
Digital Equipment Corporation
Maynard, Massachusetts

Programmer's Reference Manual

mamaDma

PDP-15 Utility Programs

PDP-15
UTILITY PROGRAMS

For additional copi es, order No. DEC-15-YWZA-D from Program Library, Digital Equipment

Corporation, Maynard, Massachusetts 07154 Price $6.00

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

1st Printing October 1969

Copyright © 1969 by Digital Equipment Corporation

The following are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

CONTENTS

Page

CHAPTER 1 EDITOR

SECTION 1 INTRODUCTION

SECTION 2 FUNCTIONAL DESCRIPTION

2. 1 Control Modes 2-1

2.2 Data Modes 2-1

2.2.1 Line-By-Line Data Mode 2-1

2.2.2 Block Data Mode 2-1

2.3 Data Files 2-2

2.3.1 Using Monitor I/O 2-2

2.3.2 Input and Subsidiary Fi les 2-3

2.3.3 Output Files 2-4

2.4 Using the Break (CNTRL P) Character 2-5

2.5 Using the Erase and Kill Characters 2-5

SECTION 3 EDITING OPERATIONS

3.1 Modifying an Existing File 3-1

3.2 Creating a New File 3-2

3.3 Input/Edit Modes 3-2

3.4 Block Mode 3-2

3.5 Closing the New File 3-3

3.6 Error-Handl ing Conventions 3-3

3.6.1 Command String Errors 3-3

3.6.2 Premature End-Of-Fi Ie 3-4

3.6 . 3 Read Errors and Line Overflow 3-4

3.6.4 Block-Mode Buffer Overflow 3-5

3.6.5 File-Naming and Calling Errors 3-5

3 . 7 File Renaming and Deletion 3-7

SECTION 4 EDITOR COMMANDS

4.1 OPEN 4-1

4.2 READ 4-2

4.3 WRITE 4-2

iii

CONTENTS (Cont)

4.4 CLOSE

4.4.1 ICLOSE

4.4.2 SCLOSE

4.5 NEXT [N]

4.6 PRINT [PJ

4.7 FIND [F)

4.8 LOCATE [L]

4.9 DELETE [D]

4.10 BOTTOM [B)

4.11 RETYPE [R]

4.12 INSERT [I]

4.13 INSERT [I]

4.14 GET [G)

4.15 CHANGE [C]

4.16 TOP [TJ

4.17 VERIFY [VJ

4.18 OVERLAY [OJ

4.19 APPEND [AJ

4.20 BRIEF

4.21 BLOCK

4.22 SIZE [S]

4.23 EXIT

4.24 OUTPUT

4.25 CALL RENAME

4.26 CALL DELETE

4.27 RENEW

4.28 KEEP

SECTION 5 RECOVERY PROCEDURES

SECTION 6 EXAMPLES OF EDITING REQUESTS

APPENDIX A SUMMARY OF EDITING COMMANDS

APPENDIX B 339 DISPLAY EDITOR

iv

Page

4-2

4-2

4-2

4-3

4-3

4-3

4-3

4-4

4-4

4-4

4-4

4-4

4-4

4-5

4-5

4-5

4-6

4-6

4-6

4-7

4-7

4-7

4-8

4-8

4-8

4-8

4-8

CHAPTER 2 PATCH UTILITY PROGRAM

SECTION 1 INTRODUCTION

1.1 General Information

SECTION 2 CALLING PATCH

2. 1

2.2

. DAT SLOT Assignments

Calling PATCH

SECTION 3 COMMANDS

3. 1 Command Input Format

3.2 Commands

3.2.1 Select Commands

3.2.2 The List Command

3.2.3 The READ Command

3.2.4 The EXIT Command

3.3 Error Recovery

3.3.1 Error Messages

APPENDIX A PATCH PROGRAM FORMAT

APPENDIX B EXAMPLE OF OPERATION

CONTENTS (Cont)

CHAPTER 3 LIBRARY UPDATE UTILITY PROGRAM

SECTION 1 INTRODUCTION

SECTION 2 UPDATE COMMANDS

2.1 File Specification Commands

2.1. 1 Options

2.1.2 File Name

2.1.3 Command Terminator

2.2 Update Action Commands

2.2.1 DELETE (D) Command

v

Page

1-1

2-1

2-1

3-1

3-1

3-1

3-2

3-5

3-6

3-6

3-6

2-1

2-1

2-2

2-2

2-2

2-3

CONTENTS (Cont)

2.2.2 REPLACE (R) Command

2.2 . 3 INSERT (I) Command

2.2.4 END (E) Command

2.3 UPDATE Termination Commands

2.3.1 CLOSE (C) Command

2.3.2 KILL (K) Command

SECTION 3 DEVICE (.DAT) SLOT ASSIGNMENTS

SECTION 4 ERROR CONDITIONS AND RECOVERY PROCEDURES

4. 1 Recoverable Errors

4.1.1 Unintelligible Commands

4.1.2 Command Function/Option Errors

4.1.3 Improper Name in Action Command

4. 1.4 Incorrect Input Source

4.2 Unrecoverable Errors

SECTION 5 UPDATE EXAMPLE

5. 1

5.2

Update FILEA

Update BCDIO

CHAPTER 4 LINKING LOADER

SECTION 1 INTRODUCTION

SECTION 2 DESCRIPTION

2. 1

2.2

Operation

FORTRAN COMMON Statements

SECTION 3 INFORMATION UNITS

SECTION 4 IDENTIFICATION CODES

Page

2-3

2-4

2-4

2-5

2-5

2-5

4-1

4-1

4-1

4-2

4-2

4-2

5-1

5-1

2-1

2-1

CONTENTS (Cont)

SECTION 5 PROGRAM UNIT ORGANIZATION

5.1

5.2

Main Program and Subprogram Organization

Block Data Subprogram Organization

SECTION 6 DEFINITIONS

SECTION 7 LINKING LOADER OPERATING PROCEDURES

7.1 Basic I/O Monitor Environment

7. 1. 1 Structure of System Library

7. 1 .2 Loader Memory Map

7. 1 .3 Error Messages

7.2 Advanced Monitor Environment

SECTION 8 MEMORY MAPS

8. 1

8.2

8.3

Introduction

I/O Monitor Environment

Advanced Monitor Environment

APPENDIX A SYMBOL CONCATENATION - RADIX 508 FORMAT

APPENDIX B LOADER SYMBOL TABLE

CHAPTER 5 CHAIN AND EXECUTE SYSTEM PROGRAMS

SECTION 1 INTRODUCTION

1.1

1.2

Program Descri pti on

Calling Sequence

SECTION 2 CHAIN SYSTEM PROGRAM

2.1

2.2

2.3

2.4

Functional Description

Operating Procedures

Error Condition Typeouts

Memory Allocation Typeout

vii

Page

5-1

5-1

7-1

7-2

7-2

7-3

7-4

8-1

8-2

8-4

1-1

1-1

2-1

2-2

2-4

2-4

CONTENTS (Cont)

2.5 Memory Map at CHAIN Build Time

SECTION 3 EXECUTE SYSTEM PROGRAM

3.1 Functional Description

3.2 Operati ng Procedures

3.2.1 Special Operational Characteristics

3.3 Memory Map at Execute Time

CHAPTER 6 PIP

SECTION 1 INTRODUCTION

SECTION 2 DEVICE ASSIGNMENTS

2.1

2.2

Basi c I/O Monitor System

Advanced Monitor

SECTION 3 PIP COMMAND STRING: GENERAL

3. 1 Operation Character

3.2 Devi ce Name

3.3 Filename and Extension

3.4 Switch Options

3.4. 1 Data Modes

3.4.2 Subsidiary Operations

SECTION 4 PIP FUNCTIONAL DESCRIPTION

4. 1

4.1.1

4.1.2

4.1.3

4.2

4.2.1

4.2.2

4.2.3

4.2.4

Operations Under the Basic I/O Monitor

Transfer File (T)

Verify File (V)

Segment File (S)

Switch Options Under the Basic I/O Monitor

Image Alphanumeric (1)

lOPS Binary (B)

lOPS ASCII (A)

Bad Parity Correction (G)

viii

Page

2-5

3-1

3-1

3-2

3-2

2-1

2-1

3-2

3-2

3-3

3-3

3-3

3-3

4-1

4-1

4-1

4-1

4-1

4-2

4-3

4-3

4-3

4-3

CONTENTS (Cont)

4.2.5 Tab to Space Conversion (E)

4.2.6 Space to Tab Conversion (C)

4. 2.7 Segment File (Y)

4.2.8 Combine Files (W)

4.2.9 Insert Form Feed (F)

4.2.10 Delete Trailing Spaces (T)

Delete Sequence Numbers (0) 4.2.11

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.4

4.4.1

4.4.2

4.4.3

4.4.4

Operations Under the Advanced or Background/ Foreground Monitor

List Directory (L)

New Directory (N)

Delete File (D)

Rename Fi Ie (R)

Copy Mass Storage Unit (C)

Block Copy (B)

Switch Options Under the Keyboard Monitor

Image Binary (H)

Dump Mode (D)

New Directory (N)

New Di rectory With t OAREA (S)

SECTION 5 PIP COMMAND STRING

5. 1 Transfer Fi Ie (T)

5. 1 . 1 Copying Files

5.1 .2 Creating Files

5.1.3 Listing Files

5.1.4 Using the G Switch

5.1.5 Using the C or E Switches

5.1.6 Using the N or S Switch

5.1.7 Using the W Switch

5.1.8 Using the Y Switch

5.2 Verify File (V)

5.3 Segment File (S)

5.4 List Directory (L)

5.5 New Directory (N)

ix

Page

4-4

4-4

4-4

4-4

4-4

4-4

4-5

4-5

4-5

4-5

4-5

4-5

4-6

4-6

4-6

4-7

4-7

4-7

4-8

5-1

5-1

5-2

5-2

5-2

5-3

5-3

5-4

5-4

5-5

5-6

5-7

5-7

CONTENTS (Cont)

5.6

5.7

5.8

5.9

Delete File (D)

Rename Fi Ie (R)

Copy Mass Storage Unit (C)

Block Copy (B)

SECTION 6 CORRECTION PROCEDURES

6.1

6.2

6.3

6.4

tP (CTRL Key P)

Rubout (RO)

tU (CTRL Key U)

PIP Error Detection and Correction

APPENDIX A SUMMARY OF PIP COMMANDS

CHAPTER 7 DSKPTR/DSKSAV UTILITY PROGRAMS

SECTION 1 INTRODUCTION

SECTION 2 DSKPTR OPERATING PROCEDURE

SECTION 3 DSKSAV UTILITY PROGRAM

CHAPTER 8 PUNCH UTILITY PROGRAM

SECTION 1 INTRODUCTION

1. 1 Equipment Requirements

1.2 Software Requirements

1.2. 1 Resident Programs

1.3 Program Organization

SECTION 2 OPERATING PROCEDURES

2.1

2.2

Load and Punch

Error Detection and Recovery

x

Page

5-8

5-8

5-8

5-9

6-1

6-1

6-1

6-2

1-1

1-1

1-2

1-2

2-1

2-2

CONTENTS (Cont)

SECTION 3 EXAMPLES

3. 1 Producing an Executable User Program Tape

3.2 System Program Changes

3.3 Modifying User .DAT (Device Assignment Table) Slots

3.3.1 Using an Alternate I/O Library Handler

3.3.2 Using a Non-Standard I/O Handler

APPENDIX A I/O MONITOR SKIP CHAIN

APPENDIX B LINKING LOADER IOC TABLE

APPENDIX C RADIX 508 VALUES

CHAPTER 9 DUMP UTILITY PROGRAM

SECTION 1 INTRODUCTION

1.1 Operating Procedures

1. 1. 1 Calling Procedure

1. 1.2 General Command Characters

1. 1.3 Command String

1.2 Error Conditions

1.3 Restart Procedures

1.4 Example

CHAPTER 10 DDT

SECTION 1 INTRODUCTION

1.1

1.2

General Information

Terminology Used

SECTION 2 DEBUGGING WITH DDT

2. 1

2.2

2.3

Loading the Program

Using the Breakpoints

Examination and Modification

xi

Page

3-1

3-1

3-2

3-2

3-3

1-1

1-1

1-1

1-1

1-2

1-2

1-2

1-1

1-1

2-1

2-1

2-3

CONTENTS (Cont)

2.4 Type-Out Modes

2.4.1 Address Modes

2.5 Starting and Restarting

2.6 Searching Operations

2.7 Special Locations Used by DDT

2.8 Symbol Definitions

2.9 Patch File Output

2.10 Patch File Input

2.11 Co-resident Subroutines

2.12 Indirect Address References

2.13 Miscellaneous Features

APPENDIX A SUMMARY OF COMMANDS

APPENDIX B MNEMONIC INSTRUCTION TABLE

APPENDIX C PATCH FILE FORMAT

CHAPTER 11 SRCCOM, SOURCE COMPARE UTILITY PROGRAM

SECTION 1 INTRODUCTION

1.1 General Description

1. 1 . 1 Software Operating Environment

1.1.2 Minimum Equipment Configuration

1.2 Reference Material

1.3 Special Symbols

SECTION 2 OPERATION

2. 1

2.2

2.3

2.4

2.5

2.6

Loading Procedure

Device Assignments

Operating Sequence

Command String

Using Nonfi Ie-Oriented Input Device

File-Oriented SRCCOM Listing

xii

Page

2-4

2-5

2-6

2-6

2-7

2-7

2-8

2-8

2-9

2-9

2-9

1-1

1-1

1-1

1-2

1-2

2-1

2-1

2-1

2-2

2-3

2-3

SECTION 3 OUTPUT FORMATS

3. 1 M Switch On

3.1.1 Lines Inserted

3.1.2 Lines Deleted

3.1.3 Lines Changed

3.2 M Switch Off

3.2.1 Lines Inserted

3.2.2 Lines Deleted

3.2.3 Lines Changed

SECTION 4 ERROR RECOVERY

4.1

4.2

4.3

Operator Errors

Software Errors

Device Not Enabled

CHAPTER 12 SGEN SYSTEM GENERATOR

SECTION 1 INTRODUCTION

CONTENTS (Cont)

SECTION 2 GENERAL OPERATING PROCEDURES

2.1 Formation of Skip Chains

2.1.1 DECtape or DECtape/Disk Systems

2.1.2 Negative Skips

2.2 Formation of Device Assignment Table (.DAT)

APPENDIX A SYSTEM GENERATION, STEP-BY-STEP PROCEDURE

APPENDIX B PIP ERROR MESSAGES

xiii

Page

3-1

3-1

3-1

3-2

3-3

3-3

3-3

3-4

4-1

4-1

4-2

2-1

2-2

2-3

2-3

CONTENTS (Cont)

ILLUSTRATIONS

CHAPTER 1

SECTION 2

2-1 Schematic of line Processing In Block and Normal Modes

SECTION 6

Sample Input File 6-1

6-2

6-3

6-3

6-4

Input Fi Ie listing Marked for Correction

Hard-Copy Output of Editing Session (Sheet 1)

Hard-Copy Output of Editing Session (Sheet 2)

Fi Ie Resulting From Editing Session

CHAPTER 7

SECTION 1

1-1 Paper T ape Block Format

CHAPTER 10

APPENDIX C

C-1

TABLES

CHAPTER 1

SECTION 2

2-1

2-2

Standard. DAT Assignments for Text Editor

Output File Conventions for the Text Editor

xiv

Page

2-2

6-2

6-3

6-4

6-5

6-6

1-1

C-1

2-3

2-4

CONTENTS (Cont)

TABLES (Cont)

CHAPTER 6

SECTION 2

2-1

2-2

I/O Monitor. OAT Slot Assignments

Initial • OAT Slot Assignments

SECTION 3

3-1

3-2

PIP Operation Characters

PIP Device Names

SECTION 4

Legal Operation/Switch Combinations 4-1

4-2

4-3

4-4

Legal Switch Combinations for Transfer File (T)

Legal Operation/Switch Combinations

Legal Switch Combinations for Transfer File

CHAPTER 8

SECTION 3

3-1

3-2

Standard Paper Tape . OAT Slot Assignments

Loader - I/O Correspondence Table

CHAPTER 12

APPENDIX A

A-1 Query~esponse Procedure

xv

Page

2-1

2-2

3-2

3-2

4-2

4-3

4-6

4-7

3-2

3-3

A-1

PREFACE

This manual contains individual descriptions of the PDP-15 Utility programs provided as

standard software for the majority of PDP-15 Systems. Each utility program is described

in a complete, self-contained chapter of this manual. A quick-reference locator is pro­

vided.

OVERALL PDP-15 DOCUMENTATION STRUCTURE

A block diagram of the overall PDP-15 Family of Manuals is illustrated on the following

page, accompanied by a brief description of the contents and the order number of each

manual.

ORGANIZATION OF PDP-15 SOFTWARE MANUALS

There are two basic categories of PDP-15 software manuals:

a. Unique, single-system manuals, which contain information concerning only
one of the four available PDP-15 Systems. This category consists of detailed
software system descriptive manuals, each with an associated operational com­
mand summary. An example of this class of manual is the PDP-15/10 Software
System manual and its associated PDP-15/10 User's Guide.

b. Common, multisystem manuals that describe utility, language, application,
and other PDP-15 programs which can be used in one or more of the four avail­
able PDP-15 Systems. Examples of this type of manual are the PDP-15 Utility,
MACRO-15 Assembler, and STATPAC manuals.

xvi

x
::::.

INSTALLATION
MANUAL

MODULE
MANUAL

HARDWARE

ACCEPTANCE
TE ST

PROCEDURES

INTERFACE
MANUAL

PDP-15 FAMILY OF MANUALS

OPERATORS
GUIDE

SOFTWARE

PDP-15/40

PDP-15/30

PDP-15/20

PDP-15 1 1 0
SYSTEM USER'S 1-1 L' --+---1

GUIDE

MACRO -15

FOCAL-15

UTILITY
PROGRAMS

MANUAL

PDP-15/40

PDP-15/30

PDP-15/20

PDP-15/10
SOFTWARE

SYSTEM

FORTRAN TIL

8/15
TRANSLATOR

\5-0040

SYSTEM REFERENCE MANUAL - Overview of
PDP-IS hardware and software systems and options,
in struction rep e rtoire , expansion features and
descriptions of system peripherals. (DEC-IS-GRZA-D)

USERS GUIDE VOLUME 1, PROCESSOR - Principle
guide to system hardware includes system and
subsystem features. functional descriptions.
machine-language programming considerations. instruc­
tion repertoire and system expansion data.
(DEC-IS-H2DA-D)

VOLUME 2 PERIPHERALS - Features functional
descriptions and programming considerations for peri­
pheral devices. (DEC-IS-H2DA-DJ

OPERATOR'S GUIDE - Procedural data . including
operator maintenance. for using the operator's console
and the peripheral devices associated with PDP-IS
Systems. (DEC-IS-H2CA-D)

PDP-15/10 SYSTEM USER'S GUIDE - COMPACT
and BASIC I/O Monitor operating procedures.
(DEC-IS-GG lA-D)

PDP-15/20 SYSTEM USER'S GUIDE - Advanced
monitor system operating procedures .
(DEC-IS-MG2A-D)

PDP-15/30 SYSTEM USER'S GUIDE - Background/
Foreground monitor system operating procedures.
WEC-IS-MG3A-D)

PDP-15/40 SYSTEM USER'S GUIDE - Disk-oriented
ba ckground/foreground monitor system operating
procedures. (DEC-IS-MG4A-D)

PDP-15/10 SOFTWARE SYSTEM - COMPACT soft­
ware system and BASIC I/O Monitor system deslrip­
tions. WEC-IS-GR lA-D)

PDP-15/20 ADVANCED Monitor Software System
AOV ANCED Monitor System desniptions: programs
indude system monitor and language . utility and appli­
l ation types: operation. lore organization and input/
output operations within the monitor environment are
dislussed. WEC-IS-MR2A-D)

PDP-15/30 BACKGROUND/FOREGROUND Monitor
Software System - Balkground /F oreground Monitor

description including the associated language , utility
and applications programs. (DEC-IS-M R3A-D)

PDP-15/40 Disk-Oriented BACKGROUND/
FOREGROUND Monitor Software System - Back­
ground/Foreground Monitor in a disk oriented environ­
ment is described ; programs include language, utility,
and application types. (DEC-IS-M R4A-D)

MAINTENANCE MANUAL VOLUME 1, PRO­
CESSOR - Block diagram and functional theory of
operation of the processor logic. Preventive and correc­
tive maintenance data. (DEC-IS-HB2A-D)

VOLUME 2, PROCESSOR OPTIONS - Block diagram
and functional theory of operation of the processor
options. Preventive and corrective maintenance data.
(DEC-IS-HB2A-D)

VOLUME 3, PERIPHERALS (Set of Manuals): -
Block diagram and functional theory of operation of
the peripheral devices. Preventive and corrective main­
tenance data . (DEC-IS-HB2A-D)

INSTALLATION MANUAL - Power specifications,
environmental considerations, cabling and other infor­
mation pertinent to installing PDP-IS Systems.
(DEC-IS-H2AA-D)

ACCEPTANCE TEST PROCEDURES - Step by step
procedures designed to insure optimum PDP-IS Sys­
tems operation .

MODULE MANUAL - Characteristics, specifications,
timin& and functional descriptions of modules used in
PDP-IS Systems.

INTERFACE MANUAL - Information for interfacing
deviles to a PDP-IS System. (DEC-IS-HOAA-D)

UTILITY PROGRAMS MANUAL - Utility programs
common to PDP-IS Monitor systems. (DEC-IS­
YWZA-D)

MACRO-15 - MACRO assembly language for the
PDP-IS. (DEC-IS-AMZA-D)

FORTRAN IV - PDP-IS version of the FORTRAN IV
compiler language. (DEC-IS-KFZA-DJ

FOCAL-15 - An algebrail interadive compiler level
language developed by Oigital Equipment Corporation .
(DEC-IS-KJZA-D)

SECTION 1

INTRODUCTION

CHAPTER 1
EDITOR

The Text Editor (EDIT) is Cl powerful context-editing program that allows the modification and creation of

symbolic source programs and other ASCII text material. t By means of commands issued from the teletype, the

Editor is directed to bring a line, or group of lines, from the input file to an internal buffer. The user can then,

by means of additional commands, examine, delete, and change the contents of the buffer, and insert new text

at any point in the buffer . When the line, or block of lines, has been edited, it is written into a new file on

the output device.

The Editor is most frequently used to modify MACRO and FORTRAN IV source programs, but it can also be used

to edit any symbolic text.

The Editor operates in the ADVANCED Software System with either the I/o or Keyboard Monitor and can be

used with all standard peripheral devices. In systems with greater than 8K, the additional memory (except that

reserved for the Monitor and the required device handlers) is utilized for block mode buffers.

tThe Editor reads and writes standard lOPS ASCII lines. The characteristics of lOPS ASCII text are described
in the applicable Software System description manual (refer to Preface for a list of applicable manuals.)

1-1

2.1 CONTROL MODES

SECTION 2

FUNCTIONAL DESCRIPTION

The Editor operates in one of two control modes; in Edit (or Command) Mode the program accepts and acts upon

control word and data strings to open and close files; to bring lines of text from an open file into the work area;

to change, delete, or replace the line currently in the work area; and to insert single or multiple lines after the

line in the work area. In Input (or Text) Mode, lines from the teletype are interpreted as text to be added to

the open file. Commands are available for conveniently changing control mode.

2.2 DATA MODES

Data from the input file is made available for editing in two ways: in Line-By-Line Mode or in Block Mode.

2.2.1 Line-By-Line Data Mode

In Line-By-Line Data Mode, a single line is the unit of the input file available to the user for modification at any

point. The line currently available is specified by a pointer, which can be thought of as moving sequentially

through the file, starting at the first line, in response to typed editing commands. When a file is opened at the

beginning of an editing session, the first line of that file is brought into the work area and is available for modi­

fication. This line remains in the work area until the user requests that a new line be brought in. The pointer

then moves down the file until the line requested is encountered. That line is brought to the work area and, as

the "current line," can be modified. Lines previously skipped over are no longer available for editing by the

user, but are written in the output file. Thus, at any point in a single edit run in line-by-line mode, the user is

able to modify only the portion of the input file consisting of the current line and all lines between the current

line and the end of the file (i .e., the current line and all lines below it).

2.2.2 Block Data Mode

In Block Data Mode, a user-specified portion of the input file is held in a core buffer for editing until the user

requests that the contents of the buffer be added to the output file. A group of Editor commands is available

for use in Block Mode only (see Section 4) in addition to the commands used in line-by-line editing.

When the user is operating in Block Mode, commands to the Editor are honored only with respect to that portion

of the input file currently occupying the buffer. The lines of text in the buffer are made available for modifi­

cation through the use of normal locative requests and can be reaccessed unti I the buffer is emptied by the user.

2-1

Unless deleted, lines passed over in Block Mode are not lost to the user (as in Line-By-Line Mode) until the

contents of the buffer are written in the output fi Ie. Consider, for example, the editing request to search for

and bring in a specified line. In Line-By-Line Mode, the result is a scan of (possibly) the entire file below the

pointer. The same request in Block Mode provides a search of the entire buffer below the pointer, but no

further.

Block Mode has another advantage: rapid correction of editing command errors. If the user finds that he has

typed the wrong command, he can immediate Iy correct it, because the buffer has not been added to the output

file. In Line-By-Line Mode, a command error may cause the program to bypass a line in which a change is

needed. The user must then output a new input fi Ie and begin editing again.

ADD CURRENT
LINE TO

OUTPUT PAGE

GET NEXT
LINE FROM
INPUT PAGE

YES

YES

NO

NO
ADD CURRENT

LINE TO
OUTPUT FILE

GET NEXT
LINE FROM
INPUT FILE

~----------------NO YES----------------~

2.3 DATA FILES

2.3.1 Using Monitor I/o

Figure 2-1 Schematic of Line Processing in
Block and Normal Modes

15006 5

The Editor makes use of the Monitor Input/Output Programming System for I/o transfers and communicates with

lOPS by way of entries in the Device Assignment Table. Entries in DAT which are required by the Editor are

given in Table 2-1. Methods of modifying DAT are described in the applicable Software System manual (refer

to the Preface for a I ist of manua Is).

2-2

Table 2-1
Standard . OAT Assignments for Text Editor

. OAT Entry Number Used For

-3 Teleprinter output; messages to user

-2 Keyboard input; text and commands

-14 File input

-15 Scratch or edi t fi I e output t

-10 Subsidiary file input

t The use of the scratch device is described under Output Files.

2.3 . 2 Input and Subsidiary Files

The Editor will accept file input from a maximum of two devices, in addition to input from the keyboard. The

first device normally holds a previously prepared file upon which changes are to be carried out. The second,

the subsidiary file device, is usually the medium through which additional, previously prepared, text is inserted

in the object file. Either one, or both, of these devices may be ignored by the user, in wh ich case the Editor

assumes that all data wi II come from the keyboard.

Care must be taken in the specification of the subsidiary input device to ensure that the data of interest residing

thereon was recorded in nonfile-structured fashion. This is the only recording mode for the paper tape and card

reader. The user has the choice of writing data in either a file-structured, or a nonfile-structured, manner for

other devices {e.g., DECtape}. tt The characteristics of the subsidiary input device are determined when the

Ed itor is first loaded. If that device can be fi Ie -structured, the comment

SECONDARY INPUT DEVICE IS FILE-ORIENTED

is printed on the teletype to warn the user that disastrous results will occur if the data to be read from the device

is file-structured. Note, however, that if the data to be read was recorded in nonfi le-structured fashion, then

the requested device is a legal one for secondary input. Accordingly, the Editor then asks the question,

DO YOU WISH TO CONTINUE?

The user's answer indicates the nature of the data on the secondary input device. If the user's response is

YES~

tt For a discussion of data-handling conventions in file-structured and nonfile-structured input/output modes,
see the applicable Software System manual {refer to Preface for a list of applicable manuals}.

2-3

then the program reads data from the device in the normal (nonfile-structured) way. If the user's answer is NO

(or anything except YES) fi Ie-structured data is assumed, and return is made (via . EXIT) to the Monitor.

2.3.3 Output Fi les

The Editor attempts to determine whether or not the input and scratch devi ces are fi Ie-structured immediate lyon

receiving control after having been loaded. If either one of the devices is not file-structured, then the scratch

devi ce (DAT entry -15) i, assi gned as the final output devi ce. If both devi ces are fi Ie-structured, the scratch

device is assigned an intermediate function and the input device is used as the final output device.

The intent, in all cases, is to allow replacement of the input file by the edited output file . This is possible only

when the input and output devices can be both read and written. If replacement can be accompl ished (both de­

vices are file-structured), the following sequence of events takes place when the files are closed after editing.

a . The intermediate output file is read from the scratch device and written on the input device under
a temporary name.

b . The old input file is deleted from the input device.

c . The intermediate output file is deleted from the scratch device .

d . The intermediate output file, temporarily named and now residing on the input device, is given the
name previously assigned to the old (now deleted) input file.

e. The output file is closed and immediately becomes available for use.

If no replacement can be accomplished, no change is ever made to the input file. If the output device is file­

oriented, the new edited file is properly entered in the file directory for that device under the name given in

the OPEN or CLOSE command sequences .

The possible destinations of the new edited file are summarized in Table 2-2.

Note that in the process of file housekeeping, there is always at least one copy of the output file available on

one, or both, of the devices. Further, the original input file is not deleted until the new file has been success­

fully written and closed. A system failure, therefore, can never result in total loss of data. Recovery procedures

to be used incase of di Hi cu Ity are out I i ned in Chapter 5.

Table 2-2
Output File Conventions for the Text Editor

Input Devi ce Scratch or Output Device Edited File appears on: Input File is:

File-oriented Fi Ie-oriented Input Device Deleted

File-oriented Nonfi Ie -or i ented Output Device Unchanged

Nonfile-oriented Fi Ie-oriented Output Device Unchanged

Nonfi Ie-oriented Nonfi Ie -or iented Output Device Unchanged

2-4

2.4 USING THE BREAK (CNTRL P) CHARACTER

Frequently the user, having made a mistake in his command line, wishes to stop processing and re-issue his

request. The user, for example, may have asked erroneously for a line wh ich is absent from the input fi Ie.

When the Editor begins its search for the requested line, it will not give up until that line is found, or until

the end of the input file is encountered. The user, meanwhile, has noticed his typing mistake. Control must

now be transferred from the command processor to the command decoder.

The Editor's break, or quit, character provides the mechanism for the orderly accomplishment of the transfer.

When the user types the quit character (CNTRL P) during command processing, the normal instruction sequence is

interrupted when processing of the current line has been completed, Edit Mode is reentered, and the program

reads a new edit command from the keyboard. Nothing is lost from the output file. Depending on the command

being serviced when CNTRL P was typed, the pointer is left in one of two positions. In the first (usual) case,

the pointer indicates the line which was being processed when the break character appeared. This line is now

the current line, and is dealt with in the normal way. In the second case, the pointer is left between two lines.

The current-line area is empty, and some locative request (e.g., NEXT) must be issued to move a line into the

work area.

The break character resu Its in program restart when the Ed itor is waiting for a command. In Input Mode, the

break character results in a control mode change .

2.5 USING THE ERASE AND KILL CHARACTERS

The Mon itor a IIows the use of two keyboard characters for correction of the I ine currently be ing typed by the

user. The Rubout key (Erase character) results in the deletion of the immediately preceding character. The

Monitor echoes a backslash (\) for each Rubout typed. CNTRL U (Kill Line character) results in the deletion

of the entire line as typed to the CNTRL U. The Monitor echoes a commercial "at" sign (@) for each CNTRL U

typed.

CNTRL U has a second function when used during output from the Editor to the teletype. When the user types

CNTRL U while a line is being printed, output is immediately terminated, and a carriage return is issued.

CNTRL U functions in this case as the user's means of overriding his previous request for the output of tediously

long lines.

2-5

SECTION 3

EDITING OPERATIONS

The Editor always begins in Edit Mode and assumes that the user wishes to modify some (named or unnamed) file.

When first loaded, or when restarted for a new fi Ie, the program types

EDITOR Vnx where n = version number
x = modification level

on the teleprinter and waits for the user's first command.

3.1 MODIFYING AN EXISTING FILE

If the input device is file-structured (disk, drum, magnetic tape, or DECtape), the first command to the Editor

must be

OPEN filename ext ~

where "filename" is the primary namet of the wanted file residing on the input device and "ext" is its extension .tt

Ext can be omitted and, if so, is assumed to be SRC. If the file specified is not found in the directory, the pro­

gram assumes that the user wishes to create a file named "filename ext." Accordingly, when it has been deter­

mined that the named file is absent from the input device, the Editor types

FILE filename ext NOT FOUND .

INPUT

Input Mode is entered and subsequent lines from the teletype are inserted in a new temporarily named file on the

output device.

If the specified file is present on the input device, an intermediate temporarily named file is opened for writing

on the output device, and the input file is opened for reading. The user may then proceed to make the necessary

changes in the input file.

If the input device is not file-structured (e.g., paper tape reader, card reader), the user's first command after

program initialization can be any edit request. The OPEN command is not required for nonfile-structured

devices.

tMaximum of six characters permitted for "filename".

tt Maximum of three characters permitted for "ext".

3.2 CREATING A NEW FILE

When the user wishes to create a new fi Ie, he need on Iy issue a carriage return, thereby entering Input Mode.

If the output device is file-structured, a temporarily named file is opened for writing and text lines from the tele­

type are added to it as they appear. If the output devi ce is not fi Ie-structured, the fi le-nami ng conventions are

bypassed.

When both input and output devices are fi Ie-structured, the user can issue the OPEN command, followed by the

name he wishes to assign to his new file. Since a fi Ie of the name given is guaranteed not to be found (if the

user has properly chosen his new name), Input Mode is immediately entered, following the standard error mes­

sage. The name specified is assigned to the final output file if no other name is given in the CLOSE command.

3.3 INPUT/ EDIT MOD ES

To enter text from the teletype, the Editor must be in Input Mode. To carry out an edit function on the current

line, the Editor must be in Edit Mode.

Control mode may be changed at any time by typing a line of zero length (a line consisting of a carriage return

only). The Editor command INSERT (without arguments) also causes a mode change. After the user changes

control modes, the Editor types INPUT or EDIT, indicating the control mode in effect.

3.4 BLOCK MODE

The Editor recognizes several commands which are designed to be useful in the Block, or Page, Mode . In Block

Mode, a user-specified portion of the input file is held in a core buffer until the user indicates his satisfaction

with the current state of that portion. Block Mode is entered via the control word BLOCK, followed by the

parameter ON. When in Block Mode, the user can take advantage of all the locative and manipulative com­

mands (FIND, LOCATE, CHANGE, etc.) and, in addition, can employ the TOP command to re-examine por­

tions of the text buffer.

Line-By-Line Mode is re-entered by use of the BLOCK OFF command. If the BLOCK OFF command is issued

before the buffer is empty, the following comment is printed:

BUFFER NO N-EMPTY

The user must empty the buffer to terminate Block Mode.

3-2

3.5 CLOSING THE NEW FILE

When the user, after modifying his input file, is satisfied that all needed changes have been carried out, he is

required to close out the input and output files. The edit command

CLOSE filename ext ~

initiates the sequence of events described above (Paragraph 2.3.3).

Neither "filename" nor "ext" need be specified if previously given in the OPEN command. If filename and ext

are present in the command string, they override the names given in the OPEN command.

Both filename and ext are ignored if the output device is nonfile-oriented.

3.6 ERROR-HANDLING CONVENTIONS

3 .6. 1 Comma nd Str i ng Errors

All mistakes in the use of Edit Mode control words result in a common complaint by the Editor. Although the

possible errors in usage fall into a number of distinct categories, the program makes no attempt to differentiate

among error types. The reasons for thi s common treatment lie in the requ irement that the Editor take some cog­

nizance of its memory allocation (relatively obscure error types need as much memory for recognition and re­

sponse as do the more usua I mistakes) and in the fact that the treatment rendered makes the error se If-exp lanatory.

Command string errors, then, all result in the single typed comment,

NOT A REQUEST:

followed, on the next line, by the request line with which the Editor had trouble.

Usual types of command string errors include the following:

a. The edit control word issued was not among those in the program's repertoire.

b. A SIZE command was issued with a missing argument or an argument of "1. "

When the BRIEF Mode (see Paragraph 4.20) is ON, the Editor comment and the command line in error are re­

placed by a single typed question mark:

3-3

3.6.2 Premature End-Of-File

During the processing of some commands, it occasionally happens that a read is attempted which moves the

pointer below the last line of a logical (or physical) group. Consider, for example, the effect of a numeric

argument in the GET n command line. The program reads successive lines from the subsidiary input device until

exactly n I ines have been read. If, in the process of reading, it is discovered that fewer than n I ines are phys­

ically present on the secondary input medium (paper tape, say), then a premature end-of-file condition is said

to exist. An improperly formulated FIND request (the character string typed is absent from the file) results in a

simi lar condition.

Depending on the character of the incoming group of lines (block buffer, secondary input medium, or input file),

the appearance of an unexpected end-of-file causes a comment to be typed to inform the user of the difficulty.

The form of the message is:

{

BUFFER}
END OF MEDIUM REACHED BY:

FILE

followed, on the next line, by the edit request which caused the problem.

A premature end-of-file causes the pointer to be left below the final line of the group being read.

3.6.3 Read Errors and Line Overflow

The Editor recognizes two types of errors which may occur during the processing of the input file. Both errors

result in an appropriate printed comment and immediate transfer of control to the command decoder. The line

in error is printed and left in the work area for modification by the user.

The first type of error occurs when the input fi Ie device hand ler detects either incorrect parity or a faulty check­

sum in the incoming line. The printed comment is:

READ ERROR:

followed by the line in which the error was encountered.

The second difficulty results from the appearance of a line which is too long to be contained in the program's

internal buffers. Any line of more than 9010 characters (not including terminator) results in the comment:

TRUNCATED:

followed by the first (leftmost) 90 characters of the long line. The remaining right-end characters are discarded.

3-4

The user has the choice, after either type of error, of modifying the line which caused the complaint (via any

manipulative request) or of allowing the line to stand as is in the output file (via any locative request).

3.6.4 Block-Mode Buffer Overflow

When Block Mode is in effect, it is possible for an attempted addition of a line to the Block-Mode Buffer to

exceed the buffer's capacity. This might occur, for example, during the processing of a READ request if the

buffer length (previously defined by a SIZE command) is too great to be accommodated by the memory available.

When the capacity of the buffer is exceeded, the program types the comment:

BUFFER CAPACITY EXCEEDED BY:
(offending line)

To eliminate this error condition, the operator must delete the excess (offending) line. The user should control

carefully the size specification of the buffer and lines entered to ensure that this error condition is avoided.

3.6.5 File-Naming and Calling Errors

Errors in filename usage can be classified in three general groups. Either the named file cannot be found, or

a name has not been given to the file at a point where one is needed, or a name has been given which cannot

be used.

3.6.5.1 Absent File - If the file named in the OPEN request line cannot be found on the device associated

with DAT slot-14, the assumption is made that the user wishes to create a new file with the name given. The

program prints the comment:

FILE [filename ext] NOT FOUND.

and changes to Input Mode.

3.6.5.2 Absent File Name - If no filename is given either in an OPEN request line or as an argument to the

CLOSE command, the program, after attempting to process the CLOSE request, prints:

NO FILE NAME GIVEN.

The next edit request must be another CLOSE naming the file.

3-5

If no OPEN command is issued (a new fi Ie is being created), any locative request (FI ND, NEXT) wi II result

in the comment:

NO I NPUT FILE PRESENT.

3.6.5.3 Identically-Named Files - The problem of duplicate file names is apparent on two levels. In the first

case, it is possible for a previous edit run to have been aborted with one of the Editor's temporary files (normally

. TFIL 1 EDT) closed on the output device. The closing of the temporary file created during the current edit run

results in the deletion of the like-named file from the previous run. To enable the retrieval of prior work, the

Editor types the comments:

FILE. TFIL 1 EDT IS PRESENT ON OUTPUT DEVICE.

PLEASE RENAME IT OR IT WILL BE DELETED.

If the user wishes to preserve the contents of . TFIL 1 EDT, he must rename it using the CALL request (see Para­

graph 3.7).

At the second level, it may happen that the file name given in a CLOSE sequence is identical to that of another

file on the (current) output device. In most cases, the program types:

PLEASE USE ANOTHER NAME.

A second CLOSE request (with a unique name) can then be issued. If file processing has proceeded to a point

at which recovery, as described above, is impossible, the Editor recognizes a priority scheme when file-name

difficulties are encountered. An attempt is made, first, to ensure that the new (modified) version of the fi Ie

being edited is left on . DAT slot -14 and properly named. If that is impossible, the program tries to leave the

new file (again, properly named) on .DAT slot -15. If that cannot be done either, then the new file is left on

. DAT slot -15 and is named. TFIL 1 EDT. The Editor then reports the nature of the difficulty, the final destina­

tion of the file, and its current name, thus:

FILE [filename ext] IS PRESENT ON OUTPUT DEVICE.
YOUR EDITED FILE IS ON .DAT-14 (OR -15) AS [newfile ext]
ORIGINAL FILE DELETED.

The user now knows the residence of his edited file (.DAT-14 or .DAT-15) and the name under which it can be

accessed.

3-6

3.6.5.4 Nothing in File - The following error message can result from issuing CLOSE command prior to WRITE

command when Block Mode is ON, or by having OUTPUT turned off when a WRITE or CLOSE command is issued:

NOTHING IN FILE

In any event, the control returns to the Editor. The contents of the buffer remain unchanged. In the case of

fi Ie-oriented input and output, the input fi Ie is left unchanged.

3.7 FILE RENAMING AND DELETION

The CALL function allows user access to the file renaming and deletion facilities in the Editor. This command

cannot be issued while any file (either input or output) is open. That is, it can only be used immediately after

the Editor is loaded or restarted.

Format:

{

INPUT

J CALL RENAME FILE 1 EXl FILE2 (EX2)
OUTPUT

The file FILEl EXl on .DAT-l4 (if INPUT is specified) or .DAT-l5 (if OUTPUT is specified) is given the new

name FILE2. EX2 need not be given. If it is not, EXl is used; if it is given, EX2 is used.

CALL DELETE FILNAM EXT
{

INPUTJ OUTPUT

The file named FILNAM EXT is deleted from the device specified (INPUT or OUTPUT). EXT need not be given

and, if it is not, SRC is used.

3-7

SECTION 4

EDITOR COMMANDS

When Edit Mode is in eff(:!ct, the following commands result in the specified activity. Abbreviations for most

commands consist of the initial characters of those commands. Legal abbreviations are given in square brackets .

Optional arguments are given in parentheses .

Certain commands (e .g., FIND, RETYPE) require the presence of arguments . Others (DELETE, NEXT) can take

explicit arguments at the option of the use r . Each command must be separated from its argument string by a

single blank character. This blank delimiter is considered by the Editor to be a part of the command itself, not

part of the argument stri ng wh i ch fo I lows the command. Thus, the command

RETYPE L..J /COMMENT ~

results in the following line :

/ COMMENT

If more than one blank appears between the command and its argument string, all blanks except the first are

taken as part of the argument. Thus,

FIND L..J L..J L..J / COMMENT ~

results in a search for the line which begins with the character string

L..J w /COMMENT

4 . 1 OPEN (filename (ext)) ~

The file, the name of which is "filename" and the extension of which is "ext", is searched for on the input de­

vice. If a file of th is name is not found, a message is printed on the teletype and the mode is changed to Input

Mode . An intermediate write file is opened on the output device, and lines from the keyboard are written into

it as they are completed. "Ext", if not given, is assumed to be SRC .

If the file specified is found on the input device, it is opened for reading . Subsequent typed lines are inter­

preted as Editor commands.

Neither file name nor extension need be given if the input device is nonfile-oriented.

4-1

4. 2 READ~

Read sequential lines from the input file, inserting them in the buffer as they are encountered, until the number

of lines in the buffer is equal to the argument specified in the SIZE request. The pointer is set to the first line

of the buffer when the operation is complete .

The READ request will not be accepted if any lines remain in the current buffer. The buffer must have been

cleared by DELETE requests or a WRITE command .

The READ request is treated as illegal if Block Mode is off . The READ request must be used if input device is

not fi Ie-structured.

4 .3 WRITE ~

Add the current contents of the block buffer to the output file rega rdless of the position of the pointer within

the buffer, and clear the buffer . Nothing is output if the buffer is empty. This command is illegal if Block

Mode is OFF.

4.4 CLOSE (filename (ext)D

If an input file is present, all lines in that file falling below the current line are appended to the output file,

and the output file is closed. If no input file is present, the current line is added to the output file, and the

output file is closed . No further editing is permitted.

If the extension is omitted, and none was assigned in the OPEN command line, the extension is assumed to be

SRC. If no filename is given, the name assigned in the OPEN command line is used.

Neither filename nor ext need be given for nonfile-oriented output devices.

4.4.1 ICLOSE ~

The ICLOSE command effects the closing of the current input file only. The output file remains open. A new

input file can be referenced after the ICLOSE request by issuing an OPEN command. ICLOSE provides a

facility for combining source files during an editing run.

4.4 . 2 SCLOSE)

This command permits the placement of an edited file onto the current output device without the . DAT -14 to

. DAT-1S recopy process. It is particularly useful in closing long files which have only minor changes.

4-2

In employing the command SCLOSE, always use a fi lename different from that used with the OPEN command

given for the file . Files closed in this manner are normally left on .DAT-15.

4 . 5 NEXT [N) (L.J n)~

The pointer is moved past the next n lines, beginning with the line currently in the work area. Line n + 1 is

brought into the work area for modification. Lines skipped over are added to the output file. If omitted, n is

assumed to be 1. If the command results in the pointer moving past the last line of the file (or buffer, if Block

Mode is on), the following error message is printed:

r FILE }
END OF l BUFFER REACHED BY :

NEXT n

4 . 6 PRI NT [p] (L.J n) ~

This command causes n lines from the input file (or buffer, in Block Mode)' including the current line, to be

printed on the teletype. The pointer is left at the last line printed; n is assumed to be 1 if omitted .

If, as a resu It of the command, the pointer moves past the last I ine of the fi Ie, the error message is printed .

rFILE
} END OF l BUFFER REACHED BY:

PRINT n

4.7 FIND [F] L.J string~

The input file or buffer is searched, beginning with the line following the current line, for the next occurrence

of a line which begins with the character group "string." If the search is successful, the line beginning with

"string" is brought into the work area. If the search is unsuccessful (pointer moves past end of file), the end-of­

fi Ie error message is printed .

"String" may contain any number of characters.

4 . 8 LOCATE [L] L.J string~

The input file is searched, beginning with the line following the current line, for the next occurrence of a line

which contains the character group "string . " If the search is successful, the line which satisfies the search is

brought to the work area . If the search is unsuccessful, the end-of-file message is printed, and the pointer is

moved to the top of the file. "String" may contain any number of characters.

4-3

4.9 DELETE [DJ (L.J n))

This command causes n lines, including the current line, to be deleted from the input file. The line following

the last line deleted becomes the current line. If n is omitted, only the current line is deleted. If n is large

enough to cause the pointer to move past the end of the fi Ie, the end-of-file error message is printed.

4.10 BOTTOM [BJ)

The pointer is moved to the final line in the input file (or buffer) which then becomes the current line. Lines

sk i pped over in the process of movi ng the poi nter are added to the output fi Ie.

4.11 RETYPE [RJ L.J line)

The character string "line" replaces the current line. The new line is left in the work area and can be subse­

quently modified.

4.12 INSERT [I J L.J line)

The current line is added to the output file and the character string "line" is taken as the current line. Note

that insertions are always made below the current line. The program remains in Edit Mode when command pro­

cessing is completed.

4.13 INSERT [ID

The current line is added to the output file and the mode is changed from Edit to Input. Subsequent lines are

interpreted as text to be added to the output file.

4.14 GET [GJ (L.J n))

This command causes n lines from the subsidiary input device to be added to the output file. New lines are

added below the current line. When command processing is complete, the nth line read is left in the work area

as the current line. If n is omitted, it is assumed to be 1.

If an end-of-medium condition is encountered on the subsidiary input device before n lines are read, the error

message

END OF MEDIUM REACHED BY:

GET n

is printed. The pointer remains at the last line read.

4-4

4.15 CHANGE [C] L.J q string1q string2q)

In the current line, the first character group (stringl) which matches that occurring between the first pair of

quote characters (q's, in this case) is replaced by the character group (string2) appearing between the second

pair of quote characters. The quote character chosen by the user may be any graphic (including blank) which

does not appear in either of the character strings quoted. Both stri ng 1 and string2 can contain any number of

characters, including zero. If Verify Mode is in effect, the program prints the new current line on the teletype

when the requested change has been accompl ished. Examples of change requests:

Current line: NXTLIN JMS TYPOUT /PRNT THE LINE.

a. In the comment, spe II "PRI NT II properly.

Request: CHANGE L.J /RN/RIN/)

New line: NXTLIN JMS TYPOUT /PRINT THE LINE.

b. Make the "JMS" a "JMP*"

Request: CHANGE L.J XSXp*X)

New line: NXTLIN JMP* TYPOUT /PRINT THE LINE.

c. Delete the liT II in the tag.

Request: C L.J /T//)

New line: NXLIN JMP* TYPOUT /PRINT THE LINE.

4.16 TOP[TJ)

Move the pointer to the beginning of the edited file or buffer. The first line of the file becomes the current

line.

4.17 VERIFY [V] L.J{ g~J)

Set Verify Mode according to the parameter. When Verify Mode is on, text lines are printed in response to

certain editing commands, for example:

a. The line brought into the work area as a result of a FIND or LOCATE request is printed.

b. The last line of the file, brought in by the BOTTOM request, is printed.

c. The new line resulting from a CHANGE request is printed.

When Verify Mode is off, only error messages are printed. After the Editor is loaded initially, Verify Mode

is on.

4-5

The command

VERIFY [V] J

(without arguments) is equivalent to

VERIFY [V] w ON)

4.18 OVERLAY [0] (w n))

Starting with the current line, n lines (or the current line only, if n is omitted) are deleted from the input file .

Control mode is changed to Input with the normal typed program response,

INPUT

Subsequent typed lines are interpreted as text intended to replace the lines so OVERLAYed.

4 . 19 APPEND [A] w string)

"String" is added to the current line following the last data character and preceding the terminating carriage

return. Thus, to add a comment to the current line

JMS GETNUM

the command might be

APPEND w -I / GET DECIMAL ARGUMENT.)

The new current line would be

JMS GETNUM -I /GET DECIMAL ARGUMENT.

If "string" is absent, the current line is unchanged.

4.20 BRIEF U {g~~

Set Brief Mode according to the ON/OFF parameter. Brief Mode results in the abbreviated printing of the

current line during the servicing of some commands . An attempt is made to print only the tag, operation code,

and address fields of lines brought in as a result of the FIND, LOCATE, and BOTTOM commands. In addition,

the printing of the new line resulting from a CHANGE request is terminated at the last newly-inserted character.

Brief Mode is set to OFF initially. The setting of the brief mode indicator is of no consequence when Verify

Mode is off.

4-6

The command

BRIEF ~

{without arguments} is equivalent to

BRIEF L..J ON ~

Set Block Mode according to the parameter. When Block Mode is ON, the editing commands READ, WRITE, and

MOVE are accepted by the program; these commands are treated as illegal if Block Mode is off. When Block

Mode is in effect, the program treats several lines as a subfile, retaining them internally in a block buffer. In

Block Mode, editing commands which move the pointer reference only those lines currently residing in the buf­

fer. The contents of the buffer are saved until a WRITE command is encountered or until, by way of the DELETE

command, it is emptied. A buffer emptied by deletions can be filled by a READ request.

When Block Mode is OFF, sequential lines in the input file are moved singly to the word area and are not avail­

able for re-examination after the pointer has been moved to a later line.

When the Editor is initially loaded, Block Mode is set to ON if either the input or the scratch device is nonfile­

oriented. If both devices are file-oriented, Block Mode is set OFF.

The command

BLOCK ~

{without arguments} is equivalent to

BLOCK L.J ON ~

4.22 SIZE[S]L.Jn~

Set the total number of lines which will occupy a buffer {in Block Mode} to n. The SIZE command can be issued

at any time and takes effect when the next group of lines is inserted in the buffer via a READ command . The

value of n is initially set to 55
10

; it must always be greater than 1.

4.23 EXIT ~

Control is transferred from the Editor to the Monitor . This command is illegal if any file is open for reading or

writing when it is issued, i e., it may only be given as the first command after Editor initialization and the

message

EDITOR
>

A 7

After the Editor is loaded into core, in either I/o or Keyboard Monitor environments, OUTPUT is initially set

to ON. If OUTPUT is set OFF, the user is allowed to examine any part of his program . No output will result

after a WRITE or CLOSE command is issued and the NOTHING I N FILE message is typed ou t . If the input is

file-oriented, the input remains unchanged.

(
INPUT} 4 . 25 CALL w RENAME w OUTPUT W OLDNAM w EXT w NEWNAM w EXT)

This command can only be used before any other commands are issued . No abbreviat ion is allowed in the

command string.

Example :

EDITOR V6A
> CALL w RENAME w INPUT wOLD NAM w SRC w NEWNAM w SRC)
will change the name of the file on the input device (.DAT slot-14) from
OLD NAM SRC to NEWNAM SRC.

[iNPUT } 4.26 CALL w DELETE w lOUTPUT w FILNAM w EXT)

This command can only be used before any other commands are issued. No abbreviation is allowed in the com­

mand string.

Example :

EDITOR V6A
> CALL w DELETE w OUTPUT w FILNAM w SRC)
will delete the file FILNAM SRC from the directory on the output device
(. DAT SLOT -15).

4 . 27 RENEW)

This command initiates the same operations as those performed by a WRITE command followed immediately by a

READ command. The use of this command is permitted only in Block Mode.

4.28 KEEP)

This command causes the original file appearing on .DAT-14 to be preserved for back-up purposes. The form of

this command is:

4-8

KEEP u savnam (ext))

where "savnam" is a unique name to be assigned to the file to be preserved and "ext" is its extension. If ext is

not given, SRC is assumed . As many K EE P requests as are needed can be issued. Each savnam, however, must

be different from any other filename appearing on -14. If a unique name is not given to the file to be saved,

the name SAVFIL EDT is assigned. The KEEP command can be issued only while the input file is on . DAT-14,

i.e., the number of TOPs issued must be even (0,2,4 . . .).

Example of Usage:

EDITOR V6A
> OPEN THSFIL

EDIT
> KEEP BKUPOI

> TOP
> NEXT

> TOP
> KEEP BKUP02

> CLOSE

Resulting Directory on -14 :

THSFIL SRC
BKUPOI SRC
BKUP02 SRC

/ Normal TOP
/ Some locative request must

be issued here to allow
physical file transfer at
second TOP.

/To return file to -14.

/New edited fi Ie
/First copy--original
/Second copy--after TOPs

4-9

SECTION 5

RECOVERY PROCEDURES

In case of a hardware or system failure, the user can recover at the point at which the last complete version of

the edited output file was closed. The Editor, in preparing intermediate files, assigns them temporary names.

Thus, in the event of disaster, one (or both) of the following files may be found .

. TFIL 1 EDT and . TFIL2 EDT both contain the version of the edited file extant at the point at which the crash

occurred. No editing is lost. If neither of these files is present, the file specified in the OPEN command con­

toins the version of the file extant at the time the latest TOP command was issued. All editing taking place

after the TOP command is lost. If neither. TFIL 1 EDT nor. TFIL2 EDT is found and if no file name was given in

the OPEN command, no recovery is possible.

5-1

SECTION 6

EXAMPLES OF EDITING REQUESTS

This section contains illustrations of one complete iteration through the modification process using the Editor.

Figure 6-1 shows the assembly listing of a sample input file.

Figure 6-2 shows the same I isting marked for correction.

Figure 6-3 (Sheet 1, Sheet 2) shows the hard-copy output of the editing session. The
sequence numbers at the right margin are not program generated, but were added later
for reference.

Figure 6-4 is the assembly listing of the new, edited file showing the results of the
editing run.

6-1

ISUHROUTINE PACK, 7-R iT CHARS TO lOPS ASCII.
ICALL: JMS PACK
I FROM
I TO

0r~j;10 R 0000111j;1 A PACK j;1
""V 0'" 1 R 2(11vW00 R LAC PACK IGET FROM ADRESS.

U 0~0(112 R .J400\44 R DAC PFROM IGIVF TO FROM POINTER.
"(''''''3 fI 2?eJr>"'" R LAC .. PACK IGET ADDRESS OF TO ARRAY.

U 0v004 R 04eJ~5? R OAC PTO IGIVE TO OUTPUT POINTER.
d <1G 0'" 5 R 040"47 R DAC PLRH ISAVE AS START ADDRESS.

>1(i0j;16 R 4400'0" R lSi' PACK IBUMP TO RETURN.
I'IV0j;17 R 777773 A PLOOP1 LAW 17773 l'SEr UP

tJ I1v010 R :n4iH"45 R OAC PK<;c~R

J 01''''1 1 R 220~44 R PLOOP2 LAC .. PFROM I G[T N[)(T WORD IN INPUT ARRAY.
LlJ .H"'12 R 0j;10", 0'" R SAC (-1 ITfRMINATOR?

1')('0 13 P 74100(11 SKP INO, 5KIP.
Vl~ 01 4 R 6j;10 0' 33 R JMP PCLOS IYES, GO CLOSE OUTPUT ARRAY.

\J f':v015 R 440 V4 4 R lSi' PFROM IPOINT TO NEXT WORD.
J 0r016 fl 440j;144 R lSi' PPIOM IPOINT TO NEXT WORD.
J 0?017 R 0401'155 R DAC' PWRD3 ISET UP TO ROTATE.
'J "V0?11I P 1"'0"'51 R PLOOP7 JMS PRAL7

0- J 0"0?1 R 44~W46 R lSi' PK'iCR 15 CHARS IN.O
I J 0~'0?2 P 6j;10(1143 R JMP LPOOP2 INO, GET ANOTHER. r-.>

J I1v'0?3 P 2(11~W54 R LAC PWRDt' IWORD PAIR COMPLETE.
(dv' 0?4 p 740(111(11 A RAL ICLEAR PAIR BIT 35.

J 0~0?5 R 0401754 R DAC PWRD?
J 0(70?6 P 2j;10053 R LA£: PWR01 IGET FIRST wD OF PAR ••

0(70?7 p 744010 A RAl:CLL 181T 0 OF OlD 2.
tJ 1117030 P 06"''''5? R OAC" PTO IINS[RT FIRST WD IN OUT ARRAY.
tJ (dV031 P 440?-5? R lSi' PTf) IRUMP OUT ADDRESS.
U M032 P 6j;10 '" 5'" R JMP PLI'0P1 IGO SET UP NEXT PAIR.

0"033 p 777773 A PCLOS LAw 17773 IMAK[SUPE PAIR I S COMPLETE.
J M034 P 5401745 R SAO PK')CHR

VlHl35 p 60002(11 R JMP PLIIOP7 IINCOMPLETE PAIR.
0H136 R 7')0001 A CLA :CMA IFORM WORD PAIR COUNT

J 0(7037 P 3401747 R TAD PLRH 1ST ART ADDRESS.
0""'40 R 740001 A CMA

J ",V",41 R 34r/W52 R TAD PTII ILESS END ADDRESS.
0r042 p 6?0000'1 R JMP" PACK IRfTURN TO CALLER.

000"''''''' A .E NO
0v0')7 R 777777 A .. LIT

Figure 6-1 Sample Input File

0-
I

(.oJ

LE;=T-IINt,U,eb NOIt/-H8I~I!£-i:)

ISU8ROUTINE PACK. 7-RIT~CHARS TOilOPS ASCII •
• ~LoaL 'j)1tC-K. pelf'.. 7., PtN~I):f.~/CALL: JMS PArK YJW I?tf~N, /It:, K<JZ-,g toTAL W()e.M CC£Lt.P,;?-u

Pwl!o'Z., PwL()3 I FROM /.srM!T,,~ ~AJPuFAeMY. 8y fJlfGttCtrfj;.te/llfv. A w,,~/) "":;Au,.~:s IWI.L4T
/ TO /q-1IteT tfL du.Tl'tlTAteI!/W. 7~M"'.JIrrE Tile /1V~ttT (i.l.Nr-tG,:e(J) 1+II!J!Av.

0~000 R 000000 A PACK 0 ~

u

u
u

u
U

LU

u
u
u
u
u
U
U

U
U

U
U
oj

U

U

U

0~0(111 R 2P.01'l00 R LJ/<-* ~ PACK IGET FROM A ESS.
IH' 002 R 040"'44 R I~ ~_OAC PFqOH IGIV[To FRO POINTER.
~~0p13 p 220P.00 R LAC. PACK IGET AODRESS OF TO ARRAY.
0~0(i14 R 040~5? R DAC PTo IGIVE TO OUTPUT POINTER.
.H' 005 R 040(/147 R RAj:; Pll'lll ISAVE AS START ADDRESS.
000(116 p 440P.0P R 16~ PA6K 18UMP TO RETURN.
00007 R 777773 A PLOOPl LAW 17773 IS[T UP

/0-- a~T&-,e ~ ,""""6e. 00010 R ~40P.45 R nAC PK~CHR
0Voel1 R 2?0~44 R PLOOP2 LAC. P.ROM
00012 R \111'0P00 R 5J4})" ~ ~--{;::r-1j)'-H~
0f013 P 74100' A ~ ~KP·
0V014 R 600V33 R JMP PCLOS
0P015 R 440044 R IS2 PFROH
0V016 R 440044 R 151 PFR8M
0V017 P 040055 R DAC PWRD3
0V020 P 100051 R PLOOP7 JMS PRAL7
(/J~021 R 440t1i46 R I Si'~?CSc.He
0v0?2 R 600043 R JMP~PL06P2
0~0?3 R 20011'54 R I LAC PWRD2
0~024 R 740~10 A RIrl..... Ct..-L ~
0?025 R 040054 R OAC PWRD2
0~026 P 20011'53 R LAC PWRDl
0V·0?? R 744~10 A 12.AL. ~
00030 R 060052 R OAC. PTO
(/J~031 R 44111052 R IS2 PTn
0V032 R 6"'005111 R JMP ~PLOOP.:t.
0V033 P 777773 A PCLOS LAW 1777~

"'?11134 R 540045 R i)ZfIIl m.etl.3rSAO PK5CHR
0V"'35 R 60I/J020 R JMP PLnOP7
(/J~036 R 750?01 A CNUC.M! LAw' --' ~
0?037 R 340047 R 7»J)~PttG~ ~
0~040 R 740P.01 A CMA
1/J(~ 041 p 340 ~ 52 R loSZ ~ '-_~ A[l PTO
0?042 R 6?0P.00 R ~JMP. PACK

0011lP.00 A (.END
0~057 p 777777 A .LIT

PFeo#l U p,o ¢
PKSCtne ¢

IGET NEXT WORO IN INPUT ARRAY.
ITfRHINATOR?
INO. SKIP.
IY[S. GO CLOSE OUTPUT ARRAY.
IPOINT TO NEXT WORD.

- ; PB 1141 Te pj[l<T IIARB.
ISET UP TO ROTATE.

~
7

15 CHARS IN.n •
INO. GET AN HFR,
IWORO PAIR COMPLETE.
ICLEAR PAIR BIT 35. ~~~2

IGET FIRST WO OF P~~
181T 0 OF WO 2.
IINSERT FIRST WD IN OUT ARRAY.
18UMP OUT ADDRESS.
IGO SET UP NF.XT PAIR.
IMAKE SURE PAIR IS COMPLETE.

IINCOMPLETE PAIR.
IFORH WORD PAIR COUNT£
1ST ART ADDRESS. e

ILESS ENO ADORESS.
IRFTURN TO CALLER.

Figure 6-2 Input File Listing Marked for Correction

E1HTOh
>OPEN PACl< ShC
>FIND 15UBiWUT

15UBHOUTINE PACl<. 7-BIT CHAhS TO lOPS ASCII.
>OVEi,LAY 1
INPU r
ISUB~OUTINl PACK. 7-BIT L~FT-AD.ruST~U CHAhS TO NON- H ~ADEhED lOP S
II'.SC I I. ON rit;TUriN. AC HOLDS TOTAL ~JO"IJS OCGiJ? I£U BY PACKlo.D M'hAY.
IA WOh0 OF ALL 1'5 MUST O\Tt;riMI~AT~ THE INPiJT CUN?ACKEU) AhkAY.

EDIT
>LOCATt; FHOM

I
>Ai-'PEND
>NEXT
>APENIJ
NOT A j,HIUES r:

APENlJ

ISTAhT OF IN~iJT AhkAY.

ISIAnT OF OlH?iJi' AhhAY.

ISTAhT OF OUTPUT ARhAY.
ISTAhT OF OUTPU'r AkHAY. >APt'END

>PHINT 1
I

>INSEliT
>L LAC

TO ISIAkT OF OUTPUT AkhAY.
• GLOl:L PACK. PEAL 7. PWhL.lI. PWiW2. P\r.'RV3

LAC PACK
>CHANG~ LAC/LAC*I

LAC PACk<
~CHANGE ILAC/LAC*I

LAC* PACK
>i-JEXT I
>INSEhT
I NPiJ f

EDIT
>PhlNf

>Bi-; IEF ON
>C .1 .1.

>PRINT

>L PLBH

>Bii IEF OF'F
>PhINT

>l.)I::LETE 2
>P1UNT

PLOOPI
>N

ISZ PACK

ISZ PACK

ISZ PACk<

lSI. PACX

UAC PLBH

DAC PLBH

LAW 17773

IG~T "HOM AllhESS.

IGET FHOV ACHE SS.

I G ~T FHOM A~HESS.

I BUMP TO "TO" AlJDj' ESS.

I bUMP TO "TO" AlJUhESS.

I

IBUMP TO "TO" AUUh~SS.

ISAVE AS STAhT ADUkESS.

151::T Ui-'

>A IS-CHAkACTEh COUNTEE.
>L

SAC (-1
>VEiin-Y OFF
>C ISAC/SADI
>C I (-1 I ENUCHlV
>V ON
>P

>N
>'0
>N
>P

SAD ENDCHk

ISZ PFhOl"l

I Tt.:HM I NATOit1

ITERMINATO,,?

IPO INT TO NEXT \,;OhU.

Figure 6-3 (Sheet 1) Hard-Copy Output of Editing Session

6-4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
2S
26
27
20
,29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

>0
>P

>F PL
PLOOP7

>N
>RETYPE
>N
>C ,LP,PL,

>N 2

ISZ P"-HOM

JMS PHAL7

ISZ PK5CHk

JMP PLOOP2

>CHANGE /L/L!CLL
RAL!CLL

>L kAL
rlAL!CLL

>C /ICLL//
HAL

>L JMP
JMP PL0'0P1

>CHANGE /99/00/
JMP PLOOP1

>N
>
INj>UT

DZM P\~ki.l3

EDIT
>L

CLA!CMA
>k ENDCHR LAW-1
>N
>R TAD* PACK
>L PTO

>INSI::XT
>BOTTOM

>OVEhLAY
INPUT
PFROM WI
PkO@PTO 0
PK5CHH 0

TAD PTa
ISZ PACK

.END

.END

EDIT
>TOj>
>L ADkESS

LAC* j>ACK
>C /AUR/ADDR/

>LOCATE ••

>von
>C /i1../IH/
>PRINT

>CLOSE

El)ITOH
>EXIT

MONHOR

$

LAC. PACK

LAC P"JhD1

LAC P;';~D1

/POINT TO NEXT WORD.

/5 CHArtS IN?

/NO, GET ANOTHER.

/CLEAk PAIk BIT 35.

/BIT '" Of WD 2.

/BIT 0 OF 10.'0 2.

/GO SET UP NEXT PAIR.

/(;0 SET UP NExr PA IR.

/FILL PAIR WITH lEriOES.

/FOHM WOklJ PAIh COUNT
/FOHM wOhD PAl" COUNT.

/STAhT ADDhJ::SS.

/LESS END ADDH~SS.

/GET FROM ADRESS.

/GET FROM ADDk~SS.

iGET "IHST WD OF PAh ••

/GET FIRST Wi) OF PAIR.

Figure 6-3 (Sheet 2) Hard-Copy Output of Editing Session

6-5

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
§~
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

ISUBROUTINf PACK. 7-RIT LEFT-ADJ~STED CHARS TO NON-HEADERED lOPS
IASCI!. ON HETUR"J. AC HOLDS TOTAL WORDS OCCUPI£D BY PACKED ARRAY.
IA WORD OF ALL l'S MUST TERMINAT~ THE INPUT (UNPACKED) ARRAY.
ICALL : JMS PACK
I FROM ISTART OF INPUT ARRAY.
I TO ISTART OF OUTPUT ARRAY.

.GLORL PACK. PRAL7. PWRD1, PWR02. PWRD3
rM~A0 R ""Il'ld i" iH'1 A PACK I"
~'0V.l P 2? 011' 0'" R LAC. PACK IG~T FROM ADDRESS.
.H'.W2 R "4~H''I4? R OAC PFROM IGIVE TO FROM POINTER.
.,vi/JI"3 R 44~"0'" R lSi! PAr,K IBUMP TO "TO" ADDRESS.
.,r01'14 p 22iW01" R LAC. PACK IGET ADDRESS OF TO ARRAY.
"'(/ 0"~ R 04W'l43 R OAC PTo IGIVE TO OUTPUT POINTER.
IH0P6 P 777773 A PLOOP1 LA\; 17773 ISF:T UP
IO f 0P7 R ~40'7-44 R OAC PK'5CHR 15-CHARACTER COUNTER.
'H'0~0 R 2?iP4? R PLOOP2 LAC. PFROM IG(T NE XT WORD IN INPUT ARRAY.
"""Ill 1 R ~40 0 34 R SAO [NnCHR !TERMINATOR?
M 012 R 6 "'1d11'31l' R JMP PCLOS IH:S. GO CLOSE OUTPUT ARRAY.
"'H:l13 R 4400'4;:> R lSi' P[PO,", IPOINT TO NEXT WORD.
10.014 P ~4""~5'" V OAC PliRD3 ISET UP TO ROTATE.
",V015 R 1 V'i/Jft'I 4'5 V PLOOP7 JMS PR4L7
Illf016 R 441i""44 R 1St PK'lCHR 15 CHARS IN?

0- 111i'017 R 6",~71'" R JMP PLOOP2 INO, GET ANOTHER.
I

0- L<J~0?0 P 2~0 " 47 V LAC PWPD? IWORO PAIR COMPLETE.
M0?! p 744V'1 ri1 A RAL!CLL ICLEAR PAIR RIT 35.
0V022 R .,40('47 V DAC PWPD?
0?ftP3 R 2li!r.l (~ 4~ V LAC PwPDl IGET FIRST WO OF PAIR.
fil V024 R 740 0 10 A RAL 181T ~ or WD 2.
1/i f.·0;>5 R i1Jf>0J143 R OAC. PTa IINSfRT FIRST WO IN OUT ARRAY.
i£l V'il\? 6 R 441'!043 R lSi' PTO IRUMP OUT ADDRESS.
IiiH'!?7 R 60'.H"06 R JMP PU10Pl IGO SET UP NEXT PAIR.
Vlv030 R 777777, A PCLOS LA'" 17773 IMAKE SURE PAIR IS COMPLETE.
10,1/131 R 141/1 [,1 51" V ni!~ PWRD3 IFILL PAIR WITH ~EPOES.

~V032 R 540 17'44 R SAn PK'5CHR
IM033 f.' 611 iol "l 1<; R JMP PLOOP7 IINCOMPLfTE PAIR.
~~' I,n4 R 777777 A fNDCHR LAW -1 IFORM WORD PAIR COUNT.
<lV035 R 361'1'~01'! R TAn. PACK ISTART ADDRESS.
<H036 r< 74111(7'11 A CMA
"''''137 ~ 34~"4~ R TAD PTO ILESS END ADDRESS.
0,11 4i1! R 4411MH' R lSi' PACK
ie'I0 41 P 6211lf'l0ii'! R JMP .. PACI< IRETURN TO CALLER.
.,".J42 R "~"""Ii1I A PFRO" '" ~j(I "143 R "''''''''00' A PTO " I/Jv0 44 R i<l V·,h'0(~ A. PK"iC'-tR I'!

0"'VI()I(IIfII A .ENU

Figure 6-4 File Resulting From Editing Session

APPENDIX A

SUMMARY OF EDITING COMMANDS

Command Abbrevi at ion Activity Line Number t Section

I Ed itor-Mon itor Commun ication I I
EXIT n/ a Transfer control to Monitor 124 4.23

I Fi Ie Housekeeping I
OPEN nm ext n/ a Prepare input fi Ie (named "nm ext") 2 4 . 1

for editing .

CLOSE n/a Terminate editing on input file. 121 4.4
ICLOSE n/a Close input fi Ie.
SCLOSE n/ a Close file and leave on output device.

I Locative Requests I
FIND string F Bring first line beginning with "string" 3,68 4.7

to work area .

LOCATE string L Bring first line containing "string" to 12,52 4.8
work area.

NEXT N Bring next consecutive line to work area. 15,70 4.5

BOTTOM B Bring last line of file to work area . 100 4.10

TOP T Reset pointer to beginning of file. 110 4 . 6

PRINT \ ~l) P Print the current line on the Teletype. 20,58 4.6
'AJ :"; 0 i '-' !II t\

I Manipulative Requests I
DELETE D Discard the current line. 47,61 4.9

RETYPE string R Replace current line with "string" . 71,94 4.11

I NSERT string I Add "string", as a complete line, to the 99 4.12
fi Ie after (be I ow) the current line.

CHANGE / string1/ C Replace, in the current line, the first 25,27,38 4.15
string2/ occurrence of "string I" with "string2 " .

OVERLAY 0 Replace multiple lines. 5,102 4.18

APPEND string A Add "string" at the rightmost end of the 14,16,19 4.19
current line.

tEntries under "Line Number" refer to line sequence numbers (in Figure 6-3) where examples of command usage
are to be found.

A-I

;

Command Abbreviation Activity Line Numbert Section

I Mode Control I

VERIFV(g~ V Set verify mode to print (ON) or ignore 54,57 4.17
printing (OFF) lines after processing
CHANGE, LOCATE, and FIND requests.

(ON n/a Set program to operate in block mode 4.21 BLOCK OFF
(ON) or in line-by-line mode (OFF).

(ON n/a Set brief mode to print truncated (ON) 37,44 4.20 BRIEF OFF
or full (OFF) lines.

I Input/Output Requestsl

I.- READ n/a Fill block buffer from input file. 4.2

WRITE n/ a Add block buffer to output fi Ie. 4.3

GET G Add I ines from subsidiary input device 4.14
after (below) current line.

1M iscellaneous Requests I
SIZE S Set total lines to occupy block buffer. 4.22

INSERT I Change mode to input. 30 4.13

tEntries under "Line Number" refer to line sequence numbers (in Figure 6-3) where examples of command usage I are to be found.

A-2

APPENDIX B

339 DISPLAY EDITOR

This Appendix describes a version of the Text Editor which uses the 339 Display to show the text being edited.

The Display Editor is a relocatable user program (as opposed to a system program) which is loaded and used ac­

cording to the directions contained. It is distributed by DEC's Program Library as a binary paper tape and should

be PIPed to the system D ECtape before use.

SYSTEM REQUIREMENTS

This program requires a 339 Display equipped with either the VA39 or the VC38 optional character generator .

If the VC38 (software) is used, the Monitor switch VC38 must be 0 N. In any case, the Monitor switch 339

must be ON. Both switches can be set normally ON at System Generation . The 339 device handler DYA. must

be assigned to .DAT slot + 10. All other device assignments are the same as for the System Editor.

Loading Procedure

xxxxx

$ GLOAD
LOADER Vxx

> EDITDY
EDITDY
DYA. xxx xx
other device handlers

> EDITDY V6A

PROGRAM OPERATION

(User types underscored text.)

The Display Editor consists of the System Editor (EDIT6A) with the additional ability of displaying the text being

edited on the 339 Display assigned to . DAT slot + 10. Display is controlled through use of the TV switch. The

TV switch is initially off, and the Display Editor operates exactly like the System Editor. If > TV ON is typed,

the text file is displayed as follows, from top to bottom:

a. a group of the lines most recently added to the output file or block;

b. spaces;

c. the current line, to which modifications apply;

d. spaces;

e. a group of the lines about to be brought in from the input file or block.

8-1

TV can be turned on or off at any time to start or stop the display. Turning TV on implies VERIFY OFF, but

turning it off does not turn VERIFY ON automatically. If, at the top of a file or block (i .e., OPEN filename

or TOP was just typed), TV ON is typed, a file movement command (e.g., NEXT, FIND, LOCATE, etc.) must

be given before any lines are displayed.

In Block Mode, the block buffer must be at least as large as the read-ahead buffer used for displaying lines be­

low the current line. Thus, if a SIZE command is given with too small a number of lines, the error message

BUFFER SIZE TOO SMALL.

is typed, and the SIZE command is disregarded.

In all other respects, operation of the Display Editor is the same as the System Editor.

B-2

1.1 GENERAL INFORMATION

SECTION 1

INTRODUCTION

CHAPTER 2
PATCH UTILITY PROGRAM

The PATCH utility program t provides the user with a convenient means of examining and modifying system

programs which are stored in binary form on a bulk storage device (DECtape or disk).

Relocatable programs (Iink-Ioadable programs), XCT programs (executable files built by the system program

CHAIN), and any other binary program which is not in system program format cannot readily be corrected by

using PATCH. System program format means that the binary is a straight core dump onto contiguous blocks of

400 (octal) words each on the bulk storage I/o device.

Normally, commands to PATCH are issued at the teletype keyboard. In BATCH processing, commands are

taken from the batch input device under supervision of the BATCH processor. Binary corrections can be speci­

fied by the input commands or read in from an auxiliary input device. The latter facility provides a way to

transfer new b i nar ies of system programs to a system tape.

tThe PATCH program in PDP-9 Systems replaces the stand-alone programs SYSTEM and MONITOR.

1-1

2.1 .DAT SLOT ASSIGNMENTS

SECTION 2

CALLING PATCH

Before requesting the Monitor to load PATCH into core, check that the proper device assignments have been

made to the .DAT slots which PATCH uses.

.DAT SLOT

-14

-10

-3

-2

Used to

Input from and output to the bulk storage device on which patches
are to be made. The device handler is required only to perform
.TRAN.

Input from the auxi liary device, which may be a bulk storage de­
vice. The device handler must handle Dump Mode input and, if
it is for a nonfile-oriented device, must handle image a Ipha mode.

Output to the teletype.

Input from the teletype or batch processing device.

.DAT slot-10 can be assigned no device handler (NONE) if auxiliary input is not required .. DAT slots -3 and

-2 cannot be changed.

2.2 CALLING PATCH

PATCH is loaded and started by the System Loader after the user issues the following command (underscored) to

the Monitor:

MONITOR
$PATCH ')

When PATCH is running it prints:

PATCH xxx
>

where xxx is a three-character program version designation, and the right angle bracket (» indicates that the

program is ready to accept a command input.

2-1

3 . 1 COMMAND INPUT FORMAT

SECTION 3

COMMANDS

All teletype and batch processing input commands are standard lOPS ASCII lines, that is, lines of text

terminated by either a carriage return (~) or an ALTMODE character. While typing in a command, but prior

to terminating with a carriage return or ALTMODE, the user can modify his input by typing control U (echoed

as @) to cancel the entire I ine or typing N rubout characters (each echoed as \) to delete the last N characters

in the line. In all cases, PATCH is idle after it has printed a right angle bracket (» and is waiting for typed

input.

3.2 COMMANDS

PATCH commands are divided into four categories:

a. A select command to indicate which program or section of the tape is to be patched

b. A list command that allows examination and modification of specified program locations

c. A read command to input patches from the auxiliary input device

d. An exit command wh ich returns control to the Monitor.

3.2 . 1 Se lect Commands

Before the user can issue a list or read command, he must indicate the program or block he wishes to patch.

This is accomplished by giving either the name of the program or the number of a logical block on the I/o de­

vice to be made "current."

3 . 2.1.1 Select Command Format Examples - Three basic select command formats are shown below.

Format 1: > NAME ~

Format 2: > B n~ or > B+ n ~

Format 3: > B- n ~

Format 1 - In this format, NAME stands for the name of the system program to be selected. PATCH contains a

table of system program names and, for each, the load address in core, the program's size, and the logical

3-1

block number where the program begins on the system tape. The following program names are recognized by

PATCH (DDT, CHAIN and the Linking Loader are excluded because they are relocatable binary files):

CONY
DUMP
EDIT
EXECUTE ·
F4
F4A
KM9
MACRO

MACROA
PATCH
PIP
. SGEN1
.SGEN2
.SYSLD
UPDATE

Formats 2 and 3 - In these formats, the character n stands for an octal number (i n the range a ~ n ~ 110 1
8

) which

identifies a logical block on the patch I/o device, for example, DECtape block 100. The two forms shown for

Format 2 are equivalent and indicate that the block is to be read and written in the forward direction. Format 3,

which is used only for DECtape, means that the block is to be read and written in the reverse direction. Select­

ing a single block is similar (in effect) to selecting a system program. The load address is set equal to 0, the

size is set to 400 octal, and the block number is as specified.

If the NAME in Format 1 or the block number n in Formats 2 and 3 is followed by a space, the remainder of the

input line is treated as a comment and is ignored.

Until another select command is issued, all patches made with list and read commands are made to the currently

selected program or block.

3.2.2 The List Command

The list command allows the user to list, selectively, the locations within a program or block along with their

contents and, optionally, to modify their contents.

The command format is:

> L '-' OCTADR~

where OCTADR must be an octal number within the core range specified by the load address and size of the cur­

rent program or block to be patched. For block patching the range must be 0 $ OCTADR ~ 377
8

, For system

programs, the range is

load address $ OCTADR $ load address + size -1.

The octal address may be followed by a space and a comment (which is ignored).

3-2

PATCH determines in which block on the tape the given address is located; and, if that block is not currently

in core, it reads in the block. PATCH then prints the address and its contents and waits for command input.

Example:

> L w 132)
w 00132/777435 >

The user can now modify the contents of this register and then either list another address or terminate the list

command sequence.

3.2 . 2.1 Modification of Open Location Register - To modify the contents of the open register, type in an ex­

pression (defined below) and terminate the expression with any of the following characters:

<- or / or) or ALTMODE

Use of Terminators - The value of the expression is stored in the opened location, and subsequent action is de­

termined by the above listed terminators. If no expression is typed, the contents of the open register are not

changed, but the terminators still take effect. The manner in which each terminator is interpreted is as follows :

Terminator

Example

Meaning

Treat the remainder of the line as a comment. Take the 13-bit
address part of the contents of the current register (as possib Iy
modified) and I ist that address and its contents.

> L w 100)
w00100/ 600200> ")
w 00200/213775 >

/ NOTE: LOCATION 100 UNCHANGED

Terminator

/

Example

> L w 1266)
w 01266/ 000000>)
L..J 01267/ 111215>)
w01270/403620>

Meaning

Treat the remainder of the line as a comment. Subsequent action
depends on whether the line is terminated by carriage return or
by ALTMODE.

Open the next sequential register.

Terminator Meaning

ALTMODE Terminate the list command sequence.

Example

> Lw3~
w00003/ 000110> ALTMODE
>

NOTE

A list command sequence must be terminated by ALTMODE;
otherwise, select, list, read, or exit commands cannot be
given.

When PATCH prints an address and its contents, the first character in the line is either a space (w) or a right

angle bracket (». The > is used whenever a new block is read into core. If the old block was modified, it is

written out on the patch output device before the new block is read in. The device must be WRITE ENABLED.

Definition of Expression - An expression consists of octal numbers (one to six digits) and alphanumeric symbols

(one to three characters, the first of which cannot be an octal digit) separated by one operator or a string of

operators. An expression is terminated by one of the following characters:

.... ,~ , / , ALTMODE.

Leading and trailing operators are legal, but the latter are ignored. Whenever a string of consecutive opera­

tors is encountered, only the last one is saved. PATCH contains a symbol table of all the basi c system opcodes

plus all the operate group instructions and the octal values of each.

The expression is evaluated from left to right assuming an initial value of zero followed by the operator +, that

is, 0 + user's expression.

The following characters are operators which combine the values to their left and right as indicated:

+

w

(TAB)

*

two's complement subtract

inclusive or

two's complement add

3-4

The character *, in addition to its use as an operator, causes 20000
8

(the indirect bit) to be XORed into the

value of the expression whenever * is encountered. Thus, the expression

** = 20000 XOR 20000 = O.

The value of the expression is null (no modification to the open register) unless a number, a symbol, or the char­

acter * is in the expression.

The symbol "LAW" is a special case. It should be used only in one of the following two ways:

LAW L.J n / Equivalent to 760000 + n

or

LAW L.J -n / Equivalent to -n

Use of LAW in other than the prescribed manner often yields an erroneous value.

3.2.3 The READ Command

The READ command is used to input a patch file from the auxiliary device and to make those patches to the cur­

rently selected program or block . An example of a typical patch file source listing is given in Appendix A .

The formats for the READ command are:

a. > READ ~

b. > READ L.J FNAME ~

c. > READ L.J F NAME L.J EXT ~

A filename must be given for input from a file-oriented device. The extension is optional. If missing, the

extension is assumed to be ABS since the MACRO assembler outputs .ABS programs onto DECtape, disk, etc.,

with an extension of ASS. The filename is not needed for paper-tape input. A space plus a comment can be

used only when both the filename and extension have been typed in the READ command . When input is from

the paper-tape reader, the user must press the tape feed button to clear the NO-T APE-IN-READER flag .

. ASS patch program on paper tape can be optionally headed by the ASS binary loader (which is ignored by

PATCH). The patch file can be either a completely new version of a system program or it can contain patches

to specific locations in the program. Both are handled identically.

PATCH reads one data block at a time from the auxiliary input file. For each data word in the block, PATCH

calculates the address within the currently selected program or block. If the address is within the current block

3-5

in core, the data word patch is made to the current core block; if not, the current block is written out on the

tape, and then the block containing the contents of the specified address is brought into core and is patched

accordingly.

3.2.4 The EXIT Command

The EXIT command returns control to the Monitor (CTRL C works equally well). The format is:

>EXIT~

A space and a comment can follow the command.

3 . 3 ERROR RECOVERY

If an .IOPS error occurs, causing control to return to the Monitor, the user types, CTRL P (tP) to restart

PATCH. CTRL P is also useful in terminating a READ command if the paper-tape reader jams.

Errors detected by PATCH cause the current command to be terminated and an appropriate error message to be

printed. All errors detected by PATCH cause the block in core to be written out onto the output tape provided

that modifications were made to that block.

3.3. 1 Error Messages

The following is a list of error messages printed by PATCH:

Message

ILLEGAL COMMAND

NOT OCTAL DIGIT

TOO MANY DIGITS

ADDRESS OUT OF RANGE

CHECKSUM ERROR

FILE NOT FOUND

ILLEGAL BLOCK #

Cause of Error

Not a legal command name, first command was a list or
a read before a sel ect command was issued.

PATCH expected an octal number and found a character
other than 0-7 .

The user-typed octal number contained more than 6 digits.

The address to be listed is not within the legal range of
the currently selected program or block.

Bad data read in from auxiliary device.

The file, as specified in a READ command, does not exist
on the auxiliary input device.

The block number specified in the block select command
was outside the range 0 ~ BLKNUM ~ 11018 .

'J L

APPENDIX A

PATCH PROGRAM FORMAT

The following is an example of the proper format for a PATCH assembly source program to be assembled and

output by MACRO 9:

. TITLE

.ABS

.LOC
734777
600261
.LOC
-3
. LOC
040674

. END

anything
NLD

234

350

371

A-1

APPENDIX B

EXAMPLE OF OPERATION

The following I excluding the comments on the right I is a sample listing of what would appear on the teletype

after a session using PATCH . Characters typed by the user have been underlined for clarity. CD stands for

ALTMODE.

MONITOR

$PATCH)

PATCH V4A

> MACRO)

> L w 100)

ADDRESS w OUT w OF w RANGE

> L w 14366)

> 14366/ 000000 > 77777 6)

w 14367/231604 > DAC * w 11604)

L.J 14370;777777 > SNA ICLA ~

w14371/615422 > JMP w 16777-)

> 16777 / 703 112 > 2...
w 17000/ 452735 > CD
> READ)

CHECKSUM w ERROR

> READ)

> B- w 357)

> L w 400)

ADDRESS w OUT w OF w RANGE

> L w 40.)

NOT w OCTAL w DIGIT

> L w 40)

> 00040/317754> (j)
> EXIT)

MONITOR

$

/CALL IN PATCH.

/SELECT MACRO.

/ LIST LOCATION 100.

/ LIST LOCATION 14366.

/ MODlFY. LIST 14367 .

/CHANGE LAC* TO DAC*. LIST 14370.

/ MODIFY. LIST 14371.

/MODIFY. LIST 16777 .

/ NEW BLOCK READ IN . NO CHANGE.

/ NO CHANGE. TERMINATE SEQUENCE .

/READ AUXILIARY INPUT (PAPERT APE) .

/TRY AGAIN.

/ SELECT BLOCK 357 IN REVERSE DIRECTION.

/ LIST LOCATION 400.

/PERIOD I THAT IS.

/ LIST LOCATION 40.

/NO CHANGE. END SEQUENCE.

/ GO BACK TO MONITOR .

B-1

SECTION 1

INTRODUCTION

CHAPTER 3
LIBRARY UPDATE UTILITY PROGRAM

The ADVANCED Monitor Library Update Utility program (UPDATE) permits the contents of binary library files

stored on a file-oriented media to be examined and updated . A binary library file is defined as any file which

contains one or more relocatable binary programs. Some examples of binary library files are:

a. the ADVANCED Monitor's .LIBR BIN file, which contains the standard I/O handlers and
FORTRAN IV Object Time System (OTS)

b. the BACKGROUND/ FOREGROUND Monitor system's .IOLIB BIN (I/O Library) and the
.F4LIB BIN (OTS routines) files.

UPDATE alters files by replacement, deletion or insertion operations; it can also be used in the creation/ mod­

ification of user library fi les (refer to Linking Loader section of this manual).

The UPDATE functions of this utility program are carried out by the generation of a new file from information

copied, on command, from either a primary (original file) or secondary (new information) data sources. As

shown in the following diagram, the file to be modified is considered the primary data source; the information

to be added or inserted into the file is contained by a secondary source. The final modified file is produced

on an assigned output device.

PRIMARY SOURC E SECONDARY SOURCE
(Fi Ie to be (Data for insertion
modified) or replacement)

'\ ,I (Data flow, controlled
\ by UPDATE commands)

I
OUTPUT DEVICE

I (New File)

1-1

SECTION 2

UPDATE COMMANDS

The UPDATE program is called into memory by the following command to the Monitor:

$ UPDATE) (command can also be terminated with ALTMODE)

When loaded, UPDATE outputs the following response on the teleprinter:

UPDATE Vnn
>

(Vnn indicates version number)

The user keyboard commands to UPDATE are divided into three categories, arranged in the following operational

sequence:

a. File specification commands

b . UPDATE action commands

c. Termination commands.

2.1 FILE SPECIFICATION COMMANDS

The first command issued to UPDATE must be a file specification command to indicate the UPDATE operation

desired and the name of the file to be modified or created. The general form of the file specification command

is:

2. 1. 1 Options

> OPTION
DESIGNATORS

IffiEl
~

TERMINATOR
() orALTMODE)

The following three UPDATE options are available:

Designator

L

U

N

Operation

List the named library fi Ie by element and element size
(octal) .

Update the named library file by the insertion, deletion/
replacement of elements.

New library file (named) is to be created.

2-1

The options U and N are mutually exclusive. Option L can be used alone to obtain a clean listing or in

combination with either U or N to observe updating results on the file.

The use of the L option provides a library file listing of the following form:

LIBRARY FILE LISTING FOR FILENM PAGE 1
PROGRAM NAME PROGRAM SIZE

o
NAME 2 4n8

NAME 4

NAME 3

2.1.2 File Name

3528

517

ACTION
DELETE NAME
REPLACE NAME 1, NAME 2

I NSERT NAME 3, NAME 4

The command file name consists of any combination of from 1 to 6 alphanumeric characters. If no file name is

specified by the user, the name . LIBR BIN is assumed by the program . In all cases, the name BIN is assumed

to be the command file name extension.

2. 1.3 Command Termi nator

Either a carriage return ()) or an ALTMODE keyboard entry is used to terminate the file specification command.

If a) terminator is used, control is returned to the UPDATE program when work on the named file is complete.

If an ALTMODE terminator is used, control is returned to the Monitor when updating of the named file is

complete.

2.2 UPDATE ACTION COMMANDS

After acceptance of the file specifications command, UPDATE is ready to accept commands for the manipulation

of the contents of the named fi Ie, indicated by the printout:

>

When the symbol > is printed, the named file is positioned immediately before the first element of the file, thus

permitting the insertion of new elements at the very beginning of the file . (Insertion is described under the

Insert (I) command, 2.2.3.)

2-2

There are four action commands (i .e., DELETE, REPLACE, INSERT and END) each of which is described in

detail in the following paragraphs.

All action commands are terminated by a) . It must be noted that the UPDATE program operates on a file in a

sequential routine-by-routine manner. When a routine is passed, any action command made to that routine

results in an error message. Because the preceding is a common operator error, it is recommended that the user

have a listing of the library file being worked upon.

2 . 2 . 1 DELETE (D) Command

The D command causes the deletion from the specified file of a named routine or a range of routines; this is

specified by the names of the first and last routines of the range. The deletion is carried out by copying all the

routine or file elements in the file up to the deleted routines onto an output file media.

The delete command can take either of the following two forms; as shown, the term DELETE or the letter D is

used.

Command String

> DELETE NAME)
(or D)

> DELETE NAME 1, NAME2)
(or D)

Operation

Delete the named
routine.

Delete routines
NAME1 through
NAME2, inclusive

The DELETE command may be used only when an update (U) option has been specified in the file specification

command.

After the delete operation, the fi Ie being worked on is positioned at a point immediately after the last routine

deleted.

2.2.2 REPLACE (R) Command

The R command causes information in the original file to be replaced by new information by copying all of the

elements of the original fi Ie onto the output fi Ie device or media up to the element or routi ne to be replaced.

The new information (replacement) is then copied onto the output fi Ie from a secondary input service. After

the replace operation, the output file is positioned at a point immediately after the replaced routine.

The replace command can take either of the following two forms; as shown, the letter R or the word REPLACE

is used .

2-3

Command String

> REPLACE LJ NAME ~
(or R)

> REPLACE LJ NAME 1, NAME2 ~
(or R)

Operation

NAME is replaced by a new routine of the
same name.

NAME1 is replaced by a new routine having
the name NAME2

The REPLACE (R) command may be used only when an update (U) option has been specified in the file specifica-

tion command.

2.2.3 INSERT (I) Command

The I command causes information contained on the secondary input source to be inserted, at any point, into

the original file as it is copied onto the output file device media. On completion of the insert operation, the

output file is positioned at a point immediately after the inserted material.

The I command can take either of the following two forms; as in the previous commands, the letter I or the term

INSERT may be used.

Command String

> INSERT LJ NAMO
(or I)

> INSERT LJ NAME1, NAME2 ~
(or I)

Operation

The routine NAME is inserted into the output
file starting at the current position of the file.

The routine NAME1 is inserted into the spec­
ified file immediately after routine NAME2.

The I command is used only when an update (U) option has been previously specified in the file specification

command.

2.2.4 END (E) Command

The use of E command causes the output file to be positioned at the end of the final routine of the original file.

This is accomplished by copying all the information from the original file, from its current position, onto the

output file. The END command is a convenient method of positioning the file to be modified in order that new

routines from the secondary input may be appended to the file via the INSERT (I) command.

The form of the END command is as follows; as shown, the letter E or the term END may be used.

Command String

>END~
(or E)

2-4

Operation

All of the information on the original file
from its current position is copied onto
the output file.

The End (E) command is used only when an update (U) option has been previously specified in the file specifica­

tion command.

2 . 3 UPDATE TERMINATION COMMANDS

The UPDATE operation (U option) is terminated by either the CLOSE (C) or the KILL (K) commands .

2.3.1 CLOSE (C) Command

The CLOSE (C) command can take either of the following two forms;

Command String

> CLOSE ")
(or C) (or ALTMODE)

>CLOSE FILENM)
(or C) (or ALTMODE)

Operation

The file is closed and the name given in the
file specification command is assigned to the
file.

The fi Ie is closed and the name FILE NM BI N
is assigned to the file.

NOTE

Terminating the C command with) restarts the UPDATE
program; terminating it with ALTMODE returns control to
the Monitor.

The C command is normally used to terminate UPDATE operations. The use of this command causes all of the

remaining elements on the original (primary input) file to be copied from its current position onto the output file.

All optional operations (e.g., listing (L)) are also completed on the initiation of this command.

2 . 3.2 KILL(K)Command

The use of the K command aborts the current UPDATE operations and returns control to UPDATE. The form of

this command is:

> KILU
(or K)

2-'1

SECTION 3

DEVICE (. OAT) SLOT ASSIGNMENTS

The UPDATE utility program uses six negative. OAT slots, which are assigned (according to use and option) in

the following manner:

.DATSlot File Options Specified

-15 Library'"File Output U,N

-14 Library File Input U,L

-12 Library Listing L

-10 Secondary (new) Input U,N

-3 Teletype Command Output U,L,N

-2 Teletype Command Inputs U,L,N

3-1

SECTION 4

ERROR CONDITIONS AND RECOVERY PROCEDURES

The UPDATE program outputs either recoverable or unrecoverable error messages. In either case, the user always

has the option of restarting UPDATE by typing CTRL P (t P) or returning control to the Monitor by typingCTRL C

(t C).

4. 1 RECOVERABLE ERRORS

When a recoverable error message is printed, the user must retype his command for recovery. This procedure

works unless the specified program name cannot be found (see Improper Name in Action Command).

4.1.1 Unintelligible Commands

If UPDATE cannot understand a command, it prints out the following:

> ?
>

The user should then check his previously entered command to ensure that it complies in sequence and form with

the requirements of UPDATE.

4.1.2 Command Function/Option Errors

Error messages printed during recoverable error conditions caused by improper function commands are listed

below:

a. If a two-argument D, R, or I action command is used with any option other than U, the UPDATE
program outputs:

VALID ONLY IN U MODE - COMMAND IGNORED
>

b. If a single-argument D, R, or I action command is used in any but the U and N option modes, the
program outputs:

VALID ONLY IN U OR N MODE - COMMAND IGNORED
>

c. If no name is given in the I, D, or R command siring, the program outputs:

ILLEGAL COMMAND STRUCTURE - COMMAND IGNORED
>

4-1

4.1 . 3 Improper Name in Action Command

If the name given in any UPDATE action command cannot be found, UPDATE outputs:

EOF REACHED BY SEARCH - COMMAND IG NORED

>

If this error condition is indicated, the library file is positioned at a point immediately after its last routine and

the file can be accessed only by the INSERT (I), CLOSE (C) or KILL (K) commands.

4. 1.4 Incorrect Input Source

Named data for insertion/ replacement functions (i.e., inputs from devices assigned to .DAT slot-10) which can­

not be found on the input device causes the following error printout:

WRONG PROGRAM AS INPUT - CORRECT INPUT AND tP

In most cases, this error printout indicates that the wrong program (e.g., paper tape) was placed in the reader.

If this is the case, the user need only place the proper tape in the reader, clear the reader, and type tP to con­

tinue. For file oriented devices, the file name and the program name (the name given at assembly or compile

time) must both agree with the name in the UPDATE command.

4 . 2 UNRECOVERABLE ERRORS

The following errors are terminal; they require the user to restart with a file specification command.

a. If an end code is detected before the program name on binary input, the following is printed:

PROGRAM NAME MISSING - DYNAMIC KILL UPDATE
>

b. If there is not enough room in core for the program, the following is printed:

BUFFER OVERFLOW - DYNAMIC KILL
UPDATE
>

c. If a read error occurs in the input buffer, the following is printed:

UNRECOVERABLE READ ERROR ON . DAT N - DYNAMIC KILL
UPDATE

>

4-2

SECTION 5

UPDATE EXAMPLE

5. 1 UPDATE FILEA

To update FILEA: (user responses are underscored).

UPDATE
> U <-FILEA ~
> I NAME2, NAME3 ~
> R NAME4, NAME5)
>D NAME1)
>Q
> UPDATE
>
>

5.2 UPDATE BCDIO

/File specifying command must be first
/Insert routine NAME2 after NAME3
/Replace routine NAME4 with NAME5
/Delete routine NAME 1 from file
/Close FILEA
/Returns to UPDATE since
/fi Ie specifying command above
/was terminated with a ~

To update BCDIO on the Monitor Systems. LIBR file (user responses are underscored)

$ A DTAO-14/DTAl-15/PRA-10~
$ UPDATE)
UPDATE
> U <-~

> R BCDIO)

>C)
UPDATE

/Scratch tape on . DAT slot-15
/Call Update

/Specify Update function (note: . LIBR
BI N assumed)
/Replace BCDIO with new version from
paper tape reader
/C lose the fil e
/New . LIBR on . DAT slot-15

To complete the update of the MONITOR System's. LIBR BIN file, it is necessary to call in PIP to delete the

old. LIBR from unit 0 and to transfer the new. LIBR from unit 1 to unit O.

5-1

SECTION 1

INTRODUCTION

CHAPTER 4
LINKING LOADER

This chapter describes the operation of the Linking Loader and the composition of the binary information which

comprises a loadable program unit. Operating procedures for the BASIC I/O and ADVANCED Monitor environ­

ments are included along with memory maps of the various phases of loading by the Linking Loader.

1-1

2.1 OPERATION

SECTION 2

DESCRIPTION

The Linking Loader loads and links relocatable or absolute t binary program units as produced by theFORTRAN IV

Compiler and the MACRO Assembler. Absolute and relocatable coding should not be intermixed in one unit,

and care should be taken in linking relocatable and absolute units. For FORTRAN generated program units, the

Loader also assigns the common data storage area. Any input device that will input binary code can be used.

Initially, the loader loads all the program units the names of which appear in the command string (see Operating

Procedures, Section 7). Then, the Loader automatically loads and links all requested and unresolved library

subprograms. The requested I ibrary subprograms are loaded from the externa I (user) I ibrary (if one exists) and

the system library (i n that order). After both I ibraries have been exam ined for requested subprograms, the

Loader prints the names of all subprograms wh ich have not been found. If the user requires I/o handlers that

are already in core for Linking Loader purposes, the resident handlers are used.

Individual program units cannot be executed if the program flows across a 4K (8K for PDP-9) memory bank; the

Loader prevents this type of loading. The Loader will, however, load (and link) the program in the next memory

bank. No overlap checking of any kind is made with absolute binary program units.

Optionally, symbols and their absolute definitions are loaded into a program dictionary (symbol table) for use by

the dynamic debugging technique (DDT). The loader also sets up for DDT the start execution address of the

main program (in the system communication table) and the initial relocation value of all the program units (in

the symbol tab Ie) .

2.2 FORTRAN COMMON STATEMENTS

The Linking Loader permits FORTRAN COMMON blocks and block-data subprograms to overlap memory banks.

For PDP-9 Systems, FORTRAN allows COMMON block sizes greater than 8192
10

, provided that each element

in COMMON does not exceed 8192
10

, For example,

t A MACRO assembled program headed by an absolute .LOC statement, e.g . , .LOC 100, is an absolute binary
program and the binary is output in link loadable format. A program headed by a .ABS statement is output as
absolute block binary and cannot be loaded by the Linking Loader.

2-1

COMMON / I/L(100,100)

is illegal because the size of array L is 1000010'

COMMON / I/L 1(100,50) ,L2(100,50)

is acceptable. Each array size is 500010 and the size of the common block is 10000
10

,

For a PDP-15, FORTRAN allows COMMON block sizes greater than 4096
10

, provided that each element in

COMMON does not exceed 4096
10

, For example,

COMMON /J/K(80 ,80)

is illegal because the size of array K is 6400
10

,

COMMON /J/K1 (80,40),K2(80,40)

is legal. Each array size is 3200
10

, and the size of the common block is 6400
10

,

Non-COMMON arrays and variables are initialized to zero (O) by the Loader.

MACRO programs can be linked to COMMON areas defined by FORTRAN IV. If any virtual globals remain

after the Loader has searched the user and system libraries and has defined COMMON blocks, an attempt is made

to match those global names to COMMON block names. If a match is made, the global becomes defined as

the COMMON block. An example follows:

FORTRAN IV PROGRAM
INTEGER A,B,C
COMMON / NAME/C
COMMON A,B

MACRO PROGRAM
. GLOBL NAME, . XX

DZM*
ISZ
DZM*
DZM*

.XX

.X X

.XX
NAME

/. XX is name given to blank COMMON
/by the F4 Compiler
/ CLEAR A - NOTE INDIRECT REFERENCE
/ BUMP COUNTER
/CLEAR B
/CLEAR C

Note that if the values are REAL (2 words) or DOUBLE PRECISION (3 words), the MACRO program must account

for the number of words when accessing specific variables .

2-2

SECTION 3

INFORMATION UNITS

The binary output from the FORTRAN compiler and the MACRO Assembler consists of blocks of information units.

Each information unit consists of an identification code (6 bits) and a data word (1S bits). The form of the ob­

ject program at run time is determined by the content and the ordering of the information units. Several infor­

mation units may be grouped to convey a single run-time instruction to the Loader.

A block of information units consists of four IS-bit machine words arranged in the following manner:

Word 1

Word 2

Word 3

Word 4

o

Code 1

5 6 11 12 17

I Code 2 I Code 3

Data Word 1

Data Word 2

Data Word 3

Standard lOPS binary line sizes (48 information words and a 2-word header) are input by the Loader .

3-1

SECTION 4

IDENTIFICATION CODES

The identification code instructs the Loader on how to handl e the assoc iated data word. There is an i mpl ied

order in which codes appear within a binary file (described in general under Program Unit Organization,

Section 5).

Code

01

Loader Action

Program Unit Size

The data word specifies the number of machine words required by this program unit. This

number does not inc lude the required number of mach ine words for common storage. The

program size is used by the Loader to determine whether or not the program will fit within

the unused locations of any available 4K (8K for PDP-9) memory bank . Loading terminates

with an appropriate error message if the program cannot be loaded. This information unit

appears only once per program unit and is the first information unit of the binary output.

In absolute loads, no checking is made for overlays; this is left to the discretion of the user.

The program size is also used to determine where to begin loading as loading proceeds from

the top of core down (see Memory Maps).

o 3 17

Data Word Program Size

t.- [1 if absolute load
'LO if relocatable load

02 Program Load Address

The data word is an unrelocated memory address. This address specifies either an absolute

or a relative storage address for program data words and is incremented by one for each data

word stored (codes 03,04, and 05). If the address is relative, it is initially incremented by

the current relocation factor (modulo 15 bits). Bit 0 of the data word is used to indicate an

absolute address (bit 0 = 1) or a relative address (bit 0 = 0).

Data Word

o 3

x I 0 Load Address

L [0, relative load address
U, absolute load address

4-1

17

Code Loader Action

03 Relocatable Instruction

The data word is a memory referencing instruction. The address portion of the instruction is

incremented by the current relocation factor (modulo 12 bits for the PDP-15 and 13 bits for

the PDP-9). The instruction is stored in the location specified by the load address which is

incremented by one after the word is stored.

o

Data Word

4
or 5

Op Code

04 Absolute Instruction/Constant/Address

5 (PDP-9)
6 (PDP-15)

Unrelocated
Memory Address

17

The data word is either a non-memory referencing instruction, a non-relocatable memory

referencing instruction, an absolute address, or a constant. The word is stored in the loca­

tion specified by the load address which is incremented by one after the word is stored.

o 17

Data Word Non-Relocatable Word

05 Relocatable Vector

The data word contains a relocatable program address (vector). The word is incremented by

the current relocation factor (modulo 15 bits). The data word is stored in the location speci­

fied by the load address which is incremented by one after the word is stored.

o 2 3 17

Data Word Vector

1, if FORTRAN indirect vector

06 Non-Common Storage Allocation

The data word specifies the number of machine words required for non-common variable and

array storage. Storage allocation begins at the address specified by the load address. The

load address is incremented by this number. This block of memory is cleared.

o or

Data Word 0---0

4-2

4 5 (PDP-9)
5 6 (PDP-15)

Storage Size

17

Code Loader Action

07 Symbo! - First Three Characters

The data word contains the first 3-characters of a symbol in radix 50
8

format (see Appendix A).

The data word is saved by the loader for future reference.

Data Word

o 2

I X I 0 I Symbol

L r 0, 1- to 3-character symbol
\..1, 4- to 6-character symbol

08 Symbol - Last Three Characters

17

The data word contains the last 3 characters of a symbol in radix 50
8

format. The data word

is saved by the loader for future reference. This word is used only if in the code 07 data

word bit 0 = 1.

o 2 17

Data Word Symbol

09 External Symbol Definition

The data word contai ns the unre located address of the transfer vector for the subprogram

named by the last symbol loaded (codes 07 and 08). If the external subprogram has already

been loaded, the address (definition) of the symbol is stored into the specified vector address

(relocated modulo 15 bits). If the subprogram has not been loaded and this is the initial re­

quest, the symbol and the relocated (modulo 15 bits) transfer vector address are entered into

the Loader symbol dictionary as a request for subprogram loading. This action automatically

forces the Loader into a Library Search Mode when the end of the command string is encountered.

If the Loader is already in the Library Search Mode, it remains there until all virtual globals have

been resolved. If the subprogram has been previously requested (symbol in dictionary) but not

loaded, the Loader chains the reference locations. This chain, generated exclusively by the

Loader, is followed when the external definition is encountered. (Unchained transfer vector

locations must initially contain a reference address (code 04 or 05) to themselves.) For example,

.GLOBL SUB where SUB is virtual should cause the output of the following:

4-3

Code Loader Action

09 (Cont) 0 2 17

07 o I SUB (radix 508)

09 0 I TVADD

0 3 17

0 3 17

05 0 TVADD TVADD

and SUB defined internally as TVADD. Subroutine calls are made via JMS* SUB

Data Word
o 3 17

Transfer Vector Address I

10 Internal Global Symbol Definition

The data word contains the unrelocated or absolute address (definition) of the last symbol

loaded (codes 07 and 08). The last symbol loaded is a global symbol internal to the pro­

gram unit which follows. In the library Search Mode, if a request for subprogram loading

exists (code 09) in the Loader dictionary, the relocated (modulo 15 bits) or absolute def­

inition is stored in the specified transfer vectors and the program unit is loaded. The

definition also replaces the transfer vector address in the Loader dictionary. If no request

for loading exists, the program unit is not loaded and the Loader continues to examine in­

formation units until the next internal global symbol definition is found (library Search

Mode). If the program unit is to be loaded, all internal global symbols following the one

causing loading are automatically entered into the Loader dictionary as defined global

symbols . If the symbol already exists in the dictionary and is defined (indicating that a

program unit with the same name is already loaded) the current program unit is ignored.

o 3 17

Data Word Symbol Definition

11 B lock Data Dec laration

This information unit instructs the Loader that the common blocks and data constants fol-

lowing are part of a block data subprogram.

o 3 17

Data Word Block Size

4-4

Code Loader Action

12 Common Block Definition

The data word specifies the number of machine words required for the common block named

by the last symbol loaded (codes 07 and 08). In general, the assignment of memory space

for the common block is deferred unti I all requested I ibrary subprograms have been loaded.

The exception to this rule occurs when the block data declaration (code 11) has been en­

countered. In this case, the common block name is treated as an internal global symbol,

and the block is assigned to memory. After the block is assigned to memory, the starting

address is entered into the Loader dictionary, and the starting address is saved by the Loader

for future use (code 13). All symbols in the dictionary associated with the block are as­

signed addresses with respect to this starting address. All symbols which are yet to be loaded

(via code 13 and 14) will also be assigned as they are encountered. When the block data

flag is not set, the Loader enters the name and the size into the dictionary (if it is not al­

ready there) and also enters the word containing the next available dictionary entry address.

This entry will contain the first symbol in this common block and will be used as the head of

the chain of all symbols in this common block . The address of the head of chain is saved by

the Loader so that the new set of symbols in the common block may be added to the chain.

The larger of the two block sizes is retained as the block size.

When the common block has already been assigned memory locations, the respective lengths

are compared. Loading terminates, with an appropriate error message, if the assigned block

is smaller. When the assigned block is larger or both are equal, loading continues.

o 3 17

Data Word Block Size

13 Common Symbol Definition

The data word specifies the relative location of the last symbol loaded (codes 07 and 08) in

the last common block (code 12). If the associated common block has been defined (block

data), the absolute address of the symbol is calculated (block address plus relative position)

and placed in TV location (code 14). When the common block has not been assigned, the

relative address is entered into the Loader dictionary and chained to the symbols associated

with the common block.

o 3 17

Data Word Relative Address

4-5

Code Loader Action

14 Common Symbol Reference Definition

The data word contains the unrelocated address of the transfer vector for references to the

common symbol named by the last symbol loaded (codes 07 and 08). The symbol definition

(code 13) is stored in the relocated (modulo 15 bits) address specified when the associated

common block has been assigned (code 12). When the block has not been assigned, the

relocated (modulo 15 bits) address is entered into the Loader dictionary along with the

relative address (code 13) of the symbol.

5 (PDP-9)
or

a 6 (PDP-15) 17

Data Word Address of Vector

15 Data Initialization Constant - First Word

The data word contains the first machine word of a data initialization constant. It is saved

by the Loader for future use (code 18).

a 17

Data Word Data Constant

16 Data Initialization Constant - Second Word

The data word contains the second machine word of a data initialization constant. It is

saved by the Loader for future use (code 18).

a 17

Data Word Data Constant

17 Data Initialization Constant - Third Word

The data word contains the third machine word of a data initialization constant. It is

saved by the Loader for future use (code 18).

a 17

Data Word Data Constant

18 Data Initialization Constant Definition

The data word contains the relative load address of the last data initialization constant

loaded (codes 15, 16, and 17) and a mode code identifying the constant (real, integer,

double, logical). The load address is incremented by the current relocation factor (mod­

ulo 15 bits) if the constant initializes a non-common storage element. When the constant

4-6

Code Loader Action

18 (Cont) initializes a common storage element (indicated by the presence of the block data flag,

code 11), the load address is incremented by the address of the last common block loaded

(code 12). The constant is stored accordi ng to mode and the re located load address.

Data Word

19 Internal Symbol Definition

o 1 2 3

Load Address

t {
OO' mode = integer (1 word)
o I, mode = rea I (2 words)
10, mode = double (3 words)
II, mode = logical (1 word)

17

The data word contains the unrelocated or absolute address (definition) of the last symbol

loaded (codes 07 and 08). The symbol is strictly internal to the program being loaded and

is entered conditionally (if a DDT Load) along with its relocated (modulo 15 bits) or abso­

lute address into the DDT symbol dictionary. The program unit name is indicated by bit 0=1

of the data word.

o 1

Data Word

l

All symbols fall into th is category.

20 String Code - First Half

3 17

Symbol Definition

[0, internal symbol
\'1, program name -- from FORTRAN IV or

MACRO-9 command string

The data word contains the unrelocated address of a data word whose address portion is to be

replaced by another value. The relocated (modulo 15 bits) address is saved by the Loader

for future use (code 21).

5 (PDP-9)
or

o 6 (PDP-15) 17

Data Word I 0 I Stri ng Address

4-7

Code Loader Action

21 Stri ng Code - Second Ha If

The data word contai ns an unre located address. The address port ion of the data word

specified by the first half-string code (code 20) is replaced with this address {relocated

modulo 12 bits (13 bits for a PDP-9) .

5 (PDP-9)
or

o 6 (PDP-15) 17

Data Word 1 0 - 0 I Replacement Address

22 Input/Output Device Routine Request

The data word specifies the unit number (.DAT slot number) associated with a device level

I/o routine. The Loader defers loading of any I/o routines until all other subprogram

loading has been completed; when subprogram loading is complete, the system library is

searched for all requested I/o device routines not already residing in memory (see Operating

Procedures). The I/o routines are then loaded.

Data Word

23 End of Program Un i t

o

I I o

t [0 = single unit
\.1 = all units

9 17

Unit Number

L 2's complement when
negative

(. IODEV ALL) all
positive. DAT slots with non-zero contents

This information unit is the last unit of a program unit. The data word contains the unrelo­

cated or absolute start execution address of the program. The relocated (modulo 15 bits) or

absolute start address is entered into the system communication tables to be used when con­

trol is given to the user. On Iy the first start address encountered is entered into the com­

munication tables. (It is assumed that the first program unit specified in the command string

is the main program.) The first address of the main program is used if the. END pseudo-op

did not have a start address. When loading from either the system or external libraries, the

end unit causes the Loader to examine the next line buffer for the end-of-file (EOF) con­

dition. When the EOF for the external library is obtained, the Loader automatically begins

searching the system library to resolve any remaining globals. Upon encountering the EOF

of the system library, the Loader announces any unresolved global names. When loading is

complete, control goes to the user program, DDT, or to the keyboard listener in the Monitor

as a function of the load command (GLOAD, LOAD, DDT, or DDTNS) (see Operating

Procedures) .

4-8

Code Loader Action

o 3 17

Data Word Start Address

24 18-Bit Parameter Assignment

The data word is ignored by the Linking Loader. It was to have been passed on to DDT in

the symbol table I however DDT was not implemented to recognize it.

4-9

SECTION 5

PROGRAM UNIT ORGANIZATION

5.1 MAIN PROGRAM AND SUBPROGRAM ORGANIZATION

PROGRAM SIZE (code 01) for absolute or relocatable program, does not include COMMON size

INTERNAL GLOBAL DEFINITIONS (code 10)

PROGRAM NAME (code 19)

PROGRAM LOAD ADDRESS (code 02) absolute or relative

COMMON STORAGE (codes 12, 13 and 14)

NON-COMMON STORAGE (code 06)

Array Declaration Information

Equivalenced Arrays and Variables

Non-Equivalenced Arrays

PROGRAM BODY

Codes

03} Instructions
04 &
05 Literals

Non-COMMON Variables and Arrays (06)

Transfer Vectors (code 05)

EXTERNAL GLOBAL SYMBOL DEFINITIONS (code 09)

END (code 23)

5.2 BLOCK DATA SUBPROGRAM ORGANIZATION

BLOCK DATA INDICATOR (code 11)

PROGRAM NAME (code 19)

COMMON STORAGE (codes 12, 13, and 14)

Codes

07 }
08

DATA INITIALIZATION CONSTANTS (codes 15, 16, 17, and 18)

END (code 23)

5-1

Symbol

Term

Loadable Program Unit

Transfer Vector

Interna I Global Symbol

Externa I G lobo I Symbo I

Virtual Global Symbol

Relocation Factor

Radix 508 Format

ti .e., linking together

SECTION 6

DEFINITIONS

Definition

A main program, subprogram, or a block data subprogram.

A core location containing the address of a subprogram or
an entity in COMMON. All references to subprograms and
entities in COMMON are indirect.

A symbol defined in the current program unit and accessible
to a II programs.

A symbol which is referenced in the current program unit and
defi ned in another.

An external global symbol reference which has not yet been
resolved by replacement with the internal global symbol
definition.

The amount added to relative addresses to form absolute ad­
dresses; initially, the first loadable core location. The relo­
cation factor for programs following the first program unit is
the next available load address.

A method of symbo I concatenation t uti lizing 508 characters
as a "number set", each with an unique value between and in­
cluding ° to 478. The symbol (number) is converted using
standard base conversion methods (see Appendix A).

6-1

SECTION 7

LINKING LOADER OPERATING PROCEDURES

7 .) BASIC I/O MONITOR ENVIRONMENT

When the Li nk ing Loader is ready to accept the load command string from the keyboard, it outputs to the

teleprinter:

LOADER

> Set up the input device and, if it is the paper tape reader, momentarily
depress the tape feed contro I to clear the reader out-of-tape flag.

The file names of all the programs that are to be unconditionally loaded from the input device (.DAT Slot -4)

must be input from the teletype keyboard in the following form:

> NAME 1, NAME2, NAME3)

> NAME4, NAME5 (ALT MODE)

Comma and carriage return are used as file name separators. ALTMODE terminates the command string.

N RUBOUTS are typed to erase the N previous characters in a line. CTRL U is typed to erase everything typed

on the current line; however, if a typing error is discovered in a previous line, the user must type control P to

restart the loader.

The main program must be requested first. The fi Ie names consist of one to six characters (any characters over 6

are ignored). File names are exactly those used in command strings for assembly or compilation. The Linking

Loader appends the extension BI N.

When the input device is not file-oriented, N commas followed by ALTMODE primes the Loader to load N + 1

programs from the devi ce.

After loading the programs requested in the keyboard command string, the Loader attempts to resolve all un­

satisfied subroutine requests by scanning the system library (.DAT Siot-l). If, after scanning the library, there

still remain some unresolved global symbol references, the Loader first defines all existing COMMON blocks

and then defines these globals as the base address of COMMON blocks with the same name.

The I ibrary must be in the format shown in the followi ng illustration.

7-1

7. 1. 1 Structure of System Library

ONE FILE LIBR

-----------------------------------~,--------------------------------~ (\
PROGRAM

1
PROGRAM

1
PPOGRAM 1------1 PROG R AM 1 END-OF- FILE 1

UNIT UNIT UNIT UNIT UNIT

I

+ ~ PROGRAM SIZ E
DESCRIP TOR

PROGRAM UNIT
INTERNAL A
GLOBALS r \

LOAD ADDRESS ONE lOPS
DESCRIPTOR BINARY ----- BINARY .1 ONE lOPS I

>- PROGRAM
BUFFER BUFFER

UNIT

~ DATA

VIRTUAL
GLOBALS

END CODE

i
Cn ' Z310 TERMINATES
A PROGRAM UNIT THE
NEXT UNIT MUST BEGIN
A NEW lOPS BINARY
BUFFER.

7. 1 . 2 Loader Memory Map

HI } '"'-.0"' HEADER HZ

CI /C Z /C 3

} CO",-W,,,' 0 1

DZ
GROUP

0 3

C4 /C 5 /C 6 -- DESCRIPTOR

0 5 >- 48 ,0
06 WORDS

I

I

I

C34/C35/C36

0 34

0 35

0 36 -"

0-89-17

WORD 0 I I 101 END-OF-FILE

END-OF-FILE UNIT ONLY PRESENT
AT END OF LIBR FILE. MUST BE
REMOVED FROM END OF ALL PRO­
GRAM UNITS, SINCE FORTRAN IV
AND MACRO-9 ALWAYS CREATES
E-O-F UNIT.

15 -0066

The loader outputs to the teleprinter the names and relocation factors (starting load addresses) of all the pro­

grams requested in the command string, followed by the required library routines in the following format:

NAME1
NAME2
NAME3
NAME4
NAME5
LIBR1
LIBR2

16572
14301
10765
06427
06313
05304
04112

7-2

7. 1 . 3 Error Messages

NOTE

The relocation factor for absolute programs is zero.
Whenever the Loader detects end-of-medium in the
system library input device, tP is typed on the tele­
printer. To continue, load more input (if the device is
a paper-tape reader, momentari Iy depress the tape-feed
control), and type CTRLP on the keyboard.

The Loader outputs to the teleprinter. LOAD followed by the pertinent error code and then halts (in paper-tape

system) or exits to the Monitor (in Monitor System).

Error Code

2

3

4

Meaning

Memory overflow - the Loader's symbol table and the user's program have over­
lapped. The loader memory map wi II contai n pri ntouts of all programs success­
fully loaded prior to the one which caused the memory overflow. Use of
COMMON storage may enable the program to be loaded as it can overlay the
Loader and its symbol table because it is not loaded into unti I run time.

Input Data Error - parity error, checksum error, i Ilega I data code or buffer over­
flow (input line bigger than Loader's buffer).

Unresolved globals - if an explicitly or implicitly requested program cannot be
found, it will appear in the memory map with an address of 00000. This indi­
cates that loading was unsuccessful; the cause of the trouble should be remedied
and loading tried again.

Illegal .DAT slot request - the .DAT slot requested is

a. out of the range of lega I . D AT slots

b. a
c. does not have a device associated with it; that is, it was not set up at
SYSTEM generation time, and (in ADVANCED Monitor systems) was not set
up by an ASSIG N command.

When all requested programs have been loaded and all library requests satisfied, the Loader outputs t S on the

teleprinter and sits in a JMP loop. Typing tS on the keyboard gives control to the starting address of the user's

main program.

NOTE

If use is to be made of the paper-tape reader, load the reader
and then momentarily depress the tape-feed control.

When the user program has completed its operation and terminated via the. EXIT command, the computer wi II

halt.

7-3

If this is a DDT load, on completion of the loading and building of a DDT symbol table (exclusive of the library

routine symbols and those of DDT itself) control is automatically given to the starting address of DDT. DDT types

~DT to inform the user that it is waiting for a DDT command.

The user can force control back to DDT at anytime, by typing 1T on the teletype keyboard.

7.2 ADVANCED MONITOR ENVIRONMENT

The operating procedures noted below are required in addition to those described under the BASIC I/o Monitor

environment.

After loading the programs requested in the keyboard command string, the Loader attempts to resolve all un­

satisfied subroutine requests by scanning the external (.DAT Slot -5) and system (.DAT Slot -1) libraries, in

that order.

In order to inform the Loader that an external (user) library file exists for this load, it is necessary to ASSIGN

an I/o device to . DAT Slot -5 prior to the LOAD, DDT, DDT N S or G LOAD command, i. e. ,

$ASSIGN

$LOAD

DTA4 -5

The format of the external library file is identical to that of the system library file (see Section 7.1 . 1).

If this is a DDT load, (DDT), on completion of the loading and the building of a DDT symbol table (exclusive

of the library routines' symbols and those of DDT itself), control is automatically given to the starting address

of DDT.

A program can be loaded with DDT but without the user symbol table by requesting loading with the DDTNS

keyboard command. For example,

$DDTNS

This feature gives the user more operating space but deprives him of symbolic references to user symbols in DDT

commands.

If a loading error occurs, an appropriate error message is output to the teleprinter and control is given to the

system bootstrap to reinitialize the Keyboard Monitor.

When all the requested programs have been loaded and all library requests satisfied, the Loader wi II

a. If LOAD, wait on the recognition of tS by the keyboard handler and then give control to the start­
ing address of the user's main program.

7-4

b. If GLOAD, give control to the starting address of the user's main program.

c. If DDT or DDT NS, automatica lIy give control to the starting address of DDT.

When the user program has completed its operation and terminated via the. EXIT command, control is given to

the system bootstrap to reinitialize the ADVANCED Monitor and wait for the next keyboard command.

7-5

8.1 INTRODUCTION

SECTION 8

MEMORY MAPS

The following paragraphs present memory maps depicting the core allocation for the various types of programs

which may be loaded during Linking Loader operations. These maps, as shown, apply only to systems which

have core sizes that are some multiple of 8K (i.e., 8K, 16K, 24K, or 32K). In PDP-15 Systems core is avail­

able in 4K modules; thus, it is possible to have systems which, based on 8K multiples, have an odd 4K segment

(i. e., 12K, 20K, or 28K). In systems of this type, the odd number of 4K segments is indicated by having

bit 0 = 1 in .SCOM+20. To make the memory maps presented in this Section applicable to systems having an odd

number of 4K core memory modules (segments), the following additional information must be considered when

viewing the maps.

In systems containing an odd number of 4K core segments, the bootstrap loader does not reside at the top of core

but, rather, resides in the top of the highest even-numbered 4K segment; the top (odd -numbered) segment is

left free. When the Linking Loader is brought into core, registers .SCOM and .SCOM+3 are set to point to

the core register located immediately below the bootstrap. During the core loading process, DDT and user

programs are loaded starting at the top of core (in top odd-numbered segment); care is taken to avoid overlaying

the bootstrap. If the loaded programs fit entirely within the top 4K segment, the pointer which indicates the

highest free core location (.SCOM+3) is set to point to the register located immediately below the bootstrap to

protect it.

8-1

8.2 I/o MONITOR ENVIRONMENT

Linking Loader Tape

BK or 16K or
24K or 32K

o

BOOTSTRAP
LOADER IN

HRM FORMAT

I

USER
PROGRAMS

•

• GLOBAL
SYMBOL
TABLE

I

LI NKING LOADER

PAPER TAPE
READER HANDLER

I/O MONITOR
WITH TELETYPE -IN

AND
TELETYPE -OUT

DEVICE HANDLERS

• SCOM AND • SCOM + 3

• SCOM +2

• SCOM + I

09-0126

Refer to memory map 2A of Advanced Mon itor
Systems for results of Link Loading .

8-2

8K or 16K or
24Kor32K

o

BOOTSTRAP
LOADER IN

HRM FORMAT

DDT

I
USER

PROGRAMS

+
+

GLOBAL AND
DDT

SYMBOL I TABLES

LINKING
LOADER

PAPER TAPE
PUNCH HANDLER

PAPER TAPE
READER HANDLER

I/O MONITOR
WITH TELETYPE -IN

AND
TELETYPE-OUT

DEVICE HANDLERS

• SCOM

• SCOM +3

• SCOM +2

• SCOM + 1

09 -0 125

Refer to memory map 2B of Advanced Monitor
Systems for results of Link Loading in DDT mode.

Paper Tape Punch Hand ler is only present inversion of
DDT with patch file capabilities.

NOTE

Refer to Paragraph 8.1 for information regarding map
configurations for 12K I 20K I and 28K systems.

8-3

8 . 3 ADVANCED MONITOR ENVIRONMENT

Phase 1

8K or 16K or
24K or 32K

o

LOAD
GLOAD
DDT
DDTNS (DDT without symbol table)

RESIDENT
SYSTEM

BOOTSTRAP

1

i
LINKING
LOADER

LINKING LOADER
DEVICE

HANDLER

LINKING LOADER
DEVICE

HANDLER

RESIDENT
MONITOR
(INCLUDING
TELETYPE
HANDLER)

• SCOM AND. SCOM +3

• SCOM+2

• SCOM+l

Valid only
for 8K
increments.

09-012.4

The System Loader learns which I/o handlers are re­
quired by the Linking Loader, loads them relocatably,
and then loads the Link i ng Loader re locatab Iy .

{

The Linking Loader, during loading of user programs
down from. SCOM+3 builds the loader (GLOBAL) and
DDT (if DDT) symbol tables up from. SCOM+2.

If a DDT load, the Linking Loader just prior to giving
control to DDT moves the DDT symbol table down in core
so that it overlays all of the Linking Loader except for
the small routine that makes the block transfer.

The Linking Loader will not load a device handler that
is already in core for its own use.

8-4

NOTE

Refer to Paragraph 8.1 for information regarding map
configurations for 12K, 20K, and 28K systems.

Phase 2 (DDT or DDTNS)

BK or 16K or
24K or 32K

COMPACT DDT {
SYMBOL TABLE

o

RESIDENT
SYSTEM

BOOTSTRAP

DDT

USER
PROGRAM (S)

USER/DOT
DEVICE HANDLER

USER/DDT
DEVICE HANDLER

DDT CREATED
SYMBOLS AND
PATCH SPACE

DDT
SYMBOL
- - -- - -TABLE

1JLLj/////////i/
LINKING LOADER
DEVICE HANDLER

LINKING LOADER
DEVICE HANDLER

RESIDENT
MONITOR

(INCLUDING
TELETYPE
HANDLER)

• SCOM

• SCOM + 3

• SCOM + 2

• SCOM + I

~ LINKING LOADER
BLOCK TRANSFER
ROUTINE

09 - 0125

. EXIT from the user program causes the system bootstrap
to re-initialize the Advanced Monitor.

If a DDTNS load, no DDT symbol table is bui It.

Non BLOCK DATA COMMON (FORTRAN IV or MACRO
output) may make use of core as low as the compact DDT
symbol table (DDT only retains certain symbol table en­
tries). However, the user must be careful about placing
patches.

The Linking Loader device handlers would have been
used to satisfy user device requests.

NOTE

Refer to Paragraph 8. 1 for information regarding map
configurations for 12K, 20K and 28 K systems.

8-5

Phase 2A (Not DDT or DDTNS)

8Korl6Ko<
24K or 32K

o

RESIOENT
SYSTEM

800TSTRAP

USER
PROGRAM(S)

USER DEVICE
HANDLER

USER DEVICE
HANDLER

USER DEVICE
HANDLER

LINKING LOADER
DEVICE HANDLER

LINKING LOADER
DEVICE HANDLER

RESIDENT
MONITOR
(INCLUDING
TELETYPE
HANDLER)

• SCOM

• SCOM + 3

(b.)

(0.)

09-0126

. EXIT from the user program causes the system bootstrap
to re-initialize the Advanced Monitor.

. SCOM+ 1 and .SCOM+2 poi nt to one of two places.
a. If the user program did not have any device

handlers in common with the Linking Loader.

b. If the user program did have at least one device
handler in common with the Linking Loader.

Non BLOCK DATA COMMON (FORTRAN IV or
MACRO output) may make use of core as low as
.SCOM+2.

8-6

NOTE

Refer to Paragraph 8.1 for information regarding map
configurations for 12K, 20K, and 28K systems.

APPENDIX A

SYMBOL CONCATENATION T - RADIX 50
S

FORMAT

Radix 50g is a technique used by the MACRO Assembler and the FORTRAN IV Compiler to condense the binary

representation of symbolic names in symbol tables. Three characters, plus two symbol classification bits, are

contained in each lS-bit word. A symbol is defined as a string of one to six characters, i.e.,

where any of the possible six characters (C
1

through C
6

) can be defined as:

Character 6-bit octal code

Space 00

A 01

~ ~

Z 32

% 33

34

° 35

~ +
9 46

47

The characters which make up a symbol are linked together in the following manner :

Word 1

Word 2

((C 1 *50
S

)+C
2

)50
S

+C
3

((C
4

*50
S

)+C
5

)50
S

+C
6

For example, the symbol SYMNAM would be entered in the Loader's symbol table as:

Word 1

Word 2

ti .e., linking together

((23
8

* 50
S

)+31
S

)50
S

+15
8

= 475265 tt

((16
8

* 50
S

)+ 1)50
S

+ 15
S

= 053665

tt The sign bit of WORD 1 is set to 1 to indicate that this symbol consists of more than 3 characters and that the
WORD 2 is necessary.

A-l

APPENDIX B

LOADER SYMBOL TABLE

Common Block Name

Common Name

2

3

4

2

3

o 23 17

ID I Block Size

Name (2A)

Symtab address of last entry in chain

Block Definition

"Name" may require 2 words

o 23 17

ID I Symtab Chain Address

1 TV Address

Relative Address in Block

lJID = 7 when not defined

'lID = 3 when defined

_ 0 if no entries

_ 0 if not defined

- ID 4 Address = 0 if last entry in chain

_ BO = 1 for easy entry update

If associated COMMON block was defined when code 14 is encountered I no entry is needed in the symbol table.

Virtual Global (internal)

Internal Names

o 3 17

ID I Definition

2 Name (2A)

Definition (Virtual) = Absolute Address of last TV in chain

Definition (Internal) = Absolute Address of Symbol

a
ID

2

"Name" may require 2 words.

3 17

I Definition

Name (2A)

"Name" may require 2 words.

B-1

ID=O }
(If Program
Name ID = 6)

Virtual ID = 1

Internal ID = 5

Only entered
into the symbol
table during
DDT loads.

1.1 PROGRAM DESCRIPTION

SECTION 1

INTRODUCTION

CHAPTER 5
CHAIN AND EXECUTE SYSTEM PROGRAMS

Chaining in the Advanced Monitor System is a method of segmentation which permits multiple overlays of

executable code, constants, variables, arrays and labeled COMMON blocks. Core which is not overlayed

is available for inter-segment communications (i .e., blank COMMON).

a . CHAIN - a modified version of the Linking Loader which allows the user to build all the various
segments (or chains) of his program into an executable (XCT) type file. CHAIN is relocatable.

b. EXECUTE - a control program which initiates loading of an executable (XCT) file and transfers
control from one segment (chain) to another. EXECUTE is absolute.

1.2 CALLING SEQUENCE

FORTRAN IV

The statement CALL CHAIN (N) must be used to get from one program segment to another (i .e. , chain to chain).

The argument N is the number of the chain to be called; N can be greater or less than the current chain number

but cannot equal it. Variables and arrays which are retained from chain to chain must appear in blank

COMMON.

MACRO

The calling sequence for chaining in MACRO is:

.GLOBL CHAIN

JMS*
JMP
.DSA

CHAIN
.+2
N Where N is the address of a register containing the

number of the chain to be called.

NOTE

All I/o must be completed (.CLOSEd) before CHAIN is called.

1-1

The scratch, or inter-segment communication, area available to MACRO written segments is delimited by system

registers .SCOM+2 and .SCOM+3. The lower limit (.SCOM+2) remains constant throughout execution. The

upper limit (. SCOM+3) is the first register below the currently resident segment and will vary unless all seg­

ments are of the same size. The total size of this free area is greater than the sum of the size of CHAIN and

its I/o HANDLER(S) minus the size of EXECUTE'S I/o HANDLER.

1-2

SECTION 2

CHAIN SYSTEM PROGRAM

2.1 FUNCTIONAL DESCRIPTION

CHAIN is a relocatable system program which writes an XCT type file. Input consists of the standard relocatable

binary (FORTRAN IV or MACRO output) with appropriate calls for segment loading.

The following .DAT slots are used by CHAIN:

· DAT-6
· DAT-5
· DAT-4
· DAT-3
· DAT-2
.DAT-l

Output of XCT file
External Library
User Program(s}
Control and Error Messages
Command String
System Library

NOTE

If any of the bulk storage device handlers (e.g., DT or
DK) are used, the same handler must be used for all ap­
propriate . DAT slots. The different versions of handlers
are unable to communicate with each other. For ex­
ample, if input and output are to be to and from DECtape,
DTA. (or DTB.) should be assigned to .DAT slots -6, -4,
and -1.

The CHAIN program recognizes six commands (optional abbreviations are in parentheses):

a . BUILD FILENM ~

b. CHAIN (C) N ~

c. FILE1, SUB1, etc.~

d. END (E})

e. CLOSE)

f. EXIT)

2-1

BUILD FILENM - This command initiates the building of FILENM XCT onto .DAT-6. If no file name is given,

an error message results. This command is legal only immediately after the typeout of CHAIN. If it is used at

any other time, an error message results, and the BUILD command is ignored.

CHAIN(C) N - A chain with number N is begun at this point. N may be any positive, non-zero decimal num­

ber. It must be greater than any N given in a previous CHAI N command. This command is legal only after a

BUILD or an END command. If it is used at other times, it is ignored, and an error message given.

FILE1,SUB1, etc. - All commands immediately following the CHAIN command and before the END command

are interpreted as filenames to the Linking Loader portion of the XCT file builder. The following are illegal

file names: BUILD, CHAIN, C, END, E, and CLOSE.

If these files are to be loaded from a nonfile-structured device (e.g., paper tape) the file names can be omitted.

Only the number of files, N, need be indicated by typing N-1 separators.

NOTE

Fi Ie names may be separated by comma, space, carriage
return, or ALTMODE.

CLOSE - Finish building the file FILENM XCT, and restart CHAIN.

END(E) - Terminates the fi lenames used for a particular chain. This command must be used after a CHAIN com­

mand and with at least one fi lename between it and the CHAI N command. It can appear on the same I ine as

the filenames, if so desired.

EXIT - Return to Monitor. In the case of the I/o Monitor, CHAIN halts. It can be restarted from this point by

doing an I/o Reset and starting at location 363 (with the EXTEND switch up if the machine has more than 8K of

core).

2.2 OPERATING PROCEDURES

The following procedures are used in the performance of CHAIN's operations.

a. Ca" i ng Procedure

(1) Advanced Monitor System

To load and start the CHAIN system program, type CHAIN ~ after the Monitor's $ request.

(2) I/o Monitor System

To load and start the paper-tape version of CHAI N, p lace the tape in the reader; depress the tape­
feed switch to clear the end-of-tape flag; set the address switches to 17720 (for 8K or 12K), 37720
(16K or 20K), 57720 (24K or 28K), or 77720 (32K); and press I/o RESET and READIN.

2-2

When CHAI N is in core, the message

CHAIN
>

is typed on the teleprinter, and CHAIN waits for a command from the user.

b. General Command Characters

RUBOUT (echoes \)

CTRL U (echoes @)

CTRL P {echoes tP}

c. Restart Procedures

Delete last character in current line of command string.
May be repeated n times to delete n characters in a line.

Delete entire line.

Stop current program execution and restart the CHAIN
program at the beginning.

CLOSE Finish building FILENM XCT, and restart CHAIN.

EXIT Return to Advanced Monitor (or halt I/o Monitor System).

CTRL P {echoes tP}

d. Exomple

CHAIN
>BUILD TEST ~
>CHAIN 1 ~
>FILE 1, SUB 1, SUB2 ~
>SUB3, SUB4 ~
>END)

Memory allocation typeouts

>CHAIN 4)
>FlLE4, SUBA~
>SUBB, END ~

Memory allocation typeouts

>CLOSE
CHAIN
>EXIT

Stop current program execution and restart the C HAl N
program at the beginning.

Initiates building of file named TEST XCT
First chain
Programs in this chain
(First one is main program)
End of th is cha in

Last chain

End of th is cha in

Terminate TEST XCT

Return to Advanced Monitor {or halt I/o Monitor System}.

2-3

2.3 ERROR CONDITION TYPEOUTS

Message

?

ILLEGAL DECIMAL DIGIT

ILLEGAL COMMAND ORDERING

ILLEGAL CHAIN NUMBER

ILLEGAL FILE NAME

. LOAD N Errors

. LOAD 1

.LOAD 2

. LOAD 3

. LOAD 4

2.4 MEMORY ALLOCATION TYPEOUT

Meaning

Illegal command

Illegal decimal digit in chain number

Command entered is out of order and should not be used
at this point.

Chain number is less than or equal to the last chain number.

Fi Ie name used is same as a reserved command name.

Linking loader errors, which are terminal. CHAIN can
be restarted, however, by typ i ng contro I P.

Memory overflow
Input data error
Unsatisfied Global symbol (missing program)
Illegal . DAT slot requested by user program

a. Load addresses of programs, subprograms, and library routi nes loaded

FILE XXXX
SUB XXXX
LIBl XXXX

NOTE

XXXX is the relocation factor in octal.

LIBN XXX X

b. Special typeouts

CHAINII N (chain number in octal)
LOWEST XXXX (lowest reg ister used)

(contents of . SCOM+3 plus 1)
(C(. SCOM+3)+1)

COMSZE XXXX (size of blank common)

2-4

2.5 MEMORY MAP AT CHAI N BUILD TIME (same for each chain)

top of core

o

BOOTSTRAP

Reserved Area

USER PROGRAMS

SUB1
I/o
LIB 1
LIB2

NAMED
COMMON

SYMBOL TABLE

CHAIN

CHAIN'S I/o
HANDLERS

Resident Monitor
(including teletype

handler)

{
occupied at run time by EXECUTE starting at 17077,
37077, 57077, or 77077

{

NAMED COMMO N can go as low as the top of the
resident Monitor and EX ECUTE 's I/o Hand ler if
there is no blank COMMON

Blank COMMON is allocated at EXECUTE time.

(PRA. and PPC. for the paper tape
system)

NOTE

In systems with 12K, 20K or 28K of core, the bootstrap
loader does not reside in the top of core. Instead, it is
located in the top of the highest even 4K core segment.
When user programs are loaded into core, avo id over­
laying the bootstrap.

2-5

3.1 FUNCTIONAL DESCRIPTION

SECTION 3

EXECUTE SYSTEM PROGRAM

EXECUTE is an absolute bank relocatable system program which loads the first chain (i.e. , segment) of an XCT

type file and remains in core to load subsequent chains as they are called.

DAT SLOT USAGE

. DAT -4

. DAT-3

3.2 OPERATING PROCEDURES

Calling Procedure (Keyboard Monitor System)

XCT type file input (use smallest lOPS BINARY input
only handler (e.g . , DTC.) to allow maximum core area
for blank common)

Error messages

The command to load EXECUTE consists of either the letter E or the name EXECUTE and the name of the XCT

type file which is to be run; it has the following form:

MONITOR
$EXECUTE FILEN)

or
MONITOR
$E FILEN)

I/o Monitor System

To load the paper tape version of EXECUTE, place the tape in the reader; depress the tape-feed switch to clear

the end-of-tape flag; set the address switches to 17720 (for 8K or 12K), 37720 (16K or 20K), 57720 (24K or 28K)

or 77720 (32K); and depress I/o RESET and READIN. When EXECUTE is loaded, it types

RESTART INPUT & tP

Put the paper-tape XCT file in the reader, depress the tape-feed switch and type CTRL P.

3-1

3.2.1 Special Operational Characteristics

a. COMMON SiZE

A warning message is given if the blank common size in a new chain is different from that of the
previous chain.

WARNING - COMMON SIZE DIFFERS

b. NON BULK STORAGE INPUT

The following message is given if an attempt is made to call a chain number less than the current chain
using non-bulk storage input:

RESTART INPUT & tP

This means that the user should reload the XCT file in tape reader, depress the tape-feed switch, and
type CTRL P.

3.3 MEMORY MAP AT EXECUTE TIME

top of core

o

BOOTSTRAP

EXECUTE .-----17077, 37077, 57077 or 77077

USER'S
CHAINS

~ . SCOM+3 (highest free core location)

BLANK COMMON

• . SCOM+2 (lowest free core location)

EXECUTE'S I/O
HANDLER

(PRA. for the paper tape system)

RESIDENT
MONITOR

NOTE

In systems with 12K, 20K or 28K of core, the bootstrap
loader resides in the top of the highest even 4K core seg­
ment, which leaves 4K above the bootstrap. Execute is
loaded into the top of core, above the bootstrap. User
chain files are built to avoid overlaying the bootstrap.

3-2

SECTION 1

INTRODUCTION

CHAPTER 6
PIP

The Peripheral Interchange Program (PIP) is a utility program in the ADVANCED Monitor System used to transfer

data files from one standard peripheral device to another. PIP operates under Monitor control, using the Monitor

I/o device handlers.

Files can be verified, renamed, deleted, combined or split into segments. Entire DECtapes, or individual

DECtape blocks, can be copied and verified. File directories can be listed or initialized. Many of these func­

tions and other subsidiary functions can be combined by inserting optional switches when the user types a com­

mand string to PIP.

The following peripheral devices can be used as either input (source) or output (destination):

Peri phera I Devi ce

DECtape (TC02 Control Unit with TUSS
Transports)

Paper Tape Reader/Punch (PC1S)

line Printer (Type 647) (output only)

Teletype (KSR33 or KSR3S)

Card Reader (CR03B)

Magnetic tape (TCS9 Control Unit with
TU20, TU20A, TU30, or TU30A Transports)

Disk System (Type RB09)

Disk System (Type RF1S, RS1S)

Disk System (Type RP1S, RP02)

Display (VP1S, 611 Storage Scope)

1-1

Mnemonic

DTn

PR (Reader)
PP (Punch)

LP

TT

CR

MTn

DKn

RFn

RPn

VP

SECTION 2

DEVICE ASSIGNMENTS

Before using PIP, the user must be sure that the peripheral devices he plans to use are assigned to positive slots

in the Monitor's Device Assignment Table (.DAT), because PIP scans this table for legal assignments other than

teletype. Because .DAT slots -2 and -3 are assigned to teletype, PIP uses these for all teletype I/O. When

typing a command string, the user specifies devices simply by writing mnemonic codes, such as DT2, PR, or TT.

2.1 BASIC I/o MONITOR SYSTEM

In paper-tape I/o Monitor systems, where the Device Assignment Table is fixed, the user need not be concerned

with .DAT slot assignments. Table 2-1 contains the standard I/o Monitor assignments for PIP.

Table 2-1
I/o Monitor . DAT S lot Assignments

.DAT Slot No. Assignments

1 TTA
2 TTA
3 PRA
4 LPA
5 PPA
6 CDB
7 PPA

10 PRA

2.2 ADVANCED MONITOR

In ADVANCED Monitor systems, the user must ensure that the devices he plans to use are assigned .DAT slots.

The Monitor REQUEST PIP command is used to get a typeout of all current .DAT slot assignments. If a device

he plans to use is not listed, an ASSIGN command is used to assign that device to any positive .DAT slot. The

most complete handler (e.g., DTA, PPA, etc.) should normally be assigned. If the same device is to be used as

both the source and destination device, it must be assigned to two positive .DAT slots.

Because these . DAT s lot assignments are for use by PIP, the user need not remember them. Systems distributed

by DEC initially have the assignments shown in Table 2-2.

2-1

Table 2-2
Initial .DAT Slot Assignments

. DA T S lot No. Assignment

-3 TTA
-2 TTA

1 DTAO
2 DTAl
3 DTA2
4 TTA
5 PRA
6 PPB
7 DTAl

10 DTA2

2-2

SECTION 3

PIP COMMAND STRING: GENERAL

When PIP is in core memc;'y (in an Basic Monitor or ADVANCED Monitor environment), it informs the user of its

readiness to accept keyboard commands by outputting the following on the teleprinter:

PIP Vnn

>
The user can then type a command string to PIP on the same line as the right angle bracket (~. Successful

completion and readiness for the next command is normally acknowledged by CR, LF, > unless there has been

intermediate output to the teleprinter by PIP. In the latter case, the initial response (PIP, CR, LF, » is output

once again for ease of later printout examination. PIP command strings are of the following general form:

where:

a dd I :] fname I ; l ext (x) ... sd I : J fname [; J ext (x) [~]
l:iPACE LSPACfj LSPACE SPACE ALT MODE

a = A single letter, specifying a PIP operation.

dd = the destination device

fname = fi Ie name

ext = fi Ie name extension

(x) = letter(s) specifying a PIP switch option(s)

sd = source device

The left arrow C'-) terminates information concerning the destination device. Data for the source device follows

the CR or ALTMODE must terminate a command string. ALTMODE forces PIP to return control to the Moni­

tor upon successful completion of the command. CR causes PIP to wait for another command upon completion of

the current one.

Multiple spaces are ignored by the command string processor. In fact, delimiters are only required following

the operation character, devi ce names, and fi Ie names.

Example:

T DTl NEWNAM BIN (B) ... DT2 OLDNAM BIN)
or

T DTl: NEWNAM; BI N (B) ... DT2: 0 LDNAM; BI N ~

3-1

The elements in the preceding example are:

T

DT1, DT2

PIP Transfer Fi Ie operation

DECtape 1 is the destination device,
DECtape 2 is the source devi ce.

NEWNAM, OLDNAM

BIN

Fi Ie names

Fi Ie name extension

B

Transfer direction indicator (right to left,
i .e., DT2 to DTl)

Switch option

3.1 OPERATION CHARACTER

The first character in a PIP command string must be an operation character defining the main function to be per­

formed. It must be followed by a space. Legal operational characters are listed in Table 3-1 .

Table 3-1
PIP Operation Characters

(f) Transfer File (V) Verify Fi Ie

(L) Li st Directory (S) Segment Fi Ie

(D) Delete File (B) Block Copy

(C) Copy (N) New Directory

(R) Rename File

3.2 DEVICE NAME

Because the ADVANCED Software System provi des more than one devi ce handler for some peri phera Is, a two­

letter mnemonic (normally corresponding to the first two letters of the handler name) is used for device name

specification in PIP. Table 3-2 lists legal device names. For multi-unit peripherals (e.g., DECtape) the unit

number, 0-7, appears after the device mnemonic (e.g., DT7). The device name delimiter must be a colon (:)

or a space. The device name comprises three alphabetic characters, if desired (e.g., PRA, DT A7). This is

permitted in PIP for command consistency within the system; i.e., the user, accustomed to typing $ASSIGN

DT An ...•• to the Monitor, is relieved of learning a different convention for PIP.

Table 3-2
PIP Device Names

(PR) Paper Tape Reader
(PP) Paper Tape Punch
(TT) Teletype
(LP) Line Printer

3-2

(DT) DECtape
(MT) Magnetic Tape
(CD) Card Reader
(RF) Disk

3.3 FILENAME AND EXTENSION

Filename and extension, if used, constitute one element of the command string, where the filename delimiter is

a semicolon (i) or space. If the extension is omitted, the default assumption is three full characters (refer to

NOTE of paragraph 5.2). If more than one fi lena me is specified, the second, third, etc., are separated from

earlier names by commas (,). If the device is not a file-oriented device, file names can be omitted. Commas,

however, must sti II be used for fi Ie count purposes. Some examples of device, fi lename, and fi lename exten­

sions follow:

DT5:FILEA, FILEBiSRC (2 fi les)

(3 fi les)

(1 fi Ie)

or DT5 FILEA,FILEB SRC

PR:, ,

PP:

or PR 11

or PP

A fi lename is a string of up to six alphanumeric characters. Any printing character in the ASCII set can be

used with the exception of a space, (:), (i), (,), (() and ()), which have specific delimiter meanings to PIP.

The fi lena me extension can be up to three characters long.

3.4 SWITCH OPTIONS

Switch options are enclosed in parentheses and require no delimiters to separate them from each other. They may

appear either with the destination device information or with the source device information. PIP switch options

are divided into two classes: data modes and subsidiary operations.

3 .4. 1 Data Modes

(A)

(B)

(I)

(H)

(D)

lOPS ASCII

lOPS Binary

Image Alphanumeri c

Image Binary

Dump

3.4.2 Subsidiary Operations

(G)

(E)

(C)

(N)

(S)

(Y)

Display on teletype and allow correction of bad parity checksum lines

Convert tabs to spaces

Convert multiple spaces to tabs

New directory

New directory plus reservation of t QAREA

Segment fi Ie

(W)t Combine several source files, or tapes, stripping .EOT's and
. END's from intermediate tapes.

or

(W) t Combine severa I binary fi les, stripping EOF's from intermediate fi les.

(F) Insert a form-feed (FF) and a Carriage-Return (CR) after every .EJECT
statement or after every 57

10
lines.

(T) Delete trailing spaces from ASCII file.

(Q) Delete sequence numbers from ASCII input lines during transfer (T)
operations.

t .END and .EOT on the final ASCII tape and EOF of the final binary tape are retained.

3-4

SECTION 4

PIP FUNCTIO NAL DESCRIPTIO N

Functionally, PIP can be described in terms of operations wh i ch are specifi ed and subsi di ary switch functions

which are requested as parts of a given operation. All PIP operations and switches which are valid in the BASIC

I/o Monitor paper-tape system are also valid in the ADVANCED and Background/Foreground Monitor systems.

The converse is not true, however. Operations outl ined below are described in detai I and with examp les, in

Section 5.

4.1 OPERATIONS UNDER THE BASIC I/o MONITOR

Three PIP operations are provided in the BASIC I/o tv\onitor environment: Transfer File, Verify File, and

Segment Fi Ie.

4.1.1 Transfer File (T)

T performs basic data or fj Ie transfer from one I/o device to another. In the BASIC I/o tv\onitor environment

T is used to copy paper tapes and list paper tapes or card decks on the teletype or line printer. T also provides

the ability to create a source file by transferring from teletype to paper-tape punch. Paper tapes can be combin­

ed into one paper tape or segmented (lOPS ASCII tapes only) into several tapes.

4.1.2 Verify Fi Ie (V)

The V operation allows parity/ checksum verification of paper tapes. This function is particularly useful for

verifying paper tapes copied with the T command.

4.1.3 Segment File (5)

The 5 operation provides a means for segmentation of bulk source paper tapes into two or more smaller tapes.

All PIP operation commands are independent of other commands except Segment which is used prior to a Transfer

command in order to specify at what paints in the source fi Ie segmentation is to take place. The S command

string can accommodate up to sixteen segmentation points or character strings (1-5 characters) at the beginning

of lines at which segmentation is to take place. Each file is terminated with a .EOT just prior to the next seg­

mentation point. Transfer continues to the next segmentation point, etc.

4-1

4.2 SWITCH OPTIONS UNDER THE BASIC I/o MONITOR

The data mode switches which may be used in the BASIC I/o Monitor environment are:

(A)

(B)

(I)

lOPS ASCII

lOPS Binary

Image Alphanumeric

Function switches for use under the BASIC I/o Monitor are:

(G)

(E)

(C)

(Y)

(W)

(F)

(T)

(Q)

Correct bad parity lines

Convert tabs to spaces

Convert multiple spaces to tabs

Segment fi Ie

Combine files

Insert Form-Feed and Carriage -Return

Delete training spaces from ASCII files

Delete sequence numbers from ASCII lines

Switch options can be used for some operations but are meaningless for other operations. Table 4-1 lists legal

options by operation in the BASIC I/o Monitor environment. Furthermore, certain switch options conflict;

e.g., combining the option to convert tabs to spaces (E) and spaces to tabs (C) is clearly a conflict. Table 4-2

lists lega I switch combi nations for the pri mary PIP operation , Transfer Fi Ie.

Table 4-1
Legal Operation/Switch Combinations

Operation Legal Switches

Transfer Fi Ie (f) A,B,I,E,G,C,W,Y, F, T, Q

Verify File (V) A or B

Segment File (S) (None)

4-2

Subsidi(!ry
Operations

<

,..

'-

4.2.1 Image Alphanumeric (I)

Table 4-2
Legal Switch Combinations for Transfer File (T)

Subsi diary Operations --,
Switches A B I E G C W Y T F

E j ~ j j j

G J j ~ j j j j j

C I I ~ j j ./ ./
W ./ j I j ~ ./ j

y .; j I ~ j j

T ../ I j ./ ./ ~ j

F j j j I j j j ~
Q j j j I j I J

\

Q

./
I
j

j

j

j

~

The I data mode permits copying of any paper tape but, in particular, I must be used when copying tapes which

are in Hardware Read-in Mode (HRM or RIM tapes). Thus, MACRO .ABS or .FULL tapes require the I data mode.

4.2.2 lOPS Binary (B)

Relocatable binary tapes are reproduced using the binary data mode B.

4.2.3 lOPS ASCII (A)

Source tapes are normally copied using the A data mode. It should be noted, however, that use of the A mode

results in lOPS ASCII paper tapes having even parity in channel 8 of each frame. If for some reason this is

undesirable to the user, a data mode of I is recommended. ASCII line buffers can accommodate the 120-

character line printer length.

4.2.4 Bad Parity Correction (G)

Whenever data modes A or B are specified during a Transfer command, PIP automatically verifies the correct­

ness of parity/ checksum. The G switch, used with lOPS ASCII mode only, allows the user to modify erroneous

input lines via teletype keyboard input. User intervention takes one of three forms: the line may be deleted,

the line may be accepted, or the line may be replaced from the keyboard. The option to restart CTRL P is

always avai lab Ie.

4-3

4.2.5 Tab to Space Conversion (E)

The E switch allows for conversion of horizontal tabs to spaces to allow off-line listing of ASCII tapes on Model

33 Teletypes. It is used with lOPS ASCII tapes. lOPS (Input/ Output Programming System) follows a tenth

position tab setting convention; thus, enough spaces are substituted for a tab to place the next printing character

of the line in position 10,20,30, etc.

4.2.6 Space to Tab Conversion (C)

To condense an ASCII paper tape, the C switch is used to convert multiple spaces on an input file into horizontal

tabs on the output file. Trailing spaces are simply deleted. Again, C is legal only when used with the A data

mode.

4.2.7 Segment File (Y)

To apply the Segment operation during a Transfer fi Ie command, a Y switch is required in the T command string.

On the basis of the Y switch, the lOPS ASCII input fi Ie is segmented into the number of output fi les specifi ed

in the preceding S command.

4.2.8 Combine Files 0N)

Although combining files, or a series of paper tapes into one file, is most common when transferring from paper

tape to a mass storage medium, it is possible to combine several small paper tapes into a single larger paper

tape by indicating a W switch in a T command. Either lOPS binary or ASCII tapes can be so combined. For

binary files, all but the final EOF block of the input tapes are discarded on output. Likewise, when combining

a series of lOPS ASCII paper tapes, all .EOTs and. ENDs are stripped except that of the final input tape.

4.2.9 Insert Form Feed (F)

The F switch is used to automatically execute a form-feed (FF), followed by a carriage-return (CR) , after each

.EJECT statement or block of 5710 lines if no previous FF had been encountered in the block. The F switch is

used only with the Transfer T command in the data mode A.

4.2.10 Delete Trailing Spaces (T)

The T switch is used to delete trailing spaces from each line of an ASCII file. This switch is employed during

a Transfer command T and data mode A.

4-4

4.2.11 Delete Sequence Numbers (Q)

The Q switch causes the deletion of all sequence numbers from input ASCII lines during the Transfer command.

The switch is primari Iy intended for card conversion to some other medium. Columns 73-80 are deleted leaving

a 72-character line with a carriage return as the 73rd character. The Q switch is legal only with A data mode

in a Transfer command. It can be combined with C (spaces to tabs) or T (delete trailing spaces).

4.3 OPERATIONS UNDER THE ADVANCED OR BACKGROUND/ FOREGROUND MONITOR

The presence of mass storage devices in a system configuration allows additional operations with PIP. In addition

to the Transfer, Verify and Segment file operation, the following are available:

a. List Directory d. Rename Fi Ie

b. New Directory e. Copy Tape, and

c. Delete File f. Block Copy.

(Additional switch options also become avai lable as needed.)

4.3.1 List Directory (L)

The directory of any fi le-structured mass storage device can be listed on teleprinter or line printer with the L

command. The fi lename, extension, starting block number, and number of blocks occupied are printed along

with the number of system blocks and free blocks remaining.

4.3.2 New Directory (N)

The N command provides recording of a fresh directory on a mass storage device. In the case of DECtape, the

File Bit Map blocks are cleared and the Directory block is initialized to indicate only the File Bit Map and

Directory blocks as occupied.

4.3.3 Delete Fi Ie (D)

To delete one or more named files from a mass storage device, the D operation is employed. Deletion implies

removing references to the fj Ie from both the Directory and Fi Ie Bit Map blocks.

4.3.4 Rename Fi Ie (R)

Renaming one or more fi les requires an R command. Only the name and extension in the Directory are changed.

4-5

4.3.5 Copy Mass Storage Un it (C)

This function provides a convenient means of reproducing topes (especially system tapes) in their entirety.

Programmed read-after-write verification is performed.

4.3.6 Block Copy (B)

The block copy operation is used with DECtape or any mass storage device which is unit oriented to copy one or

more blocks (e.g., when one or a few blocks on a tape seem suspect after a copy operation). There is no need

to recopy an entire tape; blocks to be copied and verified are simply specified by their octal block number

(0-1077) .

4.4 SWITCH OPTIONS UNDER THE KEYBOARD MONITOR

Four additional switch options are available in an ADVANCED Monitor environment. Two are data modes:

Image Binary (H) and Dump Mode (D). Two are subsidiary functions: New Directory (N) and New Directory

with t QAREA (S).

Tables 4-3 and 4-4 summarize legal switch/operation combinations within an ADVANCED Monitor environment.

Table 4-3
Legal Operation/ Switch Combinations

Operation Legal Switches

Trans fer Fi Ie (T) A,B,I,H,D,E,G,C,W,Y,N,S,F,T,Q

Verify Fi Ie (V) A or B

Segment Fi Ie (S) (None)

Li st Directory (L) N or S or None

New Directory (N) S

Delete File (D) (None)

Rename Fi Ie (R) (None)

Copy Tape (C) N or S or H or None

Block Copy (B) Nor S or None

4-6

Subsidiary
Operations

4.4.1 Image Binary (H)

Table 4-4
Legal Switch Combinations for Transfer File

Data Modes Subsidiary Operations

r------~'----~"r-----------------~~'-----------------~\

Switches A B I H D E G C W Y N S T F Q

E j ~ j j .; j .; j

G j ..; ~ j j j j j .; .; J

C .; j ~ ,J ..; j j j ,; j

W j ..; j j j ~ j .; j j ,J

y j j ,; j ~ j j j j j

N .; ..; ..; J j j .; j j j ~ I
S .; ,; .; .; j j j ,; j j ~
T ,; j .; j ./ ~ ,J j

F j j .; ..; j j ..; ~ j

Q .; j j .; ..; j j ~

The reader is referred to the applicable Software System manual (see Preface for list of applicable manuals) for

a discussion of data modes. The use of Image Binary as a data mode on mass storage devi ces such as DECtape or

disk implies the intent to retain the exact form of the binary data as it originally appeared in hard copy; e.g.,

paper tape such that, at a later time, the original data can be retrieved (once again onto paper tape) without

alteration. It should be noted again that use of Image ASCII always exactly reproduces an identical tape,

whether or not DECtape or disk has been used for intermediate storage (see Section 4.2 . 1).

The meaning of Image Binary as a switch option with the Copy (C) function is expanded beyond its customary

meaning to imply a block-by-block DECtape copy. Later examples will illustrate this use of H mode.

4.4.2 Dump Mode (D)

Files recorded in dump mode reside on a mass storage device; thus, D is used as a data mode most frequently

when transferring to and from mass storage. There is no restriction on its use from mass storage to paper tape,

or vi ce versa, however.

4.4.3 New Directory (N)

The N switch option, like the N operation, initializes the Directory of the destination device. Permitting its

use as a switch provides the added convenience of combining operations in a single command string.

4-7

4.4.4 New Directory With t QAREA (5)

As a function of installation core size, the 5 switch initializes the Directory of the destination device, reserving

tQAREA blocks, as well as basic system blocks, for Directory and File Bit Map. For example, in an 8K system,

32
10

additional blocks are specified as occupied in the Directory.

4-8

SECTION 5

PIP COMMAND STRING

This section illustrates PIP commands and usage in detail. Basic I/o and ADVANCED Monitor environmental

differences have previously been discussed, and no further mention is made here. Examples are given without

the optional colon (:) and semicolon (;) delimiters for use with which the reader may refer to Section 3, page 3 .

5 . 1 TRANSFER FILE (T)

The T command operations include listing, copying, creating, combining, and segmenting files. An input and

an output devi ce are required in the command string, as well as one of the five data modes. Fi Ie names must be

specified only for file-structured devices.

Filename extensions SRC or BIN can be omitted in the T command if data mode A or B is included in the command

string (see NOTE of 5.2.). Conversely, data mode A is assumed if file extension SRC is used; B, if BIN is used.

5.1.1 Copying Files

The command :

T DT7 FILEA (A) -- PR)

copies a single tape from the paper-tape reader to DECtape unit 7 in lOPS ASCII mode.

The command :

T DT7 FA SRC,FB SRC,FC SRC PR ,,)

transfers three paper tapes as three separate files named FA SRC, FB SRC, and FC SRC.

The command:

T DT2 FILNEW (B)-- DTl FILOLD)

not only transfers FILOLD BIN from DECtape unit 1 to DECtape unit 2 but also renames the file: FILNEW BIN.

5-1

5.1.2 Creating Files

Creating a file is normally an Editor function. However, a T command from teletype to any output device is

perfectly legitimate . It should be kept in mind, however, that correction facilities provided by an Editor are

not in PIP.

The command :

T PP (A) - Tn

directs PIP to accept the input from teletype to be punched on paper tape. To terminate fi Ie creation, a final

line consisting of t D (CTRL Key D) must be typed.

5.1.3 listing Fi les

The command :

T LP - RF FILNAM SRC)

lists FILNAM SRC on the line printer. lOPS ASCII is the only permissible mode to the line printer. Both lOPS

and image ASCII are acceptable to the teletype, the alternate listing device.

5 . 1.4 Using the G Switch

PIP normally examines the correctness of parity and checksum when data mode A or B is specified . Transfer is

discontinued after display of one of the two following messages on the teletype :

INPUT PARITY ERROR

or

INPUT CHECKSUM ERROR

The G switch, used only with data mode A, allows for user correction of an ASCII line with bad parity. Consider

the following example:

T DT7 FILEA (AG) -PR ~

is typed. During transfer bad parity is encountered and the input parity error message is output on the teletype

followed by the line in error. The user can:

a. Accept the line by typing a carriage return.

b. Delete the line by typing D ~

c. Retype the line, terminating with a carriage return .

5-2

d. Abort the operation by typi ng t P to restart PIP or I C to re load the Monitor
(IC is ignored in BASIC Monitor environment).

5.1.5 Using the Cor E Switches

The C or E switch are used only with A as the data mode. C and E can not be used together.

The command:

T DT7 FILEA SRC (C) -PR ~

effects a transfer from paper tape to DECtape, during which process all multiple spaces are converted to tabs

and trai ling spaces are deleted.

The command:

T PP (AE) -DT2 FILEB ~

effects a transfer of FILEB SRC from DECtape unit 2 to the paper-tape punch, during which process all tabs are

converted to spaces allowing listing of the fi Ie on an off-line teletype which lacks a tabbing mechanism.

5.1.6 Using the Nor S Switch

Initializing the directory of certain mass storage devices, e.g., DECtape, is a frequent operation. The N

switch allows initialization within the context of a Fi Ie transfer. S is the only switch which conflicts with N.

The command:

T DT4 FILEA IMG (IN) -PO

initializes the Directory and Fi Ie Bit maps of DECtape unit 4 and, subsequently, transfers the paper tape fj Ie to

DECtape in image ASCII mode.

The New Directory (N) command or switch causes a blocks to be reserved as fi Ie bit map blocks (required for

DECtape 56-file capacity). These blocks are: the directory (block 100a) and 7-file bit map blocks (71 athrough

77 a)'

S swi tch - As a function of insta II ation core size, (determi ned at system generation ti me), the S switch refreshes

a directory, reservi ng t Q area b locks as well as basic system blocks for directory and fi Ie bit maps. For ex­

ample, in an aK system, 32
10

additional blocks (lOla through 104
a
) are specified as occupied in the directory

(b lock 1 OOa)'

5-3

S is a permissible switch (the only one) in a Newdir (N) command. Whereas,

N DT2

reserves on I y di rectory and fi Ie bit map blocks,

N DT2 (S)

additionally reserves t Q area blocks. Sand N are mutually exclusive when both are used as switches in other

PIP operations.

5.1.7 Using the W Switch

Source fi les are frequently of such size as to require several paper tapes. Although they may be maintained on

a mass storage device in segmented form, it is more often desirable to combine the segments into one file. The

W switch performs this function. It is legal with data modes A or B and conflicts with the Y switch.

The command:

T DTl FILEA (AW) PR 1111)

transfers five ASCII paper tapes to DECtape unit 1 as the single file, FILEA SRC. Because intermediate .EOT

or .END pseudo ops are no longer useful, all but the one on the final tape are deleted during transfer.

Used with data mode B, the W switch provides a convenient way to combine several binary subprograms into a

single file, e.g., a binary file.

The command:

T DT6 UBRY BIN (W) DTl A BIN, B BIN ,C BIN)

combines the three binary files, A BIN, B BIN and C BIN into one file UBRY BIN, deleting intermediate End­

of-Fi les in the process.

5.1.8 Using the Y Switch

In contrast to the W switch which combines files, the Y switch is used when ASCII file segmentation is required.

It is used only with data mode A and conflicts with the W switch. Given a sizable source file on mass storage

which is to be segmented, the command:

T PP 1111' (Y) DTl FIUG SRC)

results in FILBIG SRC being split into six paper tapes where five segmentation points must have been specified

in an S operation immediately preceding the current T command string (see Section 5.3).

5-4

The command:

T DT3 FA,FB RF FILBIG (AY) ~

similarly segments the disk file FILBIG SRC into two smaller DECtape files, FA SRC and FB SRC. The preceding

S operation wi II have specified one segmentation point.

As each output file is closed, PIP outputs tP, which is the restart request, on teletype. This is done to allow

dismounting of tapes or removal of tape from the punch.

5.2 VERIFY FILE (V)

File verification is performed in either lOPS ASCII (A) or lOPS binary (B) data modes. No other switch options

apply to the veri fy operation. There is no output; thus, only the input devi ce (and fi lename if a fj Ie-structured

device) need be specified.

The command:

V PR (B) ~

requests parity and checksum verification of one binary paper tape. If a parity error occurs, the following

message is typed:

INPUT PARITY ERROR

If there is a checksum failure:

INPUT CHECKSUM FAILURE

For an ASCII file, the error line is also printed. In either case, after the message is printed, verification

conti nues unti I the entire fi Ie has been exami ned allowing the user to assess how many errors are present.

Multiple files may be verified in a single command string. For example, the command

V DT3 FILEA SRC,FILEB SRC ~

requests verification of both FILEA SRC and FILEB SRC.

NOTE

To simplify even more the user interface to PIP, fi Ie
name extensions SRC and BIN may be omitted in the
Transfer (1) or Verify (V) commands if the appropriate
data mode switch (A or B) appears in the command
string, for example:

T OT2 (A) -OTl FILE)

effects a transfer of FILE SRC to OT2. If program FILE
(no extension) exists on OTl , it wi II be transferred.

V OTl FILE (A))

causes FILE SRC to be verified.

Conversely: if SRC or BIN appears as an extension in
the command string (T or V), data mode A or B (which­
ever applies) is assumed, for example,

T OT2 -OTl FILE SRC ~

is the same as T OT2 (A) -OTl FILE SRC ~
is the same as T OT2 (A) <-OTl FILE)

5.3 SEGMENT FILE (S)

The S operation allows specification of up to 16 file segmentation points. Oevice names, file names, and

switch options are all meaningless in the S command.

The segmentation points are specified as one to five character strings. In the subsequent T command, if a Y

switch is specified, PIP examines the beginning of every line for the specified segmentation points in order of

occurrence. Vertical form control characters at the beginning of a line are excluded from the string search.

As each segmentation point is found, PIP closes the current output fj Ie segment, appending the pseudo op,

.EOT, at the end of the segment. The next segment starts with the line which begins with the current segmenta-

tion point.

The command:

S TAGA,TAGB,TAGC,TAGO)

sets up the four segmentation points TAGA,TAGB,TAGC, and TAGO for the immediately following command:

T PP ",,(AY) -OT3 FILBIG SRC)

the end result is five paper tapes; all but the last of which are terminated with .EOT. The last four begin with

the lines T AGA---, T AGB---, etc.

5-6

As each segment is completed, t P is output on the te lepri nter, a /lowing ti me to remove the paper tape segment,

di smount tapes, etc. When ready to conti nue, the user simp Iy types CT RL P and PIP resumes segmentation.

5.4 LIST DIRECTORY (L)

The Directory contents of any file-structured device can be listed by the L operation. The Nor S switch options

can be used.

The command:

L TT DT 1)

results in a printout such as the one below:

5.5 NEW DIRECTORY (N)

DIRECTORY LISTING

115 FREE BLKS

3 USER FILES

10 SYSTEM BLKS~ 1st Block of File

MACRO ONE 4 226 # of Blocks Occupied

MACRO TWO 5 140

MACRO SRC 6 365

Although the N function can be performed as a switch option in the command string of another operation, it is

useful to include it as a distinct operation. The S switch is the only switch option used with the N command,

and only the destination device need be specified.

The command:

N DT4)

results in a fresh directory on DECtape unit 4, a listing of which (as requested by an L operation) appears as

follows:

DIRECTORY LISTING

1070 fREE BLKS

o USER FILES

10 SYSTEM BlKS

The 10
8

system blocks are the Directory and seven File Bit Map blocks.

5-7

5.6 DELETE FILE (D)

File deletion is performed by the operation D. Only the destination device is specified. No switch options

are used.

The command:

D DT3 FILEA, FILEB ~

causes PIP to delete both FILEA and FILEB from DECtape unit 3. If an extension is present, e.g., SRC or BIN,

it must be typed in the Delete command.

5.7 RENAME FILE (R)

The R command is used to rename fi les on a fi Ie-structured device without data transfer of any kind. No other

unit is needed, although the device name must appear with both source and destination data. A simple nine­

character name substitution takes place into the directory entry section of the directory block. All switch options

are illegal.

The command:

R DT2 NEWNAM BIN -DT2 OLDNAM BIN ~

changes the name of the file OLDNAM BIN ON DECtape unit 2 to NEWNAM BIN.

5.8 COPY MASS STORAGE UNIT (C)

Copying the contents of one file-structured device onto another implies one of two tasks:

a. incorporation of all information on the input device into the organization and content
of the output devi ce

b. total replacement of all information on the output device by information on the input
device.

The Copy (C) command with H switch specified (that is a direct unit copy in its entirety) uses all of the available

core memory. The fastest possible copy (using H switch) is obtained by assigning DTD (for DECtape) to all possi­

ble . DAT slots prior to loading PIP.

The command:

C DT5 (H) -DT3)

replaces all data on DECtape unit 5 with data from unit 3 in a block-by-block copy and read after write.

5-8

Incorporation is effected in one of the following three ways:

a. Absence of switch options in the C command:

C DT5 -DT3 ~

All files on DT3 will be incorporated into the file organization of DT5.

b. Use of the N Switch:

C DT5 (N) -DT3 ~

Prior to transferring the fj les on DECtape unit 3 to unit 5, the Directory and Fi Ie Bit Maps
of unit 5 will be initialized.

c. Use of the S Switch:

C DT5 (S) -DT3~

Prior to transferring the fi les on DECtape unit 3 to unit 5, the Directory and Fi Ie Bit Map
of unit 5 will be initialized and a tQAREA will be reserved.

5.9 BLOCK COPY (B)

To copy one or more blocks of one DECtape onto another, the B command is used. Switches N or S can be

used within the command string a Iso. Instead of specifyi ng fj Ie names, actua I octal b lock numbers (0-1077)

are given in the command string. These block numbers can appear either with the destination or source data

and are separated by commas.

The command:

B DT7 DT4 5, 15, 165, 1075~

or

B DT7 5,15,165, 1075 DT4~

requests copy and verification of blocks 5,15,165 and 1075 from DECtape unit 4 to unit 7.

The command:

B DT2 10, 15 DTl 4,3)

requests blocks 4 and 3 of DECtape unit 1 to be copied (and verified) onto blocks 10 and 15 of DECtape unit 2,

respectively.

5-9

SECTION 6

CORRECTION PROCEDURES

There are four correction procedures used with PIP:

a. Aborting the task

b. Deleting one or more characters in a command string

c. Negating the entire command string

d. Responding with corrected command string information after a PIP error message.

The procedure chosen is largely a function of what point in the PIP process the user decides to correct or to

modify PIP action.

6.1 tp (CTRL KEY P)

A task can be aborted and PIP restarted by typing in the tP (CTRL P) character at any time. tP also indicates

loading of the next in a series of paper tapes or output of the next in a series of files during segmentation. For

example, at the end of each of several paper tapes to be combi ned into one output fi Ie, PIP types t P on the

teleprinter, directing the user to load the next paper tape. When ready, the user types tP for PIP to continue.

6.2 RUBOUT (RO)

During typing of a command string, one or more characters can be deleted by use of the rubout (RO) key. For

each character deleted, starting with the last one typed, a back slash (\) is echoed. For example:

T ZT3 \ \ \ DT3 FILEA (A) "PO

The character Z is in error. Three rubouts have been used to back up to the erroneous character.

6.3 tu (CTRL KEY U)

At any point while typing a command string, that is, prior to the CR or ALTMODE, a t U can be typed to delete

the entire command string up to that point. An "at" sign (@) is echoed. The user then starts from the beginning

of the command string again.

6-1

The command:

T ZT3@T DT3 FILEA (A) PR ~

demonstrates a t U correction.

6.4 PIP Error Detection and Correction

After a command string is completed, PIP checks for erroneous information. If erroneous information is found,

an appropriate error message is output to the teleprinter and the questionable command string is output up to, but

not i ncl udi ng, the offendi ng character or element fo IIowed by " ?" , requi ri ng correct compl eti on by the user.

If the user prefers to retype the command, a carriage return or t P signals PIP to accept a new command from the

beginning. The characters RO and t U should not be used, because it is the teletype handler (whi ch no longer

has access to the erroneous command string), not PIP, whi ch interprets and acts upon RO and t U.

Appendix II contains a complete list of PIP error messages. Only two examples are cited here. Suppose a user

intends to transfer an lOPS ASCII file from paper tape to DECtape. He types:

T DT2 FILEA SRC (P) PR)

Recognizing P as an illegal switch option, PIP types:

ILL SWITCH

T DT2 FILEA SRC(?

The user can either complete the command string from the erroneous character or element on to the end, or use

an t P to indicate he prefers to restart the message.

If a DECtape handler is not assigned to any of the positive . DAT slots, PIP types in response to the above example:

DEV NOT IN + .DAT TABLE

T?

to indicate that the command was in error (could not be honored ,due to absence of the necessary. DAT assign­

ment) at the point of the device and unit specification code.

6-2

Command

Transfer File

Verify Fi Ie

Segment Fi Ie

Command

Transfer Fi Ie

Verify Fi Ie

Segment Fi Ie

List Directory

New Directory

Delete File

Rename File

Copy Tape

Block Copy

Abbrev.

T

V

S

APPENDIX A

SUMMARY OF PIP COMMANDS

Basic I/o Monitor Environment

Dest. Dev. Source Dev. File Names

Yes Yes No

No Yes No

No No No *

ADVANCED and Background/Foreground Monitor Environment

Abbrev . Dest. Dev. Source Dev. File Names

T Yes Yes Yes

V No Yes Yes

S No No No *

L Yes Yes No

N Yes No No

D No Yes Yes

R Yes Yes Yes

C Yes Yes No

B Yes Yes No **

*Segmentation points instead of fj Ie names.

**B lock numbers instead of fj I e names.

A-l

Legal Switches

A,B,I,E,
G,C,W,Y,F,T,Q

A or B

None

Legal Switches

A,B ,I ,H ,D ,E,
G,C,W,Y,N,S,F,T,Q

A or B

None

Nor S

S or None

None

None

Nor S or H

Nor S

SECTION 1

INTRODUCTION

CHAPTER 7
DSKPTR/DSKSAV UTILITY PROGRAMS

Two utility programs are clescribed in this section: a) DSKPTR, which performs the loading of Disk systems from

paper tape; b) DSKSAV, which controls the saving and loading of Disk system software via DECtape.

DSKPTR UTILITY PROGRAM

In PDP-15 systems which have a Disk but no DECtape units, the system software is provided to the user in the

form of a group of 24 paper tapes. The DSKPTR Utility Program performs the operations needed to load the sys­

tem from paper tapes.

In addition to its system load function, DSKPTR also enables any logical disk unit or 6K segment of these units

to be either loaded from paper tape or its contents punched out onto paper tape. These additional functions

are controlled according to the settings of the console AC Switches.

Paper Tape Data Format (See Figure 1)

The data format of tapes generated or loaded via DSKPTR is as follows: each tape consists of 6K or 24 logical

256
10

word sequential disk blocks. Each data block on paper tape is preceded by 6 blank frames to aid visual

identification.

BLOCK N

BLANK

BLOCK Ntl

--

FRAME 0-2
BLOCK # (0-1077)

~
FRAME 3-5 •
BLOCK CHECKSUM

256 BI NARY DATA WORDS

• BLOCK CHECKSUM = 2'S COMPLEMENT
CHECKSUM OF BLOCK # + DATA WORDS

15-0067

Figure 1-1 Paper Tape Block Format

1-1

SECTION 2

DSKPTR OPERATING PROCEDURE

The following steps describe the procedure required to load the Disk system via paper tape, the possible errors,

and the action to be taken for each error condition.

2

3

4

5

6

Procedure

Set Disk unit control panel WRITE PROTECT switch to the OFF position (down) .

Place the paper tape of DSKPTR in reader with address switches set to 17720.

Press I/O RESET and READIN.

When the program is loaded, it will display its title, DSKPTR and skeletal directions
on teletype.

SET : ACSO=Ot
ACS15-17 = Unit#

Paper tape to disk
0,1,2,4,5,6

Place the first disk system tape in reader and press CONTINUE.

"HIT CONTINUE FOR NEXT TAPE" will be typed on the teletype when the tape has
been read correctly. Load the remaining 23 topes in a similar fashion. Note, any
number of tapes (up to the full 24) can be loaded in any order .

The following errors may be displayed on the teletype during loading:

a. Unit Error: ACS15-17 = 3 or 7 .

Action: (1) Reset ACS15-17 = 0, 1,2,4,5,6

(2) Press CONTINUE

b. Re load Tape: Reader end-of-tape condition at illegal point.

Action: (1) Reload tope

(2) Press CONTINUE

c. Input Checksum Error : Block checksum incorrect.

Action: (1) Reload tape from beginning, OR position tope to the front of block in error,
or leave tape in current position. tt

(2) Press CONTINUE

t ACSO - 17 = 0 for full system load onto disk.

t tData block in error will be accepted as is.

2-1

7

a
9

Procedure

When the disk system is loaded, set the WRITE PROTECT switch and the three rightmost
track switches to the ON position (up).

Load the Disk Bootstrap into the reader with address switches set to 17637.

Press I/o RESET and READIN. Monitor will be loaded from the disk and will type:

$ MONITOR Vnn

The system is now ready for operation. If the disk diagnostics have been run or if data on other areas of the

disk is suspect, all user disk unit directories must be refreshed at this point. This is done with the MONITOR

Newdir (N) command, for example,

$ N D

refreshes disk unit 1. This command should be issued for units 1, 2, 4, 5, and 6 before further operation.

DSKPTR can be used to punch out 6K areas of the disk, as follows :

2

3

4

Procedure

Repeat Steps 1, 2, and 3 of loadi ng procedure.

SET : ACSO = 1
ACS15-17 = Unit It
ACS5-14 = Logical Block It 0, 30,60 1050att

Press CONTINUE

Repeat Step 6 of loading procedure.

The following errors may be displayed on teletype during disk to punch output:

a. Unit Error: (See loading procedure)

b. Re load Tape: Punch out of tape

Action: (1) Reload punch

(2) Press CO NTINUE

(3) Splice Tape

tt ACS5-14 = 0 causes punching of all 2410 tapes for disk unit (ACS 15-17). ACS5-14 = NO N 0 causes punching
of one 6K paper tape starting at the logical block specified. This feature is particularly useful when PATCH is
used for system program modification and a si ngle back up paper tape of the associated disk area is desired.

2-2

c. Disk Error: Probably parity error. AC wi" contain disk status. Look at disk control panel for AC
bit meaning.

Action: Since DSKPTR will have tried 8 times to read disk

(l) Reset at 16000 or

(2) Press CONTINUE to accept data.

2-3

SECTION 3

DSKSAV UTILITY PROGRAM

Once a Disk system has been generated, it is valuable to produce a backup system on DECtape to permit rapid

disk restoration if it is needed. Utility program, DSKSAV, is used to read and store (save) the generated Disk

Advanced Software System and/or the contents of other logical Disk units, and to load the stored information

back onto the disk when necessary.

When used for Logical Disk Unit save/load functions, DSKSAV is controlled by the settings of the console AC

switches.

DSKSAV Save/Load Operating Procedures

The following steps describe the procedure required for the program save/load operations, the errors which could

occur, and the actions to be taken in response to each type of error.

2

3

4

Procedure

Place paper tape of DSKSAV in reader with address switches set to 17720.
(Restart = 16000)

Press I/O RESET and READI N.

When the program is loaded, it will type its title, DSKSAV, and brief directions
on the console teletype. The program is stopped to allow ACS settings.

Set: ACSO=Ot
ACSO=l
ACS 15-17=Unit#

DECtcpe to Disk (LOAD)
Disk to DECTAPE (SAVE)
0,1,2,4,5,6

Ensure that the DECtcpe unit selection is identical to ACS 15 through 17, and press
CONTINUE.

The following errors may be displayed on the teletype during loading:

a. Unit Error: ACS15-17 = 3 or 7.

Action:

b. Disk Error:

(1) ResetACS 15-17=0,1,2,4,5,6

(2) Press CONTINUE

Probably illegal disk address (for example, attempt to load disk with
WRITE PROTECT switch enabled).

AC contains disk status. Examine disk control panel for AC bit meaning.

Action: Correct disk problem if possible and press CONTINUE.

t ACSO-17 = 0 for fu" system load onto disk.

3-1

c. DECtape Error: Probably end zone error . AC contains DECtape status. Examine DECtape control
panel for AC bit meaning.

Action: (1) If DECtape is in the forward end zone, press CONTINUE.

(2) If DECtape is in the far end zone (beyond block 1077), position tape out of
end zone, and press CONTINUE.

(3) If parity or mark track error t , press CONTINUE to restart transfer from the
beginning, or set ACSO through 17 = 0 and press CONTINUE to retry read one
more time.

If DSKSAV is being used to load the Monitor system from DECtape to Disk, the following procedure should be

followed for system startup:

Step

2

3

Procedure

When the disk system is loaded, set the WRITE PROTECT switches for tracks 0 through
29.

Load the Disk Bootstrap into the reader with address swi tches set to 17637.

Press I/O RESET and READIN. The Monitor will be loaded from the disk and the
message is typed out .

$ MO NITO R Vnn

The system is now ready for operation. If disk diagnostics have been run or if data on other areas of the disk is

suspect, all user disk unit directories must be refreshed at this point. This is done with the MONITOR Newdir

(N) command, for example,

$ N q

refreshes disk unit 1. This command should be issued for units 1, 2, 4, 5 and 6 before further operation.

NOTE

DSKSAV can also be used to save or load other logical units
of the disk. This provides rapid DECtape backup of any or all
disk data files. To do so, follow Sfep 1 and 2 above under
loading procedure.

t DSKAV will have tried to read four times before the message is printed.

3-2

SECTION 1

INTRODUCTION

CHAPTER 8
PUNCH UTILITY PROGRAM

The PUNCH utility program permits the user to output I in an I/o Monitor environment I a selected core area

and a .ASS loader onto paper tape. The three primary applications of this utility program are:

a. System program modification or patching;

b. . DAT slot reassignment;

c. Production of an executable user program core load on a single paper tape. Th is application is
useful for core loads which consist of a relocatable main program and several subprogram/library routines.

The PUNCH utility program is provided as a . FULL tape which is loaded starting at location 17720 of the highest

available core bank.

The output of a PUNCH operation may be from one to nine. ASS tapes (each preceded by a .ASS loader) which

are loaded in a Hardware READIN Mode (HRM) starting at 17720 of the highest available core bank. The areas

of core which are punched out are 0 to the address in . SCOM+2 and the address in . SCOM+3 to the address

just below the .ASS loader (17717 of the highest core bank).

1.1 EQUIPMENT REQUIREMENTS

An 8K system equipped with a high-speed reader/punch is the minimum hardware configuration for running

PUNCH. The only option wh ich affects the operation of PUNCH is the addition of core (up to 32K). Additional

memory permits larger core areas to be punched out.

1.2 SOFTWARE REQUIREMENTS

The I/o Monitor system is required for proper operation of PUNCH. Although PUNCH does not require execu­

tion of code in the I/o Monitor I it does use parameters in the I/o Monitor to determine the amount and core

limits of its punched output.

In particular I PUNCH references the following I/O Monitor cells:

.SCOM
.SCOM + 2
.SCOM + 3
.SCOM + 5

-first register below .ABS loader
-lowest free regi ster
-highest free register
-system program start address

1-1

·SCOM+6
. KM9PT
TTUSRR
TTDDTR
TTIOSW

-user program start address
-I/O Monitor start address
- t P address in I/o Mon itor
-tT address in I/o Monitor
- Teletype I/O busy switch

The . SCOM registers are fixed at cell 100 and following. The remaining four, however, are positionally vari­

able as a function of I/o Monitor assembly. Hence, any reassembly of the I/O Monitor which changes the lo­

cation of .KM9PT, etc., requires reassembly of PUNCH in which. KM9PT, etc., are redefined by parameter

assignment from the keyboard at assembl y time {i.e., a re-edit is not required} .

1 .2. 1 Resident Programs

In addition to the I/o Monitor System, the system program or relocatable user programs must be in core for

meaningful operation of PUNCH.

1.3 PROGRAM ORGANIZATION

The PUNCH utility program is divided into two parts:

a. Part 1 of the program operates in core locations 17720 and above {where the . ASS loader norma Ily
resides}. Part 1 has the function of loading and relocating Part 2 of the program.

b. Part 2 resides in "free" core starting at the address pointed to by .SCOM+2; its function is to per­
form the desired output punch operations.

1-2

SECTION 2

OPERATING PROCEDURES

General descriptions of the procedures used in PUNCH operations are given in the following paragraphs. For

detailed step-by-step procedures, refer to the 15/ 20 User's Guide.

2. 1 LOAD A ND PUNCH

The steps required to load PUNCH and output the desired tapes are as follows :

2

3

Procedure

Load required system/ re locatable users program.

Load PUNCH at address 17720 of the highest core bank.

When loaded, the uti lity program outputs

tP, tT or t S

The user responds to this output by typing the appropriate letter to designate the starting location of the program

to be punched :

a. tT if DDT or DDTNP is part of the core load;

b. IP for all other system or users programs which have already initialized the teletype (.INIT) with
a restart address at the time PUNCH was loaded.

c. IS only if the core load was output by PUNCH after linking loader operation at the moment at
which the loader was expecting the IS.

On completion of the user response, the program causes a carriage-return/ line-feed operation and outputs

another >.

Procedure

4 The user must type the number of output tapes des ired (i.e., 1 to 9).

NOTE

A carriage-return is interpreted as the number 1 by the program.

2-1

5

Procedure

On completion of Step 4, the program initiates the punching of the desired
core load; halts at the end of each punch tape of the desired series (with
the exception of the last tape) to permit the tape to be removed from the
bin. Depress the control console CONTINUE switch to restart the output
operations. After the final tape is punched, the PU NCH program restarts
at the point of command string input.

2.2 ERROR DETECTION AND RECOVERY

Error detection is minimal in PUNCH. If any character other than IP, IT or IS is typed when those characters

are expected; the program simply restarts. The value expected for number of tapes (1-9) is assumed correct.

The low order bits of the ASCII character are simply ANDed off and used.

Punch-out-of-tape condition is always checked. If the punch is out of tape, "RELOAD PTP" is output to the

teletype and PUNCH halts. Once the punch is reloaded, depressing CONTINUE causes the remainder of the

tape to be punched. It may then be spl iced to the earl ier section.

2-2

SECTION 3

EXAMPLES

Listed below are three procedural examples for use of PUNCH.

3.1 PRODUCING AN EXECUTABLE USER PROGRAM TAPE

To produce a single paper tape of a relocatable user program, subprogram and/ or library programs, the following

method is used .

2

3

4

5

Procedure

Load Linking Loader and user programs, subprograms, etc. Refer to
applicable system User's Guide (see Preface for list) .

At the point where the Linking Loader expects ts, stop the computer and
load PUNCH (HRM : 17720 of highest core bank).

When the PUNCH query: "t P, Tor S ?" appears on the teleprinter,
type tS.

Type the number of output tapes desired.

To load the resultant tape, depress I/o Reset and READ-IN (17720 of the
highest core bank) for each tape . The computer stops after loading each
tape except the last . After the last tape is loaded, program execution
begins automatica lIy .

3 . 2 SYSTEM PROGRAM CHANGES

Whenever system program changes or correct ions are published, the user can implement them using PUNCH .

MACRO is used as an example .

2

3

4

5

6

Procedure

Load the two . ABS MACRO tapes (H RM: 17720 of the highest core bank).

After MACRO is loaded and is awaiting a command from teletype, stop the
computer and modify the required core locations.

Load PUNCH (HRM: 17720 of the highest core bank).

When the PUNCH query "tP, tT or tS?" appears on the teleprinter, type tP .

Type the number of output tapes (2 for MACRO - more if desired).

Proceed as inStep 5 under 3 . 1 .

3-1

3.3 MODIFYING USER .DAT (Device Assignment Table) SLOTS

Although it is not possible to reassign negative .DAT slots (i .e., those used by system programs) at load time in

the I/o Monitor environment (reassembly is required), it is possible to modify positive .DAT slots which are in­

tended for relocatable user programs.

Table 3-1 lists the standard positive .DAT slot assignments. Two examples will be cited: a. reassignment for

use of a device whose handler(s) is provided in the I/o Librar/; b. reassignment for use of a device whose

hand ler(s) is not provided in the I/o Library, i. e. , a user generated hand ler.

Table 3-1
Standard Paper Tape. DATt Slot Assignments

.DATSlot Handler

1 TTA
2 TTA
3 PRA
4 TTA
5 PPA
6 PRA
7 PPA

10 PRA

3.3.1 Using An Alternate I/o Library Handler

Given a user who has written a relocatable program to perform drum I/o using handler ORA, the Linking Loader

(or DDT or DDTNP if he plans to use DDT) must be repunched by PUNCH to allow loading of handler ORA.

2

3

Procedure

Load the Linking Loader (HRM 17720 of the highest available core bank).

Stop the computer, and modify the appropriate .DATslot cell according
to the Table 3-2 below. For example, suppose the user has chosen .DAT
slot 7 for ORA tt and intends to use drum unit 1. Cell 144 should be
changed from 000004 (present value) to 100014 (the high-order 3 bits
specify the unit #; the low-order bits, the loader code for ORA).

Proceed as in Step 3 of 3.2.

t . OAT table (cell 0) begins at location 135.

tt Note: The MACRO user program will require inclusion of . OAT slot 7 in the .IODEV statement.

3-2

Table 3-2
Loader - I/o Correspondence Table

. DAT Slot Va lue Handler

1 TTA.
2 PRA.
3 PRB.
4 PPA.
5 PPB.
6 PPC.
7 LPA.

10 CDA.
11 CDB.
12 CDC.
13 MTF.
14 DRA.
15 DRB.
16 DRC.
17 DRD.

3.3.2 Using A Non-Standard I/o Handler

The following example is concerned with

a. integration of a user generated I/o for a special or non-standard device t into the standard
I/o Library;

b. the procedure for modifying the paper-tape Linking Loader (or DDT or DDTNP) to recognize
the new handler.

Appendix A illustratesthe core memory map of the I/o Monitor skip chain when the Linking Loader (and ulti­

mately the user program) is in memory. It is important to examine Appendix A because, in addition to . DAT

slot modification, skip chain modification is required.

Given that a user is willing to apply one of the standard handler names to his own handler (see Table 3-2 above),

no other changes to memory are required. He must position his own handler in the set of I/o Library tapes be­

fore the other one of same name. If, however, a user prefers a distinct name, he must change a radix 50 value

in the Loader I/O Configuration (laC) Table (see Appendix B and C). If changed, the new name (three alpha­

betic characters) must be terminated by a "." (for example, XYZ.). The procedural method is outlined below:

below:

Step

1

2

Procedure

Load the Linking Loader (HRM 17720 of the highest core bank).

Stop the computer, and modify the appropriate. DAT slot cell according
to Table 3-2. Suppose .DAT slot 4 is chosen and the user wishes to sub­
stitute his plotter handler for handler LPA. Cell 141 should be changed
from 000001 (present value) to 000007 (the Loader code for LPA).

t For example, an incremental plotter, type 350.

3-3

2
(Cont)

3

Procedure

The skip associated with LPA. is at location 1533 (see Appendix A). Change
Cell 1533 from 706501 to 702401 (LPSF). If the plotter handler has been
named LPA. , proceed to Step 3 below.

If the user prefers a different name, e.g., PLA., he must modify the Loader
IOC table (see Appendix B). Having chosen code 7 above for. OAT slot
modification, he must modify the radix value in slot 7 of the IOC Table,
i. e., location 4507 in the Linking Loader or DDTNP or location 5266 in DDT.
To compute the radix 50 value of PLA. : find P in Appendix C, column 1
(062000), L in column 2 (000740), and A in column 3 (000001). The resultant
radix 50 value = 062741. A sign bit of 1 indicates to the Linking Loader a
fourth character = . Hence, Cel I 4507 (or 5266 if DDT) should be changed to
462741.

Proceed as in Step 3 of 3.2.

3-4

APPENDIX A

I/o MONITOR SKIP CHAINt

Location Contents Mnemonic Device Meaning

1511 703201 SPFAL POWER FAIL
1512 741000 SKP
1513 621577 JMP* INT6
1514 706101 DRSF DRUM DONE
1515 741000 SKP
1516 621603 JMP* INT12
1517 707341 MTSF MAGTAPE DONE
1520 741000 SKP
1521 621604 JMP*INT13
1522 700001 CLSF CLOCK OVERFLOW
1523 741000 SKP
1524 600476 JMP CLKPIC
1525 706701 RCSF CARD COLUMN READY
1526 741000 SKP
1527 621575 JMP* INT4
1530 706721 RCSD CARD DONE
1531 741000 SKP
1532 621576 JMP* INT5
1533 706501 LSDF LINE PRINTER DONE
1534 741000 SKP
1535 621572 JMP* INTl
1536 700101 RSF PAPER TAPE READER DONE
1537 741000 SKP
1540 621573 JMP* INT2
1541 700201 PSF PAPER TAPE PUNCH DONE
1542 741000 SKP
1543 621574 JMP* INT3
1544 700301 KSF KEYBOARD READY
1545 741000 SKP
1546 601110 JMP TIINT
1547 700401 TSF TELEPRINTER DONE
1550 741000 SKP
1551 601344 JMP TOINT
1552 701741 MPSNE NON-EXISTENT MEMORY
1553 741000 SKP
1554 621600 JMP* INT7
1555 701701 MPSK MEMORY PROTECT VIOLATION
1556 741000 SKP
1557 621601 JMP* INT10
1560 702701 SPE MEMORY PARITY ERROR

tThis skip chain memory map applies only when the Linking Loader, DDT, DDTNP, CHAIN, EXECUTE, or re­
locatable user programs are in core.

A-l

I/o MONITOR SKIP CHAINt (Cont)

Location Contents Mnemonic Device Meaning

1561 741000 SKP
1562 621602 JMP* INTl1
1563 706201 DRNEF NOT DRUM ERROR (PDP-9 only)
1564 621605 JMP* INT14

tThis skip chain memory map applies only when the Linking Loader, DDT, DDTNP, CHAIN, EXECUTE, or re­
locatable user programs are in core.

A-2

APPENDIX B

LINKING LOADER IOC TABLE

Location
Contents

Loader or DDTNP/DDT

4501/5260 500041
4502/5261 463321
4503/5262 463322
4504/5263 463201
4505/5264 463202
4506/5265 463203
4507/5266 446601
4510/5267 411541
4511 /5270 411542
4512/5271 411543
4513/5272 452146
4514/5273 415721
4515/5274 415722
4516/5275 415723
4517/5276 415724

B-1

Handler

TTA.(1)
PRA. (2)
PRB. (3)
PPA. (4)
PPB. (5)
PPC. (6)
LPA. (7)
CDA.(10)
CDB. (11)
CDC. (12)
MTF. (13)
DRA. (14)
DRB. (15)
DRC. (16)
DRD. (17)

X--

A 003100
B 006200
C 011300
D 014400
E 017500
F 022600
G 025700
H 031000
I 034100
J 037200
K 042300
L 045400
M 050500
N 053600
0 056700
P 062000
Q 065100
R 070200
S 073300
T 076400
U 101500
V 104600
W 107700
X 113000
Y 116100
Z 121200
% 124300

127400
0 132500
1 135600
2 140700
3 144000
4 147100
5 152200
6 155300
7 160400
8 163500
9 166600
171700

APPENDIX C

RADIX 508 VALUES

-X-

A 000050
B 000120
C 000170
D 000240
E 000310
F 000360
G 000430
H 000500
I 000550
J 000620
K 000670
L 000740
M 001010
N 001060
0 001130
P 001200
Q 001250
R 001320
S 001370
T 001440
U 001510
V 001560
W 001630
X 001700
Y 001750
Z 002020
% 002070

002140
0 002210
1 002260
2 002330
3 002400
4 002450
5 002520
6 002570
7 002640
8 002710
9 002760
003030

C-1

--X

A 000001
B 000002
C 000003
D 000004
E 000005
F 000006
G 000007
H 000010
I 000011
J 000012
K 000013
L 000014
M 000015
N 000016
N 000017
P 000020
Q 000021
R 000022
S 000023
T 000024
U 000025
V 000026
W 000027
X 000030
Y 000031
Z 000032
% 000033

000034
0 000035
1 000036
2 000037
3 000040
4 000041
5 000042
6 000043
7 000044
8 000045
9 000046
000047

SECTION 1

INTRODUCTION

CHAPTER 9
DUMP UTILITY PROG RAM

The DUMP utility program provides the user with the ability to output, on any available li sting device, specified

core locations which have been stored on a bulk storage device using the CTRL 0 (to) command.

1.1 OPERATING PROCEDURES

1.1 . 1 Calling Procedure

The Dump program is called by typing DUMP) after the Monitor's $ request. When the Dump program has been

loaded, it types

DUMP

>

on the teletype and waits for a command from the user.

1. 1 .2 General Command Characters

RUBOUT (echoes \)

CTRL U (echoes @)

1. 1 .3 Command String

Delete last character in command string. Can be
repeated n times to delete n characters.

Delete entire line

The formats expected by the DUMP command string processor are as follows.

Command

ALL

XXXXX-YYYYY
(XXXXX> 10, and
YYYYY~ C (. SCOM)

Function

The entire to area (from locati on 10 to the address in. SCOM) on
the device associated with . DAT slot -14 (at to time, this device
was the specified output device) is listed on the device associated
with . DAT slot -12 .

The to area between absolute addresses XXXXX and YYYYY on the
device associated with. DAT slot -14 is listed on the device associated
with. DAT slot -12. At to time, this device (. DAT slot -14) was
the specified output device and XXXXX and YYYYY were the absolute
(octal) bounds of the core area to be dumped.

1-1

Command

zzz#

Function

The content of block #ZZZ on the device associated with. DAT
slot -14 is listed on the device associated with .DAT slot -12.
The block number is in octal radix. For DECtape systems, if the
command ZZZ# is followed by a minus sign (-), block number
ZZZ is read in the reverse direction and dumped.

NOTE

If the Listing output (. DAT slot -12) is to be a file-oriented
device, the file is named MEMORY and has the extension
DMP .

1.2 ERROR CONDITIONS

Any unrecognizable command causes a question mark (7) to be typed on the teletype. Control is then returned to

the command string processor which types > to indicate its readiness for a command.

1.3 RESTART PROCEDURES

If a command is terminated by a carriage return ()), control returns to the command string processor after comple­

tion of the request.

DUMP
>

is printed on the teletype indicating readiness for another command.

If a command string is terminated by the ALT MODE character, control returns to the Monitor upon completion of

the request.

1.4 EXAMPLE

To dump locations 16730 through 16750:

MONITOR
$ASSIGN DTDO -14)
$DUMP)
DUMP
>16730-16750)

16730 000032 003740 013777 000000 000000 413420 013422 463356
16740 127400 463356 127400 000612 003766 003773 000000 020202
16750 000000

DUMP

>

1-2

1.1 GENERAL INFORMATION

SECTION 1

INTRODUCTION

CHAPTER 10
DDT

The Dynamic Debugging Technique (DDT) program provides convenient on-I ine debugging assistance for MACRO

and FORTRAN programmers. By typing simple commands on the teletype keyboard, programmers can make correc­

tions and additions in symbol i c code (or octa I), suspend execution of the program at any predetermined poi nt dur­

ing the debugging run, and examine the status of any memory word in the program. The user's program is started

and stopped by commands to DDT. Under normal conditions, the user is always able to stop a "runaway" program.

DDT operates as part of the Advanced Software System. It is loaded into memory (the top 1600
10

positions) along

with the Linking Loader which, on command, loads the user's program (including the symbol table and any sub­

programs) and the needed I/O handlers, FORTRAN Object Time System routines, and library subroutines.

All user communication with DDT is via the teletype (any model included in the standard system configurations).

DDT interprets all numeric input, and outputs all numeric data, in octal radix. The digits 8 and 9 are treated as

alphabetic characters.

1.2 TERMINOLOGY USED

) A non-printing character used for text representation of the carriage return key.

A non-printing character used for text representation of the line feed key.

A text representation of the CTRL key, always used in conjunction with another key.
It is also the printing character, up arrow.

IT The non-printing character obtained by holding the CTRL key while striking the T.

+ Elements are to be added.

Elements are to be subtracted.

(Space) field delimiter, as between operation code and address.

The term C (R) represents the content of storage word R.

In examples, underscoring designates information typed by DDT.

A Transfer Vector is a word which contains the 15-bit address of another word. Bits 0 through 2 are meaningless

and can be used for codes. Transfer vectors are also used in indirect addressing, by the Linking Loader for sub­

routine calls, and are required in addressing to another memory bank.

1-1

2.1 LOADING THE PROGRAM

SECTION 2

DEBUGGING WITH DDT

In an I/O Monitor (paper tape) environment, the Linking Loader forms an integral part of the DDT tape.

In the Keyboard Monitor, the teletype command DDT (DDTNS) calls the Linking Loader as well as DDT. (DDTNS

is used to prevent loading of the user symbol table to save memory.)

The first response from the teletype, in either system, is:

LOADER

>

The user programs are then loaded in the usual manner (see Section 2.1 and 2.2 of the Linking Loader manual).

Control can be transferred to DDT at this point without loading any user programs by typing control T. When load­

ing is complete, DDT takes control and types:

DDT

>

to indicate its readiness to accept DDT commands.

With the Keyboard Monitor, . DAT slots -4 (user programs) and -5 (user external library, if any) must be assigned

to appropriate devices for proper loading.

If the input is file-oriented, the Loader assumes BIN (binary) as the filename extension.

2.2 USING THE BREAKPOINTS

A breakpoint provides a convenient means of interrupting a user program at any predetermined step to examine

the program status. DDT inserts a breakpoint (on request) by replacing the indicated instruction with a jump to

DDT. When the program reaches that point, control shifts to DDT, which types the number of the breakpoint;

the address of the breakpoint; the contents of the AC; the status of the link; and the go-ahead signal (». The

user then performs any of the debugging operations explained herein.

2-1

DDT allows the use of four breakpoints to facilitate debugging when there is undertainty as to which path the

program wi II follow.

The user can place a breakpoint at any point in this program, subiect to the following limitations:

a. Instructions which are program modified

b. Instructions which are used as literals

c. Breakpoints should not be placed in routines which operate with API active. If such a breakpoint is
encountered, DDT types:

API 4XXXXX (API status register)

and the normal breakpoint information. The exclamation point (!) has no effect at that breakpoint (i. e. ,
a restart from the breakpoint is not possible). The breakpoint will not be removed; any other DDT com­
mand is valid at this point including a command to remove this breakpoint.

Breakpoints can be placed on skip, jump, and JMS instructions. Breakpoints can also be placed on CAL or XCT

instructions. CAL instructions may, however, contain arguments required by the called subroutine, as well as a

variable number of subsequent arguments; consequently, DDT is unable to simulate the CAL (as it is able to sim­

ulate a JMS). Therefore, a breakpoint which has been placed on a CAL is removed by DDT before continuing

(exclamation point command). DDT retains the request for a breakpoint at that location, and restores it if an­

other breakpoint is entered and exited. XCT instructions may execute CAL instructions, and therefore, they are

treated identi call y. If the user wants to place a breakpoint at a CAL, and restore it after each stop, a second

breakpoint can be placed at the return from the CAL, as shown in this example.

LOC CAL 3

12

LAC BUFF

(Breakpoint 1)

(Breakpoint 2)

On leaving the second breakpoint at LOC +2, the breakpoint on the CAL instruction is restored.

Operation of breakpoints requires one auto-index register; DDT initially assumes register 17. The user can spec­

ify any other auto-index register by modifying DDT's special register, AX$, as follows:

AX $/ 000017 10 ~ (Modification procedure is explained later)

The commands controll ing breakpoints are as follows:

kwn" Causes a breakpoint to be inserted at location k. The number n (1-4) is assigned
to that breakpoint.

2-2

n" Causes the breakpoint assigned the number n to be removed.

Causes all existing breakpoints to be removed.

The insertion of a breakpoint takes place when control returns to the user program. The break occurs before ex ­

ecution of the instruction at the breakpoint address.

Examples:

LOC + 1 LJ 1"

TAG LJ 2"

1"

Inserts a breakpoint at LOC + 1

Inserts a breakpoi nt at TAG

Removes breakpoint number 1

A breakpoint number can be reassigned without first removing the previous assignment.

To restart from a breakpoint, the user simply types an exclamation point (I). DDT restores the AC and Link and

returns control to the user's program, starting with the instruction at the breakpoint address. An octal number

typed before the exclamation point causes DDT to bypass that breakpoint n times. This is convenient when a

breakpoint has been inserted in a program loop, and the user does not wish to stop every time through the loop.

If the user's program does not reach the breakpoint, the operator may stop the action and return control to DDT

by typing control T (hold the CTRL key down while striking the T). DDT types the go-ahead (» . The program

interrupt control must be "on" to perform this operation.

2.3 EXAMINATION AND MODIFICATION

DDT provides several variations of the procedure for examining and modifying the contents of any storage word.

They are:

k/ The slash, typed after an address (k) causes the addressed storage word to be opened and
its contents displayed on the teleprinter. For example,

LOC/ TAD COUNT

where the instruction TAD COUNT is contained at the location labeled LOC. The stor­
age word is now opened and may be modified by typing the desired content and issuing
one of the commands described below.

The carriage return closes the storage word and resets DDT, enabling it to accept other
commands. Any change which has been entered is incorporated, as shown below:

LOC/

TAG/

TAD COUNT)

JMP LOC JMP LOC+1)

The line feed c loses the storage word, then opens the next sequential storage word:

LOC/ TAD COUNT

LOC+1 / CMA

2-3

The up arrow closes the storage word, then opens the preceding storage word.

LOC/ TAD COUNT

LOC-1/ LAC A

I Z Control Z a II ows the user to exam i ne (and mod i fy) a sing I e storage word, out of sequence,
and then return to the original sequence. This command closes the storage word, then
opens the referenced storage word. A line feed will then open the next storage word in
the original sequence, as shown:

LABEL/

LOC/

JMP LOC IZ

TAD COUNT TAD CNTR

LABEL+ 1/ LAC HOLD

IA Control A allows the user to examine a new sequence of storage words. This command
closes the storage word, then opens the referenced storage word, establishing a new se­
quence. A line feed then opens the second storage word in the new sequence.

LABEL/

LOC/

JMP LOC IA

TAD COUNT TAD CNTR

LOC+1/ CMA

IX Control X is used, in conjunction with transfer vectors, to examine a new sequence of
storage words. This command operates with a 15-bit address taken directly from the cur­
rently open word. (In contrast, the I Z and I A operations take 13 bits from the currently
open word and the two memory bank bits from the address of the open storage word.)

TAG/ 36307 IX

36307/ 000000

2.4 TYPE-OUT MODES

DDT allows the user to choose from several modes of representing the requested information. These modes, and

their commands, are as follows:

NUM$ In this mode, DDT types memory word contents as six-digit octal numbers, including any
lead i ng zeroes.

TV$ In th i s mode, DDT interprets words as transfer vectors. Bits 0 through 2 are ignored, and
bits 3 through 17 are interpreted according to the address modes as described below.

SYM$ In this mode, which is assumed initially, DDT interprets words as symbolic instructions.
Bits 0 through 3 are first examined to determine the instruction class. If bit 4 (indirect
addressing bit) of a memory reference instruction is set, an asterisk (*) is typed after the
mnemonic op code. The address portion is handled according to the address mode as de­
scribed below. Operate instructions are further examined for specific mnemoni c codes.
(See Appendix B for recognized codes.) Operate instructions not found in DDT's table
are typed out as NOP+XXXX. Subroutine calls, extended arithmetic element, and in­
put/output instructions are interpreted as CAL+XXXX, EAE+XXXX, and IOT+XXXX,
respectively.

2-4

2.4. 1 Address Modes

The colon, typed after a word has been displayed in either numeric (NUM$) or symbolic
(SYM$) mode, causes DDT to retype the word in the alternate mode.

LOC/ TAD LABEL 340126

or LOC/ 340126 TAD LABEL

The equal sign, typed after a word has been displayed in either numeric or symbolic
mode, causes DDT to retype the word as a transfer vector.

LOC/ CAL+126 LABEL

The following commands set the address mode, whi ch affects the hand ling of transfer vectors, address portions of

memory reference instructions, and display addresses.

REL$ In this mode, which is assumed initially, DDT types addresses which are relative to user
defined symbols.

LOC/ TAD LABEL-3

If there is no symbolic label within ±77 8 positions, the address is typed as relocatable
(see next paragraph below). Symbols defined in direct assignments are not recognized
by DDT.

RLC$ In this mode, DDT types addresses in relocatable form, as shown on the assembly listing.
For example,

LOC/ TAD 147

ABS$ In this mode, DDT types addresses in absolute form :

LOC/ TAD 13147

The difference between the results of RLC$ and ABS$ modes is the relocation factor (in
this case, 13000). The relocation factor is found in the memory map output by the
Loader.

The user may type modification input in whatever representation he finds most convenient. There are, however,

two considerations :

a. If a memory reference mnemonic is entered with a numeric address, DDT assumes that address to be
relocatable unless the address output mode has been set to ABS$. For example,

LOC/ TAD COUNT TAD 147 ~

(DDT adds the relocation factor before storing the information).

b. A requested address, typed numerically, is always considered absolute.

41/ Opens word 41 of the machine.

13000+41/ or 13041 / Opens word 41 of the program, where 13000 is the
relocation factor.

2.5 STARTING AND RESTARTING

DDT receives control, initially, from the Monitor and normally regains control from the user's program by means

of a breakpoint, as previously described. A CTRL T can be typed at any time (if the program interrupt control

is enabled) to restore control to DDT.

The following commands shift control from DDT to the user's program:

The apostrophe, typed alone, starts the user's program at its normal starting address.
(i.e., that address given in the source .END statement, or the first physical location
of the first program loaded).

k' The user can start his program at any other point by simply typing that address ahead of
the apostrophe.

The exclamation point restarts the user's program after a breakpoint. The AC and the
Link are restored before continuing.

n! An octal number (n) entered before the exclamation point causes DDT to bypass that
breakpoint n times before stopping again. This ability is useful when a breakpoint has
been placed in a program loop.

2.6 SEARCHING OPERATIONS

DDT has a powerful searching operation to easily find every word in a user's program having particular character­

istics. Two special locations, LO$ and HI$ (further explained in the next section), control the limits of the

search, and a mask (MSK$) allows the search to be based on all or any portion of the word. The mask is initially

set at 777777, for a full word search; and the limits are initially set to encompass the entire user's program, in­

cluding all subprograms and library routines.

There are three types of searches, as follows:

Examples:

k w EQ$

k w UN$

k w ADR$

Starts a search for all words, within the set limits, the contents of which, after
masking by C{MSK$), are equal to the expression k.

Starts a search for all words, within the set limits, the contents of which, after
masking by C{MSK$), are not equal to the expression k.

Starts a search for all memory reference instructions, within the set limits, with
effective addresses which, after masking by C{MSK$), are equal to the address
k. Indirect addressing is followed one step.

LOC+l w ADR$ might produce

LAC LOC+ 1

XOR LOC+l

DAC* POINT

2-6

If the > is typed with no other output, the search routine has found no qualifying words.

2.7 SPECIAL LOCATIONS USED BY DDT

The following special locations contain information useful to the user, and which he may wish to change.

AC$ Holds C (AC) at a breakpoi nt.

LNK$ Holds status of the Link at a breakpoint.

MSK$ Contains the search mask, initial ized at 777777.

LO$ Contains the address of the lower limit of the search operation.

HI$ Contains the address of the upper limit of the search operation.

PAS Contains the address of the first position avai lable for inserting patches. (Note that the
initial contents of LO$ show the last available position plus one.)

AX$ Contains the number of the auto-index register to be used by the breakpoint routines,
initialized to 17.

RF$ Contains the current relocation factor.

SA$ Contains the normal starting address used by the apostrophe routine.

Bn$ Contains the address of break poi nt n.

These words are stored sequentia Ily as I isted; the I ine feed may be used to step through them.

In the following example, the mask is set to examine instruction code bits (0 through 3) within the limits specified

by LO$ and HI$.

MSK$/

LO$/

HI$/

LAW 17777

CAL+ 11075

END+67

7400001

BEGIN-11

END+1)

After the mask and search I imi ts have been set, the user can execute the search operation for the desi red instruc­

tion class (all JMP instructions) by typing:

JMP w EQ$)

2.8 SYMBOL DEFINITIONS

If the user finds, while debugging, that more symbols would be useful he can easily define them with the follow­

ing DDT procedure:

S) DDT assigns the symbol S to the current location.

k(S) DDT assigns the symbol S to the location specified by the address k.

2-7

Example:

13627 (LOCAT)

Space is provided for approx imately 25 additional symbols; the exact number depends on the length of the symbol s

entered. If an attempt is made to enter symbols beyond the allowable limit, DDT types the message OVERFLOW.

Symbols can be redefined as needed.

2.9 PATCH FILE OUTPUT (Paper-Tape Systems Only)

When the process of debugging e x tends to a number of sessions at the computer, it is convenient to be able to save

those changes al ready checked out for use at later sessions . The commands described below control the output of

a patch file onto paper tape.

PFO $

k PFO$

SNS$

PFE$

DDT outputs all registers within the limits set by LO$ and HI$ onto the patch
file. PFO$ may be given as many times as desired.

Put location k only onto the patch file .

DDT puts all symbol s defined duri ng debuggi ng onto the patch fi Ie, thus saving
them for reference at later sessions.

Close the patch file.

As many files as desired can be produced by following the sequence of commands, as follows:

PFO$

PFO$

SNS$

PFE$

(as many as des ired)

(optional)

2.10 PATCH FILE INPUT (Paper-Tape Systems Only)

Because of the patch file's format, it can be loaded only by DDT. Thi s is done after the user's program has been

loaded in the usua I manner .

PFI$ DDT reads in the patch file.

If a read error occurs, DDT stops reading and types the message ERROR followed by a right angle bracket (» .

Data up to the point of error is correctly in memory. At this point, typing PFI$ (without repositioning the tape)

causes patch loading to continue with the patch word after the word causing the error .

2-8

Repositioning the tape by moving the tape back one block causes PFI$ to attempt to re-read the error word. (See

Appendix C for format of the patch fi Ie.)

2.11 CO-RESIDENT SUBROUTINES

Identical symbols can be used in two or more separately assembled, or compiled, relocatable program segments

that are loaded and run together; consequently the user must be able to specify which set of symbols DDT is to

use. DDT initially assumes that the symbol table associated with the first program loaded (i. e., the main pro­

gram) will be used. The relocation factor used by DDT comes from the symbol table and is, also, initiallyassum­

ed to be that of the main program. The following DDT command changes both the symbol table search and the

relocation factor to the named subroutine.

k;HDR$

HDR$

Sets DDT to refer to that portion of the symbol table associated with the sub­
routine name k, and to use the relocation factor for that subroutine. (The mem­
ory map output by the loader shows all relocation factors.) Symbol tables are
not loaded for lOPS, FORTRAN, and user library subroutines.

If no program name is specified, DDT is reset to the initial condition, with main
program symbol table and relocation factor assumed.

2.12 INDIRECT ADDRESS REFERENCES

External global symbols in FORTRAN programs (those used within the program segment, but defined outside of it)

are treated differently in the symbol table from those defined within the program segment. These symbols refer

to a transfer vector pointing to the named register, not to the named register itself.

Example:

LAB/

7603 is the actual address of the storage word named LAB. This address must be used when any reference is made

to LAB.

In FORTRAN programs, this condition also applies to symbols defined in DIMENSION statements.

2.13 MISCELLANEOUS FEATURES

Q$ Q$ represents the content of the currently open storage word. It makes it
possible to make small changes without typing the entire contents. In the
following example, Q$ represents JMP LOC+3.

LOC/

LOC/

JMP LOC+3

JMP LOC+7

2-9

Q$+4)

&

lU

IT

The period, typed alone, represents the address of the currently open, or the
most recently opened, word.

LOCI

.1
JMP LOC+3

JMP LOC+7

JMP .+n

The ampersand causes DDT to bypass the mnemonic instruction lookup. It is
necessary if the user has used a recognized mnemonic operator as a symbolic
address.

JMPI

&JMPI

LOCI JMPGO JMP JMP ~

Is invalid, but

wi II open the word named JMP.

The second JMP, in this case, is

interpreted as an address.

DDT executes the instruction k. The AC and Link are restored to their con­
dition before the breakpoint (if one is in effect). If the instruction is not a
JMP, control returns to DDT, and the new AC and Link (if affected) are
stored. For example,

JMS w SUBA#

causes subroutine SUBA to be executed. SUBA cannot look for subsequent
arguments. Skip instructions cause the return pointer to be incremented by
one.

If the user makes a typing error, he can cancel the current line by typing
CTRL U. DDT types @ as evidence of acceptance. Single character
deletion (RUBOUT) is not allowed by DDT. If a RUBOUT is typed, it is
treated as a CTRL U.

The user can interrupt his program (or DDT) at any time by typing CTRL T.
DDT then types:

DDT

o C(PC) C(AC) S (L)

>

and waits for a command from the teletype.

2-10

+

k " un

nil

n!

tT

k/
)

fZ

fA

IX

NUM$

TV$

SYM$

REL$

APPENDIX A

SUMMARY OF COMMANDS

Linkage Characters

Arithmetic plus

Arithmetic minus

Field separator (space)

Breakpoi nts

Insert breakpoint at location k, assign number n (1-4)

Remove breakpoint number n

Remove all existing breakpoints

Restart from breakpoi nt

Restart from breakpoint, wait n times before reentering breakpoint

Restart DDT

Examination and Modification

Open location k

(Carriage return) Close the location

(Line feed) Close the location, open next location

(up arrow) Close the location, open the preceding location

(CTRL Z) Close the location, open addressed location, continue original
sequence

(CTRL A) Close the location, open addressed location, start new sequence

(CTRL X) Close the location, open the location addressed by lS-bit trans­
fer vector, start new sequence

Type-out Modes

Type contents as six-digit octal numbers

Type contents as transfer vectors

Type contents as symbolic instructions (assumed by default)

Retype in alternate mode (NUM$, SYM$)

Retype as transfer vector

Type addresses as relative to defined symbols (assumed by default)

A-1

RLC$

ABS$

k'

n!

tT

k EQ$

k UN$

k ADR$

AC$

LINK$

MSK$

LO$

HI$

PAS

AX$

RF$

SA$

Bn$

S)

k(S)

PFO$

k PFO$

Type-out Modes (continued)

Type address as relocatable numbers

Type addresses as absolute numbers

Starts and Restarts

Starts user ' s program at normal starting point

Starts user's program at location k

Restarts user's program from breakpoint

Restarts user's program from breakpoint, waits n times before reentering
breakpoint

Restart DDT

Searching Operations

Search for words equal to k

Search for words not equal to k

Search for instructions with effective address equal to k

Special DDT Locations

Holds AC at a breakpoint

Status of Li nk at a breakpoi nt

Contains search mask

Lower limit of search

Upper limit of search

First unused location in patch area

Number of auto-index used by breakpoints

Current relocation factor

Normal starting address

Address of breakpoint n

Symbol Definition

Assign symbol s to the current location

Assign symbol s to location k

Patch File Outputt

Patch fi Ie output

Single location patch file output

t Patch file commands are used for Paper Tape Systems only.

A-2

SNS$

PFE$

PFI$

k;HDR$

HDR$

Q$

Patch File Outputt (continued)

Save new symbols

Close patch fi I e output

Patch Fi Ie Inputt

Read patch fi Ie

Coresident Subrouti nes

Use symbol table and relocation factor of subroutine k

Use symbol table and relocation factor of main program

Miscellaneous Features

Contents of currently open location

Address of currently open or most recently opened location

Bypass mnemonic instruction lookup

Execute the instruction k

Cancel the line

Restart DDT

t Patch fi Ie commands are used for Paper Tape Systems onl y.

A-3

APPENDIX B

MNEMONIC INSTRUCTION TABLE

Memory Reference

CAL 000000 NOP

DAC 040000 OPR

JMS 100000 CMA

DZM 140000 CML

LAC 200000 RAL

XOR 240000 RAR

ADD 300000 SMA

TAD 340000 SZA

XCT 400000 SNL

ISZ 440000 SKP

AND 500000 SPA

SAD 540000 SNA

JMP 600000 SZL

RTL

EAE Group
RTR

CLL
EAE 640000 STL

RCL

Input/Output RCR

lOT 700000
CLA

CLC

GLK

LAW

tDDT interprets 740000 as NOP.

Operate

740000t

740000

740001

740002

740010

740020

740100

740200

740400
741000

741100

741200

741010

742010

742020

744000

744002

744010

744020

750000

750001

750010

760000

APPEN DlX C

PATCH FILE FORMAT

DDT punches the patch file in four-word blocks, including the two-word block header used by the lOPS system,

with blank tape showing between the blocks. Each block carries the address and the contents of one memory

word. (See Figure C-1.) The Save New Symbols command (SNS$) punches the additional symbol table area in

the same manner. The PFE$ command punches an lOPS end-of-file block.

word pair

count and mode
WD 0

lOPS block header

WD 1 checksum
J

WD 2 address of
patch

contents of
patch

WD 3

Figure C-1

C-1

1.1 GENERAL DESCRIPTION

CHAPTER 11
SRCCOM, SOURCE COMPARE UTILITY PROGRAM

SECTION 1

INTRODUCTION

SRCCOM (Source Compare Program) is a utility program in the ADVANCED Monitor software system which com­

pares any two symbolic programs (written in lOPS ASCII) and indicates the differences between the compared

programs. This utility program is particularly useful for such functions as:

a. proofing an edited program by comparing it against the original to ensure that the desired changes
were made;

b. keeping track of developmental changes by comparing old and new versions of the same program;

c. determining if two programs are the same (program identification).

In operation, the user must indicate to the processor, via the input keyboard, which program is to be regarded as

the "original" against which the other is to be compared. During execution, SRCCOM outputs statements which

indicate the type of modification made to the original (insertion, deletion, and changes) and the actual modifi­

cati on detected.

Three software switch options are provided in SRCCOM; one increases the efficiency of the comparison of pro­

grams coded in MACRO-15 (switch M), a second determines the form of SRCCOM output statements (switch A),

and a third permits input of non-printing characters to be ignored (switch C).

1 . 1 . 1 Software Operati ng Envi ronment

The SRCCOM utility program operates under control of the PDP-15 ADVANCED Monitor, requiring some form of

bulk storage. It uses the Monitor's I/O device handlers to achieve device independence. DECtape to DECtape

or Disk to Disk comparisons with output statements sent to a line printer effect an increase in SRCCOM operating

speed. This utility program can operate with either PI or API and can use extended memory if it is available.

The EAE option is not required.

1.1.2 Minimum Equipment Configuration

A PDP-15/ 20 basic system is required . SRCCOM will also operate in the basic 15/ 30 and 15/ 40 configurations .

1-1

1.2 REFERENCE MATERIAL

The sections within this manual which contain information applicable to the use of SRCCOM are referenced

directly in the text. The PDP-15/ 20 ADVANCED Monitor manual (DEC-15-MR2A-D) and the 15/20 Users'

Guide (DEC-15-MG2A-D) also contain information useful in understanding and using SRCCOM.

1.3 SPECIAL SYMBOLS

The following symbols are used throughout this program description to denote I/O teletype operations which do

not result in a printed character:

SYMBOL REPRESENTS

Carriage return - line feed
operation

Tab

Space

1-2

2.1 LOADING PROCEDURE

SECTION 2

OPERATION

SRCCOM is loaded with the ADVANCED Monitor system Linking Loader. Specific procedures for the use of the

Linking Loader are given in detail in another section of this manual; a summary of these procedures is presented

in the PDP-15/ 20 Users' Guide.

2.2 DEVICE ASSIGNMENTS

Appropriate device assignments should be made, using the ADVANCED Monitor ASSIGN command, prior to in­

itiating execution of the SRCCOM program. SRCCOM . DAT slot usage is as follows .

. DAT Slot

-14

-15

-12

-2

-3

Use

Original file input

New file input

Output Listing

Command string input

Control device output

The teletype handler (TTA) should be assigned to .DAT slots -2 and -3; this is the control device. Only device

handlers capable of handling . FSTAT, .READ, .SEEK, .ENTER, and lOPS ASCII data should be assigned to

. DAT slots -14 and -15. Only handlers capable of handling lOPS ASCII data should be assigned to . DAT slot

-12.

2.3 OPERATING SEQUENCE

When SRCCOM has been loaded into memory, it types

SRCCOM

>

on the teletype and waits for a command string from the user.

2-1

The user should first ready the input devices for the programs to be compared, and then type his command string.

It is important for the user to follow the proper command string format; otherwise, the compare phase will not

proceed as desired, or an error message will be generated. The compare phase of SRCCOM begins on termination

of the command string. During the compare phase, the user has control over SRCCOM via the keyboard com­

mands:

CTRL C

CTRL P

(Return to Monitor, printed as tC)

(Restart SRCCOM, printed as t P)

These commands are formed by depressing the CTRL key and striking the appropriate letter key. Control is nor­

ma II y returned to the user at the end of the compare phase. At th is point, the user can type a command string to

initiate another compare, or return to the monitor by typing CTRL C. CTRL C causes a return to the Monitor at

any point during the operation of SRCCOM.

2.4 COMMAND STRING

The SRCCOM command string is typed after the right angle bracket (» in the following general format.

where

x,y,z- newHl1 { ~ } ext/oldfn{ ~ } ext)

s,y,z
newfil
oldfil
ext

switch options M,A,C
fj Ie name of new symbol i c program
file name of old symbolic program
file name extension

The switch options M,A, and C are defined as follows:

Examples:

M Switch - Used in MACRO-15 comparisons to ignore comments and to perform space tab
conversi ons.

A Switch - Used to specify abbreviated output format (affected lines are not printed).

C Switch - Used to ignore ASCII characters outside of the range 240-337 except for carriage
return and horizontal tab characters.

a. To compare MACRO-15 program NEWFIL to MACRO-15 program ORGFIL (with M switch on) type:

M -- NEWFIL:SRC/ORGFIL:SRC)

b. To compare MACRO-15 program NEWFIL to MACRO-15 program ORGFIL with all switches on, type:

C,M,A- NEWFIL LJ SRC/ORGFIL LJ SRC)

2-2

c. To compare two programs with no switches on, type:

- NEWFIL LJ SRC/ORGFIL LJ SRC)

2.5 USING NONFILE-ORIENTED INPUT DEVICE

SRCCOM allows for comparison of a segmented paper tape with a DECtape file. When a nonfile-oriented input

device (e.g., PR) is assigned to .DAT slots -15 or -14, SRCCOM detects a physical end-of-medium at the end

of input. At this point SRCCOM types one of the following messages:

END OF NEW SRC--MORE? (Y OR N?)

or

END OF ORIG SRC--MORE? (Y OR N?)

If any character other than Y or N is typed, SRCCOM responds with a question mark (?) and waits for the user

to type a Y or an N. If user desires more input, insert added medium into device (more paper tape into paper

tape reader) and type Y.

2.6 FILE-ORIENTED SRCCOM LISTING

When a file-oriented device is assigned to . DAT slot -12, SRCCOM assumes the file name of the original pro­

gram and supplies a COM extension. See example below:

M NEW EXT/OLD EXT

The file name and extension given to the SRCCOM listing would be:

OLD COM

2-3

3.1 M SWITCH ON

SECTION 3

OUTPUT FORMATS

The following paragraphs describe the general SRCCOM output formats for lines inserted, lines deleted, and lines

changed with the M switch on. Examples are included in each paragraph for clarification. In each description,

TAG represents the last label encountered in the program prior to the noted modification. The letter m represents

the number of lines (decimal) from TAG to the last line before the modification. The letter n represents the num­

ber of lines (decimal) inserted, deleted, or changed.

3. 1 . 1 Li nes Inserted

The following is the general format of unabbreviated output in the case of an insertion in the new program

(M switch only).

n LINES INSERTED BELOW TAG+m

first line inserted
second line inserted

If output is abbreviated (A Switch on also), only the following line is printed:

n LIN ES INSERTED BELOW T AG+m

Example

2 LINES INSERTED BELOW TAGONE+20

DAC SOME / inserted
ISZ TOOB / inserted

3.1.2 Lines Deleted

} Unabbreviated
(A Switch off)

The following is the general format of unabbreviated output in the case of deletion in the new program (only M

Switch on).

3-1

n LINES DELETED BELOW TAG+m

first deleted line
second deleted line

If output is abbreviated (A Switch on also), only the following line is printed:

n LINES DELETED BELOW TAG+m

Example

3 LINES DELETED BELOW TAGONE+20

DAC* POINT / Deleted)
LAW THREE / Deleted
DAS SWITCH / Deleted

Unabbreviated
(A Switch off)

3. 1 .3 Li nes Changed

The following is the general format of unabbreviated output in the case of lines changed in the new program (M

Switch on only) .

n LINES CHANGED BELOW TAG+m

line it was changed to in the new symbolic program
line in original symbolic program

line it was changed to in the new symbolic program
next line in the original symbolic program

If output is abbreviated (A Switch on also), only the following line is printed:

n LINES CHANGED BELOW TAG+m

Example

2 LINES CHANGED BELOW TAG+20

DAC* POINTER / new line } DAC* POINT / old line Unabbreviated

TOO LAC FIVE /new line
(A Switch off)

TO LAW THREE /old line

3-2

3.2 M SWITCH OFF

The following paragraphs describe the general SRCCOM output formats for lines inserted, lines deleted, and lines

changed with the M Switch off. In each description, the letter n represents the number of lines (decimal) affect­

ed by the modification, and L represents the line number, also decimal. The first line of program is LINE O.

3.2. 1 Li nes Inserted

The following is the general format of unabbreviated output in the case of an insertion in the new program (M

Switch off).

n LIN ES INSERTED BELOW LINE L

line L

fi rst line inserted
second line inserted

If output is abbreviated (A Switch on), only the following lines are printed.

n LINES INSERTED BELOW LINE L

line L

Example

12 LINES INSERTED BELOW LINE 58

600 DO 30 I = 1, 10 /1 i ne 58

3.2.2 Lines Deleted

)
Abbreviated
(A Switch on)

The following is the general format of unabbreviated output in the case of a deletion in the new program (both A

and M Switches off).

n LIN ES DELETED BELOW LI N E L

line L

first line deleted
second I ine deleted

3-3

If output is abbreviated (A Switch on), only the following lines are printed.

Example

n LINES DELETED BELOW LINE L

line L

2 LINES DELETED BELOW LINE 300

GO TO 500

100 A = B-C
WRITE (l, 20) A

/ Iine L }

/deleted
/deleted

3.2.3 Li nes Changed

Unabbreviated
(A Switch off)

The following is the general format of unabbreviated autput in the case of a change to the new program (both A

and M Swi tches off).

n LINES CHANGED BELOW LINE L

line L

I ine it was changed to in the new program
line in original symbolic program

line it was changed to in the new program
next line in the original symbolic program

If output is abbreviated (A Switch on), only the following lines are printed.

Examples

n LINES CHANGED BELOW LINE L

line L

2 LINES CHANGED BELOW LINE 38

GO TO 500 /Iine 38

101 A= B-D
100 A = B-C

READ (1,20)
WRITE (1,20)

/ new line
/ old line

/ new line
/ old line

3-4

Unabbreviated
(A Switch off)

4.1 OPERATOR ERRORS

SECTION 4

ERROR RECOVERY

Operator errors that occur while loading SRCCOM are handled in the standard manner by the Linking Loader.

Refer to the description of the Linking Loader Utility Program given in this manual.

Operator errors that occur while the user is typing a command string are detected by SRCCOM. SRCCOM out­

puts a carriage return and I ine feed, accompani ed by one of the following messages, before returning control to

the user:

a. INVALID SWITCH

b. TOO MANY CHARS IN FILE OR EXT

c. BOTH FILES NOT SPECIFIED

d. BAD INPUT DATA

e. COM USED AS AN INPUT EXT

f. FILENAMES NOT ON INPUT DEVICES

g. IMPROPER DATA MODE

To recover from one of the above errors, the user must retype his command string in an acceptable form.

4.2 SOFTWARE ERRORS

If SRCCOM look-ahead capability is exceeded because of gross differences between the two programs being com­

pared, it types

LOOK-AHEAD CAPABILITY EXCEEDED AT LINE L ~

(actual contents of line L) ~

on the teletype, followed by

SRCCOM)

>
to indicate that it is ready to accept a new command string.

4-1

If SRCCOM detects that there is not enough core available for its compare buffers, it outputs the following

message and returns control to the monitor:

NO CORE FOR CaMP BUFFS

4.3 DEVICE NOT ENABLED

If devices requested by the user in his command string are not enabled, the monitor outputs an lOPS 4 error mes­

sage. To recover, enable the appropriate device, and type CTRL R on the teletype. (CTRL R is formed by de­

pressing the CTRL key and striking the letter R and is printed as tR).

4-2

SECTION 1

INTRODUCTION

CHAPTER 12
SGEN SYSTEM GENERATOR

Systems which have some form of mass storage (Disk or DECtape) are provided with a general-purpose software

package which includes a System Generator (SGEN) program. During the initialization of a mass storage system,

the user may re-configure the general-purpose software to develop a resident software system unique to his in­

stallation. This function is performed using the SGEN program.

SGEN operates in an interactive, conversational mode with the user to generate a unique resident software sys­

tem; it uses a query/ response technique to obtain needed information from the user concerning the system's :

a. memory size

b. required device handlers

c. desired skip chain structure

d. required. DAT slot assignments.

The SGEN program may also be used to:

a. re-initialize a system, when necessary

b. change the resident software system to meet the requirements of a change in the system
equipment configuration

c. change the resident software system to obtain a desired set of system software operating
conditions.

The general-purpose software package provided with each mass storage system is in the form of:

a. a MONITOR System DECtape reel for those systems which have DECtape units;

b. a group of paper tapes (24) for systems which have Disk but no DECtape units (PDP-9, RB09 only). t

c. a 7- or 9-channel magnetic tape reel for systems with Disk and magnetic tape, but no DECtape.t

A step-by-step procedure which details the operations required to load the general-purpose system and to de­

velop and checkout a new system tape is provided with the software package. Additional procedures are also

given in the respective system User's Guides.

tin each case a util ity program is provided on paper tape to transfer the system from the input medium to Disk.

1-1

SECTION 2

GENERAL OPERATING PROCEDURES

The normal procedure to use SGEN to generate a resident software system is outlined in the following :

2

3

4

Procedure

The general-purpose software system provided with the equipment can
be loaded from either DECtape, MAGtape or Paper Tape, whichever
is included.

Prior to calling SGEN, the user must be sure there are available for
a tQAREA (save area) at least 408 free blocks for 16K, 1008 free blocks
for 24K, 1508 free blocks for 32K. (For the tQAREA, 408 blocks are
required for each 8K of core, plus 108 basic system blocks.)

Use UPDATE, prior to using SGEN, to delete unwanted I/O routines
from the library file, .LIBR BIN, to provide additional space.

On completion of Step 3, the user calls the system SGEN program.
When SGEN is loaded, it types out a series of queries regarding the
following:

a. system core size
b. options
c. type of te I etype un it used
d. required device handler designations
e. skip-chain formation
f. default assumption
g. system device designation
h. .DAT slot assignments

The user's responses to these queries enable the SGEN program to gen­
erate a new software system confi gured to best meet the needs of the
system as descri bed by the user inputs.

A step-by-step procedure illustrating the use of SGEN is given in Appendix A of this description.

2.1 FORMATION OF SKIP CHAINS

The skip chain structures for standard DECtape, DECtape/Disk, and Disk systems are described in the following

paragraphs.

2-1

2 . 1 . 1 DECtape or DECtape/ Disk Systems

An 8K, non-EAE, non-API, KSR33 DECtape system is sent to all DECtape or DECtape/ Disk customers. Each

customer with a core configuration of greater than 8K, or who has either EAE or API or a KSR35 Teletype, should

go through system generation to tai lor his installation for optimum use . All customers who, on examining the

.SCOM printout, discover devices or options listed that are not present in their system may want to eliminate

the irrelevant skips from the chain. Those with non-standard devices (A/ D, for example) should expand the

chain.

Listed below is the skip chain as it appears in the standard 8K DECtape system:

a. SPFAL Power Fail

b . DTDF DEC tape Done

c. DSSF Disk Done

d. DRSF Drum Done (PDP-9 only)

e. MTSF Magnetic Tape Done on Error

f. SPDF 339 Di splay Flag (PDP-9 only)

g. LSDF Line Printer Done

h. PCSF Card Column Ready

i · PCSD Card Done

k. CLSF Clock Done

I. RSF Reader Done

m. PSF Punch Done

n. KSF Keyboard Done

o. TSF Teleprinter Done

p. DTEF DECtape Error

q. MPSNE Non-Existent Memory Reference

r. MPSK Memory Protect Violation

s. SPE Memory Parity Error

t. -DRNEF Drum No Error (Negative skip, see description below)

It is important that the above order remain intact even if deletions or additions are to be made. For example,

given a system without the Power Fail, Parity or Memory Protect options and having e ither card reader, line

printer or magnetic tape, the skip chain should be generated as follows :

a. DTDF

b. DSSF

c. CLSF

d. RSF

2-2

e. PSF

f . KSF

g. TSF

h. DTEF

The position of a skip to be added to the chain varies with the nature of the device. For example, high data

rate devi ces are best placed at the top of the chain.

2.1.2 Negative Skips

Skip lOT DRNEF, skip on drum error flag not raised, is a good example of a negative skip, i.e . , a skip on a

flag not being raised. When specifying such a skip to . SGEN, a minus sign must precede the skip. It should be

carefully noted that negative skips should only be included when the device is physically present in the system,

because the skip lOT, otherwise, becomes an effective NOP, causing execution of the next instruction (a JMP

to the Monitor error routine (lOPS 3)}.

2.2 FORMATION OF DEVICE ASSIGNMENT TABLE (. DAT)

All I/O communication in a monitor environment is accomplished according to logical/physical device associa­

tions specified in the system software Device Assignment Table (.DAT).

During system generation, SGEN obtains information from the user on a query/response basis to build a . DAT

table for the new system. Examples of standard. DAT slot assignments made for several possible system configu­

rations are given in items a through d below.

a. Listed below are the .DAT slot assignments as they appear in the standard 8K Paper Tape/RB09 Disk
system (PDP-9 only) :

. DAT DEVICE USE

-15
-14
-13
-12
-11
-10
-7
-6
-5
-4
-3
-2
-1

1
2
3

DKA6
DKA4
DKB5
HAO
DKB4
HAO
DKCO
NONE
NONE
DKC5
HAO
HAO
DKCO
DKA4
DKA5
DKA6

OUTPUT
INPUT
OUTPUT
LISTING
INPUT
INPUT
SYSTEM DEVICE FOR. SYSLD
OUTPUT
EXTERNAL LIBRARY FOR. LOAD
SYSTEM INPUT
TELEPRINTER OUTPUT
KEYBOARD INPUT
SYSTEM DEVICE FOR. LOAD
USER
USER
USER

2-3

.DAT DEVICE USE

4 HAO USER
5 PRAO USER
6 PPBO USER
7 DKA1 USER

10 DKA2 USER

b. Listed below are the .DAT slot assignments as they appear in the standard 8K DECtape system.

.DAT DEVlCE USE

-15 DTA2 OUTPUT
-14 DTA1 INPUT
-13 DTB2 OUTPUT
-12 HAO LISTING
-11 DTB1 INPUT
-10 HAO INPUT
-7 DTCO SYSTEM DEVlCE FOR. SYSLD
-6 NONE OUTPUT
-5 NONE EXTERNAL LIBRARY FOR. LOAD
-4 DTC2 SYSTEM IN PUT
-3 HAO TELEPRINTER OUTPUT
-2 HAO KEYBOARD INPUT
-1 DTCO SYSTEM DEVlCE FOR. LOAD

1 DTAO USER
2 DTA1 USER
3 DTA2 USER
4 TTAO USER
5 PRAO USER
6 PPBO USER
7 DTAl USER

10 DTA2 USER

c. The following examples are variations on . DAT slot assignmentst as a function of either core size or
different peripherals.

(1) Given an 8K system with line printer and card reader: LPA should be assigned to . DAT slot -12
and one of the positive slots, for example, 3, 7, or 10. CDB should be assigned to one of the pos­
itive slots.

(2) Given a 16K (or greater) Disk/ DECtape system, a suggested list of assignments is as follows:

-15 DKA6 -6 NONE 2 DKA5
-14 DKA4 -5 NONE 3 DKA6
-13 DKA5 -4 DKA5 4 HA
-12 HA -3 HA 5 PRA
-11 DKA4 -2 TTA 6 PPA
-10 PRA -1 DKAO 7 DTAl
-7 DKCO 1 DKA4 10 DTA2

tInstallations with 16K or more core should assign the A versions of handlers to all .DAT slots.

2-4

d.

(3) Given a 16K (or greater) DECtape system with magnetic tape, a suggested list of assignments is
as follows:

-15 DTA2 -6 NONE 2 DTAl
-14 DTAl -5 NONE 3 DTA2
-13 DTA2 -4 DTA2 4 TTA
-12 TTA -3 TTA 5 PRA
-11 DTAl -2 TTA 6 PPA
-10 PRA -1 DTAO 7 MTFl
-7 DTCO 1 DTAO 10 MTF2

The following example is a variation of . DAT slot assignments as a function of both increased core
size and additional peripherals.

Given a 16K Disk system with line printer and card reader, a suggested list of assignments follows:

-15 DKA6 -6 NONE 2 DTAl
-14 DKA4 -5 NONE 3 DTA2
-13 DKA5 -4 DKA5 4 LPA
-12 LPA -3 TTA 5 PRA
-11 DKA4 -2 TTA 6 PPA
-10 PRA -1 DKAO 7 CDB
-7 DKCO DKA4 10 DKA5

2-5

APPENDIX A

SYSTEM GENERATION, STEP-BY-STEP PROCEDURE

The following table illustrates the step-by-step query/ response procedure developed while using SGEN with

either DECtape or Disk.

Step

1

2

3

4

5

6

7

8

9

10

11

Procedure

Type-- SGEN)

Program Title and explanatory
message

Query

Type system core size

Query

Type Y (yes) or N (no)

Query

Type Y or N

Query

Type Y or N

Directive

12 Query string; respond to each
with either Y or N.

Table A-I
Query /Response Procedure

Printout

$SGEN

SYSTEM GENERATOR Vnn

THIS PROGRAM WILL GENERATE A NEW SYSTEM TAPE ON
THE DEVICE SPECIFIED IN .DAT SLOT -15. IT WILL DE­
TERMINE THE CHARACTERISTICS OF THIS SYSTEM TAPE BY
ASKING YOU A SERIES OF QUESTIONS. IF IT CANNOT
UNDERSTAND THE ANSWER YOU GIVE, IT WILL REPEAT
THE QUESTION. HERE GOES!

HOW MUCH CORE IS AVAILABLE? TYPE 8, 16,24,OR 32 .

> 0)

IS AN API AVAILABLE? TYPE Y OR N.

> 0)

IS AN EAE AVAILABLE? TYPE Y OR N.

> 0)

IS TELETYPE A MODEL 33? TYPE Y OR N.

> 0)

INDICATE THE PRESENCE OR ABSENCE OF THE FOLLOW­
ING HANDLERS BY TYPING Y OR N:

PRA? > 0)

PRB? > 0)

PPA? '> D)

PPB? > 0)

PPC? > 0)

DTA? > 0)

DTB? > 0)

DTC? > 0)
DTD? > 0)
DKA? >0)

DKB? >0)

DKC? > 0)

A-1

Step

13

14

15

16

17

18

19

20

21

22

23

24

Table A-1 (Cont)
Query/ Response Procedure

Procedure

Query

DKD? > 0)
MTF? > 0)

LPA? > 0)

CDB? > 0)

DRB? > 0)

Printout

DYA? >0)}
DRA? > 0)

DRC? > D) PDP-9 only
DRD? > 0)

ARE ANY OTHER DEVICE HANDLERS PRESENT? TYPE Y
OR N.

NOTE

If you HAVE device handlers NOT listed in the preceding
query string (STEP 12) DO STEPS 14 through 22. If you DO
NOT have additional device handlers, enter N (no) in an­
swer to the STEP 13 query and GO TO STEP 23.

Type Y

Query

Type number of other handlers
in octal form.

Directive

Type 3-character mnemonic for
each handler (e.g., MTF)

Query

Type answer in octal notation

Directive, given for each hand­
Ier

Type mnemonic, a comma and
octal Skip lOT.

Directive

List of Skip Chain Input/Output
Transfer Command Mnemon i cs.

> 0)

HOW MANY? TYPE OCTAL NUMBER.

> 0 ~

TYPE THREE CHARACTER HANDLER NAME FOR NO. 01.

> 0)

HOW MANY SKIP lOTS SHOULD BE IN SKIP CHAIN FOR
THIS DEVICE HAN DLER? TYPE OCTAL NUMBER.

> 0 ~

TYPE UP TO FIVE CHARACTER MNEMONIC FOR SKIP lOT
NO. A COMMA, AND OCTAL SKIP lOT.

> 1...1 ___ ---'I

STEPS 17 THROUGH 22 ARE REPEATED FOR EACH ADDI­
TIONAL HANDLER AND HANDLER SKIP lOTS

THE FOLLOWING SKIP lOTS ARE TO BE INCLUDED IN THE
SYSTEM SKIP CHAIN:

CLSF
MPSNE
MPSK
SPE
SPFAL

A-2

Step

25

26

27

28

29

30

31

32

Table A-l (Cont)
Query /Response Procedure

Procedure Pri ntout

KSF
TSF
RSF
PSF
DTDF
DTEF
MTSF
LSDF
RCSF
RCSD

Directive TYPE THEM IN SKIP CHAIN ORDER, ONE PER NUMBER.
TYPE DONE IF ALL DESIRED SKIPS HAVE BEEN ENTERED.
(PRECEDE SKIP BY A MINUS IF REVERSE SKIP lOT.)
NOTE: USE tP TO RETURN TO THIS POINT.

List of queries regarding forma- NO. 01 ? >0 ~
tion of skip chain. Type lOT NO. 02? >0 ")

mnemonics using Section 1 as a NO. 02? >0 ~
guide. NO. 03? >0 ~

NO. 03? >0 ")
NO. 03? > 0 ~
NO. 04? >0 ~
NO. OS? >0 ~
NO. 06? >0 ")

NO. 07? > 0 ")

NO. 10? > 0 ~
NO. ll? >0 ")

NO. 12 ? >0 ~
NO. 13 ? >0 ")

NO. 14 ? >0 ~
NO. 15 ? >0 ;
NO. 16? >0 ~
NO. 17? >0)

Query SHOULD DEFAULT ASSUMPTION BE 7 CHANNEL MAG-
TAPE? TYPE Y OR N.

Type Y or N > 0 ")

Query WHAT IS THE SYSTEM DEVICE? TYPE DT OR DK.

Type DT (DECtape) or DK (Disk). >0 ")

Directive TYPE THE DEVICE HANDLER NAME (NON OR NONE) AND
UNIT NO. FOR THE FOLLOWING .DAT SLOTS:

NOTE: USE tP TO RETURN TO THIS POINT

List of queries regarding. DAT -15? >CJ ")

Slot Assignments. Type handler -14 ? >0 ~
mnemonics. -13 ? > 0 ~

-12? > 0)

-11 ? > 0 ")

A-3

Step

33

34

35

Procedure

Table A-1 (Cont)
Query /Response Procedure

-10? > 0)

-6? > 0)

-5? > 0)
-4? ;- 0)
-1? > 0)

1 ? > 0)

2? > 0)

3? > 0)

4? > 0)

5? > 0 ~
6? > 0)

7? > 0)

10? > 0 ~

Pri ntout

Explanatory THANKS, THIS WILL TAKE A FEW MINUTES.
NOW)

NOTE

APPROXIMATE TIME REQUIRED:

a. DECtape to DECtape .. . 15 to 20 min.
b. DECtape to Disk 10 min.
c . Disk to Disk 5 min. or less.

System generation complete, ALL DONE - NEW SYSTEM ON
indicates on which Tape or
Disk New System is stored.

NOTE

Printouts will be DTl for DECtape only, DKO for DECtape to
Disk, DK 1 for Disk only system. Each printout requires a
different procedure .

a. If DTl go to STEP 35
b. If DKO go to STEP 37
c. If DK 1 go to STEP 38

Do the following to DEC tape
Unit 8:

a. Remove system DECtape.
b. Mount new scratch DECtape.
c. Change unit number Dial
from 8 to 1.

A-4

(I P ILLEGAL

Step Procedure

d. Set unit WRITE
ENABLE/LOCK switch to
WRITE ENABLE .

Table A-I (Cont)
Query /Response Procedure

36 Do the following to original
DECtape Unit I:

a. Change unit number Dial
from I to 8.
b. Set unit WRITE ENABLE/
LOCK switch to LOCK.

NOTE

Printout

On completing Step 36, go to Step 44.

37 Do the following to DECtape
Unit 8:

a. Remove system DEC tape.
b. Mount new scratch DECtape.
c. Set unit WRITE ENABLE/
LOCK switch to WRITE ENABLE.
d. Change unit number dial
from 8 to 2.
e. Set Disk control panel
WRITE PROTECT switch and
toggle switches 10, 20, and
30 to ON (up).

NOTE

On completing Step 37, go to Step 44.

38 Set Disk control panel WRITE
PROTECT switch to OFF (down)
position, and perform Steps 39
through 42.

39

40

41

Enter. DAT SLOT assignment
A LJ DKAO LJ 2/ DKA 1 LJ 3) .

Enter PIP) .

Response

$ A DKAO 2/DKA 1 3

$ PIP

PIP Vnn
>

A-5

Step

42

43

44

Procedure

Enter CwDKOw(H)w-DK1)
to initiate transfer.

Response (transfer complete)

Table A-l (Cont)
Query /Response Procedure

Printout

> CDKO(H)w-DKl

NOTE

Protect contents of Disk Unit 0 by setting Disk Control Panel
WRITE PROTECT switch and switches 10, 20, 30 to the ON
(up) position (RB09 only).

Load paper tape BOOTSTRAP
(Disk or DECtape, whichever
is applicable) in paper tape
reader.

A-6

APPENDIX B

PIP ERROR MESSAGES

Error Message

COMM STRI NG TOO LO NG

ILL FUNCTION

ILL DEV OR UNIT)
ILL DEV TERMINATOR
DEV ILL FOR OPTION OR FUNCTION

DEV NOT IN + .DAT TABLE

TOO MANY FILES OR BLKS

FILE NAME TOO LONG i
FILE NOT 0 N DEV

TOO MANY SRC FILES
TOO MANY DEST FILES

DATA MODE NEEDED

SWITCH ILL FOR DEV
ILL SWITCH
SWITCH CONFLICT
SWITCH ILL FOR FUNCTION

ILL TERMINATOR

I NPUT PARITY ERR

INPUT CKSUM ERR)
INPUT LINE TOO LONG

ILL BLK#

READ-COMP ERR ON BLK:n

S FUNC NOT DONE

STRING 1 TO 16 ACCEPTED

TOO FEW DEST FILES

}

Action

Retype command string.

Retype from function character on.

Retype from devi ce name on.

Type tC to restore.

Retype command string.

Retype from Fi Ie Name on.

Check number of files actually transferred and
type another command stri ng to transfer remainder.

Type data mode in parentheses followed by
carriage return.

Retype from switch on.

Retype from terminator on.

If binary f check data.
If ASCII f retype command string using G switch.

Check data.

Retype from block # on.

When operation comp lete f try B function on
error block.

Execute S operation; then retype T command.

Perform segmentation; then further segment
last destination file.

Retype command string with correct If of destina­
tion files. (l more than If of segmentation points.)

B-1

READER'S COMMENTS
PDP-15 UTILITY MANUAL
DEC-15-YWZA-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback - your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability , and readability.

Did you find errors in this manual? ___ _

How can this manual be improved? ___ _

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the following period­
ically distributed publications are available upon request. Please check the appropriate boxes for a current issue of the
publication(s) desired.

o Software Manual Update, a quarterly collection of revisions to current software manuals.

o User's Bookshelf, a bibliography of current software manuals.

o Program Library Price List , a list of currently available software programs and manuals.

Please describe your position.

Nan1e ________________ _ Organization

Street ______________ _ Department ___________________ _

City ___________ State ______________ Zip or Country ____ _

HOW TO OBTAIN SOFTW ARE INFORMATION

Annoullcements for new and revised software, as well as programming notes, software problems, and documenta­
tion corrections are published by Software Information Service in the following newsletters.

Digital Software News for the PDP-8 Family
Digital Software News for the PDP-9/15 Family
PDP-6 jPDP-IO Software Bulletin

These newsletters contain information applicable to software available from Digital's Program Library .

Please complete the card below to place your name on the newslett er mailing list.

Qu es tions or problems concerning DEC Software should be reported to the Software Specialist at your nearest DEC
regional or district sales office. In cases where no Software Specialist is available, please send a Softw are Trouble
Report form with details of the problem to :

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard , Massachuse tts 01754

These forms, which are available without charge from the Program Library , should be fully filled out and accompa­
nied by te letype output as well as listings or tapes of the user program to facilitate a complete investigation . An
answer will be sent to the individual and appropriate topics of general interest will be printed in the newsletter.

New and revised software and manuals , Software Trouble Report forms , and cumulative Software Manual Updates
are available from the Program Library. When ordering, include the document number and a brief description of
the program or manual requested. Revisions of programs and documents will be anno unced in the newsletters and
a price list will be included twice yearly. Direct all inquiries and requests to :

Program Library
Digital Equipment Corporation
146 Main Street , Bldg. 3-5
Maynard , Massachusetts 01754

Digital Equipment Computer Users Society (DECUS) maintains a user Library and publish es a catalog of programs
as well as the DECUSCOPE magazine for its members and non-members who request it. For further information
please write to :

DEC US
Digital Eq uipment Corporation
146 Main Street
Maynard , Massachu se tts 01754

Send Digital's software newsletters to:

My computer is a

Name ____________________________________ _

Com pany Name ____________________________ _
Address __________________________________ _

PDP-8/1 0
LINC-8 0
PDP-9 0
PDP-IO 0

PDP-8/L 0
PDP-12 0
PDP-IS 0
OTHER 0

(zip code)

Please specify

My system serial number is _____________________ (if known)

