RSX-11M-PLUS and Micro/RSX
Guide to Writing an |/O Driver

Order No. AA-H267C-TC

RSX-11M-PLUS Version 4.0
Micro/RSX Version 4.0

Digital Equipment Corporation Maynard, Massachusetts

First printing, October 1979
Revised, March 1982
Revised, September 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1979, 1982, 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER’S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist in preparing future documentation.

The foliowing are trademarks of Digital Equipment Corporation:

DEC EduSystem UNIBUS
DEC/CMS IAS VAX
DEC/MMS MASSBUS VAXcluster
DECnet MicroPDP-11 VMS
DECsystem~-10 Micro/RSX VT
DECSYSTEM-20 PDP

DECUS PDT

DECwriter RSTS dlilgli|t|a]l]
DIBOL RSX

ZK3088

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO* CANADA INTERNATIONAL

Digital Equipment Corporation Digital Equipment Digital Equipment Corporation
of Canada Ltd. PSG Business Manager

P.O. Box CS2008 100 Herzberg Road c/o Digital’s local subsidiary

Nashua, New Hampshire 03061 Kanata, Ontario K2K 2A6 or approved distributor

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.)
*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation, Westminster,
Massachusetts 01473,

This document was prepared using an in-house documentation production system. All page composition and make-up was
performed by TgX, the typesetting system developed by Donald E. Knuth at Stanford University. TeX is a trademark of the
American Mathematical Society.

Contents

Preface ' xi

Summary of Technical Changes xvii

Chapter 1T RSX-11M-PLUS I/O Drivers

1.1
1.2

1.3

1.4

1.5

Vectors and Control and Status Registers i 1-1
Service ROULINES o oo e e 1-2
1.2.1 Executive and Driver Layout o i 1-2
1.2.2 Driver CONtENts« « o o ot i e e e s 1-4
Executive and Driver Interaction e 1-4
1.3.1 The Driver Process vt v ittt 1-5
1.3.2 Interrupt Dispatching and the Interrupt Control Block 1-5
133 Interrupt Servicing and Fork Process. L 1-8
1.3.4 Nonsense Interrupt Entry Points 1-10
Advanced Driver Features e e 1-10
1.4.1 Overlapped Seek I/O i 1-10
1.4.2 Overlapped I/O Completion i 1-11
1.4.3 Dual—AccessSupport..................................‘.\..1—11
1.4.4 Delayed Controller Accessot 1-12
1.4.5 Controller Reassignment and Load Sharing 1-12
1.4.6 Common Interrupt Dispatching i 1-13
1.4.7 Subcontroller DeVICES v v it e e 1-14
1.4.8 Full Duplex Input/Output 1-14
149 Asynchronous System Traps i 1-15
1.4.10 Using Asynchronous Buffered [/O 1-16
1.4.11 1I/0 Queue Optimization i 1-17
Distributed I/Oo e 1-18
15.1 UNIBUSRun Masko e 1-18
1.5.2 Conditional Fork e 1-19
1.5.3 Processor-Specific Functions oo oo 1-19

iif

1.6
1.7

1.5.4 Vectoring for Privileged Tasks and the Executive 1-20

1.5.5 Converting to Vectored Access in Privileged Tasks. 1-21
1.5.6 Converting to Vectored Access in Drivers 1-22
Overview of Incorporating a User-Written Driver into RSX-11M-PLUS 1-22
SPR SUpPOrt . . . oo e 1-25

Chapter 2 Device Driver I/O Structures

21 I/OStructures e e e 2-1
21.1 Controller Table (CTB) i e e e 2-1
21.2 Controller Request Block (KRB) i, 2-2
2.1.3 Device Control Block (DCB) i 2-3
2.1.4 Unit Control Block (UCB) i 2-3
2.1.5 Status Control Block (SCB) i 2-3
2.2 Driver Dispatch Table (DDT) 2-4
2.2.1 [/O Initiation e 2-5
222 Cancel I/O . . . o . 2-5
223 Device Timeout e e 2-5
224 Device Power Failure 2-6
225 Controller and Unit Status Change 2-6
226 Device Interrupt Addresses 2-6
2.3 Typical Control Relationships, 2-6
2.3.1 Multiple Units per Controller, Serial Unit Operation 2-7
23.2 Two Controllers, Serial Operation IR 2-8
233 Parallel Unit Operation, 2-8
23.4 Multiple-Access (Dual-Access) Operation 2-10
2.4 Overview of Data Structure Relationships 2-11
Chapter 3 Executive Services and Driver Processing
31 FlowofanI/ORequest. 3-1
3.1.1 Predriver Initiation Processing 3-2
3.1.2 Driver Processing e 3-3
3.2 Executive Services Availabletoa Driver uv.... 3-4
3.2.1 Get Packet ($GTPKT) e 3-4
3.2.2 Interrupt Save (JINTSV) i 3-5
3.2.3 Create Fork Process (JFORK), 3-5
3.24 I/O Done ($IODON or $IOALT) vttt e i e 3-5

Chapter 4 Programming Specifics for Writing an 1/O Driver

4.1 Programming Standards L 4-1
411 Programming Protocol Summary e 4-1

412 Accessing Driver Data Structurey 4-2

4.2 Overview of Programming User-Written'Driver Data Bases 4-2
4.2.1 General Labeling and Ordering of Data Structures 4-2

422 Device Control Block Labeling. 4-3

423 Unit Control Block Ordering 4-3

424 Status Control and Controller Request Blocks 4-3

425 Controller Table e 4-3

4.3 Overview of Programming User-Written Driver Code 4-4
4.3.1 Generate Driver Dispatch Table Macro Call—DDT$ 4-5

432 Get Packet Macro Call—GTPKTS$ o, 4-6

43.3 Interrupt Save Macro Call-INTSV$ e 4-8

434 Use of UCBSV Argumentin Macro Calls 4-9

435 Specifying a Loadable Driver 4-9

43.6 Loadable Driver Entry Points for LOAD and UNLOAD 4-9

4.4 Driver Data Structure Details 4-10
44.1 The I/O Packet e 4-11

442 The QIO Directive Parameter Block (DPB) 4-14

4.4.3 The Device Control Block (DCB) 4-16
4.43.1 Establishing I/O Function Masks 4-21

444 The Unit Control Block (UCB). 4-25

44.5 The Status Control Block (SCB) 4-35

44.6 The Controller Request Block (KRB) 4-42

447 Continuous Allocation of the SCBand KRB 4-49

4.4.8 Controller Table (CTB) e 4-49

45 Driver Code Details e e 4-55
45.1 Driver Dispatch Table Format 4-55

45.2 I/O Initiation Entry Point., 4-60

45.3 Cancel Entry Point e 4-61

454 Device Timeout Entry Point 4-61

455 Next Command Entry Point R 4-61

4.5.6 Queue Optimization Entry Point 4-62

45.7 Deallocation Entry Point 4-62

45.8 Power Failure Entry Point 4-62

45.9 Controller Status Change Entry Point 4-63
4.5.10 Unit Status Change Entry Point - 4-64
45.11 Interrupt Entry Point. 4-65
4.5.12 Volume Valid Processing 4-66

Chapter 5 Incorporating a User-Supplied Driver Into RSX-11M-PLUS

5.1 Guidelines for Incorporating a Driver 5-1
5.1.1 Incorporating a Driver at System Generation 5-2

5.1.2 Incorporating a Loadable Driver with a Loadable Data Base After System
Generation e e e 5-3
5.2 What the System Generation Procedure Does for You 5-3
5.2.1 Assembling the Driverand DataBase 5-4
522 Inserting the Driver and Data Base Modules in the Library 5-4
5.2.3 Task-Building the Driver i 5-5
524 Loading the Driver i 5-6
5.2.5 Making the Devices Accessible i 5-6
5.2.5.1 Setting Vector and CSR Assignments 5-7
5.25.2 Placing a Controller and Units OnLine 5-7
5.2.5.3 CSR and Vector Assignment Errors 5-8
5.3 User-Supplied Driver System Generation Dialogue Summary 5-9
5.3.1 Choosing Executive Options 5-10
5.3.2 Choosing Peripheral Configuration 5-10
54 LOAD Processing i e e 5-11
5.4.1 LOAD Operations and Diagnostic Checks 5-11
5.4.2 Use of /CTBIn LOADot e e 5-14
5.4.3 Incorporating a Driver into a Micro/RSX System 5-15

Chapter 6 Debugging a User-Supplied Driver

6.1 Crash Dump Analysis Support Routine 6-1
6.2 The Executive Debugging Tool iy 6-2
6.2.1 XDT Commands ot e e 6-2

622 XDTStartup e 6-3

6.2.3 XDT Restrictions v i e 6-3

6.2.4 XDT General Operation i 6-4

6.2.5 XDT and Debugging a User-Supplied Driver 6-4

6.3 FaultlIsolation e e 6-5
6.3.1 Immediate Servicing e e 6-5
6.3.1.1 The System Traps t0 XDT oottt i ettt e e . .66

6.3.1.2 TheSystem Reportsa Crash 6-6

6.3.1.3 The System Halts but Displays No Information 6-6

6.3.1.4 The System Is in an Unintended Loop 6-6

6.3.2 Pertinent Fault Isolation Data [6-7

6.4 Tracing Faults e e 6-7
6.4.1 Tracing Faults Using the Executive Stack and Register Dump 6-10

6.4.2 Tracing Faults When the Processor Halts Without Display 6-12

vi

6.4.3 Tracing Faults After an Unintended Loop 6-13
6.4.4 Additional Hints for Tracing Faults. 6-13
6.5 Rebuilding and Reincorporating a Loadable Driver. 6-14

Chapter 7 Executive Services Available to an |/O Driver

7.1 System-State Register Conventions i e 7-1
7.2 The Address Doubleword e 7-1
7.3 Drivers for NPR Devices Using Extended Memory 7-2
7.3.1 Calling $STMAP and $MPUBM or $STMP1 and $MPUB1. 7-3
7.3.1.1 Allocating a Mapping Register Assignment Block 7-3

7.3.1.2 Calling $STMAP or $STMP1 it 7-3

7.3.1.3 Calling $MPUBM or $MPUB1 7-4

7.3.2 Calling $ASUMR and $DEUMR. 7-4

7.3.3 Statically Allocating UMRs During System Generation 7-4

74 Service Calls e e 7-5
7.4.1 Address Check Routines (JACHKB, $ACHCK) 7-7

7.4.2 Allocate Core Buffer Routines (JALOCB, $ALOC1) 7-8

7.4.3 Assign UNIBUS Mapping Registers Routine (JASUMR) 7-8

7.4.4 Check Logical Block Routines ($BLKCK, $BLKC1, $BLKC2) 79

7.4.5 Move Block of Data Routine ($BLXIO) 7-10

7.4.6 Check I/0 Buffer Routines ($CKBFI, $CKBFR, $CKBFW, $CKBFB) 7-11

7.4.7 Clock Queue Insertion Routine (JCLINS) 7-13

7.4.8 Convert Logical Block Number Routine (JCVLBN). 7-14

7.4.9 Deallocate Core Buffer Routines ($DEACB, $DEAC1) 7-15
7.4.10 Deassign UNIBUS Mapping Registers Routine ($}DEUMR) 7-15

7.4.11 Dequeue From UMR Wait Routine ($DQUMR) 7-16
7.4.12 Device Message Output Routine ($)DVMSG) 7-16
7.4.13 Fork Routine (BFORK) 7-17
7.4.14 Forkl Routine (JFORKI) 7-18
7.4.15 Get Byte Routine ($GTBYT) i 7-19
7.4.16 Get Packet Routines (3GTPKT, $GSPKT) i i i it i i oo 7-20
7.4.17 Get Word Routine (§GTWRD) i i i 7-21
7.4.18 Initiate I/O Buffering Routine (JINIBF) 7-22
7.4.19 Interrupt Save Routines (JINTSV, $INTSE) 7-23
7.4.20 Interrupt Exit Routine (JINTXT) i 7-24

7.421 1/0 Done Routines ($IOALT, $IODON, $IODSA) 7-24
7.4.22 1/0 Finish Routine (JIOFIN). i i 7-25
7.4.23 Map UNIBUS to Memory Routine (MPUBM) 7-26
7.4.24 Map UNIBUS to Memory Alternate Entry Routine ($MPUB1) 7-27
7.4.25 Put Byte Routine ($PTBYT). i 7-28
7.4.26 Put Word Routine ($PTWRD) e 7-28

vil

7.4.27
7.4.28
7.4.29
7.4.30
7.4.31
7.4.32
7.4.33
7.4.34

Queue Insertion by Priority Routine (JQINSP) 7-29

Relocate Routine (JRELOC) 7-29
Relocate UNIBUS Physical Address Routine (RELOP) 7-30
Queue Kernel AST to Task Routines ($REQUE, $REQU1) 7-31
Set Up UNIBUS Mapping Address Routine ($STMAP) 7-31
Set Up UNIBUS Mapping Address Alternate Entry Routine ($STMP1) 7-32
Test if Partition Memory Resident for Kernel AST Routine ($TSPAR). 7-33
Test for I/O Buffering Routine ($TSTBF) 7-34

Chapter 8 Sample Driver Code

81 Sample Driver DataBase 8-1
82 Sample Driver Code 8-3
8.3 Handling Special User Buffers 8-15

Appendix A Converting A User-Supplied RSX-11M Driver

A.1 Assumptions and General Approach A-1
A.2 Modifying the Data Base Code 0. A-1
A.2.1 Unit Control Block Changes A-2
A.2.2 Status Control Block Changes0u..... A-2
A23 TheController Table e A-3
A3 Modifying the Driver Code i A-3
A3.1 Conditional Symbols A-3
A3.2 Controller-Dependent Code 0.0 iiiuiuininn.. .. A-3
A3.3 Driver Dispatch Table A-4
A.3.4 Reconfiguration Support. A-4
A3.5 Volume Valid Processing A-5
A3.6 Converting Logical Block Numbers. A-5
A.3.7 Interrupt Entry Processing A-5
Figures
1-1 Virtual to Physical Mapping for the Executive -...13
1-2 Interrupt Dispatching for a Resident Driver 1-6
1-3 Interrupt Dispatching for a Loadable Driver 1-7
1-4 Interrupt Dispatching for Common Interrupt Devices 1-13
2-1 Multiple Units per Controller, Serial Unit Operation 2-7
2-2 Two Controllers, Serial Operation, 2-9
2-3 Parallel Unit Operation (Overlapped Seek) 2-10
2-4 Dual-Access Operation 2-11
2-5

Composite I/O Data Structures 2-15

viii

4-1 [/O Packet Format 4-12
4-2 QIO Directive Parameter Block (DPB) 4-15
4-3 Device Control Block, 4-17
4-4 D.PCB and D.DSP Bit Meaningsououiu. ... 4-21
4-5 Unit Control Block 4-26
4-6 UnitControl Byte. 4-28
4-7 Unit Status Byte. 4-30
4-8 Unit Status Extension 2 4-31
4-9 Status Control Block 4-35
4-10 Controller Status Extension 3 O 4-37
4-11 Controller Status Extension 2 4-39
4-12 Controller Request Block 4-42
4-13 Controller Status Word 4-44
4-14 Continuous KRB/SCB Allocation 4-49
4-15 Controller Table. 4-50
4-16 Common Interrupt Table and Table of DCB Addresses 4-52
4-17 Controller Table Status Byteo.. ... 4-53
4-18 Driver Dispatch Table Format 4-56
4-19 Sample Interrupt Address Block inthe DDT. 4-58
6-1 Interaction of Task Header Pointers 6-8
6-2 Task Header 6-9
6-3 Stack Structure: Internal SST Fault 6-10
6-4 Stack Structure: Abnormal SST Fault 6-11
6-5 Stack Structure: Data Items on Stack 6-12
7-1 Mapping Register Assignment Block 7-4
Tables
4-1 System Macro Calls for Driver Code 4-4
4-2 Mask Values for Standard I/O Functions 4-22
4-3 Mask Word Bit Settings for Disk Drives 4-23
4-4 Mask Word Bit Settings for Magnetic Tape Drives 4-24
4-5 Mask Word Bit Settings for Unit Record Devices 4-25
4-6 Unit Control Byte Bit Symbols 4-28
4-7 Controller Status Extension 3-Bit Settings 4-39
4-8 Controller Status Extension 2-Bit Settings 4-40
4-9 Controller Status Word Bit Settings 4-45
4-10 Labels Required for the Driver Dispatch Table 4-56
4-11 Standard Labels for Driver Entry Points 4-58
7-1 Summary of Executive Service Calls for Drivers 7-5

Preface

Manual Objectives

The primary goals of this manual are to introduce RSX-11M-PLUS physical 1/O concepts, define
Executive and 1/O service routine protocol, describe system I/O data structures, and prescribe
1/0 service routine coding procedures. This information is intended to allow you to perform
the following kinds of operations:

* Prepare software that interacts with the Executive and supports a conventional /0O device
* Incorporate user-written software into an RSX-11M-PLUS or Micro/RSX system

® Detect typical errors that cause the system to fail

* Use Executive service routines that an I/O service routine frequently employs

Secondary objectives are to introduce advanced hardware and software features and sophisticated
Executive facilities, and to describe both the conventional and advanced features of 1/0O
data structures and mechanisms. This discussion of advanced features can enhance your
understanding of conventional I/O processing and data structures.

This manual does not describe how to write software that incorporates advanced driver
features. The only complete package of such information is DIGITAL-supplied software,
such as DVINT.MAC and DBDRV.MAC (for overlapped seek, dual access, and common
interrupt handling); IOSUB.MAC and TTDRV.MAC (for full duplex I/0); and MMDRV.MAC
(for subcontroller device operation). The manual also does not describe how to attach hardware
to the PDP-11, how to perform diagnostic functions to uncover hardware faults, nor how to
incorporate DIGITAL-standard error-reporting functions in user-written software.

xi

Intended Audience

This manual is written for the senior-level system programmer who is familiar with the hardware
characteristics of both the PDP-11 and the device that the user-written software supports. The
programmer should also be knowledgeable about DIGITAL peripheral devices and experienced
in using the software supplied with an RSX-11M-PLUS system. The manual does not describe
general Executive concepts nor does it define general system structures. The manual does
describe 1/0O concepts, the Executive role in processing I/O requests, and some pertinent
aspects of 1/O processing done by DIGITAL-supplied software. With a firm understanding of
hardware characteristics and real-time system software, a senior-level system programmer can
appreciate how the interaction of user-written software with the Executive also affects overall
system performance.

Structure of This Document

This document is designed to provide the conceptual, procedural, and reference information you
need to build and incorporate a user-written driver into your system.

Chapter 1 introduces terms and concepts fundamental to understanding physical I/O in RSX-
11M-PLUS and describes the protocol that a driver must follow to preserve system integrity.
It summarizes advanced driver features and RSX-11M-PLUS capabilities to help you become
acquainted with overall Executive and driver interaction.

Chapter 2 continues the conceptual discussion begun in Chapter 1. It introduces on a general
level the software data structures involved in handling I/O operations at the device level,
examines typical arrangements of data structures that are necessary for controlling hardware
functions, and presents a macroscopic software configuration that summarizes the logical
relationships of the I/O data structures.

Chapter 3 ends the conceptual presentation. It summarizes how an I/O request originates, how
the Executive processes the request, and how a driver uses Executive services to satisfy an I/O
request.

Chapter 4 provides the following reference information necessary to code a conventional 1/O
driver:

* A summary of programming standards and protocol

e An introduction to the programming facilities and requirements for both the driver data
base itself and the executable code that constitutes the driver

e An extensive elaboration of the driver data base and of the driver code

Chapter 5 supplies the procedural information you need to assemble and build a loadable driver
image, load it into memory, and make accessible the devices that the driver supports. Also
included are a summary of the system generation dialogue concerning including user-supplied
drivers and a description of the loading mechanism and the diagnostic operation performed
during loading.

Chapter 6 summarizes software features provided to help you uncover faults in drivers and
gives procedures to follow that might prove successful in isolating faults in drivers.

Chapter 7 gives general coding information relating to the PDP-11 and RSX-11M-PLUS Executive
service routines.

xii

Chapter 8 shows the source code for the data base and driver of a conventional device and an
excerpt of source code from a driver that handles special user buffers.

Appendix A describes the modifications you must make to enable an RSX-11M user-supplied
driver to run on an RSX-11M-PLUS or Micro/RSX system.

Associated Documents

Your RSX-11M-PLUS system comes with documents that describe both the software and
hardware on the system. The software documents are listed and described in the RSX-11M-PLUS
Information Directory and Master Index. Consult the directory for concise summaries of software-
related publications. Processor and peripherals handbooks summarize hardware information
published in various maintenance, installation, and operator manuals that are provided with
your system.

Consult the RSX-1IM-PLUS and Micro/RSX Crash Dump Analyzer Reference Manual for the
“System Data Structures and Symbol Definitions”. The RSX-11M-PLUS and Micro /RSX Crash
Dump Analyzer Reference Manual lists the source code of system macro calls that define system
device structures and driver-related structures, as well as the system-wide symbolic offsets
needed to access those structures.

Conventions Used in This Document

The following conventions are used in this manual:

Convention Meaning

> A right angle bracket is the default prompt for the Monitor
Console Routine (MCR), which is one of the command interfaces
used on RSX-11M-PLUS systems. All systems include MCR.

$ A dollar sign followed by a space is the default prompt of
the DIGITAL Command Language (DCL), which is one of the
command interfaces used on RSX-11M-PLUS and Micro/RSX
systems. Many systems include DCL.

XXX > Three characters followed by a right angle bracket indicate the
explicit prompt for a task, utility, or program on the system.

UPPERCASE Uppercase letters in a command line indicate letters that must be
entered as they are shown. For example, utility switches must
always be entered as they are shown in format specifications.

command abbreviations Where short forms of commands are allowed, the shortest form
acceptable is represented by uppercase letters. The following
example shows the minimum abbreviation allowed for the DCL
command DIRECTORY:

$ DIR

xiii

Convention

Meaning

lowercase

/keyword,
/qualifier,
or

/switch

parameter

[:m]
[directory]

boldface

italics

Any command in lowercase must be substituted for. Usually
the lowercase word identifies the kind of substitution expected,
such as a filespec, which indicates that you should fill in a file
specification. For example:

filename.filetype;version

This command indicates the values that comprise a file spec-
ification; values are substituted for each of these variables as
appropriate.

A command element preceded by a slash (/) is an MCR
keyword; a DCL qualifier; or a task, utility, or program switch.
Keywords, qualifiers, and switches alter the action of the
command they follow.

Required command fields are generally called parameters. The
most common parameters are file specifications.

Commas are used as separators for command line parameters
and to indicate positional entries on a command line. Positional
entries are those elements that must be in a certain place in the
command line. Although you might omit elements that come
before the desired element, the commas that separate them must
still be included.

The convention [g,m] signifies a User Identification Code (UIC).
The g is a group number and the m is a member number. The
UIC identifies a user and is used mainly for controlling access
to files and privileged system functions.

This may also signify a User File Directory (UFD), commonly
called a directory. A directory is the location of files.

Other notations for directories are: [ggg,mmm)], [gggmmm], [ufd],
[name], and [directory].
The convention [directory] signifies a directory. Most directories

have 1- to 9-character names, but some are in the same [g,m]
form as the UIC.
Where a UIC, UFD, or directory is required, only one set of
brackets is shown (for example, [g,m]). Where the UIC, UFD,
or directory is optional, two sets of brackets are shown (for
example, [[g,m]]).

A vertical ellipsis shows where elements of command input or
statements in an example or figure have been omitted because
they are irrelevant to the point being discussed.

Boldface type indicates that the term is being defined; for
example, command parameters and glossary entries.

Italic type indicates emphasis, a book title, or that a new term
is being used in the text.

xiv

Convention Meaning

“print” and “type” As these words are used in the text, the system prints and the
user types.

black ink In examples, what the system prints or displays is printed in
black.

red ink In interactive examples, what the user types is printed in red.

System responses appear in black.

XU

Summary of Technical Changes

The following sections list features, qualifiers, error messages, and restrictions that are new
to user-written drivers for the RSX-11M-PLUS and Micro/RSX Version 4.0 operating systems.
These new features are documented in this revision of the RSX-11M-PLUS and Micro/RSX Guide
to Writing an 1/0 Driver.

New Features

The RSX-11M-PLUS and Micro/RSX Guide to Writing an I/O Driver has the following new
features:

Vectoring for privileged tasks and the Executive

Converting to vectored access in privileged tasks

Converting to vectored access in drivers

Overlapped I/O completion

Vectoring allows access to Executive code by privileged tasks.

Conversion procedures allow existing privileged tasks vectored access to the Executive.

A conversion routine allows you to convert existing drivers for vectored access to the
Executive.

Overlapped I/O completion means that the Executive will process the next 1/O request
while a physical device services the current I/O request; thus speeding up 1/O operations.

Changes to the Document

“System Data Structures and Symbolic Definitions,” which was Appendix A, has been
deleted from this manual and now appears in the RSX-1IM-PLUS and Micro/RSX Crash
Dump Analyzer Reference Manual. Appendix A is now “Converting a User-Supplied RSX-
11M-PLUS Driver”.

A discussion of ASTs has been added.
The description of the $DEUMR routine has been modified.
A routine description has been added for $I0ODSA.

xvii

Additional information about the suc argument has been provided.
Additional information about the K OWN function has been provided.
The description of US.FOR in Figure 4-7 has been modified.

The description of US.PUB in the UCB field U.ST2 has been modified.

The address description of U.BUF (for a MASSBUS or 22-bit Q BUS NPR device) has been
modified.

The S.RCNT field in Figure 4-9 has been modified.
The following additional input for the $ASUMR routine has been documented:
M.BFVL(RO)=LOW ADDRESS OF TRANSFER (FOR ODD/EVEN BYTE DETERMINATION)

The reference to the file specification for the sample driver code on page 8-1 has been
changed from “UFD [200,1]” to “directory [USER]".

The description of SCBDF$ has been modified in the sample driver data base.

Differences between incorporating user-supplied drivers on RSX-11M-PLUS and Micro/RSX
are discussed.

xviii

Chapter 1
RSX-11M-PLUS I /O Drivers

Device drivers on RSX-11M-PLUS are the primary method for creating an interface between
the Executive software and the hardware attached to the computer.! Most DIGITAL-supplied
hardware is supported by drivers accompanying the software the user receives with the system.
This chapter introduces the concept of device drivers and explains driver operations and features.

1.1 Vectors and Control and Status Registers

A device controller has a unique address on the PDP-11 UNIBUS that identifies and distinguishes
it from other hardware attached to the computer. A control and status register (CSR) containing
data elements that allow software to operate and interrogate the related device is usually located
at this address. The CSR resides in physical address space that is reserved for device registers
and is referred to as the I/O, or peripheral, page. Other registers associated with the device
are placed in contiguous addresses lower or higher than the CSR address. Software usually
controls a device by accessing the CSR to enable interrupts, initiate a function, and respond to
the resulting interrupt to continue or finish the function.

Many devices can have one or more two-word areas, called interrupt vectors, associated with
them. A vector provides a connection between the device and the software that services
the device and allows the device to trigger certain software actions because of some external
condition related to it. When a device interrupts, it sends the processor the address of the
interrupt vector. The first word of the interrupt vector contains the address of the interrupt
service routine for that device. The processor uses the second word of the vector as a new
Processor Status Word (PSW). Thus, when the processor services the interrupt, the first word of
the vector is taken as the new Program Counter (PC) and the second word is the new PSW.

Space is reserved on the PDP-11 for the interrupt vectors. This space is in the low part of
kernel I-space. The vectors are considered to be in kernel mode virtual address space and are
thus mapped by the Executive. Because the interrupt vector is in kernel space, the Executive
receives control of the processor on every interrupt. On a multiprocessor system, each central
processor unit has its own vector space.

! The CINT$ directive provides a secondary but equally viable interface between software and hardware.The CINT$ directive enables a
privileged task to gain control when a device interrupts and thereby to access device registers. The K-series Laboratory modules use this
feature to perform I/0.

RSX-11M-PLUS 1/0 Drivers 1-1

1.2 Service Routines

The service routine that is entered to process an interrupt is most frequently in the device driver.
Device drivers vary in complexity depending on the capabilities of the type of device and the
number of device units they service. A driver can reside within the Executive (a resident driver)
or separate from the Executive (a loadable driver).

The distinction between resident and loadable drivers is mainly one of flexibility. A resident
driver is built in during system generation as a permanent part of the Executive. It resides in
the Executive address space and cannot be removed. A resident driver responds to interrupts
slightly faster than a loadable driver.

Although linked into the Executive structures, a loadable driver resides in memory outside the
virtual address space of the Executive. A user can add or remove a loadable driver by means
of a Monitor Console Routine (MCR) or Virtual Monitor Corisole Routine (VMR) command. In
addition, any driver not required for a period of time need not be loaded. The space normally
occupied by the unloaded driver can hold user tasks or another driver. On systems with
Executive data space support, all drivers must be loadable. On a system without Executive data
space support, making a driver loadable frees virtual space in the Executive, which can be used
for additional pool.

1.2.1 Executive and Driver Layout

A device driver is a logical extension of the Executive that is not necessarily contiguous in
physical memory with the Executive code. Active Page Registers (APRs) 0 through 4 map the
Executive, whereas APR 7 is reserved to map the I/O page.! Resident drivers are mapped
within the Executive space. Loadable drivers reside in a separate partition of memory and are
mapped by APR 5. Therefore, a loadable driver is restricted by default to the 4K words of space
mapped by APR 5, unless it controls its own mapping with APR 6 to gain access to an extra
4K words.

The virtual-to-physical mapping on a system with kernel data space support is shown in
Figure 1-1.

Virtual addresses 0 through 4K words (APR 0) of I and D space overmap the same physical
memory. The mapped area contains the interrupt vectors, processor stack, processor-specific
memory locations, and interrupt control block (ICB) pool space as well as some Executive code.
I-space virtual addresses 4K through 20K words (APR 1 through APR 4) map the remaining
Executive code, which is therefore limited to 16K words. D-space virtual addresses 4K through
20K words (APR 1 through APR 4) map the dynamic storage region (or pool) and system data
structures to a maximum of 16K words.

1 Active Page Register is a term referring to the KT11 Memory Management register pair (Page Address Register (PAR) and Page Descriptor
Register (PDR).)

1-2 RSX-11M-PLUS 1/0 Drivers

OK Words

Figure 1-1: Virtual to Physical Mapping for the Executive
Physical Memory

Address Space
1/0 Page
7 N

Virtual N Virtual

Kernel A Kernel
32K Words D-Space / \ I-Space 32K Words

APR 7 I \ APR 7
28K Words |- — — — Privileged Task ¥ — — — | 28KWords

or \
e — — - Driver & . — —— -

APR 5 T T AN APR 5

20K Words e o e e — — — 20K Words

b — - = /\ N - — a——— — b — e -
Processor n
- - — — “ Specific ! \ e
N b— — —
fone w— — — - — w— —
APR 1 b — — APR 1
4K Words | — — Dynamic Storage } e o - 4K Words
’ APR O | __fegien APR 0
é System Resident \ / 0K Words
74

% . /O Data Base
/ Executive
W/\% Code
% Processor 0
Specific

1On multiple processor systems, each additional processor requires its own processor-specific area in the CPU partition,

ZK-245-81

Virtual addresses 20K through 28K words (APR 5 and APR 6) of I and D space overmap the
same physical memory, which is reserved to map loadable drivers and privileged tasks in kernel
mode. (Although APR 5 and APR 6 are reserved for drivers, the Executive maps only APR 5
when it calls a driver.) Finally, virtual addresses 28K through 32K words (APR 7) of I and D
space overmap the I/O page.

Thus, a device driver is mapped with the Executive code and the I/O page. When a driver has
control, it can access the device registers in the I/O page to perform its operations. It also has
available all the Executive service routines to help it process I/O requests.

Because of the layout of the Executive and device drivers, many common functions related to
I/0O are centralized in the Executive as service routines. This commonality eliminates the need
for repetitive coding in each and every driver. Coding in each driver is therefore reduced to
handling the specific functions of the device supported.

RSX-11M-PLUS 1/0 Drivers 1-3

1.2.2 Driver Contents

A device driver consists of two parts. One part is the executable instructions of the driver
itself. This part has the entry points to the driver. The entry points are those places where the
Executive calls the driver to perform a specific action, and their addresses are established in the
driver dispatch table (DDT). The table contains addresses of routines in a fixed order so that
the Executive can enter the driver at the appropriate place for a given action.

The other part of a device driver is the data structures forming the data base that describes the
controllers and units supported by the driver. Two structures, the controller table (CTB) and the
controller request block (KRB), describe the controller of the device being supported. Because
the CTB supplies generic information about the controller type, only one CTB need exist for
each controller type on a system. The KRB holds information related to a specific controller and
therefore each controller has its associated KRB.

Three structures in the driver data base—the device control block (DCB), the unit control block
(UCB), and the status control block (SCB)—describe the device as a logical entity. The DCB
contains information related to the type of device, whereas the UCB holds information specific
to an individual unit of the device. The SCB is used mainly to store data (driver context)
concerning an operation in progress on the device unit.

The code of a driver must be in one continuous portion of main memory. Because the Executive
is designed to respond to real-time activities, the driver code must run as fast as possible.
Therefore, it cannot be overlaid.

The driver data structures are tailored to the number of controllers on the system, the number of
units attached to each controller, and the types of features the devices support. The structures
increase in complexity as the number of supported features increases.

1.3 Executive and Driver Interaction

The Executive and a driver interact by accessing and manipulating common data structures. An
I/0 activity typically begins when a task generates a request for input or output. The Executive
performs preliminary processing of that request before it initiates the driver. This preliminary
processing, called predriver initiation, is common for all drivers and eliminates a great deal of
code from all drivers.

In performing predriver initiation, the Executive accesses the driver data structures to assess the
legality of the I/O request. However, the Executive calls the driver only when the predriver
initiation warrants it. For example, cells in the device control block (DCB) define the functions
that the driver supports. If the function specified in the 1/O request is not supported by the
driver, the Executive does not call it, and the driver is not aware of the I/O request. For this
reason, the Executive calls the driver only when the predriver initiation warrants it.

1-4 RSX-11IM-PLUS 1/0 Drivers

1.3.1 The Driver Process

When the Executive does call the driver to process an I/O request, the driver begins I/O
initiation. Once an I/O request is created, a driver process is initiated. The Executive
queues an 1/O packet to the driver that must be processed to satisfy the request. Potentially,
the system has as many driver processes as there are distinct units capable of being active
simultaneously. (Moreover, some drivers supporting advanced features can have multiple /O
requests simultaneously active for a given unit. In this case, each active I/O request is part of
a separate driver process. Refer to Section 1.4.7 for more information.)

The difference between a driver process and the driver code is central to a full understanding
of a driver and the I/O structure. The driver code, which is pure instructions, invokes an
Executive routine called $GTPKT to get an I/O packet to process. This activity generates data
for the request being processed and for the unit doing the processing. Once initiated, the driver
process starts the proper I/O function, waits for a completion interrupt, posts 1/O status, and
requests another I/O packet. This sequence of execution steps continues until the I/O queue is
empty. The driver process then terminates.

Because a driver may be capable of servicing several I/O requests in parallel, it is possible that,
for a single driver, many driver processes exist at the same time. However, there is only one
copy of driver code. The driver process is reentrant code, and the data that defines the state
of the code is stored in the driver data base when the process is not executing (for example,
when it is waiting for an interrupt). The driver process executes driver code for a particular
device type on behalf of a specific unit. If independent units of a particular device type are
concurrently active, then several driver processes are also active at the same time, each with its
own set of data.

1.3.2 Interrupt Dispatching and the Interrupt Control Block

Once a driver starts an I/O function, it must await the I/O completion interrupt. When a
device interrupt occurs, the processor pushes the current PSW and PC onto the current stack
and loads the new PSW and PC from the device controller interrupt vector. By convention, the
PSW in the interrupt vector is preset with a priority of 7 and with the number of the controller
associated with the vector. (The controller number is in the low-order four bits.)

Because an interrupt must be serviced in kernel address space, how the interrupt is handled
depends on whether the driver is resident or loadable. A resident driver, being mapped with
the Executive in kernel address space, handles the interrupt directly (that is, the entry point
address of the driver is the PC word of the interrupt vector). For a resident driver, then, the
hardware dispatches directly to the interrupt service routine in the driver. Figure 1-2 shows
this mechanism.

RSX-11M-PLUS 1/0 Drivers 1-5

Figure 1-2: Interrupt Dispatching for a Resident Driver

F—1

RESIDENT

DRIVER

CONTROLLER ‘
NUMBER
INTERRUPT
VECTOR
ZK-246-81

When the interrupt service routine in the resident driver gains control, it runs at priority 7,
which locks out further interrupts. The driver is therefore uninterruptable and, because the
system must respond to real-time events, processing at this level cannot take too long.!

To ensure that a driver does not lock out other interrupts on the system or destroy the context
of any interrupted process, a protocol has been established. By system convention, no process
should run at an uninterruptable level for more than 100 microseconds. A common Executive
coroutine, called interrupt save ($INTSV), exists to lower the priority level of the driver process
to that of the interrupting device and to save two registers of the interrupted process. Therefore,
by system convention, all resident drivers call the $INTSV coroutine, which saves the PSW and
extracts the controller number. Because most instructions change the PSW bits that encode the
controller number, under most circumstances the driver can do very little else without saving
the controller number,

The $INTSV coroutine saves Registers 4 and 5, which are thereafter free for the driver to use.
These registers are typically used by drivers to hold addresses of the data blocks containing
unit status and control information, the SCB and UCB. (Most Executive routines assume these
two registers hold pointers to the two structures. If the driver needs to use more registers, it
saves them on the stack and restores them when it finishes.) When the interrupt save coroutine
returns to the driver, the driver runs at the interrupt level of the device it is servicing and
has two free registers it can use. This protocol makes the driver partially interruptable (that
is, interruptable by devices with a higher priority) and preserves the context of the interrupted
process.

The driver may then run for a short interval-at the partially interruptable level. By convention,
this interval should not exceed 500 microseconds. When the driver finishes processing the
interrupt, it may execute a RETURN instruction to transfer control back to the coroutine, which
gives control of the CPU to the next process.

1ona multiprocessor system, a driver running at priority 7 is interruptable by a device of the same type on another CPU. To handle this
situation, the driver being interrupted does not have to do any special processing beyond what is described in this manual.

2 An executive interrupt exit routine, $INTXT, exists to standardize the way a driver exits from an interrupt. However, on RSX-11M-PLUS
systems this routine is simply a RETURN instruction.

1-6 RSX-11M-PLUS I/0 Drivers

For a loadable driver, the hardware cannot dispatch directly to the interrupt service routine in
the driver because the driver is mapped outside the address space of the Executive. Therefore,
some code in the Executive must initially handle the interrupt, load the mapping context of the
driver, and dispatch to the proper driver. This code resides in the Executive in a structure called
an interrupt control block (ICB). Figure 1-3 shows this mechanism.

The ICB actually contains a Jump to Subroutine (JSR) instruction to an Executive interrupt save
routine ($INTSI) and some data cells that enable the routine to do the following:

* Save Registers 4 and 5

® Save the kernel mapping (APR 5)

®* Load APR 5 to map the driver

® Transfer control to the driver

* Restore the mapping after return from the driver
* Restore Registers 4 and 5

Thus, the interrupt vector for a controller serviced by a loadable driver points to an ICB rather
than to the driver. Accordingly, the loadable driver does not (and must not) call the $INTSV
routine as the resident driver does because the $INTSI routine saves the context on behalf of
the loadable driver. When it gains control, the loadable driver is also partially interruptable as
if it had called the $INTSV routine. After it gains control, the loadable driver is exactly like the
resident driver; that is, it must also observe the protocols established on the system.

Figure 1-3: Interrupt Dispatching for a Loadable Driver

»! INTERRUPT
CONTROL
CONTROLLER | BLOCK
(ICB)
NUMBER
T
INTERRUPT LOADABLE
VECTOR DRIVER

ZK-247-81

The ICB allows up to 128 controllers of the same type on a system. The low-order four bits
in the PSW of the interrupt vector restricts the number of controllers to 16. In the ICB, the
system maintains a controller group number and the PSW bits describe the controller number
within the group. To obtain the real controller number, the Executive interrupt service routine
adds the controller group number in the ICB and the controller number in the PSW. (Note that
because a resident driver does not use the ICB mechanism, there can be at most 16 controllers
of one type if the driver is resident. Furthermore, only the LOAD command in VMR supports
more than 16 controllers of one type.)

RSX-11M-PLUS 1/0 Drivers 1-7

In handling an interrupt, the simplest case is where a controller can have only one unit active at
any one time. Multiple controllers may be active concurrently, yet only one unit per controller
may be active. When an interrupt occurs, the driver can determine the saved controller number
from information encoded in the low-order four bits of the PSW. The interrupt service routine
in the driver uses the number to index a table in the CTB and to access the proper unit data
and context.

The more complex case in dispatching an interrupt is where a controller can have multiple units
operating in parallel. This is an advanced driver feature called overlapped seek 1/O and is
described in Section 1.4.1.

1.3.3 Interrupt Servicing and Fork Process

A driver (whether resident or loadable) handling an interrupt and operating at the partially
interruptable level may need to (1) access structures in its data base or (2) call centralized
Executive service routines that may access structures in the data base. Because a driver may
have more than one process active simultaneously, the driver itself may need to access structures
in the data base shared among separate, unrelated processes. A method must exist to coordinate
access to the data structures shared among the processes and the Executive.

The mechanism that coordinates access to the shared structures is called the fork process. The
Executive routine $FORK causes the driver to be placed in a queue of processes waiting
for access to the shared data structures, to run at processor priority level 0, and to be
completely interruptable.! Therefore, a driver must call the fork routine before it calls any
other Executive service routine (except for $INTSV), or before it accesses any device-specific
(nonprivate) structures in its data base. If a driver does not follow this protocol, it will corrupt
the system data base and will eventually cause a system to fail.

By calling the fork routine, a driver requests the Executive to transform it into a fork process.
The routine saves a snapshot of the process in a fork block. The snapshot is the context of the
driver process—the PC of the process and the contents of Registers 4 and 5. The fork block
itself resides in the I/O data structure that holds the status information of the device being
serviced (that is, the status control block, or SCB). The Executive maintains a list of fork blocks
in first-in-first-out (FIFO) order—a new fork block is added to the list after the last block in the
list.

When the driver calls $FORK, the CPU priority is lowered to 0, which allows other interrupts to
be serviced. When there are no more pending interrupts (either they have been dismissed or the
drivers have called $FORK), the Executive checks to see whether the first interrupt preempted a
priority 0 Executive process. If a preemption occurred, the Executive process is continued from
where it was interrupted. If no priority level 0 Executive process was interrupted, the Executive
executes the process at the head of the fork list. The Executive restores the saved context of the
process from the SCB and returns control to the driver at the statement immediately following
the call to the fork routine. The process is unaware that a pause of indeterminate length has
elapsed.

1 By convention, drivers may operate at a partially interruptable level for no more than 500 microseconds. Some drivers conceivably could
need more time than this convention allows. Thus, an additional reason for the fork mechanism is to preserve the response time of the
system and not lock out interrupts from lower-priority levels.

1-8 RSX-11M-PLUS I/0 Drivers

Fork processes are thereby granted FIFO access to the common I/O data structures. Once
granted such access, a fork process has control of the structures until it exits. The protocol
guarantees that the driver process has unrestricted access to shared system data structures. As
one fork process exits, the next in the list is eligible to run and access the data structures. Thus,
the fork mechanism allows both controlled access to the common data structures and sufficient
time to process an interrupt without locking up the system.

The status of a fork process lies between an interrupting routine and a task requesting system
resources. Interrupt routines are run first and can be interrupted only by higher-priority
interrupts. Processes in the fork list run after other system processes either terminate or call
$FORK themselves. Because system processes save and restore registers, a fork process can use
all registers. The fork processes are completely interruptable. Tasks run only when the fork list
is empty.!

The fork mechanism establishes linear, or serial, access to the shared data structures. For
example, an Executive routine that completes I/O processing ($IODON) manipulates the 1/0O
queue to deallocate an I/O packet that the driver processed. If Multiple processes were allowed
to alter the queue at random times, the queue pointers could become disarranged. Without the
fork mechanism, any process could be interrupted by a higher-priority process and not be able
to complete. Because the Executive completes a currently active fork process before it starts
the next fork process in the queue, the integrity of the I/O data structures is maintained, if all
routines that call $IODON run at fork level.

Between the time that a driver process calls $FORK and the Executive starts the process at fork
level, the driver cannot call $FORK again for that same device. If the $FORK routine is called
again before the first process starts, context stored in the fork block for the first fork process is
overwritten. However, once a fork process starts, the data in the fork block is stale and the
process may call $FORK again while it is at fork level. If the driver does not ensure against
unexpected interrupts, it may double fork as described above. As a result of the double fork,
the driver may either miss an interrupt from the device or miss interrupts from several devices.
As a further consequence, code encountered after the call to $FORK is executed twice for the
same context with generally catastrophic results. For example, calling' $IODON twice for the
same 1/O packet eventually causes the system to fail.

If all drivers adhere to the interrupt protocol, the integrity of the I/O data structures is preserved.
Thus, when a device interrupt occurs while a fork process is executing, the protocol demands
that the service routine handling the interrupt not destroy any of the registers. The registers are
part of the context of the fork process. After the driver dismisses the interrupt or becomes a fork
process itself, the interrupted fork process can safely resume execution with its proper context.
If any driver violates the protocol, the integrity of the I/O data structures is endangered. (That
is, the system fails in mysterious ways.)

1 ona multiprocessor system, the fork list is not necessarily empty when the Executive returns control to a task. The Executive processes
only those fork blocks that are to run on the current processor. To ensure that fork blocks remaining in the list are readily processed, the
Executive running on one processor interrupts (using the interprocessor interrupt hardware) any other processor that has fork blocks waiting
for processing.

RSX-11M-PLUS 1/0 Drivers 1-9

1.3.4 Nonsense Interrupt Entry Points

The addresses of Executive nonsense interrupt entry points are contained in all vectors for
off-line devices and in vectors for which there are no devices. Code at these special entry
points exists to properly dismiss unexpected interrupts from these devices. If error logging is
active, any unexpected interrupts are recorded as undefined interrupt errors. This feature helps
in detecting faulty hardware.

1.4 Advanced Driver Features

Advanced drivers have certain optional and built-in special features. This section introduces
these features to help you better understand the structures described in the remainder of the
manual.

1.4.1 Overlapped Seek I/O

Some disk devices allow multiple device units attached to the same controller to execute
operations in parallel. This is called overlapped seek support and is a software option designed
to take advantage of a hardware feature found in most advanced disk drives. This feature allows
all drives attached to the same controller to execute a seek function simultaneously. Each unit
may perform a seek operation independent of what another unit may be doing. Only one data
transfer can occur at any one time. Some types of drives allow seek functions to overlap a data
transfer function, whereas other types do not.

The increased difficulty for overlapped seek devices stems from determining whether the
controller or the unit generated the interrupt. Most control functions issued to the drive unit
(including the positioning commands SEEK and SEARCH) terminate with a unit interrupt. The
controller reports the physical unit number of the interrupting unit in its attention summary
register. A controller interrupt indicates the termination of a function (usually a data transfer
command) that changes the controller status from “busy” to “ready”. Only one unit may issue
a data transfer complete notification to a particular controller at any one time, because only
one data transfer can be in progress at any one time. Most hardware defers seek termination
interrupts until the current data transfer is complete.

To handle interrupts for a device that supports overlapped seek operations, a device-specific
interrupt service routine built into the Executive examines the device registers to determine
whether the interrupt was initiated by the controller or the drive unit. Using the controller
number retrieved from the PSW in the interrupt vector, the routine forms an index (called the
controller index) to use as an offset into a table of addresses in a structure (called the controller
table or CTB) in the I/O data base. The routine accesses the table to determine the address
of the I/O data structure of the controller (called the controller request block or KRB) that
generated the interrupt. Accessing the KRB yields the address of the CSR of that controller and
having the CSR address allows the routine to examine the device registers.

If the controller itself initiated the interrupt, the routine determines the data base structure of
the unit that is active. This determination is possible because such a controller interrupt relates
to a termination of a data transfer, and only one such unit can be active for a data transfer. A
cell in the KRB has the address of the data structure describing the active unit (the unit control
block or UCB). The routine can then determine the address of the driver dispatch table and
transfer control to the driver.

1-10 RSX-11M-PLUS I/0O Drivers

If a device unit initiated the interrupt, the routine retrieves its unit number from the Attention
Summary Register. Using the physical unit number, the routine indexes a table at the end
of the KRB to yield the address of the related UCB. The driver is entered through the driver
dispatch table.

1.4.2 Overlapped I/O Completion

In general, overlapped I/O completion support causes the execution of the Executive’s 1/0
completion code for each I/O request to be postponed until the next request has been initiated.
If I/O requests are in the driver’s queue, this action causes the Executive to complete the 1/0
processing while the physical device services the next request. This feature speeds up 1/0
operation. A minor side effect is that multiple I/O requests to the same device may complete
in an order other than the issued order.

When a driver requests the Executive to complete the I/O request, the Executive checks the
queue of requests to the driver. If the queue is not empty, the Executive defers I/O completion
by placing the current completion at the end of the fork list. Control returns to the driver, which
assumes that the Executive has completed I/O processing. The driver can then initiate the next
1/0 operation. After the driver has initiated an 1/O operation on the device, the driver returns
to the Executive and fork processing begins. Thus, the I/O completion for the previous 1/0
can be processed to the end. When a hardware I/O operation completes, the driver receives an
interrupt and then forks, which always causes the I/O completion to occur after the previously
queued completion.

The exception to sequential completion occurs when an I/O operation does not require a
hardware operation. In this case, the driver processes the I/O request and then calls the
Executive’s [/O completion routine. If there is an additional I/O request waiting on the queue,
this completion also goes at the end of the fork list, and sequential processing is maintained.
Nonsequential completion occurs when the very last request in the queue is a nonhardware-
oriented I/O. In this case, that I/O request completes prior to any others waiting for completion.
There are many cases of nonhardware-oriented 1/0, such as inquiries into device state or attach
and detach requests.

There is one case where overlapped 1/O completion causes 1/O requests to finish in an order
other than the order in which they were issued. This occurs when the last I/O request queued
to the controller does not require a device interrupt to complete.

1.4.3 Dual-Access Support

Some devices have multiple-access paths for both control and data transfer functions. Such
devices are called dual access. A dual-access unit is connected to two controllers at one time
and may be accessed from either controller at the option of the system software. Since a single
device unit may have only one physical unit number, a dual-access unit must have the same
unit number for both controllers. A dual-access unit may be accessed only from one port at a
time. The system supports dual-access operation for those devices equipped with the necessary
hardware capability. This feature is most useful on a multiprocessor system where each access
path is to a different central processor unit.

RSX-11M-PLUS 1/0 Drivers 1-11

To support dual-access operations, the 1/O data structures must reflect the existence of alternate
controllers. Particularly, the driver process context for I/O on a unit can be associated with
either of two controllers. To decide which controller will provide access to the drive unit, the
driver must call an Executive routine to request access to a particular controller. When the
Executive grants access, the driver process context for a unit is associated with the assigned
controller. A driver must have access to the assigned controller before actually changing the
registers in the I/O page.

When a driver and a unit are given access to a controller, the controller status is set to busy.
The unit becomes the device owned by the controller for the operation. A controller without an
owned unit is considered a free controller. By this ownership mechanism, controller interrupts
are sent to the correct unit for processing. After the operation completes, the driver requests
the Executive to release the controller and thus frees it.

1.4.4 Delayed Controller Access

Drivers that support overlapped seeks also must request access to a controller before executing a
function on an independent unit and must release access after completing the function. To take
maximum advantage of simultaneous operation of units on one controller, the system delays
controller access when the controller is busy.

The Executive maintains a request queue for the controller. Whenever a driver process requests.
access to a controller and must wait for access to the controller, the Executive places the
associated fork block in the controller request queue. When a driver releases a controller, the
Executive automatically grants access to the next driver process waiting for access. Precedence
is given to positioning requests over requests for data transfer. The controller request queue
thereby provides the means for the Executive to synchronize access.

1.4.5 Controller Reassignment and Load Sharing

Controller assignment for dual-access devices is dynamic. If one port (access path) to a device
is busy, the system can request access on the other port. This switching between ports allows
the system to share the load between the two controllers.

Note

A dual-access device has both ports attached to the same system. DIGITAL
does not support systems loosely coupled through a peripheral.

The system also maintains an I/O count to determine how busy each controller is. If one
controller is not as busy as the other, the system can queue the access requests to the less
busy controller. Whenever load sharing is done on a dual-access unit, the Executive makes any
reassignment necessary before actually requesting access to the controller.

1-12 RSX-11M-PLUS I1/O Drivers

1.4.6 Common Interrupt Dispatching

To handle interrupts from a controller that supports more than one type of device, the Executive
uses a mechanism called common interrupt dispatching. The RH70 MASSBUS controller can
have different types of devices connected to it (RP04, RP05, and RP06 moving head disks;
RMO02, RM03, and RM05 moving head disks; RM80 and RP07 fixed-media disks; ML11 non-
rotating memory; RS03 and RS04 fixed-head disks; and TE16, TU445, and TU77 magnetic
tape drives). Interrupt dispatching for such devices is more difficult than for standard interrupt
devices because multiple drivers are associated with one set of interrupt vectors. Thus, to
dispatch interrupts a routine in the Executive must intervene. Figure 1-4 shows an example of
common interrupt dispatching.

Figure 1-4: Interrupt Dispatching for Common Interrupt Devices

. rDB

Driver

P

Common DS
Interrupt Driver
Dispatch

Routine

($RHALT)
- -

MM
Driver
RH70 Interrupt
Vectors
ZK-248-81

The vectors for such controllers point to a common interrupt dispatching routine in the Executive
module DVINT. This common routine avoids having to duplicate code in drivers. This routine—
in essence acting like an RH70 controller driver or a sophisticated ICB—determines which
driver will receive control upon an interrupt. Operating like the routine that handles interrupts
for overlapped seek devices, this routine determines the type of device that interrupted and
dispatches to the proper driver.

RSX-11M-PLUS 1/0 Drivers 1-13

1.4.7 Subcontroller Devices

Certain devices have two-level controllers, such as magtapes, where a TM03 connects to an
RH70 MASSBUS controller and also connects to TE16 magtape drives. In such an arrangement,
the TMO3 is a subcontroller, or master unit, that controls slave units; a register in the master
unit reports the number of the slave unit that generates an interrupt.

A subcontroller is associated with a data structure called a subcontroller request block (KRB1)
that serializes access to the subcontroller. Therefore, a driver must request and receive access
to both the subcontroller and the controller for a unit before executing any operations. The
KRB1 is a subset of the KRB and every unit on the subcontroller points to the KRB1 of the
subcontroller to which it is attached.

1.4.8 Full Duplex Input/Output

In certain circumstances it may be necessary for a driver to handle more than one I/O request
on a unit at the same time. Typically, a driver processes only one I/O packet per unit at any
one time. In normal operation the driver calls the Executive routine $GTPKT to get an 1I/0
packet to process. When $GTPKT returns an I/O packet, it marks the device busy and does
not allow additional 1/O until the first I/O activity completes. Therefore, only one I/O process
can be in progress at the same time on a device. Full duplex operation, however, allows more
than one I/O process to be in progress on a device at the same time.

To allow full duplex operation, the $GTPKT routine has a special entry point called $§GSPKT. A
driver calling $GSPKT specifies an acceptance routine to which $GSPKT returns control when
an eligible packet is found. The acceptance routine determines whether to accept or reject the
packet. The criteria applied by the acceptance routine could be that a write request is accepted
if a write has just completed or that a read request is accepted if a read has just completed. If
the routine rejects the packet, it indicates so to $GSPKT, which continues to search for another
packet. If the acceptance routine accepts the packet, §GSPKT dequeues the packet and passes it
to the driver but does not modify U.BUF and U.CNT in the unit control block (UCB) nor does
it mark the device busy. As a result, during full duplex operation the device appears idle even
while it is processing an I/O request.

To complete an 1/O request under full duplex operation, the driver calls the $IOFIN routine
rather than the $IOALT or $IODON routine. $IOFIN does final processing without making the
device look idle, as $IOALT and $IODON attempt to do. In full duplex operation, a unit will
always appear idle to the system and the driver acceptance routine will determine whether the
device can handle an I/O request.

A driver handling full duplex operations requires augmented data base structures. The
conventional data base structures are defined for only one I/O request in progress per unit.
Because the driver has to keep more information concerning a unit that allows two I/O requests
in progress, you may have to alter the UCB and other data base structures to provide additional
offsets. The DIGITAL-supplied full duplex terminal driver not only uses a lengthened UCB
and a nonstandard SCB but also connects to a dynamically allocated UCB extension when the
device is configured on line.

A driver that handles full duplex operations provides a specific example of software that handles
concurrent 1/0 for individual units. Some devices (such as the microprocessor-based LPA11-K
laboratory subsystem supplied by DIGITAL) can handle a number of simultaneously active 1/0O
requests. The software to handle such concurrent I/O may require augmented driver data base

1-14 RSX-11M-PLUS 1/0 Drivers

structures so that the context of each I/O process remains distinct and controllable. The driver
for the LPA11-K relies on an extended user control block (UCB) to preserve the context of
a maximum of eight simultaneously active I/O processes. User-written software for such a
device must properly synchronize fork processing to prevent substituting the I/O context of one
process for that of another. Moreover, the $GSPKT routine also might be used as described
above to make a unit appear idle when it is busy.

1.4.9 Asynchronous System Traps

The primary purpose of an asynchronous system trap (AST) is to inform the task that a certain
event has occurred—for example, the completion of an I/O operation. As soon as the task has
serviced the event, it can return to the interrupted code.

Some directives can specify both an event flag and an AST; with these directives, you can use
ASTs as an alternative to event flags or you can use the two together. Therefore, you can specify
the same AST routine for several directives, each with 7 different event flag. Thus, when the
Executive passes control to the AST routine, the event/flag can determine the action required.
However, it is standard programming practice to use the I/O status block (IOSB) rather than
the event flags to determine which 1/O operation is completed, so that when control is passed
to an AST from a QIO$, the I/O status block is on top of the stack. Use this IOSB to determine
which I/O has completed.

The Executive queues ASTs in a first-in-first-out queue for each task and monitors all
asynchronous service routine operations. Because asynchronous traps may be the end result
of I/O-related activity, the task cannot control the occurrence of the ASTs directly. A typical
asynchronous trap condition is the completion of an I/O request. The timing of such an
operation clearly cannot be predicted by the requesting task. If the task does not specify an AST
service routine in an I/O request, a trap does not occur and normal task execution continues.

However, the task'may, under certain circumstances, block recognition of ASTs to prevent
simultaneous access to a critical data region. When access to the critical data region has been
completed, the queued ASTs may again be honored. The Disable AST Recognition (DSAR$A)
and Enable AST Recognition (ENAR$S) Executive directives provide the mechanism for doing
this.

Associating asynchronous system traps with I/O requests enables the requesting task to be truly
event driven. The system executes the AST service routine contained in the initiating task as
soon as possible, consistent with the task’s priority. Using the AST routine to service I1/0-
related events provides a response time that is considerably better than a polling mechanism and
provides for better overlap processing than the simple QIO$ and WTSE$ macros. Asynchronous
system traps also provide an ideal mechanism for use in multiple buffering of 1/O operations.

The Executive inserts all ASTs in a first-in-first-out (FIFO) queue on a per task basis as they
occur (that is, the event they are to signal has expired). The Executive executes them one at
a time whenever the task does not have ASTs disabled and is not already in the process of
executing an AST service routine. Executing the AST includes storing certain information on
the task’s stack, including the task’s WTSE$ mask word and address, the directive status word
(DSW), the program status (SP), the program counter (PC), and any trap-dependent parameters.
The task’s general-purpose registers, Registers 0 through 5, are not saved; therefore, AST service
routines must save and restore all registers used. If the registers are not restored after an AST
has occurred, the task’s subsequent execution may be unpredictable.

RSX-11IM-PLUS 1/0 Drivers 1-15

After an AST is processed, the trap-dependent parameters (if any) must be removed from the
task’s stack and an AST Service Exit (ASTX$S) macro executed. The ASTX$S macro, described
in the RSX-11M-PLUS and Micro/RSX 1/0 Drivers Reference Manual, issues the AST Service Exit
directive. On AST service exit, control returns to another queued AST, to the executing task, or
to another task waiting to run.

The RSX-11M-PLUS and Micro/RSX Executive Reference Manual describes AST service routines
and all Executive directives that handle them.

1.4.10 Using Asynchronous Buffered I/O

Typically, data for input and output requests are transferred directly to and from task memory.
To allow the successful transfer of data, the task cannot be checkpointed until the transfer is
complete. For most high-speed devices, the transfer occurs quickly enough so that a task does
not occupy memory for too long a time. For slow-speed devices, however, some mechanism
must be available to avoid binding memory to a task for too long a time while the task is
performing 1/0.

Using the routines $TSTBF, $INIBF, and $QUEBF in the Executive module IOSUB, a driver can
execute an 1/0 request for a slow-speed device and allow the task to be checkpointed while the
request is in progress. To perform the I/O request, the driver buffers the data in its memory
while the task is checkpointed and while the 1/O request is in progress.

To test whether a task is in a proper state to initiate 1/O bulffering, the driver calls the $TSTBF
routine and passes it the address of the I/O packet. By extracting the address of the task control
block (TCB) from the 1/O packet, $TSTBF can examine various task attributes (for example, if
the task is checkpointable, buffered 1/O can be performed). $TSTBF then returns to the driver
and indicates whether buffered 1/0O can be performed.

If buffered I/O can be performed, the driver performs two operations. First, it establishes the
buffering conditions. For an output request, it copies the task buffers to dynamically allocated
pool space. For an input request, it allocates sufficient pool space to receive the incoming data.
Second, the driver calls the $INIBF routine to initiate the I/O buffering. $INIBF decrements
the task 1/0 count, increments the task’s buffered I/O count in T.TIO, and releases the task
for checkpointing and shuffling. If the task is currently blocked, the task state is transformed
into a stop state until the task is unblocked or buffered I/O completes, or both. Checkpointing
the task is subject to the normal requirements of an active or stop state as described in the
RSX-11M-PLUS and Micro/RSX Executive Reference Manual.

After the driver transfers the data, it calls the $QUEBF routine to queue the buffered 1I/O for
completion. $QUEBF sets up a kernel asynchronous system trap (kernel AST) for the buffered
I/0 request and, if necessary, activates the task. When the task is active again, a routine in
the Executive module SYSXT notices the outstanding AST and processes it. (If the request
is for input, the routine copies the buffered data to task memory.) This mechanism occurs
transparently to the task, thus the name kernel AST. The routine then calls the driver to
deallocate the buffer from pool. $IOFIN completes the processing.

1-16 RSX-11M-PLUS I/0 Drivers

1.4.11 I/O Queue Optimization

Without I/O queue optimization, the operating system groups input and output requests in the
queue by highest priority on a FIFO basis. The first request at the highest priority appears
first in the queue and is processed first. Other requests within that priority are then processed
sequentially until the last request at that priority is serviced.

With I/O queue optimization, however, the next 1/O request at the highest priority is not
necessarily the next sequential request to be processed. 1/O queue optimization allows the -
queue to be scanned and each request to be examined. The I/O request, according to the
method of optimization then in effect, is the next one dequeued and passed to the 1/O driver
for processing. The highest priority requests are still serviced first; however, throughput is
improved by the reordering of requests within a priority.

There are three methods of I/O queue optimization available:
® Nearest Cylinder

* Elevator

* Cylinder Scan

The Nearest Cylinder method processes the I/O request that is closest to the one at which the
disk head is currently positioned. The Elevator method processes requests as the disk head
moves from the perimeter to the innermost track of the disk. Once the disk head reaches the
innermost track, the direction is reversed and requests are processed along the disk as the head
moves back to the perimeter. The Cylinder Scan method operates like the Elevator method,
except that requests are only processed as the disk head moves from the perimeter to the
innermost track. Once at the innermost track, the disk head returns to the perimeter and begins
processing new requests.

The method you choose for your system depends on the I/O processing requirement of your
application, the frequency with which tasks access certain data areas on the disk, and the
physical location of data on the disk. Refer to the RSX-1IM-PLUS and Micro/RSX System
Management Guide for information on selecting I/O queue optimization methods.

Before an I/O request can be queued to the driver, all three queue optimization methods require
the starting cylinder number of the I/O request. To find the cylinder number, the logical block
number (LBN) of each I/O request is converted to cylinder, track, and sector form. The routine
$DRQRQ in the Executive module DRSUB begins this conversion. Because the cylinder, track,
and sector form is specific to the device geometry, this conversion must be completed by a
separate routine in the driver. The routine $DRQRQ locates the conversion routine in the driver
through offset D.VCHK in the driver dispatch table.

The routine $DRQRQ calls the conversion routine for all I/O requests. However, if the functions
are not logical transfer functions, such as ACP functions or Attach and Detach operations, the
conversion routine does not complete the conversion, but rather returns to $DRQRQ.

Drivers without queue optimization call the routine $BLKCK in the Executive module MDSUB
to check the limits of the I/O request. If $BLKCK locates an error, the routine $IOALT in
the Executive module IOSUB is called for the I/O request and the driver is returned to the
initiation entry point. If you chose queue optimization, a return to the initiation entry point is
not desirable because the necessary functions of $DRQRQ will not be completed. Therefore, to

RSX-1IM-PLUS 1/0 Drivers 1-17

ensure the correct return to $DRQRQ if an error is detected, your completion routine must call
the routine $BLKC2 in the Executive module MDSUB instead of $BLKCK.

The routine $GTPKT in the Executive module IOSUB performs the actual optimization. The
driver calls the Executive routine $GTPKT for an I/O request to process. $GTPKT scans the
queue of I/0 packets to select those of the highest priority. The routine then chooses the correct
packet within that priority based on the optimization method currently in effect, dequeues that
packet, and returns control to the driver to process that I/O request.

1.5 Distributed 1/0

On a multiprocessor system, a task may issue an I/O request to any device on any processor.
The Executive must be responsible for distributing the 1/0 request to the correct processor.
To ascertain to which processor a device is attached and to have the driver execute on the
correct processor, the Executive must perform some processor-specific functions. The following
sections introduce the data structure and the processing routines used by the Executive for
processor-specific functions.

1.5.1 UNIBUS Run Mask

To help describe devices attached to a processor, the software relies on a concept called UNIBUS
run. A UNIBUS run consists of a group of distinct devices, all electrically connected to the same
UNIBUS and not separated by any bus reconfiguration devices. Each UNIBUS run is attached
to the same processor at the same time because of the way the devices are physically attached
to the UNIBUS. (Devices attached to a MASSBUS of a processor are also on the processor’s
UNIBUS run.) The UNIBUS run, then, is the smallest fragment of a particular UNIBUS capable
of being switched (or not switched) between processors.

Essential to understanding UNIBUS runs is the concept of a switched bus. A switched bus
is a portion of a UNIBUS that can be physically connected to one of multiple UNIBUSes. A
device on the UNIBUS, called the DT07 UNIBUS switch, controls the connection and allows
a switched bus to be connected to any one of a maximum of four UNIBUSes. Any UNIBUS
device or devices, except a processor or another bus switch, may be connected to a switched
bus. Moreover, because of the electrical delay associated with the bus switch, some high-speed
devices (such as the DMC-11) cannot be on a switched bus.

In a multiprocessor system, the DT07 allows the switch bus to be physically switched from the
UNIBUS of one processor to the UNIBUS of another processor. When the switch is connected
to a particular processor’s UNIBUS, all peripherals on the switched bus operate as if they were
permanently connected to that UNIBUS. By means of reconfiguration software, a switched bus
can be disconnected from one UNIBUS and be available for connection to another processor’s
UNIBUS. Because a user task can direct an I/O request to any device on the system, the
Executive must be able to perform the operation on the specific processor to which the device
is connected.

A UNIBUS run is represented in a cell called a UNIBUS run mask (or URM). The URM is
a 16-bit word containing a bit for every possible UNIBUS run. UNIBUS runs are numbered
from 0 to 15, and the system is restricted to a maximum of 16 UNIBUS runs. There are four
UNIBUS runs reserved for the maximum of four processors. The numbering allows a maximum
of 12 switched buses. However, a switched UNIBUS cannot be connected to another switched
UNIBUS. A primary UNIBUS run would contain a processor, its UNIBUS, and the peripherals

1-18 RSX-11M-PLUS 1/0 Drivers

directly attached to its UNIBUS; a secondary run would consist of a switched bus and the
devices attached to it.

In the I/O data structures for each controller in the multiprocessor system is an associated
UNIBUS run mask. The bit set in the URM defines the UNIBUS run to which the controller is
attached. In the Executive, there is a table of connectivity masks—one UNIBUS run mask for
each processor in the system. The table represents the UNIBUS runs to which each processor
is attached. A bit set in the table mask word for a processor indicates that the UNIBUS run is
currently associated with that processor.

To ascertain whether a controller is attached to the current processor, the Executive compares
the controller URM with the mask for the processor in the connectivity table. If the same bit is
set in both words, the controller is attached to the current processor. If a bus is switched from
one processor to another, the system need alter only the connectivity masks of the processors
affected.

1.5.2 Conditional Fork

The conditional fork routine ($CFORK) is the method by which the Executive distributes I/0
requests to devices connected to another processor. In a multiprocessor system, peripheral
devices are generally accessible to only one UNIBUS run. Devices that do have dual-access
capability are not necessarily accessible from every UNIBUS. The Executive ensures that, when
a driver accesses a controller, the driver process executes under control of the processor in
whose 1/O space the controller registers reside. An exception is when the Executive passes
control to a driver for special processing of an I/O packet. In this case, the driver is responsible
for ensuring that the process executes on the correct CPU. See the discussion of the UC.QUE
bit in Section 4.4.4.

The conditional fork routine is necessary because the system allows processors. to remain
anonymous as far as task execution is concerned. The system does not restrict execution of a
user task to the processor associated with the device to which the task directs 1/0. Basically, it
is the driver processes that need to execute on specific processors.

1.5.3 Processor-Specific Functions

When the Executive calls a driver to initiate 1/O, the driver may not be executing on the
processor associated with the device unit to which 1/0 is directed. When the driver requests an
1/0 packet to process, the Executive must ensure that the driver executes on the correct processor
because the driver can access the 1/O page. Therefore, the Executive routine (3GTPKT) that
dequeues an 1/0 packet for the driver performs a conditional fork. A cell in the fork block for
the device unit contains a UNIBUS run mask. This mask defines the processor to which the
unit’s controller is attached. The conditional fork routine accesses this cell to ascertain what
action to take.

The URM of the device to which the 1/0 request is directed therefore determines whether the
driver can execute on the current processor. If the URM of the device intersects the current
processor URM, the conditional fork routine returns and the I/O packet is immediately passed
to the driver. The driver then normally proceeds to start the proper 1/0 function. If execution
must be continued on another processor, the conditional fork routine performs a fork (that is,
calls the $FORK routine). The driver has no indication that it has become a fork process (that
is, the action is transparent to the driver).

RSX-11M-PLUS I1/0O Drivers 1-19

To ensure that the driver executes on the correct processor, the fork routine performs two
operations. First, it creates and queues a fork block for the processor on which the driver must
execute. Second, it returns to the driver in such a manner as to force the driver to dismiss itself.
As soon as possible, the fork processor restarts the driver process executing on the appropriate
processor.

For devices that do not have an assigned controller, the system may defer determining whether
the driver executes on the current processor. Therefore, for overlapped seek and dual-access
devices, the conditional fork routine is entered after the Executive routine that assigns the
controller.

1.5.4 Vectoring for Privileged Tasks and the Executive

RSX-11M-PLUS Executives allow vectored access to their code by a privileged task. Accessing
entry points in a vectored Executive requires that the privileged task be slightly altered to
reference these entry points through local vectors in the task. When the privileged task is built,
the addresses in these vectors are resolved to an offset in the directive common. At run time,
the task resolves the offset to a virtual address by using the directive common.

A vectored access to Executive code provides the following advantages:

¢ For some systems, space can be saved on distribution kits by distributing common privileged
tasks with multiple and different system images.

e In most cases, privileged tasks need not be rebuilt when the Executive is updated.

e In most cases, it allows software sold separately to span multiple versions of RSX systems
without relinking the tasks.

A vectored Executive requires a special directive common in the system. This common is used
by the Task Builder when it builds a task and resolves the Executive routine addresses. Each
vectored Executive routine has a unique fixed offset in the directive common.

Privileged tasks built against the dummy symbol table file RSXVEC.STB have all Executive
references resolved as offsets into the special directive common, rather than as virtual Executive
addresses. These offsets are translated into virtual addresses at task run time.

For a system that does not support vectoring, a modified task can be rebuilt by using a system-
specific RSX11M.STB symbol table file. This will resolve all symbols at task build time. Both
RSXVEC.STB and RSX11M.STB are distributed on all RSX-11M-PLUS systems.

Any privileged task that directly references Executive code must be modified if you want to
take advantage of vectoring. An area at the beginning of such a task should be set aside to
store vectors of the Executive entry points that allow the task to address the required Executive
locations. Therefore, privileged tasks that take advantage of vectoring will increase in size by
approximately one word for each unique Executive reference. The task’s vectors in this area
contain offsets into the special directive common previously described.

When a task is invoked, a special GIN$ directive is issued to translate the offsets in the task
to virtual addresses found in the directive common. The addresses obtained in the common
overwrite the offsets located in the task in memory. The task uses these addresses to reference
Executive routines. '

1-20 RSX-11M-PLUS I/0 Drivers

The GIN$ directive is located within the vector directive common; therefore, a task that uses
the GIN$ directive will fail on a system that has not been vectored. To run a vectored task on
a system that has not been vectored, you must remove the GIN$ directive and rebuild the task,
linking it to a specific RSX11M.STB file.

Additional changes are necessary to make it possible for drivers to be vectored. Drivers, which
are mapped through APR 5, must use a different scheme because the GIN$ directive also uses
APR 5. The driver must be modified to address the entry points through a known fixed low-
core memory location (112g). This location contains a pointer to SYSCM where the information
needed by the driver is located.

1.5.5 Converting to Vectored Access in Privileged Tasks

For a task to use vectored entry, a table of entry addresses must be created within the task.
A convenient way to do this is to omit the dollar sign from global labels, where possible, and
to omit the period from offset definitions. For example, suppose a privileged task contains a
reference to the Executive global data cell $ACTHD, calls routine $MPLND, and uses offset
definition S.PKT, which is one of the floating data structure offsets.

The first step in converting a privileged task is to construct a table within the task similar to
the following example:

EXECUTIVE ENTRY POINT VECTOR TABLE

EXEVEC:
.WORD O ; FLAG FOR VECTOR NOT YET FILLED
ACTHD: .WORD $ACTHD
MPLND: .WORD $MPLND ;
SPKT: .WORD S.PKT ;

EXEVCL=<<<.-EXEVEC>/2>-1>

The first word of the table is made zero to indicate that the table has not been initialized yet.
Each subsequent word of the table is merely a .WORD reference to the desired address. When
the privileged task is linked, it must be linked with RSXVEC.STB, which provides internal offset
values for the symbols, instead of RSX11M.STB.

The second step in converting a privileged task requires that you change all the references to
Executive symbols in the task to access those symbols through the vector. Some examples of
this process follow:

: CONVERTING EXECUTIVE REFERENCES IN A PRIVILEGED TASK

MOV $ACTHD,R5 ;; GET ADDRESS OF FIRST TCB
becomes
MOV Q@ACTHD,R5 " ;: GET ADDRESS OF FIRST. TCB)
CALL $MPLND ;; FOLLOW REDIRECTION LIST
becomes
CALL OMPLND ;» FOLLOW REDIRECTION LIST
MOV S.PKT(R3) ,RO ;+ GET ADDRESS OF FIRST PACKET
becomes
ADD SPKT,R3 ;; POINT TO I/0 QUEUE LISTHEAD
MOV (R3) ,RO ;; GET ADDRESS OF FIRST PACKET

RSX-11M-PLUS 1/0 Drivers 1-21

For the last step, a GIN$ directive must be included to perform the translation of the vector.
An example section of code is as follows:

.MCALL GIN$
TRNVEC: GINS GI .VEC,EXEVEC,EXEVCL ; Translate Executive vector
START: DIR$ TRNVEC ; Translate Executive vector
.END START

Before executing the GIN$ directive, the vector is filled with internal offset definitions and the
first word is 0. The GIN$ directive replaces each of the offset definitions with the real address
of the symbol in the Executive. The GIN$ directive also fills in the first word of the vector
with a 1. If the first word is nonzero when the GIN$ function is issued, the function is made
a no-op. (A no-op function is one that is considered successful as soon as it is issued.) The
foregoing procedure allows the GIN$ directive to be executed any number of times without
corrupting the vectors.

1.56.6 Converting to Vectored Access in Drivers

Drivers cannot issue a GIN$ directive; therefore, a routine that is callable at system state is
provided to fill in the vector. Because this routine is at a variable address, some fixed address
entry is needed. Location 112 points to a table of information. This table contains one datum,
which is the address of the APR bias of the common containing the vectoring routine. The
entry point to the routine is offset 4 in that common. The following source statements are an
example of a calling sequence:

;o CALLABLE ROUTINE FOR CONVERTING EXECUTIVE REFERENCES IN A DRIVER

MOV @ 112,R0 ; GET ADDRESS OF TABLE OF ENTRIES

Mov (RO) ,RO ; GET ADDRESS OF APR BIAS -- FIRST WORD IN TABLE
Mov KINARG, - (SP)

Mov (RO) ,KINARG ; MAP COMMON THROUGH I-SPACE APR 6

MoV #EXEVEC,R3 ; POINT TO VECTOR

MOV #EXEVCL,R2 ; SPECIFY LENGTH OF VECTOR

CALL ©#140004 ; TRANSLATE THE VECTOR

1.6 Overview of Incorporating a User-Written Driver into
RSX-11M-PLUS

How you incorporate a user-written driver into an RSX-11M-PLUS system depends mainly on
whether you make your driver loadable or resident. If your driver is loadable, its data base
can be either loadable or resident. If your driver is resident, both its data base and its code
are resident. Thus, because you build the Executive image during system generation, you can
include any resident driver elements in the Executive image only during system generation. If
your driver is loadable and has a loadable data base, you can incorporate it at any time after
you build the Executive under which the driver will run.

Micro/RSX does not perform the system generation process, so you must incorporate a new
driver on the currently running system. For this reason, you can only incorporate a loadable
driver with a loadable database into a Micro/RSX system. You cannot incorporate a resident
driver or a loadable driver with a resident data base.

1-22 RSX-1IM-PLUS I /O Drivers

During system generation, you answer questions concerning the types and quantity of peripheral
devices on your system. Based on your answers, the system generation software creates the
device data base source files. The file SYSTB.MAC contains the data base definitions for all the
DIGITAL-supplied devices that were generated with resident data bases. The files xxTAB.MAC,
where xx is the device mnemonic, contain the data base definitions for each of the DIGITAL-
supplied devices that were generated with loadable data bases. Thef{lees xxDRV.MAC, where xx
is the device mnemonic, contain the driver code to support the devices. The system generation
software assembles and task-builds these modules. The resident driver and data base modules
are linked into, and become a permanent part of, the Executive. The loadable driver and data
base modules are task-built separately for loading into memory after the Executive has been
built. : »

A privileged system task called LOAD is responsible for loading into memory a driver that is
not resident. LOAD creates the necessary interrupt control blocks (ICBs) for accessing a driver
and establishes the linkage between the data base structures in the system device tables and the
driver code being loaded. Another system task, CONFIGURE (CON), initializes the interrupt
vectors to point to the ICBs and actually places the devices on line. CON can also change the
vector and CSR address assignments in a device’s data base. Another privileged system task
called UNLOAD can remove a loadable driver from memory. (Although UNLOAD removes a
loadable driver, it does not remove a loadable data base.)

To incorporate a user-written driver into RSX-11M-PLUS, you first create two modules—one in
which you define the data base and the other in which you include the driver code itself. You
then must integrate your driver data base and the driver code modules into the system device
tables. If your data base is resident, your data base module must satisfy the following linkages:

* The link of the controller table (CTB) list
® The link of the device control block (DCB) list

The linkage for the driver code connects the DCB for the device that your driver supports to
the driver dispatch table (DDT). If your driver and data base are loadable, you must supply
symbols and labels in your code that LOAD needs. Your device interrupt vectors are initialized
and the devices are placed on-line by CON.

When you load a driver, LOAD checks to see whether a data base is resident for the type of
device whose driver is being loaded. If a data base is not resident, LOAD reads the driver
symbol definition file to find the start and end of the data base in the driver image. (Thus, if
your driver data base is to be loadable, you must have defined its start and end in the data base
source code.) Knowing the start and end, LOAD reads the data base from the driver image.
LOAD places the data base in the system pool so that it resides in Executive address space,
relocates pointers and links within the data base to be valid Executive addresses, and connects
the CTB and DCBs in the data base to the system device tables. Moreover, so that the system
device tables are not corrupted by an incorrect data base, LOAD performs many consistency
and validity checks on the data base being loaded.

If your driver is loadable and has a loadable data base, you will build the following structures:

* A loadable image containing the driver code module followed by the driver data base
module.

A symbol definition file that LOAD depends on to find critical data base and driver locations.

RSX-11IM-PLUS 1/0O Drivers 1-23

You will link the driver image to the Executive under which the driver will run. However, the
driver image will be separate from the Executive image. LOAD is responsible for loading both
your driver data base and driver code, for connecting the data base to the system device tables,
and for connecting your driver code to the data base.

If your driver is loadable but has a resident data base, you will need to perform a system
generation and build the Executive under which the driver will run to link your driver data base
modules into the system device tables. This operation makes your driver data base resident
with the system device tables. You must also build the following structures:

e A loadable image containing the driver code.
e A symbol definition file that LOAD will use to locate the driver dispatch table.

LOAD is responsible for loading your driver code and for connecting your driver code to the
data base resident with the system device tables.

If your driver is resident, you will need to perform a system generation and build the Executive
to link the driver data base into the system device tables and to include the driver code in the
Executive image.

Whatever type your driver is, you will use the CON task to initialize the device interrupt vectors
and place the device on-line.

Because LOAD provides consistency and validity checks on a data base that is being loaded,
DIGITAL recommends that you make your driver and its data base loadable. (Additional
rationale for making your driver fully loadable is given in Section 1.7.) Furthermore, with a
loadable driver and loadable data base, you can more easily modify your driver and its data
base. You need not rebuild your Executive and privileged tasks. To change the driver code, you
need only build a new driver image, unload the current version, and reload the new version.
To change the driver data base, you must build a new driver image (which incorporates the
modified data base module), rebootstrap your system, and load the new driver (which causes
the modified data base to be loaded). (You must bootstrap your system to change the data base
because UNLOAD does not unload a data base, and because LOAD does not load a data base
for a driver if one is currently loaded for that driver.)

Using a loadable driver with a loadable data base saves work in the long term. During
debugging, data base inconsistencies are likely to be caught by LOAD. Thus, you prevent many
such errors from later creating system problems.

A resident driver or a loadable driver with a resident data base is more difficult to debug and
to modify. LOAD does not perform consistency and validity checks on a resident data base.
Thus, a valuable debugging aid is not available. Moreover, to modify such drivers, you must
rebuild the Executive, which generally implies rebuilding the privileged tasks.

1-24 RSX-11M-PLUS 1/0 Drivers

1.7 SPR Support

The capability to incorporate a user-written driver into your system is a supported feature of
RSX-11M-PLUS. Because a user-written driver is considered a system modification, DIGITAL
may not support the system that results after it is incorporated. Since it is a part of the
Executive, your driver can subtly corrupt it. Therefore, DIGITAL cannot guarantee support that
entails debugging user-written drivers.

Fixing a problem in a system is largely a matter of being able to reproduce the problem reliably.
If a problem on your system can be shown to have no relation to your driver and DIGITAL
can reproduce the problem, SPR support can be provided. A good reason for using a loadable
driver with a loadable data base is that you can more easily attain an unmodified system
by not loading your driver and its data base. You can then reproduce a suspected problem
in an unmodified system and can submit an SPR that DIGITAL can answer. You can save
both yourself and DIGITAL time in answering the SPR if you attempt to re-create a suspected
problem on your system without your driver and its data base.

RSX-11M-PLUS 1/0 Drivers 1-25

Chapter 2

Device Driverl/O Structures

This chapter deals mainly with structures at the block level, their relationship to the hardware
configuration and functionality supported, and their relationships to each other. The precise
description of each structure is given in Chapter 4.

2.1 1/0O Structures

2.1.

The main elements in the driver I/O environment define the logical and physical characteristics
of the supported hardware and establish the links and connections by which routines can access
and manipulate driver data. The following subsections describe the control blocks that a driver
data base module defines and explain in general terms the purposes for each block.

1 Controller Table (CTB)

A controller table defines a unique controller type on the system. A CTB must exist for each
physical controller type. All controller tables are linked together in a list, with the head of the
list SCTLST in the Executive common area. The list of the controller tables is one of the threads
running through the system data base to provide access to all device-related data. The link in
the last CTB in the list has a value of zero.

Associated with each CTB is a two-character ASCII controller name that must be unique
throughout the system. This unique name allows the Executive to find the correct CTB for the
controller type. For example, the RH11/70 controller has the name RH instead of DB, DS, DR,
or MM.

A CTB is a static structure created during system generation. Any user-written driver data base,
therefore, must have its own CTB. The user-created controller table must also be linked into
the system CTB list. :

A CTB has generic status information, links, and pointers to other structures on the system. The
Executive handles interrupts for the controller type and dispatches to the correct driver routine
using the table of KRB addresses in the CTB.

Device Driver 1/O Structures 2-1

2.1.2 Controller Request Block (KRB)

The controller request block is the means by which the Executive maintains controller- or
hardware-specific information and accesses the correct information for a unit owned by its
associated controller. One KRB exists for each device controller in the configuration. It stores
data such as vector and CSR location, status, and UNIBUS run mask.

In a configuration where a device has only one access path to a controller and the controller
allows only one operation at a time, the KRB is combined with another structure called the status
control block (SCB), which holds context for a unit while an operation is in progress. Because
only one access path is possible in such a configuration, unit context is always associated with
the same controller. Moreover, because only one operation is possible at a time, the same
context storage area can be used for all units attached to the controller. Thus, in a conventional
driver operating environment, the context storage is merely an extension of the controller request
block.

In a configuration where multiple operations in parallel on the same controller are possible, the
controller context is separate from each independent unit context. Therefore, each unit capable
of operating independently on a controller has the context of the current I/O operation stored
in an SCB separate from the controller KRB. In such an operating environment, any unit can
access the controller while other operations are pending, but only one unit can have access at
a time. The KRB, then, indicates which unit owns the controller for the current operation and
synchronizes access among driver processes on the same controller.

Where multiple parallel operations are allowed on a controller, there must be some way to
delay access to the controller when it is busy. Therefore, in the KRB the Executive holds the
head of a list of access requests called the controller request queue. The list contains fork blocks
for driver processes awaiting controller access. The queue is the means by which the Executive
serializes access to the controller.

When a controller allows parallel operations, the software must have a means of determining
which of several units generated an interrupt. The KRB, therefore, contains a table of addresses
that associate the controller with all the units connected to it. This table, indexed by physical unit
number, must appear if the controller in question supports overlapped seek operations. When a
device has multiple-access paths, the controller-specific information in the KRB is separate from
each independent unit context. In a situation where a device accesses alternate controllers, a
driver must request the Executive to assign the unit to a specific controller. The unit assignment
involves temporarily associating unit context with the KRB of the specific controller. The SCB,
then, holds information connecting it to the KRB of the currently assigned controller.

The KRB also holds the configuration status of the controller. If the KRB indicates that the
controller is offline, no activity can take place on any unit connected to the controller.

2-2 Device Driver 1/0 Structures

2.1.3 Device Control Block (DCB)

The device control block describes the static characteristics of a device type and of units

associated with a certain device type. The DCB is the means of access to the driver dispatch

table and thus to the driver. At least one DCB exists for each logical type of device on a system.

There may be more than one DCB for a device type. For example, there are two device control

blocks for the device TT: on a system that supports terminals connected by both DL11 and
- DZ11 interfaces.

A cell in each device control block forms a link in a forward-linked list, with the head of the
list starting in a cell ($}DEVHD) in the Executive common area. This list, as with the CTB list,
is a main thread running through the system data structures to device-related data. The link in
the last DCB in the list has a value of zero. ‘

The static data in the DCB gives such information as the generic device name, unit quantity
and links to individual unit data, the address of the driver dispatch table, and the types of I/O
functions supported by the driver. Typically, the Executive QIO directive processing code, not
the driver code, accesses the DCB.

2.1.4 Unit Control Block (UCB)

The unit control block holds much of the static information about an individual device unit and
contains a few dynamic parameters. Although unit control blocks need not be any prescribed
length for different devices, all unit control blocks for the same device type must be of equal
length. (The UCB length is stored in the device control block.) This condition allows the UCB
to contain varying amounts of unit- and device-independent data for different types of devices.

A UCB, one of which exists for each device unit, enables a driver to access most of the
other structures in the I/O environment. A UCB provides access to most of the dynamic data
associated with I/O operations. Given the address of a UCB, a driver may readily find most of
the other data structures in which it is interested because the proper links exist. Because of this
access information, the UCB is a key control block in the driver 1/O structure.

The static data in the UCB includes pointers to other I/O structures, definitions of unit control
bits that regulate directive processing, definitions of unit status bits that describe operational
conditions, and definitions of unit- and device-dependent characteristics and storage cells.

Data in the UCB is accessed and modified by both the Executive and the driver.

2.1.5 Status Control Block (SCB)

The status control block holds driver context for operations on a device unit. The SCB stores
data such as the pointer to the head of the queue of input/output requests; the link to the
fork blocks queued for the unit; the fork process context; timeout, unit status, and error logging
information; and the address for the controller request block (KRB) representing the device
controller (if the device has a controller).

The Executive accesses the SCB to set up an I/O request, to store context while a request is
in progress, and to post results and status. When the driver accesses the SCB, it is usually for
read access only.

Device Driver 1/0 Structures 2-3

The number of status control blocks depends on the processing support in the Executive. If the
controller itself cannot handle parallel operations, only one SCB is needed for each controller.
In such a case, a controller can have only one unit processing a command at one time, and
there is no need to store context for more than one unit at a time. There is also no need for
a physically separate controller request block (KRB) to separate generic data from unit context.
Therefore, the driver data base contains the required KRB cells in the status control block.

If the controller allows parallel operations and the Executive supports this feature, there must
be one SCB to store context for each unit capable of operating independently on the controller.
In such a configuration, a cell in each SCB points to the KRB of the controller to which the
units are connected.

2.2 Driver Dispatch Table (DDT)

The driver dispatch table! contains the entry points to, and the interrupt entry addresses for,
the driver. An entry point is the location at which the Executive calls the driver to perform a
specific function. An interrupt entry address is a location to which the central processor or the
Executive transfers control within the driver for servicing hardware interrupts. The pointer to
the interrupt entry address resides either in an interrupt control block if the driver is loadable
or in the device interrupt vector in the system common area of the Executive if the driver is
resident.

Every driver has four conventional entry points as follows:
® ~ I/0 initiation

* Cancel I/O

* Device timeout

* Device powerfail

The following two entry points are added for controller and unit online and offline status
changes:

¢ KRB status change
e UCB status change

For many devices, these status-change entry points are merely a return to the Executive calling
routine.

The following two entry points have been added for advanced driver features:
¢ Deallocate buffers and next command (FDX TTDRV)

* Address checking and conversion (queue optimization disk drivers)

1 The DDT is not a structure in the strict sense of the word because it is defined in the instruction part of the driver code. However, because
it contains addresses for dispatching code, it is included in the data structure description.

2-4 Device Driver 1/0 Structures

2.2.1 1/0 Initiation

The Executive transfers control to this entry point to inform the driver that work for it is waiting
to be done. To make work for the driver, the Executive performs predriver-initiation processing.
(Predriver initiation is described in Chapter 3). If, at the end of predriver processing, the
Executive has I/O packets queued for the driver, it calls the driver at this entry point.

When the driver gets control at its I/O initiation entry point, Register 5 contains the address
of the UCB for the unit on which the request is to be processed. To establish access to the
I/O packet, the driver calls an Executive routine that either returns information in registers
concerning both the packet to be processed and the associated data in order to gain access to
the data structures! or causes the driver to dismiss itself. (There may be no packet to process
or the driver may already be busy.)

Once control is returned to a driver and there is a request to process, the driver must extract the
information from the registers, establish data within the control blocks, and process the request.

Typically, a driver is called at this entry point when there is a packet in the 1/O queue.
However, a driver can be called before a packet is placed in the I/O queue. Refer to the
description of the U.CTL control flag UC.QUE in Section 4.4.4 for information on queuing an
I/O packet to the driver.

2.2.2 Cancel I/O

To terminate an in-progress I/O operation, the system flushes the I/O queue and calls the
driver at this entry. There are many situations where a task must terminate 1/O. When such a
termination becomes necessary, a task issues an Executive request and the Executive relays the
request to the driver by calling it at this entry point.

The driver is responsible for checking that the I/O operation in-progress was issued from the
task that is forcing the termination and for completing or terminating the operation before
returning to the caller.

Typically, a driver is called at this entry point only when an 1/O operation is in progress. A
driver can be called even if the unit specified is not busy. Refer to the description of the U.CTL
control flag UCKIL in Section 4.4.4 for information on unconditional cancelling of 1/0.

2.2.3 Device Timeout

When a driver initiates an 1/O operation, it can establish a timeout count. If the operation fails
to complete within the specified interval, the Executive notes the lapse and calls the driver at
this entry point. Using this facility, a driver can wait for an interrupt but need not hang up if
the interrupt never occurs. Thus, no driver should ever stall on a request because a hardware
failure prevented an expected interrupt from happening. ‘

1 The $GTPKT routine, which gets a packet for the driver to process, is described in Chapter 7.

Device Driver 1/O Structures 2-5

2.2.4 Device Power Failure

The Executive calls the power failure entry point when power is restored after a failure any
time the controller is busy (that is, when I1/O is in progress). Typically, a driver responds to
a power failure in the same manner it responds to a timeout. In such cases, the power failure
entry point may simply be a return to the caller because recovery will occur by means of the
timeout entry point. The driver is called for both controller and unit power failure unless the
driver is associated with a common interrupt controller. For common interrupt controllers, the
driver is called at this entry point only for unit power failure and is called at a special entry
defined in the common interrupt table for controller power failure.

A driver can be called when power is restored regardless of the existence of an outstanding
1/O operation. Refer to the description of the U.CTL control flag UC.PWF in Section 4.4.4 for
information on unconditional call on power failure.

2.2.5 Controller and Unit Status Change

Two entry points are required for configuration status changes of the controller and units. The
Executive enters one entry point to put the controller on line and take it off line. The other entry
point, called once for each unit whose status changes, is for putting units on line and taking
them off line. The driver must show successful completion of the online or offline request or
the Executive will not effect the status change. The driver has 60 seconds to perform whatever
synchronization it requires before returning to the Executive. In most cases, however, the driver
will return immediately.

2.2.6 Device Interrupt Addresses

Control passes to an interrupt address when a device, previously initiated by the driver,
completes an I/O operation and causes an interrupt in the central processor. A device may
have associated with it more than one interrupt entry. For example, a full duplex device such
as a terminal will have two interrupt addresses. The interrupt entry differs from an entry point
in that the connection between the device and the driver is more direct—the Executive is not
involved.

The interrupt addresses are arranged in a block in the DDT. The arrangement is general enough
to support multicontroller drivers such as the terminal driver. The block defines the addresses
to include in the vector for the driver. There is no restriction on the number of vectors each
controller has, and the number of vectors is implied by the number of addresses in the interrupt
address block.

2.3 Typical Control Relationships

This section presents different arrangements of the control structures found in RSX-11M-PLUS.
The section concentrates on the relationships among device control, unit control, status control,
and controller request blocks and controller tables based on hardware and functions supported.
Descriptions of the detailed contents of the structures is left to Chapter 4, where the coding
requirements are presented. Some of the arrangements are not conventional but are shown to
convey the flexibility you can find in a system. Section 2.4 shows how such arrangements fit
into the overall system I/O data structure.

2-6 Device Driver 1/O Structures

The arrangements described in this section illustrate the strategy of offering a flexible 1/O data
structure. There need be only one controller table for each controller type. Multiple-device
control blocks for a single device type reflect the capability to handle varying characteristics.
The existence of one or more status control blocks depends on the degree of parallelism possible:
one SCB for each controller servicing several units (no parallelism); or one for each device unit
combination on the same controller (unit operation in parallel).

The I/O data structure reflects the hardware configuration that the data structures describe.
The flexibility in the data structure arrangements provide flexibility in configuring 1/0 devices.
The information density in the structures themselves reduces the coding requirements for the

associated drivers.

2.3.1 Multiple Units per Controller, Serial Unit Operation

A typical arrangement of structures for a user-written driver is shown in Figure 2-1. The
arrangement could represent an RKO05] controller with two RKO5 drives attached. A single
controller table (CTB) defines the existence of the controller type on the system. One device
control block (DCB) establishes the characteristics for the type of device running on the controller.

Figure 2-1: Multiple Units per Controller; Serial Unit Operation

DCB
List

CTB
List

\

DCB

KRB

CTB

—t=

ucB

SCB »

ucs

ZK-249-81

The status control block (SCB) and controller request block (KRB) are contiguous in this
arrangement because the software does not allow another I/O operation to begin while the
controller is busy. A separate unit control block (UCB) describes each unit attached to the
controller. The UCBs are associated with the SCB, which contains the context of the operation

currently in progress.

Device Driver 1/0 Structures

2-7

2.3.2 Two Controllers, Serial Operation

Another typical conventional arrangement of structures for a user-written driver is shown in
Figure 2-2, which could represent two LP11 controllers: one with an LP04 and the other with
an LP05 attached. It represents the simplest case of driver processing. Figure 2-2 shows what
is required for a controller that allows only a single I/O operation for each controller. A single
controller table defines the existence of the controller type on the system. One device control
block establishes the characteristics for the type of device running on the controller.

The status control and controller request blocks are contiguous in this arrangement because,
while the controller is busy, another I/O operation cannot begin. Only one SCB is necessary
to store the context of the unit operation. The UCB points to the SCB, which in turn points
to the KRB of the unit’s controller. Bécause the system must handle interrupts from multiple
controllers, the controller table points to the KRB of each controller present.

2.3.3 Parallel Unit Operation

Some devices, such as the RK06, allow multiple units to have seek operations in progress at the
same time. In particular, the RK06 allows such operations to overlap a data operation. Figure 2-3
shows the arrangement needed in the software structures to support parallel operations on one
controller.

Two additional structural changes are required from the serial operation arrangement. First,
because more than one unit may have an operation pending at the same time, a structure is
needed to store unit context. Therefore, for each unit (and each unit control block) there is a
separate status control block. Second, because interrupts can come from more than one unit,
there must be a way to access the proper unit. As a result, the controller request block contains
a table of unit control block addresses that allows the driver to find the structures for the unit
generating an interrupt.

2-8 Device Driver 1/0 Structures

Figure 2-2: Two Controllers, Serial Operation

List

DCB

Y

DCB

CTB
List

KRB

cTB

ucB

SCB e

ucs

KRB

SCB

Device Driver 1/O Structures

ZK-250-81

2-9

Figure 2-3: Parallel Unit Operation (Overlapped Seek)

DCB CTB

UCB SCB

— - KRB
uCB SCB

i o ucB

Table

ZK-251-81

2.3.4 Multiple-Access (Dual-Access) Operation

Some devices, such as the RK06, have a dual-port option that provides multiple-access paths to
units. On the RK06, dual ports on the unit enable a single unit to be electronically switched
between two controllers. Figure 2-4 shows the changes in the structures needed to support
dual-access operations.

Separate status control blocks are needed for each unit because, if one controller is currently
busy, the alternate controller can be idle and allow the operation to proceed. The difference in
the dual-access structure is that the SCB no longer points to the same controller request block
all the time as in the overlapped seek arrangement. The Executive can change the SCB pointer
to a KRB to reflect the capability to electronically switch a unit between two controllers.

To enable the software to determine which controllers may access a unit, the SCB has a table
of KRB addresses. For dual-access disks, the table has two entries containing the addresses of
the controller request blocks for each controller between which the unit can be switched.

2-10 Device Driver 1/0 Structures

Figure 2-4: Dual-Access Operation

Common
Interrupt
Table
ey
3] 3
DCB CTB
Current
KRB
Pointer
SCB
. KRB

Table PortB - KRB

Current
UCB ucCB
KRB Table

- Pointer

SCB -
~
KRB PortA KRB
Table PortB -

UCB
Table

ZK-252-81

2.4 Overview of Data Structure Relationships

This section presents an overview of the relationships among the user-written driver data
structures previously introduced in this chapter, the Executive I/O structures, and DIGITAL-
supplied driver structures. The goal of the section is to convey the general manner in which
user-written structures and code link into the system I/O scheme and to describe generally the
way the system uses the structures. The specific user-written structures are simplified somewhat
so that the emphasis is placed on the linkages with other parts of the system rather than on
the details of user-written structural relationships.

This section should be used with Section 2.3 to understand the general structural concepts.
For example, Section 2.3 describes various arrangements of unit control, status control, and
controller request blocks based on hardware functions the software structures support, while
this section treats such arrangements as an engineering black box that is oriented in the general
I/O environment. Thus, in the generalized I/O data structure depicted in this section, the
pointers in the KRB table of the SCB are not shown and the table is simply marked KRB Table.

Device Driver 1/O Structures 2-11

Figure 2-5, which provides the basis for the presentation of the I/O data structure, shows the
individual elements and the important link fields within them. To simplify the discussion and
to guide you through the data structures, the numbers in the figure correspond to the numbers
in the lead paragraphs of the following text:

o

The location represented by the Executive symbol $DEVHD is a cell in system common
(SYSCM). It is the head (or start) of a singly linked, unidirectional list of all device control
blocks in the system. The first word in each DCB is a link to the next DCB.

The list of device control blocks is one of the two threads running through the system data
tables for device-related information. For example, the list is the means by which executive
routines scan the data structures to determine what devices are on the system and what
is the status of units. User-written device control blocks must be linked into the list of
system-defined DCBs.

Every loadable driver is associated with a partition control block (PCB). The PCB defines
the characteristics of the memory area into which the driver is loaded. The Executive and
tasks such as LOA and UNL reference the data in the PCB. A driver is not concerned with
the PCB.

If a task is attached to a unit, the UCB has a pointer to the task control block (TCB) of that
task.

The task header is an independent entity in the I/O data structure and the driver never
accesses it. A copy of the task header is taken from the task partition and stored in the
Executive dynamic storage region whenever the task is actually in memory. This copy is
then used by the Executive.

A logical unit table (LUT) entry in the task header has two items of interest: a pointer to an
associated unit control block and, if a file is being accessed, a pointer to a window block.
The Executive accesses the logical unit table of a task during a QIO request and indexes the
table by the logical unit number specified in the QIO request.

A device control block has a pointer to the unit control block of the first related unit. Because
the length of a UCB is stored in the DCB and all UCBs are allocated in a continuous area,
access to all the UCBs related to that DCB is possible. This arrangement allows software to
access all related unit information for a device type.

A DCB also has a pointer to the start of the driver dispatch table. This pointer allows the
Executive to call the driver at its entry points to process an I/O-related or a reconfiguration
request.

Each unit control block contains a pointer back to its related DCB. This backpointer allows
the Executive interrupt dispatch code to enter the proper driver (through the pointer to the
driver dispatch table).

A status control block (SCB) is associated with each UCB . The SCB is shared by all units
for a device type that does not require units to operate in parallel. When units can operate
in parallel, each UCB has its own associated SCB.

As part of processing a QIO directive (queued I/O request), the Executive builds a structure
called an I/O packet. Storage for packets is in the system dynamic storage region (the
pool). The Executive connects the packets by a pointer in each packet to form a singly
linked list called the I/O queue. The Executive maintains two pointers in the SCB to the

2-12 Device Driver 1/0 Structures

list of packets. The first pointer is to the start of the list and the second pointer is to the
last packet in the list.

The driver should not access the list of I/O packets directly. When the Executive transfers
control to the driver to initiate processing of an I/O request, the driver immediately calls an
Executive service routine to get a packet to process. The routine passes data to the driver to
process the request (for example, the address of the packet). Thus, the Executive—and not
the driver—removes a packet from the queue of packets. However in performing the 1/0
request, the driver can access certain fields in the packet to be processed because a pointer
to the currently active I/O packet is kept in the SCB. !

The Executive determines the ordering of packets in the queue. Typically, higher-priority
requests are placed at the head of the queue.

© At least one status control block exists for each controller. Where a controller and software
support operations in parallel on multiple units, one SCB exists for each unit capable of
operating independently. A pointer in the SCB connects to the controller request block
(KRB) of the controller to which the related unit is connected. If multiple-access paths
between a unit and controller are possible, the KRB pointer is dynamic; therefore, the KRB
to which the SCB points at one instant is considered to be the currently assigned KRB. To
reflect the existence of alternate controllers, a table of pointers to all the possible KRBs is
contained in the SCB, separate from the pointer to the currently assigned KRB.

The fork block in the SCB contains some of the driver process context. The driver executes
an Executive routine so that processing will occur at fork level. To preserve processing
status, the routine stores some context in the fork block. When the driver eventually runs
again, the fork processor recovers the proper context from the fork block.

On multiprocessor systems, the fork block contains an extra cell to define the processor on
which the driver must execute the I/O request. The Executive routine that preserves context
in the fork block ensures that the driver code is processed on a particular processor.

The fork blocks for pending driver processes are connected in a singly-linked list, the head
of which is in a location ($FRKHD) in the Executive region. Generally, the fork processing
routines link a fork block in FIFO order. At location $FRKHD +2 the Executive maintains
a pointer to the last fork block in the list.

© A file control block (FCB) is associated with each open file on a mounted volume. The file
system alone uses the FCB to control access to the file.

® For each open file on a mounted volume, a window block exists for each task that has
the file open. The window block holds pointers to areas on the volume on which the file
resides and speeds up the process of retrieving data items from the file, (The associated
ACP need not be called to convert a virtual block number in a file to a logical block number
on the device.) The driver is not concerned with the window block.

® The driver dispatch table (DDT) is part of the driver code and, through the vector and the
interrupt control block, is the means by which the device interrupts are passed to the driver.

® The controller request blocks (KRB) are linked into the I/O data structure through the
pointers in the controller table (CTB). The table of KRB addresses in the CTB is static.

1 Normally, the driver does not directly manipulate the I/O queue. An exception is when a driver needs to examine an 1/0 packet before it is
queued or instead of having it queued. This exception involves a status bit in a control byte of the unit control block. For more information
on queuing of I/O packets to the driver, refer to the description of the UC.QUE bit in Section 4.4.4.

Device Driver 1/O Structures 2-13

The KRB table gives the Executive access to the structures for a controller when it initiates
an interrupt. To report the termination of a data transfer command, a controller initiates
an interrupt. (While such a controller-initiated interrupt is in progress, the hardware delays
interrupts from units.) The Executive determines the correct KRB by indexing the CTB with
the controller number from the PSW in the vector.

For a controller that allows unit operation in parallel (overlapped seek support), the related
KRB must have a table of UCB addresses. This table allows the driver to access the structures
of the unit that generates an interrupt. When a unit interrupts, its controller records (in the
attention summary register) the physical number of the interrupting unit. The driver must
retrieve the number and use it to index the UCB table in the KRB to access the proper unit
control block.

To support parallel unit operations, the KRB also contains a queue to regulate controller
access. This queue—the controller request queue—is a list of fork blocks for driver processes
that have requested and have been denied access to the controller. The driver requests
access to a controller. If the controller is busy, the Executive forces the driver to wait for
access by placing the fork block in the queue of processes waiting for access. The Executive
gives precedence to control access over requests for data transfer by placing positioning
requests onto the front of the queue and adding data transfer requests to the end of the
queue. When a unit is given access, the controller status is set to busy and the unit UCB
address is set to connect the KRB to the owned UCB.

To indicate what unit to process on a controller-initiated interrupt, a cell in the KRB points
to the unit control block (UCB) of the unit that currently owns the KRB.

The KRB queue cells have two words. The first word points to the fork block in the SCB
of the next unit to get access. The second word points to the fork block in the SCB of the
last unit to get access. If the first word is 0, then the second word points to the first and
no unit is waiting for access to the controller.

® The location represented by the Executive symbol $CTLST is a cell in system common
(SYSCM). It is the head (or start) of a singly linked, unidirectional list of all controller tables
(CTBs) in the system. A word in each CTB is a link to the next CTB. The last CTB in the
list contains a link word of 0.

The list of controller tables is one of the two threads running through the system for
device-related information. (The list of device control blocks is the other thread.) A user-
written controller table must be linked into the list of system-defined CTBs. This list is the
mechanism by which system routines, such as those for reconfiguration, access 1/O data
structures for hardware information.

@® One volume control block (VCB) exists for each mounted volume in the system. The VCB
maintains volume-dependent control information.

Pointers within the VCB connect to the file control block (FCB) and window block (WB).
The FCB and WB control access to the volume’s index file, which is a file of file headers.
All FCBs for a volume form a linked list starting from the index file FCB. These linkages
aid in keeping file access time to a minimum. A conventional driver does not access any of
these structures. \

2-14 Device Driver 1/0 Structures

18-€52-MZ

‘Juswabue.ie 8qissod AJoas MOYS JOU s30p b1
‘a|dwexa (e21dA1 e Ajuo smoys wesberp siy|
ISV}

804 ® 310N

R {ISVL)
(3WNT0A) an
——e=--f%
am 378v.L 80N 379vL 9 AYLNT LN Y3avaH
MSVL @
805
auy | | 0018804 ‘ dov
JINNTOA 40 891
a3aLNNOW @
80A
NSVL
aon Q3HOVLLY
Axmwuz: @) 378vL 80N ‘_’ 40 891
37avL gy @
] gy
.AI_ 808 ° — aon a4
00185804 _ — HINIYG
193084 — AHMH4$ @ 378vAvOo1
o/ @
jusLINY L
- ==, —
3nano o/l
! SL3N0vd O/ @ |
| |
819 | : a0a 8@
a1 | |
I — | L [}
R | @ @
151108 @ B QHA3AS
ajqeL
1dnuayuy
uowwon Lag
@ g01
fe— ——
801 15414 890 LX3N
oL NG 3000 ¥3AING OL43INIOg HOLJ3A 30I1A3Q

sainjoniis bipg O/ eysodwod G-z ainbyi4

Device Driver 1/0 Structures 2-15

Chapter 3
Executive Services and Driver Processing

This chapter describes the flow of 1/O requests through the system.

The Executive provides services related to 1/O drivers. Some services are provided before a
driver process is initiated and are therefore called predriver initiation services. The predriver
initiation services are those performed by the Executive during its processing of a QIO directive;
these services are not available as Executive calls.

Predriver initiation processing extracts from the QIO directive all I/O support functions not
directly related to the actual issuance of a function request to a device. If the outcome of
predriver initiation processing does not result in the queuing of an I/O packet to a driver, the
driver is unaware that a QIO directive was issued. Many QIO directives do not result in the
initiation of an I/O operation.

Other services are available to the driver after it has been given control, either by the Executive
or as the result of an interrupt. They are available as needed by means of Executive calls.

An important concept used in this section and in Chapter 4 is the state of a process. In
RS5X-11M-PLUS, a process can run in one of two states: user or system. Since drivers operate
entirely in the system state, the programming standards described in Chapter 4 apply only to
system-state processes.

3.1 Flow of an I/O Request

Following an 1/O request through the system at the functional level requires that the following
limiting assumptions be made about the state of the system when a task issues a QIO directive:

* The system is running and ready to accept an I/O request. All required data structures for
supporting devices attached to the system are intact.

* The only I/O request in the system is the sample request under discussion.

* The example progresses without encountering any errors that would prematurely terminate
its data transfer; thus, no error paths are discussed.

* The controller in question executes only a single operation at a time.

Executive Services and Driver Processing 3-1

3.1.1 Predriver Initiation Processing

The Executive performs the following processing before it passes control to a driver’s I/0
request:

1.

Task issues QIO directive.

The user program first creates, either statically (by QIOWS$C, QIOWS, QIO$C, or QIO$)
or dynamically (by QIOW$S or QIO$S) a directive parameter block (DPB) containing
information about what 1/0 is to be performed on what device. It then issues the directive.

All Executive directives are called by means of EMT 377. The EMT causes the processor
to push the processor status word (PSW) and program counter (PC) onto the stack and to
pass control to the Executive’s directive processor.

Executive issues QIO dispatch.

The Executive directive dispatcher DRDSP ascertains that the EMT is a QIO directive and
calls the QIO directive processor DRQIO.

DRQIO performs first-level validity checks.

The QIO directive processor validates the logical unit number (LUN) and the unit control
block (UCB) pointer. DRQIO checks whether the LUN supplied in the directive parameter
block is a legal value. If it is not a legal value, the directive is rejected. If the LUN is legal,
DRQIO checks whether a valid UCB pointer exists in the logical unit table (LUT) for the
specified LUN. This check ascertains whether the LUN is assigned. If the check fails, the
directive is rejected. If both these checks are successful, DRQIO then performs the redirect
algorithm.

DRQIO performs redirect algorithm.

Because the UCB may have been dynamically redirected by a Redirect command, QIO
directive processing traces the redirect linkage until the target UCB is found. The target
UCB provides the links to most of the other structures of the device to which the I/O
operation will be directed.

DRQIO performs additional validity checks.

The event flag number (EFN) is validated as well as the address of the I/O status block
(IOSB). If either is illegal, the directive is rejected. Immediately following successful
validation, DRQIO resets the event flag and clears the I/O status block.

DRQIO obtains storage for and creates an /O packet.

The QIO directive processor now acquires a 20-word block of dynamic storage for use as
an 1/O packet. It inserts into the packet the device-independent data items that are used
subsequently by both the Executive and the driver in fulfilling the I/O request. Most items
originate in the requesting task’s directive parameter block (DPB).

At this point DRQIO sets the directive status to +1, which indicates directive acceptance.
Note that a directive rejection is a return to the caller with the C bit set. In addition, a
directive rejection is transparent to the driver.

DRQIO validates the requested function.

3-2 Executive Services and Driver Processing

If the function is legal, DRQIO checks to see whether the unit is on line. If the unit is off
line, the packet is rejected. The function is one of four possible types:

Control
No-op
ACP
Transfer

With the exception of Attach/Detach, control functions are queued to the driver. If the bit
UC.ATT is set, Attach/Detach will also be queued to the driver. If the requested function does
not require a call to the driver, the Executive takes the appropriate action and calls the I/0
Finish routine ($IOFIN).

'No-op functions do not result in data transfers. The Executive performs them without calling
the driver. No-ops return a status of IS.SUC in the I/O status block.

ACP functions may require processing by the file system. More typically, the request is a read or
write virtual function that is transformed into a read or write logical function without requiring
file-system intervention. When transformed into a read or write logical function, the function
becomes a transfer function (by definition).

Transfer functions are address checked and queued to the proper driver. This means that
DRQIO checks the address of the I/O buffer, the byte count, and the alignment requirement for
the specified device. If any of these checks fails, DRQIO calls the I/O Finish routine ($IOFIN),
which returns an I/O error status and clears the I/O request from the system. If the checks
succeed, DRQIO either places the I/O packet in the driver request queue according to the
priority of the requesting task or, if the UC.QUE bit is set, gives the packet directly to the driver.
(See Section 4.4.4 for a description of the UC.QUE bit.)

3.1.2 Driver Processing

Once the Executive has successfully completed predriver initiation, the driver performs the 1/O
operation, as follows:

1. Driver requests work.

To obtain work, the driver calls Get Packet (§GTPKT). $GTPKT either provides work, if it
exists, or informs the driver that no work is available or that the SCB is busy. If no work
exists, the driver returns to its caller; if work is available, $§GTPKT sets the device controller
and unit to busy, dequeues an 1/O request packet, and returns to the driver.

2. Driver issues I/0.

From the available data structures, the driver initiates the required I/O operation and returns
to its caller. A subsequent interrupt may inform the driver that the initiated function is
complete, assuming the device is interrupt driven.

3. Driver processes interrupt.

When a previously issued I/O operation interrupts, the interrupt causes the driver to be
entered. The driver processes the interrupt according to the programming protocol described
in Chapter 1. According to the protocol, the driver may process the interrupt at priority
7, at the priority of the interrupting device, or at fork level. If the processing of the 1/O
request associated with the interrupt is still incomplete, the driver initiates further I/O on

Executive Services and Driver Processing 3-3

the device (step 9). When the processing of an 1/O request is complete, the driver calls
$IODON.

4, $IODON finishes I/O processing.

$IODON removes the busy status from the device unit and controller, queues an AST if
required, and determines whether a checkpoint request pending for the issuing task can
now be effected. The IOSB and event flag, if specified, are updated, and $IODON returns
to the driver. The driver branches to its initiator entry point and looks for more work (step
8). This procedure is followed until the driver finds the queue empty, whereupon the driver
returns to its caller and the driver process vanishes.

Eventually, the processor is granted to another ready-to-run task that issues a QIO directive,
starting the I/O flow anew.

3.2 Executive Services Available to a Driver

Once a driver is given control following an I/O interrupt or by the Executive itself, a number
of Executive services are available to it. These services are discussed in detail in Chapter 7.

However, four Executive services merit special emphasis because virtually every driver in the
system uses them:

* Get Packet ($GTPKT)

e Interrupt Save ($INTSV)

e Create Fork Process ($FORK)

e 1/0 Done ($IODON, $IOALT, or $IODSA)

3.2.1 Get Packet (SGTPKT)

The Executive, after it queues an I/O packet, calls the appropriate driver at its I/O initiation
entry point. The driver then immediately calls the Executive routine $GTPKT to obtain work.!
If work is available, $§GTPKT delivers to the driver the highest-priority, executable I/O packet
in the driver’s /O queue and sets the SCB status to busy. If the driver’s I/O queue is empty
or if the driver is busy, $GTPKT returns a no-work indication.

If the SCB related to the device is already busy, $GTPKT so informs the driver, and the driver
immediately returns control to the Executive.

Note that, from the driver’s point of view, no distinction exists between no-work and SCB busy,
because an I/O operation cannot be initiated in either case.

1 An exception is a driver that handles special user buffers. Such a driver must call certain other Executive routines before calling $GTPKT.
See Section 4.4.4 for a description of the UC.QUE bit.

3-4 Executive Services and Driver Processing

3.2.2 Interrupt Save (SINTSV)

A driver should not directly call the $INTSV coroutine but should use the INTSV$ macro call.
Therefore, if the driver is loadable, it need not call $INTSV and the macro will not generate the
call in the driver. (The interrupt save processing is done by either the interrupt control block or
the appropriate common interrupt routine in the Executive.) If a driver is resident, the INTSV$
macro call generates the call to the $INTSV coroutine. The coroutine saves code in the driver
because the call is shorter than the code to save and restore the conventional Registers 4 and
5. More importantly, the $INTSV coroutine gets the driver onto the system stack if it is not
already there. The INTSV$ macro is described in more detail in Section 4.3 and the interrupt
entry point is described in Section 4.5.

3.2.3 Create Fork Process (SFORK)

Synchronization of access to shared data bases is accomplished by creating a fork process.
When the driver needs to access a shared data base, it must do so as a fork process; the driver
becomes a fork process by calling $FORK. The SCB contains preallocated storage for a four- or
five-word fork block. See Section 4.4.5 for a description of the fork block. Section 7.4 contains
details on $FORK. After $FORK is called, a routine is fully interruptable (priority 0) and its
access to shared system data bases is strictly linear.

3.2.4 1/0 Done (SIODON or $IOALT)

At the completion of an I/O request, the subroutines $IODON or $IOALT perform a number
of centralized checks and additional functions:

* Store status if an IOSB address was specified

® Set an event flag if one was requested

* Determine whether a checkpoint request can now be honored
* Determine whether an AST should be queued

$IODON and $IOALT also declare a significant event, reset the SCB and device unit status to
idle, and release the dynamic storage used by the completed I/O operation. ’

Executive Services and Driver Processing 3-5

Chapter 4

Programming Specifics for Writing an |/O Driver

Chapters 2 and 3 give overviews of data structures and Executive services, respectively. This
chapter summarizes programming standards, presents overviews of programming requirements
for user-written driver code and data, and gives details of the data structures and driver code.
Executive services are covered in Chapter 7.

4.1 Programming Standards

4.1.

I/0O drivers function as integral components of the RSX-11M-PLUS Executive, and this manual
enables you to incorporate 1/O drivers into your system. User-written drivers must follow the
same conventions and protocol as the Executive itself if they are to avoid complete: disruption
of system service. Failure to observe the internal conventions and protocol described fully in
Chapter 1 can result in poor service and reductions in system efficiency.

The programming conventions used by RSX-11M-PLUS system components are identical to
those described in Appendix E of the PDP-11 MACRO-11 Language Reference Manual. DIGITAL
urges you to adhere to these conventions.

1 Programming Protocol Summary

Drivers are required to adhere to the following internal conventions when processing device
interrupts:

1. No registers are available for use unless $INTSV has been called or unless the driver
explicitly performs save and restore operations. If $INTSV is called, Registers 4 and 5 are
available; any other registers must be saved and restored. If the driver is to call $INTSV
directly, it must do so immediately because $INTSV attempts to retrieve the controller
number from the PSW.

2. Noninterruptable processing must not exceed 20 instructions, and processing at the priority
of the interrupting source must not exceed 500us.

3. Only a fork process should modify system data bases.

Programming Specifics for Writing an 1/O Driver 4-1

4.1.2 Accessing Driver Data Structures

All the driver data structure elements have symbolic offsets. Because the physical offset values
may vary from one version of the Executive to another, your user-written driver code should
always use the symbols to access the elements.

Accordingly, your driver code should not step from one structural element to another (relying on
the juxtaposition of data structures and individual words in a data structure) but should access
each element by symbolic offset. By following this coding practice, you can reduce debugging
time when converting an RSX-11M driver to run on RSX-11M-PLUS. Many of the offsets in
the RSX-11M SCB differ physically from those in the RSX-11M-PLUS SCB but have the same
symbolic values.

On the other hand, it is a common coding practice to assume that zero offsets (particularly link
pointers such as D.LNK) will remain zero. This assumption allows the saving of one word
per instruction by substituting an instruction such as MOV (R3),R3 for MOV D.LNK(R3),R3.
DIGITAL recognizes that such practices are followed and consequently attempts to keep such
offsets zero.

4.2 Overview of Programming User-Written Driver Data Bases

You should create the source code for your user-written driver data base in a file separate from
that of the driver code. You assemble this file to create the driver data base module. If you
make your data base resident, your data base module will be linked separately from the driver
code and will be linked to the system device tables module SYSTB.OBJ. (The source code for
the SYSTB module is created in UFD [11,10] during system generation.) If your data base is in
a separate module and is to be loadable, it will be linked to the end of the driver code module.
If your driver data base is in the same module as that of your driver code, it must be at the
end of the driver code. '

The detailed descriptions of the driver data structures are in Section 4.4. A few fields in
the structures are conditional on certain features in the Executive. For this reason, you must
use conditional assembly directives and some system-wide symbols defined in the Executive
assembly prefix file RSXMC.MAC, which is created during system generation.

To create the source code, you need to know, in addition to the detailed structures, what
ordering and labeling are required. These requirements, though not extensive, are important in
linking and loading your driver data base. The general coding requirements for both loadable
and resident driver data bases are described in the following subsections.

4.2.1 General Labeling and Ordering of Data Structures

If you are creating a loadable data base, you must specify two global labels for the LOAD
routines as follows:

$xxDAT:: Marks the start of the user-written driver data base

$xxEND:: Marks the end of the user-written driver data base (immediately following
the final word of the data base)

The characters xx represent the two-character mnemonic of the device that your driver data
base supports. If either or both of these labels are not defined, LOAD cannot determine the
length of your data base when you attempt to load your driver.

4-2 Programming Specifics for Writing an 1/0 Driver

There is no mandatory ordering of the different structures in a driver data base. DIGITAL
suggests, however, that you place the DCB first, followed by the UCB, the SCBs, the KRBs, and
the CTB. If you do not follow this ordering scheme, you must specify the starting location of
the first (or only) DCB as described in Section 4.2.2.

4.2.2 Device Control Block Labeling

If the data base for a driver is to be loadable, the LOAD routines require either that the first
(or only) DCB be identified by the global label $xxDCB:: or that the DCB be at the start of the
data base.

If the data base for a driver is to be resident, you must define the start of the first (or only)
DCB with the global label $USRTB::. This label is required to link the last DCB defined in the
SYSTB module with the DCB in your driver data base. If you fail to supply this symbol, the
Task Builder will generate an undefined reference error when it builds the Executive.

4.2.3 Unit Control Block Ordering

All the UCBs associated with a specific device control block (DCB) must be contiguous and must
be of equal length. These requirements are necessary because the DCB has only one link to the
UCBs, and that link is to the first UCB. Two data elements, the UCB length and the number
of units, are stored in the DCB; together with the link to the first UCB, they are used to locate
subsequent UCBs. If you do not follow these requirements, no software can access the UCBs.

4.2.4 Status Control and Controller Request Blocks

All user-written drivers that do not need separate storage for independent unit context should
use the continuous allocation of the KRB and SCB. (For an explanation of when independent unit
context is required, refer to the discussion of overlapped seek I/O in Section 1.4.1.) Therefore,
the KRB and SCB are contiguous and some fields of each structure overlap. This arrangement
saves space that would otherwise be required for one SCB for each independent unit. Because
only one unit can be active at any one time, all units attached to the same controller can share
the SCB. This arrangement of the KRB and the SCB is described in Section 4.4.7.

4.2.5 Controller Table

You must define the start of the table of KRB addresses in the CTB with the global label
$xxCTB::. Both the INTSV$ macro call and the Executive LOAD routines require this label.

If your data base is resident, you must use the CTB macro at the CTB link word L.LNK. The
CTB macro automatically generates a global label that provides the linkage between the last
CTB defined in the SYSTB module and the CTB defined in your driver tables module. (The
definition of the CTB macro is created in the file RSXMC.MAC during system generation.

Programming Specifics for Writing an 1/O Driver 4-3

4.3 Overview of Programming User-Written Driver Code
To create the source code to drive a device, obvservei the following guidelines:
¢ Thoroughly read and understand this manual.
* Familiarize yourself, in detail, with the physical device and its operational characteristics.
¢ Determine the level of support required for the device.
¢ Determine actions to be taken at the driver entry points.
* Create the driver source code.
You can write driver code for RSX-11M-PLUS that does one of the following:
* Supports standard functions and runs on RSX-11M-PLUS only. -

* Supports standard functions and is written so that it is compatible with use on both RSX-11M
and RSX-11M-PLUS. (This driver needs separate data bases for each system.)

* Supports advanced features and runs on RSX-11M-PLUS only. (Although Chapter 1
discusses advanced features, this manual does not describe how to program advanced
features. Your best guide to utilizing advanced features is to use a DIGITAL-supplied driver
as a model.)

To assist you in generating proper code for your user-written driver and to provide a stable
user-level interface from one release of the system to another, RSX-11M-PLUS provides the
macro calls listed in Table 4-1.

Table 4-1: System Macro Calls for Driver Code
Macro Name General Functions

DDT$ Used conventionally at the start of the driver code as follows:

1. To allocate storage for and to generate a driver dispatch table containing the
addresses of entry points in the order in which the Executive expects them

2. To generate special global labels required by the Executive

3. To pass the following information to the Executive LOAD routines:
¢ Which controllers the driver supports
* How many interrupt vectors each controller supports

e The association between the interrupt vectors and the driver interrupt
entry points

e To generate default controller and unit status change entry point
procedures (for on-line and off-line transitions)

GTPKT$ Used at the I/O initiator entry point to generate the call to the $GTPKT routine
and to generate code to save the address of the currently active unit’s UCB

4-4 Programming Specifics for Writing an 1/O Driver

Table 4-1 (Cont.): System Macro Calis for Driver Code

Macro Name General Functions

INTSV$ Used at an interrupt entry point to conditionally generate a call to the $INTSV
routine and to generate code to load the UCB address of the interrupting device
into R5

The definitions of the system macro calls for drivers are in the Executive assembly prefix
file RSXMC.MAC. The following subsections describe the format of the macro calls and other
features of user-written driver code. Driver code details (such as labeling requirements and
entry point conditions) are presented in Section 4.5.

4.3.1 Generate Driver Dispatch Table Macro Call—DDT$

The DDT$ macro call facilitates generation of the driver dispatch table. The format of the DDT$
macro call is as follows:

Format

DDT$ dev,nctrlr,iny,inx,ucbsv,NEW,0PT,BUF

Parameters

dev
The two-character device mnemonic.

nctrir
The number of controllers that the driver services (counting from 1).

iny
Allows the definition of no interrupt entry point or multiple interrupt entry points. If
you leave the argument null, the macro generates as the interrupt entry point address the
location defined by the conventional label $xxINT.

If you specify NONE, no interrupt entry point is generated for the controller.

If you specify an argument list of the form <aaa,bbb,...> , the macro generates multiple
cells containing addresses defined by unconventional labels of the form $xxaaa and $xxbbb.
This latter mechanism allows you to define multiple interrupt entry points in the driver.
For example, the argument list <INP,OUT> generates two interrupt address labels of
the form $xxINP and $xxOUT, the typical names used by drivers with two interrupt entry
points.

inx
Uses an alternate I/0 initiation entry point address label instead of the conventional xxINI
form. If you specify inx, the macro uses as the only I/O initiation entry point address the
location defined by the label xxinx.

Programming Specifics for Writing an 1/0 Driver 4-5

ucbsv
For compatibility with RSX-11M drivers. If you are writing a driver for RSX-11M-PLUS, you
should leave this argument blank. As a result, the macro does not allocate the space for the
table of UCB addresses. For guidelines on specifying this argument, refer to Section 4.3.4.

NEW
Distinguishes between RSX-11M-PLUS and RSX-11M drivers. If you specify this argument
(any character except null), the macro generates two cells to hold the controller and unit
status change entry point addresses. The referenced driver entry points must be labelled
xxKRB: and xxUCB:. If your driver uses these entry points, it cannot be compatible with
RSX-11M unless the two routines are conditionalized.

If the argument is null, the macro generates code to use the xxPWF entry point for controller
and unit on-line and off-line status changes. RSX-11M drivers implicitly handle controller
and unit on-line and off-line status changes as power failures. Although this default
operation (enabled by code generated from leaving this argument null) is not optimal for
operation on RSX-11M-PLUS, the driver will probably function properly without being
changed to include the xxKRB and xxUCB entry points.

OPT

Indicates that the driver supports seek optimization. The referenced entry point must be
labelled xxCHK:. The routine corresponding to that label should qualify the I/O request
and convert it to cylinder track and sector.

BUF

Required if the driver performs buffered input and output. The entry point xxDEA: is
generated.

Description

The DDT$ macro constructs the DDT, using as addresses those locations indicated by the
standard labels. The macro has arguments that allow you to tailor some of the standard entry
points. The format of the DDT generated by the DDT$ macro is described in Section 4.5.1.

4.3.2 Get Packet Macro Call—GTPKT$

The GTPKT$ macro call standardizes use of the Executive $GTPKT routine, which retrieves an
I/0O packet for the driver to process.

Format

GTPKT$ dev,nctrlr,addr,ucbsv,suc

Parameters

dev
The two-character device mnemonic.

nctrir
The number of controllers that the driver services (counting from 1).

4-6 Programming Specifics for Writing an 1/O Driver

addr
The local label defining the location at which to continue execution if there is no I/O packet
available. A driver typically executes a RETURN instruction when the $GTPKT routine
indicates that there is no I/O packet to process. If you leave this argument null, therefore,
the macro generates a RETURN instruction.

ucbsv
For compatibility with RSX-11M drivers. If you are writing a driver for RSX-11M-PLUS,
you should leave this argument null. The macro then generates code to load the pointer
S.OWN with the address of the UCB returned by $GTPKT. For guidelines on using the
argument, refer to Section 4.3.4.

suc '
Indicates single unit controller. If you are writing a driver for RSX-11M-PLUS that supports
a controller type such as the LP11, to which only a single unit can be attached, you should
specify this argument (any characters except null). If you specify this argument, you should
ensure that the offset KOWN/S.OWN in the KRBs of your driver data base points to the
UCBs of the units to which the controllers is attached. Thus, the macro does not generate
code that stores the UCB address in the KRB (a gratuitous operation) for a device that has
only one UCB per KRB.

If your RSX-11M-PLUS driver has multiple units attached to the same controller, you should
leave this argument null. The macro therefore generates code to store in the KRB the UCB
address of the unit to process.

For multiple SCB controllers that support parallel unit operations but do not require
synchronization, K.OWN must be set dynamically by the driver code. For this case,
you must specify the suc argument in the GTPKT$ macro.

Description

This macro call generates the call to the Executive $GTPKT routine. You should place it at the
I/0 initiation (xxINI) entry point because the $GTPKT routine is the way a driver commonly
receives work from the Executive. When the driver receives control at its xxINI entry point, the
Executive has loaded R5 with the address of the UCB of the unit that the driver must service.
Because of the code the macro call generates, the driver immediately calls $GTPKT, which can
set the C bit to indicate that no work is pending. The call additionally generates the BCS
instruction that returns control to the calling routine when there is no work. If you specify an
address as an argument in the macro call, it is used as the destination of the BCS instruction.
The address is typically that of a RETURN instruction but does not have to be. Eventually the
driver must execute a RETURN to the system.

The $GTPKT routine indicates that the driver has an I/O packet to process by clearing the C
bit. Therefore, when the test of the BCS instruction is false, execution continues inline and
the driver can process the I/O packet that the Executive queued to it. The $GTPKT routine
leaves information in the driver registers to enable the driver to process the request. Refer to
the description of the $GTPKT routine in Chapter 7.

Programming Specifics for Writing an 1/O Driver 4-7

4.3.3 Interrupt Save Macro Call-INTSV$

You should specify the INTSV$ macro call at each interrupt entry point in the driver. The
macro conditionally generates a call to the Executive $INTSV routine based on whether the
driver is loadable. The format of the INTSV$ macro call is as follows:

Format

INTSV$ dev,pri,nctrlr,pswsv,ucbsv

Parameters

dev
The two-character device mnemonic.

pri
The processor priority (PR4, PR5, or PR6) at which the device runs and at which the
$INTSV coroutine will run.
nctrir o
The number of controllers that the driver services (counting from 1).
PSWSV _
For compatibility with RSX-11M drivers. If you are writing an RSX-11M-PLUS driver, leave
this argument null. If your driver is an RSX-11M driver, this argument has no effect.
ucbsv
For compatibility with RSX-11M drivers. If you are writing a driver for RSX-11M-PLUS, you
should leave this argument null. The macro generates code that uses the controller index
returned in R4 by $INTSV, calculates the KRB of the interrupting controller, and loads the
UCB address of the interrupting unit into R5. For guidelines on specifying this argument,
refer to Section 4.3.4. :
Description

If the symbol LD$xx (where xx is the device mnemonic) is not defined, the macro generates
the call to $INTSV and defines the priority at which the interrupt service routine will run.
Not defining LD$xx indicates that the driver is resident. (For loadable drivers, the interrupt
service routine in the Executive dispatches the interrupt.) For both loadable and resident drivers,
however, the macro generates the code to load R5 upon an interrupt.

4-8 Programming Specifics for Writing an 1/0O Driver

4.3.4 Use of UCBSV Argument in Macro Calls

The DDT$, GTPKT$, and INTSV$ macro calls allow you to specify the ucbsv argument to
maintain compatibility with RSX-11M drivers. RSX-11M-PLUS does not need to utilize the
ucbsv argument. The ucbsv argument in the DDT$ macro allocates nctrlr words of storage (one
word for each controller that the driver supports) and labels the first word ucbsv. This storage
is the CNTBL area used by RSX-11M drivers to contain the address of the unit control block
of the interrupting devices for each controller. Both the GRPKT$ and INTSV$ macro calls may
use this same area.

If you specify the argument ucbsv in the GTPKT$ macro call, it must be the same label that you
supplied for the ucbsv argument in the DDT$ and INTSV$ macro calls. The macro generates
code to move the UCB address returned by $GTPKT to the correct location in the table starting
at the label ucbsv.

If you specify the argument ucbsv in the INTSV$ macro call, it should be the same label you
supplied for the ucbsv argument in the DDT$ and GTPKT$ macro calls. The macro uses ucbsv
to locate the UCB address of the interrupting unit and then generates code to load the address
into Register 5.

4.3.5 Specifying a Loadable Driver

To specify that a driver is loadable and to enable generation of conditional code, you must
define the symbol LD$xx. The definition can appear in either the driver source code or the
assembly prefix file RSXMC.MAC. It is usually more convenient to define the symbol in the
driver source code because you probably will not have cause to edit RSXMC.MAC. When the
symbol is defined, the INTSV$ macro does not generate the call to $INTSV.

4.3.6 Loadable Driver Entry Points for LOAD and UNLOAD

A loadable driver that requires additional initialization and completion functions can define two
entry points by labels of the form $xxLOA and $xxUNL (where xx is the two-character device
mnemonic). Because these two labels do not appear in the DDT itself, their format is fixed; you
must use the exact format in your driver code. When you load the driver, the LOAD routines
check for the $xxLOA entry point.

Note
The LOAD routines can perform this function only from MCR. If you attempt
to load a driver that has the $xxLOA entry point from VMR, the load operation
is terminated with the error message DRIVER REQUIRES RUNNING SYSTEM
FOR LOAD/UNLOAD.

The driver is entered, once per UCB, at the $xxLOA entry point at priority zero. At this stage,
the driver data base has been loaded and pointers have been relocated. The driver is mapped
through APR 5, and the following registers are set up:

R3 = Controller index (undefined if S.KRB = 0)
R4 = Address of the status control block
R5 = Address of the unit control block

The driver may use all the registers. When you unload the driver, the UNLOAD routine calls
it at the $xxUNL entry point with the same conditions.

Programming Specifics for Writing an 1/0 Driver 4-9

These two entry points in the loadable driver are independent of the controller and unit status
change entry points used by Executive reconfiguration software. That is, the two entry points
$xxLOA and $xxUNL are used for initialization and completion at LOAD and UNLOAD time
and not at on-line and off-line status change time.

4.4 Driver Data Structure Details

The following elements in the I/O data structure are of concern to the programmer writing a

driver:

* The I/O packet
e The DCB

e The UCB

¢ The SCB

¢ The KRB

¢ The CTB

The I/O data structure and, in particular, the previously listed control blocks, contain an
abundance of data pertaining to input/output operations. Drivers themselves are involved with
only a subset of the data.

Note

Except where explicitly noted otherwise, all unused bits, fields, and words in all
driver data base structures are reserved for DIGITAL system use and expansion.

Most data fields (words or bytes) are classified by one of five descriptors. Each descriptor is a
different configuration of the following two conditions and indicates:

e Whether the field is initialized in the data-structure source

* What sort of access to the field the driver has during execution
The five descriptors are as follows:

<initialized, not referenced>

This field is supplied in the data-structure source code and is not referenced by the driver
during execution.

<Initialized, read-only>
This field is supplied in the data-structure source code and may be read by the driver.

<not initialized, read-only>
Either an agent other than the driver establishes this field or the driver sets it up once and
thereafter references it read-only.

<not initialized, read/write >
Either the driver or some other agent establishes this field, and the driver may read it or
write over it.

4-10 Programming Specifics for Writing an 1/O Driver

<not initialized, not referenced>
This field does not involve the driver in any way.

These descriptors cover most of the fields in the control blocks described in this section. No
system software or hardware checks or enforces any of the access described. Exceptions are
noted in the text.

4.4.1 The |I/O Packet

Figure 4-1 shows the layout of the I/O packet, which is constructed and placed in the driver
I/O queue by QIO directive processing and is subsequently delivered to the driver by a call to
$GTPKT. The data processing block (DPB) from which the I/O packet is generated is illustrated
in Section 4.4.2.

QIO directive processing dynamically builds the I/O packet from the data in the DPB. Fields in
the I/O packet are classified as one of the following types:

* Not referenced

* Read-only

® Read/write

The fields in the I/O packet are as follows:
L.LNK

Links I/O packets queued for a driver. A zero ends the chain. The listhead is in the SCB
(S.LHD).

Driver access: Not referenced.

I.LEFN

Contains the event flag number as copied by QIO directive processing from the requester’s
DPB.

Driver access: Not referenced.
I.PRI
Priority copied from the TCB of the requesting task.
Driver access: Not referenced.
L.TCB
TCB address of the requesting task.

Driver access: Usually not referenced; sometimes referenced at I/O cancel and power failure.

I.LN2
Contains the address of the second word of the LUT entry in the task header to which the
I/O request is directed. For open files on file-structured devices, this word contains the
address of the Window Block; otherwise, it is zero.

Driver access: Not referenced.

Programming Specifics for Writing an /O Driver 4-11

Figure 4-1: 1/0 Packet Format

LLNK
L.PRI

LEFN
1.TCB
I.LN2
LUCB
I.FCN

1.10SB

ILAST

1.PRM

LAADA

ILAADA+2

4-12 Programming Specifics for Writing an 1/O Driver

Link to next /O packet

EFN

PRI

TCB address of requester

Address of second LUT word

Address of redirect UCB

Function code

Modifier

Virtual address of 1/0 status block

Relocation bias of 10OSB

Real address of 10SB

Virtual address of AST service routine

Attachment Descriptor Pointer

Attachment Descriptor Pointer

ZK-254-81

10

12

14

16

20

22

24

LUCB
Contains the address of the unit to which I/O is to be directed. L.UCB is the address of
the Redirect UCB if the starting UCB has been subject to an MCR Redirect command. The
field is referenced by the $GTPKT routine.

Driver access: Not referenced by conventional driver; frequently referenced by full duplex
drivers.

I.FCN
Contains the function code for the I/O request. It consists of two bytes. The high-order
byte contains the function code; the low-order byte contains modifier bits. During predriver
initiation the Executive compares the function code with a function mask value in the DCB.
The driver interprets the modifier bits.

Driver access: Read-only.

1.10SB

Contains the virtual address of the I/0O status block (IOSB) if the IOSB is specified, or zero
if the IOSB is not specified.

LIOSB+2 and LIOSB+4 contain the address doubleword for the IOSB (see Section 7.2 for
a detailed description of the address doubleword). The first word contains the relocation
bias of the IOSB; the bias is, in effect, the number of the 32-word block in which the IOSB
starts.

The second word is formatted as follows:

Bits 0 through 5 Displacement in block (DIB)
Bits 6 through 12 All zeros
Bits 13 through 15 6

The displacement in block is the offset from the block base. The value 6 in bits 13 through
15 is constant. It is used to cause an address reference through kernel address page register
6 (APR 6).

Discussion of the address doubleword is deferred to Section 7.3 because you seldom have
to be concerned with its contents or format in writing a conventional driver. Its construction
and subsequent manipulation are normally external to the driver. Subroutines are provided
as Executive services for programmed I/O to render the manipulations of I/O transfers
transparent to the driver itself.

Driver access: Not referenced.

.AST

Contains the virtual address of the AST service routine to be executed at I/O completion.
If no address is specified, the field contains zero.

Driver access: Not referenced.
I.PRM
Device-dependent parameters constructed from the last six words of the DPB. Note that

if the I/O function is a transfer (refer to the description of D.MSK in Section 4.4.3), the
buffer address (first DPB device-dependent parameter) is translated to an equivalent address

Programming Specifics for Writing an 1/0 Driver 4-13

doubleword. Therefore, the virtual buffer address, which occupied one word in the DPB,
occupies two words in I.PRM. As a result, all other parameters in LPRM are shifted by one
word so that device-dependent parameter n is copied to LPRM +(2 *n) +2.

Most DIGITAL-supplied drivers treat these words as a read/write storage area after their
initial contents have been used.

When the last word of the device-dependent parameters is nonzero, the value can have one
of several special meanings to the Executive. For example, if the value is nonzero and could
be an Executive address, the Executive assumes that the value is a block locking word.
Therefore, if the driver uses the word, it should restore its contents before calling $IODON.

Driver access: Read/write.

I.AADA
I.LAADA+2

Two pointers, each to an attachment descriptor block of the region in which the task I/0
buffer resides. These pointers account for I/O by region and enable the Executive to lock a
region to make it noncheckpointable while I/O is in progress and to unlock a region after
I/O completes.

Driver access: Not referenced; maintained by the Executive transparently to the driver.

4.4.2 The QIO Directive Parameter Block (DPB)

The QIO DPB is constructed as shown in Figure 4-2. Usually drivers never access the DPB; the
information is supplied here for general reference.

4-14 Programming Specifics for Writing an 1/O Driver

Figure 4-2: QIO Directive Parameter Block (DPB)

Length DIC 0
Q.IOFN Function code Modifier 2
Q.loLu Reserved i LUN 4
Q.IOPR/Q.IOEF Priority EFN 6
Q.i0sB 1/0 status block address 10
Q.I0AE AST address 12
Q.I0PL +0 14

+2 — T

ol depencnt _

+6 parameters
+10 []
+12]

ZK-255-81

Parameters

Length (required)
The length of the DPB, which for the RSX-11M and RSX-11M-PLUS QIO directive is always
fixed at 12 words

DIC (required)
Directive Identification Code (For the QIO directive, this value is 1; for QIOW it is 3)

Q.IOFN (required)
The code of the requested I/O function (0 through 31)

Modifier
Device-dependent modifier bits

Reserved
Reserved byte; must not be used

Programming Specifics for Writing an 1/O Driver 4-15

Q.I0LU (required)
Logical Unit Number

Q.IOPR :
Request priority (ignored by RSX-11M-PLUS, but space must be allocated for IAS
compatibility)

Q.IOEF (optional)
Event flag number (zero indicates no event flag)

Q.IOSB (optional)
This word contains a pointer to the I/O status block, which is a two-word, device-dependent,
I/O-completion data packet formatted as follows:

Byte 0 I/0O status byte.

Byte 1 Augmented data supplied by the driver.

Bytes 2 The contents of these bytes depend on the value of byte 0. If byte
and 3 0 = 1, then these bytes usually contain the processed byte count. If

byte 0 does not equal 0, then the contents are device-dependent.

Q.IOAE (optional)
Address of the user-written I/O done AST service routine

Q.IOPL
Up to six parameters specific to the device and to the I/O function to be performed. The
following four are typically used for data transfer functions:

¢ Buffer address

* Byte count

* Carriage control type
¢ Logical block number

The fields for any optional parameters not specified must be filled with zeros.

4.4.3 The Device Control Block (DCB)

Figure 4-3 is a schematic layout of the DCB. The DCB describes the static characteristics of a
device controller and the units attached to the controller. All fields must be specified.

The fields in the DCB are described as follows! :

1 Some fields require that you initialize a value in the data base source code. The descriptions indicate the required values in parentheses,
following the symbolic offset.

4-16 Programming Specifics for Writing an 1/0 Driver

D.LNK (link to next DCB)

Address link to the next DCB. If this cell is in the last (or only) DCB, you should set its
value to zero. If you are incorporating more than one user-written driver at one time, then

this field should point to another DCB in a DCB chain, which is terminated by a value of
zero.

Driver access: Initialized, not referenced.

D.UCB (pointer to first UCB)

Address link to the U.DCB field of the first, and possibly the only, unit control block
associated with the DCB. For a given DCB, all UCBs are in contiguous memory locations
and must all have the same length.

Driver access: Initialized, not referenced.

Figure 4-3: Device Control Block

D.LNK Link to next DCB (O=last)
D.UCB Link to first UCB

D.NAM Generic device name (ASCII)
D.UNIT Highest unit no. Lowest unit no.
D.UCBL Length of UCB

D.DSP Address of driver dispatch table
D.MSK - Legal function mask bits 0 - 15.

Control function mask bits 0 - 15.

No-op’ed function mask bits 0 - 15.

ACP function mask bits O - 15.

Legal function mask bits 16. - 31.

Control function mask bits 16. - 31.

No-op’ed function mask bits 16. - 31.

ACP function mask bits 16. - 31.

D.PCB Address of partition control biock

ZK-256-81

Programming Specifics for Writing an 1/O Driver 4-17

D.NAM (ASCII device name)
Generic device name in ASCII by which device units are mnemonically referenced.

Driver access: Initialized, not referenced.

D.UNIT (unit number range)
Unit number range for the device. The low-order byte contains the lowest unit number;
the high-order byte contains the highest unit number. This range covers those logical units
available to the user for device assignment. Typically, the lowest number is zero, and the
highest is n —1, where n is the number of device-units described by the DCB.

Driver access: Initialized, not referenced.

D.UCBL (UCB length)
The unit control block can have any length to meet the needs of the driver for variable
storage. However, all UCBs for a given DCB must have the same length. The specified
length must include prefix words (such as U.LUIC and U.OWN), if present.

Driver access: Initialized, not referenced.

D.DSP (driver dispatch table pointer)

~ Address of the driver dispatch table, which is located within the driver code. (When the
Executive wishes to enter the driver at any of the entry points contained in the driver
dispatch table, it accesses D.DSP, locates the appropriate address in the table, and calls
the driver at that address.) For a resident driver, your code references the symbol $xxTBL,
which is generated by the DDT$ macro to mark the start of the driver dispatch table. For a
loadable driver, then, you should initialize this field to zero, which indicates that the driver
is not in memory.

Driver access: Initialized, not referenced.

D.MSK (driver-specific function masks)
Eight words, beginning at D.MSK, are critical to the proper functioning of a device driver.
The Executive uses these words to validate and dispatch the I/O request specified by a
QIO directive. The following description applies only to non-file-structured devices.! Four

masks, with two words per mask, are described by the bit configurations that you establish
for the following words:

* Legal function mask

* Control function mask

* No-op function mask

* Ancillary Control Processor (ACP) function mask

The QIO directive allows for 32 possible I/O functions. The masks, as stated, are filters to
determine validity and I/O requirements for the subject driver.

1 Although no DIGITAL publication describes writing drivers for file-structured devices (drivers that interface with F11ACP), you could write
a disk driver by using a DIGITAL-supplied driver as a template. For example, the RK11 driver (DKDRV) is one that.does not use advanced
features.

4-18 Programming Specifics for Writing an 1/O Driver

The Executive filters the function code in the I/O request through the four masks. The
I/O function code is the high-order byte of the function parameter issued with the QIO
directive. The decimal representation of that high-order byte is equivalent to the decimal
bit number of the mask. If you want the function to be true in one of the four masks, you
must set the bit in that mask in the position that numerically corresponds to the function
code. For example, the code for IO.RVB is 215 and its decimal representation is 17. If you
want IO.RVB to be true for a mask, therefore, you must set bit number 17 in the mask.

The masks are laid out in memory in two 4-word groups. Each 4-word group covers 16
function codes. The first 4 words cover the function codes 0 through 15; the second 4
words cover codes 16 through 31. The exact layout used for the driver example in Chapter
8 is shown in the following source statements: :

.WORD 177477 LEGAL FUNCTION MASK CODES 0-15.

.WORD 70 CONTROL FUNCTION MASK CODES.0-15.
.WORD O NO-OP FUNCTION MASK CODES 0-15.
.WORD 177200 ACP FUNCTION MASK CODES 0-15.

.WORD 377 ; LEGAL FUNCTION MASK CODES 16.-31.

.WORD O CONTROL FUNCTION MASK CODES 16.-31.
.WORD O NO-OP FUNCTION MASK CODES 16.-31.
.WORD © 377 ACP FUNCTION MASK CODES 16.-31.

The Executive filters the function code through the mask words sequentially as follows:
Legal Function Mask

Legal function values have the corresponding bit position in this word set to 1. Function
codes that are not legal are rejected by QIO directive processing, which returns IE.IFC in
the I/0 status block, provided the IOSB address was specified.

Control Function Mask

If any device-dependent data exists in the DPB and this data does not require further
checking by the QIO directive processor, the function is considered to be a control function.
Such a function allows QIO directive processing to copy the DPB device-dependent data
directly into the I/O packet.

No-op Function Mask

A no-op function is any function that is considered successful as soon as it is issued. If the
function is a no-op, QIO directive processing immediately marks the request successful; no
additional filtering occurs.

ACP Function Mask

If a function code is legal but specifies neither a control function nor a no-op, then it
specifies either an Ancillary Control Processor (ACP) function or a transfer function. If a
function code requires intervention of an ACP, the corresponding bit in the ACP function
mask must be set. ACP function codes must have a value greater than 7.

In the specific case of read/write virtual functions, the corresponding mask bits may be
set at your option. If the corresponding mask bits for a read/write virtual function are
set, QIO directive processing recognizes that a file-oriented function is being requested to a
non-file-structured device and converts the request to a read/write logical function.

Programming Specifics for Writing an 1/O Driver 4-19

This conversion is particularly useful. Consider a read/write virtual function to a specific
device, where the QIO$ directive processing has the following effect:

e If the device is file-structured and a file is open on the specified LUN, the block number
specified is converted from a virtual block number in the file to a logical block number
on the medium. Moreover, the request is queued to the driver as a read/write logical
function.

e If the device is file-structured and no file is open on the specified LUN, then an error
is returned and no further action is taken.

e If the device is not file-structured, then the request is simply transformed to a read /write
logical function and is queued to the driver. (The specified block number is unchanged.)

Transfer Function Processing

Finally, if the function is not an ACP function, then it is by default a transfer function. All
transfer functions cause the QIO directive processor to check the specified buffer for legality
(that is, inclusion within the address space of the requesting task) and proper alignment
(word or byte). In addition, the processor checks the number of bytes being transferred
for proper modulus (that is, nonzero and a proper multiple). By convention, the first
user-supplied parameter is the buffer address and the second is the byte count.

Creating Mask Words
Creating function mask words involves the following five steps:

1. Establish the I/O functions available on the device for which driver support is to be
provided. -

2. Build the legal function mask: Check the standard RSX-11M-PLUS function mask
values in Table 4-3 for equivalences. Only the IO.KIL function is mandatory. IO.ATT
and IO.DET functions, if used, must have the RSX-11M-PLUS system interpretation.
DIGITAL suggests that functions having an RSX-11M-PLUS system counterpart use
the RSX-11M-PLUS code, but this is required only when the device is to be used in
conjunction with an ACP. From the supported function list in Table 4-2, you can build
the two legal function mask words.

3. Build the control function mask by answering the following question:

Does this function carry a standard buffer address and byte count in the first two
device-dependent parameter words?

If it does not, then either it qualifies as a control function or the driver itself must effect
the checking and conversion of any addresses to the format required by the driver. See
Section 8.3 for an example of a driver that does this. (Buffer addresses in standard
format are automatically converted to Address Doubleword format.)

Control functions are essentially those functions whose DPBs do not contain buffer
addresses or counts.

4. Create the no-op function mask by deciding which legal functions are to be no-op.
Typically, for compatibility with File Control Services (FCS) or Record Management
Services (RMS) on non-file-structured devices, the file access/deaccess functions are
selected as legal functions, even though no specific action is required to access or
deaccess a non-file-structured device; thus, the access/deaccess functions are no-op.

4-20 Programming Specifics for Writing an 1/O Driver

5. Finally, include the ACP functions Write Virtual Block and Read Virtual Block for those
drivers that support both read and write. (Include only one related ACP function if the
driver supports only read or write). Other ACP functions that might be included fall into
the nonconventional driver classification and are beyond the scope of this document.

D.PCB (0)
Address of the driver’s partition control block (PCB). The driver data base source code must
initialize the address to zero. The DCB can be extended by adding words after D.PCB.

A PCB exists for every partition in a system. A driver PCB describes the partition in which
it resides.

The Executive uses D.PCB together with D.DSP (the address of the driver dispatch table) to
determine whether a driver is loadable or resident and, if loadable, whether it is in memory.
Zero and nonzero values for these two pointers have the meanings shown in Figure 4-4.

Driver access: Initialized, not referenced.

Figure 4-4. D.PCB and D.DSP Bit Meanings

D.DSP:
D.PCB: =0 #0

Loadable

-0 driver, Resident
not in driver
memory
(not andable

#0 possible) .druver,

in memory
ZK-223-81

4.4.3.1 Establishing I/O Function Masks

Table 4-2 can help you determine the proper values to set in the function masks. The mask
values are given for each I/O function used by DIGITAL-supplied drivers. The bit number
allows you to determine which mask group to use: for bits numbered 0 through 15, use the
mask value for a word in the first 4-word group; for bits numbered 16 through 31, use the
mask value for a word in the second 4-word group.

Of the function mask values listed in Table 4-2, only IO.KIL is mandatory and has a fixed
interpretation. However, if [O.ATT and IO.DET are used, they must have the standard meaning.
(Refer to the RSX-11M-PLUS and Micro/RSX 1/O Drivers Reference Manual for a description of
standard I/O functions.) If QIO directive processing encounters a function code of 3 or 4 and the
code is not no-op, QIO assumes that these codes represent Attach Device and Detach Device,

Programming Specifics for Writing an 1/0 Driver 4-21

respectively. The other codes are suggested but not mandatory. You are free to establish all
other function-code values on non-file-structured devices. However, the mask words must still
reflect the proper filtering process.

If you are writing a driver for a file-structured device, you must establish the standard function
mask values of Table 4-2.

Table 4-2: Mask Values for Standard 1/0 Functions

Mask Related I/0
Bit Value Symbolic Function
0 1 IOKIL Cancel 1/0
1 2 I0.WLB Write Logical Block
2 4 IO.RLB Read Logical Block
3 10 I0.ATT Attach Device
4 20 10.DET Detach Device
5 40 General Device Control
6 100 General Device Control
7 200 General Device Control
8 400 Diagnostics
9 1000 I0.FNA Find File in Directory
10 2000 IO.ULK Unlock Block
11 4000 IO.RNA Remove File from Directory
12 10000 I0.ENA Enter file in Directory
13 20000 I0.ACR Access File for Read
14 40000 I0.ACW Access File for Read /Write
15 100000 I0.ACE Access File for Read /Write/Extend
16 1 I0.DAC Deaccess File
17 2 IO.RVB Read Virtual Block
18 4 IO.WVB Write Virtual Block
19 10 I0.EXT Extend File
20 20 I0.CRE Create File
21 40 I0.DEL Mark File for Delete
22 100 IO.RAT Read File Attributes
23 200 IO.WAT Write File Attributes
24 400 I0.APC ACP Control
25 1000 Unused
26 2000 Unused
27 4000 Unused
28 10000 Unused
29 20000 Unused
30 40000 Unused

31 100000 Unused

To determine the proper bit masks for disks use Table 4-3 as a guide.

4-22 Programming Specifics for Writing an 1/0 Driver

Table 4-3: Mask Word Bit Settings for Disk Drives .

Bit Function Related Symbolic
0 c IOKIL
1 t 1I0.WLB
2 t IO.RLB
3 c IO.ATT
4 c IO.DET
5 c I0.STC
6
7 sa IO.CLN
8 sd Diagnostic
9 a IO.FNA
10 a I0.ULK
11 a IO.RNA
12 a IO.ENA
13 a IO.ACR
14 a I0.ACW
15 a I0.ACE
16 a I0.DAC
17 a IO.RVB
18 a IO.WVB
19 a I0.EXT
20 a IO.CRE
21 a IO.DEL
22 a IO.RAT
23 a IO.WAT
24 a IO.APC
25
26
27
28
29
30
31

t—transfer function, bit set only in legal function mask
c¢—control function, bit set in legal and control function masks
a—ACP function, bit set in legal and ACP function masks
sa—special case, bit set only in ACP function mask, but not legal
sd—special case, bit set only if diagnostic support in system and driver

To determine the proper bit masks for tapes use Table 4-4 as a guide.

Programming Specifics for Writing an 1/O Driver 4-23

Table 4-4: Mask Word Bit Settings for Magnetic Tape Drives

Bit Function Related Symbolic
0 c IO.KIL
1 t I0O.WLB
2 t IO.RLB
3 c IO.ATT
4 c IO.DE
5 c I0.STC
6 c
7 sa I0.CLN
8 sd Diagnostic
9 a IO.FNA
10 IO.ULK
11 IO.RNA
12 n I0.ENA
13 a I0.ACR
14 a 10.ACW
15 a I0.ACE
16 a I0.DAC
17 a IO.RVB
18 a IO.WVB
19 a IO.EXT
20 IO.CRE
21 I0.DEL
22 a IO.RAT
23 IO.WAT
24 a I0.APC
25
26
27
28
29
30
31

t—transfer function, bit set only in legal function mask
c—control function, bit set in legal and control function masks
n—no-op function, bit set in legal and no-op function masks
a—ACP function, bit set in legal and ACP function masks
sa—special case, bit set only in ACP function mask, but not legal
sd—special case, bit set only if diagnostic support in system and driver

To determine the proper bit masks for unit record devices (such as terminals, card readers, line
printers, paper tape punches, and readers), use Table 4-5 as a guide.

4-24 Programrhing Specifics for Writing an 1/0 Driver

Table 4-5: Mask Word Bit Settings for Unit Record Devices

Bit Function Related Symbolic
0 c IOKIL
1 t
2 t IO.RLB
3 c I0.ATT
4 c I0.DE
5 c I0.STC
6
7 sa I0.CLN
8 sd Diagnostic
9 a IO.FNA

10 a I0.ULK

11 a IO.RNA

12 a IO.ENA

13 a I0.ACR

14 a I0.ACW

15 a I0.ACE

16 a I0.DAC

17 a IO.RVB

18 a IO.WVB

19 a IO.EXT

20 a I0.CRE

21 a I0.DEL

22 a IO.RAT

23 a IO.WAT

24 a I0.APC

25

26

27

28

29

30

31

t—transfer function, bit set only in legal function mask
c—control function, bit set in legal and control function masks
a—ACP function, bit set in legal and ACP function masks
sa—special case, bit set only in ACP function mask, but not legal
sd—special case, bit set only if diagnostic support in system and driver

4.4.4 The Unit Control Block (UCB)

Figure 4-5 is a layout of the UCB (a variable-length control block). One UCB exists for each
physical device-unit generated into a system configuration. For user-added drivers, this control
block is defined as part of the source code for the driver data structure.

Programming Specifics for Writing an 1/0 Driver 4-25

Figure 4-5: Unit Control Block

U.UAB'
U.Mup?
u.Luic’
U.OWN
u.DCB

U.RED

U.CTL
U.STS
U.UNIT
U.ST2

U.CWI
U.CW2

- u.cws
U.Cw4
u.scs
U.ATT
U.BUF
U.BUF+2
U.CNT

u.uBx?

|
|

|

User Account Block

e

Multiuser flags and CLI pointer

ot o o

I Pomter to the UCB extension in secondary pool |

Device-

dependent

storage

Log-on UiC 4
Owning terminal UCB address -2
Back pointer to DCB 0
Redirect UCB pointer 2
Unit status Control flags 4
Unit status Physical unit no. 6
Characteristics word 1 10
A Characteristics word 2 12
Characteristics word 3 14
Characteristics word 4 16 All
Pointer to SCB 20 devices
_ TCB address of attached task 22
Buffer relocation bias 24
Buffer address © 26
Byte count 30 L_

32

34

1.. This offset appears only for termlnal devices (that is, devices that have DV.TTY set)
in multiuser systems.

2. This offset appears only for those devices that have DV.MSD set.

4-26 Programming Specifics for Writing an 1/O Driver

ZK-257-81

The fields in the UCB are described as follows! :

U.UAB (0)
This field is for terminal UCBs only. It is required only if accounting support is on the
system (A$$CNT is defined) but may be present if accounting support is not on the system.
This value is used to access the user accounting block in secondary pool.

Driver access: Initialized, not referenced.

u.Mup
For terminal UCBs only. Bits 1 to 4 contain an index to a table which contains the address
of the CLI parser block (CPB) for the current CLI; the remaining bits are used for other
terminal-specific features and are defined as follows:

UM.OVR Override CLI indicator

UM.CLI CLI indicator

UM.DSB Terminal disabled because CLI eliminated

UM.NBR No broadcast

UM.CNT Continuation of command line in progress

UM.CMO Command is in progress from this terminal

UM.SER Terminal is in serial mode

UM.KIL TTDRV should tell MCR to flush all pieces of a continued command

if the user types CTRL/C

Driver access: Not initialized, not referenced.

u.LuIC
For terminal UCBs only: the login UIC of the user at the particular terminal. This offset
must exist for any device on a multiuser system for which the DV.TTY bit is set. This word
is altered by logging in to the system.

Driver access: Not initialized, not referenced.
U.OWN (0)
The UCB address of the owning terminal for allocated devices.
Driver access: Initialized, not referenced.
U.DCB (pointer to associated DCB)
This word is a pointer to the corresponding device control block. Because the UCB is a

key control block in the I/O data structure, access to other control blocks usually occurs by
means of links implanted in the UCB.

Driver access: Initialized, not referenced.

U.RED (pointer to start of this UCB(.-2))
Contains a pointer to the unit control block to which this device-unit has been redirected.
This field is updated as the result of an MCR Redirect command. The redirect chain ends
when this word points to the beginning of the UCB itself (U.DCB of the UCB, to be precise).

Driver access: Initialized, not referenced.

1 Some fields require that you initialize a value in the data base source code. The descriptions indicate the required values in parentheses,
following the symbolic offset.

Programming Specifics for Writing an 1/O Driver 4-27

U.CTL (device-dependent values)

U.CTL and the function mask words in the device control block control QIO directive
processing. Figure 4-6 shows the layout of the unit control byte.

Driver access: Initialized, not referenced.

Figure 4-6: Unit Control Byte

U.STS

U.CTL

[TTTTTT]
L A 4 A

I

}UC. LGH - Buffer size mask bits for transfer length

UC.KIL - Unconditional cancel 1/0 (1=yes)
UC.ATT - Attach/detach notification {1=yes)
UC.PWF - Unconditional call at powerfail {(1=yes)
UC.QUE - Queue to driver bit (1=yes)

UC.NPR - NPR device bit (1=yes)

UC.ALG - Alignment (byte or word)(1=no)

ZK-258-81

The driver data base code statically establishes this bit pattern. Any inaccuracy in the bit
setting of U.CTL produces erroneous I/O processing. The bit symbols and their meanings
are described in Table 4-6.

Table 4-6; Unit Control Byte Bit Symbols

Bit Symbol Function

Description

UC.ALG Alignment bit

UC.ATT Attach/Detach
: notification

UC.KIL Unconditional
Cancel I/O
call bit

If this bit is 0, then byte alignment of data buffers is allowed.
If UC.ALG is 1, then buffers must be word-aligned.

UC.ALG and UC.LGH are independent settings.

If this bit is set, then the driver is called when $§GTPKT processes
an Attach/Detach I/O function. Typically, the driver does not
need to obtain control for Attach/Detach requests, and the
Executive performs the entire function without any assistance
from the driver.

If set, the driver is called on a Cancel I/O request, even if the
unit specified is not busy. Typically, the driver is called on
Cancel 1/0 only if an I/O operation is in progress. In any case,
the Executive flushes the I/O queue.

4-28 Programming Specifics for Writing an 1/O Driver

Table 4-6 (Cont.):

Unit Control Byte Bit Symbols

Bit Symbol Function

Description

UC.QUE

UC.PWF

UC.NPR

Queue-to-driver
bit

Unconditional
call on power
failure bit

NPR device bit

If set, the QIO directive processor calls the driver at its 1/0
initiation entry point without queuing the I/O packet. After
the processor makes this call, the driver is responsible for the
disposition of the I/O packet. Typically, the processor queues
an I/O packet before calling the driver, which later retrieves it
by a call to $GTPKT.

The most common reason for a driver to examine a packet before
queuing is that the driver employs a special user buffer, other
than the normal buffer used in a transfer request. Within the
context of the requesting task, the driver must address-check and
relocate such a special buffer. See Section 8.3 for an example
of a driver that does this.

On multiprocessor systems, certain restrictions apply to this
form of 1/O processing. No driver should process an 1/0O
packet received directly from the QIO processor without first
performing a conditional fork operation (that is, call $CFORK)
to guarantee execution on the correct processor. Unless the
driver is running on the correct processor, it must not process a
packet that causes access to the device registers. The restriction
does not apply if the driver merely uses the current task context
to map secondary 1/O buffers and then queues the I/O packet
itself. In summary, packets received directly from $DRQIO
may not be processed directly unless they cause no activity on
the I/O page (and thereby do not need to be executed on a
particular processor) or unless an intervening call to $CFORK
has been performed.

If set and the unit is on-line, the driver is always to be called
when power is restored after a power failure occurs. Typically,
the driver is called on power restoration only when an I/0O
operation is in progress. See the discussion in Sections 4.3.6
and 4.5 of the entry points in the DDT for LOAD and UNLOAD
and for controller and unit status change.

If set, the device is an NPR device. This bit determines the
format of the two-word address in U.BUF (details given in the
discussion of U.BUF below).

Programming Specifics for Writing an 1/O Driver 4-29

Table 4-6 (Cont.): Unit Control Byte Bit Symbols
Bit Symbol Function Description

UC.LGH Buffersize mask These two bits are used to check whether the byte count specified
bits (two bits) in an I/O request is a legal buffer modulus. You select one of
the values below by ORing into the byte a 0, 1, 2, or 3.
00—Any buffer modulus valid
01—Must have word alignment modulus
10—Combination invalid
11—Must have double word-alignment modulus

UC.ALG and UC.LGH are independent settings.

Note
UC.ATT, UCKIL, UC.QUE, and UC.PWF are usually zero, especially
for conventional drivers. Every driver, however, must be concerned
with its particular values for UC.ALG, UC.NPR, and UC.LGH. The
driver is totally responsible for the values in these bits, and erroneous
values are likely to produce unpredictable results.

U.STS (0) ,
This byte contains device-independent status information. Refer to the UCBDF$ macro
definition in Appendix A. Figure 4-7 shows the layout of the unit status byte.

Driver access: Initialized, not referenced.
Figure 4-7: Unit Status Byte

U.STS U.CTL

| 1o

HNEEEER

\ “ \ “ ~— N — Unused bits are reserved
L for system use and expansion.

Y

US.MDM - Marked for dismount (1=yes)
US.FOR - Mounted as foreign volume {1=yes)
US.MNT - Volume is mounted {1=no)-
US.BSY - Device-unit busy {1=yes)

ZK-259-81

US.MDM, US.MNT, and US.FOR apply only to mountable devices."

The bit meanings are as follows:

1y your user-written driver services a mountable device, refer to Section 4.5.12 for information on volume valid processing.

4-30 Programming Specifics for Writing an 1/0O Driver

US.BSY If set, device-unit is busy

US.MNT If set, volume is not mounted
US.FOR If set, volume is mounted foreign
US.MDM If set, device is marked for dismount

U.UNIT (unit number)

This byte contains the physical unit number of the device unit serviced by this UCB. If the
controller for the device supports only a single unit, the unit number is always zero.

This is the physical unit number of the device and not the logical unit number. The range
of this number is from zero to n, where n is device dependent. The logical designation
DBO0: does not necessarily imply a zero in this byte.

Driver access: Initialized, read-only.

U.ST2 (US.OFL)

This byte contains additional device independent status information. Different parts of the
system set and clear these bits. The layout of the unit status extension byte is shown in
Figure 4-8.

Driver access: Initialized, not referenced.

Figure 4-8: Unit Status Extension 2

U.ST2 U.UNIT
15 8,7 0
I | I I I I I l " Unused bits are reserved
i BN EE RS for system use and expansion.
A A
} ‘ * US.OFL. - Unit offline (1=yes)
US.RED - Unit redirectable {1=no)

US.PUB - Unit is public device (1=no)
US.UMD - Unit attached for diagnostic s {1=yes)
US.PDF - Privileged diagnostic

functions only (1=yes)

ZK-260-81

The bit meanings are as follows:

US.OFL = 1 If set, the device is off-line (that is, not in the configuration).
~ This bit should be initialized to 1.
USRED = 2 If set, the device cannot be redirected.
US.PUB = 4 If set, the device is not a public device.
US.UMD = 10 If set, the device is attached for diagnostics.
USPDF = 20 Ifset, this unit can be used for a privileged diagnostic function

only.

Programming Specifics for Writing an 1/0 Driver 4-31

U.CW1 (device specific characteristics)
The first of a 4-word continuous cluster of device characteristics information. U.CW1 and
U.CW4 are device independent, whereas U.CW2 and U.CW3 are device dependent. The
four characteristics words are retrieved from the UCB and placed in the requester’s buffer on
issuance of a Get LUN information (GLUNS$) Executive directive. It is your responsibility to
supply the contents of these four words in the assembly source code of the data structure.

Driver access: Initialized, not referenced.

U.CW1 is defined as follows (if a bit is set to 1, the corresponding characteristic is true for
the device):

DV.REC = 1 Record oriented device

DV.CCL = 2 Carriage control device

DV.TTY = 4 Terminal device (If DU.TTY is set, then the UCB contains
extra cells for U.LUIC, U.CLI, and optionally U.UAB.)

DV.DIR = 10 Directory device

DV.SDI = 20 Single directory device

DV.SQD = 40 Sequential device

DV.MSD = 100 Mass Storage device

DV.UMD = 200 Device supports user-mode diagnostics

DV.EXT = 400 Unit is on an extended 22-bit controller

DV.SWL = 1000 Unit is software write-locked

DV.ISP = 2000 Input spooled device

DV.OSP = 4000 Output spooled device

DV.PSE = 10000 Pseudo device (If this bit is set, the UCB does not extend
past the U.CW1 offset.)

DV.COM = 20000 Device mountable as a communications channel

DV.F11 = 40000 Device mountable as a FILES-11 device

DV.MNT = 100000 Device mountable

U.CW2 (device-specific characteristics)
Specific to a given device driver (available for working storage or constants).’

Driver access: Initialized, read/write.

U.CW3 (device-specific characteristics)
Specific to a given device driver (available for working storage or constants).!
Driver access: Initialized, read/write.

U.CW4 (device-specific characteristics)

Default buffer size in bytes. This word is changed by a system command (SET with the
/BUF keyword). The value in this word affects FCS, RMS, and many utility programs.

Driver access: Initialized, read-only.

1 An exception is that, for block-structured devices, U.CW2 and U.CW3 may not be used for working storage. In drivers for block-structured
devices (disks and DECtape), these two words must be initialized to a double-precision number giving the total number of blocks on the
device. Place the high-order bits in the low-order byte of U.CW2 and the low-order bits in U.CW3.

4-32 Programming Specifics for Writing an 1/O Driver

U.SCB (SCB pointer)
This field contains a pointer to the status control block for this UCB. In general, Register 4
contains the value in this word when the driver is entered by way of the driver dispatch
table, because service routines frequently reference the SCB.

Driver access: Initialized, read-only.

U.ATT (0)
If a task has attached itself to the device-unit, this field contains its task control block
address.

Driver access: Initialized, not referenced.

U.BUF (reserve two words of storage)
U.BUF labels two consecutive words that serve as a communication region between $GTPKT
and the driver. If a nontransfer function is indicated (in D.MSK), then U.BUF, U.BUF+2,
and U.CNT receive the first three parameter words from the 1/O packet.

For transfer operations, the initial format of these two words depends on the setting of
UC.NPR in U.CT. The driver does not format the words; all formatting is completed before
the driver receives control. The format is determined by the UC.NPR bit, which is set for
an NPR device and reset for a program-transfer device.

The format for program-transfer devices is identical to that for the second two words of
LIOSB in the I/O packet. See Section 4.4.1 for a description of LIOSB in the I/O packet.

In general, the driver does not manipulate these words when performing 1/O to a program-
transfer device. Instead, it uses the Executive routines Get Byte ($GTBYT), Get Word
($GTWRD), Put Byte ($PTBYT), and Put Word ($PTWRD) to effect data transfers between
the device and the user’s buffer.

For non-processor request (NPR) device drivers, these two words represent what the driver
uses to initiate the transfer operation. For both UNIBUS and MASSBUS NPR devices, word
2 contains the low-order 16 bits of the physical address. For a UNIBUS NPR device, bits 4
and 5 in word 1 are memory extension bits; for a MASSBUS or 22-bit Q BUS NPR device
(the KS.MBC bit is set), bits 8 through 13 are the memory extension bits. It is the driver’s
responsibility to set the function code, interrupt enable, and go bits. This action must be
accomplished by a Bit Set (BIS) operation so that the extension bits are not disturbed. The
driver must move these words into the device control registers to initiate the I/O operation.

Programming Specifics for Writing an 1/0O Driver 4-33

For a typical UNIBUS NPR device driver, the word layout is as follows:

Word 1
Bit 0 Go bit initially set to zero
Bits 1,2,3 Function code-set to zeros
Bits 4,5 Memory extension bits
Bit6 Interrupt enable-set to zero
Bits 7-15 Zero

Word 2

Bits 0-15 Low-order 16 bits of physical address

The construction of U.BUF, U.BUF+2, and U.CNT occurs only if the request function is a
- transfer function; if it is not, these three words contain the first three words of the device
parameter list in the I/O packet. (See Figure 4-1.)

The details of the construction of the Address Doubleword appear in Section 7.2.

Driver access: Not initialized, read/write.

U.CNT (reserve one word of storage)
Contains the byte count of the buffer described by U.BUF. The driver uses this field in
constructing the actual device request.

U.BUF and U.CNT keep track of the current data item in the buffer for the current transfer
(except for NPR transfers).. Because this field is being altered dynamically, the I/O packet
may be needed to reissue an I/O operation (for instance, after a powerfail or error retry).

Driver access: Not initialized, read/write.

U.UCBX
This field contains a pointer to the UCB extension in secondary pool for mass storage devices
with DV.MSD set (DV.MSD=1). For information on formatting, see the description of the
UCBDF$ macro.

Driver access: Not initialized, not referenced.
U.PRM (device-dependent words)

The driver establishes this variable-length block of words to suit device-specific requirements.
For example, a disk driver uses the first words to store the disk geometry as follows:

.BLKB 1 -; # OF SECTORS PER TRACK
.BLKB 1 ; # OF TRACKS PER CYLINDER
.BLKW 1 ; # OF CYLINDERS PER VOLUME

The driver cah call the $CVLBN routine (described in Chapter 7) to convert a logical block
- number to a disk address based on the values in UPRM and U.PRM+2.

Driver access: Not initialized, read/write.

4.4.5 The Status Control Block (SCB)

Figure 4-9 is a layout of the SCB. The SCB contains the context for a unit operation and
describes the status of a unit that can run in parallel with all other units.

4-34 Programming Specifics for Writing an 1/O Driver

Figure 4-9: Status Control Block

SLHD | ' Input/Output .] 0
- Queue Listhead 2
S.URM! Fork UNIBUS Run Mask i P
S.FRK ; Fork Link Word 6
Fork PC 10
Fork R5 . 12
Fork R4 . 14
S.KS5 o ‘ Driver/Fork KISARS 16
S.PKT 1/0 Packet Address) 20
S.CTM/S.ITM Initial Time-Out Count | Current Time-Out Count | 22
S.STS/S.ST3 Status Extension Status 24
S.ST2 Status Extension 26
S.KRB KRB Address 30

S.ROFF 2/S.RCNT 2 [Offset to Device Registers [Number of Words to Copy|

-——-— - - - == = - "
S.EMB? | Error Message Block Pointer y
s.kTg? r KRB Address 0 |
P —mm = — = = =1

KRB Address 1
L e e

"™ " S T
Fom s s = = —
L e e e - - = - - d

If the symbols below are defined at system generation time,
the related cells marked with a number appear in the structure.

1 Multiprocessor support (MSPRO)
2Appears only if driver supports error logging

3 If the system has multiaccess device support (M$$ACD)
and the driver is multiaccess (S2.MAD)

ZK-261-81

Programming Specifics for Writing an 1/0O Driver 4-35

The fields in the SCB are described as follows! :

S.LHD (first word equals zero; second word points to first)
Two words forming the I/O queue listhead. The first word points to the first 1/O packet in
the queue, and the second word points to the last I/O packet in the queue. If the queue is
empty, the first word is zero, and the second word points to the first word.

Driver access: Initialized, not referenced.

S.URM (controller UNIBUS run mask)

This word appears only in a multiprocessor system (that is, one on which M$$PRO is
defined). It contains a UNIBUS run mask that defines the UNIBUS run to which the
currently assigned controller is attached. When controller assignment is made, this cell is
set from K.URM; when running a driver on the correct processor, S.URM is used exclusively
and independently of the value of S.KRB or K.URM. If S.KRB is not equal to zero, and if
S.URM is not equal to K.URM (an unusual situation), then the driver must take into account
the fact that it will run on a different processor from the one its currently assigned KRB
would normally warrant. It is possible that the processor on which the driver will run has
the CSRs at a location different from that stored in the current KRB.

Note that S.URM must be adjacent to the fork block (S.FRK).

Driver access: Initialized, not referenced.

S.FRK (reserve four words of storage)
The four words starting at S.FRK are used for fork-block storage if and when the driver
deems it necessary to establish itself as a fork process. Fork-block storage preserves the
state of the driver, which is restored when the driver regains control at fork level. This area
is automatically used if the driver calls $FORK.

Note that in order for your driver to use the fork processor, S;URM and S.KS5 must be
adjacent if the required support is generated into the system.

Driver access: Initialize words to zero, not referenced.

S.KS5 (0)
This word contains the contents of KISAR5 necessary to correctly alter the Executive mapping
to reach the driver for this unit. It has no meaning for a driver that is not loadable. It is set

by LOAD, and whenever a fork block is dequeued and executed, this word is unconditionally
inserted into KISARS.

Note that S.KS5 must be adjacent with the fork block.

Driver access: Initialized, not referenced.

S.PKT (reserve one word of storage)
Address of the current I/O packet established by $GTPKT. The Executive uses this field
to retrieve the I/O packet address upon the completion of an I/O request. S.PKT is not
modified after the packet is completed.

Driver access: Not initialized, read-only.

1 Some fields require that you initialize a value in the data base source code. The descriptions indicate the required values in parentheses
following the symbolic offset.

4-36 Programming Specifics for Writing an 1/O Driver

S$.CTM (0)
RSX-11M-PLUS supports device timeout, which enables a driver to limit the time that
elapses between the issuing of an I/O operation and its termination. The current timeout
count (in seconds) is typically initialized by moving S.ITM (initial timeout count) into 5S.CTM.
The Executive clock service (in module TDSCH) examines active times, decrements them,
and, if they reach zero, calls the driver at its device timeout entry point.

The internal clock count is kept in one-second increments. Thus, a time count of 1 is not
precise because the internal clocking mechanism is operating asynchronously with driver
execution. The minimum meaningful clock interval is 2 if you intend to treat timeout as a
consistently detectable error condition. If the count is zero, then no timeout occurs; a zero
value is, in fact, an indication that timeout is not operative. The maximum count is 250.
The driver is responsible for setting this field. Resetting occurs at actual timeout or within
$FORK and $IODON.

Driver access: Not initialized, read/write.

S.ITM (initial timeout count)
Contains the initial timeout value that the driver can load into 5.CTM to begin device
timeout.

Driver access: Initialized, read-only.
-8.8TS (0)
Establishes the controller as busy/not busy (nonzero/zero). This byte is the interlock

mechanism for marking a driver as busy for a specific controller. The byte is tested and set
by $GTPKT and reset by $IODON.

Driver access: Initialized, not referenced.

$.8T3 (driver-specific status byte)
This status byte is reserved for driver-specific bits concerning driver-to-executive or driver-
to-driver communication. Figure 4-10 shows the layout of this byte.

Driver access: Initialized, referenced by driver for synchronization.
Figure 4-10: Controller Status Extension 3
S.ST3 {S.5TS)
15 8
NN

S3.DRL - Multiaccess drive in released state

S3.NRL - Driver should not release drive

S3.SIP - Seek in progress on drive

S3.ATN - Driver must clear attention bit

S3.SLV - Device uses slave units

S3.SPA - Port ‘A’ spinning up

S3.SPB - Port ‘B’ spinning up

S3.0PT - Seek optimization enabled (1 = yes)
ZK-262-81

Programming Specifics for Writing an 1/0 Driver 4-37

All currently defined bits are used by mass storage devices. Table 4-7 describes the currently
defined bits for this status byte.

Table 4-7: Controller Status Extension 3-Bit Settings

S3.DRL = 1
S3NRL = 2
S3.SIP = 4
S3.ATN = 10
S3SLV. = 20
S3.SPA = 40
S3.5PB = 100
S3.0PT = 200

If this bit is set, the drive is in the released state. Drivers that
support dual-access (dual-port) operation set this bit after completion
of the release command by the drive. The Executive routines Request
Controller for Control Function ($RQCNC) and Request Controller for
Data Transfer (SRQCND) test this bit to determine whether the drive
is in a released state and whether the Executive should attempt load
balancing by switching ports.

If this bit is set, a driver does not release the drive. This bit exists
solely for DIGITAL to maintain the device and to debug the driver.
Drivers that support dual-access (dual-port) operation examine this bit
and, if it is set, do not issue the release command to the drive and do
not set the bit. If this bit is set, reconfiguration dual-port activity (that
is, port on-line and off-line operations) will not function properly.

If this bit is set, the drive has a seek in progress. A driver that
supports overlapped seek operations examines this bit to keep track
of whether the drive is seeking. For a driver that does not support
overlapped operations but does support error logging (that is, cassette
and magtape), this bit is set to indicate that a positioning operation is
in progress. '

This bit is used only by MASSBUS devices. The Executive common
interrupt module DVINT checks this bit; if it is set, then the driver
must clear the attention bit in the Attention Summary Register. If this
bit is not set, DVINT itself clears the attention bit in the Attention
Summary Register.

If this bit is set, the device connects to slave units. Certain devices,
such as magnetic tape controllers attached to a MASSBUS controller,
can in turn have units attached to them. These units are referred to as
slave units. Thus, if this bit is set, the SCB describes a tape controller
to which slave units can be attached.

If this bit is set, port A on this unit is spinning up.
If this bit is set, port B on this unit is spinning up.

If this bit is set, seek optimization is enabled for this device. $§GTPKT
uses this bit to determine whether optimization is to be used. An
MCR SET command can set and clear this bit. If you select seek
optimization support for a DIGITAL-supplied device during system
generation, SYSGEN sets this bit in that device SCB when it creates
the device data base structures.

S.8T2 (controller status extension)
This status word defines certain status conditions for the controller-unit combination.
Figure 4-11 shows the layout of this word.

4-38 Programming Specifics for Writing an 1/0 Driver

Driver access: Initialized.

Figure 4-11. Controller Status Extension 2

S.ST2

LI PT T

] l | I | I I All unused bits are reserved
for system use and expansion.

S2.EIP - Error in progress {1 = yes)

\——— S2.ENB - Error logging enabled (0 = yes)
S2.LOG - Error logging supported {1 = yes)
S2.MAD - Multiaccess device (1 = yes)

S2.L.DS - Load sharing enabled (1 = yes)
S2.0PT - Device supports seek optimization (1 = yes)
S2.CON - Contiguous KRB/SCB allocation (1 = yes)

S2.0P1 - Indicates the type of optimization used

S2.0P2 - Indicates the type of optimization used

S2.ACT - Driver has operation (1/0) active (1 = yes)

ZK-263-81

DIGITAL has attempted to restrict bits in this word to those defining systeni—wide status.
Specific bits for driver and Executive synchronization or driver internal synchronization are
allocated from S.ST3. Table 4-8 describes the currently defined bits for this status byte.

Table 4-8: Controller Status Extension 2-Bit Settings

S2EIP = 1
S2ENB =
5210G = 4
S2MAD = 10
S2LDS = 40
52.0PT = 100

This bit is reserved for DIGITAL error logging routines.
This bit is reserved for DIGITAL error logging routines.
This bit is reserved for DIGITAL error logging routines.

This bit indicates the presence of the table of KRB addresses at the end
of the Status Control Block. If this bit is set, the device is a multiaccess
device and the SCB has a KRB table containing pointers to the KRBs
of the controllers capable of accessing the device.

This bit enables and disables load sharing for dual-access devices.
If this bit is set, the Executive may dynamically switch ports and
therefore alter controller assignment when establishing an access path
for a driver. If this bit is not enabled, the Executive does not alter the
current controller assignment. This feature permits status controller
assignment; for example, for diagnostic operations.

Devices (such as terminals) with S2.LDS clear have drivers that
explicitly manage controller assignment. ‘

If this bit is set, this device supports queue optimization. This bit, used
by $DRQRQ, determines whether to call the block check and convert
the LBN routine in the driver.

Programming Specifics for Writing an 1/0 Driver 4-39

Table 4-8 (Cont.): Controller Status Extension 2-Bit Settings
S2.CON

200 This bit indicates the continuous allocation of the controller request
and status control blocks. Devices that do not support overlapped
operation do not require a separate SCB for each unit. The KRB and
SCB for such devices can be contiguous and some fields in the SCB
overlap those in the KRB. Therefore, the SCB offsets S.CSR, S.PRI,
S.VCT, and S.CON are valid only for such devices. For these devices,
S52.CON is set.

For the layout of the contiguous KRB and SCB, refer to Section 4.4.7.

52.0P1
52.0P2

400 These bits indicate the type of optimization selected for this device.
1000 An MCR command can set and clear these bits. These two bits give
you three options of queue optimization. The options are as follows:
S2.0P2,52.0P1=0,0 (Nearest cylinder)
52.0P2,52.0P1 = 0,1 (Elevator)
52.0P2,52.0P1 = 1,0 (CSCAN)
52.0P2,52.0P1 = 1,1 (Reserved)

2000 If this bit is set, the driver has active I/0O.

S2.ACT

S.KRB (pointer to currently assighed KRB)
This word points to the currently assigned controller request block. For non-multiaccess
devices, it is set during system generation and never altered. For multiaccess devices with
load-sharing enabled, it may take on the value of one of the KRB pointers in the KRB table,
S.KTB. If this word has a value of zero, then the device has no currently assigned KRB. It
may, in fact, not have a KRB or CTB at all. Both the null driver and virtual terminal driver
have no KRB.

Certain restrictions apply to drivers whose data bases do not include KRBs. They will receive
powerfail, timeout, and cancel calls like any other driver, but the priority will always be
zero, and the CSR address and controller index (where supplied) will be undefined.

Note

All code that checks S.KRB for a KRB pointer must check for a possible
zero value and take appropriate action. A zero value in S.KRB does not
necessarily mean that a KRB does not exist, but perhaps only that one is
not currently assigned. A device which has no KRB will not have S2.CON
set.

The first cell in the KRB (K.CSR) contains the control and status register (CSR) address for
the controller. The offset K.CSR will always be zero so that the pointer (5.KRB) will always
connect directly to the cell containing the CSR address.

Driver access: Initialized, referenced by driver to access the KRB.
S.ROFF

This byte is reserved for devices that support DIGITAL error logging software. This value is
an offset from S.CSR/K.CSR to indicate the start of the device registers. It is typically zero.

S.RCNT
This byte is reserved for devices that support DIGITAL error logging software. It represents
the minimum number of words of I/O page registers that this device has.

4-40 Programming Specifics for Writing an 1/0O Driver

S.EMB
This word is reserved for devices that support DIGITAL error logging software.

S$.KTB (KRB addresses)
This table appears only if the system has multiaccess device support (M$$ACD is defined)
and the device is multiaccess (the S2.MAD bit set).

Every controller with which the unit (unit control block and status control block combination)
can communicate is represented in this table by a controller request block address. The
table contains at least two entries, with the list terminated by a zero word. For devices
with executive load sharing supported (S2.LDS set), bit zero of each word is an on-line and
off-line flag which, when set, indicates that KRB is off-line with respect to this SCB and
should not be considered for controller assignment. Devices with 52.LDS clear have drivers
that explicitly manage controller assignment. Only the driver may change S.KRB, and it
may or may not use the low-order bit of the KRB addresses in S.KRB as an on-line and
off-line flag. When drivers explicitly manage controller assignment, system software (other
than the driver) rhust not modify S.KRB and must tolerate a 1 in the low-order bit of the
values in 5.KTB.

Driver access: Initialized, not referenced.

4.4.6 The Controller Request Block (KRB)

Figure 4-12 is a layout of the controller request block. One KRB exists for each controller.
If a controller allows only a single operation on a single unit at a time, then the driver can
allocate the controller request block and the status control block in continuous space. With such
continuous allocation, all offsets commonly used by the driver are referenced by their S.xxx
forms. The system will still use the offset S.KRB and the K.xxx forms for all references. Refer
to Section 4.4.7 for the continuous SCB/KRB allocation.

Programming Specifics for Writing an 1/0 Driver 4-41

Figure 4-12. Controller Request Block

r-- - -~ -—-—=-7=7=77

K.PRM Driver dependen‘t‘storage
K.VCTS/ K.PRIS Vector/4 7 Priority -6
K.IOC/K.CONS Controller 1/0 count Controller index -4
K.STS Controller;status -2
K.CSR? Control and status registér address 0
K.OFF Offset to UCB table 2
K.HPU Unused | Highest physical unit | 4
K.OWN Owner (UCB address of unit owned) 6
K.cRQ! Controller request queue listhead 10
K.URM 12 L _ _ Controller UNIBUS run mask | 14
.
e
.
3
22-bit
Working
3 Storage
Area
KE.RHB 3 11/70 UMR/RHBAE offset
Start of UCB table
4 UCB address physical unit 0
.
.
[]
4 UCB address physical unit n
4 -1

1 If contiguous allocation of KRB and SCB is used (that is, if S2.CON is set), this field overlaps the /O request
queue.

2 This field is for multiprocessor support (M$$PRO is defined).

a This area is for 11/70 extended memory support (M$$EXT is defined).
The area extends in a negative direction from the start of the UCB Table.

4 If KS.UCB is set, then this table appears (allows overlapped function interrupts).

s The S.xxx forms of these offsets are valid only for devices that perform a single operation on a controller at a
time. For such devices, S2.CON is set and the SCB and KRB are allocated in a contiguous area.
See figure 4-14 for the contiguous SCB/KRB structure.

ZK-264-81

4-42 Programming Specifics for Writing an 1/0O Driver

The fields in the KRB are described as follows! :

K.PRM (device-dependent storage)
LOAD does not relocate any addresses in this area.

Driver access: Initialized, read/write.

K.PRI (device priority)
Contains the priority at which the device interrupts. Use symbolic values (for example, PR4)
to initialize this field in the driver data source code. These symbolic values are defined by
issuing the HWDDF$ macro (refer to the sample data base in Chapter 8 and to the listing
of the HWDDF$ macro).

Driver access: Initialized, read-only.

K.VCT (interrupt vector divided by 4)
Interrupt vector address divided by 4. Because you can use the CON task to change
the vector value, you need not be overly concerned with initializing K.VCT to the correct
value. If K.VCT equals zero, then neither LOAD nor UNLOAD takes any vector action. In
particular, LOAD does not create any interrupt control block linkage for this KRB.

Driver access: Initialized, not referenced.

K.CON (controller number times 2)
Controller number multiplied by 2. Drivers that support more than one controller use this
field. A driver may use K.CON to index into a controller table created in the driver data
base source code and maintained internally by the driver itself. By indexing the controller
table, the driver can service the correct controller when a device interrupts.

Because this number is an index into the table of addresses in the CTB, its maximum value
is limited by the value of L NUM in that CTB.

Driver access: Initialized, read-only.

K.IOC (0)
This is an I/O count used by the system to keep track of how busy the controller is. The
value is related to the number of outstanding requests queued for this controller. This is
a weighted number to be used only by the system to judge the relative activity of one
controller with respect to another.

Driver access: Initialized, not referenced.

K.STS (controller-specific status)
This word is used as a status word that concerns the controller. Figure 4-13 shows the
layout of the controller status word.

Driver access: Initialized, not referenced.

1 Some fields require that you initialize a value in the data base source code. The descriptions indicate the required values in parentheses,
following the symbolic offset.

Programming Specifics for Writing an 1/0 Driver 4-43

Figure 4-13: Controller Status Word

K.STS (1 = yes)
2 2 s Unused bits are reserved
[I | I ‘” I I I I | N I : | I l I I “J forsystem use and expansion.

A 'Y} A A

KS.OFL - Controller offtine

KS.MOF - Controller marked for offline
KS.UOP - Supports overlapped operation
KS.MBC - Device is a 22-bit MASSBUS controller
KS.SDX - Seeks allowed during data transfers
KS.POE - Parallel operation enabled

KS.UCB - UCB table present

KS.DIP-- Data transfer in progress

KS.PDF - Privileged diagnostic functions only
KS.EXT - Extended 22-bit UNIBUS controller
KS.SLO - Controller is slow coming oniine

ZK-265-81

All undefined bits are reserved for use by DIGITAL. Table 4-9 describes the currently
defined bits for this word.

Table 4-9: Controller Status Word Bit Settings

KSOFL = 1 The Executive reconfiguration routines set this bit to place the controller
off-line and clear the bit to place the controller on-line. The bit is used
in conjunction with KS.PDF to denote transition states. If a request
is made to assign a unit to the controller and this KS.OFL is set (and
no other on-line controller is found), the request terminates with the
IE.OFL error and a return is made to the driver I/O initiation entry
point to get a new packet.

The driver data code should initialize this bit to 1.

KSMOF = 2 If this bit is set, the unit/controller is in the process of becoming
off-line.
KS.UOP = 4 This bit indicates whether the controller supports unit operation in

parallel and requires synchronization. If this bit is set, each unit
attached to the controller is capable of operating independently.
Therefore, the KRB contains a UCB table holding the UCB addresses
of each independent unit.

4-44 Programming Specifics for Writing an 1/0O Driver

Table 4-9 (Cont.):

KSMBC = 10
KSSDX = 20
KSPOE = 40
KS.UCB = 100
KSDIP = 200

Controller Status Word Bit Settings

If this bit is set, the device is a 22-bit MASSBUS controller and does
not use UNIBUS mapping registers (UMRs) but has 2 extra registers to
describe a 22-bit address. If these registers exist, the offset to the first
of them (RHBAE) is in the cell KE.RHB. These registers can be found
by using the contents of KE.RHB in conjunction with the contents of
S.RCNT. The Executive on-line reconfiguration code calls the common
interrupt controller status change routine (in the module DVINT) which
dynamically sets or clears this bit during controller processing.

If this bit is set, the controller allows seek operations to be initiated
while a data transfer is in progress. (Some types of disks, such as
the RK06 and RK07, support overlapped seek operations but do not
allow a seek to be initiated if a data transfer is in progress.) The
Executive routines Request Controller for Control Function ($RQCNC)
and Request Controller for Data Transfer (SRQCND) examine this
bit to distinguish between the two types of controllers that support
overlapped seeks.

If this bit is set, the driver may initiate an I/O operation on the
controller in parallel with other I/O operations. A driver that supports
overlapped seek operations checks this bit to decide whether it should
attempt to perform an I/O operation as a seek phase and then a
data transfer phase (that is, overlapped) or as an implied seek (that
is, nonoverlapped). If this bit is set, the driver can then attempt the
overlapped operation.

An overlapped driver must check this bit once only for each I/O
operation. Because this bit can be reset by system commands at any
time, the driver must not rely on the bit value to decide whether, upon
being interrupted, the driver was attempting a seek operation. The
driver must use the S2.SIP bit to hold its internal state.

This bit indicates the presence of the table of unit control block
addresses associated with the KRB. If this bit is set, K.OFF gives
the offset from the beginning of the KRB to the start of the UCB table.

Devices that support unit operation in parallel (for example, overlapped
seeks) require a mechanism for finding the UCB of the unit generating
an interrupt. Therefore, if KS.UOP is set, a UCB table must exist. If
KS.UOP is not set, however, a UCB table may still exist because some
devices (for example, terminal multiplexers) support full unit operation
in parallel but do not require synchronization. Therefore, KS.UCB
may be used to determine whether the UCB table exists, regardless of
whether KS.UOP is set.

If this bit is set, a data transfer is in progress. A driver that supports
overlapped seek operation sets or clears this bit to indicate to itself and
to the Executive common interrupt module DVINT whether, after an
interrupt, a data transfer is in progress. The driver must set or clear
this bit. The use of this bit eliminates the need for the software to
access the device registers to determine what type of operation was in

progress.

Programming Specifics for Writing an 1/0 Driver 4-45

Table 4-9 (Cont.): Controller Status Word Bit Settings

KS.PDE = 400 This bit and one KS.OFL bit indicate the reconfiguration status of the
controller. The Executive reconfiguration software accesses both bits
to describe the off-line, on-line, and transition status of the controller.

1000 If this bit is set, the device is a 22-bit UNIBUS controller and does not
use UNIBUS mapping registers but has 2 extra registers to describe a
22-bit address. If these registers exist, the offset to the first of them,
the bus address extension (BAE) is in the cell KE.RHB. These registers
can be found by using the contents of KE.RHG in conjunction with
the contents of S.RCNT.

KS.EXT

KS.SLO 2000 If this bit is set, the controller requires the use of the extended time
out feature of the reconfiguration subroutine. If this bit is not set, a

controller will change to online or offline immediately.

K.CSR (controller status register address)

Contains the address of the Control and Status Register (CSR) for the device controller.
Since you can use the CON task to change the CSR value, you need not be overly concerned
with initializing K.CSR to the correct value. The driver uses K.CSR to initiate I/O operations
and to access, by indexing, other registers that are related to the device and are located in
the 1/O page. This address need not be the CSR; it need only be a member of the device’s
register set. The Executive reconfiguration software probes K.CSR to bring a controller
online. (If probing K.CSR yields a nonexistent memory trap, the controller will not be
brought online.)

Driver access: Initialized, read-only.

Note

This word is guaranteed to be offset zero for the KRB. This assignment
means that an RSX-11M-PLUS driver can access the CSR by the reference
@S.KRB and need not use a separate register.

K.OFF (offset in bytes (from K.CSR) to start of UCB table)

This word contains the offset to the beginning of the unit control block table. When added
to the starting address of the KRB, it yields the UCB table address. The UNIBUS mapping
register work area extends in a negative direction from the start of the UCB table.

The status bit KS.UCB may be used to determine whether the UCB table exists. A UCB

table may exist if KS.UOP is not set, since some devices (for example, terminal multiplexers)

support full unit operation in parallel with no synchronization required. If KS.UOP is set,
' a UCB table must appear (and KS.UCB will also be set).

Driver access: Initialized, referenced by interrupt dispatch code.

K.HPU (highest physical unit number)
This byte contains the value of the highest physical unit number used on this controller.

Driver access: Initialized.

4-46 Programming Specifics for Writing an 1/O Driver

K.OWN (0)
This word has four slightly different uses, depending on the particular device.

* For controllers which always have only a single unit connected to them (for example,
the line printer), KOWN/S.OWN always points to the UCB of that unit. You can use
the suc argument in the GTPKT$ macro to statically initialize this cell in the data base.

* For controllers that may have multiple units attached but do not support unit operation
in parallel (for example, the RK05), KOWN/S.OWN is set with the currently active
unit by code generated with the GTPKT$ macro suc argument set to blank.

* TFor controllers that support unit operation in parallel and require synchronization
(KS.UOP is set), this is a busy/nonbusy interlock for the controller. If the controller
is busy for a data transfer, this word contains the UCB address of the currently active
unit. This is true for RH disks such as the RP06. This word is set and cleared by the
Request Controller for Control Access (JRQCNC), Request Controller for Data Access
(3RQCND), and Release Controller ($RLCN) routines.

* For multiple SCB controllers that support unit operation in parallel but do not require
synchronization, KOWN must be set dynamically by the driver code. For this case you
must specify the suc argument in the GTPKT$ macro.

Driver access: Initialized, referenced for actual unit.

K.CRa (first word equals 0; second word points to first) :
Two words that form the controller wait queue. Fork blocks are queued here for driver
processes that have requested controller access. Driver processes that request access for
control functions are queued on the front of the list, and those that request access for data
transfer are queued on the end of the list.

Driver access: Initialized, not referenced.

K.URM (controller UNIBUS run mask)
This word appears only in a multiprocessor system (that is, one in which M$$PRO is
defined). '

It contains a UNIBUS run mask that defines the UNIBUS run to which the controller is
attached. When controller assignment is made, the cell is moved into S.URM for the fork
block there. This word should not be zero.

Driver access: Initialized, not referenced.

Table of UCB addresses (offset from K.CSR by K.OFF bytes)
This table contains the unit control block address for the units on this controller. Physical
unit zero is in the first word, unit one is in the second word, and unit n is in word n +1.
The table has a length of (KHPU +1) words. A value of zero in this table indicates a
physical unit number for which no actual physical unit exists. The table is terminated by a
-1

Driver access: Initialized, referenced by interrupt dispatch code.

Note
This table exists only for those devices that have KS.UCB set.

Programming Specifics for Writing an 1/O Driver 4-47

KE.RHB (reserve appropriate amount of storage)
The UNIBUS mapping register work area extends in a negative direction from the start of
the unit control block table. This work area always appears if the device is an NPR device.
For devices with either KS.MBC or KS.EXT set, the first word is used as the BAE offset for
the controller. This word value is the offset that, when added to the CSR address contained
in K.CSR, yields the address of the BAE register on the controller. If both KS.MBC and
KS.EXT are clear, the device controller uses UMRs.

Use the mapping assignment block only if the device requires UNIBUS mapping registers
(such as an RH11 or on a PDP-11/44 CPU).

4.4.7 Continuous Allocation of the SCB and KRB

In a configuration where a controller and the Executive support only a single operation on a unit
at one time, the driver can allocate space for the KRB and the SCB in a continuous area. Some
fields of the KRB overlap those in the SCB. Although the KRB and SCB in this arrangement are
contiguous, the system still considers the I/O data structure to contain a KRB. The system will
still use the S.KRB offset and the K.xxx forms for all references. The driver can reference the
fields by the S.xxx form of the symbolic offset definitions. In such a case, although the physical
offsets may differ between RSX-11M and RSX-11M-PLUS systems, correct referencing of many
locations on both systems is eased. Figure 4-14 shows the physical layout of the continuous
KRB and SCB allocation.

4.4.8 Controller Table (CTB)

Figure 4-15 is a layout of the controller table. You ensure that the CTB is linked into the
system list of controller tables by placing the CTB macro immediately before the allocation of
the L.LNK word. The CTB macro generates a global symbol that links the user-written CTB
into the system list.

4-48 Programming Specifics for Writing an 1/0 Driver

Figure 4-14: Continuous KRB/SCB Allocation

scB KRB
Offsets Offsets

K.PRM

S.VCT/S.PRI K.VCT/K.PRI

S.CON K.10C/K.CON
K.STS

S.CSR K.CSR
K.OFF
K.HPU
K.OWN

S.LHD K.CRQ

S.URM! K.URM!

S.FRK

S.KSB

S.PKT

S.CTM/S.ITM

S.STS/S.ST3

S.8T2

S.KRB

KE.RHB

Start of UCB table o

- - -0 T T 7T 7

Driver-dependent storage

Vector/4 Priority

Controller 1/0 Count Controller index

Controller status

Pointer to CSR [t

Offset to UCB table

Unused Highest physical unit

Owner UCB

Input/output queue listhead

Fork URM

Fork Link
Fork PC
Fork R5
Fork R4

KISARS

1/0 packet address

Initial Time-Out Count | Current Time-Out Count

Status Extension Status

Status extension
KRB address —‘

The rest of the SCB goes here

22-bit
Working
Storage
Area

11/70 UMR/RHBAE offset

UCB address physical unit 0

UCB address physicat unit n

-1

LThis field is for multiprocessor support (M$$PRO is defined).

-6
—4

-2

10

14

ZK-266-81

Programming Specifics for Writing an 1/O Driver 4-49

Figure 4-15: Controller Table

L.CLK r— - - - = - - T T T 7
8-word

I Clock I

| Block |

i |

| !
L.ICB Link to first ICB -2
L.LNK' Link to next CTB 0
L.NAM Generic controller name
L.DCB2 DCB address 4
L.STS/L.NUM Controller status Number of KRB addresses| 6
L.KRB? KRB address 0 10

KRB address n

" The head of the list of controller tables is $CTLST in SYSCM.

21§ LS.CIN is set, this cell points to the common interrupt
address table rather than to the DCB.

3 See Table 4-10 for label XXCTB.

ZK-267-81

The fields in the CTB are described as follows! :

L.CLK
This is the clock queue entry for those devices that need a single clock block per generic
controller type. It only appears if LS.CLK is set.

Driver access: Initialized.

L.ICB (reserve one word of storage)
This word points to the first interrupt control block for the type of controller being supported.
It is a link and not an address. In any system the ICBs must be in an executable pool area.
In an I and D space multiprocessor system, they must be distinct for each processor, since
each processor has its own local executable pool mapped by KISARO. Since the linkage

! Some fields require that you initialize a value in the data base source code. The descriptions indicate the required values in parentheses,
following the symbolic offset.

4-50 Programming Specifics for Writing an 1/O Driver

must enter and leave in some way other than through the usual Executive kernel mapping,
the upper four bits encode a processor number that may be used to enter $K6TAB, and the
lower 12 bits form an address that has been shifted right once. On a multiprocessor system
other than an I and D space system, the upper four bits are considered part of the address,
which has also been shifted right once.

Driver access: Not initialized, not referenced.

L.LNK (0 or link to next CTB in list)
All of the controller tables in the system are linked together so they can be found, and they
are threaded through this first word. A zero link terminates this list. A CTB must exist for
every physical controller type in the system.

Driver access: Not initialized, not referenced.

L.NAM (two-character ASCIl device name)
This two-character ASCII string is the controller mnemonic used to find this controller table
from among all the others in the system. For the RH11/70 controller, it is RH instead of
DB, DS, DR, or MM.

L.NAM must be unique throughout the system, unlike D.NAM in the device control block.

Driver access: Initialized, read-only.

L.DCB (DCB address or address of common interrupt table)
The DCB pointer is used to reach the device control block and, thereby, the unit control
block and driver dispatch table for a driver. If LS.CIN is set, L.DCB is a pointer to a block
that holds the common interrupt address (the address of the interrupt dispatch routine in
the Executive), and the DCB addresses (the addresses of the DCBs for the devices that
this controller interfaces). This block is called the common interrupt table and is shown in
Figure 4-16.

Driver access: Initialized, not referenced.

Programming Specifics for Writing an 1/0O Driver 4-51

Figure 4-16: Common Interrupt Table and Table of DCB Addresses

CIL.CSR Controller CSR Test Entry
CI.KRB Controller Status Change Entry
CI.PWF Powerfail Entry
1 Common Interrupt Address 0
DCBO
L]
.
DCB n n+2
0 n+4

-1]

1 1f LS.CIN is set, L.DCB in CTB points to this structure
instead of to the DCB.

ZK-268-81

The powerfail entry at offset CLPWF and the controller status change entry at offset CLKRB
are addresses of routines built into the Executive and are used instead of the entries in a
particular driver dispatch table. This allows devices that have no DCB (for example, the
interprocessor interrupt and sanity timer) to nevertheless participate in reconfiguration.

At offset CI.KRB is the address of a routine built into the Executive for multidriver controllers
such as the RH type. This routine should set or clear the KS.MBC bit to indicate whether
the device is connected to an RH11 or an RH70. The driver checks the KS.MBC bit to
determine which addressing format to use. If the value at CL.CSR is zero, the Executive
on-line routines check the existence of a device attached to this controller by probing the
address at K.CSR. If the value is nonzero, it is the address of a routine built into the
Executive to check device presence. Instead of probing the address at K.CSR, the Executive
on-line code calls this routine, which returns either with the C bit clear if the device is
present or with the C bit set if the device is not present.

The common interrupt table may have only the common interrupt address in those cases in
which a DCB does not exist (for example, the IIST). If LS.MDC is clear, then only one DCB
address exists. (The zero termination is still necessary.) If LS.MDC is set, then more than
one DCB address is possible; therefore, space should be left for all possible DCB addresses
(for LOAD) and the table terminated by a zero, followed by a —1. Empty entries in this
case are indicated by a zero word. LOAD will then enter the DCB addresses into the table
when it loads data structures for drivers.

4-52 Programming Specifics for Writing an 1/0O Driver

L.NUM (number of KRB. addresses)
Used by programs that scan the controller tables to compute the number of KRB addresses.
This value is never zero, since without controller request blocks there should be no controller
table.

The maximum value for LNUM depends on the type of device and on whether the driver
is loadable. For common interrupt devices, resident drivers, and drivers loaded by MCR
LOAD, the value must be less than 17;y. For drivers loaded by VMR LOAD, the value must
be less than 17y, if the data base is loadable and less than 129 if the data base is resident.

Driver access: Initialized, read-only. .

L.STS (generic controller status)
The controller table status bits give information about the class of controllers. Figure 4-17
shows the layout of this byte.

Driver access: Initialized, read-only.

Figure 4-17. Controller Table Status Byte

L.STS L.NUM (1 = yes)

I l I] l I I [Unused bits are reserved
for system use and expansion.

LS.CLK - Clock block allpcated

LS.MDC - Multidriver controller

LS.CBL - Clock block linked into clock queue

LS.CIN - Controller uses common interrupt address table
LS.NET - DECnet device

ZK-269-81

These bits are described as follows:

LS.CLK = 1 If this bit is set, the controller table has an 8-word clock block.

LS.MDC = 2 If this bit is set, multiple drivers service units attached to the associated
controller.

LS.CBL = 4 If this bit is set, the clock block is linked into the clock queue.

LS.CIN = 10 If this bit is set, the driver is associated ‘with a common interrupt

controller and must have exactly one interrupt vector. The driver
is therefore called at the D.VPWF entry point only for unit power
failure. The Executive uses the CLPWF entry point in the common
interrupt entry table for controller power failure recovery. In addition,
the cell L.DCB does not point to the device control block but rather
to the common interrupt entry table in the Executive.

L.KRB (KRB addresses of controllers)
A list of the controller request block addresses ordered by their respective system-wide
controller numbers. This table is indexed by the controller index retrieved from the PS
word immediately after an interrupt. The table is of length (L.NUM(R?)) words. While the
interrupt routines will not have to scan the list in a linear fashion, the only way to find all

Programming Specifics for Writing an 1/O Driver 4-53

the controller request blocks in the system involves a linear scan of all the controller tables.
The CTB is static.

The address of the start of the KRB address list in the CTB is the global symbol $xxCTB in
the driver dispatch table, where xx are the characters comprising the controller mnemonic.
Because LOAD supplies this address in the DDT when it loads the driver, a loadable driver
should not specify this address in the DDT.

Note
A KRB address of zero indicates a controller that was specified during system

generation, with no attached units. No controller request block for such a
controller is generated.

The proper action for drivers to access their list of KRB addresses is to retrieve the address
of the start of the KRB list in the CTB from the cell in the driver dispatch table set up by
LOAD (both VMR and MCR).

Driver access: Initialized once for the controller, not referenced.

4.5 Driver Code Details

This section describes the specific requirements for driver code. The driver code must contain
a driver dispatch table which allows the Executive to call the driver to perform discrete system
functions. If the driver needs to access either system structures such as the partition and task
control blocks or structures within its own data base, it should use the system-wide symbolic
offsets rather than the real offsets. Because the driver is built with the Executive library
EXELIB.OLB, the symbolic offsets are automatically defined for the driver code. If you want to
see the definitions of the symbols in your driver listing, place in your driver source code the
related macro name in a .MCALL directive and invoke the macro. (For your convenience, the
source code of the macro calls that define the symbols of structures is in Appendix A.) The
detailed descriptions of the driver data base structures are in Section 4.4.

4.5.1 Driver Dispatch Table Format

The driver dispatch table associates the entry points that the Executive expects to find in a
device driver and the actual locations of the routines in the driver code. The DDT also provides
a link from the driver code to the driver data base. Figure 4-18 shows the format of the DDT.
Section 4.3.1 describes the DDT$ macro call, which automatically generates the DDT.

All device drivers require a driver dispatch table somewhere in the first 4K words of the driver
code. Conventionally, the table is located at the beginning of the code.

Note

If the length of a driver must exceed 4K words (20000 octal bytes), then your
driver must set up the mapping for the second 4K words whenever it is entered;
and, of course, all entry points must be in the first 4K words of the driver.

The driver must define some labels that the Executive routines and the INTSV$ macro call use
to access the DDT. Table 4-11 lists these labels, which are automatically generated by the DDT$
macro call. Because these labels do not appear in the DDT itself, their format is fixed and they
must be specified in the format shown.

4-54 Programming Specifics for Writing an 1/0 Driver

Table 4-10: Labels Required for the Driver Dispatch Table

Required
Format

Meaning

$xxTBL::

xxCTB:

$xxTBE::

Defines the start of the DDT. You specify this label in the D.DSP word
of the DCB of resident drivers to link the DCB to the DDT. For loadable
drivers, the LOAD routines use this label to fill in D.DSP.

Defines the pointer to the table of KRB addresses in the CTB of the
controller for device xx. Because a driver can support different types of
controllers, there may be more than one of this form of label. (The DDT$
macro supports only one controller type.)

Defines the end of the DDT for Executive LOAD and UNLOAD routines
that scan the DDT.

Programming Specifics for Writing an 1/O Driver 4-55

Figure 4-18: Driver Dispatch Table Format

D.VNXC, D.VCHK! —— —@t amﬁﬁo;m.iz—e‘-ti;Eﬁy;inﬁd@s's— -4
D.VDEB' T 7 7 7 Deallocation Er;:y‘—P;im—A(;g;as-s—. —— -2
$xxTBL:: D.VINI 1/0 Initiation Entry Point Address 0
D.VCAN Cancel Entry Point Address 2
D.VTIM Timeout Entry Point Address 4
D.VPWF Powerfailure Entry Point Address 6
D.VKRB Controller Status Change Entry Point Address 10
D.vUCB Unit Status Change Entry Point Address 12
* D.VINT Generic Controller Name (ASCII) for xy 14
Interrupt Entry Point Address O
.
For Controller xy o
- Interrupt Entry Point Address n
* xy CTB: Pointer to KRB table in CTB (for INTSV$) for xy controller
1 Generic Controller Name (ASCI!)
— Interrupt Entry Point Address O T
—_— . —
For Controller wz | — . —_—
e d ———
Interrupt Entry Point Address n
0
* wzCTB: Pointer to KRB Table in CTB (for INTSV$) for wz controlter
.
0
$xxTBE:: 0
1. These are optional advance driver features
7K-270-81

4-56 Programming Specifics for Writing an 1/0 Driver

Labels defining the addresses of the entry points in your driver appear at offsets D.VINI through
D.VUCB in the DDT. As a standard procedure, you supply the labels described in Table 4-11 at
the entry points in the driver code. The formats of the standard labels that appear in the DDT
are not fixed. Because the Executive expects to find the entry point addresses at fixed offsets
from the start of the DDT, and because the labels themselves appear in the DDT, you can
change their format if you construct the DDT without using the DDT$ macro call. However,
other labels that are required in the driver code but do not appear in the DDT have a certain,
fixed format that you must not change. For reference, these fixed format labels are as follows:

$xxTBL: :
xxCTB:

$xxTBE: :
$xxLOA: :
$xxUNL: :

These fixed-format labels are described elsewhere in this chapter. The DDT$ macro uses the
standard labels but allows you to alter the format of some of them.

The name of the controller type that the driver supports (the same name as in the CTB) is
located at offset D.VINT in the DDT. If the driver has no controller (such as the virtual terminal
driver VTDRYV), this word is zero. The structure allows the driver to support multiple controller
types. (The terminal driver supports different controller types.) Although the DDT$ macro
supports only one controller type, there is no restriction on the number of controller types that
a driver can support.

A block of interrupt entry addresses follows each controller name. The first interrupt address
block, each word of which defines an address to be included in a vector for the driver, begins at
location D.VINT+2. A zero terminates the block and indicates that there are no more interrupt
_entry points for the controller. There is no restriction on the number of vectors each controller
may have. For a single interrupt device, location D.VINT+2 (interrupt entry address 0) is the
interrupt address.

Table 4-11: Standard Labels for Driver Entry Points

Label’ Entry Point

xxINI: 1/0 initiation

xxCAN: Cancel I/O

xxCHK: Block check and conversion
xxOUT: Device timeout

xxPWE: Power failure

xxKRB: Controller status change
xxUCB: Unit status change
$xxINT:: Interrupt entry point

IThe characters xx are the two-character mnemonic.

The Executive reconfiguration software follows certain rules when it accesses the interrupt
address block to calculate the vectors for a controller. To calculate the first vector address, a

Programming Specifics for Writing an 1/O Driver 4-57

reconfiguration routine accesses the cell K.VCT (or S.VCT) in the controller request block. If
K.VCT is not equal to zero, it is multiplied by 4. The routine examines the value of entry point
0 in the driver dispatch table. This value is loaded into the vector address now pointed to
by K.VCT. The next entry point in the DDT is examined, and if it is zero, there are no more
vectors or interrupt entry points for the controller. If it is even, the entry point is loaded into
the next vector address (the previous one plus 4).

If an entry point value in the block is odd (bit zero is set), bit zero is cleared and the resulting
number is an offset to the next vector address. To compute the next vector address, the offset
is added to the last vector address. The next interrupt entry point is examined. If it is even,
then its value is loaded into the last vector address computed. If it is odd, the result is an offset
that is added to the vector address just computed, and the next entry point is examined. The
computation of vector addresses terminates when the next entry point is zero.

The entries shown in Figure 4-19 can be used to calculate the interrupt vector addresses when
K.VCT equals 300. The vectors at 300 and 304 are loaded with addresses xxIN1 and xxIN2.
The odd value 7 yields the offset 6 that is added to the last vector computed to attain 312. The
address xxin3 in the next interrupt entry point examined is loaded in the vector at 312. A zero
word in the block shows there are no more vectors or interrupt entry points.

Following the interrupt entry address block for a controller type is a pointer to the KRB table
in the CTB. Its label is in the form xxCTB, which is used by the INTSV$ macro. This pointer
connects the driver code to the driver data base and is the last entry in a block for a specific
controller.

A zero terminates the driver dispatch table. The global label in the form $xxTBE marks the
terminating word in the DDT.

Figure 4-19: Sample Interrupt Address Block in the DDT

D.VINT XX

XXIN1

XXIN2

XXIN3

XXCTB: 0

ZK-271-81

4-58 Programming Specifics for Writing an 1/O Driver

4.5.2 1/0O Initiation Entry Point

The offset D.VINI in the driver dispatch table contains the address of this entry point. A driver
is called at this entry point at priority 0 from the Executive routine $DRQRQ in the module
DRQIO. A driver should call the Executive $GTPKT routine to get an I/O packet to process.
This action dequeues an I/O request. The entry conditions when the Executive enters the driver
are as follows:

R5 = Address of the UCB of the unit for which the Executive has queued an 1/0
packet

This entry condition holds true unless the driver wants to delay the queuing operation. Therefore,
if the queue-to-driver bit UC.QUE in the unit status block offset U.CTL is set, the following are
the register conventions:

R5 = UCB address of unit for which a packet has been created
R4 = SCB address of the related unit
R1 = Address of the I/O packet

You can find more information and coding requirements for the queue-to-driver operation in
the description of the UC.QUE bit in Section 4.4.4 and an example of its use in Chapter 8.

The GTPKT$ macro call automatically generates the call to the $GTPKT routine and the code
to process the return from $GTPKT. Upon return from $GTPKT, the C bit indicates whether
there is a packet to process.

C = 1 If the C bit is set, the Executive found the controller busy, could not
dequeue a request, or had to call $FORK to have the driver run on the
correct processor.

C = 0 If the C bit is clear, the Executive successfully dequeued a packet for the
driver and placed it in the device’s input/output queue.

If a request was successfully dequeued, the following are the contents of the registers:

R5 = Address of unit control block

R4 = Address of status control block

R3 = Controller index

R2 = Physical unit number of device to process
R1 = Address of the I/O packet

If the C bit is set, the driver returns control to the caller (a RETURN instruction should be
executed). If the C bit is clear, the generated code loads the location at offset K.OWN/S.OWN
in the continuous KRB/SCB with the UCB address of the unit to process. The driver may then
process the request and activate the device. All registers are available to the driver. The driver
executes a RETURN instruction to transfer control to the system.

On a multiprocessor system, before returning a packet to the driver, §GTPKT calls the conditional
fork routine $CFORK to ensure that the driver executes on the correct processor. If the current
processor is the correct processor, $CFORK returns to $GTPKT, and $GTPKT dequeues an 1/0
packet, queues it to the driver, and returns to the driver with the C bit clear. Should the current
processor not be the correct processor, $CFORK will call $FORK, which returns to the driver

Programming Specifics for Writing an 1/O Driver 4-59

with the C bit set. This action causes the driver to dismiss itself. Eventually the fork processor
restarts the driver executing on the correct processor.

4.5.3 Cancel Entry Point

The offset D.VCAN in the driver dispatch table contains the address of this entry point. The
Executive routine $IOKIL in the IOSUB module calls the driver at this entry point at device
priority. When the Executive enters the driver, the following register conventions pertain:

R5 = UCB address

R4 = SCB address

R3 = Controller index (undefined if S.KRB equals zero)
R1 = Address of TCB of current task

RO = Address of active I/O packet

The use of this entry point is explained in Section 2.2.2. All registers are available to the driver.
The driver returns control to the Executive by executing a RETURN instruction.

4.5.4 Device Timeout Entry Point

The offset D.VTIM in the driver dispatch table contains the address of this entry point. Routines
in the Executive module TDSCH call the driver at this entry point at device priority. When the
Executive enters the driver, the entry conditions are as follows:

R5 = UCB address

R4 = SCB address

R3 = Controller index (undefined if S.KRB equals zero)
R2 = Address of device CSR

RO = 1/0 status code IE.DNR (Device Not Ready)

The use of this entry point is explained in Section 2.2.3. All registers are available to the driver.
The driver returns control to the Executive by executing a RETURN instruction.

4.5.5 Next Command Entry Point

The offset D.VNXC in the driver dispatch table is only applicable to the terminal driver. The
offset D.VNXC contains the entry point address of a routine within the terminal driver which is
called from the routine $SNCMD in the Executive module DRSUB. This entry point is entered
when a task exists whose TI: is set to serial mode. The driver then passes the next CLI command
to the MCR dispatcher. When the Executive enters the driver, the register entry conditions are
as follows:

RO = UCB address of the TI: of the exiting task

4-60 Programming Specifics for Writing an 1/0 Driver

4.5.6 Queue Optimization Entry Point

The offset D.VCHK in the driver dispatch table contains the address of this entry point. The
routine $DRQRQ in the Executive’s module DRSUB calls the driver at this entry point at priority
zero. When the Executive enters the driver, the register entry conditions are as follows:

R5 = UCB address
R1 = I/0O packet address

If the I/O operation is a data transfer function, the I/O packet contains the starting LBN for the
I/O request. The routine at this entry point must verify the request is a data transfer function,
and if it is, the routine must replace the starting LBN with the starting cylinder, track, and
sector number to perform queue optimization. See the routine DBCHK in the module DBDRV
for an example of a driver that supports queue optimization.

4.5.7 Deadllocation Entry Point

The offset D.VDEB in the driver dispatch table contains the address of this entry point. This
entry point is called at priority zero from the routine $FINBF in the Executive module SYSXT
after a buffered 1/0O request completes. The driver is expected to deallocate its buffers at this
entry point. When the entry point is called, the registers are set up as follows:

RO = address of the first buffer
All registers are available to the driver. The driver returns control to the Executive by executing
a RETURN instruction.
4.5.8 Power Failure Entry Point

The offset D.VPWF in the driver dispatch table contains the address of this entry point. The
routines in the Executive module POWER call the driver at this entry point at priority 0 for
both unit and controller power failures. The Executive first calls the driver for controller power
failure with the C bit set. The driver is called in this fashion once for each controller. The
register entry conditions are as follows:

C bit set (controller power failure)
R3 CTB address
R2 KRB address

The driver may use all registers.

After the Executive has called the driver for all related controllers, it calls the driver once for
each unit power failure at priority 0 with the C bit clear. The register entry conditions are as
follows:

C bit clear (unit power failure)

R5 = UCB address
R4 = SCB address
R3 = Controller index

For both controller and unit power failures, the driver returns control to the calling routine by
executing a RETURN instruction.

Programming Specifics for Writing an 1/0O Driver 4-61

If the driver supports a common interrupt device (that is, the LS.CIN bit in the CTB is set), the
driver is called at this entry point for unit power failures only. For controller power failures,
the Executive calls the entry point at CLPWF in the common interrupt entry table. See the
description of the offset L.DCB in Section 4.2.5.

4.5.9 Controller Status Change Entry Point

The offset D.VKRB in the driver dispatch table contains the address of this entry point. The
Executive routine $KRBSC in the OLRSR module calls the driver at this entry point at priority
0 to put a controller on-line or to take a controller off-line.

Note

If the controller is a common interrupt controller (LS.CIN is set), the Executive
does not call the driver at this address (if any) specified in the DDT but at the
address in the common interrupt table labelled CL.KRB. See Section 4.2.5.

The C bit indicates whether the request is for off-line or on-line. The register conditions upon
entry to the driver are as follows:

R3 = CTB address for the controller

R2 = KRB address of controller changing status

0(SP) = Return address for completion

2(SP) = Return address for caller of the Executive routine
The C bit is set to indicate the requested status change as follows:

C = 1 On-line to off-line transition

C = 0 Off-line to on-line transition

The status change byte $SCERR is preset as follows:
$SCERR = 1
The driver indicates the return status in the $SCERR byte as follows:

$SCERR < 0 Operation is not successful and a negative value in $SCERR is the
I/O error code. Thus, a negative value rejects the status change
requested by the C bit.

$SCERR = 1 Operation is successful. The driver accepts the status change
requested. This is the default condition.

All registers are available to the driver. The Executive does not change the status of the
controller until and unless the driver shows successful completion of the on-line or off-line
request.

The driver must return immediately by one of the following methods:

e The driver can indicate the return status immediately and can return to the first address on
the stack in the normal fashion. If the driver accepts the status change, it merely executes
a RETURN instruction. (The status change byte $SCERR has been preset with 1.) If the
driver rejects the status change, it loads the relevant I/O error code into $SCERR and
executes a RETURN instruction. (The I/O error code symbols are listed in an appendix of
the RSX-11M-PLUS and Micro/RSX 1/O Operations Reference Manual.)

4-62 Programming Specifics for Writing an 1/O Driver

* The driver need not indicate the status immediately but removes the first address from the
stack, saves it, and returns immediately to the second address. The driver then has 60
seconds to perform its processing, to indicate the return status, and to return to the first
address. The driver can use the offset S.CTM in the status control block to time out some
operation (such as a protocol rundown) and then accept or reject the operation by using
$SCERR.

If the driver does not return to the first address on the stack, the system can be considered
to be in an indeterminate state and possibly corrupted. The driver must return immediately
because status changes should not stall the system. The 60-second delay allows a driver time
to overcome conditions over which it has little control (such as network connections). System
disk and terminal drivers must indicate return status immediately. However, the terminal driver
(TTDRV) rejects a controller on-line request for a DZ11 multiplexer if some of the status bits
indicate that the device is not a DZ11 or that it is broken.

4.5.10 Unit Status Change Entry Point

The offset D.VUCB in the driver dispatch table contains the address of this entry point. The
Executive routine $UCBSC in the OLRSR module calls the driver at this entry point at priority
0 to put a unit on-line or to take a unit off-line. This entry is called once for each unit whose
status changes. The C bit indicates whether the request is for on-line or off-line. The following
are the register conventions:

R5 = Address of UCB or unit changing status

R4 = Address of SCB of unit

R3 = Controller index (undefined if S.KRB equals zero)
0(SP) - Return address for driver completion

2(SP) = Return address for caller of the Executive routine
The C bit is set to indicate the requested status change as follows:

c = 1 On—line to off-line transition

C = 0 Off-line to on-line transition
The status change byte $SCERR is preset as follows:

$SCERR = 1
The driver indicates the return status in the $SCERR byte as follows:

$SCERR < 0 Operation is not successful and a negative value in $SCERR is the
I/O error code. Thus, a negative value rejects the status change
requested by the C bit.

$SCERR = 1 Operation is successful. The driver accepts the status change
requested. This is the default condition.

All registers are available to the driver. The driver must return within 60 seconds. The Executive
does not change the status of a unit until and unless the driver shows successful completion of
the on-line or off-line request.

Programming Specifics for Writing an 1/O Driver 4-63

The driver must return immediately by one of the following methods:

1. The driver can indicate the return status immediately and can return to the first address on
the stack in the normal fashion. If the driver accepts the status change, it merely executes
a RETURN instruction. (The status change byte $SCERR has been preset with 1.) If the
driver rejects the status change, it loads the relevant 1/O error code into $SCERR and
executes a RETURN instruction. (The I/O error code symbols are listed in an appendix of
the RSX-11M-PLUS and Micro/RSX 1/0 Operations Reference Manual.)

2. The driver need not indicate the status immediately but removes the first address from the
stack, saves it, and returns immediately to the second address. The driver then has 60
seconds to perform its processing, to indicate the return status, and to return to the first
address. The driver can use the offset S.CTM in the status control block to time out some
operation (such as a protocol rundown) and then accept or reject the operation by using
$SCERR.

If the driver does not return to the first address on the stack, the system can be considered
to be in an indeterminate state and possibly corrupted. The driver must return immediately
because status changes should not stall the system. The 60-second delay allows a driver time
to overcome conditions over which it has little control (such as network connections). System
disk and terminal drivers must indicate return status immediately.

4.5.11 Interrupt Entry Point

Upon an interrupt, control is dispatched directly to the driver from an interrupt vector through
an interrupt control block. A device may have more than one interrupt entry point. The entries
in the DDT interrupt address block are used to initialize either the vectors or the interrupt
control block with the addresses of the related interrupt entry points. (Refer to Section 4.5.1
for a discussion of the interrupt address block.) All drivers should observe the protocol for
handling interrupts introduced in Section 1.3 and summarized in Section 4.1.

If the driver is loadable, it will be called from the interrupt dispatch coroutine $INTSI in the
Executive. The register entry conditions when the driver gets control are as follows:

R4 = Controller index

Registers 4 and 5 are available to the driver. The driver runs at the priority set in the interrupt
control block. To dismiss the interrupt, a driver executes a RETURN instruction.

If the driver is resident, it receives control directly from the interrupt vector. It runs at priority
PR7 and the low-order four bits of the PSW have the controller number of the interrupting
device. Because the low-order four bits are status bits and almost any instruction modifies
them, the first operation that should be performed is to save the PSW. Then, the driver does
its processing at priority PR7 (saving registers if necessary). After processing, it restores the
registers (if necessary) and dismisses the interrupt by executing a Return to Interrupt (RTI)
instruction.

However, your driver should use the INTSV$ macro call at an interrupt entry point. The
INTSV$ macro resolves entry processing for both loadable and resident drivers. For loadable
drivers, INTSV$ does not generate a call to $INTSV because LOAD establishes in the interrupt
control block the call to the $INTSI coroutine. The $INTSI coroutine saves Registers 4 and 5,
sets the priority to that in the interrupt control block, and forms the controller index from the

4-64 Programming Specifics for Writing an 1/O Driver

PSW, storing it in Register 4. (LOAD previously set the priority in the interrupt control block
based on the value at offset K.PRI in the controller request block.)

For resident drivers, INTSV$ generates a call to the $INTSV coroutine, which sets the priority
to that specified in the INTSV$ macro call, saves Registers 4 and 5, and forms the controller
index from the PSW, storing it in Register 4.

For both loadable and resident drivers, INTSV$ generates code to load Register 5 with the UCB
address of the interrupting unit. After the INTSV$ call in the driver code, the register entry
conditions for both loadable and resident drivers are as follows:

R5 = UCB address of the interrupting unit
R4 = Controller index
The driver may then do the following operations:
1. Save extra registers if necessary
2. Do whatever processing is necessary
3. Become a fork process to access the data structures or to call Executive routines if necessary
4. Restore the explicitly saved extra registers
5. Execute a RETURN instruction to the coroutine, which dismisses the interrupt

In summary, the INTSV$ macro eliminates your having to consider the coding differences
between a loadable and a resident driver in the interrupt service routine.

4.5.12 Volume Vaiid Processing

System-supplied drivers that service mountable devices (those that have the DV.MNT bit in the
UCB U.CW1 word set) take advantage of special processing of volume valid for a device. For
such devices the Executive directive processor DRQIO checks that either of the mounted status
bits US.MNT or US.FOR in the UCB U.STS word is set. If a mounted status bit is not set,
DRQIO requires that a device-specific bit called volume valid (US.VV) be set or else it rejects the
directive. If a mounted status bit is set, DRQIO does not check the volume valid bit. (DRQIO
assumes that the MOUNT command properly set the volume valid bit.)

To effectively service a mountable device on the system, a user-written driver should perform
in one of two ways. First, it can take advantage of the volume valid capability in the same way
that a system-supplied driver does. This processing involves calling the $VOLVD routine in
the Executive module IOSUB and handling the spinning-up status bit (US.SPU) and the volume
valid bit (US.VV) in the UCB status byte U.STS. (For details of this mechanism, refer to driver
source code supplied on the system.) Second, a user-written driver can circumvent the volume
valid processing with the following operations:

1. Enable the set characteristics function (I0.STC) for volume valid in the DCB legal function
mask word.

2. Enable the same function in the DCB no-op function mask word.
3. Statically set the US.VV bit in the UCB in the driver data base source code.

The second method allows the device to be successfully mounted and associated with an
ancillary control processor without your having to include code in the driver to handle US.VV.

Programming Specifics for Writing an 1/0 Driver 4-65

Chapter 5

Incorporating a User-Supplied Driver Into
RSX-11M-PLUS

This chapter describes how to incorporate a user-supplied driver into RSX-11M-PLUS and
Micro/RSX systems. Most of the procedures in this chapter apply only to RSX-11M-PLUS, not
to Micro/RSX. The procedure for incorporating a user-supplied driver into a Micro/RSX system
is described in Section 5.4.3. The material in the chapter assumes that your driver source code
adheres to the programming specifics in Chapter 4.

5.1 Guidelines for Incorporating a Driver

The procedures to incorporate a user-supplied driver into RSX-11M-PLUS depend on the type
of driver you have. RSX-11M-PLUS supports the following kinds of drivers! :

* Loadable driver with a loadable data base
¢ Loadable driver with a resident data base
* Resident driver with a resident data base

If your driver is loadable with a loadable data base, you may perform a system generation .
to include your driver, or you may incorporate it directly into the system you are currently
running. If you want to use a new version of a loadable driver with a loadable base and your
driver is currently loaded, you must create a new system image file, load the new version of the
driver into the file, and then bootstrap the new system. Refer to Section 5.1.1 if you want to
incorporate your driver at system generation. Refer to Section 5.1.2 if you want to incorporate
your driver after system generation.

If your driver is loadable with a resident data base, or is resident, you must perform a system
generation because the resident driver and/or data base reside in the Executive and must be
assembled and task-built as part of the Executive. Refer to Section 5.1.1 to incorporate your
driver at system generation.

1 Micro/RSX supports only loadable user-supplied drivers with loadable data bases. See Section 5.4.3.

Incorporating a User-Supplied Driver Into RSX-11M-PLUS 5-1

S.1.

Because loadable drivers and loadable data bases can be changed and reloaded without
performing a system generation, loadable drivers with loadable data bases are easier to debug
and maintain than resident drivers and/or resident data bases.

1 Incorporating a Driver at System Generation

If you want to build a loadable driver with a loadable or res1dent data base during system
generation, proceed as follows:

1.
2.

Assemble and task-build your driver to eliminate any assembly or Task-Builder (TKB) errors.

Put the MACRO-11 source files containing your driver code and data base in the User File
Directory (UFD) [11,10] on the target system disk. The driver source file should be named
xxDRV.MAC and the data base source file should be named xxTAB.MAC, where xx is the
two-character device mnemonic. Mnemonics for user-supplied devices should begin w1th
the letters] or Q to avoid conflict with DIGITAL-supplied devices.

Perform a system generation and choose the full-functionality Executive. Answer the
questions concerning user-supplied drivers printed during system generation. This procedure
includes your driver data base in the Executive if it is resident and builds your driver task
image. A loadable driver and data base are loaded into the system image file. Refer to
Section 5.3 for a description of the system generation procedure.

Use CON from the Monitor Control Routine (MCR) to make your devices accessible. Refer
to Section 5.2.5 for the CON command description.

“If you want to build a resident driver, proceed as follows:

1.

If your driver can run loadable with a loadable data base, first build and test it as loadable
with a loadable data base.

Put the MACRO-11 source files containing your driver code and data base in the UFD
[11,10] on your target system disk. The driver source file should be named xxDRV.MAC
and the data base source file should be named xxTAB.MAC, where xx is the two-character
device mnemonic. Mnemonics for user-supplied devices should begin with the letters J or
Q to avoid conflict with DIGITAL-supplied devices.

Perform a system generation. If you want to include a resident driver, you must not choose
the full-functionality Executive or Executive data space support. Answer the questions
concerning user-supplied drivers printed during system generation. This procedure includes
your driver and data base modules in the Executive. Refer to Section 5.3 for a description
of the system generation procedure.

Use CON from the MCR to make your devices accessible. Refer to Section 5.2.5 for the
CON command description.

5-2 Incorporating a User-Supplied Driver Into RSX-11M-PLUS

5.1.2 Incorporating a Loadable Driver with a Loadable Data Base After
System Generation

Incorporating a loadable driver with a loadable data base after system generation involves the
following steps: (This procedure is for RSX-11M-PLUS systems only. To incorporate a loadable
driver into a Micro/RSX system, see Section 5.4.3.)

1. Assemble and task-build your driver to eliminate any assembly or Task-Builder errors.

2. Put the MACRO-11 sources files containing your driver code and data base in UFD [11,10]
on your target system disk. The driver source file should be named xxDRV.MAC and the
data base source file should be named xxTAB.MAC, where xx is the two-character device
mnemonic. Mnemonics for user-supplied devices should start with the letters J or Q to
avoid conflict with DIGITAL-supplied devices.

3. Run the system generation procedure and follow the instructions in the “Adding a Device”
(AD) section. (For information on invoking the system generation procedure [SYSGEN],
refer to the RSX-11M-PLUS System Generation and Installation Guide.)

These procedures require you to enter the two-character device mnemonic for your driver.
Remember, this should be the same mnemonic used in the driver and data base source files
names.

4. Use the MCR LOA command to link your driver data base into the system device tables
and to load your driver data base and driver code. Refer to Section 5.2.4 for the LOA
command descriptions.

5. Use CON from MCR to place the controllers and units on line. (CON can also alter vector
assignments.) Refer to Section 5.2.5 for the CON command descriptions.

5.2 What the System Generation Procedure Does for You

The system generation procedure assembles your driver and data base, puts the resulting object
modules in the Executive object library, and task-builds your driver. If your driver or its data
base is resident, the driver or data base is included in the Executive. If your driver or its data
base is loadable, the driver or data base is loaded into the system image file. You must then
make the controllers and units accessible.

The commands that the system generation procedure uses to assemble your data base, insert
your driver and data base modules in the library, and task-build your driver are the same
commands that you may use to assemble, insert, and task-build your driver. The following
subsections explain each of the procedures for incorporating your driver.

Incorporating a User-Supplied Driver Into RSX-11IM-PLUS 5-3

5.2.1 Assembling the Driver and Data Base

The following commands assemble your driver and its data base during the system generation
procedure:

MAC>[11,24]xxDRV, [11,34]xxDRV/~-SP=[1,1]EXEMC/ML, [11,10]RSXMC/PA:1,xxDRV
MAC>[11,24]xxTAB, [11,34]xxTAB/-SP=[1,1]EXEMC/ML, [11,10]RSXMC/PA: 1, xxTAB

If your driver is resident, these commands are located in the file RSXASM.CMD. If your driver
is loadable, these commands are located in the file xxDRVASM.CMD, where xx is the device
mnemonic.

The commands to the assembler specify as input the Executive macro library EXEMC.MLB,
the Executive assembly prefix file RSXMC.MAC, and either your driver code or driver data
base source file (xxDRV.MAC or xxTAB.MAC). EXEMC.MLB contains the macro definitions of
structures and symbolic offsets that your code may reference. (The source code for some of
the macro definitions is given in Appendix A.) RSXMC.MAC contains symbols defined during
system generation and definitions of some macros that your driver may invoke (such as DDT$,
GTPKT$, and INTSV$). The assembler looks for the source file of your driver in UFD [11,10].

As output, the assembler creates object modules in UFD [11,24] and listing files in UFD [11,34].
The object modules xxDRV.OBJ and xxTAB.OBJ will later be put in the Executive library. You
should retain the listing files xxDRV.LST and xxTAB.LST for documentation and maintenance
purposes.

5.2.2 Inserting the Driver and Data Base Modules in the Library

After your driver and data base modules have been assembled, the driver and data base
modules are added to the Executive object library. Commands to the Task-Builder (described
in Section 5.2.3) require that the modules be in this library.

The following command during system generation adds both the driver and its data base to the
same library:

LBR [1,24]1RSX11M/RP=[11,24)xxDRV,xxTAB

The command to LBR adds the object modules of both your driver and its data base to the
Executive object library RSX11M.OLB, which resides in UFD [1,24]. RSX11M.OLB is built from
object modules assembled during system generation. The /RP switch ensures that any modules
of the same name are replaced by the recently created modules. If this is not the first time you
have performed this operation, LBR prints messages telling you that it replaced your modules
in the library with the new versions.

5-4 Incorporating a User-Supplied Driver Into RSX-11M-PLUS

5.2.3 Task-Building the Driver

After the modules have been added to the Executive object library, the system generation
procedure task-builds your driver and data base. The commands for a resident driver are
located in the file RSX11M.CMD. The commands for a resident data base are located in the file
RSX11M.CMD on systems without Executive data space support and in the file DSP11M.CMD
on systems with Executive data space support.

The commands for a loadable driver are located in xxDRVBLD.CMD, where xx is the device
mnemonic. The following discussion explains each of the lines that are contained in the
command file for a loadable driver.

1.

When the system generation procedure builds your driver, a task-image file name and
a symbol definition file name are specified as TKB output. The task image and symbol
definition files are placed in the UFD corresponding to the system User Identification Code
(UIC) that will be in effect when the LOA command is issued. The file names are both
xxDRV, where xx is the device mnemonic. The Task-Builder produces the output files
named xxDRV.TSK, xxDRV.MAP, and xxDRV.STB. For example, the input supplied to TKB
to build the xx device would look like the following:

[1,54]xxDRV/-HD/-MM, [1,34] xxDRV/-SP, [1,54] xxDRV=

No task header is included. The switch /-HD is used, as in the previous example. A driver
is not really a task, but an extension of the Executive, and as such needs no task header.

The switch /-MM must be used in the command line.

A map file is produced and is useful for debugging. All driver map files are written to UFD
[1,34]. The switch /-SP suppresses automatic spooling to the line printer.

The system generation procedure links your driver to the system symbol definition file that
contains definitions of Executive global symbols. To illustrate, the following TKB input
continues the example from item 1:

[1,24]RSX11M/LB: xxDRV : xxTAB
[1,54]RSX11M.STB/SS

The first line above specifies the library file (/LB) in which the input driver object module
and the object file for the loadable data base can be found. The object module specification
for the driver always precedes the specification for the data base in the TKB command line.

The second line in item 5, above, indicates that the symbol definition file RSX11M.STB is
to be searched selectively (/SS) for definitions of Executive global symbols. Note that the
/SS switch must appear in this context. It is never omitted.

The system generation procedure links your driver to the system library file that defines
masks and offsets used in the Executive. The following input continues the example from
item 1:

[1,1]EXELIB/LB
/

The single slash begins the option phase of the Task-Builder.
The Task-Builder is directed not to allocate space for a stack within the driver. For example:

STACK=0

Incorporating a User-Supplied Driver Into RSX-11M-PLUS 5-5

8. A partition for the driver is specified. For example:

PAR=DRVPAR : 120000 :20000
//

The partition name DRVPAR is the typical name of a conventional partition reserved for
drivers. A driver may be loaded into any system-controlled partition. The base virtual
address of the partition is always 120000g. That is, the loadable driver must be mapped
through kernel APR 5. The length of the partition (the second parameter) should not exceed
8K words (40000 octal bytes).

The double slash ends the option phase of the Task-Builder.

5.2.4 Loading the Driver

After your driver is task-built, you are ready to load the driver on your system. This procedure
is used when you are incorporating your loadable driver with a loadable data base after system
generation. To load your driver, use the privileged MCR command Load, as follows:

>LOAD xx: [/PAR=GEN] [/HIGH]
>

The variable xx is the two-character device mnemonic. Specifying a partition is optional. If a
partition is not specified, the partition input to the Task-Builder is used. The keyword /HIGH
puts the driver as high as possible in the partition. The default condition is to put the driver as
low as possible in the partition.

LOAD performs many diagnostic checks on your driver data base, relocates many addresses
within the data base, and loads the data base and the driver code into memory. Because the
LOAD diagnostic checks are complicated and LOAD supports another, infrequently used option
(/CTB), a description of LOAD is given in Section 5.4. LOAD error messages and meanings are
listed in the RSX-11M-PLUS MCR Operations Manual. After the driver is loaded, the controllers
and units are off line and are not accessible. To allow access to the device, you must next place
the controllers and units on line.

5.2.5 Making the Devices Accessible

After your driver has been successfully loaded, you must make the controllers and units
accessible. You use the CON task to place controllers and units on line, to change vector and
CSR assignments that you established in the driver data base, and to take units and controllers
off line. Unless the vector and CSR values in the driver data base are not correct for the running
system, you can place the controllers and units on line. You may change the vector and CSR
assignments to match the hardware CSR and vector assignments only while the controllers and
units are off line.

5-6 Incorporating a User-Supplied Driver Into RSX-11M-PLUS

5.2.5.1 Setting Vector and CSR Assignments

If the values at the offsets S.VCT/K.VCT and S.CSR/K.CSR in the KRBs of your driver data
base are incorrect for the running system, you must issue the privileged SET command in CON
to establish the correct values.

Note

Because CON causes the Executive to access a driver data base when it changes
a vector or CSR assignment, you must load the driver before you issue the SET
commands in CON. If a driver data base is resident, you do not need to load
the driver to establish correct vector and CSR assignments.

You must do this operation while the controllers and units are off line. (LOAD ensures that, for
a loadable data base, the controllers and units are off line.) Typical commands to set a vector
and CSR for a driver that supports a single controller are as follows:

>CON .

CON>SET xxA VEC=300 CSR=160040
CON>~Z

>

The command first establishes 300 as the vector for controller A of type xx. The Executive
accesses the offset S.VCT/K.VCT in the driver data base and writes the specified value divided
by 4. The command secondly establishes the control and status register address as 160040 for
controller A of type xx. The Executive accesses the offset S.CSR/K.CSR in the driver data base
and writes the specified value. You type the CTRL/Z combination to exit from CON. After you
set the vector or CSR assignment, you can attempt to place the controllers and units on line.

5.2.5.2 Placing a Controlier and Units On Line

If the vector and CSR assignments in your driver data base are correct for the running system,
you can place the controllers and units on line by issuing the privileged ONLINE command in
CON.

Note

Because placing a controller or a unit on line causes the Executive to call the
driver, you must have loaded the driver before you issue the ONLINE command
in CON.

The following commands demonstrate a typical sequence to place a single controller and two
attached units on line:

>CON
CON>ONLINE xxA
CON>ONLINE xxO0:
CON>ONLINE xxi:
CON>~Z

>

The first command places controller A of type xx on line. The Executive accesses the KRB of
the controller to read the S.VCT/K.VCT offset and initializes the vector to point to the related
interrupt control block.

Incorporating a User-Supplied Driver Into RSX-11M-PLUS 5-7

Note

If the driver is resident within the Executive, the vector points directly to the
driver. For a common interrupt controller, the vector points to the interrupt
entry address in the Executive rather than to an ICB.

The Executive then ensures that the address in S.CSR/K.CSR is valid; that is, some device
responds at that address. (Refer to Section 5.2.5.3 for a discussion of CSR and vector assignment
errors.) Next, the Executive calls the driver at its controller status change entry point. Only
after the driver indicates success does the Executive change the status bit in the SCB/KRB of
the controller from offline to online.

The second and third commands place logical units 0 and 1 on line. The Executive checks that
the controller is on line (that is, an access path exists to the unit). If the controller is not on
line, the Executive sets the UCB of the unit-as marked for online. (The Executive automatically
places on line a unit that is in the marked for online state only when its controller is placed on
line.) If the controller is on line, the Executive calls the driver at its unit status change entry
point. Only after the driver indicates success does the Executive change the status bits in the
UCB of the unit from offline to online. (The driver is not required to take any special action to
indicate success. Refer to the discussion of status change entry points in Section 4.5.)

After you have issued the ONLINE commands, you can issue the DISPLAY command in CON
as follows to verify that the devices are in the state that you want them to be in:

>CON
CON>DISPLAY FULL FOR xx

(The display appears at the terminal.)

CON>~Z
>

The command displays status of all controllers of type xx and of all units attached to the
controllers.

5.2.5.3 CSR and Vector Assighment Errors

CSR and vector assignment errors are not always immediately detectable. When you issue the
ONLINE command to CON to place a device on line, CON verifies that some device responds
at the CSR address that you established at the S.CSR/K.CSR offset in your driver data base.
CON can encounter one of the following three cases:

* Your device is at the established CSR address and it responds to the CON probe. This is
the case you want. CON continues attempting to place your device on line.

* Your device is at some address in the /O page other than the established CSR address,
but some other device responds at the established CSR address. CON cannot distinguish
your device from some other device and continues attempting to place your device on line,
possibly resulting in a system hang or failure.

* Your device is at some address in the I/O page other than the established CSR address,
and no device responds at the established CSR address. In this case, CON reports an error
and does not place the device on line.

If CON places your device on line and the device does not respond, have a DIGITAL Field
Service representative verify the CSR address jumpers and ensure that the CSR assignment in
your driver data base matches the verified hardware CSR assignment.

5-8 Incorporating a User-Supplied Driver Into RSX-11M-PLUS

When the vector address developed from the value that you established at the offset
S.VCT/K.VCT in the driver data base differs from the hardware vector assignment, several
outcomes are possible. Should the established vector already be in use (that is, pointing at other
than the nonsense interrupt entry address in the Executive)) CON reports the condition and
does not place the device on line. If the vector is not in use, CON establishes it as the device
vector and continues attempting to place the device on line. This action does not guarantee that
the software and hardware vector assignments match.

When CON does place a device on line and the software and hardware vector assignments do
not match, two results are possible:

* Your driver will time out waiting for an interrupt.
* The device will interrupt through an unused vector.

If error logging is active on your system, a nonsense interrupt is logged as an undefined
interrupt error and the ERRSEQ count in the Executive is increased by 1. The RMDEMO task
display, which includes the ERRSEQ count, reflects the occurrence of nonsense interrupts by
an increasing number in ERRSEQ. Consult an error log report and look for undefined interrupt
errors.

When (1) error logging is active, (2) nonsense interrupts do not occur, and (3) your driver
times out, the interrupt could be going through some other driver vector. If the unexpected
interrupt goes to a DIGITAL-supplied driver, one of the following two outcomes is possible:

* The interrupt will simply be dismissed. (Common interrupt routines dismiss unexpected
interrupts, and some drivers keep track of when they expect interrupts and dismiss
unexpected ones.)

* The driver will react in an unpredictable fashion (such as attempting to terminate the last
I/0O packet again), causing a system failure.

Thus, error logging and the ERRSEQ count in the RMDEMO display help indicate improper
vector assignments.

5.3 User-Supplied Driver System Generation Dialogue Summary

If you are building either a loadable driver with a resident data base or a resident driver, you
must perform a system generation to incorporate your driver into the system. This section
summarizes the system generation dialogue only as it relates to user-supplied driver support
and related features. For more information on the system generation procedure itself, refer to
the RSX-11IM-PLUS System Generation and Installation Guide.

Note

If you are building a loadable driver with a loadable data base, you need not
perform a system generation to incorporate your driver. However, you can still
build your driver during system generation. Section 5.1.2 describes the complete
procedures to build a loadable driver with a loadable data base any time after
you build the Executive under which the driver will run.

Incorporating a User-Supplied Driver Into RSX-11IM-PLUS 5-9

5.3.1 Choosing Executive Options

The system features are determined during the “Choosing Executive Options” section. To specify
system features, you must answer questions related to including a user-supplied driver in your
system. A question appears in the following form:

* CE020 Do you want the Full-functionality Executive? [Y/N D:Y]:

If you choose the Full-functionality Executive, your driver must be loadable with either a
loadable or resident data base. If you want to incorporate a user-supplied resident driver,
you must omit the Full-functionality Executive and omit Executive data space support. All
DIGITAL-supplied drivers should be loadable with a loadable or resident data base.

If you do not choose the Full-functionality Executive, the system generation procedure asks the
following two questions:

* CEOBO Do you want Executive data space support? [Y/N D:N]:

If you have a loadable driver with either a loadable or resident data base, you should answer
Yes to this question. If you have a resident driver, you must answer No to this question.

* CE110 What is the ICB pool size (in words)? [D R:16.-1024. D:128.]:

On systems with Executive data space, the Interrupt Control Block (ICB) pool must be large
enough for all the drivers loaded into the virgin system image. One ICB (eight words) is needed
for every 16y controllers of the same type. If the device controlled by your driver has a large
number of controllers, you should ensure that there is enough ICB pool space.

There are no further questions in this section concerning user-supplied driver support or related
features.
5.3.2 Choosing Peripheral Configuration

In the Peripheral Configuration section of the system generation procedure, you answer questions
about your driver and its data base configuration. A question in the following form asks you to
supply your device mnemonics:

* CP9604 Enter device mnemonics for user-supblied drivers [S]:

You must enter the two-character device mnemonic for your driver. This should be the same
mnemonic used in the driver and data base source file names.

If you did not select Executive data space support, a question in the following form appears:
* CP9612 Do you want the xx: driver to be loadable? [Y/N D:N]:

Answer Yes to this question if you want a loadable driver. Answer No if you want your driver
to be resident.

If your driver is loadable, the next question in the system generation procedure asks you about
your data base:

* CP9616 Do you want xx: driver's data base to be loadable? [Y/N D:NJ:

Answer Yes to this question if you want a loadable data base. Answer No if you want your
data base to be resident. ‘

5-10 Incorporating a User-Supplied Driver Into RSX-11M-PLUS

The system generation procedure always asks you to specify the highest interrupt vector address:
* CP9632 What is the highest interrupt vector address? [0 R:n-774 D:n]:

The system generation procedure calculates and displays the highest interrupt vector address
needed for the DIGITAL-supplied devices. If the vector address for your device is higher than
this, enter the highest vector address used by your device.

This ends the system generation portion of incorporating a user-supplied driver. If you are
generating a new system, the system generation procedure includes your driver in the Executive
if it is resident or loads your driver into the system image if it is loadable. After the newly built
system is running, you must make the devices that your driver supports accessible, as directed
in Section 5.2.5.

If you are adding your driver after system generation, you must load your driver and make the
devices that it supports accessible, as described in Sections 5.2.4 and 5.2.5.

5.4 LOAD Processing

The Executive LOAD routines extensively check the driver data base; LOAD provides the /CTB
switch to handle multidriver controllers. The following subsections describe the two aspects of
LOAD.

5.4.1 LOAD Operations and Diagnostic Checks
The following two LOAD modules load a driver into memory:
* LDVLDB conditionally checks the validity of and loads the data base.
* LDVFIN finishes the operation by loading the driver.
If there is no resident data base, the data base is loaded into the system pool.

The LOAD routines relocate and validate many of the pointers within the data base and, in the
process, validate other data in the structures. (If the data base is resident, no validity checks on
the driver data base are performed.) The driver itself is then loaded into its partition, and the
interrupt control blocks are created.

To read the data base from the xxDRV.TSK file into the system pool, the global labels $xxDAT
and $xxEND, defining the start and end of the data base, are needed.

To check the data base, the LOAD routines must know the starting address of the DCB. If the
global label $xxDCB is not defined (that is, it is not in the symbol table file), the start of the
DCB is assumed to be the first word of the data base. Many unusual error conditions result
when LOAD assumes that the DCB is at the start of the data base, but in fact, the DCB is
elsewhere in the data base and not labelled properly. Thus, to avoid this type of problem, you
should always define the start of the DCB with the global label $xxDCB.

The LOAD routines perform the following operations to load and validate the data base:

* Each CTB is checked and relocated. The following offsets are both checked and relocated:

Incorporating a User-Supplied Driver Into RSX-11M-PLUS 5-11

L.LNK The link to the next CTB must be even. If it is not zero, it must point within
the data base, and the CTB to which it points must lie within the data base.
(Because it is highly unusual to have two controller types in one driver data
base, this value is usually zero.)

L.DCB The address of the related DCB must be even, point within the data base, and
the DCB to which it points must lie within the data base. If L.DCB points to a
common interrupt table, the common interrupt entry point address in the table
must be even and lie within the Executive. The DCB addresses in the table
must be even, and the DCBs to which each address points must lie within the
data base.

L.KRB Each pointer in the table of KRB addresses must be even and must point within
the data base, and the KRB to which each cell points must lie within the data
base.

e The following offsets in the CTB are checked:

LNAM The controller name cannot duplicate other LNAM entries in the resident or
loadable data base. _
LNUM The number of controllers must be less than 174.
e Each KRB is checked and relocated. The following offsets in the KRB are both checked and
relocated:

K.OWN The pointer to the owner UCB must be even and point within the data base,
or it must be zero. If it is nonzero, the pointer is relocated.

K.OFF The start of the table of UCB addresses produced from K.OFF must be even
and must point within the data base. The entries themselves must be even,
point within the data base, and the UCB to which each cell points must lie
within the data base.

K.CRQ This is the listhead for the controller request queue. It is initialized to an
K.CRQ+2 empty list with the first word zero and the second word, pointing to the first,
relocated.
¢ The following offset in the KRB is checked:
K.URM In a multiprocessor system, the UNIBUS run mask for the controller must have

exactly one bit set and that bit must correspond to an existing UNIBUS run
(either primary or secondary).

e LOAD puts each controller in the offline state by setting the KS.OFL bit in the K.STS byte.
Therefore, all controllers are off line until you use CON to place each one on line.

e Each DCB is checked and relocated. The following offsets are both checked and relocated:

D.LNK The link to the next DCB must be even. If it is nonzero, it must point within
the data base, and the DCB to which it points must lie within the data base.

D.UCB The link to the first UCB must be even and must point within the data base,
and the UCB to which it points must lie within the data base.

5-12 Incorporating a User-Supplied Driver Into RSX-11M-PLUS

* The following offsets in the DCB are checked:

D.NAM The device name must be the same as that which you specified in the LOAD
command line.

D.UCBL The length of the UCB must be even and nonzero.

D.UNIT The highest unit number (increased by 1) used with D.UCBL forms the last
address of all UCBs. This address must lie within the data base.

* The pointer to the driver dispatch table (D.DSP) is set to zero to show that the driver is not
loaded.

* Each UCB is checked and relocated. The following offsets are both checked and relocated:
U.DCB The pointer to the DCB must point to the DCB that points to this UCB.

U.SCB The pointer to the SCB must be even, must point within the data base, and
the SCB to which it points must lie within the data base.

U.RED The unit redirect pointer must be nonzero and even if it is an Executive address.
If it is not an Executive address, it must be nonzero, even, and point within
the data base.

* LOAD places each unit in the offline state by setting the US.OFL bit in the U.ST2 byte.
Therefore, all units are off line until you use CON to place each one on line.

* Each SCB is checked and relocated. The following offsets are both checked and relocated:

S.KRB The pointer to the KRB must be even, must point within the data base, and
the KRB to which it points must lie within the data base. If S.KRB is nonzero,
there must be a CTB in the loadable data base. :

S.KTB If the table of KRB addresses is present, each entry must point within the data
base. (LOAD preserves bit zero in each entry.) Each entry in the table must
also have a matching entry in the table of KRB addresses of a CTB in the
loadable data base.

* The following offsets in each SCB are initialized as described:

S.LHD The head of the I/O queue is set to zero and the pointer to the end of the
queue (S.LHD+2) is set to point at S.LHD. ,
S.PKT The pointer to the current I/O packet is set to 1.

After the data base is loaded and validated and no error is found, the driver itself is loaded into
memory. When the driver is loaded, the driver dispatch table is validated, each interrupt entry
in the driver dispatch table is inspected, and the vectors are checked. If a vector address is
higher than the highest vector address allowed on the system (as specified at system generation)
or does not point to a nonsense interrupt entry point, LOAD prints a warning message. You
can use CON to set the correct vector address before you place the controller on line. Interrupt
control blocks are created and linked into the list starting at L.ICB in the CTB.

The format of the DDT must be consistent with that described in Section 4.5.1. If the device
that the data base describes does not have any physical controllers (that is, the value at offset
S.VCT/K.VCT equals zero), the DDT is not checked. If S.VCT/K.VCT is nonzero, the device
has at least one interrupt vector and therefore at least one interrupt entry point. The DDT is
then checked. The two global labels $xxTBL and $xxTBE must define the start and end of the

Incorporating a User-Supplied Driver Into RSX-1IM-PLUS 5-13

DDT. The generic controller names must be nonzero and the interrupt entry values must be
valid. Interrupt entry point 0 must be nonzero, even, and lie in the range 117777 to 140000. If
the format of DDT is inconsistent, LOAD prints an error message, restores the system device
tables, and exits.

When the driver is loaded, all links are established. The DCB of the loadable data base is put
in the list of DCBs just in front of the DCB for the first pseudo device. The CTBs are linked
to the end of the CTB list. The DDT address D.DSP, the driver PCB address D.PCB, and the
driver mapping S.KS5 (the block number of the first word of the driver) in the fork block are
initialized. The address of the start of the KRB table in the CTB, denoted in the driver data
base by the global label $xxCTB, is loaded into the DDT.

5.4.2 Use of /CTB in LOAD

Some controllers, such as the RH70, can support more than one device type. The CTB for such
a controller differs in two ways from the standard CTB. First, the table of KRB addresses at
the end of the CTB contains pointers to KRBs of controllers for different device types. Second,
instead of a pointer to one DCB in the CTB, there is a pointer to a table of DCB addresses
because each different device must have a separate DCB to describe each separate device type.
Moreover, more than one driver supports the different types of devices capable of being attached
to the controller.

The data base for such a controller must be split. Because only one CTB is needed to describe
the type of controller, only one driver that supports a device on that controller type can define
that CTB. The remaining drivers cannot define a CTB but must reference the CTB defined for
the first driver. Because all drivers and their data bases can be loadable, the remaining drivers
and the syntax in the LOAD command must indicate to the LOAD routines which resident CTB
to use. (Of course, the driver data base that defines the CTB of the multidriver controller must
be loaded or already resident before the other drivers can be loaded.)

The driver data base that defines the CTB for a multidriver controller allows for structures to
define the data base of drivers that are not resident. In particular, for each device controller
there must be a slot in the CTB table of KRB addresses to hold the pointer to the KRB. (A
KRB must be defined to describe each occurrence of a controller.) A zero is in the pointer for
a device whose data base (and, therefore, whose KRB) is not resident. Moreover, the table of
DCB addresses in the common interrupt table must have sufficient slots to point to the DCBs of
all device types that the controller supports. A zero in the DCB table indicates no DCB exists
(that is, the data base for a device type is not resident).

To load the data base of a device attached to the multidriver controller, the LOAD routines
must know the controller name, the location of the device on the MASSBUS controller, and the
KRBs of the devices whose driver is to be loaded. The /CTB syntax in the LOAD command
supplies the first two pieces of information; for example,

>LOA DR:/CTB=RHB,C
>

The letters RH are the name in the CTB already resident in the system. LOAD routines search
the system list of CTBs to locate the correct one. The letters B and C are the slots in the table
of KRB addresses that will be used to link the resident CTB with the KRB in the data base being
loaded. '

5-14 Incorporating a User-Supplied Driver Into RSX-11M-PLUS

The name of the device DR reflects the name in the DCB that is being loaded. An empty slot
in the table of DCB addresses in the resident data base will be made to point to this DCB.

The LOAD routines need to find the correct KRB in the data base being loaded. A global label
of the form $cca (where cc is the controller name and a is the slot, or controller number) must
define the start of the KRBs being loaded. Thus, the loadable data base for the example above
imust contain the labels $RHB and $RHC, which are the KRB names. The address of the label
is loaded into the appropriate slot in the CTB table of KRB addresses.

In summary, then, the /CTB syntax on the LOAD command, combined with the global labels,
allows the LOAD routines to link a driver data base being loaded with a currently resident
driver data base. The KRBs being loaded are incorporated in the resident data base and the
DCB being loaded is connected to the common interrupt table.

5.4.3 Incorporating a Driver into a Micro/RSX System

Since there is no system generation procedure under Micro/RSX, you can incorporate neither
a resident driver with a resident data base nor a loadable driver with a resident data base into
Micro/RSX. Your system will support only a loadable driver with a loadable data base.

The Micro/RSX startup procedure allows you to incorporate a user-supplied driver by altering
the startup parameters of your system, as follows:

1. Assemble your driver and data base using the following commands:

MAC>xxDRV, xxDRV=[11, 10]RSXMC/PA: 1, [directory] xxDRV
MAC>xxTAB, xxTAB=[11,10]JRSXMC/PA: 1, [directory] xxTAB

These commands for a loadable driver are located in xxDRVASM.CMD, where xx is the
device mnemonic.

The commands to the assembler specify as input the Executive assembly prefix file
RSXMCMAC and your driver code and driver data base source files (xxDRV.MAC and
xxTAB.MAC). The [directory] specification is not optional; each source code file specification
should include the directory in which you have placed the driver or data base.

2. Task-build your driver using the following commands:

(1,54]xxDRV/-MM/-HD/-PI, [directory]lxxDRV, [1,54]xxDRV=xxDRV, xxTAB
[1,54]JRSX11M.STB/SS

/

UNITS=0

PAR=GEN : 120000: 20000

STACK=0

//

These commands for a loadable driver are located in xxDRVBLD.CMD, where xx is the
device mnemonic.

3. When you are sure your driver is assembled and built correctly, edit your configuration
file, [1,2]SYSPARAM.DAT, to specify your driver mnemonic in the DRIVER statement. The
driver statement should read as follows (where xx is your driver mnemonic):

DRIVER=xx:

Incorporating a User-Supplied Driver Into RSX-11M-PLUS 5-15

This statement causes the startup procedure to load your driver. You may include this
statement in the configuration file as many times as necessary to load the drivers you
require.

After the startup procedure loads your driver, it will interpret the default CON_ONLINE
ALL=yes statement in the configuration file and bring your driver on line.

4. Run the startup procedure to incorporate your driver.

5-16 Incorporating a User-Supplied Driver Into RSX-11M-PLUS

Chapter 6
Debugging a User-Supplied Driver

Adding a user-supplied driver carries with it the risk of introducing obscure bugs into an RSX-
11IM-PLUS system. Because the driver runs as part of the Executive, special debugging tools
are both desirable and necessary. RSX-11M-PLUS provides the following aids, which can be
incorporated into your system during system generation:

® Crash dump analysis support routine (CDA)
* Executive debugging tool (XDT)

You need not select any of this software during system generation. However, if you do require
the facilities they offer, you can select them for incorporation in your system. The following
sections describe the features and use of each debugging aid.

6.1 Crash Dump Analysis Support Routine

The crash dump analysis (CDA) support routine prints the following message on a notification
device specified at system generation:

CRASH - CONT WITH SCRATCH MEDIA ON device mnemonic

You can then be sure that the secondary crash dump device is ready and depress the CONT
switch on the operator’s console. The Executive Crash Dump routine will dump memory to the
crash dump device and halt the processor upon completion.

The procedure for subsequently invoking CDA, which reads and formats the memory dump, is
documented in the RSX-11M-PLUS and Micro/RSX Crash Dump Analyzer Reference Manual.

Debugging a User-Supplied Driver 6-1

6.2 The Executive Debugging Tool

An interactive debugging tool aids in debugging Executive modules, I/O drivers, and interrupt
service routines. This debugging aid, called XDT, is a version of RSX-11 ODT. Including XDT
in a system with Executive data space support does not reduce the size of pool space that the
system can have. XDT occupies physical address space but does not take up any Executive
virtual data address space. Also, XDT does not interfere with user-level RSX-11 ODT, which
can be used with any number of tasks while you are debugging your driver with XDT.

You can include XDT in a system during the “Choosing Executive Options” section of system
generation when the following question is asked:

Do you want to include XDT? [Y/N D:N]

If you answer Y, XDT is linked into the Executive image when you build the Executive.

6.2.1 XDT Commands

The RSX-11M-PLUS and Micro/RSX XDT Reference Manual contains a guide to debugging with
XDT. While XDT commands are generally compatible with RSX-11 ODT commands (described
in the RSX-11M-PLUS and Micro/RSX Debugging Reference Manual), XDT does not contain the
following commands available in ODT:

No $M - (Mask) register

No $X - (Entry Flag) registers

No $V - (SST vector) registers

No $D - (I/O LUN) registers

No $E - (SST data) registers

No $W - (Directive status word) $DSW word
No E - (Effective Address Search) command
No F - (Fill Memory) command

No N - (Not word search) command

No V - (Restore SST vectors) command

No W - (Memory word search) command

In addition, the X (Exit) ODT command has been changed for XDT. The X command causes a
jump to the crash dump routine.

Except for these omitted features and the change in the X command, XDT commands are
compatible with RSX-11 ODT; consequently, the RSX-11M-PLUS and Micro /RSX XDT Reference
Manual, together with the discussion in Section 6.2 in this manual, can be used as a guide to
XDT operation on RSX-11M-PLUS.

XDT includes both Instruction space and Data space address referencing. The following
commands control the current address referencing:

I Sets address references to Instruction space
D Sets address references to Data space

Address references set to Data space is the default condition when XDT starts up.

6-2 Debugging a User-Supplied Driver

6.2.2 XDT Startup

When you bootstrap a system that includes XDT, the normal system startup transfers control to
XDT, which identifies itself at the system console terminal with the following message:

XDT: <system name and version>
If no errors were encountered, the identification message is followed by the prompt:
XDT>

The following are the register conditions when XDT starts:

RO = (SR address of the bootstrap device

R1 = LBN of the system image

R2 = LBN of the system image

R3 = physical unit number of the load device

R4 = ASCII name of the load device

R5 = total number of blocks read from the system image

XDT runs entirely at priority level 7.

You can set breakpoints at this time and then give a G command, passing control to the
Executive initialization module INITL. Whenever control reaches a breakpoint, a printout similar
to that of RSX-11 ODT occurs.

If INITL encounters an error condition, it prints an error message preceded by a prefix telling
whether the condition is a warning or fatal. If the condition is a warning, XDT has control.
You can set breakpoints to establish control or type the P command to proceed. If the condition
is fatal, the processor halts. You must correct the condition before you can rebootstrap your
system. :

6.2.3 XDT Restrictions

On some types of systems, the following restrictions on the use of XDT exist when it is first
entered:

¢ On all systems:

Some data structures are not yet initialized. The secondary pool is not set up and the
console terminal and the bootstrapped device are not on-line.)

® On systems with Kernel data space support:

Data space mapping is not yet set up. Certain Executive locations that the Task-Builder
could not resolve are not initialized. (The RH common interrupt table address [$RHTBX]
does not contain the RH common interrupt routine address [RHALT].)

To proceed when you encounter such restrictions on your system, at the initial XDT prompt you
should first set a breakpoint near the end of the INITL module (after the routine that sets up
the data structures). Then, after you proceed and XDT encounters the breakpoint near the end
of INITL, use XDT to examine locations in the Executive and to set more Executive breakpoints.

Debugging a User-Supplied Driver 6-3

On a multiprocessor system, you should be aware of the following conditions:

* When you initially place a processor on-line, XDT does not prompt from that processor
unless you have set the processor’s bit in the $XDTPR word.

¢ XDT does not handle multiprocessor-specific conditions. You cannot set processor-specific
breakpoints nor can you easily examine other processors’ low memory context.

® Under certain circumstances (such as when Data space is not yet set up), setting a breakpoint
in shared Instruction space may eventually cause a trap on a processor other than the one
~on which you set the breakpoint. Consequently, because the processor encountering the
breakpoint does not have that breakpoint in its XDT tables, XDT generates a breakpoint
error message (BE:) rather than a breakpoint message.

* All processors are locked out of the Executive while XDT is being executed by one of the
other processors.

6.2.4 XDT General Operation

A forced entry to XDT can be executed at any time from a privileged terminal by means of the
MCR Breakpoint (BRK) command. Thus, if your system has no XDT restrictions as described
in Section 6.2.3, the normal procedure is to type G when the system is bootstrapped without
setting any breakpoints. When it becomes necessary to use XDT, the MCR Breakpoint command
is executed, causing a forced breakpoint. XDT then prints on the console terminal:

BE : xxxxxx
This message is followed by the prompt:
XDT>

You can then set breakpoints and issue other XDT commands. Continue system operation by
typing the Proceed (P) command to XDT.

All XDT command I/O goes to and from the console terminal, and the List Memory (L)
command can list on either the console terminal or the line printer.
6.2.5 XDT and Debugging a User-Supplied Driver

Using XDT to debug a loadable driver has special pitfalls. One problem that can arise, a T-bit
error, generates the following error message:

TE : XXxxxXx
XDT>

This error results when control reaches a breakpoint that you have set, using XDT, in a loaded
driver. The T-bit error, rather than the expected BE: error, occurs unless register APR 5 is
mapped to the driver at the time XDT sets the breakpoint.

To avoid this T-bit error, assemble the driver with an embedded BPT instruction, or use either
the ZAP utility or the MCR OPEN function to set the breakpoint by replacing a word of code
with the BPT instruction. You can use the OPEN command to access the driver as follows:

>0PE nnnn/DRV=xx:

where nnnn matches the address in the driver map listing and xx is the device mnemonic.
(Write down the instruction that you replace with the BPT instruction.)

6-4 Debugging a User-Supplied Driver

When control reaches a breakpoint set in the driver, XDT prints the following message:

BE : xXXxXX
XDT>

Recover as follows:

1. Using XDT, replace the BPT instruction with the desired instruction.
2. Decrement the PC by subtracting 2 from the contents of Register 7.
3. Then proceed by using the P or S commands.

Note

You should not set breakpoints in more than one module that maps into the
Executive through APR 5 or APR 6. In particular, do not set breakpoints in
more than one loadable driver at a time or XDT will overwrite words of main
memory when it attempts to restore what it considers to be the contents of
breakpoints.

6.3 Fault Isolation

6.3.

One or more of the following causes may be identified when the system faults:

* A user-state task has faulted in such a way that it causes the system to fault.

* The user-supplied driver has faulted in such a way that it causes the system to fault.

* The system software itself has faulted.

* The host hardware has faulted.

When the system faults, you must first decide which of these four causes is responsible. This
section presents some procedures that can help you isolate the source of the fault. Correcting
the fault itself is your responsibility.

1 Immediate Servicing

Faults manifest themselves in four ways (listed here in order of increasing difficulty of isolation):
1. If XDT is included, an unintended trap to XDT occurs.

2. The system displays text indicating a failure has occurred and halts.

3. The system halts but displays nothing.

4. The system is in an unintended loop.

The following discussions assume the existence of a system built with at least one debugging
aid.

The immediate aim, regardless of the fault manifestation, is to get to the point where you can
obtain pertinent fault isolation data.

Debugging a User-Supplied Driver 6-5

6.3.1.1 The System Traps to XDT

The trap may or may not be intended. If it is not intended, type the X command, causing XDT
to exit to location 40g, from which the CDA support routine will be invoked. If, however, you
have some idea of the source of the problem (for example, a recent coding change), then you
may use XDT to examine pertinent data structures and code.

6.3.1.2 The System Reports a Crash

If the text displayed on the console terminal consists of output from the CDA support routine,
follow the procedure for obtaining and formatting a memory dump as outlined in the RSX-11M-
PLUS and Micro/RSX Crash Dump Analyzer Reference Manual.

6.3.1.3 The System Halts but Displays No Information

Before taking any action, preserve the current PSW and PC and the pertinent device registers
(that is, examine and record the information these registers contain). The procedure depends
on the particular PDP-11 processor. Consult the appropriate PDP-11 processor handbook for
details.

After preserving the PSW and PC, invoke your resident debugging aid by entering 40g in the
switch register, pressing LOAD ADDR, and then pressing START. The contents of 403 cause
the invocation of the CDA support routine.

6.3.1.4 The System Is in an Unintended Loop
Proceed as follows:
1. Halt the processor.
2. Record the PC, the PSW, and any pertinent device registers, as in Section 6.3.1.3.

You may then want to step through a number of instructions in an attempt to locate the loop.
For this attempt to be meaningful you must first disable the system clock. Proceed as follows:

1. Examine the contents of word 777546 (if your system has a line-frequency clock) or word
772540 (if your system has a programmable clock).

2. Clear bit 6 in this word and redeposit the word.

Note

Until you reenable the clock, some system operations do not work because they
are waiting for time. You can type and the system echoes typed characters.
You can input MCR commands.

After trying to locate the loop and reenabling the clock, transfer to location 403 .as in
Section 6.3.1.3.

6-6 Debugging a User-Supplied Driver

6.3.2 Pertinent Fault Isolation Data

Before you attempt to locate the fault, you should dump system common (5YSCM), which
contains a number of critical pointers and listheads. CDA always dumps the SYSCM area. In
addition, you should dump the dynamic storage region (system pool and, if it exists, the ICB
pool) and the device tables. The device tables are in the module SYSTB.

At this point, you have the following data:

PSW

PC

The stack

Registers 0 through 6
Pertinent device registers
The dynamic storage region
The device tables

System common

These data represent a minimal requirement for effectively tracing the fault.

6.4 Tracing Faults

Three pointers in SYSCM are critical in fault tracing. These pointers are described below:

$STKDP—Stack Depth Indicator

This data item indicates which stack was being used at the time of the failure. $STKDP
plays an important role in determining the origin of a fault. The following values apply:

+1 User (task-state) stack or a privileged task at user state
0 or less System stack

If the stack depth is +1, then the user has caused the system to fail.

$TKTCB—Pointer to the Current Task Header (TCB)

This is the TCB of the user-level task in control of the CPU.

$HEADR—Pointer to the Current Task Header (Pool-Resident)

The location of the task header and the contents of its associated pointers vary according
to whether the task has an external header. A task with an external header has its header
attached in a physically contiguous and numerically lower location in memory. A task
with a nonexternal header has its header located in Executive pool space. Therefore, a
header in Executive pool is a pool-resident header, and a header adjacent to the task is a
non-pool-resident header.

Figure 6-1 shows the interaction of header pointers for both pool-resident and non-pool-
resident headers. For a pool-resident task header, $HEADR, $SAHPT, and $SAVSP all
point to the first word of the task header. This word also contains the user task’s stack
pointer (SP) from the last time it was saved. Figure 6-2 shows a brief description of the

Debugging a User-Supplied Driver 6-7

task header. The task header is fully described in the RSX-11M-PLUS and Micro/RSX Task
Builder Manual. :

Figure 6-1: Interaction of Task Header Pointers
POOL-RESIDENT TASK HEADER (Non-external)
Virtual Header Addr.
$HEADR
Saved Stack Addr. Current Task
$SAVSP Header
Virtual Header Addr. b — — — = — —
$SAHPT —=1 Saved Stack Pointer
T.HDLN=0
$SAHDB = undefined value
NON-POOL-RESIDENT TASK HEADER (External)
E Task ;
$SAHPT = 140000
Current Task
$HEADR Header
Executive
Data Area
$SAVSP 1-word block T.HDLN>0
Executive
$SAHDB = KISAR6 w1 Address resolution
ZK-901-82

The header (as pointed to by $HEADR) also contains the last-saved register set, just before the
header guard word (the last word in the header—pointed to by H.GARD).

The following pointers are associated with the header:

$HEADR
$SAVSP

$SAHPT
$SAHDB

6-8 Debugging a User-Supplied Driver

Figure 6-2: Task Header

RO

R5

PC

PS

H.NLUN N

H.GARD

H.HDLN Length in bytes

SP

ZK-272-81

The pointers associated with a pool-resident header are described as follows:

$HEADR

$SAVSP

$SAHPT

$SAHDB

Points to the current task header.

The $HEADR word points to the pool-resident task of the task currently
running. (The value in $HEADR is a kernel virtual address in primary pool.)

Points to the first word of the current task header, which contains the saved
stack pointer.

Points to the current task header in pool. ($SAHPT contains the virtual address
of the header. $SAHPT and $HEADR contain the same virtual address for a
pool-resident header.)

Contains an unknown value.

Debugging a User-Supplied Driver 6-9

The pointers associated with a non-pool-resident header are described as follows:

$HEADR - Points to the pointer for the saved stack pointer, $SAVSP.

$SAVSP — Points to a 4-word block in the Executive data area.

$SAHPT — Contains the octal value of 140000 that is to be used with $SAHDB to resolve
the address of the task’s header. ($SAHPT always contains 140000 in this
case.)

$SAHDB — Contains the value in KISAR6, which is a 32-word block-offset to be used with

the value in $SAHPT to resolve the address of the task’s header.

6.4.1 Tracing Faults Using the Executive Stack and Register Dump

To trace a fault after a display of the Executive stack and register contents, first examine the
system stack pointer. Usually an Executive failure is the result of an SST-type trap within
the Executive. If a synchronous system trap (SST) does occur within the Executive, then the
origin of the call on the crash-reporting routine is in the SST service module. (The crash call is
initiated by issuing an IOT at a stack depth of zero or less.)

A call to crash also occurs in the Directive Dispatcher when an EMT is issued at a stack depth
of zero or less, or a trap instruction is executed at a stack depth of less than zero. The stack
structure in the case of an internal SST fault is shown in Figure 6-3.

Figure 6-3: Stack Structure: Internal SST Fault

PS

PC

R5

R4

R3

R2

R1

RO

Return to system exit

Zero or more SST parameters

SST fault code

Number of bytes - SP

ZK-273-81

6-10 Debugging a User-Supplied Driver

The fault codes are as follows:

0 ; ODD ADDRESS AND TRAPS TO 4

2 ; MEMORY PROTECT VIOLATION

4 ; BREAK POINT OR TRACE TRAP

6 ; IOT INSTRUCTION

10 ; ILLEGAL OR RESERVED INSTRUCTION
12 ; NON RSX EMT INSTRUCTION

14 ; TRAP INSTRUCTION

16 ; 11/40 FLOATING POINT EXCEPTION
20 ; SST ABORT-BAD STACK

22 ; AST ABORT-BAD STACK

24 ; ABORT VIA DIRECTIVE

26 ; TASK LOAD READ FAILURE

30 ; TASK CHECKPOINT READ FAILURE
32 ; TASK EXIT WITH OUTSTANDING I/0
34 ; TASK MEMORY PARITY ERROR

The PC points to the instruction following the one that caused the SST failure. The number
of bytes is the number normally transferred to the user stack when the particular type of SST
occurs. If the number is 4, then a non-normal SST fault occurred, and only the PSW and PC
are transferred. There are no SST parameters.

If the failure is detected in $DRDSP, the stack is the same as that shown in Figure 6-3, except
that the number of bytes, the SST fault code (the fault codes are listed above), and the SST
parameters are not present.

One SST-type failure, stack underflow, does not result in the stack structure of Figure 6-3. To
determine where the failure occurred, first establish the stack structure; this can be deduced by
the value of the SP and the contents of the top word on the stack. If the stack structure is that
of Figure 6-3, then the failure occurred in $DRDSP, or was a normal SST failure. If the stack
structure is that of Figure 6-4, then an abnormal SST failure has occurred.

Figure 6-4: Stack Structure: Abnormal SST Fault

PS

PC

ZK-274-81

Abnormal SST failures occur when it is not possible to push information on the stack without
forcing another SST fault. When this situation occurs, a direct jump to the crash-reporting
routine is made rather than an IOT failure. The PSW and PC on the stack are those of the
actual failure, and the address printed out by the crash-reporting routine is the address of
the fault rather than the address of the IOT that causes the system to fail. Note that the
crash-reporting routine removes the PC and PSW of the IOT instruction from the stack, which
in this case is incorrect. Thus, the SP appears to be four bytes greater than it really is (as in
Figure 6-4).

Debugging a User-Supplied Driver 6-11

The material in this section can help you isolate the cause of a failure. However, the best
teachers are personal experience and a knowledge of the interaction between the driver and the
services provided by the Executive.

6.4.2 Tracing Faults When the Processor Halts Without Display

To trace a fault when the processor halts but displays no information, first examine $STKDP,
$TKTCB, $HEADR, $SAVSP, $SAHPT, and $SAHDB. The difficulty in tracing failures in this
case is that the system stack is not directly associated with the cause of a failure.

By examining $STKDP, you can determine the system state at the time of failure. If it was in
user state, the next step is to examine the user’s stack. The examination focuses on scanning
the stack for addresses that may be subroutine links, which can ultimately lead to a thread of
events isolating the fault. This is essentially the aim of looking at the system stack if $STKDP
is zero or less.

Frequently, a fault can occur that causes the SP to point to Top of Stack (TOS) +4. This fault
results from issuing an RTI when the top two items on the stack are data. The result is a wild
branch and then, most probably, a halt. Figure 6-5 shows a case in which two data items
are on the stack when the program executes an RTI. TOS points to a word containing 40100.
Suppose that location 40100 contains a halt. This indicates that the original SP was four bytes
below the final SP and fault tracing should begin from the original SP.

Figure 6-5: Stack Structure: Data ltems on Stack

40100 - Sp

ZK-275-81

This type of fault also occurs when an RTS instruction is executed with an inconsistent stack.
However, in that case, SP points to TOS +2.

A scan of the contents of the general registers may give some hint as to the neighborhood in
which a fault (or the sequence of events leading up to the fault) occurred.

If the fault occurred in a new driver, a frequent source of clues is the buffer address and count
words in the UCB (U.BUF, U.BUF +2, U.CNT), as are the activity flags (US.BSY and S.STS).
Other locations in both the UCB and SCB may also provide information that may help locate
the source of the fault.

6.4.3 Tracing Faults After an Unintended Loop
To trace a fault when an unintended loop has occurred, first halt the processor.

After you halt the processor, the same state exists as was discussed in Section 6.4.2. Follow the
same tracing procedure described there. A specific suggestion is to check for a stack overflow
loop. Patterns of data successively duplicated on the stack indicate a stack looping failure.

6-12 Debugging a User-Supplied Driver

6.4.4 Additional Hints for Tracing Faults

Another item to check is the current (or last) I/O packet, whose address is found in S.PKT of
the SCB. The packet function (LFCN) defines the last activity performed on the unit.

If trouble occurred in terminating an I/O request, a scan of the system dynamic memory region
may provide some insight. This region starts at the address contained in $CRAVL, a cell in
SYSCM. Because all I/O packets are built in system dynamic memory, their memory is returned
to the dynamic memory region when they are successfully terminated. Following the link
pointers in this region may reveal whether I/O completion proceeded to that point. In systems
with QIO optimization, $PKAVL (SYSCM) points to a list of /O packet-sized blocks of dynamic
memory that are not linked into the $CRAVL chain.

A frequent error for an interrupt-driven device is to terminate an I/O packet twice when
the device is not properly disabled on I/O completion and an unexpected interrupt occurs.
This action ultimately produces a double deallocation of the same packet of dynamic memory.
Double deallocation of a dynamic buffer causes a loop in the module $DEACB on the next
deallocation (of a block of higher address) after the second deallocation of the same block. At
that time, Registers 2 and 3 both contain the address of the 1/0 packet memory that has been
doubly deallocated. If XDT has been included in the system, the deallocation routine checks
for bad deallocation and causes the system to fail if it occurs.

6.5 Rebuilding and Reincorporating a Loadable Driver

After correcting and assembling the driver source and updating the Executive object library,
simply unload the old version using the MCR command UNLOAD, task-build the new one,
and load it using the LOAD command. The commands for the Assembler, librarian, and
Task-Builder are shown in Section 5.2.

Once loaded, the data base is not removed by the UNLOAD command. If the data base is
in error and cannot be patched, correct its source, reassemble it, update the Executive object
library RSX11M.OLB, and build the new driver task. Then bootstrap the system before loading
the driver task image containing the corrected data base.

Debugging a User-Supplied Driver 6-13

Chapter 7
Executive Services Available to an |/O Driver

Because a driver is mapped within the Executive address space, it can call Executive routines
on the same basis as that of any other module in the Executive. The driver must observe the
protocol and conventions established on the system. The following sections summarize the
conventions, describe the address double word, explain what special processing is required for
NPR devices attached to a PDP-11 processor with extended memory support (22-bit addressing),
and summarize some of the typical Executive services available.

7.1 System-State Register Conventions

In system state, Registers 5 and 4 are nonvolatile registers, by convention. This means that
an internally called routine is required to save and restore these two registers if the routine
destroys their contents. Registers 3, 2, 1, and 0 are volatile registers and may be used by a
called routine without save and restore responsibilities.

When a driver is entered directly from an interrupt, it is operating at interrupt level, not at
system state. At interrupt level, any register the driver uses must be saved and restored. INTSV$
generates code to preserve Registers 5 and 4 for the driver’s use. All drivers must follow these
conventions.

See the description of the driver dispatch table in Section 4.5 for the contents of registers when
a driver is entered.

7.2 The Address Doubleword

RSX-11M-PLUS can accommodate configurations whose maximum physical memory is 2048K
words. Individual tasks, however, are limited to 32K words. The addressing is accomplished by
using virtual addresses and memory mapping hardware. I/O transfers, however, use physical
addresses 18 bits in length. Since the PDP-11 word size is 16 bits, some scheme is necessary to
represent an address internally until it is actually used in an I/O operation. DIGITAL decided to
encode two words as the internal representation of a physical address and to transform virtual
addresses for I/O operations into the internal doubleword format.

On receipt of a QIO directive, the buffer address in the Directive Parameter Block, which
contains a task virtual address, is converted to address doubleword format.

Executive Services Available to an 1/0 Driver 7-1

The virtual address in the DPB is structured as follows:

Bits 0 through 5 Displacement in terms of 32-word blocks
Bits 6 through 12 Block number
Bits 13 through 15 Page Address Register Number (PAR#)

The internal RSX-11M-PLUS translation restructures this virtual address into an address
doubleword as described in the following paragraphs.

The relocation base contained in the PAR (specified by the PAR number in the virtual address
in the DPB) is added to the block number in the virtual address. The result becomes the first
word of the address doubleword. It represents the nth 32-word block in a memory viewed as
a collection of 32-word blocks. Note that at the time the address doubleword is computed, the
user task issuing the QIO directive is mapped by the processor’s memory management registers.

The second word is formed by placing the block displacement (bits 0 through 5 of virtual
address) into bits 0 through 5. The block number field was accommodated in the first word
and bits 6 through 12 are cleared. Flnally, a 6 is placed in bits 13 through 15 to enable use of
PAR #6, which the Executive uses to service I/O for program transfer devices.

For non-processor request (NPR) devices, the driver requirements for manipulating the address
doubleword are direct and are discussed with the description of U.BUF in Section 4.4.4.

7.3 Drivers for NPR Devices Using Extended Memory

Special features must be built into drivers for non-MASSBUS NPR (non-processor request)
devices attached to a PDP-11 processor with extended-memory support (22-bit addressing).

Non-extended memory NPR devices on the PDP-11 processor must perform I/O transfers using
UNIBUS Mapping Registers (UMRs), as described in the PDP-11 Processor Handbook. One UMR
is required for each 4K words involved in the transfer—as specified by the contents of U.CNT
in the UCB. When multiple UMRs are required for a transfer, they must be contiguous.

A driver can be assigned UMRs through any one of the following three procedures:
* Dynamically allocating UMRs for the duration of the data transfer

* Dynamically allocating UMRs for longer periods of time

e Statically allocating UMRs during system generation

Note

In large systems, using the procedures above to hold UMRs for longer periods
than necessary can result in the blocking of other drivers and a reduction in
system throughput.

7-2 Executive Services Available to an 1/0 Driver

7.3.1 Calling $STMAP and SMPUBM or $STMP1 and $MPUB1

To obtain UMRs through use of the $STMAP and $MPUBM or the $STMP1 and $MPUB1
routines, a driver must observe the following conventions:

* Have available six words for a mapping register assignment block in the 22-bit working
storage area of the device’s controller request block (KRB). The end of this area is accessed
by adding the contents of K.OFF to the address at K.CSR. If the driver uses $STMP1 and
$MPUBI, it must also have available a 10-word block.

* Call the routine $STMAP or $STMP1 (Set Up UNIBUS Mapping Address) after getting the
I/0 packet.

* Call the routine SMPUBM or $MPUB1 (Map UNIBUS to Memory) before initiating a transfer.

These requirements are detailed in the following three subsections. Note that these routines are
only required when the driver is performing a data transfer.

7.3.1.1 Allocating a Mapping Register Assignment Block

The controller request block (KRB) of an NPR device requires a 6-word mapping register
assignment block located in the 22-bit working storage area. It does not have to be initialized.
Any initial contents are simply overwritten.

The following example shows the allocation of a mapping register assignment block.
-BLKW M.LGTH ;UMR WORK AREA

If the driver does not support parallel NPR operations requiring UMR mapping, it calls $STMAP
and $MPUBM. If the driver supports parallel NPR operations requiring UMR mapping, it must
call $STMP1 and $MPUBI. In the latter situation, the six additional words in the 22-bit working
storage area are not used but must still be present. In addition, the driver data base must provide
a 10-word mapping register assignment block for each data transfer to be mapped, as specified
in the description of $STMP1 later in Section 7.4.31.

7.3.1.2 Calling $STMAP or $STMP1

In the coding at the initiator entry point, after the call to $GTPKT, the NPR-device driver must
call the routine $STMAP or $STMP1. These routines dynamically allocate required UMRs.
If UMRs are not available immediately, the driver is blocked. Such blocking, if it occurs, is
completely transparent to the driver. The driver resumes processing at fork level when the
UMRSs have been allocated. The register returns are absolutely identical whether or not blocking
has occurred.

$STMAP or $STMP1 stores into U.BUF and U.BUF+2 (in the UCB), a UNIBUS address that
causes the appropriate UMR to be selected for mapping the transfer. The call to $STMAP or
$STMP1 must be conditionalized on M$$EXT.

Executive Services Available to an 1/0O Driver 7-3

7.3.1.3 Calling $MPUBM or SMPUB1

Before executing the transfer, the driver must call $SMPUBM or $MPUB1. These routines get the
buffer’s 22-bit physical address and load the UNIBUS mapping registers so that transfers are
mapped directly to the task’s space. The call to $MPUBM or $MPUB1 must be conditionalized
on M$$EXT.

If the driver calls $STMAP and $MPUBM, the UMRs allocated to it are deallocated during the
call to $IODON or $IOALT. If the driver calls $STMP1 and $MPUBI, it must call $DEUMR to
deallocate any allocated UMRs before calling $IODON or $IOALT.

7.3.2 Calling $ASUMR and $DEUMR

Use of the procedure described in Section 7.3.3 ensures that UMRs are always allocated.
However, a driver may not require UMRs to be allocated all of the time, and yet require UMRs
for periods of time longer than the normal time-frame between $GTPKT and $IODON (or
$IOALT). In such cases, there is a third procedure for allocating UMRs.

By using the Executive routines $ASUMR and $DEUMR, a driver can dynamically allocate,
retain over a desired time-frame, and deallocate URMs. Refer to Section 7.4 for descriptions of
the $ASUMR and $DEUMR routines.

Similar to the $STMAP/$MPUBM procedure, the use of $ASUMR and $DEUMR also requires
the allocation of a 6-word mapping register assignment block. In this instance, however, the
block must not be located in the 22-bit working storage area. $IODON or $IOALT, when
called, will attempt to deallocate the UMRs of a block found in the 22-bit working storage area.
To avoid this deallocation, the mapping register assignment block can be dynamically allocated
from the pool. Figure 7-1 details the format of the 6-word block. ‘

Figure 7-1: Mapping Register Assignment Block

M.LNK Link Word

M.UMRA Address of first assigned UMR

M.UMRN Number of assigned UMRs *4

M.UMVL Low 16 bits mapped by first assigned UMR
M.UMVH High 6 bits of High 2 bits mapped by
M.BFVH physical buffer address UMR (in bits 4 and 5)
M.BFVL Low 16 bits of physical buffer address

ZK-276-81

7.3.3 Statically Allocating UMRs During System Generation

UMRs can be statically assigned during system generation. The system generation procedure
defines the symbol N$$UMR equal to a fixed number of UMRs, multiplied by 4, that are statically
assigned to the system. Before assembling the Executive, you can cause the static allocation
of an additional number of UMRs by editing the Executive assembly prefix file RSXMC.MAC.

7-4 Executive Services Available to an 1/O Driver

The value of the symbol N$$UMR can then be increased to represent the additional number of
desired UMRs multiplied by 4.

The Executive assembly prefix file RSXMC.MAC further defines the following three symbols,
which describe the first UMR statically allocated during system generation:

USMRN The 1/O page address of the first UMR register available for allocation to the user
U$SSMLO The low-order 16 bits of the 18-bit UNIBUS address mapped by this UMR

U$SMHI The high-order two bits of the 18-bit UNIBUS address; these two bits are in bit
positions 4 and 5

These three symbols are not used by the system itself. They are available for the user’s
information.

7.4 Service Calls

This section contains general commentary on the Executive routines typically used by I/0
drivers. The descriptions of the routines are taken from the source code of modules linked to
form the Executive. Table 7-1 summarizes the routines described in this section. Only the most
widely used routines are described; however, many other Executive services are available. The
source code for the related routines is in the MACRO-11 source files for the Executive modules.

Table 7-1: Summary of Executive Service Calls for Drivers

Routine Location in

Name UFD [11,10] Function

$ACHKB EXSUB Address check for byte-aligned buffers
$ACHCK EXSUB Address check for word-aligned buffers
$ALOCB CORAL Allocate core buffer

$ASUMR MEMAP Assign UNIBUS mapping registers
$BLKCK MDSUB Check logical block number

$BLKC1 MDSUB Check logical block number

$BLKC2 MDSUB Check logical block number

$BLXIO BFCTL Move block of data

$CKBFI EXESB Check I/0 buffer

$CKBFR EXESB Check 1/0 buffer

$CKBFW EXESB Check 1/0 buffer

$CKBFB EXESB Check I/0 buffer

$CLINS QUEUE Clock queue insertion

$CVLBN MDSUB Convert logical block number

Executive Services Available to an 1/0O Driver 7-5

Table 7-1 (Cont.): Summary of Executive Service Calls for Drivers

Routine Location in

Name UFD [11,10] Function

$DEACB CORAL Deallocate core buffer

$DEUMR MEMAP Deassign UNIBUS mapping registers
$DQUMR MSCPDRV Dequeue from UMR wait

$DVMSG 10SUB Device message output

$FORK SYSXT Create a fork process

$FORK1 SYSTXT Fork but bypass clearing timeout count
$GTBYT BFCTL Get byte

$GTPKT IOSUB Get an I/O packet

$GSPKT 10SUB Get a special I/O packet

$GTWRD BFCTL Get word

$INIBF I0SUB Initiate I/O buffering

$INTSV SYSXT Interrupt save and restore

$INTXT SYSXT Interrupt exit

$IOALT IOSUB Alternate entry to $IODON

$IODON IOSUB 1/0 done for completing an 1/O request
$IOFIN I0SUB 1/0 finish for special I/O completion
$MPUBM MEMAP Map UNIBUS memory

$MPUB1 MEMAP Alternate $MPUBM entry for parallel operations
$PTBYT BFCTL Put byte

$PTWRD BFCTL Put word

$QINSP QUEUE Queue insertion by priority -

$RELOC MEMAP Relocate address

$RELOP MEMAP Relocate UNIBUS physical address
$REQUE IOSUB Queue kernel AST to task

$REQU1 IOSUB Queue kernel AST to task

$STMAP MEMAP Set up UNIBUS mapping address
$STMP1 MEMAP Alternate $STMAP entry for parallel operations
$TSPAR REQSB Test if partition memory resident for kernel AST
$TSTBF I0SUB Test for I/0 buffering

7-6 Executive Services Available to an I/O Driver

7.4.1 Address Check Routines (SACHKB, $ACHCK)

The Address Check Byte Aligned ($ACHKB) and Address Check Word Aligned ($ACHCK)
routines address check a block of memory to see whether it lies within the address space of the
current task.

Format

CALL $ACHKB
CALL $ACHCK

Input

In Register O:
Starting address of the block to be checked

In Register 1:
Length of the block to be checked, in bytes

Output
Condition Code

C=1 If address check failed
C=0 If address check succeeded

In Register 2:
Address of window block mapping buffer

Registers 0 and 3 preserved

Description

The Address Check routines are in the file IOSUB. A driver can call either routine to address
check a task buffer while the task is the current task. The Address Check routines are normally
used only by drivers setting UC.QUE in U.CTL. See Section 8.3 for an example.

Since privileged task 1/O buffers are not address checked, Register 2 always returns a pointer
to the first window block. Checkpointing and shuffling of commons will still work properly,
provided that a privileged task never specifies an 1/O into a common that it allows to remain
checkpointable and shuffleable. ‘

In RSX-11M-PLUS, almost all drivers will tend to use the alternate routines $CKBFB and
$CKBFW. In addition to address checking the user buffer, $CKBFB and $CKBFW correctly
maintain the attachment and partition I/O count mechanism. If the driver completes all
references to the buffer in the initiation routine (that is, fills the buffer and calls $IOFIN, rather
than queuing the packet or starting a transfer that is completed via interrupt service), then
the driver can use $ACHKB or $ACHCK. See Section 7.4.6 for a description of $CKBFB and
$CKBFW, and Section 8.3 for an example. ' -

Executive Services Available to an 1/0O Driver 7-7

7.4.2 Allocate Core Buffer Routines (SALOCB, $ALOC1)
The Allocate Core Buffer (JALOCB) and the alternate entry Allocate Core Buffer (JALOC1)
routines are called to allocate an executive core buffer.
Format

CALL $ALOCB
CALL $ALOC1

Input

In Register 0:
One of the following:

e For the $ALOCB routine, no expected input in RO
e TFor the $ALOC1 routine, the address of core allocation listhead -2

In Register 1:
Size, in bytes, of the core buffer to allocate

Output

Condition Code
Cc=1 If insufficient core is available to allocate the block
C=0 If the block is allocated

In Register 0:
Address of the allocated block

In Register 1:
Length of the allocated block

Description

The Allocate buffer routines are in the file CORAL. The allocation algorithm is first fit, and
blocks are allocated in multiples of four bytes.

The sample driver in Chapter 8 contains an instance of the use of $ALOCB.

7.4.3 Assign UNIBUS Mapping Registers Routine (SASUMR)
The $ASUMR routine is called to assign a contiguous set of UMRs.

Format

CALL $ASUMR

7-8 Executive Services Available to an 1/O Driver

Input
In Register 0:
Pointer to a mapping register assignment block

In M.UMRN(RO):
The number of UMRs required *4

In M.BFVL(RO):
The low address of transfer (for odd/even byte determination)

Output

Condition Code
C=1 If the UMRs could not be assigned
C=0 If the UMRs were successfully assigned

All registers preserved

Description

The $ASUMR routine is in the file MEMAP. It is used only for PDP-11/70 NPR devices
requiring UNIBUS Mapping Registers when 22-bit memory addressing is enabled. Normally, it
is not called directly by an I/O driver; it is called from within the $STMAP routine. Refer to
Section 7.3 for a discussion.

For the sake of speed, the link word of each mapping assignment block points to the UMR
address (second) word of the block, not the first word. The current state of UMR assignment is
represented by a linked list of mapping assignment blocks, each block containing the address
of the first UMR assigned and the number of UMRs assigned times 4. The blocks are linked in
the order of increasing first UMR address.

7.4.4 Check Logical Block Routines ($BLKCK, $SBLKC1, $BLKC2)

The following Check Logical Block routines are used by 1/O device drivers to handle logical
block numbers in data transfers:

® Logical Block Check ($BLKCK)
* Logical Block Check-Alternate Entry ($BLKC1)
* Logical Block Check-Alternate Entry for Queue Opt ($BLKC2)

Format

CALL $BLKCK
CALL $BLKC1
CALL $BLKC2

Executive Services Available to an 1/O Driver 7-9

Input
In Register 1:
Address of the I/0 packet

In Register 5:
Address of the UCB

Output

if the check fails:
$IODON is entered with a final status of “IE.BLK” and a return to the driver’s initiator entry
point is executed.

If the check succeeds:
The following registers are returned:

RO = Low part of logical block number

Rl = Points to LPRM +12 (low part of user LBN)
R2 = High part of logical block number

R3 = Address of I/O packet

Description
The $BLKCK routine is in the file MDSUB.

The $BLKCK routine is called by 1/O device drivers to check the starting and ending logical
block numbers of an 1/O transfer to a file structured device. If the range of blocks is not legal,
then $IODON is entered with a final status of “IE.BLK” and a return to the driver’s initiator
entry point is executed; otherwise a return to the driver is executed.

$BLKC2 returns to $QOPDN in $DRQRQ if there is an error instead of to the driver’s initiator
entry point. This allows the queue optimization code to use $BLKCK.

The output from these routines is used by disk drivers as input to the $CVLBN routine to
handle logical block numbers in data transfers.

The sample driver in Chapter 8 contains an instance of the use of $BLKCK and $BLKCI.
7.4.5 Move Block of Data Routine ($BLXIO)

The $BLXIO routine is called to move memory data in a mapped system.

Format
CALL $BLXIO

Input

In Register 0:
The number of bytes to move

7-10 Executive Services Available to an 1/0O Driver

In Register 1:
The source APR 5 bias

In Register 2:
The source displacement

In Register 3:
The destination APR 6 bias

In Register 4:
The destination displacement

Note

The count input in Register 0 must not be zero, and it must not be large
enough to cross APR boundaries (this typically means a maximum of 4 to
63K bytes).

Output
In the specified destination:
The block of data is moved,

If the move succeeds:
The following registers are returned:

RO -~ Contents destroyed

R1, R3 ~ Preserved

R2, R4 - Point to the last byte of source and destination +1
Description

The $BLXIO routine is in the file BFCTL.

The sample driver in Chapter 8 contains instances of the use of $BLXIO.

7.4.6 Check I/O Buffer Routines (SCKBFI, SCKBFR, SCKBFW, SCKBFB)

The following Check I/O Buffer routines are called to address check an I/O buffer associated
with an I/O packet that is under construction:

* Check I/O buffer for I-space (overlay) access ($CKBFI)
* Check I/0 buffer for read-only (byte) access ($CKBFR)
* Check 1/0 buffer for read-write (word) access ($CKBFW)
® Check I/O buffer for read-write (byte) access ($CKBFB)

Executive Services Available to an 1/O Driver 7-11

Format
CALL $CKBFI
CALL $CKBFR
CALL $CKBFW
CALL $CKBFB

input
In Register 0:
Starting address of block to be checked

In Register 1:
Length of buffer to be checked

In bufter SATIPT:
Address of LAADA in current I/O packet

In KISARG:
The header of the subject task

Output

Condition Code
Cc=1 If check is unsuccessful or packet could not be filled in
Cc=0 If check and packet update are successful

If the check succeeds

The following occurs:

I.LAADA or LAADA +2 points to the ADB
A.IOC and P.IOC are incremented

Description

The Check 1/O Buffer routines are in the file EXESB. These routines are called to address
check an I/O buffer associated with the current (under construction) I/O packet. If the address
check passes, then an attempt is made to point one of the attachment descriptor pointers at the
associated ADB. This will have one of the following results:

o There is currently no attachment pointer in the packet to this ADB, and the pointers are not
full. A pointer is filled in and the A.IOC, P.IOC fields for this I /O are incremented. This
is the “normal” (successful) case.

e There is already one pointer to this ADB. The packet is untouched, as are the A.IOC and
P.IOC fields, and the check is considered successful. The implication of not incrementing
A.IOC and P.IOC is that drivers and ACPs may not release buffers for an I/O request one
at a time; that is, the driver should not call $DECIO directly but should call $IODON or
$DECAL after all buffer access has completed.

7-12 Executive Services Available to an 1/0O Driver

* There are already two pointers, none of them to this attachment descriptor. This is
considered a check failure and return is made with carry set.

The sample driver in Chapter 8 contains an instance of the use of $CKBFR.

7.4.7 Clock Queue Insertion Routine ($CLINS)
The $CLINS routine is called to make an entry in the clock queue.

Format
CALL $CLINS

Input
In Register 0:
Address of the clock queue entry core block

In Register 1:
High-order half of Delta time

In Register 2:
Low-order half of Delta time

In Register 4.
Request type

In Register 5:
Address of requesting Task Control Block (TCB) or request identifier

Output

Resuit:
The clock queue entry is inserted in the clock queue according to the time that it will come
due.

Description

The $CLINS routine is in the file QUEUE.

The entry is inserted such that the clock queue is ordered in ascending time; thus the front
entries are most imminent and the back least imminent.

Note

On multiprocessor systems, a request with type C.SYST!100000 will be executed
on a particular UNIBUS run, with URM specified in C.URM. Type C.CYST
requests on MP systems are defaulted to run on any UNIBUS run, which in
practice will result in the request executing on the CPU which owns the clock
($CKURM).

The sample driver in Chapter 8 contains an instance of the use of $CLINS.

Executive Services Available to an 1/0 Driver 7-13

7.4.8 Convert Logical Block Number Routine ($CVLBN)
The $CVLBN routine converts a logical block number to a physical disk address.

Format
CALL $CVLBN

Input (same as $BLKCK output)
In Register 0:
Low part of logical block number

In Register 1:
Points to LPRM +12 (low part of user LBN)

In Register 2:
High part of logical block number

In Register 3:
Address of I/O packet

In Register 5:
The UCB address

Output
In Register 0:
The sector number

In Register 1:
The track number

In Register 2:
The cylinder number

Description

The $CVLBN routine is in the file MDSUB. The input to this routine is the same as the output
from the $BLKCK routine. Typically, a disk driver calls this routine to convert a logical block
number to a physical disk address. The routine accesses the U.PRM fields in the driver data
base unit control block. These fields contain the sector, track, and cylinder parameters for the
type of disk supported. Refer to the description of the U.PRM fields in Section 4.4.4.

The sample driver in Chapter 8 contains instances of the use of §CVLBN.

7-14 Executive Services Available to an 1/O Driver

7.4.9 Deallocate Core Buffer Routines (SDEACB, SDEAC1)
The following routines are called to deallocate an Executive core buffer:
® Deallocate Core Buffer ($DEACB)
® Deallocate Core Buffer-Alternate Entry ($DEAC1)

Format

CALL $DEACB
CALL $DEAC1

Input
In Register 0: ;
Address of the core buffer to be deallocated

In Register 1:
Size (in bytes) of the core buffer to be deallocated

In Register 3:
One of the following:

* For the $DEACB routine, no expected input in R3
¢ For the $DEACI routine, the address of core allocation listhead —2

Output
Result:

The core block is merged into the free core chain at the core address.
Description

The $DEACB routine is in the file CORAL. The block is inserted into the free block chain by
core address. If an adjacent block is currently free, then the two blocks are merged and inserted
in the free block chain.

The sample driver in Chapter 8 contains instances of the use of $DEACB.

7.4.10 Deassign UNIBUS Mapping Registers Routine ($DEUMR)
The $DEUMR routine deassigns a contiguous block of UMRs.

Format
CALL $DEUMR

Input

In Register 2:
Pointer to the assignment block

Executive Services Available to an 1/O Driver 7-15

Output
Registers 0 and 1 are preserved

Description

The $DEUMR routine is called to deassign a block of UMRs. $DEUMR is in the file MEMAP.
It is used only for NPR devices requiring UNIBUS Mapping Registers when 22-bit addressing
is enabled.

Normally this routine is not called directly by an 1/O driver but from within the $IODON
routine. When you call the $DEUMR routine directly, your driver must also contain a call to
the $DQUMR routine before it returns to the system. If your driver contains a call to $DEUMR
but none to $DQUMR (or to $IODON, which would call $DQUMR), the system may be left
with drivers waiting for available UMRs. This can cause problems at a later date.

Refer to Section 7.3, Drivers for NPR Devices Using Extended Memory, for a discussion of
assigning UMRSs for I/O transfers.

7.4.11 Dequeue From UMR Wait Routine ($DQUMR)
The $DQUMR routine checks to see if a driver is waiting for UMR assignment.

Format

CALL $DQUMR

Input
In (SP)
The return address to the driver’s caller
Output
Result:
The context of the waiting driver restored and the allocation routine called back
Description
The $DQUMR routine is in the file MEMAP.

First the calling driver is called back as a coroutine. When the calling driver issues a return
back to the $DQUMR routine, $DQUMR checks to see if any drivers are waiting for UMRs. If
so, the waiting driver’s context is restored without actually dequeuing the mapping assignment
block; control is passed back to the original UMR assignment routine.

7.4.12 Device Message Output Routine ($DVMSG)

The $DVMSG routine is called to submit a message to the task termination notification task.

Format
CALL $DVMSG

7-16 Executive Services Available to an 1/O Driver

Input
In Register 0:
Message number

In Register 5:
Address of the UCB or TCB that the message applies to

Output

Result:
A four-word packet is allocated and threaded into the task termination notification task’s
message queue.

In the second word of the packet:
The contents of Register 0

In the third word of the packet:

The contents of Register 5
Description
The $DVMSG routine is in the file IOSUB.

The $DVMSG routine submits a message to the task termination notification task. A message
is either device related or a checkpoint write failure from the loader. If the task termination
notification task is not installed or no storage can be obtained, then the message request is
ignored. $DVMSG can be set up and called as follows:

MOV #T.NDNR,RO
or

MOV #T.NDSE,RO
CALL $DVMSG

7.4.13 Fork Routine ($FORK)

The $FORK routine is called from an I/O driver to create a system process that will return to
the driver at stack depth zero to finish processing.

Format
CALL $FORK

Input

In Register 5:
Address of the UCB for the unit being processed

In O(SP):
Return address to the caller

Executive Services Available to an 1/0O Driver 7-17

7.4.16 Get Packet Routines (SGTPKT, $GSPKT)

The following Get Packet routines are called by device drivers to dequeue the next I/O request
to process:

e Get I/0O Packet From Request Queue routine ($GTPKT)
o Get Selective I/O Packet From Request Queue ($GSPKT)

Format

CALL $GTPKT
CALL $GSPKT

input
In Register 2:
Address of driver’s acceptance routine (if call is at $GSPKT)

In Register 5:
Address of the UCB of the controller for which the packet is called

Output

Condition Code
Cc=1 If controller is busy or no request can be dequeued
Cc=0 If a request was successfully dequeued

In Register 1:

Address of the 1/O packet

In Register 2:
Physical unit number

In Register 3:
Controller index

In Register 4:
Address of the status control block

In Register 5:
Address of the unit control block

Registers destroyed:
Registers 4 and 5

7-20 Executive Services Available to an 1/0O Driver

Description

Get Packet and Get Special Packet are in the file IOSUB. The recommended way to use $GTPKT
is to use the GTPKT$ macro call defined in Section 4.3. The use of $GSPKT is described briefly
in Section 1.4.7.

If the device controller is busy when the driver calls $GTPKT, then a carry set indication is
returned to the caller; otherwise an attempt is made to dequeue the next request from the
controller queue. If no request can be dequeued, then a carry set indication is returned to the
caller; otherwise the controller is set busy and a carry clear indication is returned to the caller.

If queue optimization is supported and enabled for the device, the appropriate packet for the
current optimization algorithm is returned. Three algorithms are supported: nearest cylinder,
elevator, and c scan. All three algorithms incorporate a fairness count. If the first packet on the
list is passed over more than “fcount” times, it is done immediately.

The alternate entry point $§GSPKT is intended for use by drivers that support parallel operations
on a single unit, a common example being full duplex. Such drivers are expected to look to
the system as if they are always free, while maintaining the status of all parallel operations
internally within their own device data structures. Parallelism is accomplished by coordinating
the handling of driver-defined classes of I/O function codes. For example, a full-duplex driver
would handle input requests in parallel with output requests. A driver calls $GSPKT when it
wants to dequeue a packet whose I/O function code belongs to a certain class. Which functions
qualify is determined by an acceptance routine in the driver whose address is passed to $GSPKT
in Register 2. The acceptance routine is called by $GSPKT each time a packet eligible to be
dequeued is found in the queue. The acceptance routine is then expected to take one of the
following three actions:

® Return with carry clear if the packet should be dequeued (in this case $GSPKT proceeds as
$GTPKT normally would on dequeuing the packet) '

* Return with carry set if the packet should not be dequeued (in this case $GSPKT will
continue the scan of the I/O queue)

® Add the constant G$$SPSA to the stack pointer to abort the scan with no further action

The acceptance routine must save and restore any registers that it intends to modify. When a
packet is dequeued via $GSPKT, the following normal $§GTPKT actions do not occur:

* Filling in of U.BUF, U.BUF+2, and U.CNT (these fields are available for driver-specific use)
® Busying of UCB and SCB
* Execution of $CFORK to get to proper processor (multiprocessor systems)

$GSPKT may not be used by a driver that supports queue optimization

7.4.17 Get Word Routine ($§GTWRD)
The $GTWRD routine is called to fetch the next word from the user buffer.

Format
CALL $GTWRD

Executive Services Available to an 1/0 Driver 7-21

Input
In Register 5:
Address of the UCB that contains the buffer pointers
Output
Result:

The next word is fetched from the user buffer

All registers preserved across call

Description

The $GTWRD routine is in the file BFCTL. It manipulates words U.BUF and U.BUF+2 in the
UCB. $GTWRD fetches the next word and returns it to the caller on the stack. After the word
has been fetched, the next word address is calculated.

7.4.18 Initiate |/O Buffering Routine (SINIBF)

Format
CALL $INIBF
The $INIBF routine is called to initiate I/O buffering.

input
In Register 3:
Address of packet for I/O request
Output
Register 3 preserved

Description

The $INIBF routine is in the file IOSUB. $INIBF initiates I/O buffering using the following
operations:

® Decrements the task’s I/O count
e Increments the task’s buffered I/O count
¢ Initiates checkpointing if a request is pending

The sample driver in Chapter 8 contains an instance of the use of $INIBF.

7-22 Executive Services Available to an 1/0 Driver

7.4.19 Interrupt Save Routines (SINTSV, SINTSE)

The following Interrupt Save routines are called from an interrupt service routine when an
interrupt is not going to be immediately dismissed:

* Interrupt Save routine ($INTSV)
* Interrupt Save routine for error logging devices ($INTSE)

Format
CALL $INTSV,PRn
CALL $INTSE,PRn
The value for n has a range of 0 through 7.

input
In 4(SP):
PSW pushed by interrupt

In 2(SP):
PC word pushed by interrupt

In O(SP):
Saved Register 5 pushed by JSR R5,$INTSV instruction

In O(RS):
New processor priority

Output

Result:
Interrupt service routine executes switch to system stack

In Register 4.
The controller index *2

New processor status is set

Description

The $INTSV routine is in the file SYSXT. The recommended way to use $INTSV is with the
INTSV$ macro call described in Section 4.3. . '

The $INTSV routine is called from an interrupt service routine when an interrupt is not going to
be immediately dismissed. A switch to the system stack is executed if the current stack depth is
+1. When the interrupt service routine finishes its processing, it either forks, jumps to $INTXT,
or executes a return. '

Register 4 is pushed onto the current stack and the current stack depth is decremented. If the
result is zero, then a switch to the system stack is executed. The new processor status is set and
a coroutine call to the caller is executed. Register 4 is set with the controller index %2, which is
determined from the PSW at entry. ~ -

Executive Services Available to an 1/O Driver 7-23

Note

A system macro, INTSVS$, is provided to simplify the coding of standard interrupt
entry processing. See Section 4.3.

7.4.20 Interrupt Exit Routine (SINTXT)

The $INTXT routine is called to exit from an interrupt.

Format

JMP $INTXT

Input
In O(SP):
Interrupt save return address
Output
Result:
A return to interrupt save is executed
Description
The $INTXT routine is in the file SYSXT. This routine may be called via a JMP instruction to

exit from an interrupt.

7.4.21 1/O Done Routines ($IOALT, $IODON, $IODSA)

The following $I/0 Done routines are called by device drivers at the completion of an I/O
request to do final processing:

e [/0 Done ($IODON)
* [/0 Done-Alternate Entry—($IOALT)
¢ 1/0 Done-For DSA Drivers-($I0ODSA)

Format

CALL $IOALT
CALL $I0DON
CALL $IODSA

Input
~In Register 0:
First I/O status word
In Register 1:
One of the following:

If entry is at $IODON or $IODSA, R1 is the second 1/O status word

7-24 Executive Services Available to an 1/0O Driver

* If entry is at $IOALT, then Register 1 is clear to signify that the second status word is
zero

In Register 2:
Starting and final error retry counts if error logging device

In Register 5:
Address of the unit control block of the unit being completed

In (SP):
Return address to driver’s caller

Output
The unit and controller are set idle

In Register 3:
Address of the current I/O packet

Contents of Register 4 are destroyed

Description
The $IODON, $I0ALT, and $IODSA routines are in the file IOSUB.

The 1/O Done routines are called by device drivers at the completion of an I/O request to
do final processing. The unit and controller are set idle and $IOFIN is entered to finish the
processing.

The $IODON and $IOALT routines push the address of routine $DQUMR onto the stack before
returning to the driver. If your driver calls these routines, do not use the stack for temporary
data storage.

If entry is at $IODSA, the following operations are not performed:
* UMR deallocation

® device busy status

* error logging finish code

The sample driver in Chapter 8 contains instances of the use of $IOALT and $IODON.

7.4.22 1/0O Finish Routine (SIOFIN)
The $IOFIN routine is called to finish I/O processing.

Format

- CALL $IOFIN

Executive Services Available to an 1/O Driver 7-25

7.4.25 Put Byte Routine ($PTBYT)

Format

CALL $PTBYT

Input
In Register 5:
Address of the UCB that contains the buffer pointers

In 2(SP)
Byte to be stored in the next location of the user buffer

Output

Result:
The byte is stored in the user buffer and removed from the stack

All registers are preserved across the call

Description

The $PTBYT routine is in the file BFCTL and manipulates words U.BUF and U.BUF+2 in the
UCB. 1t is called to put a byte in the next location in user buffer. The byte is stored in the user
buffer and removed from the stack. The next byte address is then incremented.

7.4.26 Put Word Routine ($PTWRD)

The $PTWRD routine puts a word in the next available location in the user buffer.

Format

CALL $PTWRD

Input

In Register 5:
Address of the UCB that contains the buffer pointers

In 2(SP):
Word to be stored in the next location of the buffer

Output

Result: :
The word is stored in the user buffer and removed from the stack

All registers are preserved across the call

7-28 Executive Services Available to an 1/0 Driver

Description

The $PTWRD routine is in the file BFCTL. It manipulates words U.BUF and U.BUF+2 in the
UCB. After the word has been stored in the user buffer and removed from the stack, the next
word address is calculated.

7.4.27 Queue Insertion by Priority Routine (SQINSP)

The $QINSP routine is called to insert an entry in a priority ordered list.

Format
CALL $QINSP

Input
In Register 0:
Address of the two-word listhead

In Register 1:

Address of the entry to be inserted
Output
Result:

The entry is linked into the list by priority

Registers 0 and 1 are preserved

Description

The $QINSP routine is in the file QUEUE. The Queue Insertion by Priority routine is used only
by drivers setting UC.QUE in U.CTL. See Section 8.3 for an example.

A driver may call the $QINSP routine to insert into the I/O queue an I/O packet that the
Executive has not already placed in the queue. The list is searched until an entry is found that
has a lower priority or until the end of the list is reached. The new entry is then linked into
the list at the appropriate point.

The sample driver in Chapter 8 contains an instance of the use of $QINSP.

7.4.28 Relocate Routine (SRELOC)

The $RELOC routine is called to transform a 16-bit user virtual address into a relocation bias
and displacement in block relative to APR 6.

Format
CALL $RELOC

Executive Services Available to an 1/0 Driver 7-29

input
In Register 0:

User virtual address to relocate
Output

In Register 1:
Relocation bias to be loaded into PAR6

In Register 2:
Displacement in block +140000 (PAR6 bias)

Registers 0 and 3 are preserved

Description

The $RELOC routine is in the file MEMAP. A driver may call $RELOC to relocate a task virtual
address while the task is the current task. Relocate is normally used only by drivers setting
UC.QUE in U.CTL. See Section 8.3 for an example.

The sample driver in Chapter 8 contains an instance of the use of $RELOC.

7.4.29 Relocate UNIBUS Physical Address Routine ($RELOP)
The $RELOP routine relocates a UNIBUS physical address to a KISAR6 bias and displacement.

Format
CALL $RELOP

Input

In Register 0:
Byte offset from address in U.BUF +1 and U.BUF +2

In Register 4.
SCB address

In Register 5:
UCB address

In U.BUF +1:
High-order bits of physical address

In U.BUF +2:
Low-order bits of physical address

7-30 Executive Services Available to an 1/0O Driver

Output
In KISARG:
Calculated bias (mapped system)

In Register 1:

Real address or displacement
Description
The $RELOP routine is in the file MEMAP.

7.4.30 Queue Kernel AST to Task Routines (SREQUE, SREQU1)

The following routines are used to requeue a task kernel AST that has been previously used as
a region load AST.

* Requeue a Region Load AST to a Task AST ($REQUE)
* Requeue a Region Load AST to a Task AST-Alternate Entry (SREQU1)

Format

CALL $REQUE
CALL $REQU1

Input
In Register 0:
TCB address of associated task

In Register 3:
Address of packet to be queued

Output
None

Description

The $REQUE routine is in module IOSUB. The buffered I/O count of the task is decremented
if the entry is at $SREQUE.

The sample driver in Chapter 8 contains instances of the use of $REQUE.

7.4.31 Set Up UNIBUS Mapping Address Routine ($STMAP)

The $STMAP routine is called by UNIBUS NPR device drivers to assign the UMRs and set up
the UNIBUS mapping address.

Format
CALL $STMAP

Executive Services Available to an 1/0 Driver 7-31

input

In Register 4:
Address of device SCB

In Register 5:
Address of device UCB

In (SP):
Return to driver’s caller

Output

in the device UCB:
UNIBUS map addresses

In the SCB:
The actual physical address

Registers 1 through 3 are preserved across the call

Description

The $STMAP routine is in the file MEMAP. It is used only for NPR devices requiring UNIBUS
Mapping Registers when 22-bit memory addressing is enabled. See Section 7.3 for a discussion.

The $STMAP routine is called by UNIBUS NPR device drivers to set up the UNIBUS mapping
address, first assigning the UMRs. If the UMRs cannot be allocated, the driver’s mapping
assignment block is placed in a wait queue and a return to the driver’s caller is executed. The
assignment block will eventually be dequeued when the UMRs are available. The driver will
be remapped and returned to with the contents of Registers 1 through 5 preserved and with
the normal outputs of this routine. The driver’s context is stored in the assignment block and
fork block while it is blocked and in the wait queue. Once a driver’s mapping assignment
block is placed in the UMR wait queue, it is not removed from the queue until the UMRs are
successfully assigned. This strategy ensures that waiting drivers will be serviced on a FIFO basis
and that drivers with large requests for UMRs will not wait indefinitely.

The $STMAP routine pushes the address of routine $DQUMR+2 onto the stack before returning
to the caller. If your driver calls this routine, do not use the stack for temporary data storage.

The sample driver in Chapter 8 contains an instance of the use of $STMAP.

7.4.32 Set Up UNIBUS Mapping Address Alternate Entry Routine ($STMP1)

Format

CALL $STMP1

7-32 Executive Services Available to an 1/0 Driver

Input
In Register 0:
Address of the alternate data structure (see Description)

In Register 4:
Address of device SCB

In Register 5:
Address of device UCB

Output

Result:
Data structure pointers set up for entry to $STMP2 in $STMAP

Description

The $STMP1 routine is in the file MEMAP. It is used only for NPR devices that require
UNIBUS Mapping Registers when 22-bit memory addressing is enabled and for support parallel
operations.

This entry code sets up an alternate data structure used as a UMR mapping assignment block
and context storage block, in the same manner as $STMAP uses the fork block and mapping
block in the SCB, KRB. The format of the structure is as follows:

1. Four words used for saving driver’s context in case UMRs cannot be mapped immediately
2. Six words used as a UMR mapping assignment block

The $STMAP routine pushes the address of routine $DQUMR+2 onto the stack before returning
to the caller. If your driver calls this routine, do not use the stack for temporary data storage.

7.4.33 Test if Partition Memory Resident for Kernel AST Routine ($TSPAR)
The $TSPAR routine tests whether a partition is in memory for a kernel AST.

Format

CALL $TSPAR

Input

In Register 0:
Address of packet being processed

In Register 1:
PCB address of region

In Register 5:
TCB address of associated task

Executive Services Available to an 1/0 Driver 7-33

Output
Condition Code

C=0 If region is memory-resident
C=1 If region is non-resident (In this case the region AST has been queued)
Description

The $TSPAR routine is in the file REQSB. It is called to check a region for memory residence to
determine if it is safe to service a kernel AST (for example, to copy a buffer) into the region. If
the region is checkpointed or currently being checkpointed, then a region load AST is queued
and the region is accessed on the task’s behalf.

The sample driver in Chapter 8 contains an instance of the use of $TSPAR.

7.4.34 Test for I/O Buffering Routine (STSTBF)
The $TSTBF routine tests whether 1/0O buffering can be initiated.

Format

CALL $TSTBF

Input
In Register 3:
Address of packet for I/O request
Output
Condition Code
C=0 If 1/O buffering can be initiated
Cc=1 If I/0O buffering cannot be initiated

Register 3 preserved

Description

The $TSTBF routine is in the file IOSUB. It determines whether a given I/O request is eligible
for I/0 buffering; if so, it finds the Partition Control Block address (PCB) that indicates the
region in memory where the transfer will occur. It stores this address in LPRM+16 of the I/O
packet.

The sample driver in Chapter 8 contains an instance of the use of $TSTBF.

7-34 Executive Services Available to an 1/0O Driver

Chapter 8

Sample Driver Code

This chapter presents three sections of code. Sections 8.1 and 8.2 show the driver data base
and driver code for a conventional driver. Section 8.3 gives a coding example from a driver
that inhibits the automatic packet queuing in QIO processing so that it might address-check
and relocate a special user buffer. Both of the sample drivers are in directory [USER] on the

distribution kit.

In addition to the examples shown in this chapter, you should review the source code for one
or more, standard, DIGITAL-supplied drivers. You should also examine the files SYSTB.MAC
and xxTAB.MAC (where xx is the device mnemonic), which contain data structures created at
system generation.

8.1 Sample Driver Data Base

The following example shows the source code to create the data base for the driver that supports
the DL device. The data base allows for one controller and one unit.

.TITLE DLTAB
.IDENT /09.0/

SYSTEM TABLES
MACRO LIBRARY

.MCALL
.MCALL
.MCALL
.MCALL

CLKDF$
HWDDF$
SCBDF$

UCBDF$

CALLS

CLKDF$
HWDDF$
SCBDF$
UCBDF$

DEFINE CLOCK BLOCK OFFSETS

DEFINE HARDWARE REGISTERS

DEFINE SCB OFFSETS

USERS OF THIS OR ANY CONTROL BLOCK SHOULD
NEVER SPECIFY THE SYSDEF ARGUMENT BUT SHOULD
ALLOW THE DEFINITION TO BE RESOLVED FROM
THE EXECUTIVE .STB FILE

Sample Driver Code 8-1

$DLDAT: :

.WORD
$CTBO:

.WORD

.ASCII

.WORD

.BYTE

.BYTE
$DLCTB: :

.WORD
$DLTBL=0
$DLDCB: :

.DCO:

.WORD

.WORD

.ASCII

.BYTE

.WORD

.WORD

.WORD

.WORD

;DLST=.
.WORD

.DLO::
.WORD
.WORD
.BYTE
.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.BYTE
.WORD

0

$CTB1
/pL/
.DCo
1

0

$DLA

.DC1

.DCO

/DL/

0,0
DLND-DLST
$DLTBL

;LOADABLE DLDRV

.ICB

[

.LNK
.NAM
.DCB

.STS
.KRB

[al ol ol ol ol

D.LNK
D.UCB
D.NAM
D.UNIT
D.UCBL

; D.DSP

DL CTB

DL DCB

177477,70,0,177200,377,0,0,377 ; D.MSK

0

0

.DCO
-2

UC.ALG!UC.NPRIUC.PWF!1,US.MNT

0,US.OFL

; D.PCB

DL UCB'S

DV.DIR!DV.MSD!DV.UMD!DV.F11!DV.MNT

0

50000

512.

$DLO
0,0,0,0,0,0,0
40.,2.

512.

8-2 Sample Driver Code

DLND=.

$DLA: :

$DLO: :

DLA:

$DLEND: :

.BYTE
.BYTE
.BYTE
.WORD
.WORD
.WORD
.BYTE
.WORD

CONTIGUOUS

.WORD
.WORD
.WORD
.WORD
.BYTE
.BYTE
.BYTE
.BYTE
.WORD
.WORD
.BYTE
.BYTE
.WORD
.BLKW
.WORD

.DC1 =0

$CTB1 =

8.2 Sample Driver Code

The following example shows the source code for the DL driver. Comments beginning with ’;;;

0
.END

PR6
160/4
02,0
O!KS.OFL
174400
DLA-$DLA
0,0

0

-2

.o..
(=]
o

OCOdOOOOO

$2.L0G!S2.CON
$DLA

OCMO O~

3

s
’
2
s

S C B HERE

DLA KRB

.PRI
.VCT
.CON, K.IOC
.8TS
.CSR
.OFF
.HPU
.OWN

RARAERRRI =N

FOR DL

.LHD AND K.CRQ
.FRK

.KS5

.PKT

.CTM

IT™M

.STS

.8T3

.8T2

.KRB

.RCNT

.ROFF

.EMB

MAPPING ASSIGNMENT BLOCK
KE.RHB

nunnunomnnmnmmnmmnunmonon

END OF DCB LIST FOR DL:
END OF CTB LIST FOR DL:

7

indicate that the instruction is being executed at a priority level greater than or equal to 5.

.TITLE_ DLDRV

. IDENT

/01/

; RL11-RLO1/02 DISK DRIVER

.MCALL HWDDF$,PKTDF$

HWDDF$
PKTDF$

; EQUATED SYMBOLS

;DEFINE HARDWARE REGISTERS
;DEFINE I/0 PACKET OFFSETS

Sample Driver Code 8-3

RETRY= 8. ; CONTROLLER ERROR RETRY COUNT
RLBPT= 512.%20. ;BYTES PER SURFACE

RLSPU= 15. ;TIME TO SPIN UP

; RL11 DEVICE REGISTER OFFSETS

RLCS= O ;CONTROL STATUS REGISTER
RLBA= 2 ;BUS ADDRESS REGISTER
RLDA= 4 ;DISK ADDRESS REGISTER
RLMP= 6 ; MULTIPURPOSE REGISTER

; RLCS BIT ASSIGNMENTS

ERR= 100000 ; COMPOSITE ERROR

DE= 040000 ;DRIVE ERROR

NXM= 020000 ; NONEXISTENT MEMORY
DLT= 010000 ;DATA LATE

HNF= 010000 ;HEADER NOT FOUND

DCK= 004000 : ;DATA CHECK ERROR
HCRC= 004000 ;HEADER CRC ERROR

OPI= 002000 ;OPERATION INCOMPLETE
DRDY= 1 ;DRIVE READY

WCHK= 2 ;WRITE CHECK FUNCTION
WRITE= 2 ;WRITE OFFSET

GSTS= 4 ;GET DRIVE STATUS FUNCTION
SEEK= 6 ;SEEK FUNCTION ‘
RDH= 10 ;READ HEADERS FUNCTION
READ= 14 ;READ DATA FUNCTION
IE= 100 ; INTERRUPT ENABLE
CRDY= 200 ;CONTROLLER READY

; RLDA STATUS CODES

MRK= 1 ;MARKER BIT

STS= 2 ;GET STATUS BIT

SN= 4 ;SIGN BIT FOR SEEK

RST= 10 ;DRIVE RESET BIT

HS= 20 ;HEAD SELECT BIT FOR DIFFERENCE
REV= 200!MRK ;REVERSE SEEK DIFFERENCE WORD

; RLMP GET STATUS BIT ASSIGNMENTS

’

8-4 Sample Driver Code

WDE= 100000 ;WRITE DATA ERROR

CHE= 040000 ; CURRENT HEAD ERROR
WLS= 020000 ;WRITE LOCK STATUS
SKTO= 010000 ; SEEK TIMEOUT ERROR
SPD= 004000 ; SPEED ERROR

WGE= 002000 ;WRITE GATE ERROR
ve= 001000 ; VOLUME CHECK

DSE= 000400 ;DRIVE SELECT ERROR
DT= 000200 ;DRIVE TYPE

HSS= 000100 ;HEAD SELECT STATUS
Co= 000040 ; COVER OPEN

HH= 000020 ;HEADS HOME

BH= 000010 ; BRUSHES HOME

SLM= 000005 ;DRIVE IN SEEK-LINEAR MODE STATE
; LOCAL DATA

; CONTROLLER IMPURE DATA TABLES

; THESE ARE INDEXED BY THE CONTROLLER NUMBER

RTTBL: .BLKW R$$L11 ;RETRY COUNT FOR CURRENT OPERATION
PRMSV: .BLKW R$L11*5 ;PARAMETER SAVE AREA FOR WRITE CHECK

;DRIVER DISPATCH TABLE

DDT$ DL,R$$L1,NEW=Y ;GENERATE DISPATCH TABLE

i **~DLINI-RL11-RLO1/02 DISK CONTROLLER INITIATOR

; THIS ROUTINE IS ENTERED FROM THE QUEUE I/0 DIRECTIVE WHEN AN I/0

; REQUEST IS QUEUED AND AT THE END OF A PREVIOUS I/0 OPERATION TO

; PROPAGATE THE EXECUTION OF THE DRIVER. IF THE SPECIFIED CONTROLLER

; I8 NOT BUSY, THEN AN ATTEMPT IS MADE TO DEQUEUE THE NEXT I/0 REQUEST.
; ELSE A RETURN TO THE CALLER IS EXECUTED. IF THE DEQUEUE ATTEMPT

IS SUCCESSFUL, THEN THE NEXT I/0 OPERATION IS INITIATED. A RETURN
TO THE CALLER IS THEN EXECUTED.

INPUTS:
R5=ADDRESS OF THE UCB OF THE CONTROLLER TO BE INITIATED.

; OUTPUTS:
H IF THE SPECIFIED CONTROLLER IS NOT BUSY AND AN I/0 REQUEST IS

WAITING TO BE PROCESSED, THEN THE REQUEST IS DEQUEUED AND THE
DRIVER INITIATES THE REQUESTED I/0 FUNCTION

DLINI: GTPKT$ DL,R$$L11 :GET NEXT I/0 PACKET TO PROCESS

Sample Driver Code

58:

THE FOLLOWING ARGUMENTS ARE RETURNED BY $GTPKT:

R1=ADDRESS OF THE I/0 REQUEST PACKET

R2=PHYSICAL UNIT NUMBER OF THE REQUESTED DRIVE
R3=CONTROLLER INDEX

R4=ADDRESS OF THE STATUS CONTROL BLOCK

R65=ADDRESS OF THE UCB OF THE DRIVE TO BE INITIATED

RL11-RLO1/

WD.
WD.
WD.
WD.
WD.
WD.
WD.
WD.
WD.
WD.
WD.
WwD.
WwD.
WD.
WwD.
WD.
WD.
WwD.

02

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21

DISK CONTROLLER I/0 REQUEST PACKET FORMAT:

-- I/0 QUEUE THREAD WORD

-- REQUEST PRIORITY, EVENT FLAG NUMBER

-- ADDRESS OF THE TCB OF THE REQUESTOR TASK

-- POINTER TO 2ND LUN WORD IN REQUESTOR TASK HEADER
-~ CONTENTS OF FIRST LUN WORD

-- I/0 FUNCTION CODE

-- VIRTUAL ADDRESS OF I/0 STATUS BLOCK

-- RELOCATION BIAS OF I/0 STATUS BLOCK

-- I/0 STATUS BLOCK ADDRESS (DISPLACEMENT + 140000)
-- VIRTUAL ADDRESS OF AST SERVICE ROUTINE

-- MEMORY EXTENSION BITS OF I/0 TRANSFER

-- BUFFER ADDRESS OF I/0 TRANSFER

-- NUMBER OF BYTES TO BE TRANSFERRED

-- NOT USED.

-- LOW BYTE MUST BE ZERO AND HIGH BYTE IS NOT USED
-- LOW PART OF LOGICAL BLOCK NUMBER OF I/0 REQUEST
-- RELOCATION BIAS OF REGISTER BUFFER ELSE NOT USED
-- REGISTER BUFFER ADDRESS (DISPLACEMENT + 140000) ELSE NOT USED

DRIVER USE OF WORDS IN I/0 PACKET:
I.PRM+6 (WD. 15) - SEEK DIFFERENCE WORD
I.PRM+10 (WD. 16) - STARTING DISK ADDRESS FOR THIS TRANSFER
I.PRM+12 (WD. 17) - BYTE COUNT FOR THIS TRANSFER

MOV
CALL
BCS
TST
BMI
TST
BPL
MOV
CALL
MOV
MoV
MoV
JMP

#RETRY&377 ,RTTBL(R3) ;SET INITIAL RETRY COUNT

$VOLVD ;VALIDATE VOLUME VALID

5% ;IF CS WE FAILED

RO ; TRANSFER FUNCTION?

10% ;IF MI YES

I.PRM+2(R1) ;SIZE THE DISK?

5% ;IF PL NO, ERROR

S.CSR(R4) ,R2 ;RETRIEVE CSR ADDRESS
DLRST ;RESET DRIVE AND GET STATUS

S.PKT(R4) ,R3 ;RETRIEVE I/0 PACKET ADDRESS
I.PRM+14(R3) ,KISAR6 ;SET BUFFER RELOCATION BIAS

CALL ;MOVE REGISTERS INTO BUFFER
DLFIN ;FINISH UP

8-6 Sample Driver Code

10$: CALL $STMAP ;SET UP UNIBUS MAPPING ADDRESS
MOVB R2,U.BUF+1(R6) ;SET CURRENT UNIT NUMBER
MOV #IE.IFC&377,RO ;ASSUME ILLEGAL FUNCTION
BIS #READ!IE,U.BUF(R5) ;ASSUME READ LOGICAL FUNCTION
CMPB #I0.RLB/256.,I.FCN+1(R1) = ;REALLY?

BEQ 20% ;IF EQ YES
CMPB #10.WLB/256.,I.FCN+1(R1) ;WRITE LOGICAL FUNCTION
BNE 5% ;IF NE NO, EXIT WITH ERROR

SUB #WRITE,U.BUF (RS) ;CONVERT TO WRITE LOGICAL FUNCTION
20$: MOV #RETRY,RTTBL(R3) ;SET INITIAL RETRY COUNT
MoV I.PRM+12(R1) ,RO ;RETRIEVE BLOCK NUMBER

CLR R2 : ;CLEAR HIGH ORDER BLOCK NUMBER
BITB $I0.wPB&377,1.FCN(R1) ;PHYSICAL BLOCK FUNCTION?
BNE 35% ;IF NE YES

CALL $BLKCK ;CHECK LOGICAL BLOCK NUMBER

CMPB #I0.WLB/256.,I.FCN+1(R3) ;WRITE FUNCTION?

BNE 30% ;IF NE NO

BITB #I0.WLT&377,1.FCN(R3) ;0K TO WRITE ON LAST TRACK?
BNE 308 ;IF NE YES

Mov RO,I.PRM+6(R3) ;YES, SAVE STARTING BLOCK NUMBER
ADD #°D<20>,I.PRM+12(R3) ;ADD 1 TRACK'S WORTH OF BLOCKS

CALL $BLKC1 ;CHECK IF WRITE ON LAST TRACK OF DISK
MOV I.PRM+6(R3) ,RO ;RESTORE ORIGINAL STARTING BLOCK NUMBER
30%: ASL RO ;CONVERT BLOCKS TO SECTORS
35%: MOV S.PKT(R4) ,R3 ;RESET I/0 PACKET ADDRESS
CALL $CVLBN ;CONVERT BLOCK NUMBER TO DISK ADDRESS
ROR R1 ;PUT SURFACE BIT IN CARRY
ROL R2 ;MERGE IT WITH THE CYLINDER NUMBER
ASH #6 ,R2 ;POSITION CYLINDER AND SURFACE
BIS RO,R2 ;MERGE SECTOR WITH CYLINDER AND SURFACE

MOV R2,I.PRM+10(R3) ;SAVE STARTING DISK ADDRESS
MOV U.CNT(R5) ,I.PRM+12(R3) ;ASSUME ONLY ONE XFER NEEDED

MOV #°D<40>,R1 ;SET SECTORS/SURFACE

SUB RO,R1 ;CALCULATE SECTORS LEFT ON SURFACE
SWAB R1 ;GET BYTES LEFT ON SURFACE

CMP U.CNT(R5) ,R1 ;ARE ADDITIONAL TRANSFERS REQUIRED?
BLOS 40$;IF LOS NO

MOV R1,I.PRM+12(R3) ;SET BYTE COUNT FOR FIRST TRANSFER
40%: MOVB S.CON(R4) ,R1 ;RETRIEVE CONTROLLER INDEX

MUL #5,R1 ;FORM INDEX INTO PARAMETER SAVE AREA

ADD $PRMSV,R1 ;POINT TO THIS ENTRY

MOV U.BUF(R5), (R1)+ ;SAVE INITIAL PARAMETERS

MOV U.BUF+2(R5), (R1)+ ;...

MoV U.CNT(R5), (R1)+ ;...

MoV I.PRM+10(R3),(R1)+ ;...

MOV I.PRM+12(R3),(R1)+ ;...
4

; THIS SECTION WILL INITIATE THE OPERATION

Sample Driver Code 8-7

DLINIO: CALL $MPUBM ;MAP UNIBUS TO TRANSFER

MOV S.CSR(R4) ,R2 ;GET ADDRESS OF CSR
MOV S.PKT(R4) ,R3 ;GET ADDRESS OF I/0 PACKET
CLRB U.CW2+1(R5) ;RESET DRIVE SETTLE DOWN FLAG
CLR I.PRM+6(R3) ;RESET ERROR DIFFERENCE WORD
MOVB S.ITM(R4) ,S.CTM(R4) ;SET DEVICE TIMEOUT COUNTER
CALL DLRST ;RESET DRIVE AND GET STATUS
MoV RLMP(R2) ,R1 ;GET THE STATUS INFO
BIC #WLS!DT!HSS,R1 ;REMOVE IRRELEVANT BITS
BIT #DRDY, (R2) ;IS THE DRIVE READY?
BEQ 108 ;IF EQ NO
CMP #HH!BH!SLM,R1 ;HEADS, BRUSHES AND STATE OK?
BEQ . 20% ;IF EQ YES
10$: BITB #US.SPU,U.STS(R5) ;IS DRIVE SPINNING UP?
BNE DLPWF1 ;IF NE YES, WAIT FOR IT TO SPIN UP
MOV #IE.DNR&377,RO ;SET RETURN ERROR CODE
JMP DLFIN ;EXIT WITH FATAL ERROR
20%: BICB #US.SPU,U.STS(R6) ;RESET DRIVE SPINNING UP
MOV I.PRM+10(R3) ,R0 ;RETRIEVE STARTING DISK ADDRESS
CALL DLDIFF ;CALCULATE DIFFERENCE WORD
DLGO: BEQ 30% ;IF EQ NO SEEK IS NECESSARY
MOV #SEEK,R1 ;GET CODE FOR SEEK FUNCTION
CALL DLXCT ;EXECUTE THE SEEK
BMI DLEROR ;IF MI ERROR DURING SEEK FUNCTION
30$: ADD #RLMP,R2 ;POINT TO RLMP
MOV I.PRM+12(R3) ,R1 ;GET BYTE COUNT
ROR R1 ;MAKE IT A WORD COUNT
NEG R1 ;ALSO NEGATIVE
MOV R1, (R2) ;LOAD WORD COUNT

MOV I.PRM+10(R3),-(R2) ;LOAD STARTING DISK ADDRESS
MOV U.BUF+2(R5) ,-(R2) ;LOAD BUS ADDRESS

CALL $BMSET ;SET I/0 ACTIVE BIT IN MAP

MOV U.BUF(R5),-(R2) ;;;LOAD FUNCTION AND GO

i+

; CANCEL I/0 OPERATION IS A NOP FOR FILE STRUCTURED DEVICES.

DLCAN: RETURN ;5 NOP FOR RL11

; POWERFAIL IS HANDLED VIA THE DEVICE TIMEOUT FACILITY AND

; CAUSES NO IMMEDIATE ACTION ON THE UNIT. THE CURRENT TIMEQUT

; COUNT IS EXTENDED, THUS IF A UNIT WAS BUSY IT WILL HAVE

; SUFFICIENT TIME TO SPIN BACK UP. THE NEXT I/0 REQUEST TO ANY

; UNIT WILL BE SUSPENDED FOR AT LEAST THE EXTENDED TIMEQUT UNLESS
; THE UNIT IS CURRENTLY READY.

DLPWF: TSTB S.STS(R4) ;IS DRIVE CURRENTLY BUSY?
BEQ DLPWF2 ;IF EQ NO
MOVB #4,2.STS(R4) ;ALLOW FOR A FULL MINUTE TO SPIN UP

DLPWF1: MOVB #RLSPU,S.CTM(R4) ;EXTEND TIMEOUT IN CASE UNIT WAS BUSY
DLPWF2: BISB #US.SPU,U.STS(R5) ;SET UNIT SPINNING UP
RETURN :

8-8 Sample Driver Code

; **-$DLINT-RL11-RLO1/02 DISK CONTROLLER
; INTERRUPT AND ERROR SERVICE ROUTINES

.ENABL LSB
$DLINT: :INTSV$ DL,PRS,R$$L11 ::;SAVE REGISTERS AND SET PRIORITY
CALL $FORK ;+CREATE A SYSTEM PROCESS
MOV R4,R3 ;COPY CONTROLLER INDEX
ASRB RTTBL+1(R3) ;HOME SEEK IN PROGRESS?
BCS DLINIO ;IF CS YES

MOV U.SCB(R5) ,R4 ;GET ADDRESS OF SCB
MOV S.CSR(R4) ,R2 ;GET ADDRESS OF CSR
MoV #IS.SUCE377,RO ;ASSUME SUCCESSFUL OPERATION
MOV S.PKT(R4) ,R3 ;RETRIEVE I1/0 PACKET ADDRESS

MoV (R2) ,Rt ;GET CONTENTS OF RLCS

BMI 20% ;IF MI AN ERROR OCCURRED

SUB I.PRM+12(R3) ,U.CNT(RS) ;CALCULATE BYTES LEFT TO XFER
BEQ 70$;IF EQ NONE LEFT

MOV U.CNT(RB) ,I.PRM+12(R3) ;ASSUME LAST XFER COMING
CMP U.CNT(R5),#RLBPT ;IS THIS THE LAST TRANSFER?

BLOS 10% ;IF LOS YES

Mov #RLBPT,I.PRM+12(R3) ;TRANSFER A WHOLE TRACKS WORTH
10$: BIC #CRDY,R1 ;CLEAR CRDY TO START FUNCTION

MOV R1,U.BUF(R5) ;SAVE CURRENT FUNCTION AND ADDRESS BITS

Mov RLBA(R2) ,U.BUF+2(R5) ;SAVE CURRENT BUS ADDRESS
Mov I.PRM+10(R3) ,R0O ;GET INITIAL DISK ADDRESS

MOV RO,R1 ;COPY DISK ADDRESS
BIS #77,RO ;UPDATE CYLINDER AND SURFACE ...
INC RO ;... LEAVING SECTOR BITS ZERO
Mov RO,I.PRM+10(R3) ;SAVE NEW DISK ADDRESS
CALL DLDIFO ;CALCULATE MID-TRANSFER DIFFERENCE
JMP DLGO ;GO DO THE OPERATION
20%: BIT #DRDY,Rt ;I8 THE DRIVE READY?
BNE DLEROR ;IF NE YES, GO CHECK FOR ERRORS
258%: MOVB #3,5.CTM(R4) ;WAIT 3 SECONDS FOR THE DRIVE TO SETTLE
INCB U.CW2+1(R5) ;FLAG SETTLE DOWN IN PROGRESS
RETURN

Sample Driver Code 8-9

DLEROR: MOV
MOV
BIT
BNE
BIT
BEQ
CALL
BIT
BEQ
BIT
BEQ
MoV
BR

408$: BIT
BNE
BIT
BNE
BIT
BEQ
MOV
BR

708$: BITB
BNE
BITB
BEQ

80$: MOV
BIT
BEQ
BIT
BEQ
MOVB
MOV
MUL
ADD
MOV
MOV
MOV
MOV
MOV
BIC
JMP

;+

(R2) ,R1
#IE.VER&377,RO
#NXM,R1

90$

#DE,R1

40$

DLGST

#WGE ,RLMP (R2)
90$

#WLS ,RLMP (R2)
DLRTRY
#IE.WKK&377,RO
DLFIN
#10,U.BUF (R5)
DLRTRY

#0PI,R1

DLRTRY

#DCK ,R1

DLRTRY
#IE.WCK&377,RO
DLRTRY

#10.WLC&377,1.FCN(R3)

80%

#US . WCK,U.STS(R5)

DLFIN
U.BUF(R5) ,R1
#WCHK ,R1
DLFIN

#10,R1

DLFIN
S.CON(R4) ,R1

;RETRIEVE CONTENTS OF RLCS
; ASSUME UNRECOVERABLE ERROR
; NON-EXISTENT MEMORY?

;IF NE YES

;DRIVE PROBLEMS?

;IF EQ NO

;EXECUTE GET DRIVE STATUS FUNCTION
;WRITE GATE ERROR?

;IF EQ NO

;IS THE DRIVE WRITE LOCKED?
;IF EQ NO

;SET WRITE LOCK ERROR CODE

;WRITE CHECK FUNCTION?

;IF NE NO

;OPERATION INCOMPLETE?

;IF NE YES

;WRITE CHECK ERROR

;IF EQ NO

;YES, SET WRITE CHECK ERROR CODE
;GO RETRY OPERATION IF REQUIRED

;WRITE WITH WRITE CHECK?
;IF NE YES

;WRITE CHECK ENABLED?

;IF EQ NO

;GET CURRENT FUNCTION CODE
;WRITE OR WRITE CHECK FUNCTION?
;IF EQ NO

;WAS FUNCTION WRITE CHECK?

;IF EQ YES

;RETRIEVE CONTROLLER INDEX

#RETRY ,RTTBL (R1) ;RESET RETRY COUNT

#5,R1
#PRMSV,R1

(R1)+,U.BUF(R5)

;FORM AN INDEX INTO SAVE AREA

;RESTORE STARTING PARAMETERS

(R1)+,U.BUF+2(R5) ;...

(R1) +,U.CNT(R5)

(R1)+,I.PRM+10(R3) ;...
(R1)+,I.PRM+12(R3) ;...

#10,U.BUF (R5)
DLINIO

; FINISH I/0 OPERATION

908$: MOV

DLFIN: MOV
MOV
SUB
MOVB
MOVB
BIS
CALL
JMP

#IE.VER&377,RO
S.PKT(R4) ,R2
I.PRM+4(R2),R1
U.CNT(RS) ,R1
S.CON(R4) ,R3
RTTBL (R3) ,R2

#RETRY*"D<256>,R2

$I0DON
DLINI

8-10 Sample Driver Code

;CONVERT TO WRITE CHECK FUNCTION
;START THE WRITE CHECK

;SET UNSUCCESSFUL OPERATION
;GET ADDRESS OF I/0 PACKET
;GET TOTAL TRANSFER SIZE
;CALCULATE BYTES TRANSFERRED
;RETRIEVE CONTROLLER INDEX
;GET FINAL RETRY COUNT

;MERGE STARTING RETRY COUNT
;FINISH I/0 OPERATION

; PROCESS NEXT REQUEST

i+

; *x-DLOUT-RL11-RL0O1/02 DISK CONTROLLER
; DEVICE TIMEOUT ROUTINE

; DEVICE TIMEOUT RESULTS IN THE OPERATION BEING REPEATED.
; TIMEOUTS ARE USUALLY CAUSED BY A POWER FAILURE BUT MAY ALSO
; BE THE RESULT OF A HARDWARE MALFUNCTION.

DLOUT: MOV
BITB
BEQ
DECB
BNE
INCB
BR
10%: MTPS
JMP
20%: TSTB
BEQ
MTPS
JMP
30%: MTPS
CALL
MOV
DLRTRY: MOV
BITB
BNE
DECB
BLE
JMP
i+

S.PKT(R4) ,R3 ;3 RETRIEVE I/0 PACKET ADDRESS
#US .SPU,U.STS(R6) ;;;IS DRIVE SPINNING UP?
20% ;3 IF EQ NO

S.STS(R4) ;; HAVE WE WAITED A MINUTE YET?
10% ;IF NE NO

S.STS(R4) ;s LEAVE CONTROLLER BUSY

30$;3 LOG DEVICE TIMEOUT

#0 .+ s ALLOW INTERRUPTS

DLINIO ;RETRY ENTIRE OPERATION
U.CW2+1(R5) ;.18 DRIVE SETTLING DOWN?
30$;+:IF EQ NO

#0 ;+YES, ALLOW INTERRUPTS
DLEROR ;PROCESS THE ERROR

#0 ;+ ALLOW INTERRUPTS

DLRST ;RESET DRIVE

#IE.DNR&377,RO ;SET DEVICE NOT READY
S.PKT(R4) ,R1 ;GET I/0 PACKET ADDRESS
#IQ.X,I.FCN(R1) ;INHIBIT RETRIES?

DLFIN ;IF NE YES

RTTBL (R3) ;ANY MORE RETRIES LEFT?
DLFIN ;IF LE NO

DLINIO ;YES, RETRY ENTIRE OPERATION

; **-DLXCT,DLGST,DLRST-RL11-RL01/02 DISK CONTROLLER
; FUNCTION EXECUTION ROUTINES

INPUTS:

5 R1
R2
RE

OUTPUTS:

THIS ROUTINE WILL EXECUTE A GET DRIVE STATUS OR ANY
NON-INTERRUPTABLE FUNCTION AND WAIT FOR ITS COMPLETION.

FUNCTION CODE
CSR ADDRESS
UCB ADDRESS

R1 = CONTENTS OF RLCS (TESTED)

; FUNCTION EXECUTED

Sample Driver Code 8-11

.ENABL LSB
DLRST: MOV #RSTISTS!MRK,RLDA(R2) ;SET MESSAGE CODES IN RLDA

CALL 108 ;D0 THE DRIVE RESET FIRST
DLGST: MOV #STS!MRK,RLDA(R2) ;SET MESSAGE CODES IN RLDA
10%: MOV #GSTS ,R1 ;SET GET STATUS FUNCTION
DLXCT: MOV R1,-(SP) ;SAVE FUNCTION CODE

MOVB U.UNIT(R5),1(SP) ;MERGE CURRENT DRIVE BITS

MOV (sP)+, (R2) ;LOAD RLCS
20$: BIT #ERR!CRDY, (R2) ;READY OR ERROR?

BEQ 20$;IF EQ NEITHER

MoV (R2),R1 ;SAVE RLCS AND TEST FOR ERRORS

RETURN

.DSABL LSB

+

; **-DLDIFF-RL11-RL0O1/02 DISK CONTROLLER
CYLINDER ADDRESS DIFFERENCE CALCULATOR

THIS SUBROUTINE CALCULATES THE DIFFERENCE WORD USED IN THE
SEEK OPERATION. IF A HEADER CANNOT BE READ AFTER 16. RETRIES,
AN ERROR WILL BE LOGGED AND A ONE CYLINDER REVERSE SEEK WILL BE
ISSUED. THE SEEK IS FOLLOWED BY A READ HEADERS TO CAUSE AN

INTERRUPT.
INPUTS:
RO = DESIRED DISK ADDRESS
R3 = I/0 PACKET ADDRESS
QUTPUTS:

R1 = DIFFERENCE WORD

RLDA = LOADED WITH DIFFERENCE WORD
I.PRM+6 = LOADED WITH DIFFERENCE WORD
IF EQ NO SEEK IS NECESSARY

»
’
’
’
’
’
s
’
’
s
3’
»
’
’
»
’
s
»
’
’

8-12 Sample Driver Code

DLDIFF: MOV #RETRY*2,- (SP) ;SET READ HEADER RETRY COUNT

108$: MoV #RDH,R1 ;SET CODE FOR READ HEADERS FUNCTION
CALL DLXCT ;EXECUTE THE FUNCTION
BPL 20$;IF PL FUNCTION EXECUTED OK
DEC (sP) ;ANY RETRIES LEFT?
BGT 10$;IF GT YES
CMP (SP)+, (SP)+ ;REMOVE RETRY COUNT AND CALLERS ADDRESS
CALL DLRST ;RESET DRIVE
MOV #REV,RLDA(R2) ;LOAD REVERSE SEEK DIFFERENCE WORD
Mov #SEEK,R1 ;GET CODE FOR SEEK FUNCTION
MOV #1E.VER&377,RO ;ASSUME WE WILL FAIL
CALL DLXCT ;EXECUTE THE SEEK
BMI DLFIN ;IF MI WE FAILED
BIC #377 ,R1 ;CLEAR OUT FUNCTION BITS
BIS #IE!RDH,R1 ;LOAD CODES FOR READ HEADER

MOVB #1 ,RTTBL+1(R3) ;INDICATE REVERSE SEEK IN PROGRESS
MOVB S.ITM(R4),5.CTM(R4) ;SET DEVICE TIMEOUT COUNTER

MOV Ri, (R2) ;LOAD FUNCTION AND GO
RETURN ;WAIT FOR THE INTERRUPT
20$: TST (sp)+ ;REMOVE RETRY COUNT
MOV RLMP(R2) ,R1 ;RETRIEVE HEADER WORD
DLDIFO: CLR I.PRM+6(R3) ;RESET DIFFERENCE WORD
BIC #77 ,RO ;MASK OUT SECTOR BITS
BIC #77 ,R1 M
CMP RO,R1 ;D0 WE NEED TO DO A SEEK?
BEQ 40$;IF EQ NO
MoV RO,-(SP) ;SAVE DESIRED DISK ADDRESS
BIC #7C<100>, (SP) ; ISOLATE SURFACE BIT
ASR (sp) ;PUT INTO THE PROPER POSITION
ASR (sp) HI
BIC #100,RO ;REMOVE SURFACE BIT
BIC #100,R1 HE
SUB RO,R1 ;SUBTRACT DESIRED FROM ACTUAL
BCC 30% ;IF CC ACTUAL >= DESIRED
NEG R1 ;ACTUAL < DESIRED, MAKE POSITIVE DIFFERENCE
BIS #SN,R1 ;SET SIGN FOR MOVE TO CENTER OF DISK
30%: INC R1 ;SET MARKER BIT
BIS (SP)+,R1 ;MERGE IN SURFACE BIT
MOV R1,RLDA(R2) ;LOAD DIFFERENCE WORD

Mov R1,I.PRM+6(R3) ;SAVE DIFFERENCE WORD

40$: RETURN ;

i+

3

; MOVE THE CONTROLLER/DRIVE REGISTERS INTO THE SPECIFIED BUFFER.

»

; INPUTS:

»
»
»
’
’

R2
R3

CSR ADDRESS
BUFFER ADDRESS

Sample Driver Code

8-13

REGPAS: MOV (R2), (R2)+ ;MOVE RLCS
Mov RLBA(R2), (R3)+ ;MOVE RLBA
MOV RLDA(R2), (R3)+ ;MOVE RLDA
MoV RLMP(R2), (R3)+ ;MOVE RLMP

CLR (R3)+ ;CLEAR PLACE HOLDERS...

CLR (R3)+ ;...S0 HRC/CON WILL WORK

CALL DLGST :EXECUTE GET DRIVE STATUS FUNCTION
MoV RLMP(R2) , (R3) ;SAVE DRIVE STATUS

RETURN ;

o+

. *x-DLKRB-CONTROLLER ON-LINE/OFF-LINE ROUTINE

. THIS ROUTINE WILL HANDLE RECONFIGURATION CALLS FOR ON-LINE
. CONTROLLER AND OFF-LINE CONTROLLER FOR THE RLF11.

; INPUTS:
; R2 = KRB ADDRESS

R3 = CTB ADDRESS
C=1 IF OFF-LINE REQUEST
C=0 IF ON-LINE REQUEST

; OUTPUTS:

; NONE
DLKRB: BCS DLOFL ;HANDLE OFF-LINE REQUEST

; CODE SPECIFIC TO HANDLE THE CONTROLLER COMING ON-LINE.
RETURN ;EXIT

. CODE SPECIFIC TO HANDLE THE CONTROLLER GOING OFF-LINE
DLOFL: ;
RETURN ;

o+

. %%-DLUCB-UNIT ON-LINE/OFF-LINE ROUTINES

. THIS ROUTINE WILL HANDLE RECONFIGURATION CALLS FOR ON-LINE
. UNIT AND OFF-LINE UNIT FOR RLO1 AND RLO2 DRIVES.

; INPUTS:

H R3 = CONTROLLER INDEX
R R4 = SCB ADDRESS

Vo R5 = UCB ADDRESS

: C=1 IF OFF-LINE REQUEST
; C=0 IF ON-LINE REQUEST

; OUTPUTS:
NONE
DLUCB: BCS DLOFLU ;IF CS OFF-LINE REQUEST

8-14 Sample Driver Code

; CODE SPECIFIC TO BRINGING UNIT ON-LINE.
RETURN
; CODE SPECIFIC TO TAKING UNIT OFF-LINE.

DLOFLU:
RETURN

.END

8.3 Handling Special User Buffers

Some drivers need to handle user buffers in addition to the buffer that the Executive address-
checks and relocates in a normal transfer request. Address-checking and relocation operations
must take place in the context of the task issuing the I/O request because the mapping registers
are set for the issuing task. However, in the normal driver interface, the task context after the
call to $GTPKT is not, in general, that of the issuing task.

Thus, drivers that need to handle special buffers must be able to refer to the I/0O packet before
it is queued, while the context of the issuing task is still intact.

The coding shown in this section is an excerpt from a driver and illustrates the handling of a
special user buffer. The key points are:

1. The UC.QUE bit has been set in the control byte (U.CTL) of the UCB for each device /unit.

2. The routine ZZINI, which is defined as the I/O initiation entry point in the driver dispatch
table (DDT$) macro call, performs the following actions:

a. Retrieves the user virtual address and address-checks it
b. Relocates the virtual address and stores the result back into the packet

c. Inserts the packet into the I/O queue and continues execution inline to the entry point
BMINI, which calls $GTPKT

3. The driver propagates its own execution by branching back to BMINI to call $GTPKT.

Sample Driver Code 8-15

.TITLE BMTAB - DATA BASE FOR BLOCK MOVE DRIVER
.IDENT /01/

; COPYRIGHT (c) 1981, 1982 BY
; DIGITAL EQUIPMENT CORPORATION, MAYNARD
; MASSACHUSETTS. ALL RIGHTS RESERVED.

; THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
; AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
; AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
. SOFTWARE OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
: OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
; OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

: THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
; NOTEICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
; EQUIPMENT CORPORATION.

; DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABLILITY OF
: ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

. LOADABLE DATA BASE FOR EXAMPLE BUFFERED I1/0 DRIVER
: MACRO LIBRARY CALLS

.MCALL CLKDF$
.MCALL HWDDF$
.MCALL SCBDF$
_MCALL UCBDF$

CLKDF$;DEFINE CLOCK BLOCK OFFSETS
HWDDF$;DEFINE HARDWARE REGISTERS
SCBDF$,,SYSDEF :DEFINE SCB OFFSETS
UCBDF$;DEFINE UCB OFFSETS
$BMDAT: :
K BM DCB
$BMTBL=0 ;LOADABLE BMDRV
$BMDCB: :

8-16 Sample Driver Code

BMST=.

.BMO::

BMND=.

$BMO: :

$BMEND: :

.WORD
.WORD
.ASCII
.BYTE
.WORD
.WORD

.WORD

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

PRO=0

.IF
.WORD
.ENDC

.WORD
.WORD
.BYTE
.BYTE
-WORD
.WORD
.WORD
.WORD
-WORD
.WORD
-WORD
.WORD

.WORD
.WORD
.WORD
.WORD
.BYTE
.BYTE
.WORD
.WORD

.END
.TITLE
. IDENT

0
.BMO

/BM/
0,1-1
DMND-BMST
$BMTBL

33

=3

COO0COoOMMOOW

DF M$$MUP
0

$BMDCB
=2
UC.QUE,0
0,US.OFL
DV.REC
0

0

72.

$BMO

0

0,0

0

o
ow
1)

[eNeNeoNoNeNeNoNe)
oo .

’
’
'
’
’
»
’
s

D.LNK

D.UCB

D.NAM

D.UNIT,D.UNIT+1

D.UCBL

D.DSP

D.MSK - FUNCTION MASKS

LEGAL 0-17 I0.KIL,IO.WLB,ID.ATT

I0.DET
CONTROL 0-17 I0.KIL,IO.ATT,IO0.DET
NOoP 0-17
ACP 0-17

LEGAL 20-37 I0.WVB
CONTROL 20-37

NOoP 20-37

ACP 20-37

D.PCB

BM UCB'S

<
[~}
Q
w

.RED
.CTL,U.STs
.UNIT,U.ST2
.Cw1

Secccocaaas
2

BM SCB'S

S.LHD

S.FRK

S.KS5

S.PKT

S.CTM,S.ITM

S.8TS,S.ST3

S.8T2

S.KRB - NO KRB SINCE NO CONTROLLER

BMDRV - BLOCK MOVE DRIVER

/01/

Sample Driver Code

8-17

i+
. COPYRIGHT (c) 1981, 1982 BY DIGITAL EQUIPMENT CORPORATION.
; ALL RIGHTS RESERVED.

. THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
. OR COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE.

; THIS IS A SAMPLE DRIVER WHICH DEMONSTRATES HOW TO USE SOME
; OF THE MORE SOPHISTICATED EXECUTIVE SERVICES AVAILABLE TO
: 1/0 DRIVERS. THIS DRIVER DEMONSTRATES:

; 1) THE CHECKING OF ADDITIONAL USER BUFFERS PRIOR TO QUEUING
; AN I/0 PACKET.

H 2) USE OF THE CLOCK QUEUE FROM A DRIVER.

; 3) USE OF THE BUFFERED I/0 MECHANISM

: 4) USE OF THE GENERAL BUFFERED I/0 KERNEL AST MECHANISM
; 5) USE OF REGION LOAD KERNEL ASTS

; 6) USE OF BLXIOD

; THIS DRIVER UNDERSTANDS PRECISELY ONE QIO, WHICH IS:

; . ID.WLB,..... ,<DEST-BUFFER,LENGTH, TIME, SRC-BUFFER>

; THE DRIVER QUEUES A CLOCK BLOCK FOR THE TIME TICKS AND AT THE
; END OF THAT TIME INTERVAL COPIES THE SOURCE BUFFER TO THE

; DESTINATION BUFFER. IF POSSIBLE, THE REQUEST IS BUFFERED

; INTERNALLY WHILE THE CLOCK REQUEST IS POSTED.

.MCALL CLKDF$, PKTDF$
CLKDF$;DEFINE CLOCK BLOCK OFFSETS
PKTDF$:DEFINE I/0 PACKET OFFSETS

; DEFINE MAXIMUM TRANSFER LENGTH WHICH WILL BE BUFFERED

BUFLIM = 100.
DDT$ BM, ,NONE, , ,NEW

8-18 Sample Driver Code

i+

; %k - BMINI - I/0 INITIATION ENTRY POINT

; INPUTS:

DRQIO (BECAUSE THE UC.QUE BIT IS SET IN THE UCB) SETS THE
REGISTERS TO THE FOLLOWING:

H R1 = ADDRESS OF I/0 PACKET
; R4 = ADDRESS OF SCB

H R5 = ADDRESS OF UCB

; OUTPUTS:

IF THE SPECIFIED CONTROLLER IS NOT BUSY AND AN I/0 REQUEST IS WAIT-
ING TO BE PROCESSED, THEN THE REQUEST IS DEQUEUED AND THE I/0 OPER-

ATION IS INITIATED.

1/0 REQUEST PACKET FORMAT:

I.LNK -- I/0 QUEUE THREAD WORD.

I.PRI/I.EFN -- REQUEST PRIORITY, EVENT FLAG NUMBER.

I.TCB -- ADDRESS OF THE TCB OF THE REQUESTER TASK.

I.LN2 -- POINTER TO SECOND LUN WORD IN REQUESTER TASK HEADER.

I1.UCB -- UCB ADDRESS OF DEVICE

I.FCN -- I/0 FUNCTION CODE (I0.WLB).

I.I0SB -~ VIRTUAL ADDRESS OF I/0 STATUS BLOCK.

I.I0SB+2 -- RELOCATION BIAS OF I/0 STATUS BLOCK.

I.I0SB+4 -- I/0 STATUS BLOCK ADDRESS (DISPLACEMENT + 140000).

1.1I08B+6 -- VIRTUAL ADDRESS OF AST SERVICE ROUTINE.

I.PRM -- RELOCATION BIAS OF SOURCE BUFFER.

I.PRM+2 -- BUFFER ADDRESS OF I/0 TRANSFER.

I.PRM+4 -- NUMBER OF BYTES TO BE TRANSFERED.

I.PRM+6 -- TIME DISPLACEMENT IN TICKS

I.PRM+10 -- VIRTUAL ADDRES (TO BECOME RELOCATION BIAS) OF
DESTINATION BUFFER

I.PRM+12 -- FILLED IN WITH DISPLACEMENT ADDRESS OF DESTINATION
BUFFER

I.PRM+14 -- USED TO STORE BUFFER/CLOCK BLOCK ADDRESS

I.PRM+16 -- FILLED IN WITH PCB ADDRESS OF QUTPUT BUFFER

.ENABLE LSB

ek sk ke s ook ke ok o s ok sk ek sk sk ok sk Sk sk sk ok ok e ok ok sk ok e ok sk ok s sk s e sk sk sk sk ok sk s sk ke ke o s ok ke ok sk ok ok ok sk ok ok

E 3

*

* INITIATION ENTRY POINT *

*

*

ek ok ke sk ok o ok o ke ok ok o ke ok ke sk ke sk ok e ok ke sk ok ok sk ok sk ke o ok ok ke sk ke o ke sk sk sk sk ok sk sk sk sk ok sk ok ok e sk ok ok ok sk ok sk

; PRE-QUEUING INITIALIZE ENTRY POINT

ek ok o ok o ok ok ok ok ok sk o ok o sk sk ke sk ke sk 3k o ok ok sk ok ok ok o sk s sk sk ok s sk e sk sk ok sk ok sk sk ok s ke ok ok sk sk sk oe ok ok ok sk ok

* K X ¥ ¥

ADDRESS CHECK THE SOURCE BUFFER WHILE THE TASKS
CONTEXT IS LOADED, AND FILL IN THE NECESSARY
PARAMETERS IN THE I/0 PACKET

LR K

e ok ok ok ke e sk ke sk sk sk ke ok ok ke Sk ook ok sk ke ok ok ke o ok ke sk sk ke sk sk ke ok ok sk ook 3k sk ok sk ok sk sk ok ok sk ok ok ok sk e sk ok sk ok sk sk oK

Sample Driver Code

8-19

8-20

MOV R1,R3 ; COPY ADDRESS OF I/0 PACKET
MOV I.PRM+10(R1),RO ; GET VIRTUAL ADDRESS OF SOURCE BUFFER
MOV I.PRM+4(R3),Rt ; AND LENGTH OF SOURCE BUFFER

THE INPUT PARAMETERS FOR $CKBFR ARE:

RO = STARTING ADDRESS OF BLOCK TO BE CHECKED

R1 = LENGTH OF THE BLOCK TO BE CHECKED

$ATTPT = ADDRESS OF I.AADA IN I/0 PACKET
(ESTABLISHED IN DRQIO)

CURRENT TASK HEADER MUST BE MAPPED THROUGH APR 6

(ESTABLISHED BY DIRECTIVE DISPATCHER)

THE OUTPUT PARAMETERS ARE:

C = 0 IF CHECK AND PACKET UPDATE SUCCESSFUL
I.AADA OR I.AADA IN PACKET POINTS TO
RELATED ADB, P.IOC, A.IOC INCREMENTED
C = 1 IF CHECK UNSUCCESFUL OR I.AADA, I.AADA
ALREADY FILLED IN
e e mmmem e e mmemmmmmm e m—— e e e me————o————o——- +
CALL $CKBFR . CHECK BUFFER, INCREMENT A.IOC AND
; P.I0OC FOR APPROPRIATE REGIONS
BCC 10% ; IF CC ALL WAS OK
stk ok ke s s ke ok ok sk s ok ok ak sk s e ok ok ks sk s o ok sk s sk e ok ok sk ok s e s koo sk s ok ok sk ke ek sk s s ok oksk ok
* *
* SOURCE BUFFER WAS ILLEGAL, FINISH I/0 HERE *
* *

e sk ok sk sk ok sk sk s ke sk ke e s ke ok e ok e ok e sk ke sk ke s ke s ke s ke sk ke sk sk o sk s sk ok ke ok ok ok ok sk ok sk sk sk ok sk sk sk ok ok sk ok ok

MOV #IE.SPC&377,RO ; SET COMPLETION STATUS
CLR Ri ; AND NUMBER OF BYTES TRANSFERRED

THE INPUT PARAMETERS FOR $IOFIN ARE:

RO = FIRST WORD OF I/0 STATUS TO RETURN
R1 = SECOND WORD OF I/0 STATUS TO RETURN
R3 = ADDRESS OF I/0 PACKET

THE OUTPUT PARAMETERS ARE:

R4 IS DESTROYED

e Sttty +
CALLR $IOFIN ; COMPLETE I/0 AND EXIT DRIVER

ek ok okok ke ke stk s ook stk ok o sk ok sk ok sk ke sk sk sk sk sk ok ok sk s sk skoke sk sk ks ok ok
* *
* BUFFER WAS LEGAL, CONVERT VIRTUAL ADDRESS TO) *
* ADDRESS DOUBLEWORD AND STORE PARAMETERS *
* *

e ke s sk e ok ke ke sk ok ok sk sk ke ok ok ok e ok ke ok e sk ke sk e sk ke ok ke sk ok sk ok ok sk ok e s s s ok s s ok sk sk ok ok ke sk ok ok ok sk ok ok

Sample Driver Code

THE INPUT PARAMETERS FOR $RELOC ARE:
RO = USER VIRTUAL ADDRESS TO RELOCATE

THE OUTPUT PARAMETERS ARE:

R1 = APR6 RELOCATION BIAS OF USER BUFFER

R2 = DISPLACEMENT IN BLOCK + 140000
A e e e +
CALL $RELOC ; RELOCATE BUFFER ADDRESS

MOV R1,I.PRM+10(R3) ; SAVE APR BIAS OF SOURCE BUFFER
MOV R2,I.PRM+12(R3) ; AND DISPLACEMENT ADDRESS

CLR I.PRM+16(R3) ; INDICATE NOT BUFFERED 1/0

etk ok sk ok s ks ok ko skl sk o o ok sk ok ok sk ok sk sk ks s ks sk ks ok ok sk ok sk ko o sk sk ok ok sk o sk sk ok ok sk
* *
* NOW QUEUE THE PACKET IN THE DEVICE QUEUE *
* *

e bk o o s e sk ke sk s sk e sk sk sk skl sk sk sk ok sk ok ok ok ke ok ke sk ok sk ke sk ke sk sk sk e ok e sk ke sk ke sk ok ok ke sk ok sk ok ok ok o ok sk ok sk sk

MOV R4,RO ; COPY POINTER TO I/0 QUEUE LISTHEAD
MOV R3,R1 ; AND ADDRESS OF I/0 PACKET
e e e e e +

THE INPUT PARAMETERS FOR $QINSP ARE:

ADDRESS OF THE TWO-WORD LISTHEAD
ADDRESS OF THE PACKET TO BE INSERTED

R1

|

|

I

| RO
|

|

! NO OUTPUT PARAMETERS
I

R b T NI +
CALL $QINSP ; INSERT PACKET IN QUEUE

ekt s s sk kol ok kol skok ok sk sk sk s sk st stk sk ko ookl ok ok ok sk ke sk ook sk ok ok sk ok sk sk K ok oK
* *
* BEGIN SERIAL PROCESSING OF I/0 PACKETS *
* *

Sk ok ok ok ok e ok s sk sk S ok ok sk Sk 3 3k K 3k sk o ok ok ok sk ook e e sk e ok sk ek ek ke ke ik o ok ok ok ok sk ke sk ke sk o ok sk sk

Sample Driver Code 8-21

THE INPUT PARAMETERS FOR $GTPKT ARE:
R6 = ADDRESS OF THE UCB OF REQUESTING UNIT
THE OUTPUT PARAMETERS ARE:

c

0 IF A REQUEST WAS SUCCESSFULLY DEQUEUED

R1 = ADDRESS OF THE I/0 PACKET
R2 = PHYSICAL UNIT NUMBER
H R3 = CONTROLLER INDEX
; R4 = SCB ADDRESS OF CONTROLLER
; R5 = UCB ADDRESS OF UNIT
H C = 1 IF UNIT BUSY OR NO PACKETS QUEUED
; o m e e e e e e e —mmo oo oo —-—-eoe +
BMIN1: CALL $GTPKT ; ATTEMT TO GET A REQUEST
BCC 20$; IF CC WE GOT ONE
RETURN ; DEVICE BUSY OR QUEUE EMPTY

; REFERENCE LABEL
ek sk ks ek sl sk sk ke sk ok o ok sk ke sk ok ks ks ok sk ok ok ok skt ks sk ko ook skok ko sk ok ok

* *
* ATTEMPT TO ALLOCATE CLOCK BLOCK *
* *

st sk ke ke sk ok s stk sk sk ke sk sk sk sk e o sk ke o sk ke s o ke sk ok sk sk ek ook ke oo ok sk sk ok e sk ok s o s sk sk sk ok ok ok ok ok o ke ke ke ok

MOV Ri,R3 ; COPY I/0 PACKET ADDRESS
MOV #C.LGTH,R1 ; SET LENGTH OF CLOCK BLOCK
et iy +

THE INPUT PARAMETERS FOR $ALOCB ARE:
R1 = SIZE OF THE BLOCK TO ALLOCATE (IN BYTES)

THE OUTPUT PARAMETERS ARE:

Q
"

0 IF A BLOCK WAS SUCCESSFULLY ALLOCATED

H RO = ADDRESS OF THE ALLOCATED BLOCK

; R1 = LENGTH OF THE ALLOCATED BLOCK

: C = 1 IF NO BLOCK IS CURRENTLY AVAILABLE

S !
CALL $ALOCB ; ATTEMPT TO ALLOCATE
BCC 30% ; IF CC SUCCESSFUL

MOV #IE.NOD&377 ,RO ; SET I/0 STATUS

8-22 Sample Driver Code

THE INPUT PARAMETERS FOR $I0ALT ARE:

RO = FIRST WORD OF I/0 STATUS BLOCK

R1 = SECOND WORD OF I/0 STATUS BLOCK
R2 = STARTING AND FINAL RETRY COUNTS
R5 = UCB ADDRESS OF UNIT TO COMPLETE

THE OUTPUT PARAMETERS ARE:

[[
I I
I [
[[
I I
I I
| (IF AN ERROR LOGGING DEVICE) |
I I
[[
I |
| [
| R4 IS DESTROYED [
I [

A e T T +
CALL $IOALT ; AND COMPLETE THE I/0
BR BMIN1 ; GO LOOK FOR MORE WORK

Mov RO,I.PRM+14(R3) ; SAVE ADDRESS OF CLOCK BLOCK

3 3k 3k ok e e ke ok o sk sk sk ke sk s ke ke ok sk sk sk s sk kol sk sk sk ke sk sk sk sk sk sk sk sk ke ok ke ke sk sk ok 3k sk 3 ok sk sk sk ok sk ok ok sk sk ok ok ok

* *
* DETERMINE IF I/0 REQUEST IS BUFFERABLE *
* *

e 3 e e e e ke ke s s sk ok sk e ke ke ke sk sk ok sk sk e ke sk Sk sk sk ke ok sk ke sk sk ok sk sk sk sk sk ok ok ok ok ok ke ok sk sk sk ok ok sk sk skok sk sk ok sk

THE INPUT PARAMETERS FOR $TSTBF ARE:
R3 = ADDRESS OF I/0 PACKET TO TEST
THE OUTPUT PARAMETERS ARE:

C = 0 IF REQUEST MAY BE BUFFERED

C = 1 IF REQUEST MAY NOT BE BUFFERED

o e +
CALL $TSTBF ; TEST FOR BUFFERABLE I/0 REQUEST

BCS 40% ; IF CS CAN'T ALLOCATE A BUFFER

ok sk s s e s s sk sk sk ok s ok sk sk sk ok e sk e o s s s s sk sk s ok sk ok e sk ok ok sk ok sk ok e s sk sk sk sk k sk ok ok ke e ok sk ok ok ok o ok
* *
* ATTEMPT TO ALLOCATE A BUFFER *
* *

ke ok o ke ok ok e ke sk sk ke ok sk ok ke 3k sk ke sk sk ok ok ok e ok sk sk ok sk ok sk ok sk sk Sk sk sk ok sk ok sk ok sk ok sk ke sk ok sk sk sk sk sk sk sk ok sk sk ok sk sk

Mov I.PRM+4(R3) ,R1 ; GET LENGTH OF BUFFER
CMP R1,#BUFLIM ; BIGGER TAN BUFFER LIMIT 7
BHI 408 ; IF HI YES, DON'T BUFFER

Sample Driver Code 8-23

THE INPUT PARAMETERS FOR $ALOCB ARE:
R1 = SIZE OF THE BLOCK TO ALLOCATE (IN BYTES)

THE OUTPUT PARAMETERS ARE:

C = 0 IF A BLOCK WAS SUCCESSFULLY ALLOCATED

; RO = ADDRESS OF THE ALLOCATED BLOCK
H R1 = LENGTH OF THE ALLOCATED BLOCK
: C = 1 IF NO BLOCK IS CURRENTLY AVAILABLE
; S — .

CALL $ALOCB ; TRY TO ALLOCATE BUFFER

BCS 40$; IF CS COULDN'T GET ONE
; **
; * %
; * COPY USER BUFFER TO INTERNAL BUFFER *
N * *

e sk o sk ok ok o ke o sk sk sk e oKk e sk ook sk ke ok s o sk ok o ok o sk sk sk e ok sk sk sk sk e ke ok s sk ek sk s sk ok ke ok s e sk ok ok sk ok

MOV RO,R4 ; SET ADDRESS OF DESTINATION BUFFER

MOV R3,Rb ; SAVE ADDRESS OF I/0 PACKET

MoV I.PRM+4(R5) ,RO ; SET LENGTH OF TRANSFER

Mov I.PRM+10(R5) ,R1 ; SET BIAS OF SOURCE BUFFER

Mov I.PRM+12(R5) ,R2 ; AND DISPLACEMENT

BIC #140000,R2 ; STRIP OFF APR6 ADDRESS BITS

BIS #120000,R2 ; AND SUBSTITUTE APRS

Mov R4,I.PRM+10(R5) ; SET INTERNAL BUFFER ADDRESS INTO PACKET

THE INPUT PARAMETERS FOR $BLXIO ARE:

RO = NUMBER OF BYTES TO MOVE
R1 = SOURCE APR 5 BIAS

R2 = SOURCE DISPLACEMENT

R3 = DESTINATION APR6 BIAS

R4 = DESTINATION DISPLACEMENT

THE OUTPUT PARAMETERS ARE:

RO ALTERED
R1,R3 PRESERVED
R2,R4 POINT TO LAST BYTE OF SOURCE/DESTINATION +1

femmm e e m A e e mmmmmm e mm e e e———ec——————— +
CALL $BLXIO ; COPY TO INTERNAL BUFFER

; sk ok ok oo s s ke ke ok ok s sk ok sk sk sk e s ok ok ks sk sk s ok ok sk sk sk e ok sk sk sk ok sk ok ok sk sk sk ke ok ok sk s s ok s ki s ok ok ok

; * *

; * CONVERT TO BUFFERED I/0 REQUEST *

; * *

sk ok sk sk ok ok sk ok sk b e Sk sk ok ke e sk ke e sk ok sk sk ok ok sk ok sk sk ke o sk ke s ok ke ok sk sk ke ok sk ok sk ok s sk ok ok ok ok ok ek sk sk sk ke sk ok

MoV R5,R3 ; COPY I/0 PACKET ADDRESS BACK

8-24 Sample Driver Code

THE INPUT PARAMETERS FOR $INIBF ARE:

NO OUTPUT PARAMETERS.

|
|
|
; | R3 = ADDRESS OF THE I/0 PACKET TO BUFFER
I .
|
|

: o e o e e e e +
CALL $INIBF ; INITIALIZE BUFFERED I/0

R e ok ok ke sk s ok ok s e ook ok o sk ok o sk sk ok ok s sk sk sk sk sk e ok sk ok ok e s sk sk ek e ok ok ok sk sk sk sk ok ok o s ok sk Kk ok o ok sk K

. * *

; * QUEUE THE CLOCK BLOCK *
* *

ek 3k sk e ook ok ook ke ok e ok ok sk ok e Sk e sk s sk sk ok sk ok ok ke ok e o e sk ke sk e sk e sk s ok ke sk ok ok ok ok ok ok sk ok ok ok ok 3k ok 3k ok

40%: Mov I.PRM+14(R3) ,RO ; GET ADDRESS OF CLOCK BLOCK
MoV #CLKSRV,C.SUB(RO) ; SET ADDRESS OF SUBROUTINE

CLR R1 ; HIGH ORDER DELTA TIME

MOV I.PRM+6(R3) ,R2 ; LOW ORDER PART

MOV #C.SYST,R4 ; SET REQUEST TYPE

MOV R3,R5 ; USE PACKET ADDRESS AS IDENTIFIER

R ittt T T TR SR +

THE INPUT PARAMETERS FOR $CLINS ARE:

; RO = ADDRESS OF THE CLOCK BLOCK TO QUEUE

; R1 = HIGH ORDER HALF OF DELTA TIME

; R2 = LOW ORDER HALF OF DELTA TIME

; R4 = REQUEST TYPE :

; R6 = ADDRESS OF REQUESTING TASK OR IDENTIFIER

NO OUTPUT PARAMETERS.

CALLR $CLINS ; QUEUE CLOCK BLOCK AND TEMPORARILY
; EXIT THE DRIVER

e ke ok o e s e ok e s e sk sk e ok s e e ok e ok e ok ok ke sk ke ok ok sk ok sk e sk ke ok ke ok ke sk ek ok ok ek sk ok sk ok ok e sk sk ok sk sk ke

H * *
H * CLOCK ENTRY POINT *
* *

3 e ke e e sk ok ok ke ke sk sk ke ok o sk s ok sk ke sk ek ok sk ok o sk ok sk ek sk sk sk ke sk sk sk e ke sk sk ke ok sk ok ke ok ok ok ok sk ok ke 3k sk ok sk sk

e e ke o e e o sk ok ok ok ok ok ok sk ke Sk Sk ok Sk e ok e e sk s ok sk e ke sk ok ke e ok sk sk Sk e ke 3k e ke e sk ke ok ok sk e o s ok sk ke sk ok ek ok e

H * } *
; * CHECK TO SEE IF THE I/0 WAS BUFERED *
H * *
M 3k 2k ok ok 3k 3k e sk e e sk 3k 3 sk sk sk sk ok ok sk ok ok 3k sk 3k sk Sk sk ok sk e 3k sk sk ok ok s sk ok ok ok ke ok sk ok sk ok 3k ok ok sk sk sk sk sk sk sk ok ok ok ok
CLKSRV: MOV C.TCB(R) ,R5 ; GET ADDRESS OF I/0 PACKET

TST I.PRM+16(R5) ; WAS IT BUFFERED 1/0

BNE 508 ; IF NE YES, GO QUEUE KERNEL AST

Sample Driver Code 8-25

*
*
*

sk sk s ok ok o sk ok ok sk e sk sk sk ok sk sk st s ok ok ke ok ok s sk sk sk sk sk s sk sk ok ok sk o sk ok ok s sk sk sk s sk ok ks ok ok sk ok sk sk ok skk

*

COULDN'T BUFFER, PERFORM COPY HERE AND NOW *

*

**

MOV I.PRM+4(R6) ,RO ; SET LENGTH TO TRANSFER

MOV I.PRM+10(R5),R1 ; BIAS OF SOURCE BUFFER

MOV I.PRM+12(R5),R2 ; DISPLACEMENT OF SOURCE

BIC #140000,R2 ; STRIP OFF APR6 ADDRESS BITS

BIS #120000,R2 ; AND CONVERT TO APR5

MOV I.PRM(R5) ,R3 . SET BIAS OF DESTINATION

MOV I.PRM+2(R5),R4 ; SET DISPLACEMENT
N o e e e S S S S SS eSS s ST S S EETE +
; | |
H | THE INPUT PARAMETERS FOR $BLXIO ARE: |
; | |
; | RO = NUMBER OF BYTES TO MOVE |
H | R1 = SOURCE APR 5 BIAS |
H | R2 = SOURCE DISPLACEMENT |
; | R3 = DESTINATION APR6 BIAS |
; | R4 = DESTINATION DISPLACEMENT |
;] |
; | THE OUTPUT PARAMETERS ARE: |
; | |
; | RO ALTERED |
; | R1,R3 PRESERVED |
S | R2,R4 POINT TO LAST BYTE OF SOURCE/DESTINATION +1 |
; | |
R o mm e e e e e e e e e eCo—em——m———————o- +

CALL $BLXIO ; COPY BUFFER

MOV I.PRM+14(R5) ,RO ; GET ADDRESS OF CLOCK BLOCK

MOV #C.LGTH,R1 ; GET LENGTH OF CLOCK BLOCK
5 et T T +
; | |
; | THE INPUT PARAMETERS FOR $DEACB ARE: |
; | |
; | RO = ADDRESS OF BLOCK TO DEALLOCATE |
; l R1 = LENGTH OF BLOCK TO DEALLOCATE |
; | |
; | NO OUTPUT PARAMETERS. |
; | |
; o e —se——m————o———oo +

CALL $DEACB ; DEALLOCATE IT

MOV R5,R3 ; COPY PACKET ADDRESS FOR $IODON
BMSUC: MOV #1S.SUC&377,R0 ; SET FINAL I/0 STATUS

MOV I.RPM+4(R3),R1 ; AND LENGTH OF TRANSFER = REQUESTED
BMDON: MOV I.UCB(R3),R5 . GET UCB ADDRESS OF DEVICE

8-26 Sample Driver Code

THE INPUT PARAMETERS FOR $I0DON ARE:

RO = FIRST WORD OF I/0 STATUS BLOCK
R1 = SECOND WORD OF I/0 STATUS BLOCK
R2 = STARTING AND FINAL RETRY COUNTS
R6 = UCB ADDRESS OF UNIT TO COMPLETE

THE OUTPUT PARAMETERS ARE:

|
|
|
|
I
|
| (IF AN ERROR LOGGING DEVICE)
|
|
|
|
| R4 IS DESTROYED

|

; R e e i +
CALL $IODON ; COMPLETE THE I/0
BR BMIN1 ; GO LOOK FOR MORE WORK
; ek s s ke s sk ke e sk ke o sk ke s ok ke sk ok ok sk sk ok s sk ok ke sk ok ke sk sk ke sk sk ok sk sk ok o s ok ke sk sk sk sk sk sk o ok ok sk sk ok ok sk ok sk ko
H * *
; * BUFFERED I/0, CONVERT I/0 PACKET TO KERNEL *
; * AST AND EXIT FROM DRIVER *
* . %

2k 3 2k ke ok ok 2k 3k 3k 3 3k sk 3 3 ok ke ok 3k ke Sk 3k sk e 3 sk 3k 3 ok sk sk ok sk sk sk sk e sk sk ok sk sk ke ke ok ok sk ok ok ke ke ok ok ok sk ok ok ok ok sk ok ok

508: MOV R4,R3 ; COPY CLOCK BLOCK ADDRESS FOR $REQUE
MoV I.TCB(R5) ,RO ; POINT TO TCB OF TASK -

TST (R4 + ; SKIP LINK WORD

MOV #AK .GBI, (R4)+ ; SET A.CBL=AK.GBI

MOV KISARS, (R4)+ ; SET APR BIAS OF SERVICE ROUTINE
MOV #KATSRV, (R4)+ ; SET ADDRESS OF PROCESSING ROUTINE

MOV RE, (R4)+ ; SAVE I/0 PACKET ADDRESS IN CLOCK BLOCK

THE INPUT PARAMETERS FOR $REQUE ARE:

RO
R3

TCB ADDRESS TO QUEUE AST BLOCK TO
ADDRESS OF THE PACKET TO QUEUE

NO OUTPUT PARAMETERS.

B Rt T Rttt it +
CALLR $REQUE ; QUEUE AST TO TASK
; 3k e 3k 3 3k 3k 3k 3k Sk 3k sk ok 3k 3k 3k 3k sk 3k ok Sk 3k b 3k ok 3k ok ok 3¢ ok s sk sk 3k ok ke sk ke sk ke sk ok sk ok ok sk ok ok sk sk sk ok ok ok ok 3k ok ok ok ok ok ok ok
H * *
K * KERNEL AST ENTRY POINT *
B * *

e e e o o o s ok ok ok e ook ok o ok o e ok ook ok ok ok e e sk sk ok sk o e ok oK sk Kok 6 o sk sk sk ok ke ok e sk skok ok sk ok ok ok sk sk ke ok o ok

ke 3k 2k o ke 3¢ ok ok e ok ok e Sk ok e ok ok ke o ok e e ok ok e S e e ke 3k ke e 3k 3k ke sk sk ke sk sk sk e sk sk e sk ok ok ok sk ok ok e ok ok ok ok ok sk ok sk

; * *
; * GET PCB ADDRESS AND SEE IF PARTITION IS RESIDENT *
; * *
: ook stk ok sk ok s ok ks o ok ok o ok o ok ok * e ok sk ok sk sk sk ok ok ok ok o ok ok ok ok
KATSRV: MOV 10(R3) ,R5 ; GET I/0 PACKET ADDRESS

Mov I.PRM+16(R5) ,R1 ; GET PCB ADDRESS OF BUFFER REGION

BEQ 70$; IF EQ THERE IS NO COPY TO PERFORM

Sample Driver Code 8-27

60$:

THE INPUT PARAMETERS FOR $TSPAR ARE:

ADDRESS OF THE PACKET (THE KERNEL AST BLOCK)
PCB ADDRESS OF THE PCB CONTAINING THE BUFFER
TCB ADDRESS OF ASSOCIATED TASK

RO
R1
RS

:

OUTPUT PARAMETERS ARE:

0 IF REGION IS RESIDENT AND CAN BE ACCESSED
1 IF REGION IS NOT RESIDENT AND AST HAS
BEEN QUEUED

Q
it on

CALL $TSPAR ; REGION IN MEMORY ?
BCC 60$; IF CC REGION IN MEMORY

s e ok sk o ke o ks ok o ok koK sk sk ok ko sk ok o o Sk sk sk o o ok sk sk o ek sk sk sk o ok ks s sk sk ok sk sk ok sk sk o ek ok

A REGION AST WAS QUEUED. BUMP BUFFERED I/0 COUNT
BACK UP TO FORCE I/0 RUNDOWN IN CASE OF ABORT AND
EXIT AST SERVICE ROUTINE.

* K ¥ X ¥
* K ¥ X ¥

ok ok 3k ok 3k sk sk ok e e sk Sk e 3k sk ok sk sk e ok s sk sk sk ok ok ok e ke sk ok sk sk 3k sk s S S ok Sk e e ke sk ok Sk sk s ke e ke sk skeskokok sk sk ok ok

MOV I.TCB(R5),RO ; GET TCB ADDRESS

INCB T.TIO(RO) ; BUMP BUFFERED I/0 COUNT

RETURN ; EXIT AST SERVICE ROUTINE

sk e 3k ok 3K 3k 3k 3K sk 3 ok 3k sk ok 3k sk sk 3 sk Sk e sk sk Sk sk Sk ok ke 3k Sk ke 3k sk ok ok ok ok sk 3K 3k 3k ok sk b sk sk sk sk sk sk ke Sk dke e ok ke 3k ke ok sk sk ok
* *
* PERFORM BUFFER COPY OPERATION *
* *

sk sk sk sk o 3k sk e s o sk ok 3k 3k sk ke ke sk sk sk 3k sk ok sk sk sk ok sk sk sk ke s ok sk ok sk s s e e Sk 3k s e ke sk ke sk sk sk sk sk ok ok ok sk skokok ok

MOV I.TCB(R5) ,RO ; GET TCB ADDRESS OF TASK

INCB T.IOC(RO) ; ADJUST REAL I/0 COUNT UPWARDS

MOV I.PRM+4(R5),R2 ; GET COUNT OF BYTES

MOV I.PRM+10(R5),R2 ; SET SOURCE BUFFER ADDRESS

MoV P.REL(R1) ;R3 ; GET STARTING BIAS OF PARTITION

ADD I.PRM(R5) ,R3 ; AND ADD IN OFFSET

MoV I.PRM+2(R6) ,R4 ; SET DISPLACEMENT

e e m e ————— e +
| |
| THE INPUT PARAMETERS FOR $BLXIO ARE: |
| |
| RO = NUMBER OF BYTES TO MOVE |
1 R1 = SOURCE APR 5 BIAS]
| R2 = SOURCE DISPLACEMENT]
| R3 = DESTINATION APR6 BIAS I
| R4 = DESTINATION DISPLACEMENT |
i I
| THE OUTPUT PARAMETERS ARE: |
| I
| RO ALTERED l
| R1,R3 PRESERVED 1
| R2,R4 POINT TO LAST BYTE OF SOURCE/DESTINATION +1 |
|]
B et +

8-28 Sample Driver Code

CALL $BLXID ; COPY BUFFER
MOV I.PRM+10(R6),RO ; GET BUFFER ADDRESS AGAIN
Mov I.PRM+4(R5),R1 ; GET LENGTH OF BUFFER

THE INPUT PARAMETERS FOR $DEACB ARE:

I

I

I

I RO = ADDRESS OF BLOCK TO DEALLOCATE

H ! R1 = LENGTH OF BLOCK TO DEALLOCATE

|

I

I

NO OUTPUT PARAMETERS.

H o e e e e o +
CALL $DEACB ; DEALLOCATE IT

K ek ok e e b o ke ke ok ok ke ok sk e 3k ek sk sk ok ok ok sk o ke ok ok e sk sk sk sk Sk s o 3k sk sk sk ok ok sk ok sk ke Sk s sk ok Sk sk sk sk sk sk ok sk sk sk

; * *

; * IF THIS WASN'T A REGION LOAD AST, FINISH THE I/0 *
* *

ek 3k e ke s ok o ke ok ok ok e o ok sk ok ok sk ok sk ok sk ok sk sk ok ok o ok Sk ok o o s e ok ok sk ok sk ok s ok ok sk ke ok sk ok sk sk sk 3k ok o ok ok ok

70$: MoV I.PRM+14(R5),RO ; RETRIEVE AST BLOCK ADDRESS

TST (RO) ; WAS THIS A REGION LOAD AST?

BNE 80$; IF NE YES

MOV #C .LGTH,R1 ; SET LENGTH OF CLOCK BLOCK

o e e e e o +

THE INPUT PARAMETERS FOR $DEACB ARE:

ADDRESS OF BLOCK TO DEALLOCATE
LENGTH OF BLOCK TO DEALLOCATE

R1

|
|
]
H | RO
|
|
| NO QUTPUT PARAMETERS.
|

CALL $DEACB ; DEALLOCATE CLOCK BLOCK
MoV I.I0SB(R5),R3 ; GET VIRTUAL ADDRESS OF I/0 STATUS BLOCK
MOV #IS.8UC&377,-(SP) ; SET FIRST I/0 STATUS WORD

MTPD$ (R3)+ ; WRITE FIRST WORD OF STATUS (MAY TRAP)

MOV I.PRM+4(R5),-(SP) ; SET SECOND WORD OF I/0 STATUS

MTPD$ (R3) ; WRITE SECOND WORD (MAY TRAP)

CLR I.I0SB(R5) ; PREVENT $IODON ATTEMPT TO WRITE STATUS

MoV R5,R3 ; COPY I/0 PACKET ADDRESS

JMP BMSUC ; FINISH IN COMMON CODE
; ok ok stk e ke ke ok ks o sk o o ok o s ok ksl ke sk sk o e KoK s s o ok ok sk sk sk ok sk ok sk sk ok sk ok ok sk ok ok sk ok sk o ok ok
H * *
; * RECONVERT REGION LOAD AST TO A TASK AST *
; * *

e ke s ke o ook ke o s sk ke sk e sk ke o ek ke ok e ok e ok ke sk ok sk sk sk ke sk sk ok ke ok ok sk sk ok sk ok ok ke e se ke sk sk ok s ok sk ok sk ok sk ok ok

80%: MOV RO,R3 ; COPY BLOCK ADDRESS
CLR 10(RO) ; INDICATE NO BUFFER NEXT TIME
MoV I.TCB(R5) ,RO ; GET TCB ADDRESS

Sample Driver Code 8-29

THE INPUT PARAMETERS FOR $REQUE ARE:

RO
R3

TCB ADDRESS TO QUEUE AST BLOCK TO
ADDRESS OF THE PACKET TO QUEUE

NO OUTPUT PARAMETERS.

; Bt e +
CALLR $REQUE ; RE-QUEUE TASK AST AND EXIT AST SERVICE
; s 3 3k s 3k sk 3k ek ok 3k ok sk 3k ok 3k 3K 3k ok sk sk sk ke s e ke sk Sk 3k ok 3k ok Sk ok ok ke ok ke sk ok ok ok ok ok ok sk 3k ek ke ke sk ok sk ok ok ok ok ok ok ok ok
; * *
; * MISCELLANEQOUS ENTRY POINTS *
; * *

e sk ke sk e sk ok sk ok ok ke ok ok s ok o 3k sk ke sk sk ok sk ke e sk s e sk e ke sk ok ke sk sk sk ok sk sk ok sk sk sk sk ke sk ok ke ke ok e ok ok ok ok sk sk ke ok sk ok

s st s s ok sk ook ok sk ok oKk ok sk sk ok ook sk sk sk sk sk kok ok ok ok ok ok sk sk sk s kot ks ks ok o ok
CANCEL ENTRY POINT

WE COULD DEQUEUE PENDING CLOCK REQUEST, ETC, HERE,
BUT WE DON'T, WE JUST LET THEM COMPLETE LATER

* ¥ K X ¥ ¥
*¥ K K X X ¥

e s e sk s ke sk ok ke ke ok ok ok ok ok sk ke ke ok sk ok sk ke ke sk s sk ok e sk ok ok ke ok ok sk ok ok s ok sk ke sk ok ke sk sk ke ok sk ke ok ok ok skok sk skeokok ok

sk ke stsk ok sk ok ok ook sk ook ok sk sk ok ks sk sk sk ok sk sk ko ook s sk ok sk ko ke ek ok ko ook ke
TIMEOUT ENTRY POINT

SINCE THERE'S NO PHYSICAL DEVICE TO TIME OUT, NO-OP

* K X ¥ ¥
* K K K ¥

3k sk s sk ok o ke ok ok sk ke sk ok 3 ok ok ok o ke sk 3k ke i o o sk ok e ke sk e sk ok e ok ok sk ok ok sk ke ok sk ke sk e sk sk s ok ok ok ok sk ok ok sk ke ok skok

sk sk ok sk sk sk sk sk ke sk sk ok ok sk ke ok ok o sk ok sk sk ke ke ke ok ok 3k sk ok ke sk sk sk sk sk sk ke ok ok sk sk sk sk ke ke ke ok sk skok ke ok sk ki sk dkesk sk ok

POWERFAIL ENTRY POINT

POWERFAIL DOESN'T AFFECT NON-EXISTENT DEVICES

* ¥ X ¥ ¥
* K K ¥ ¥

sk ok ok sk ok ok ke sk o sk ok o ok 3 ok ke sk o e sk sk ke sk sk ek ok ke ok ok o sk sk ke ok 3k sk ke ok e ke Sk s e ok ek ok sk ok ok ok ok ok ke ok ok ok sk ok ke k

ek ook ok o ok sk ok o ok sk sk o sk sk e ke sk stk ok sk kokskok sk sk o sk sk ok sk sk ks sk skok sk sk ok
STATUS CHANGE ENTRY POINT

DON'T NEED TO TOUCH NON-EXISTENT DEVICE, JUST LET
EXEC PUT DEVICE ON/OFF LINE

* K K ¥ X ¥
* K K X ¥ ¥

e e sk ok ok ke ok ok ke ke sk sk ke sk ke ok sk ke s ke sk sk ke ke sk e sk ok s sk o ok ke ok sk ok ok ok sk sk ke sk sk ek sk sk ok ek ok sk ok ok ke ke ok ok sk

RETURN ; ALL THESE ARE NO-OP FOR NOW
.END

8-30 Sample Driver Code

Appendix A
Converting A User-Supplied RSX-1 1M Driver

This appendix describes the modifications you must make to enable an RSX-11M, user-supplied
driver to run on an RSX-11M-PLUS system. The modifications involve both the driver data
base and the driver code.

A.1 Assumptions and General Approach

The discussion in this appendix assumes that the RSX-11M user-supplied driver runs on a
mapped system. Also, samples of code from the RL01/RLO02 driver (DLDRV) are used as
examples in this appendix.

As a general approach to converting a driver, proceed in the following manner:

1. Read the RSX-1IM-PLUS and Micro/RSX 1/O Drivers Reference Manual to gain a feeling
for the differences between RSX-11M and RSX-11M-PLUS drivers. Note especially the
differences in the data structures (RSX-11M-PLUS has two additional structures).

2. Make the changes described in this appendix.
3. Incorporate the driver according to the guidelines given in Chapter 5.

For the purposes of this discussion, a standard disk driver is one that does not attempt to use
any of the advanced driver features described in Chapter 1.

A.2 Modifying the Data Base Code

Before creating the driver data base, read the overview of programming user-written driver data
bases (Section 4.2). It gives important information on ordering and labeling in the code.

Converting A User-Supplied RSX-11M Driver A-1

A.2.1 Unit Control Block Changes

Make sure that the Unit Control Block (UCB) has the data needed for disk geometry calculations.
Refer to the description of U.PRM in Section 4.4.4. The following code is an example of source
statements that store the disk geometry:

.BYTE 40.,2 ;U.PRM
.WORD 512. ;U.PRM+2

In the preceding code example, the values are device dependent and have the following

meanings:
40. Indicates the number of sectors per track
2 Indicates the number of tracks per cylinder
512. Indicates the number of cylinders per volume

A.2.2 Status Control Block Changes

RSX-11M-PLUS requires a structure called the Controller Request Block (KRB). You can add
the KRB data that RSX-11M-PLUS requires to the Status Control Block (SCB) data to effectively
create one continuous structure. This arrangement is called the contiguous KRB/SCB and
is described in Sections 4.2.4 and 4.4.7. Because the ordering of the SCB data differs from
RSX-11M to RSX-11M-PLUS, you must rearrange the RSX-11M SCB data to accommodate the
RSX-11M-PLUS requirements. If your driver refers to the SCB structures by symbolic offset and
does not rely on physical ordering, you do not need to change the driver code that accesses the
SCB. Refer to Sections 4.4.5 and 4.4.6 for a description of the offsets required.

There must be one KRB/SCB combination for each controller present on the system.

The following code example, from DLDRYV, illustrates contiguous KRB/SCB and includes the
proper offsets:

.BYTE PR5,160/4 ;K.PRI,K.VCT
.BYTE 0%2,0 ;K.CON,K.IOC
.WORD KS.OFL ’ ;K.STS

$DLA:: ;START OF KRB
.WORD 174400 ;K.CSR
.WORD DLA-$DLA ;K. OFF
.BYTE 0,0 ;K.HPU
.WORD .DLO SK.OWN

$DLO: : ;START OF CONTIGUOUS SCB
.WORD O0,.-2 ;S.LHD/K.CRQ
.WORD 0,0,0,0 ;S.FRK
.WORD O ;5.KSb
.WORD O ;S.PKT
.BYTE 0,4. ;8.CTM,S.ITM
.BYTE 0,0 ;S.8TS,S.ST3
.WORD S2.CON!S2.LOG ;S.ST2
.WORD $DLA ;S.KRB
.BYTE 5.,0 ;S.RCNT,S.ROFF
.WORD O ;S.EMB
.BLKW 6 ;MAPPING ASSIGNMENT BLOCK
.WORD O ;KE.RHB

DLA:

A-2 Converting A User-Supplied RSX-11M Driver

In the preceding code example, label DLA is used solely for calculating K.OFF (DLA-$DLA).
K.VCT and K.CSR can be changed dynamically by reconfiguration commands when you bring
the device on-line. Refer to the RSX-11M-PLUS and Micro/RSX System Management Guide for
information on the reconfiguration task and commands.

A.2.3 The Controller Table

RSX-11M-PLUS requires a structure called a Controller Table (CTB). Add the code to define the
CTB according to the rules described in Sections 4.2.5 and 4.4.8.

The following code example, from DLDRYV, is a sample of the code needed to define the CTB:

.WORD 0 ;L.ICB
DLCTB: ;START OF CTB
.WORD 0 ;L.LNK
.AsCII /DL/ ;L.NAM
.WORD $DLDCB ;L.DCB
.BYTE 1,0 ;L.NUM,L.STS
$DLCTB: : ;POINTER TO THE DEVICE CONTROL BLOCK (DCB)
.WORD $DLA ;L.KRB

The preceding example assumes that you have a loadable data base. If the data base is resident,
you must include the CTB macro before L.LNK. In the example, L.KRB points to the start of
the KRB.

A.3 Modifying the Driver Code

Several changes must be made to the RSX-11M driver code. For an overview of the RSX-11M-
PLUS coding requirements, refer to Section 4.3.
A.3.1 Conditional Symbols
You can remove most dependence on system-conditional definitions from the code. RSX-11M-
PLUS always defines the symbols D$$IAG, M$$SMGE, M$$SEXT, M$$MUP, and E$$DVC.
A.3.2 Controller-Dependent Code

At the I/O initiation entry point in RSX-11M drivers, you will find code for defining a table of
UCB addresses and loading the UCB address of the currently active unit in the table. Remove
this code and replace it with the GTPKT$ macro call. For guidelines on doing this, refer to
Sections 4.3.2 and 4.5.2. '

The following is an example of the RSX-11M driver code that you must remove:

CALL $GTPKT ;GET AN I/0 PACKET TO PROCESS
BCC 1$;IF CC PROCESS REQUEST
RETURN ;RETURN IF BUSY OR NO REQUEST
1$: MoV R5,CNTBL(R3) ;SAVE ADDRESS OF REQUEST UCB
Insert the RSX-11M-PLUS GTPKT$ macro call, as in the following example:
GTPKT$ DL,R$$L11 ;GET NEXT I/0 PACKET TO PROCESS

Converting A User-Supplied RSX-11M Driver A-3

A.3.3 Driver Dispatch Table

Replace the code that defines the entry point addresses with the DDT$ macro call. Refer to
Section 4.3.1 for a description of the call and its parameters. Refer to Section 4.5.1 for a
description of the Driver Dispatch Table (DDT) and the format of the labels that it uses for the
entry points.

The following is an example of the RSX-11M driver code that you must remove:

$DLTBL::.WORD DLINI :DEVICE INITIATOR ENTRY POINT
.WORD DLCAN ;CANCEL I/0 OPERATION ENTRY POINT
.WORD DLOUT ;DEVICE TIMEOUT ENTRY POINT
.WORD DLPWF ;POWERFAIL ENTRY POINT
Insert the RSX-11M-PLUS DDT$ macro call, as in the following example:
DDT$ DL,R$$L11 ;GENERATE DISPATCH TABLE

You do not have to add code to the driver to handle controller and unit status changes. The
sample form of the macro call shown generates code to use the xxPWF entry point for controller
and unit on-line and off-line status changes.

A.3.4 Reconfiguration Support

If you incorporate the device in the Reconfiguration task (HRC . . .) tables and the device calls
the Executive volume valid routine, you must incorporate a local register pass routine in your
driver, as in the following code example:

o+

; MOVE THE CONTROLLER/DRIVE REGISTERS INTO THE
; SPECIFIED BUFFER.

; INPUTS:

; R2 = CSR ADDRESS

; R3 = BUFFER ADDRESS

; OUTPUTS:

: R3 - ALTERED

REGPAS: MOV (R2), (R3)+ ;MOVE RLCS

MOV RLBA(R2), (R3)+ ;MOVE RLBA
Mov RLDA(R2), (R3)+ ;MOVE RLDA
MOV RLMP(R2) , (R3)+ ;MOVE RLMP

CALL DLGST ;EXECUTIVE GET DRIVE STATUS FUNCTION
MOV RLMP(R2) , (R3) ;SAVE DRIVE STATUS
RETURN H

In the preceding code example, the index values RLxxx and the subroutine DLGST are device
specific.

A-4 Converting A User-Supplied RSX-11M Driver

A.3.5 Volume Valid Processing

If the device is a disk and has a volume valid function, the RSX-11M-PLUS Executive must be
able to handle the correct function codes. Refer to the description of volume valid processing
in Section 4.5.9. For volume valid support, you may also need to include the code that appears

in the following example:

CALL $VOLVD ; VALIDATE VOLUME VALID
BCS I0DON ;IF CS WE FAILED
TST RO ; TRANSFER FUNCTION?
BMI 13 ;IF MI YES
TST I.PRM+2(R1) ;SIZE THE DISK
BPL I0DON - ;IF PL NO
MOV S.CSR(R4) ,R2 ;RETRIEVE CSR ADDRESS
CALL DLRST ;RESET DRIVE AND GET STATUS
MOV S.PKT(R4) ,R3 ;RETRIEVE I/0 PACKET ADDRESS
CALL REGPAS ;PASS REGISTERS TO HRC
BR I0DON ;FINISH I/0 REQUEST
1$: ;REFERENCE LABEL

In the preceding example, the subroutine DLRST is device specific.

A.3.6 Converting Logical Block Numbers

The $CVLBN routine converts a Logical Block Number (LBN) to a physical disk address. You
can replace special-purpose code in the RSX-11M driver with a call to this Executive routine, a
description of which is in Section 7.4.6. A sample of RSX-11M logical block conversion code
that you should remove appears in the following example:

Mov #40. ,R1
CALL $DIV
.REPT 6.

ASL RO
.ENDR

BIS R1,40

;DIVIDE BY SECTORS/SURFACE
;CALCULATE CYLINDER NUMBER

;POSITION CYLINDER AND SURFACE

;MERGE SECTOR WITH CYLINDER AND SURFACE

The following code example, which includes the call to $CVLBN, illustrates RSX-11M-PLUS

logical block number conversion:

CALL $CVLBN
ROR R1

ROL R2
ASH #6,R2
BIS R2,RO

A.3.7 Interrupt Entry Processing

;CONVERT BLOCK NUMBER TO DISK ADDRESS
;PUT SURFACE BIT IN CARRY

;MERGE IT WITH THE CYLINDER NUMBER
;POSITION CYLINDER AND SURFACE

;MERGE SECTOR WITH CYLINDER AND SURFACE

Make sure that the INTSV$ macro call appears as the first line of code at each interrupt entry
point in the driver. Refer to Section 4.3.3 for a description of the INTSV$ macro call and to
Section 4.5.8 for a discussion of processing at an interrupt entry point. The following code

example illustrates the INTSV$ macro call:
INTSV$ DL,PR5,R$$L11

i+ +SAVE REGISTERS AND SET PRIORITY

Converting A User-Supplied RSX-11M Driver A-5

Index

A

Acceptance routine, 1-14
Access path

switching between, 1-12
$ACHCK routine, 7-7
$ACHKB routine, 7-7
ACP function mask, 4-19
Active Page Register

See APR
Address doubleword, 7-1, 7-2
Advance driver feature, 1-18, 2-4
$ALOC1 routine, 7-8
$ALOCB routine, 7-8
APR, 1-2, 1-3
AST, 1-15
$ASUMR routine, 7-8

calling from driver, 7-4
Asynchronous System Trap

See AST

B

$BLKC1 routine, 7-9
$BLKC2 routine, 1-17, 7-9
$BLKCK routine, 1-17, 7-9
$BLXIO routine, 7-10
Breakpoint
setting
in a driver, 6-5
Buffer
special user
sample of driver handling, 8-15, 8-30
Buffered 1/0, 1-16
Bus switch, 1-18

C

Cancel I/0
entry point, 4-61

Cancel I/O (cont’d.)

overview, 2-5
CDA, 6-1
$CFORK, 1-19
CINTS, 1-1
$CKBFB routine, 7-11
$CKBFI routine, 7-11
$CKBFR routine, 7-11
$CKBFW routine, 7-11
$CLINS routine, 7-13
Common directive, 1-20
Concurrent I/0, 1-14
Conditional assembly directive, 4-2
Conditional fork, 1-19
necessity, 1-19
Configuration
peripheral
choosing at system generation, 5-10
Connectivity mask, 1-19
CON task, 1-24, 5-2, 5-7, 5-8, 5-9
overview, 1-24
Contiguous KRB and SCB, 2-7, 4-49
Control and status register
See CSR
Control function mask, 4-18, 4-19
Controller, 1-4
access, 1-11
delayed, 1-12
dual support, 1-12
access list, 2-2
allowing parallel operations, 2-2
assignment, 1-12
busy/not busy, 1-12
configuration status for, 2-2
defining type, 2-1
group number, 1-5
I/0O count, 1-12, 1-14
interrupts, 1-12

Index-1

Controller (cont’d.)

interrupt vector, 1-7
2-level controllers, 1-14
location of a CSR for a, 2-2

maintaining hardware-specific information

for, 2-2
making accessible, 5-6
name, 2-1
number, 1-5
placing on line, 5-7
reassignment, 1-12
and load sharing, 1-12
status, 1-12
subcontroller device, 1-14
block, 1-14
supporting more than one device, 1-13
Controller Request Block
See KRB
Controller request queue, 1-12, 2-2
Controller status change
entry point, 4-63, 4-64
overview, 2-6
Controller status extension 2, 4-40
Controller status extension 3, 4-38
Controller table
See CTB
Controller table status byte, 4-54
Conversion routine, 1-17
Crash dump analysis, 6-1
CSR, 1-1
accessing, 1-1
address space, 1-1
assignment
error, 5-8
setting, 5-7
/CTB
use in LOAD, 5-14
CTB, 1-4
composite arrangement, 2-14
definition, 1-4
details, 4-49, 4-50, 4-54
format, 4-50, 4-54
layout, 4-50
overview, 2-1
requirement, A-3
system list, 2-1
use in handling interrupts, 2-1
use in LOAD, 5-14
validation during LOAD, 5-11
$CTLST symbol, 2-14
$CVLBN routine, 7-14
Cylinder number, 1-17

Index-2

Cylinder Scan

definition, 1-17

D.xxx offsets

in DCB, 4-16 to 4-21

Data

asynchronous, 1-16

Data base, 1-23

assembling

during system generation, 5-4
code

bit symbols, 4-28
converting RSX-11M to RSX-11M-PLUS,

A-1, A-2

defining CTB, A-3

SCB requirements, A-2
creating source code, 4-2
defining link word for, 4-3
details of structures, 4-30 to 4-35, 4-49
details of structures/begin, 4-45
driver

sample code, 8-1, 8-3

structures, 2-1, 2-3
global label, 4-2

$USRTB, 4-3

$xxDCB, 4-3
labeling of data structures, 4-2
loadable, 1-24, 4-3

incorporating, 5-1
module

inserting into library, 5-4
overview of structures, 2-3
owning CTB, 2-1
programming

requirements, 4-2 to 4-3
resident, 1-24, 4-3

incorporating, 5-1

linking to CTB, 4-3
structures

augmented, 1-14

composite arrangement, 2-11

conventional, 1-14

ordering of, 4-2

typical arrangements, 2-6, 2-7, 2-8
validation during LOAD, 5-11

Data structure, 1-14
Data transfer, 1-12
DCB

ASCII device name, 4-18
composite arrangement, 2-12

DCB (cont’d.)

creating mask words in, 4-20
definition, 1-4
details, 4-16, 4-17, 4-18
driver dispatch table pointer, 4-18
driver-specific function masks, 4-21 to
4-24
establishing characteristics for, 2-7
establishing I/O function masks, 4-21
fields, 4-16, 4-17, 4-18
format, 4-16, 4-17, 4-18
labeling, 4-3
length of UCB, 4-18
linking to next DCB, 4-16
list of, 2-3
means to access Driver Dispatch Table,
2-3
number of units stored, 4-3
overview, 2-3
pointer to first UCB, 4-17
unit number range, 4-18
validation during LOAD, 5-12
DDT$ macro call
arguments, 4-5
use of, 4-5
$DEAC1 routine, 7-15
$DEACB routine, 7-15
Deallocation entry point, 4-62
$$DEUMR routine
calling $DQUMR, 7-16
$DEUMR routine, 7-15
calling from driver, 7-4
$DEVHD routine, 2-3, 2-12
Device, 1-1
address, 1-1
assigned controller, 1-20
busy/not busy, 1-12
configured on line, 1-14
driver
See Driver
dual-access capability, 1-19
generic name, 2-3
interrupt, 1-5
making accessible, 5-6
registers, 1-1, 1-3, 4-46
storage of static characteristics, 2-3
subcontroller, 1-14
time-out, 2-5
entry point, 4-61
Device Control Block
See DCB

Device interrupt address

overview, 2-6

Device interrupt vector, 2-4
Directive Parameter Block

See DPB

Distributed 1/0, 1-18
Doubleword

address, 7-1, 7-2

DPB, 4-11

details, 4-13, 4-15
format, 4-13, 4-15
usage in creating I/O packet, 3-2

$DQUMR routine, 7-16
DRDSP

directive dispatcher, 3-2

Driver, 1-2

acceptance routine, 1-14
accessing a controller, 1-19
advanced features, 1-8, 1-10, 1-16, 1-17,
1-18, 2-4
assembling
during system generation, 5-4
in Micro/RSX, 5-15
building
in Micro/RSX, 5-15
loadable, 5-2
resident, 5-2
code, 1-3, 1-23
creating, 4-4
definition, 1-5
function, 4-4
general description, 4-5
requirements, 4-55
usage of symbolic offsets, 4-55
conversion routine, 1-17
converting RSX-11M to RSX-11M-PLUS
adding $GTPKT, A-3
adding the DDT$, A-4
conditional symbols, A-3
handling function, A-5
interrupt entry, A-5
LBN conversion, A-5
modifying the driver, A-3
reconfiguration, A-4
using $CVLBN, A-5
using INTSV$, A-5
volume valid, A-5
data base, 1-4, 1-23
linkages, 1-23
data structure, 1-4, 4-25
accessing, 4-2
details, 4-10

Index-3

Driver Driver

data structure (cont’d.) loadable (cont’d.)
symbolic offsets, 4-2 rebuilding and reincorporating, 6-14
DDT$ macro call with loadable data base, 1-23
arguments, 4-5 with resident data base, 1-24
placement of, 4-5 loading, 5-6
debugging, 1-24, 6-5, 6-10, 6-14 macro call, 4-5
using CDA, 6-1 mapping with Executive, 1-2, 1-3
using XDT, 6-2 modifying data in UCB, 2-3
defining labels, 4-56 module
details of code, 4-55, 4-66 inserting into library, 5-4
dual access, 1-12 partition, 5-5
entry point predriver initiation, 3-1
See Driver entry point process, 1-9
executable instructions, 1-4 definition, 1-5
executing on correct processor, 1-20 processing
Executive 1/0 request, 1-5, 3-3
choosing options, 5-10 interrupts, 1-6
Executive services, 3-3 to 3-5 programming
for NPR devices (on PDP-11), 7-2 conventions, 4-1
full-duplex, 4-13 requirements, 4-4 to 4-9
GTPKT$ macro call protocol, 1-8, 4-1
arguments, 4-6 requesting I/O packet, 1-5, 1-19
placement of, 4-6 resident, 1-23
handling full-duplex operations, 1-14 definition, 1-2
handling multiple 1/O requests, 1-14 incorporating, 1-23, 5-1, 5-2
I/0 packet, 1-5 with resident data base, 1-24
1/0 queue sample source code, 8-3, 8-15
placement of I/O packet, 4-11 servicing
I/0 request 1/0 request, 1-5
function codes for, 4-13 specifying as loadable, 4-9
processing, 1-18 standards, 4-1
1/0 requirements, 4-18 system generation, 5-5
incorporating, 1-22, 1-23, 5-1 dialogue summary, 5-9
at system generation, 5-1 effect, 5-3
guidelines for, 5-1 system macro call
into a Micro/RSX system, 1-22, 5-15 arguments, 4-5
loadable, 5-1 general functions, 4-5
resident, 5-1 task-building, 5-5
initiating I/0, 1-19 type, 1-2
interrupt handling, 1-8 UMR procedures, 7-2, 7-3
interrupt level, 1-6, 1-8 XDT support, 6-2
interrupts, 7-1 Driver debugging, 6-1
INTSV$ macro call Driver Dispatch Table, 4-5
arguments, 4-8 address of routines, 1-4
placement of, 4-8 entry points, 2-4
loadable association of, 4-55
data base, 5-1, 5-3 format, 4-55
definition, 1-2 generation of, 4-5
entry points for LOAD and UNLOAD, from DDT$, 4-55
4-9 labels required, 4-56
incorporating, 1-22, 5-1, 5-3 layout, 4-56

Index—4

Driver Dispatch Table (cont’d.)

linking to the driver code and data base,
4-55
Driver entry point, 1-4, 2-4
block check and conversion, 4-58
cancel 1/0, 4-58, 4-60, 4-61
controller status change, 4-58, 4-63, 4-64
deallocation, 4-62
device time-out, 4-58, 4-61
I/0 initiation, 4-58, 4-60
interrupt, 4-58, 4-65, 4-66
next command, 4-61
power failure, 4-58, 4-62
queue optimization, 4-62
standard labels, 4-58
unit status change, 4-58, 4-64, 4-65
Drivers
vectored, 1-21
DRQIO
performing redirect algorithm, 3-2
$DRQRQ routine, 1-17
locating the conversion routine, 1-17
DTO07 bus switch, 1-18
Dual access, 1-12
operation of, 2-10
Dual-access support, 1-11
$DVMSG routine, 7-16

E

Elevator
definition, 1-17
Executive, 1-2

calling the driver, 1-19
coroutine

$INTSV, 1-6
directive dispatcher

DRDSP, 3-2
dispatching to correct driver routine, 2-1
distributing I/O requests, 1-19
interrupt exit routine, 1-7
interrupts

handling, 2-1
interrupt save routine, 1-7, 1-8
macro library

EXEMC.MLB, 5-4
mapping, 1-3
modifying data in UCB, 2-3
module

DVINT, 1-13
options for driver, 5-10
performing processor specific functions,

1-18

Executive (cont’d.)
predriver initiation, 1-4
queuing to the driver, 1-5
request queue for controller, 1-12
routines
handling, 1-5, 1-7
service routine, 1-2, 1-3
stack and register dump, 6-11
symbol
$CTLST, 2-14
Executive Debugging Tool
See XDT
Executive routines, 1-12, 1-17, 4-39

See also Executive services
$GTPKT, 1-5, 1-14
$IODON, 1-14
Executive services
summaries of technically used, 7-34
Executive vectored, 1-20
Extended User Control Block
See UCB
External header, 6-7

F

Fault
codes, 6-11
tracing, 6-13
Fault isolation, 6-5, 6-7
FCB
See File Control Block
File Control Block, 2-13
$FORK1 routine, 7-18
Fork block, 1-19
storage area, 4-37
Fork list
head of ($FRKHD), 2-13
Fork process, 1-8, 1-14, 1-19
definition, 1-8
$FORK routine, 1-8, 1-19, 7-17
driver use in I/O processing, 3-5
$FRKHD symbol, 2-13
Full-duplex I/0, 1-14
Function mask
ACP, 4-18, 4-19
building for mask word, 4-20
control, 4-19)
establishing, 4-21
layout, 4-18, 4-19
legal
details, 4-19
no-op, 4-19

Index-5

G

$GSPKT routine, 1-14, 7-20

$GTBYT routine, 7-19

GTPKT$ macro call
arguments, 4-6

$GTPKT routine, 1-5, 1-14, 1-18, 7-20
usage in driver code, 3-4

$GTWRD routine, 7-21

H

Hardware configuration
relationship to structures at block level,
2-1
$HEADR, 6-7, 6-9
pointer to first word of task header, 6-7
High-speed device, 1-18

1I/0
asynchronous, 1-16
cancel in-progress, 2-5
high-speed device, 1-16
overview, 3-3
processing requirements, 1-17
slow-speed device, 1-16
1/0O completion, overlapped, 1-11
I/0O count, 1-12
I/0 data base structure
composite arrangement, 2-12
typical arrangements, 2-7, 2-8, 2-11
I/O data structure
details, 4-10
overview, 2-1, 2-2, 2-3
typical arrangements, 2-6
I/0 finish
See $IOFIN routine
I/0 function
definition of types, 3-3
mask values, 4-22
mask word bit settings, 4-22, 4-23, 4-24
I/0O function mask
establishing, 4-21
I/0 initiation
entry point, 4-60
sample use of alternative, 8-15, 8-30
overview, 2-5
I/O packet, 1-5, 8-3, 8-15
building, 4-11
composite arrangement, 2-12, 2-13
creation of, 3-2
current address, 4-37

Index-6

I/0 packet (cont’d.)
fields, 4-11, 4-13, 4-14
handling before it is queued, 8-3, 8-15,
8-30
layout, 4-11
I/0O page, 1-3
I/O processing, 1-11
I/O queue optimization
Cylinder Scan, 1-17
Elevator, 1-17
Nearest Cylinder, 1-17
1/0 request, 1-4, 1-5, 1-18
completing process for an, 3-3
flow of, 3-1, 3-3
issuing I/O for an, 3-3
1/0 requests, 1-11, 1-16
I/0 routines, 1-16
I/0 sequential processing, 1-11
ICB, 1-2, 1-7, 1-13
number of controllers allowed, 1-7
$INIBF routine, 1-16, 7-22
$INISI routine, 1-7
INITL module
errors from, 6-3
Interrupt, 1-1
addresses
overview, 2-6
connect-to directive, 1-1
dispatching, 1-8
for common interrupt devices, 1-13
overview, 2-6
entry address, 2-4
entry point, 4-65, 4-66
for overlapped seek, 1-13
handling, 1-5, 1-8, 1-9, 1-13
protocol, 1-6, 1-9
service routine, 1-5, 1-6
vector, 1-1, 1-13
Interrupt Control Block
See ICB
Interrupt processing
by driver, 3-3
Interrupt save
See $INTSV routine
$INTSE routine, 7-23
$INTSI routine, 1-7
INTSV$ macro call
arguments, 4-8
$INTSV routine, 1-6, 1-7, 7-23
$INTXT routine, 1-7, 7-24
$IOALT routine, 1-14, 1-17, 7-24

$IOALT routine (cont'd.)

driver use in I/O processing, 3-5
$IODON routine, 1-14, 7-24

driver use in I/O processing, 3-5
$IODSA routine, 7-24
$IOFIN routine, 1-14, 1-16, 3-3, 7-25
10SB

validity checks, 3-2

K

K.STS, 4-44
KRB, 1-4, 1-14
access queue in the, 2-2, 2-14
combined with SCB, 2-2, 4-49
layout, 4-49
composite arrangement, 2-14
configuration status in the, 2-2
contiguous with SCB, 2-7, 4-3
defining start of addresses, 4-3
definition, 1-4
details, 4-41, 4-44, 4-49
format, 4-44, 4-49
layout, 4-42
overview, 2-2
subsets, 1-14
use in determining interrupting unit, 2-3
KRB1, 1-14

L

L.STS, 4-54
LBN, 1-17
LD$xx symbol, 4-9
Legal function mask
details, 4-19
LOA
See LOAD command
Loadable data base
See Data base
Loadable driver
See Driver
LOAD command, 1-23, 1-24, 5-6
allowances, 1-7
Executive operation for driver, 5-11
operation, 5-11
overview, 1-23
use of /CTB, 5-14
Load sharing, 1-12
Logical block number
See LBN
Logical Unit Table

See LUT

LPA11-K, 1-14
LUT, 2-12, 3-2

M

Mask word

creating, 4-20

I/0 function, 4-20
MASSBUS

controller, 1-14

mixed device, 1-13
Micro/RSX

incorporating a driver, 1-22, 5-15
$MPUBI routine, 7-27
$MPUBM routine, 7-26
Multiple access operation

data base structures, 2-8, 2-11
Multiple controller, 1-8
Multiprocessor system

task issuing 1/0O request, 1-18

N

Nearest Cylinder

definition, 1-17
Next command entry point, 4-61
Nonexternal header, 6-7
Non-pool-resident, 6-7

header, 6-10
No-op function mask, 4-18, 4-19
NPR device

drivers for (on PDP-11), 7-2

O

Overlapped Seek 1/0, 1-10
data base structures, 2-8
data transfers, 1-10
difficulty factor, 1-10
executing parallel operations, 1-10

P

Page Address Register

See PAR
PAR, 1-2
Parallel unit operation

data base structures, 2-8
Partition Control Block

See PCB
PCB

composite arrangement, 2-12
PDR, 1-2

Peripheral configuration

choosing at system generation, 5-10
Pool-resident, 6-7

header, 6-9
Ports, 1-12

switching between, 1-12
Power failure

entry point, 4-62

overview, 2-6
Predriver initiation

processing during, 3-1, 3-2, 3-3, 3-4
Primary UNIBUS run, 1-18
Processor

halt

tracing fault, 6-12
loop
tracing fault, 6-13

Processor-specific functions, 1-19
Processor status word, 1-1
PSW

See processor status word
$PTBYT routine, 7-28
$PTWRD routine, 7-28

Q

Q.xxx offsets
in I/O packet, 4-15, 4-16
$QINSP routine, 7-29
QIO directive
building I/O packet, 4-11
creating DPB, 3-2
directive dispatching, 3-2

QIO Directive Parameter Block (QIO DPB),

4-11, 4-15 to 4-16
QIO request, 2-12
$QUEBF routine, 1-16.
Queue optimization, 1-17
entry point, 4-62

R

Redirect algorithm, 3-2
Register

conventions

at system state, 7-1

$RELOC routine, 7-29
$RELOP routine, 7-30
$REQU1 routine, 7-31
$REQUE routine, 7-31
Resident data base

See Data base

Index-8

Resident driver

See Driver

$RQCNC, 4-39
$RQCND, 4-39
RSXASM.CMD file, 5-4

S

5.5T3, 4-38
S.STS, 4-38
$SAHDB, 6-9, 6-10

contains an unknown value, 6-7

$SAHPT, 6-9

pointer to first word of task header, 6-7

$SAVSP, 6-9

pointer to first word of task header, 6-7

SCB, 1-14, 2-3

adding KRB, A-2
address for KRB, 2-3
changes for converting a driver, A-2
combined with KRB, 4-49
layout, 4-49
composite arrangement, 2-12, 2-13
contiguous with KRB, 2-7, 4-3
details, 4-35, 4-37, 4-40
format, 4-37, 4-40
KRB addresses for, 4-41
layout, 4-37
linking to fork blocks, 2-3
overview, 2-3
parallel operations, 2-3
pointer
to currently assigned KRB, 4-41

to head of queue for I/O requests, 2-3

validation during LOAD, 5-13

Secondary UNIBUS run, 1-18
Serial

operations
two controllers, 2-8

unit operation
data base structures, 2-7
multiple units per controller, 2-7

Service routine, 1-2

See also Executive services
summaries of Executive, 3-4, 7-34

SPR, 1-25
Stack

structure, 6-12
internal SST fault, 6-10, 6-11

Stack and register dump

Executive, 6-11

Static structure, 2-1

Status Control Block
See SCB
$STKDP, 6-12
Stack Depth Indicator, 6-7
$STMAP routine, 7-31
calling from the driver, 7-3
$STMP1 routine, 7-32
calling from the driver, 7-3
Subcontroller device, 1-14
block, 1-14
Symbolic offsets
usage, 4-2
SYSTB.MAC file, 1-23
System
I/0 data base
main thread through, 2-1, 2-3
macro call, 4-5
stack, 6-11
System generation
incorporating a driver, 5-1
System-state
register convention, 7-1

T

Task
checkpointing, 1-16
decrementing I/O count, 1-16
frequency of accessing data areas, 1-18
proper state to initiate buffered 1/0, 1-16
Task Control Block
See TCB
Task directive common, 1-20
Task entry points, 1-20
Task Executive code, 1-20
Task header, 6-9
composite arrangement, 2-12
pointers, 6-7
Task I/0, 1-16
Task vectoring, 1-20
TCB, 1-16
composite arrangement, 2-12
Time-out
count, 4-38
entry point, 2-5
$TKTCB
pointer to current TCB, 6-7
Tracing fault, 6-13
$TSPAR routine, 7-33
$TSTBF routine, 1-16, 7-34

U

U.ST2, 4-31
U.STS, 4-30
UCB, 1-14, 2-4
association with SCB, 2-7
composite arrangement, 2-12
details, 4-25 to 4-34
device-dependent values, 4-27
device-specific characteristics, 4-31 to 4-32
disk geometry calculations, A-2 \
enabling driver to access data structures,
2-3
fields, 4-27
format, 4-25
layout, 4-27
length, 4-3
stored in DCB, 2-3
ordering, 4-3
overview, 2-3
pointer
to associated DCB, 4-27
to I/O structures, 2-3
to start of this UCB, 4-27
table
composite arrangement, 2-14
validation during LOAD, 5-13
UCBSvV
use in macro calls, 4-9
UMR
programming procedures, 7-2, 7-3
UNIBUS
switched bus, 1-18
UNIBUS Mapping Registers
See UMR
UNIBUS Run Mask
See URM
Unit
making accessible, 5-6
placing on line, 5-7
Unit Control Block
See UCB
Unit status
change
entry point, 4-64, 4-65
overview, 2-6
extension 2, 4-31
URM, 1-18, 4-37
$USRTB global label, 4-3

Index-9

\Y

VCB
composite arrangement, 2-14
Vector, 1-1
addresses
definition of in Driver Dispatch Table,
2-6
assignment
error, 5-8
setting, 5-7
interrupt, 1-1, 1-13
Vectored Executive, 1-20 to 1-22
Vectoring, 1-20 to 1-22
Vectoring drivers, 1-21
Volume Control Block
See VCB
Volume valid processing, 4-66

W

Window
block
composite arrangement, 2-13

X

XDT, 6-2, 6-3, 6-5
commands, 6-2
debugging

driver, 6-2, 6-4, 6-5
general operation, 6-4
restrictions, 6-3, 6-4
startup, 6-3

xxCTB label, 4-3

$xxDCB
global label, 4-3

xxDRV.MAC file, 5-2

xxDRVASM.CMD file, 5-4

$xxLOA label, 4-9, 4-58

xxTAB.MAC file, 1-23, 5-2

$xxTBE label, 4-56

$xxTBL label, 4-18

$xxUNL label, 4-9, 4-58

Index-10

RSX-11M-PLUS and Micro/RSX
Guide to Writing an 1/0O Driver
AA-H267C-TC

READER’S Your comments and suggestions are welcome and will help us in our
continuous effort to improve the quality and usefulness of our documentation
COMMENTS and software.

Remember, the system includes information that you read on your terminal:
help files, error messages, prompts, and so on. Please let us know if you have
comments about this information, too.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

What kind of user are you? — Programmer — Nonprogrammer

Years of experience as a computer programmer /user:

Name Date

Organization

Street

City State ___ Zip Code

or Country

—— Do Not Tear - Fold Here and Tape = -——— - — = s e e e — o — o e e o o~ — — - — = —m —— —— ———

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

~—— Do Not Tear - Fold Here

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

No Postage
Necessary
if Mailed
in the
United States
]
|
]
|
]
.
]
T
I

e e i e — —— ——— - — o St S SO S S o —— — —— G — f— v . F— G S O —— e C— e — —

