape (or Altmode) character was the terminator, a code
of IS.ESC 1is returned. To check for these codes, the user should
first test the low-order byte of the first word of the block for
IS.SUC and then test the full word £for IS.CC, IS.CR, IS,ESC, or
IS.ESQ. (Other success codes which-must be read in this manner are
listed in Appendix B, Section B.l.2.)

Note that both of the following comparisons will test equal since the
low-order byte in both cases is +1.

CMP #IS.CR,I0SB

CMPB $#I5.5UC,I10SB

RSX-11M/M-PLUS INPUT/OUTPUT

In the case of a successful completion where the carriage return is
the terminal indicator (IS.CR), the following illustrates the status
block:

1 0 Byte
Word 0 15 +1
1 Number of bytes read
(excluding the CR)

where 15 is the octal code for carriage return and +1 is the status
code for successful completion.

The codes described in Table 1-3 are general status codes which apply
to the majority of devices presented in subsequent chapters. Error
codes specific to only one or two drivers are described only in
relation to the devices for which they are returned. The list below
describes successful and pending codes first, then error codes 1in
alphabetical order.

Table 1-3
I/0 Status Conditions

Code Reason

Is.sucC Successful completion

The I/0 operation specified in the QIO directive
was completed successfully. The second word of the
I/0 status block can be examined to determine the
number of bytes processed, 1if the operation
involved reading or writing.

IS.PND I/0 request pending

The I/O operation specified in the QIO directive
has not yet been executed. The I/0 status block is
filled with zeros.

IE.ABO Operation aborted

The specified I/0 operation was cancelled via
IO.KIL while in progress or while still in the 1/0
queue.

IE.ALN File already open

The task attempted to open a file on the physical
device wunit associated with the specified LUN, but
a file has already been opened by the issuing task
on that LUN.

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/0 Status Conditions

Code

Reason

IE.BAD

IE.BBE

IE.BLK

IE.BYT

IE.DAA

IE.DNA

Bad parameter

An illegal specification was supplied for one or
more of the device-dependent QIO parameters (words
6--11). For example, a bad channel number or gain
code was specified in an analog-to-digital
converter I/0 operation.

Bad block on device

One or more bad blocks were found by éxecuting the
BAD utility. Data cannot be written on bad blocks.

Illegal block number

An illegal block number was specified for a
file-structured physical device unit. This code is
returned, for example, if block 4800 1is specified
for an RKO5 disk, on which legal block numbers
extend from zero through 4799.

Byte-aligned buffer specified.

Byte alignment was specified for a buffer, but only
word (or double-word) alignment is legal for the
physical device unit. For example, a disk function
requiring word alignment was requested, but the
buffer was aligned on a byte boundary.
Alternately, the 1length of a buffer was not an
appropriate multiple of bytes. For example, all
RPO03 disk transfers must be an even multiple of
four bytes.

Device already attached

The physical device unit specified in an IO.ATT
function was already attached to the lssuing task.
This code indicates that the 1issuing task has
already attached the desired physical device unit,
not that the unit was attached by another task.

Device not attached

The physical device unit specified in an IO.DET
function was not attached to the issuing task.
This code has no bearing on the attachment status
with respect to other tasks.

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/0 Status Conditions

Code

Reason

IE.DNR

IE.EOF

IE.FHE

IE.IFC

IE.NLN

IE.NOD

IE.OFL

Device not ready

The physical device unit specified in the QIO
directive was not ready to perform the desired I/0
operation. This code 1is often returned as the
result of an interrupt timeout, that 1is, a
"reasonable" amount ¢f time has passed, and the
physical device unit has not responded.

End-of-file encountered

An end-of-file mark, record, or control character
was recognized on the input device.

Fatal hardware error

Controller 1is physically unable to reach the
location where input/output is to be performed on
the device. The operation cannot be completed.

Illegal function

A function code was specified in .an I/0 request
that was illegal for the specified physical device
unit. This code is returned if the task attempts
to execute an illegal function or if, for example,
a read function 1is requested on an output-only
device, such as the line printer.

File not open

The task attempted to close a file on the physical
device unit associated with the specified LUN, but
no file was currently open on that LUN.

Insufficient buffer space

Dynamic storage space has been depleted, and there
was insufficient buffer space available to allocate
a secondary control hklock. For example, if a task
attempts to open a file, buffer space for the
window and file control block must be supplied by
the Executive. This code is returned when there is
not enough space for such an operation.

Device off-line

The physical device unit associated with the LUN
specified in the QIO directive was not on-line.
When the system was booted, a device check
indicated that this physical device unit was not in
the configuration.

(continued on next page)

RSX-11M/M-PLUS INPUT/OUTPUT

Table 1-3 (Cont.)
I/0 Status Conditions

Code ' Reason

IE.OVR Illegal read overlay request

A read overlay was requested and the physical
device unit specified in the QIO directive was not
the physical device unit from which the task was
installed. The read overlay function can only be
executed on the physical device unit from which the
task image containing the overlays was installed.

IE.PRI Privilege violation

The task which issued a request was not privileged
to execute that request. For example, for the
UDCll and LPS1l, a checkpointable task attempted to
connect to interrupts or to execute a synchronous
sampling Efunction.

IE.SPC Illegal address space

The buffer requested for a read or write request
was partially or totally outside the address space
of the issuing task. Alternately a byte count of
zero was specified.

IE.VER Unrecoverable error

After the system's standard number of retries have
been attempted upon encountering an error, the
operation still could not be completed. This code
is returned in the case of parity, CRC, or similar
errors.

IE .WCK Write check error

An error was detected during the check (read)
following a write operation.

IE.WLK Write-locked device

The task attempted to write on a write-locked
physical device unit.

1.11 POWERFAIL RECOVERY PROCEDURES FOR DISKS AND DECTAPE

Powerfail recovery recommendations for various devices are included in
the following chapters, as appropriate, to assist the user in
restoring device operation after a power failure. For disks and
DECtape, it is recommended that power recovery ASTs be used. The AST
service routine should provide a sufficient time delay, prior to
returning for normal I/0O operations, that will allow the disk to
attain normal operating speed before actually attempting read and
write operations.

RSX-11M/M-PLUS INPUT/OUTPUT

If QIOs are being used for disk or DECtape I/0 operations during
powerfail recovery, an IE.DNR error status may be returned if the
device is not up to operating speed when the request is issued. When
this error is returned, it is recommended that the user task wait a
sufficient time for the device to attain operating speed, and attempt
the 1I/0 operation again prior to reporting an error. For example, an
RKOS5 disk may require approximately 1 minute to attain operating speed
after a power failure.

CHAPTER 2

FULL-DUPLEX TERMINAL DRIVER

2.1 INTRODUCTION

Two terminal drivers are available as SYSGEN options for wuse .in
RSX-11M systems:

1. A compact, half-duplex terminal driver for use with a wide
variety of terminals, containing all basic features required
for RSX-11lM terminal support. (This terminal driver is not
available on RSX-11M-PLUS systems.) This terminal driver is
described in Chapter 3.

2., A full-duplex terminal driver, as described in this chapter,
containing all features of the half-duplex terminal driver,
plus the following:

e Full duplex operation

e Type-ahead buffering

e Eight-bit characters

e Detection of hard receive errors

e Increased byte transfer length (8128 bytes)

e Additional terminal characteristics

e Additional terminal types

e Optional time-out on solicited and/or unsolicited input
e Device-independent cursor control

e Redisplay of prompt buffer upon CTRL-R or CTRL-U

e Automatic XOFF character generation upon completion of a
read (except when in the full-duplex mode), if requested

e Added hardware support

Note that either terminal driver can be selected during RSX-1llM V3.2
SYSGEN, RSX-11M-PLUS systems use the full-duplex terminal driver
only.

Throughout the remainder of this chapter, references made to MCR can
generally be applied to other command line intepreters (for example,
DCL). In addition, the prompt displayed on a terminal in response to

FULL-DUPLEX TERMINAL DRIVER

invoking a command 1line interpreter will be appropriate for the
specific command line interpreter in use. For example, when MCR is
invoked, the MCR prompt is displayed as follows:

MCR>
Terminal driver support is provided for a variety of terminal devices,

as listed 1in Table 2-1., Subsequent sections describe each device in
greater detail,

Table 2-1

Supported Terminal Devices
Model Columns | Lines/ Character Baud Upper & lower case?

screen set range Send Recelve
ASR-33/35 72 64 110
KSR-33/35 72 64 110
LA30-P 80 64 300
LA30-S 80 64 - 110-300
LA36 132 64-96 110-300 yes yes?2
LA120 132 96 50-9600 yes yes
LA180S 132 96 300-9600 yes
RTO2 64 1 64 110-1200
RT02-C 64 1 64 110-1200
VTOSB 72 20 64 110-2400 yes
VT50 80 12 64 110-9600
VTS0H 80 12 64 110-9600
VT52 80 24 96 110-9600 yes yes
VT55 80 24 96 110-9600 yes yes
VT61 80 24 96 110-9600 yes yes
VT100 80-132 24 96 50-9600 yes yes

1 Applies only to video terminals.

2 Only for 96-character terminal. The terminal driver supports the
terminal interfaces summarized in Table 2-2. These interfaces are
described in greater detail in Sgection 2.9. Programming is
identical for all interfaces.

FULL-DUPLEX TERMINAL DRIVER

Table 2-2

Standard Terminal Interfaces
Model Type
DH11 lé-line multiplexerl
DH11-DM11-BB 16-1line multiplexer with modem control2
DJ11 16-1line multiplexer
DL11-A/B/C/D/E/MW Single-line interfaces3
Dz11l 8-line multiplexer with modem control2

1 Direct memory access (DMA) 1is supported in the full-duplex
terminal driver only.

2 Full-duplex control only. For example, in the USA, a Bell
103A-type modem.

3 DLV1l support with modem control is provided in the full-duplex

terminal driver only.

Terminal input lines can have a maximum length of 8128 (8K minus 64)
bytes. Extra characters of an input line that exceed the maximum line
length generally become an unsolicited input line.

2.1,1 ASR-33/35 Teletypes 4

The ASR-33 and ASR-35 Teletypes are asynchronous, hard-copy terminals.
No paper-tape reader or punch capability is supported.

2.1.2 KSR-33/35 Teletypes 4

The KSR-33 and KSR-35 Teletypes are asynchronous, hard-copy terminals.

2.1.3 LA30 DECwriters

The LA30 DECwriter is an asynchronous, hard-copy terminal that is
capable of producing an original and one copy. The LA30-P is a
parallel model and the LA30-S is a serial model.

2.1.4 LA36 DECwriter

The LA36 DECwriter is an asynchronous terminal that produces hard copy
and operates in serial mode. It has an impact printer capable of
generating multipart and special preprinted forms. The LA36 can
receive and transmit both upper—-case and lower-case characters.

4 Teletype is a registered trademark of the Teletype Corporation.

FULL-DUPLEX TERMINAL DRIVER

2.1.5 LAl120 DECwriter

The LAl120 DECwriter is a hard-copy upper- and lower-case terminal,
capable of printing multipart forms at speeds up to 180
characters-per-second. Serial communications speed is selected from
14 baud rates ranging from 50 to 9600 bps; split transmit and receive
baud rates are supported by the terminal driver. Hardware features
allow bidirectional printing for maximum printing speed, and
user-selected features, including font size, 1line spacing, tabs,
margins, and forms control. These functions can also be set-up by the
system by issuing appropriate ANSI-standard escape sequences.

2.1.6 LAl180S DECprinter

The LAl180S DECprinter is a serial version of the LAl80. It is a
print-only device (it has no keyboard) that can generate multipart
forms. The LA180S can print upper-case and lower-case letters.

2.1.7 RTO02 Alphanumeric Display Terminal and RT02-C Badge Reader/
Alphanumeric Display Terminal

The RT02 is a compact, alphanumeric display terminal designed for
applications in which source data is primarily numeric. A shift key
permits the entry of 30 discrete characters, including upper-case
alphabetic characters. The RTO02 can, however, receive and display
64 characters.

The RT02-C model also contains a badge reader. This option provides a
reliable method of identifying and controlling access to the PDP-1l or
to a secure facility. Furthermore, data in a format corresponding to
that of a badge (22-column fixed data) can be entered quickly.

2.1.8 VTOSB Alphanumeric Display Terminal

The VTO5B is an alphanumeric display terminal that consists of a CRT
display and a self-contained keyboard. From a programming point of
view, it is equivalent to other terminals, except that the VTOSB
offers direct cursor addressing.

2.1.9 VT50 Alphanumeric Display Terminal

The VT50 is an alphanumeric display terminal that consists of a CRT
display and a keyboard. It is similar to the VTO05B in operation, but
does not offer direct cursor addressing.

2.1.10 VTS50H Alphanumeric Display Terminal

The VT50H is an alphanumeric display terminal with CRT display,
keyboard, and numeric pad. It offers direct cursor addressing. (The
VT50H's direct cursor addressing is not compatible with that of the
VTO5B.)

FULL-DUPLEX TERMINAL DRIVER

2.1.11 VT52 Alphanumeric Display Terminal

The VT52 is an upper-and-lower-case alphanumeric terminal with numeric
pad and direct <cursor addressing. (The VT52's direct cursor
addressing is compatible with that of the VT50H, not with that of the
VTO5B.) The VT52 can be configured with a built-in thermal printer.

2.1.12 VT55 Graphics Display Terminal

The VT55 is similar to the VT52 in its operation as an alphanumeric
terminal. The VT55 offers graphics display features that are not
supported by RSX-11M, although the system allows a knowledgeable task
to access the explicitly special features of the VT55.

2.1.13 VT61 Alphanumeric Display Terminal

The VT61 is an "intelligent" upper-and-lower—case alphanumeric
terminal with an integral microprocessor. It offers two 128-member
character sets and numerous built-in functions for editing and forms
preparation as well as a block-transfer mode. (None of these special
features is supported by RSX-11lM.)

2.1.14 VT100 DECscope

The VT100 DECscope 1is an upper- and lower—case alphanumeric
keyboard/video display terminal. It is capable of displaying 24 lines
of 80 to 132 characters (each line). Serial communications speed is
selected from baud rates ranging from 50 to 9600 bps. Hardware
features allow user selection of display characteristics and functions
including smooth scroll, reverse video, etc. These functions can also
be set-up by the system by issuing appropriate ANSI-standard escape
sequences.

2.2 GET LUN INFORMATION MACRO

wWord 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for terminals. A setting of 1 indicates that the
described characteristic is true for terminals.

Bit Setting Meaning

0 1 Record-oriented device
1 1 Carriage-control device
2 1 Terminal device

.3 0 File structured device
4 0 Single-directory device

FULL-DUPLEX TERMINAL DRIVER

Bit Setting Meaning
5 0 Sequential device
6 0 Reserved
7 0 User-mode diagnostics supported
8 0 Massbus device
9 0 Unit software write-locked
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device mountable as a communications
channel
14 0 Device mountable as a FILES-11 volume
15 0 Device mountable

Words 3 and 4 of the buffer are undefined. Word 5 indicates the
default buffer size (the width of the terminal carriage or display
screen).

2.3 QIO MACRO

Table 2-3 lists the standard and device-specific functions of the QIO
macro that are wvalid for terminals. Some device-specific functions
are options that may be selected during SYSGEN.

Two device-specific functions, SF.SMC and SF.GMC, have nonstandard
function names. These names are retained for compatibility with
RSX-11D.

Table 2-3
Standard and Device-Specific QIO Functions for Terminals

Format Function

STANDARD FUNCTIONS:

QIOSC IO.ATT,... Attach device.
QIOS$C IO.DET,... Detach device,
QIOSC IO.KIL,... Cancel I/0 requests.

(continued on next page)

A_—

FULL-DUPLEX TERMINAL DRIVER

Table 2-3 (Cont.)

Standard and Device-Specific QIO Functions for Terminals

Format

Function

STANDARD FUNCTIONS: (Cont.)

0I0$C IO.RLB,...,<stadd,size[,tmo]>

QIOSC IO.RVB,...,<stadd,size[,tmo]>

QIOSC IO.WLB,...,<stadd,size,vfc>

QIOS$C IO.WVB,...,<stadd,size,vic>

DEVICE-SPECIFIC FUNCTIONS:

1p010$C I0.ATA,...,<ast, [parameter2][,ast2]>

QIOSC . I0.CCO,...,<stadd,size,vfc>

lp10$C SF.GMC,...,<stadd,size>

lor08C 10.G7S,...,<stadd,size>

QIOSC IO.RAL,...,<stadd,sizel[,tmo]>
QIO$C IO.RNE,...,<stadd,size[,tmo]>
loro$c 10.RPR,...,<stadd,size,

[tmo]},pradd,prsize,vic>

QIOSC IO.RST,...,<stadd,sizel,tmo]>

QIosc IO.RTT,...,<stadd,size,
[tmo],table>

lgrosc sF.sMC,...,<stadd,size>

Read logical block
(read typed input into
buffer).

Read virtual block
(read typed input into
buffer).

Write logical block
(print buffer
contents).

Write virtual block
(print buffer
contents).

Attach device, specify
unsolicited-input-
character AST.

Cancel CTRL/0 (if in
effect), then write
logical block.

Get multiple
characteristics.

Get terminal support.

Read logical block,
pass all bits.

Read logical block, do
not echo.

Read logical block
after prompt.

Read logical block
ended by special
terminators.

Read logical block
ended by specified
special terminator.

Set multiple
characteristics.

1 s5ysGEN options in RSX-11lM.

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-3 (Cont.)

Standard and Device-Specific QIO Functions for Terminals

Format Function

DEVICE-SPECIFIC FUNCTIONS: (Cont.)

QIOS$C I0.WAL,...,<stadd,size,vfc>

lo10$C 10.WBT,...,<stadd,size,vfc>

Write logical block,
pass all bits.

Write logical block,
break through any I/O
conditions at
terminal.

where: ast

parameter 2

ast2
pradd

prsize

size

stadd

table

tmo

vic

is the entry point for an unsolicited-

input-character AST.

is a number that can be used to identify this
terminal as the 1input source upon entry to an
unsolicited character AST routine.

is the entry point for an unsolicited CTRL/C AST.

is the starting address of the byte buffer where
the prompt is stored.

is the size of the pradd prompt buffer in bytes.
The specified size must be greater than zero and
less than or equal to 8128. The buffer must be
within the task's address space.

is the size of the stadd data buffer 1in bytes.
The specified size must be greater than zero and
less than or equal to 8128. The buffer must be
within the task's address space. For SF.GMC,
I0.GTs, and SF.SMC functions, size must be an
even value,

is the starting address of the data buffer. The
address must be word-aligned for SF.GMC, I0.GTS,
and SF.SMC; otherwise stadd may be on a byte
boundary.

is the address of the l6-word special terminator
table.

is an optional timeout <count in ten-second
intervals for the full-duplex terminal driver.
If zero 1is specified, no timeout can occur.
Timeout 1is the maximum time allowed between two
input characters before the read is aborted.

is a character for vertical format control from
Table 2-11 (see Section 2.7).

1 SYSGEN options in RSX-11M.

-

FULL-DUPLEX TERMINAL DRIVER

2.3.1 Subfunction Bits

Most device-specified functions supported by terminal drivers
described 1in this section are selected using "subfunction bits". One
or more functions can be selected by ORing their relative bits in a
QIO function. Table 2-4 contains a listing of device-specific QIO
functions and relative subfunction bits that can be issued.

Each subfunction bit and subfunction selected when it is included in a
QIO function is listed as follows:

Symbolic

Name Subfunction

TF.AST unsolicited-input-character AST

TF.BIN binary prompt

TF.CCO cancel CTRL/O

TF.ESQ recognize escape sequences

TF.NOT unsolicited input AST notification;
unsolicited characters are stored 1in the
type-ahead buffer until they are read by the
task

TF.RAL read all bits

TF.RCU restore cursor position

TF.RNE read with no echo

TF.RST read with special terminators

TF.TMO read with timeout

TF.WAL write all bits

TF .WBT break-through write

TF.XCC CTRL/C starts a command 1line interpreter
command line (command line characters are not
sent to the task)

TF.XOF send XOFF

Table 2-4 lists subfunction bits that can be ORed with QIO functions
to invoke <device-specific functions. Additional details for using
subfunction bits are included in Section 2.3.2.

If a task invokes a subfunction bit that is not supported on the
system, the subfunction bit is ignored, but the QIO request is not
rejected. For example, 1if break-through write (TF.WBT) 1is not
selected, an IO.WBT or IO.WLB!TF.WBT function is interpreted as an
I0.WLB function.

The following example is a QIO request using more than one subfunction
bit: a nonechoed (TF.RNE) read, terminated by a special terminator
character (TF.RST), followed by a prompt.

QIOSC IO.RPRITF.RNE!TF.RST,...,<stadd,size,,pradd,prsize,vfc>

2.3.2 Device-Specific QIO Functions

Some device-specific functions described in this section are SYSGEN
options. All except SF.GMC, IO.RPR, SF.SMC, IO.RTT, and I0.GTS can be
issued by ORing a particular subfunction bit with another QIO
function. These subfunction bits are specified in the following
descriptions; subfunction bits are described in general in Section
2.3.1.

In addition to the device-specific QIO functions, this section also
describes use of subfunction bits TF.ESQ, TF.BIN, and TF.XOF.

FULL-DUPLEX TERMINAL DRIVER

Table 2-4
Subfunction Bits

S~ Allowed Subfunction Bits
Function Sul;functions
TF.AST | TF.BIN | TF.CCO | TF.ESQ | TF.NOT | TF.RAL | TF.RCU | TF.RNE | TF.RST | TF.TMO | TF.WAL | TF.WBT | TF.XCC | TF.XOF
STANDARD FUNCTIONS
10.ATT X X
[0.DET
10.KIL
I0O.RLB * X * X X
I0.RVB ok o e *ok Hok
10.WLB X X ok X
lOWVB LEd ok *k L
DEVICE-SPECIFIC FUNCTIONS
I0.ATA | IO.ATT!TF.AST X X X
10.CCO | [0.WLB!TF.CCO kA X
SF.GMC
10.GTS
10.RAL | TO.RLB!TF.RAL X * X X
I0.RNE | 10.RLB!TF.RNE * * X X
I0.RPR X * X * X X
10.RST I0.RLB!TF.RST * X X X
I0.RTT * X X X
SE.SMC
IO.WAL | I0.WLB!TF.WAL Hokx ok i
10.WBT | I0.WLB!TFE.WBT X X ok

*Exercise great care when using Read All and Read with Special Terminators together. Obscure problems can result.
**These subfunctions are allowed but are not effective. They are stripped off when the read or write virtual operation is converted to a read or write logical operation.
***During a write-pass-all operation (10.WAL or I0.WLB!TF.WAL) the terminal driver outputs characters without interpretation; it does not keep track of cursor position.

2.3.2.1 IO.ATA - IO0O.ATA is a variation of the Attach function. The
use of this function 1is eased by the addition of TF.NOT and TF.XCC
subfunction bits, described later in this section. IO.ATA specifies
asynchronous system traps (ASTs) to process unsolicited input
characters. When called as follows:

QIoscC I0.ATA,...,<[ast], [parameter2] [,ast2]>

NOTE

A minimum of one AST parameter (ast or
ast2) is required.

This function attaches the terminal and identifies "ast" and "ast2" as
entry points for an unsolicited-input-character AST. Control passes
to ast whenever an unsolicited character (other than CTRL/Q, CTRL/S,
CTRL/X or CTRL/O) 1is input. 1If the ast2 parameter is specified, an
unsolicited CTRL/C character will result in entering the AST specified
in that parameter. If ast2 is not specified, an unsolicited CTRL/C
will result in entering the AST specified in the ast parameter.

Unless the TF.XCC subfunction is specified, CTRL/C is trapped by the
task and does not reach MCR. Thus, any task that uses IO.ATA without
the TF.XCC subfunction should recognize some input sequence as a
request - to terminate; otherwise, MCR can not be invoked to abort the
task in case of difficulty.

-—

FULL-DUPLEX TERMINAL DRIVER

Note that either ast2 or TF.XCC can be used, but not both in the same

QIO request. If both are specified in the request, an IE.SPC error is
returned. .

Upon entry to the AST routines, the unsolicited character and
parameter 2 are in the top word on the stack as shown below. That
word must be removed from the stack before exiting the AST.

SP+10 Event flag mask word

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SP+02 Task's directive status word

SP+00 Unsolicited character in low byte; parameter 2, in the

high byte, 1is a user-specified value that can be used
to identify individual terminals in a multiterminal
environment

The processing of unsolicited input ASTs is eased through the use of
TF.NOT and TF.XCC subfunction bits. When TF.XCC is included in the
I0.ATA function, all characters (except CTRL/C) are handled 1in the
manner previously described. CTRL/C marks the beginning of a command
line interpreter (CLI) line that will be processed by a CLI task (for
example, MCR); none of the characters, including the CTRL/C, are sent
to the task issuing the function.

When unsolicited terminal input (except CTRL/C) 1is received by the
full-duplex terminal driver and the TF.NOT subfunction is used, the
resulting AST serves only as notification of unsolicited terminal
input; the terminal driver does not pass the character to the task.
Upon entry to the AST service routine, the high byte of the first word
on the stack identifies the terminal causing the AST (parameter 2).
After the AST has been effected, the AST becomes "disarmed" until a
read request is issued by the task. If multiple characters are
received before the read request is issued, they are stored 1in the
type-ahead buffer. Once the read request is received, the contents of
the type-ahead buffer, including the character causing the AST, Iis
returned to the task; the AST is then "armed" again for new
unsolicited input characters. Thus, the use of the TF.NOT subfunction
allows a task to monitor more than one terminal for unsolicited input
without the need to continuously read each terminal for possible
unsolicited input. Note that the TF.NOT subfunction cannot be used
with the CTRL/C AST; an unsolicited CTRL/C character flushes the
typeahead buffer.

See the RSX-11M/11M-PLUS Executive Reference Manual for further
details on ASTs.

I0.ATA is equivalent to IO.ATT ORed with the subfunction bit TF.AST.

2.3.2.2 IO.ATTITFP.ESQ - The task issuing this function attaches a
terminal and notifies the driver that it recognizes escape sequences
input from that terminal. Escape sequences are recognized only for
solicited input. (See Section 2.6 for a discussion of escape
sequences,)

If the terminal has not been declared capable of generating escape
sequences, IO.ATTITF.ESQ has no effect other than attaching the
terminal. No escape sequences are returned to the task because any

FULL-DUPLEX TERMINAL DRIVER

ESC sent by the terminal acts as a line terminator. The SF.SMC
function or the MCR SET /ESCSEQ command are used to declare the
terminal capable of generating escape sequences (see Table 2-5 and
Section 2.3.2.12).

2.3;2.3 I0.CCO - This write function directs the driver to write to
the terminal regardless of a CTRL/O condition that may be in effect.
If CTRL/O is in effect, it is cancelled before the write is done.

I0.CCO is equivalent to IO.WLB!TF.CCO.

2.3.2.4 SF.GMC - The Get Multiple Characteristics function returns
terminal characteristics information, as follows:

QIOS$C SF.GMC,...,<stadd,size>

where stadd is the starting address of a data buffer of length "“size"
bytes. Each word in the buffer has the form:

.BYTE characteristic-name
.BYTE O .

where characteristic-name is one of the bit names given in Table 2-5.
The value returned in the high byte of each byte-pair is 1 if the
characteristic is true for the terminal and 0 if it is not true.

For the TC.TTP characteristic (terminal type), one of the values shown
in Table 2-6 1s returned in the high byte.

Table 2-5
Full-Duplex Terminal Driver-Terminal Characteristics
for SF.GMC and SF.SMC Functions

Bit Octal Corresponding
Name Value | Meaning (if asserted) MCR Command
TC.ACR 24 Wrap-around mode SET /WRAP=TTnn:
TC.BIN 65 Binary input mode (read-pass-all) SET /RPA=TTnn:

no characters are interpreted
as control characters.

TC.CTS 72 Suspend output to terminal -
0 = resume
1 = suspend
TC.DLU 41 Dial-up line SET /REMOTE=TTnn:
TC.ESQ 35 Input escape sequence SET /ESCSEQ=TTnn:
recognition
TC.FDX 64 Full-duplex mode SET /FDX=TTnn:
TC.HFF 17 Hardware form-feed capability SET /FORMFEED=TTnn:

(If 0, form-feeds are simulated
using TC.LPP.)

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2~5 (Cont.)

Full-Duplex Terminal Driver-Terminal Characteristics
for SF.GMC and SF.SMC Functions

Bit Octal Corresponding
Name Value | Meaning (if asserted) MCR Command
TC.HFL 13 Number of £ill characters to SET /HFILL=TTnn:x

insert after a carriage return (0-7=x)

(Use a value of 7 for the LA30-S.)
TC.HHT 21 Horizontal tab capability (if O, SET /HHT=TTnn:

horizontal tabs are simulated using

spaces.)
Tc.HLDl | 44 Hold screen mode SET /HOLD=TTnn:
TC.ISL 6 Subline on interface (=0-15) (Read only) -
TC.LPP 2 Page length (1-255.=x) SET /LINES=TTnn:Xx
TC.NEC 47 Echo suppressed SET /ECHO=TTnn:
TC.PRI 51 Terminal is privileged (Read only) SET /PRIV=TTnn:
TC.RAT 7 Type—-ahead buffer: SET /TYPEAHEAD=TTnn:

0 = l-character type-ahead

1 = 36. character type-ahead
TC.RSP2 3 Receiver speed (bits-per-second) SET /SPEED=TTnn:rcv:xmit
TC.SCP 12 Terminal is a scope (CRT) SET /CRT=TTnn:
TC.SLV 50 Terminal is a slave SET /SLAVE=TTnn:

If set to 0 (SET /NOSLAVE=TTnn:),

the terminal's type-ahead buffer

is cleared
TC.SMR 25 Upper-case conversion disabled SET /LOWER=TTnn:
TC.TBF 71 Type-ahead buffer count read, . -

or flush
TC.TTP 10 Terminal type (=0-255.=X) SET /X=TTnn:

SET /TERM=TTnn:x

TC.VFL 14 Send 4 fill characters after SET /VFILL=TTnn:

line feed
TC.WID3 1 Page width (=1-255.=x) SET /BUF=TTnn:x
TC,XSP 2 4 Transmitter speed (bits-per-second) SET /SPEED=TTnn:rcv:xmit
TC.8BC 67 SET /EBC=TTnn:

Pass 8 bits on input, even

if not binary input mode

(TC.BIN)

1 gffective for VT5x, VT61, and VT100, only.

2,3 See next page.

FULL-DUPLEX TERMINAL DRIVER

2 TC.RSP, TCXSP, and corresponding MCR SET /SPEED command values for
terminal receiver and transmitter speeds are listed below:

NOTE
The MCR SET /SPEED command requires
parameters for both receiver (rcv) and

transmitter (xmit) baud rates, as
follows:

SET /SPEED=TTnn:rcv:xmit

TC.RSP or

TC.XSP Actual baud rate (in bps)

value and valid MCR SET /SPEED values

S.0 (disabled)

S.50 50 (Baudot codes are not
supported)

S.75 75

S.110 110

S.134 134

5.150 150

$.200 200

S.300 300

S.600 600

S$.1200 1200

$.1800 1800

5.2000 2000

$.2400 2400

S.3600 3600

5.4800 4800

S$.7200 7200

$.9600 9600

S.EXTA (DH1ll external speed A) --
S.EXTB (DH1l external speed B) =--—

NOTE

Speed can be set only on DH1l1l and DZ1l1
controllers., DZ11 transmitter and
receiver speeds must be equal (no split
baud rates permitted).

3 Unsolicited input that fills the buffer before a terminator is
received is 1likely 1invalid. When this happens, the driver discards
the input by simulating a CTRL/U and echoing “U.

The TC.TPP characteristic, when read by the terminal driver, sets
implicit wvalues for terminal characteristics TC.LPP, TC.WID, TC.HFF,
TC,HHT, TC.VFL, and TC.SCP as shown in Table 2-6. These values can be
changed (overridden) by subsequent Set Multiple Characteristics
requests. 1In addition, TC.TPP is used by the terminal driver to
determine cursor positioning commands, as appropriate.

-

FULL-DUPLEX TERMINAL DRIVER

Table 2-6
Bit TC.TTP (Terminal Type) Values Set by SF.SMC
and Returned by SF.GMC

. Implicit Characteristics

Octal Terminal

value | Symbolic | Type TC.LPP | TC.WID | TC.HFF | TC.HHT | TC.HFL | TC.VFL | TC.SCP
0 T.UNKO Unknown
1 T.AS33 ASR33 66 72 1
2 T.KS33 KSR33 66 72 1
3 T.AS35 ASR35 66 72 1
4 T.L30S LA30S 66 80 7
5 T.L30P LA30P 66 80
6 T.LA36 LA36 66 132
7 T.VT05 VTO05 20 72 1 1 1
10 T.VTS50 VTS0 12 80 1 1
11 T.VT52 VT52 24 80 1 1
12 T.VT55 VT55 24 80 1 1
13 T.VT61 VT61 24 80 1 1
14 T.L180 LA180S 66 132 1
15 T.V100 VT100 24 80 1 1
16 T,L120 LAL20 66 132 1

NOTES
e Octal values 0-177 are reserved by DIGITAL. Values 200-377
are available for customer use to define non-DIGITAL
terminals.

e Implicit characteristics are shown as supported by the driver.
Values not shown are not automatically set by the driver. An
"unknown" terminal type has no implicit characteristics.

The TC.CTS characteristic returns the present suspend
(CTRL/S), resume (CTRL/Q), or suppress (CTRL/0) state set via
the SF.SMC function. Values returned are as follows:

Value
Returned State
0 Resume (CTRL/Q)
1 Suspend (CTRL/S)
2 Suppress (CTRL/O)
3 Both suppress and suspend

When a value of 0 is used with the SF.SMC function, the suspend state
is cleared; a value of 1 selects the suspend state,

The TC.TBF characteristic returns the number of unprocessed characters
in the type-ahead buffer for the specified terminal. This allows
tasks to determine if any characters were typed that did not require
AST processing. In addition, the value returned can be used to read
the exact number of characters typed, rather than a typical value of
80. or 132. characters for the terminal.

2.3.2
retur

these
words

FULL-DUPLEX TERMINAL DRIVER

NOTES

It is necessary that the task attach the

terminal

to receive characters from the

type-ahead buffer.

The capacity of the type-ahead buffer is

36. characters,

Using TC.TBF in an SF.SMC function

maximum.

will

flush the type-ahead buffer.

«5 1I0.GTS - This function is a Get Terminal Support request that
ns information

to a
SYSGEN-option features are part of the terminal driver.

words are currently defined.
. The IO.GTS function is a SYSGEN option.

four-word buffer specifying which
Only two of
Table 2-7 gives details for these

If I0.GTS is 1issued

on a system without TIO.GTS support, IE.IFC is returned in the I/O
status block.
Table 2-~7
Information Returned by Get Terminal Support (IO.GTS) QIO
Octal
Bit Value Mnemonic Meaning When Set to 1
Word 0 of Buffer:
0 1 Fl.ACR Automatic CR/LF on long lines
1 2 lp1.BTW Break-through write
2 4 F1l.BUF Checkpointing during terminal input
3 10 1F1.UIA | Unsolicited-input-character AST
4 20 Fl.CCoO Cancel CTRL/0O before writing
5 40 1r1.ES0Q Recognize escape sequences in solicited input
6 100 F1.HLD Hold-screen mode
7 200 1p1.Lwe Lower-to-upper-case conversion
8 400 F1l.RNE Read with no echo
9 1000 1F1.RPR | Read after prompting
10 2000 F1.RST Read with special terminators
11 4000 lF1.RUB | CRT rubout
12 10000 F1l.SYN CTRL/R terminal synchronization
13 20000 F1.TRW | Read all and write all
14 40000 F1.UTB Input characters buffered in task's address
space
15 100000 F1l.VBF Variable-length terminal buffers
Word 1 of Buffer:
0 1 lF2.sCH | set characteristics QIO (SF.SMC)
1 2 1F2.GCH | Get characteristics QIO (SF.GMC)
2 4 F2.DCH Dump/restore characteristics
3 10 F2.DKL Historical IAS/RSX-11D IO.KIL
4 20 F2.ALT Altmode is echoed
5 40 F2,.SFF Formfeed can be simulated
6 100 1lF2.cuP | Cursor positioning

1 SYSGEN options on RSX-11M systems

FULL-DUPLEX TERMINAL DRIVER

The various symbols used by the I0.GTS, SF.GMC, and SF.SMC functions
are defined in a system module, TTSYM. These symbols include: Fl.xxx
and F2.xxx (Table 2-7); T.xxxx (Table 2-6); TC.xxx (Table 2-5); and
the SE.xxx error returns described in Table 2-8, Section 2.4. These
symbols may be defined locally within a code module by using:

.MCALL TTSYMS

TTSYM$

Symbols that are not defined locally are automatically defined by the
Task Builder.

Octal values shown for the symbols are subject to change. Therefore,
it is recommended that only the symbolic names be used.

2.3.2.6 IO.RAL - The Read All function causes the driver to pass all
bits to the requesting task. The driver does not intercept control
characters or mask out the "parity" (high-order) bit. For example,
CTRL/C, CTRL/Q, CTRL/S, CTRL/0O, and CTRL/Z are passed to the program
and are not interpreted by the driver.

NOTE

I0O.RAL echoes the <characters that are
read. The terminal driver in Version 2
of RSX-11M did not echo a Read All. To
read all bits without echoing, use
IO.RAL!TF.RNE.

I0.RAL is equivalent to IO.RLB ORed with the subfunction bit TF.RAL.
The IO.RAL function can be terminated only by a full character count
(input buffer full).

2.3.2.7 IO.RNE - The IO.RNE function reads terminal input characters
without echoing the characters back to the terminal for immediate
display. This feature can be used when typing sensitive information
(for example, a password or combination) or when reading a badge with
the RT02-C terminal.

(Note that the no—-echo mode can also be selected via the SF.SMC
function; see Table 2-5, bit TC.NEC.)

CTRL/R is ignored while an IO.RNE is in progress.

The IO.RNE function is equivalent to IO.RLB ORed with the subfunction
bit TF.RNE.

2.3.2.8 1I0.RPR - The IO.RPR Read After Prompt functions as an IO.WLB
(to write a prompt to the terminal) followed by IO.RLB. However,
IO.RPR differs from this combination of functions as follows:

° System overhead is lower with the IO.RPR because only one QIO
is processed.

FULL-DUPLEX TERMINAL DRIVER

° When using the IO.RPR function, there is no "window" during
which a response to the prompt may be ignored. Such a window
occurs if IO.WAL/IO.RLB is wused, because no read may be
posted at the time the response is received.

° If the issuing task is checkpointable, it can be checkpointed
during both the prompt and the read requested by the IO.RPR.

° A CTRL/0O that may be in effect prior to issuing the IO.RPR is
cancelled before the prompt is written.

Subfunction bits may be ORed with IO.RPR to write the prompt as a
Write All (TF.BIN) and to send XOFF after the read (TF.XOF). 1In
addition, read subfunction bits TF.RAL, TF.RNE, and TF.RST can be used
with IO.RPR.

NOTE

If an IO.RPR function 1is in progress
when the driver receives a CTRL/R or
CTRL/U, the prompt is redisplayed.

2.3.2.9 IO.RPRITF.BIN - This function results in a read after a
"binary" prompt; that is, a prompt is written by the driver with no
character interpretation (as if it were issued as an IO.WAL).

2.3.2.10 IO.RPRITF.XOF - This function causes the driver to send an
XOFF to the terminal after its prompt-and-read. The XOFF or CTRL/S
may have the effect of inhibiting input from the terminal, if the
terminal recognizes XOFF for this purpose. TF.XOF is ignored when
full-duplex I/0 is in use.

2.3.2.11 IO.RST - This function 1is similar to an IO.RLB, except
certain special characters terminate the read. These characters are
in the ranges 0-037 and 175-177. The driver does not interpret the
terminating character, with certain exceptions.l For example, a
horizontal TAB (0ll) is not expanded, a RUBOUT (or DEL, 177) does not
erase, and a CTRL/C does not produce an MCR prompt.

Upon successful completion of an IO.,RST request that was not
terminated by £illing the input buffer, the first word of the I/0O
status block contains the terminating character in the high byte and
the 1IS.SUC status code in the low byte. The second word contains the
number of bytes contained in a buffer. The terminating character is
not put in the buffer.

IO.RST is equivalent to IO.RLB!TF.RST.

11 upper-lower-case conversion is disabled, characters 175 and 176
do not act as terminators. CTRL/O, CTRL/Q, and CTRL/S (017, 021, and
023, respectively) are not special terminators. The driver interprets
them as output control characters in a normal manner.

FULL-DUPLEX TERMINAL DRIVER

2.3.2.12 SF.SMC - This function enables a task to set and reset the
characteristics of a terminal. Set Multiple Characteristics is the
inverse function of SF.GMC. Like SF.GMC, it 1is called 1in the
following way:

QIOSC SF.SMC,...,<stadd,size>

where stadd is the starting address of a buffer of length "size"
bytes. Each word in the buffer has the form:

.BYTE characteristic-name
.BYTE value

where "characteristic-name" is one of the symbolic bit names given in
Table 2-5, and "value" is either 0 (to clear a given characteristic)
or 1 (to set a characteristic). Table 2-5 notes the restrictions that
apply to these characteristics.

If the "characteristic-name" is TC.TTP (terminal type), "value" «can
have any of the values listed in Table 2-6.

A nonprivileged task can only issue an SF.SMC request for its own
terminal (TI:). A privileged task can issue SF.SMC to any terminal.

Terminal output can be suspended or resumed (simulated CTRL/S and
CTRL/Q, respectively) by specifying an appropriate value for TC.CTS.
A value of 0 resumes output and a value of 1 suspends output.

Specifying any value for TC.TBF flushes (clears) the type-ahead buffer
(forces the type-ahead buffer count to 0).

2.3.2.13 I0.RTT - This QIO function reads characters in a manner like
the IO.RLB function, except a user-specified character terminates the
read operation. The specified character's code can range from 0-377.
It is user-designated by setting the appropriate bit in a l6-word
table that corresponds to the desired character. Multiple characters
can be specified by setting their corresponding bits.

The 16-word table starts at the address specified by the table
parameter. The first word contains bits that represent the first 16
ASCILI character codes (0-17); similarly, the second word contains
bits that represent the next 16 character codes (20-37), and so-on,
through the sixteenth word, bit 15, which represents character code
377. For example, to specify the % symbol (code 045) as a read
terminator character, set bit 05 in the third word, since the third
word of the table contains bits representing character codes 40-57.

If the CTRL/S (023), CTRL/Q (021), and/or any characters whose codes
are greater than 177 is/are desired as the terminator character(s),
the terminal must be set to read-pass-all operation (TC.BIN=1l), or
read-pass 8-bits (TC.8BC), as listed in Table 2-5.

The optional timeout count parameter can be included, as desired.

2.3.2.14 IO.WAL - The Write All function causes the driver to pass
all output from the buffer without interpretation. It does not
intercept control characters. Long lines are not wrapped around 1if
input/output wrap-around has been selected.

IO.WAL is equivalent to the IO.WLB!TF.WAL function.

FULL-DUPLEX TERMINAL DRIVER

2.3.2.15 IO.WBT - IO.WBT function instructs the driver to write the
buffer regardless of the I/0 status of the receiving terminal. If an
IO.WBT function is issued on a system that does not support IO.WBT, it
is treated as an IO.WLB function.

e If another write function 1is currently in progress, it
finishes the current request and the IO.WBT is the next write
issued. The effect of this is that IO.WBT functions can be
stopped by a CTRL/S. Therefore, it may be desirable for tasks
to timeout on IO.WBT operations. '

e If a read is currently posted, the IO.WBT proceeds, and an
automatic CTRL/R is performed to redisplay any input that was
received before the break-through write was effected (if the
terminal is not in the full-duplex mode).

e CTRL/O, if in effect, is cancelled.
® An escape sequence that was interrupted is rubbed out.

An IO.WBT function cannot break through another IO.WBT that is in
progress.

Break-through write may only be issued by a privileged task. The
privileged MCR command BRO (broadcast) uses IO.WBT.

2.4 STATUS RETURNS

Table 2-8 lists error and status conditions that are returned by the
terminal driver to the I/0 status block.

Most RSX-11M error and status codes returned are byte values. For
example, the value for IS.SUC is 1. However, IS.CC, IS.CR, IS.ESC,
and IS.ESQ are word values. When any of these codes are returned, the
low byte indicates successful completion, and the high byte shows what
type of completion occurred.

To test for one of these word-value return codes, first test the low
byte of the first word of the I/O status block for the value IS.SUC.
Then, test the full word for IS.CC, IS.CR, IS.ESC, or IS.ESQ. (If the
full word tests equal to IS.SUC, then its high byte 1is zero,
indicating byte-count termination of the read.)

The "error" return IE.EOF may be considered a successful read since
characters returned to the task's buffer can be terminated by a CTRL/Z
character.

The SE.xxx codes are returned by the SF.GMC and SF.SMC functions as
described in Sections 2.3.2.4 and 2.3.2.12. When any of these codes
are returned, the low byte in the first word in the I/0 status block
will ~contain IE.ABO. The second IOSB word contains an offset
(starting from 0) to the byte in error in the QIO's stadd buffer.

FULL-DUPLEX TERMINAL DRIVER

Table 2-8
Terminal Status Returns

Code Reason

IE.EOF Successful completion on a read with end-of-file
The line of input read from the terminal was
terminated with the end-of-file character CTRL/Z.
The second word of the I/O0 status block contains the
number of bytes read before CTRL/Z was seen. The
input buffer contains those bytes.

Is.sUC Successful completion
The operation specified in the QIO directive was
completed successfully. If the operation involved
reading or writing, you can examine the second word
of the I/0 status block to determine the number of
bytes processed. The 1input buffer contains those
bytes.

IS.CC Successful completion on a read
The 1line of input read from the terminal was
terminated by a CTRL/C. The input buffer contains
the bytes read.

IS.CR Successful completion on a read
The 1line of input read from the terminal was
terminated by a carriage return. The input buffer
contains the bytes read.

IS.ESC Successful completion on a read
The line of input read from the terminal was
terminated by an Altmode character. The input buffer
contains the bytes read.

IS.ESQ Successful completion on a read
The 1line of input read from the terminal was
terminated by an escape sequence., The input buffer
contains the bytes read and the escape sequence.

IS.PND I/0 request pending
The operation specified in the QIO directive has not
yet been executed. The I/0 status block is filled
with zeros.

IS.TMO Successful completion on a read

The 1line of input read from the terminal was
terminated by a time-out (TF.TMO was set and the
specified time interval was exceeded). The input
buffer contains the bytes read.

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-8 (Cont.)
Terminal Status Returns

Code

Reason

IE.ABO

IE.BAD

IE.BCC

IE.DAA

IE.DAO

IE.DNA

Operation aborted

The specified I/0 operation was cancelled by IO.KIL
while 1in progress or while in the I/0 queue. The
second word of the I/0 status block indicates the
number of bytes that were put in the buffer before
the kill was effected.

Bad parameter.
The size of the buffer exceeds 8128 bytes.
Framing error

A framing error was hardware detected and returned by
the controller. All characters up to (but not
including) the erroneous character are in the buffer.
This condition can result by pressing the BREAK key
on some terminals, or by hardware problems.

Device already attached.

The physical device-unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has already
attached the desired physical device-unit, not that
the unit was attached by another task. If the attach
specified TF.AST or TF.ESQ, these subfunction bits
have no effect.

Data overrun error

A data overrun error was hardware-detected and
returned by the controller. All characters up to
(but not including) the erroneous character are in
the buffer. This error occurs when a hardware
failure or incompatibility causes characters to be
received by the controller faster than they can be
processed (that is, an incorrect serial I/0 baud rate
or format exists).

Device not attached

The physical device-unit specified in an IO.DET
function was not attached by the issuing task. This
code has no bearing on the attachment status of other
tasks.

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-8 (Cont.)
Terminal Status Returns

‘Code

Reason

IE.DNR

IE.IES

IE.IFC

IE.NOD

IE.OFL

IE.PES

Device not ready

The physical device-unit specified in the QIO
directive was not ready to perform the desired I/O
operation. This code is returned to indicate one of
the following conditions:

e A timeout occurred on the physical
device-unit (that is, an interrupt was lost).

e an attempt was made to perform a function on
a remote DH11 or DzZll line without carrier
present.

Invalid escape sequence

An escape sequence was started but escape-sequence
syntax was violated before the sequence was
completed. (See Section 2.6.4.) The character
causing the violation is the last character in the
buffer,

Illegal function

A function code specified in an I/0 request was
illegal for terminals; or, the function code
specified was a SYSGEN option not selected for this
system.

Buffer allocation failure

System dynamic storage has been depleted resulting in
insufficient space available to allocate an
intermediate buffer for an input request or an AST
block for an attach request.

Device off~line

The physical device-unit associated with the LUN
specified in the QIO directive was not online. When
the system was booted, a device check indicated that
this physical device-unit was not in the
configuration., In RSX-1lM-PLUS systems, the physical
device-unit could have been configured offline.

Partial escape sequence
An escape sequence was started, but read-buffer space

was exhausted before the sequence was completed. See
Section 2.6.4.3.

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-8 (Cont.)
Terminal Status Returns

Code Reason

IE.PRI Privilege violation

In a multiuser system, a nonprivileged task issued an
IO.WBT, directed an SF.SMC to a terminal other than
TI:, or it attempted to set its privilege bit.

IE.SPC Illegal address space

The buffer specified for a read or write request was
partially or totally outside the address space of the
issuing task, a byte count of zero was specified, or
an odd or 0 AST address was specified.

IE.VER Character parity error

A parity error was hardware-detected and returned by
the controller. All characters up to (but not
including) the erroneous character are in the buffer.

SE.NIH A terminal characteristic other than those in Table
2-5 was named in an SF.GMC or SF.SMC request, or a
task attempted to assert TC.PRI.

SE.FIX An attempt was made to change a fixed characteristic
in a ©SF.SMC subfunction request (for example, an
attempt was made to change the unit number).

SE.VAL The new value specified in an SF.SMC request for the
TC.TTP terminal characteristic was not one of those
listed in Table 2-6. :

SE.NSC An attempt was made to change a non-settable
characteristic, This error can occur when an attempt
is made to make a local-only line a remote line when
the controller does not support remote lines, or when
no remote line support was specified during SYSGEN.

SE.SPD The new speed specified in an SF.SMC subfunction
request was not valid for the controller associated
with the specified terminal.

2.5 CONTROL CHARACTERS AND SPECIAL KEYS

This section describes the meanings of special terminal control
characters and keys for RSX-11M. Note that the driver does not
recognize control characters and special keys during a Read All
request (IO.RAL) and recognizes only some of them during a Read with
Special Terminators (IO.RST).

FULL-DUPLEX TERMINAL DRIVER

2.5.1 Control Characters

_ A control character is input from a terminal by holding the control

| — key (CTRL) down while typing one other key. Three of the control
characters described in Table 2-9, CTRL/R, CTRL/U, and CTRL/Z, are
echoed on the terminal as "R, "U, and "Z respectively.

Table 2-9
Terminal Control Characters

Character Meaning

CTRL/C Typing CTRL/C causes unsolicited input on that
terminal to be directed to a control line interpreter
task, such as MCR. (Command 1line interpreters are
invoked and display a prompt in a manner similar to
MCR; therefore, for the purposes of this discussion,
it is assumed that MCR 1is the command line
interpreter in use, although the terminal driver will
respond to other command line interpreters in a
similar manner.) The "MCR>" prompt is echoed when the
terminal driver is ready to accept an unsolicited MCR
command line for input. When the unsolicited input
is terminated, the command line is passed to MCR.

If the last character typed on the terminal was a
CTRL/S (suspend output), CTRL/C restarts suspended
output and directs subsequent input to MCR.

If the hold-screen mode SYSGEN option has been
L selected and the terminal is a VT5x or VT6l in
hold-screen mode, typing a CTRL/C removes the
terminal from hold-screen mode.

CTRL/C characters can also be directed to a task if
the task has attached a terminal and has specified an
unsolicited-input-character AST (see Section
2.3.2.1). CTRL/C characters are also passed to a
task if an IO.RAL or IO.RST function is effected.

- NOTE

If the terminal driver receives a CTRL/C
character during a read operation (except
during a Read-Pass-All operation or a Read
With Special Terminators operation), the read
operation is terminated, the typeahead buffer
is cleared and an 1IS.CC status code Iis
returned to the task.

CTRL/I CTRL/I or TAB characters initiate a horizontal tab,
and the terminal spaces to the next tab stop. Tabs
at every eighth character position are simulated by
the terminal driver.

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-9 (Cont.)
Terminal Control Characters

Character

Meaning

CTRL/J

CTRL/K

CTRL/L

CTRL/M

CTRL/0O

CTRL/Q

CTRL/S

CTRL/R

CTRL/J is equivalent to a LINE FEED character.

CTRL/K initiates a vertical tab, and the terminal
tabs to the next vertical tab stop. For a CRT
terminal, 4 LINE FEEDs are output.

CTRL/L iaitiates a formfeed. If the terminal has
hardware formfeed support, the driver echos “L.
Otherwise, the driver simulates the formfeed by
outputting enough LINE FEED characters to advance the
next character position to the top of the next page.
If a CRT terminal is in use, 4 LINE FEEDs are output.

CTRL/M is equivalent to a carriage RETURN character
(see Section 2.5.2).

CTRL/O suppresses terminal output. For attached
terminals, CTRL/O remains in effect (output is
suppressed) until one of the following occurs:

e The terminal is detached
® Another CTRL/O character is typed
e An IO.CCO or IO.WBT function is issued

e Input is entered

For unattached terminals, CTRL/O suppresses output
for only the current output buffer (typically one
line).

CTRL/Q resumes terminal output previously suspended
by means of CTRL/S.

CTRL/S suspends terminal output. (Output can be
resumed by typing CTRL/Q or CTRL/C.)

CTRL/R response is a terminal driver feature that can
be selected during RSX-11M V3.2 SYSGEN. Typing
CTRL/R results in a carriage return and line feed
being echoed, followed by the incomplete
(unprocessed) input line. Any tabs that were input
are expanded and the effect of any rubouts is shown.
On hardcopy terminals, CTRL/R allows verifying the
effect of tabs and/or rubouts in an input line.
CTRL/R is also useful for CRT terminals when the CRT
rubout SYSGEN option has been selected (see Section
2.8). For example, after rubbing out the 1left-most
character on the second displayed line of a wrapped
input line, the cursor does not move to the right of
the first displayed 1line. In this case, CTRL/R
brings the input line and the cursor back together
again,

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-9 (Cont.)
Terminal Control Characters

Character Meaning

CTRL/U Typing CTRL/U before typing a line términator deletes
previously typed characters back to the beginning of

the line. The system echoes this character as u
followed by a carriage return and a line feed.

CTRL/X This character clears the typeahead buffer.

CTRL/Z CTRL/Z indicates an end-of-file for the current
terminal input. It signals MAC, PIP, TKB, and other
system tasks, that terminal input 1is complete,
allowing the task to exit. The system echoes this
character as "Z followed by a carriage return and a
line feed.

2.5.2 Special Keys

The ESCape, carriage RETURN, and RUBOUT keys have special significance
for terminal input, as described in Table 2-10. A line can be
terminated by an ESCape (or Altmode), carriage RETURN, or CTRL/Z
characters, or by completely filling the input buffer (that is, by,
exhausting the byte count before a line terminator is typed). The
standard buffer size for a terminal can be determined for a task by
issuing a Get LUN Information system directive and examining Word 5 of
the Dbuffer. An operator can obtain the same information via the MCR
SET /BUF=TI: command.

Table 2-10
Special Terminal Keys

Key Meaning

ESCape If escape sequences are not recognized, typing ESCape
or Altmode signals the terminal driver that there is
no further input on the current line. This 1line

terminator allows further input on the same line,
because the carriage or cursor is not returned to the
first column position.

If escape sequences are recognized, ESCape signals
the beginning of an escape sequence. (See Section
2.6.)

RETURN Typing RETURN terminates the current line and causes
the carriage or cursor to return to the first column
on the line,

(continued on next page)

FULL-DUPLEX TERMINAL DRIVER

Table 2-10 (Cont.)
Special Terminal Keys

Key Meaning

RUBOUT Typing RUBOUT deletes the last character typed on an
input 1line, Only characters typed since the last
line terminator may be deleted. Several characters
can be deleted in sequence by typing successive
RUBOUTSs.

For example, on a printing terminal, the first RUBOUT
echoes a backslash (\) followed by the character that
has been deleted, even if the terminal 1is in the
noecho mode. Subsequent RUBOUTs cause only the
deleted character to be echoed. The next character
typed that 1is not a RUBOUT causes another backslash
to be printed, followed by the new character. The
non-RUBOUT character will not be echoed if the
terminal is in the noecho mode; however, a backslash
is echoed in response to the first non-RUBOUT
character. The following example illustrates rubbing
out ABC and then typing CBA:

ABC\CBA\CBA

The second backslash 1is not displayed if a 1line
terminator 1is typed after rubbing out the characters
on a line, as in the following example:

ABC\CBA

At SYSGEN time, the "CRT rubout" feature can be
selected. This feature applies to a terminal only
after a SET MCR directive has been issued:

SET /CRT=TI:

If the CRT rubout feature was selected, RUBOUT causes
the 1last typed character (if any) to be removed from
the incomplete input line and a
backspace-space-backspace sequence of characters for
that terminal are echoed. If the last typed
character was a tab, enough backspaces are issued to
move the cursor to the character position before the
tab was typed. If a long input line was split, or
"wrapped," by the automatic-carriage-return option,
and a RUBOUT erases the last character of a previous
line, the cursor is not moved to the previous line.
CTRL/R must be wused to resynchronize the current
display with the contents of the incomplete input
line.

2.6 ESCAPE SEQUENCES

Escape sequences are strings of two or more characters beginning with
an ESC (033) character. In RSX-1lM systems, escape sequence support
described in this section in a SYSGEN option. Some terminals generate
an escape sequence when a special key is pressed (for example, the FCN
key on the VT6l). On any terminal, an escape sequence may be

FULL-DUPLEX TERMINAL DRIVER
generated manually by typing ESCape followed by the appropriate
characters.
Escape sequences provide a way to pass input to a task without
interpretation by the operating system. This could be done via a

number of one-character Read All functions, but escape sequences allow
them to be read with IO.RLB requests.

2.6.1 Definition

The format of an escape sequence as defined in American National
Standard X 3.41-- 1974 and used in the VT100 is:

+ESC ... F
Where:

1. ESC is the introducer control character (33(8)) that is named

escape.
2. ... are the intermediate bit combinations that may or may
not be present. I characters are bit combination 40(8) to

57(8) inclusive in both 7- and 8-bit environments.

3. F is the final character. -F characters are bit combinations
60(8) to 176(8) inclusive in escape sequences in both 7- and
8-bit environments,

4. The occurrence of characters in the inclusive ranges 0(8) to
37(8) is technically an error condition whose recovery is to
execute immediately the function specified by the character
and then continue with the escape sequence execution. The
execeptions are: If the character ESC occurs, the current
escape sequence 1is aborted, and a new one commences,
beginning with the ESC just recieved. If the character CAN
(30(8)) or the character SUB (32(8)) occurs, the current
escape sequence is aborted, as is the case with any control
character.

There are five exceptions to this general definition; these
exceptions are discussed in Section 2.6.5.

2.6.2 Prerequisites

Two prerequisites must be satisfied before escape sequences can be
received by a task.

First, the task must "ask" for them by issuing an IO.ATT function and
invoking the subfunction bit TF.ESQ.

Second, the terminal must be declared capable of generating escape
sequences. This may be done with an MCR SET command:

SET /ESCSEQ=TI:

An alternative way to tell the driver that the terminal can generate
escape sequences 1is by issuing the Set Multiple Characteristics
request, (See Section 2.3.2.12).

FULL-DUPLEX TERMINAL DRIVER

If either of these prerequisites is not satisfied, the ESC character
is treated as a line terminator.

If both prerequisites are satisfied, CTRL/SHIFT/0 (037) may be used as
an Altmode character.l This character does not act as an Altmode from
a terminal that cannot generate escape sequences.

2.6.3 Characteristics

Escape sequences always act as line terminators. That 1is, an input
buffer may contain other characters that are not part of an escape
sequence, but an escape sequence always comprises the last characters
in the buffer.

Escape sequences are not echoed. However, 1if a non-CRT rubout
sequence is in progress, it is closed with a backslash when an escape
sequence 1is begun.

Escape sequences are not recognized 1in unsolicited input streams.
Neither are they recognized in a Read with Special Terminators
(subfunction bit TF.RST) nor in a Read All (subfunction bit TF.RAL) .

2.6.4 Escape Sequence Syntax Violations

A violation of the syntax defined in Section 2.6.1 causes the driver
to abandon the escape sequence and to return an error (IE.IES).

2.6.4.1 DEL or RUBOUT (177) - The character DEL or RUBOUT 1is not
legal within an escape sequence. Typing it at any point within an
escape sequence causes the entire sequence to be abandoned and deleted
from the 1input buffer. Thus, use DEL or RUBOUT to abandon an escape
sequence, if desired, once you have begun it.

2.6.4.2 Control Characters (0-037) - The reception of any character
in the range 0 to 037 (with four exceptions -- see footnote2) is a
syntax violation that terminates the read with an error (IE.IES).

1 An Altmode is a line terminator that does not cause the cursor to
advance to a new line. On terminals that cannot generate escape
sequences, the ESCape key acts as an Altmode. Characters 175 and 176
also function as Altmodes 1if the terminal has not been declared
lower-case (MCR command SET /LOWER).

2 Four control characters are allowed: CTRL/Q, CTRL/S, CTRL/X, and

CTRL/O. These characters are handled normally by the operating system

even when an escape sequence is in progress. For example, entering:
ESC CTRL/S A

gives:

I0SB IS.ESQ

2

with the additional effect of turning off the output stream.

FULL-DUPLEX TERMINAL DRIVER

2.6.4.3 Full Buffer - A syntax error results when an escape sequence
is terminated by running out of read-buffer space, rather than by
receipt of a final character. The error IE.PES 1is returned. For
example, after a task issues an IO.RLB with a buffer length of 2, and

you type:
ESC ! A

the buffer contains "ESC !", and the I/0 status block contains:

I0SB IE.PES

2

The "A" is treated as unsolicited input.

2.6.5 Exceptions to Escape-Sequence Syntax

Five "final characters" that normally terminate an escape sequence are
treated as special cases by the terminal driver for use with certain
terminals:

ESC ?...
ESC O...
ESC P...
ESC Y...
ESC [...

Refer to documentation supplied with the specific terminal(s) in use
for correct use of escape sequences.

2.7 VERTICAL FORMAT CONTROL

Table 2-11 is a summary of all characters used for vertical format
control on the terminal. Any one of these characters can be specified
as the value of the vfc parameter in IO.WLB, I0O.WVB, IO.WBT, IO0.CCO,
or I0.RPR functions.

2.8 AUTOMATIC CARRIAGE RETURN

Individual terminals can be set for wraparound, as desired, using the
MCR SET command:

>SET /WRAP=TTxX:

Once wrap around has been selected, the column at which wrap around
occurs can be selected using the MCR SET command:

>SET /BUF=TI:n
>

The SET /BUF command can also be used without an argument to display
the current buffer width for a terminal:

>SET /BUF=TI:
BUF=TI:00072.
>

FULL-DUPLEX TERMINAL DRIVER

Table 2-11
Vertical Format Control Characters

Octal
Value Character Meaning

040 blank SINGLE SPACE - Output 1 1line feed, print the
contents of the buffer, and output a carriage
return. Normally, printing immediately follows
the previously printed line.

060 0 DOUBLE SPACE - Output 2 line feeds, print the
contents of the buffer, and output a carriage
return. Normally, the buffer contents are
printed two 1lines below the previously printed
line.

061 1 PAGE EJECT - If the terminal supports FORM
FEEDs, output a form feed, print the contents of
the buffer, and output a carriage return. If
the terminal does not support FORM FEEDs, the
driver simulates the FORM FEED character by
either outputting 4 1line feeds to a crt
terminal, or by outputting enough line feeds to
advance the paper to the top of the next page on
a printing terminal.

053 + OVERPRINT - Print the contents of the buffer and
output a carriage return, normally overprinting
the previous line,

044 S PROMPTING OUTPUT - Output 1 1line feed and
print the contents of the buffer. This mode of
output is intended for use with a terminal on
which a prompting message is output, and input
is then read on the same line.

000 null INTERNAL VERTICAL FORMAT - Print the buffer
contents without addition of vertical format
control characters. 1In this mode, more than one
line of guaranteed contiguous output can be
printed for each 1I/0 request.

All other vertical format control characters are interpreted as blanks
(040).

A task can determine the buffer width by issuing a Get LUN Information
directive and examining word 5 returned in the buffer.

After the SET has been done, typing beyond the buffer width results in
a carriage return and line feed being output before the next character
is echoed. Although only one line only was input, it is displayed on
two terminal lines.

It is possible to lose track of where you are in the input buffer if
wraparound 1is enabled for your terminal. For example, while deleting
text on a wrapped line, the cursor will not back up to the previous
line. In order to resynchronize the cursor with the contents of the
incomplete input buffer, type CTRL/R {(if this SYSGEN option has been
selected).

FULL-DUPLEX TERMINAL DRIVER

2.9 FEATURES AVAILABLE BY RSX-11M SYSGEN OPTION

A number of terminal-driver features are available as RSX-11M SYSGEN
options, (See the RSX-1lM System Generation and Management Guide).

Features previously discussed that are not repeated 1in this section
include:

e Some device-specific QIO functions (see Section 2.3.2)

e Special keys: CTRL/R —-- Write incomplete input buffer (see
Section 2.5.1)

CRT rubout (see Section 2.5.2)
e Escape sequences (see Section 2.6)

The only remaining features selected at SYSGEN time are
terminal-independent cursor control (described in Section 2.15),
private buffer pool size and hard receive error detection, described
in the following sections.

2.9.1 Private Buffer Pool Size

The private buffer pool is contained within the full-duplex terminal
driver. The size of the whole driver is established during SYSGEN by
the VMR command to load the driver as follows:

LOA TT:/SIZE=nnn

The private buffer pool occupies all of the space from the top of the
actual driver code up to nnn. The argument nnn is expressed in octal
words, and the maximum value is 20000, corresponding to 8K words.
Depending on driver options selected, the code requires from 2.5 to
3.5k words. Thus, the maximum buffer pool size is from 4.5k to 5.5k
words.

Alternatively, on a processor that has separate I- and D-space mapping
registers, it 1is possible to allocate the private pool together with
all driver data in a separate common block called TTCOM. This block
can range up to 8k words, allowing the private buffer pool to be
almost as large. When this is desired, answer Y to the following two
SYSGEN questions:

>* DO YOU WANT KERNEL DATA SPACE SUPPORT? [Y/N]:
>* DO YOU WANT A SEPARATE TERMINAL BUFFER POOL? [Y/N]:

2.9.2 Hard Receive Error Detection

All terminal interfaces supported by the full-duplex terminal driver
are capable of detecting and £flagging hard receive errors. Hard
receive errors include framing errors, enable character parity error,
and data overrun error.

NOTE

The driver does not enable parity
generation and checking on DH11l and DZ11
interfaces.

FULL-DUPLEX TERMINAL DRIVER

If the hard receive error detection SYSGEN option (T$SRED) 1is
selected, the driver handles hard receive errors as follows:

l. If a read request is being processed and the character can be
processed 1immediately, the read request is terminated with
one of the following error codes returned in the status

block:
, Error
Code Hard Receive Error
IE.BCC framing error
IE.DAO data overrun
IE.VER character parity error

2, If a command 1line 1is being input for a command 1line
. interpreter task and the character can be processed
immediately, a CTRL/U is simulated, "U 1is echoed, and the

input is terminated. No command line is sent to the task.

3. If the character would normally cause an AST if no error was
detected, the character is ignored and no AST occurs.

4., If the character cannot be processed immediately, it |is
stored in the typeahead buffer. A flag is set for the line,
indicating that the last character in the typeahead buffer
has no error, disabling further storage in the typeahead
buffer. When the character is retrieved from the buffer, the
appropriate action previously described is taken and the flag
is cleared. Any characters received in the meantime are
discarded with a bell echoed for each character.

If the T$SSRED option is not selected, hard receive errors are ignored.

2.10 TASK BUFFERING OF RECEIVED CHARACTERS

When task-buffering received characters, characters read from the
terminal are sent directly to the task's buffer. Thus, there is no
need to allocate a terminal driver buffer.

Task buffering of received characters does not necessarily reduce
system overhead. For example, in a mapped system each character must
be mapped to the task's buffer. However, if terminal driver buffering
was used, the mapping 1is only done once for all characters to be
transferred.

Task buffering is overridden during checkpointing. If a task is
checkpointable, a driver buffer is allocated and the task is made
eligible for checkpointing by any task, regardless of priority, while
the read operation is in progress. (Checkpointing only occurs in this
situation when there is another task that can be made active.) Since
checkpointability 1is controlled by the task, the user retains control
over this operation.

FULL-DUPLEX TERMINAL DRIVER

2.11 TYPEAHEAD BUFFERING

Characters received hy the terminal driver are either processed
immediately or stored in the typeahead buffer. The typeahead buffer
allows characters to be temporarily stored and retrieved FIFO. The
typeahead buffer is used as follows:

l. Store in buffer:

An input character is stored in the typeahead buffer 1if one
or more of the following conditions are true:

e The driver is not ready to accept the character (fork
process pending or in progress)

e There is at least one character presently in the typeahead
buffer

e The character input requires echo and the output 1line to
the terminal is presently busy outputting a character

@ No read request is in progress, no unsolicited input AST
is specified, and the terminal is either attached or
slaved.

NOTE

Depending on the terminal mode and the presence of
a read function, read subfunctions and an
unsolicited input AST, the CTRL-C, CTRL-0, CTRL-Q,
CTRL-S, and CTRL-X characters may be processed

immediately and not stored 1in the typeahead
buffer.

A character is not echoed when it is stored in the buffer.
Echoing a character is deferred until it is retrieved from
the buffer since the read mode (for example,
read-without—-echo) is not known by the driver until then.

2. Retrieve from buffer:

When the driver becomes ready to process input, or when a
task 1issues a read request, an attempt is made to retrieve a
character from the buffer. If this attempt 1is successful,
the character 1is processed and echoed, if required. The
driver then loops, retrieving and processing characters until
either the buffer 1is empty, the driver becomes unable to
process another character, or a read request is finished with
the terminal attached or slaved.

3. Flush the buffer:
The buffer is flushed (cleared) when:
l. CTRL-C is received
2, CTRL-X is received
3. the terminal becomes detached
4., the terminal becomes non-slaved

Exceptions: CTRL-C and CTRL-X do not flush the buffer if
read-pass-all or read-with-special-terminators is in effect.

FULL-DUPLEX TERMINAL DRIVER

If the buffer becomes full, each character that cannot be entered
causes a BELL character to be echoed to the terminal.

If a character is input and echo 1is required, but the transmitter
section is busy with an output request, the input character is held in
the type-ahead buffer, until output (transmitter) completion occurs.

2.12 FULL-DUPLEX OPERATION

When a terminal line is in the full-duplex mode, the full-duplex
driver attempts to simultaneously service one read request and one
write request. The Attach, Detach and Set Multiple Characteristics
functions are only performed with the 1line in an idle state (not
executing a read or a write request).

2.13 PRIVATE BUFFER POOL

The driver has a private buffer pool for intermediate input and output
buffers, typeahead buffers and UCB extensions. Whenever the driver
needs dynamic memory, it first attempts to allocate a buffer in the
private pool. If this fails, a second attempt is made in the system
pool. If the allocation in the system pool fails during command 1line
input, a CTRL/U is simulated and echoed.

Command line interpreter task buffers are handled in a special way.
When unsolicited 1input begins, a buffer is allocated, as previously
described, for the command line (a string of characters, followed by
an appropriate terminator .character). When the input is completed,
the contents of the buffer is sent directly to the command 1line
interpreter task if the buffer was allocated in the system pool.
However, if the buffer was allocated in the driver's private pool, it
must first be moved into a buffer in the system pool to provide access
for the task.,

2,14 INTERMEDIATE INPUT AND OUTPUT BUFFERING

Input buffering for checkpointable tasks with checkpointing enabled is
provided in the private pool. As each buffer becomes full, a new
buffer is automatically allocated and linked to the previous buffer.
The Executive then transfers characters from these buffers to the task
buffer and the terminal driver deallocates the buffers once the
transfer has been completed.

If the driver fails to allocate the first input buffer, the characters
are transferred directly into the task buffer. If the first buffer is
successfully allocated, but a subsequent buffer allocation fails, the
input request terminates with the error code IE.NOD. In this case,
the I/0 status block contains the number of characters actually
transferred to the task buffer. The task may then update the buffer
pointer and byte count and reissue a read request to receive the rest
of the data. The typeahead buffer ensures that no input data is lost.

All terminal output is buffered. As many buffers as required are
allocated by the terminal driver and linked to a list. If not enough
buffers can be obtained for all outpuf data, the transfer is done as a
number of partial transfers, using available buffers for each partial
transfer. This is transparent to the requesting task. If no buffers
can be allocated, the request terminates with the error code IE.NOD.

FULL-DUPLEX TERMINAL DRIVER

The unconditional output buffering serves three purposes.
1. It reduces time spent at system state
2. It enables long DMA transfers for DH1l controllers

3. It enables task checkpointing during the transfer to the
terminal (if all output fits in one buffer list)

2.15 TERMINAL-INDEPENDENT CURSOR CONTROL

Terminal-independent cursor control capability is provided at SYSGEN
time if the assembly parameter T$$CUP is defined. The terminal driver
responds to task I/0 requests for cursor positioning without the task
requiring information about the type of terminal in use. 1/0
functions associated with cursor positioning are described as follows.

Cursor position is specified in the vfc parameter of the IO.WLB or
I0.RPR function. The parameter is interpreted simply as a vfc
parameter if the high byte of the parameter is zero. However, if the
parameter is used to define cursor position, the high byte must be
nonzero, the low byte is interpreted as column number (x-coordinate)
and the high byte is interpreted as line number (y-coordinate). Home
position, the upper left corner of the display, 1is defined as 1,1.
Depending upon terminal type, the driver outputs appropriate cursor
positioning commands appropriate for the terminal in use that will
move the cursor to the specified position., If the most significant
bit of the line number is set, the driver clears the display before
positioning the cursor.

When defining cursor position in an 1IO.WLB function, the TF.RCU
subfunction can be used to save the current cursor position. When
included in this manner, IF.RCU causes the driver to first save the
current cursor position, then position the cursor and output the
specified buffer, and, finally, restore the cursor to the original
(saved) position once the output transfer has been completed.

2.16 TERMINAL INTERFACES

This section summarizes the characteristics of the four types of
standard communication-line interfaces supported by RSX-1lM. Refer to
the Terminals and Communications Handbook for additional details.

2.16.1 DH1ll Asynchronous Serial Line Multiplexer

The DH1l1 multiplexer interfaces up to 16 asynchronous serial
communications lines for terminal use. The DH1l supports programmable
baud rates. Input and output baud rates may differ; the input rate
may be set to 0 baud, thus effectively turning off the terminal. The
DM11-BB option may be included to provide modem control for dial-in
lines. These lines must be interfaced by means of a full duplex modem
(for example, in the United States, a Bell 103A or equivalent modem).

FULL-DUPLEX TERMINAL DRIVER

2.,16.2 DJ11 Asynchronous Serial Line Multiplexer

The DJ1l multiplexer interfaces as many as 16 asynchronous serial
lines to the PDP-11 for local terminal communications. The DJ1l does
not provide a dial-in capability. Baud rates are jumper-selectable.

2.16.3 DL11 Asynchronous Serial Line Interface

The DL11l supports a single asynchronous serial line and handles
communication between the PDP-11 and a terminal. A number of standard
baud rates are available to DL11 users.

2.16.4 DZ1ll Asynchronous Serial Line Multiplexer

The DZ11l multiplexer interfaces up to eight asynchronous serial
communication lines for use with terminals. It supports programmable
baud rates; however, transmit and receive baud rates must be the
same. The DZ1ll can control a full duplex modem in auto-answer mode.

2.17 PROGRAMMING HINTS

2.17.1 ESCape Code Conversion

If escape sequences are recognized, the character code 037 will
terminate input and a status code IS.ESC is returned. In addition,
character codes will terminate input and return the IS.ESC status |if
upper to lower-case conversion is not enabled.

2.17.2 RT02-C Control Function

Because the screen of an RT02C Badge Reader and Data Entry Terminal
holds only one line of information, special care must be taken when
sending' a control character (for example, vertical tab) to the RT02-C.
Use the IO.WAL (Write All) function for this purpose.

It is recommended that read without echoing be used when reading a
badge with the RT02-C. Use IO.RAL or IO.RNE functions followed by the
IO.WAL function to echo the information for display.

2.17.3 Use of I0.WVB Instead of IO.WLB

The use IO.WVB instead of IO.WLB is récommended when writing to a
terminal. If the write actually goes to a terminal, the Executive
converts the IO.WVB to an IO.WLB request. However, if the LUN has
been redirected to an inappropriate device (for example, a disk), the
use of an IO.WVB function will be rejected because a file is not open
on the LUN, This prevents privileged tasks from overwriting block
zero of the disk.

Note that any subfunction bits specified in the IO.WVB request (for
example, TF.CCO, TF.WAL, or TF.WBT) are stripped when the I0.WVB is
converted to an IO.WLB.

FULL-DUPLEX TERMINAL DRIVER

2.17.4 Remote DL11-E, DHl1l, and DZ1ll Lines

All remote DH1l lines in a system are answered at the same baud rate.
All remote DZzll 1lines are also answered at the same rate, which may
differ from the DH1l rate. These rates are specified at SYSGEN time.

Before a remote line is answered, the driver clears certain terminal
characteristics (see Table 2-5) that may have been set by an MCR SET
command, or by an SF.SMC function. The characteristics <cleared are:
TC.5CP, TC.ESQ, TC.HLD, TC.SMR, TC.NEC, TC.FDX, TC.HFF, TC.HHT,
TC.,VFL, TC.HFL, and TC.TTP. (Clearing TC.TTP means that a terminal
type of "unknown" will be returned in an SF.GMC request.) Buffer size
is set to 72.

A DZ11 remote line must be declared to be remote before the terminal
driver will correctly handle the modem.

2.17.5 Side Effects of Setting Characteristics

Certain terminal characteristics that a task may set or that an
operator may set using MCR commands may have undesirable side effects.
In particular, these characteristics include the hold-screen mode and
the lower/upper—case conversion disable 'mode. Their effects are
described as follows. :

TC.HLD -- Unexpected behavior can result from a terminal in the
hold-screen mode if its reception rate 1is much greater than its
transmission rate. (The DH1l supports split baud rates.) When in the
hold-screen mode, the terminal automatically sends a CTRL/S during
reception of an output stream when the screen is nearly full. Output
is resumed -- another screen-full -- when you type SHIFT/SCROLL (the
terminal generates CTRL/Q). Thus, no output is lost as a result of
scrolling off the screen before you can read it. However, if the
terminal's transmission rate is far below its reception rate, some
unread output may scroll out of sight before the CTRL/S can be
transmitted.

Note that some terminals and interfaces are hardware-buffered. This
can cause obscure timing problems for tasks that attempt to invoke the
hold-screen mode.

TC.SMR -- If this characteristic is asserted (lower/upper-case
conversion is disabled), octal characters 175 and 176 are interpreted
as "right brace (})" and "tilde (-)" respectively. If TC.SMR is not
asserted, these characters are interpreted as an Altmode (that is,
they function as line terminators that do not advance the cursor to a
new line).

2.17.6 Modem Support

The terminal driver provides terminal support for modem control. A
communications 1line can be set to remote or local operation via the
TC.DLU caracteristic bit. MCR supports this bit with the SET /REMOTE
and SET /LOCAL commands.

If a communication link is established when a line is set to local,
the 1line is properly hung up. If carrier is lost, the driver waits 2
seconds for carrier to return, otherwise, the line is hung up. If a
ring interrupt occurs during this time, the line is immediately hung
up'

o,

CHAPTER 3

HALF-DUPLEX TERMINAL DRIVER

3.1 INTRODUCTION

The half-duplex terminal driver provides support for a variety of
terminal devices under RSX-11M. (This terminal driver is not
supported on RSX-11M-PLUS systems.) The half-duplex terminal driver is
generally used in RSX-11M systems where small driver size |is
essential, and the additional functional capability provided by the
larger full-duplex terminal driver (described in Chapter 2) is not
required. Table 3-1 summarizes the terminals supported, and
subsequent sections describe these devices in greater detail.

Table 3-1

Supported Terminal Devices
Model Columns | Lines/ Character| Baud Upper & lower case?

screen set range Send Receilive
ASR-33/35 72 64 110
KSR-33/35 72 64 110
LA30-P 80 64 300
LA30-S 80 64 110-300
LA36 80-132 64-96 110-300 yes yes?
LAl120 132 96 50-9600 yes yes
LA180S 132 96 300-9600 yes
RTO02 64 1 64 110-1200
RT02-C 64 1 64 110-1200
VTO5B 72 20 64 110-2400| vyes

1 applies only to video terminals.

2 only for 96-character terminal. The terminal driver supports the
terminal interfaces summarized in Table 3-2. These interfaces are
described in greater detail in Section 3.9. Programming is identical
for all.

(continued on next page)

HALF-DUPLEX TERMINAL DRIVER

Table 3-1 (Cont,)
Supported Terminal Devices

Model Columns| Lines/_ |Character Baud Upper & lowér case?
screen set range Send Receive

VT50 80 12 64 110-9600

VT50H 80 12 64 110-9600

VT52 80 24 96 110-9600 yes yes

VT55 80 24 96 110-9600 yes yes

VT61 80 24 96 110-9600 yes yes

VT100 80-132 24 96 50-9600 yes yes

1 Applies only to video terminals.

Table 3~-2
Standard Terminal Interfaces
Model Type
DH11 16-line multiplexerl
DH11-DM11-BB " | 16-line multiplexer with modem control2
DJ11 16-line multiplexer)
DL11-A/B/C/D/W Single-line interfaces
2
Dz1l1 8-line multiplexer with modem control.

1 pirect memory access (DMA) not supported.
2 Full-duplex control only. For example, in the USA, a Bell 103A-type
modem.

Terminal input lines can have a maximum length of 255 bytes (the
maximum is set 1in the system generation, or SYSGEN, dialog). The
extra characters of an input line that exceeds the maximum length
generally become an unsolicited input line.

3.1.1 ASR-33/35 Teletypes 3

The ASR-33 and ASR-35 Teletypes are asynchronous, hard-copy terminals.
No paper-tape reader or punch capability is supported.

3.1.2 KSR-33/35 Teletypes 3

The KSR-33 and KSR-35 Teletypes are asynchronous, hard-copy terminals.

3 Teletype is a registered trademark of the Teletype Corporation.

HALF-DUPLEX TERMINAL DRIVER

3.1.3 LA30 DECwriters

The LA30 DECwriter is an asynchronous, hard-copy terminal that is
capable of producing an original and one copy. The LA30-P is a
parallel model and the LA30-S is a serial model.

3.1.4 LA36 DECwriter

The LA36 DECwriter is an asynchronous terminal that produces hard copy
and operates in serial mode. It has an impact printer capable of
generating multipart and special preprinted forms. The LA36 can
receive and transmit both upper-case and lower-case characters.

3.1.5 LA120 DECwriter

The LA120 DECwriter is a hard-copy upper- and lower-case terminal,
capable of printing multipart forms at speeds up to 180
characters-per-second. Serial communications speed is selected from
14 baud rates ranging from 50 to 9600 bps. Hardware features allow
bidirectional printing for maximum printing speed, and user-selected
features, including font size, line spacing, tabs, margins, and forms
control. These functions can also be set-up by user tasks that issue
appropriate ANSI-standard escape sequences.

3.1.6 LAl80S DECprinter

The LA180S DECprinter is a serial version of the LA180. It is a
print-only device (it has no keyboard) that can generate multipart
forms. The LA180S can print upper-case and lower-case letters.

3.1.,7 RTO02 Alphanumeric Display Terminal and RT02-C Badge Reader/
Alphanumeric Display Terminal

The RT02 is a compact, alphanumeric display terminal designed for
applications 1in which source data is primarily numeric. A shift key
permits the entry of 30 discrete characters, including upper-case
alphabetic characters. The RT02 can, however, receive and display
64 characters.

The RT02-C model also contains a badge reader. This option provides a
reliable method of identifying and controlling access to the PDP-11 or
to a secure facility. Furthermore, data in a format corresponding to
that of a badge (22-column fixed data) can be entered quickly.

3.1.8 VTO5B Alphanumeric Display Terminal

The VTOS5B is an alphanumeric display terminal that consists of a CRT
display and a self-contained keyboard. From a programming point of
view, it is equivalent to other terminals, except that the VTO5B
offers direct cursor addressing.

HALF-DUPLEX TERMINAL DRIVER

3.1.9 VT50 Alphanumeric Display Terminal

The VT50 is an alphanumeric display terminal that consists of a CRT
display and a keyboard. It is similar to the VTOSB in operation, but
does not offer direct cursor addressing.

3.1.10 VT50H Alphanumeric Display Terminal

The VT50H is an alphanumeric display terminal with CRT display,
keyboard, and numeric pad. It offers direct cursor addressing. (The
VT50R's direct cursor addressing is not compatible with that of the
VTO05B.)

3.1.11 VT52 Alphanumeric Display Terminal

The VT52 is an upper-and-lower-case alphanumeric terminal with numeric
pad and direct cursor addressing. (The VT52's direct cursor
addressing is compatible with that of the VT50H, not with that of the
VTO5B.) The VT52 can be configured with a built-in thermal printer.

3.1.12 VTS5 Graphics Display Terminal

The VT55 is similar to the VT52 in its operation as an alphanumeric
terminal. The VT55 offers graphics display features that are not
supported by RSX-11M, although the system allows a knowledgeable task
to access the explicitly special features of the VT55.

3.1.13 vTel Alphanumeric Display Terminal

The VT61 is an "intelligent" upper-and-lower-case alphanumeric
terminal with an integral microprocessor. It offers two 128-member
character sets and numerous built-in functions for editing and forms
preparation as well as a block-transfer mode. (None of these special
features is supported by RSX-11M.)

3.1.14 VT100 DECscope

The VT100 DECscope is an upper- and lower-case alphanumeric
keyboard/video display terminal. It is capable of displaying 24 lines
of 80 characters (each line). Serial communications speed is selected
from baud rates ranging from 50 to 9600 bps. ‘Hardware features allow

user selection of display characteristics and functions including

smooth scroll, reverse video, etc. These functions can also be set-up
by user tasks that issue appropriate ANSI-standard escape sequences.

3.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the Get LUN Information system
directive (the first characteristics word) contains the following
information for terminals. A setting of 1 indicates that the
described characteristic is true for terminals.

HALF-DUPLEX TERMINAL DRIVER

Bit Setting Meaning
0 1 Record-oriented device
1 1 Carriage-control device
2 1 Terminal device
3 0 File structured device
4 0 Single-directory device
5 0 Sequential device
6 0 Reserved
7 0 User-mode diagnostics supported
8 0 Massbus device
9 0 Unit software write-locked
10 0 Input spooled device
11 0 Output spooled device
12 0 Pseudo device
13 0 Device mountable as a communications
channel
14 0 Device mountable as a FILES-11 volume
15 0 Device mountable

Words 3 and 4 are undefined. Word 5 indicates the default buffer size
for the device: for terminals the width of the terminal carriage or
display screen.

3.3 QIO MACRO

Table 3-3 lists the standard and device-specific functions of the QIO
macro that are valid for terminals. All device-specific functions are
options that may be selected at system generation.

Two device-specific functions, SF.SMC and SF.GMC, have nonstandard
function names. These names are for compatibility with IAS.

HALF-~DUPLEX

TERMINAL DRIVER

Table 3-3
Standard and Device-Specific QIO Functions for Terminals

Format

Function

STANDARD FUNCTIONS:

QIOSC IO.ATT,...
QIO$C IO.DET,...
QIO$C IO.KIL,...

QIOSC IO.RLB,...,<stadd,size>
QIO$C IO.RVB,...,<stadd,size>
QIOSC IO.WLB,...,<stadd,size,vfc>
QIOSC I0.WVB,...,<stadd,size,vfc>

DEVICE-SPECIFIC FUNCTIONS
(ALL SYSGEN OPTIONS) :

QIOSC IO.ATA,...,<ast>

QIO$C I0.CCO,...,<stadd,size,vfc>

QIOS$C SF.GMC,...,<stadd,size>
QIOSC I0.GTS,...,<stadd,size>
QIOS$C IO.RAL,...,<stadd,size>
QIO$C IO.RNE,...,<stadd,size>

QIOSC IO.RPR,...,<stadd,size,
[tmo],pradd,prsize,vic>

QIO$C IO.RST,...,<stadd,size>

QIOSC SF.SMC,...,<stadd,size>
QIO$C I0.WAL,...,<stadd,size>

QIOSC I0.WBT,...,<stadd,size,vfc>

Attach device.
Detach device.
Cancel I/0 requests.

Read logical block
(read typed input into buffer).

Read virtual block
(read typed input into buffer).

Write logical block
(print buffer contents).

Write virtual block
(print buffer contents).

Attach device, specify unsolicited-
input-character AST.

Cancel CTRL/O0 (if in effect), then
write logical block.

Get multiple characteristics.

Get terminal support.

Read logical block, pass all bits.
Read logical block, do not echo.
Read logical block after prompt.
Read logical block ended by special
terminators.

Set multiple characteristics.

Write logical block, pass all bits.

Write logical block, break through
most I/O conditions at terminal.

where: ast is the entry point
AST,

for an unsolicited-input-character

pradd is the starting address of the byte buffer where the

prompt is stored.
address space.

The buffer must be within the task's

-,

(

HALF-DUPLEX TERMINAL DRIVER

prsize is the size of the pradd prompt buffer in Dbytes. If
the system supports variable length reads, the buffer
size must be greater than zero and less than or equal
to 255. If the system does not support variable length
reads, the specified size must be greater than zero and
less than or equal to 80.

size is the size of the stadd data buffer in bytes (must be
greater than zero). If the function is a read and the
system supports variable length reads, size must be
less than or equal to 255. Otherwise, size must be
less than or equal to 80. The buffer must be within
the task's address space. For SF.GMC, I0.GTS, and
SF.SMC, size must be an even number less than 4065
(decimal). If the function is a write, size can be up
to 32K bytes.

stadd is the starting address of the data buffer. The
address must be word-aligned for SF.GMC, I0.GTS, and
SF.SMC; otherwise stadd may be on a byte boundary.

tmo is an optional timeout count, included for IAS
compatibility. If supplied, it is ignored.

vic is a character for vertical format control £from Table
3-11 (see Section 3.7).

3.3.1 Subfunction Bits

Most of the device-specific functions supported by the terminal driver
are implemented by way of "subfunction bits." That is, these functions
can be invoked by ORing a named bit with some other function. Table
3-4 shows the relationship of the 10 subfunction bits to the standard
and device-specific functions.

The 10 subfunction bits, and their octal values, are:

TF.AST unsolicited-input—-character AST 10
TF.BIN binary prompt 2
TF.CCO cancel CTRL/O 40
TF.ESQ recognize escape sequences 20
TF.RAL read all bits 10
TF.RNE read with no echo 20
TF.RST read with special terminators 1
TF .WAL write all bits 10
TF.WBT break-through write 100
TF.XOF send XOFF 100

The subfunction bits are defined in the system module TTSYM (discussed
further in Section 3.3.2.5). The octal values of these entities are
subject to change; therefore, we recommend that you always use the
symbolic names. As Table 3-4 shows, 7 of the 10 subfunction bits can
be ORed with standard QIO functions to invoke device-specific
functions. The remaining three subfunction bits (TF.BIN, TF.ESQ, and
TF.XOF) can be ORed with Attach and Read After Prompt QIO's to provide
added features, as described in Section 3.3.2.

HALF-DUPLEX TERMINAL DRIVER

Of the 10 subfunction bits, 3 can be used with Read QIO functions, 3
with Write functions, 2 with Attach functions, and 5 with Read After
Prompt. The breakdown is:

Read TF.RAL, TF.RNE, TF.RST

Write TF.CCO, TF.WAL, TF.WBT

Attach TF.AST, TF.ESQ

Read After Prompt TF.BIN, TF.XOF, TF.RAL, TF.RNE, TF.RST

If a task invokes a subfunction bit that is not supported on the
system, the subfunction bit is ignored, not rejected. For example, if
Read with Special Terminators 1is not selected, either IO.RST or
IO.RLB!TF.RST is interpreted as IO.RLB.

The following example shows a QIO request wusing more than one
subfunction bit: a nonechoed read, which may be concluded by a
special terminator, after a prompt.

QIOSC IO.RPR!ITF.RNE!TF.RST,...,<stadd,size,,pradd,prsize,vfc>

Table 3-4
Subfunction Bits

Allowed Subfunction Bits
Function | Equivalent with
subfunction bits| TF,AST TF.BIN TF.CCO TF.ESQ TF.RAL TF.RNE TF.RST TF.WAL TF.WBT TF.XOF

STANDARD FUNCTIONS: -

I0.ATT X X
10.DET
10.KIL
10.RLB 1 X 1
10.RVB 2 2 2
10.WLB X X X
10.WVB 2 2 2

DEVICE-SPECIFIC FUNCTIONS:

I0.ATA I0.ATT!TF.AST X

10.CCo I0.WLB!TF.CCO X X
SF.GMC

I0.GTS

I0.RAL IO.RLB!TF.RAL X 1

IO.RNE IO.RLB!TF.RNE 1 1

I0.RPR X 1 X 1 X
I0.RST IO.RLBITF.RST 1 X

SF.SMC

I0.WAL I0.WLB!TF.WAL . X X
10.WBT I0.WLB!TF.WBT X X

1 gxercise great care when using Read All and Read with Special Terminators together. Obscure problems

can result.
2 These subfunction bits are allowed but are not effective. They are stripped off when the read or
write virtual is converted to a read or write logical.

3.3.2 Details on Device-Specific QIO Functions

All the device-specific functions described in this section are SYSGEN
options. All except SF.GMC, IO.RPR, SF.SMC, and IO.GTS can be issued
by ORing a particular subfunction bit with another QIO function.
These subfunction bits are specified in the text; subfunction bits
are described in general in Section 3.3.1.

3-8

HALF-DUPLEX TERMINAL DRIVER

In addition to the 11 device-specific QIO functions, this section also
gives details on the features provided by the 3 subfunction bits
TF.E5Q, TF.BIN, and TF.XOF.

3.3.2.1 TIO.ATA - IO.ATA is a variation of the Attach directive. It
specifies an asynchronous system trap (AST) to process an unsolicited
input character. When called as follows:

QIO$C I0.ATA,,.,..,<ast>

this function attaches the terminal and identifies "ast" as the entry
point for an unsolicited-input-character AST. Control passes to this
address whenever any unsolicited character (other than CTRL/Q, CTRL/S,
or CTRL/0) - is input. Note that 1little <checking 1is done on the
specific AST address. A bad address is frequently detected only when
the Executive tries to transfer control to it and the task crashes.

In particular, CTRL/C is trapped by the task and does not reach MCR.
Thus, any task that uses IO.ATA should recognize some input sequence
as a request to terminate, because MCR can not be invoked to abort the
task in case of difficulty.

Note that this mechanism is intended to get a single character into
the system =-- not a serles of characters. Since the driver must
become a fork process in order to declare an AST, a second character
can arrive before the driver can queue an AST for the first character.
The buffer for unsolicited input characters, however, is one byte
long. Therefore, the terminal driver ignores the second character.
This circumstance can occur because of fast input on a busy system or
because output is in progress when the characters are received. The
implications of this are that neither type-ahead nor full-duplex
operations can be simulated perfectly using unsolicited character
ASTs.

At entry, the unsolicited character is the low-order byte of the top
word on the stack. Before exiting the AST, be sure to pop that word
of f the stack; otherwise the task will crash. 1In all other respects
the AST environment is standard:

SP+10 Event flag mask word

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SP+02 Task's directive status word
SP+00 Unsolicited character in low byte

See the RSX-11M/M-PLUS Executive Reference Manual for further details
on ASTs. See Section 3.10.10 for hints on ASTs in a multiterminal
environment.

IO.ATA is equivalent to IO.ATT ORed with the subfunction bit TF.AST.

3.3.2.2 IO.ATTITF.ESQ - The task issuing this directive attaches a
terminal and notifies the driver that it recognizes escape sequences
input from that terminal. Escape sequences are recognized only for
solicited input. See Section 3.6 for a discussion of escape
sequences.

If the terminal has not been declared

sequences,

HALF-DUPLEX TERMINAL DRIVER

capable of

generating

escape

IO.ATTITF.ESQ has no effect beyond attaching the terminal.
No escape sequences are returned to the task, because any ESC sent
the terminal acts as a line terminator.

by

The SF.SMC QIO or the MCR SET

/ESCSEQ command are used to declare the terminal capable of generating

esca