s RAID Array Controllers
s Workflow Models
s PC LAN and System Management Tools

Digital Technical Journal

Digital Equipment Corporation

Volume 6 Number 4

Fall 1994



Cever Design

Ouwr cover design is inspired Dy a system man-
agement topic in this issue. ManageWORKS
software is a system and network mandge-
ment tool that presents an object-oriented,
graphical view of a beterogeneous LAN envi-
ronment. The multicolor circles on the cover
represent the diverse objects, or entities, on
the networks among which a system adminis-
trator “navigates” using the integrated comn-
ponents of the tool.

The cover was designed by Lucinda O’'Neill
and Joe Pozerycki, [r., of Digital's Design
Group.

Editorial

Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Advisory Board
Samuel H. Fuller, Chairman
Richard W. Beane
Donald Z. Harbert
William R. Hawe
Richard J. Hollingsworth
Richard E Lary

Alan G. Nemeth

Jean A. Proulx

Robert M. Supnik

Gayn B. Winters

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production

Terri Autieri, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, Illustrator
The Digital Technical Journal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road LJO2/D 10, Littleton, Massachusetts 01460).
Subscriptions to the Journal are $40.00 (non-U.S. $60) for four issues and $75.00
(non-UL.S. $115) for eight issues and must be prepaid in US. funds. University and
college professors and Ph.D. students in the electrical engineering and computer
science fields receive complimentary subscriptions upon request. Orders, inquiries,
and address changes should be sent to the Digital Technical Journal at the published-
by address. Inquiries can also be sent electronically to dtj@digital.com. Single copies
and back issues are available for $16.00 each by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent back issues of the Journal are also available on the Internet
at http://www.digital.com/info/DTJ/home.html. Complete Digital Internet listings can
be obtained by sending an electronic mail message to info@digital.com.

Digital employees may order subscriptions through Readers Choice by entering VIX
PROFILE at the system prompt.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright © 1995 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty mem-
bers and are not distributed for commercial advantage. Abstracting with credit of
Digital Equipment Corporation’s authorship is permitted. All rights reserved.

The information in the_Journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation or by the companies
herein represented. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in the Journal.

ISSN 0898-901X
Documentation Number EY-T118E-T]

The following are trademarks of Digital Equipment Corporation: AXP, CI, DEC, DEC OSH1,
DECmcc, DECmodel, DECnet, DECwindows, Digital, the DIGITAL logo, HSC, HSC50),
HSC60, HSC70, HSC90, HSJ, HSZ, InfoServer, KDM, Manage WORKS, ObjectFlow, OpenVMS,
PATHWORKS, POLYCENTER, StorageWorks, ULTRIX, VAX, VAXcluster, VAXstation, VMS,
and VMScluster.

Apple and AppleShare are registered trademarks of Apple Computer, Inc.
dBase IV is aregistered trademark of Borland International, Inc.
Hewlett-Packard is a registered trademark of Hewlett-Packard Company.
i900 is a trademark of Intel Corporation.

IBM and NetView are registered trademarks of International Business Machines
Corporation.

Knowledge Craft is a registered trademark of Carnegie Group, Inc.

Microsoft and Visual C++ are registered trademarks and Windows and Windows NT
are trademarks of Microsoft Corporation.

NFS is a registered trademark of Sun Microsystems, Inc.

NetWare and Novell are registered trademarks of Novell, Inc.

OSH1 is a registered trademark of the Open Software Foundation, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively by X/Open Company Ltd.

X Window System is a trademark of the Massachusetts Institute of Technology.

Book production was done by Quantic Communications, Inc.




| Contents

RAID Array Controllers

The Architecture and Design of HS-series
StorageWorks Array Controllers
Stephen J. Sicola

26

50

Workflow Models

Policy Resolution in Workflow Management Systems
Christoph J. Busler

The Design of DECmodel for Windows
Stewart V. Hoover and Gary L. Kratkiewicz

63

75

89

PC LAN and System Management Tools

The Design of ManageWORKS: A User
Interface Framework
Dennis G. Giokas and John C. Rokicki

The Structure of the OpenVMS Management Station
James E. Johnson

Automatic, Network-directed Operating System
Software Upgrades: A Platform-independent Approach
John R. Lawson, Jr.




Editor’s Introduction

Jane C. Blake
Managing Editor

Three computing topics are presented in this issue
of the Journal: a storage array controller for open
system environments, workflow architectures and
tools, and PCand LAN system management products.

The opening paper, by Steve Sicola, describes
Digital's new HS series of StorageWorks array con-
trollers. Designed for open systems, the control-
lers interface to host computers by means of the
industry-standard SCSI-2 interconnect, as well as
Digital’s CI and DSSI host interconnects. Equally
important to designers as openness were controller
availability and performance. Innovative features
were introduced, including dual-redundant con-
trollers and Parity RAID firmware to ensure high
availability, and a write-back cache thatsignificantly
improves performance. The paper concludes with
a description of the common controller processing
core for the SCSI, CI, and DSSI controller variants.

Workflow is the subject of two papers with dif-
fering perspectives. Christoph Bufller opens his
paper with introductory definitions and implica-
tions of workflow concepts. He argues that a work-
flow that uses roles for task assignment is limited,
especially in large. international enterprises. He
states that by adding the dimension of organiza-
tional dependencies for task assignment a complex
workflow is more precisely expressed. Using the
example of a travel expense reimbursement work-
flow, Christoph shows how the Policy Resolution
Architecture design principles support enterprise-
level workflow deployment—reusability, security,
generality, dynamics, and distribution. He also dis-
cusses the Policy Definition Language that formally
describes workflow elements.

A second paper about workflow presents a tool,
called DECmodel for Windows, for the development
of business process models and their graphical
presentation. Stew Hoover and Gary Kratkiewicz

explain the reasoning behind the creation of a pre-
sentation layer in DECmodel that provides a graphi-
cal view of the business process while hiding the
technical details of the model. The authors also
cover implementation details, including the deci-
sions to move from the original LISP environment to
a C++ programming environment and to imple-
ment the knowledge base for DECmodel in ROCK,
a frame-based knowledge representation.

We then shift the focus to ManageWORKS and
POLYCENTER tools that have been developed to
simplify the increasingly complicated job of system
management. The first of three papers describes
the development of the ManageWORKS Workgroup
Administrator software. Dennis Giokas and John
Rokicki discuss the design principles adopted for
this product that enables system and network man-
agement of heterogeneous LANs from a single PC
running Microsoft Windows. Key design elements
are plug-in, customizable modules for system
navigation ancd management, and the user inter-
face framework, which controls the flow between
modules. The authors offer scenarios to illustrate
interactions between components.

Managing OpenvMs systems from a PC running
the Microsoft Windows operating system can be
accomplished with the OpenvMS Management
Station, of which ManageWORKS is a key compo-
nent. Jim Johnson defines the need for this scalable
and secure client-server tool in OpenVMS envi-
ronments, which can be clustered, distributed,
expanded, and networked extensively. After a dis-
cussion of design alternatives, Jim describes the
functions of the Station’s client, communication,
and server components.

The final paper is about an initial system load
(ISL) capability for automatic, network-directed,
operating system software upgrades. John Lawson
reviews goals for the POLYCENTER Software Distri-
bution layered product, compares the POLYCENTER
ISL process with the OpenVMS ISL process. and
steps through the requirements tor expanding the
POLYCENTER Software Distribution capability to
other platforms and operating systems.

Our next issue wil celebrate the Journal’s tenth
anniversary of publishing the technical achieve-
ments of Digital’s engineers and partners. The issue
will feature database technologies and new Alpha
workstations and high-end server systems.

[ otee__



Biograpbies

Christoph J. Bu8ler Christoph Bufiler is a faculty member at the Technical
University of Darmstadt, Germany, where he is pursuing a Ph.D. degree. His
research is in workflow and organization modeling, with a focus on organizational
embedding of workflow management, and in architectures for enterprise-wide
deployment of work flow management systems. While at Digital from 1991 to 1994,
Christoph developed the Policy Resolution Architecture and its prototype imple-
mentation. He holds an M.C.S. (1990) from the Technical University of Munich and
has published many papers on workflow management and enterprise modeling.

Dennis G. Giokas Dennis Giokas is currently a senior associate with
Symmetrix, Inc. While at Digital from 1984 to 1995, he was a consulting engineer
in the PATHWORKS group. He co-led PATHWORKS V5.0 and architected the user
interface and system management tools. He was also architect and manager for
the PC DECwindows program. Previously, Dennis worked at Arco Oil & Gas and
The Foxboro Company developing process control software. He holds a Bachelor
of Music from the University of Massachusetts at Lowell, a Master of Music from
the New England Conservatory, and an M.S.CS. from Boston University.

Stewart V. Hoover Employed at Digital Equipment Corporation between
1984 and 1994, Stew Hoover is currently an independent consultant specializing
in modeling and simulation. Before joining Digital, he was an associate professor
of industrial engineering and information systems at Northeastern University.
Stew contributed to the development of the DECalc-PLUS application, Statistical
Process Control Software (SPCS), and the DECwindows version of Symmod. He
has written many papers and articles on simulation and is coauthor of
Simulation, A Problem-Solving Approach, published by Addison-Wesley.

James E. Johnson A consulting software engineer, Jim Johnson has worked
in the OpenVMS Engineering Group since joining Digital in 1984. He is currently
a member of the OpenVMS Engineering team in Scotland, where he is a technical
consultant for transaction processing and file services. His work has spanned
several areas across OpenVMS, including RMS, the DECdtm transaction services,
the port of OpenVMS to the Alpha architecture, and OpenVMS system manage-
ment. Jim holds one patent on commit protocol optimizations. He is a member
of the ACM.




Biographies

Gary L. Kratkiewicz Gary Kratkiewicz is currently a scientist in the Intelli-
gent Systems R&D Group at Bolt Beranek and Newman Inc. As a principal engi-
neer in Digital's DECmodel engineering group from 1991 to 1994, Gary
coordinated the architecture and high-level design specifications, and devel-
oped the knowledge base, script engine, APL, and several user interface modules.
Earlier at Digital, he developed an expert system for shipping and was project
leader for a knowledge-based logistics system. Gary holds an $.B.M.E. from MIT
and an M.S. in manufacturing systems engineering from Stanford University.

John R. Lawson, Jr. John Lawson joined Digital in 1984. He has been a mem-
ber of the OpenvMS VAX Development Group and the POLYCENTER Software
Distribution Development Group. His code exists in several layered products
and in the OpenVMS VAX and OpenVMS AXP operating systems. He holds a B.M.
degree from the Eastman School of Music (1984) and a B.S. in software engineer-
ing from the University of Rochester (1986). He is currently pursuing an M.S. in
mathematics and computer science from the Colorado School of Mines. John has
a U.s. patent pending for a unique sorting algorithm.

John C.Rokicki John Rokicki, the project leader for ManageWORKS Workgroup
Administrator, is a principal software engineer within Digital’'s Network
Operating Systems engineering organization. His primary responsibility is the
design and implementation of the base services of the ManageWORKS product.
Before joining Digital in 1990, he was employed by Data General Corp. and
Sytron Inc. John holds a BS. (1989) in computer science from Worcester
Polytechnic Institute.

Stephen J. Sicola Consulting engineer Stephen Sicola is a member of the the
Array Controller Group in the Storage Business Unit. He is working on the next
generation of controllers and was the technical leader for the current
StorageWorks controller product set. In earlier work, Steve developed software
and hardware for such products as the HSC, KnDM70, and advanced development
controller projects. Steve joined Digital in 1979 after receiving a B.SE.E from
Stanford University. He received an MSC.E. from the National Technological
University in 1992,



Stepben J. Sicola |

The Architecture and Design
of HS-series StorageWorkRs

Array Controllers

The HS series of StorageWorks array controllers is a new family of Digital products
that includes models for both open systems and systems that use Digital’s propri-
etary buses. The HS-series controllers combine performance, availability, and relia-
bility in total storage subsystemn solutions that use industry-standard storage
devices. The architecture and design of StorageWorks array controllers represents
a balance between the market requirements and the available technology. The
engineering trade-offs led to an innovative design that incorporates product fea-
tures such as a dual-active controller configuration, write-back caching, Parity

RALD technology, and SCSI-2 device bandling.

The HS series of StorageWorks array controllers, a
new addition to Digital’s storage subsystem family,
supports an open systems environment by allowing
the attachment of industry-standard Small Computer
Systems Interface (SCSI-2) devices to the controller.!
Moreover, these controller products yield high avail-
ability and high performance. This paper describes
the architecture and the design of the HS$J30, HSJ40,
HSD30, and HSZ40 StorageWorks array controllers.
These controllers interface to host computers by
means of existing Digital interconnects, i.e., the
Computer Interconnect (CI) and the Digital Storage
System Interconnect (DSSI), as well as a SCSI-2 host
interconnect to VAX, Alpha, and most other com-
puters in the industry. The paper documents the
design and development trade-offs and describes
the resulting controllers and their features.
StorageWorks array controllers represent a sig-
nificant change from Digital's original Hicrarchical
Storage Controller (HSC) subsystem, the HSC:50 con-
troller, which was designed in the late 1970s, and
also from other Digital controllers such as the
HSCO0, HSCT0, HSCY0, and KDM70 controllers. The
StorageWorks controllers discussed in this paper
were designed to meet the following product goals:

1. Open systems capability. The goals for open sys-
tems capability were to use industry-standard
storage devices attached to the controllers and
to usean industry-standard hostinterconnect for
one controller model. Using industry-standard

devices would provide investment protection
for customers because they would not have to
change devices whena new controller was intro-
duced or when they changed controller modules
to use a different host interconnect. Industry-
standard devices would also reduce overall sub-
system cost because of the competitive nature of
the storage device industry. The long-term use of
both Digital and non-Digital devices was desired
to provide a wide variety of device choices for
customers. The use of an industry-standard host
interconnect would allow StorageWorks con-
trollers to be used with Digital and non-Digital
host computers, further expanding the open sys-
tems capability. The SCSI-2 interconnect was cho-
sen as the device interface and the host interface
over other industry-standard interconnects for
cost and strategic reasons.

. High availability. The goals for high availability

included both controller fault tolerance and
storage (disk configuration) fault tolerance.

Controller fault tolerance was achieved by devel-
oping a dual-redundant controller configuration
in combination with new StorageWorks enclo-
sures that provide redundant power supplies
and cooling fans. The goal of the dual-redundant
configuration was to have the surviving con-
troller automatically assume control of the failed
controller’s devices and provide 1/0 service to

Digital Technical Journal Vol 6 No. 4 lall 1994




RAID Array Controllers

them. As a side benefit, such a configuration
would provide load balancing of controller
resources across shared device ports.

The storage fault-tolerance goal was to develop
firmware support for controller-based redundant
array of inexpensive disks (RAID).? The initial
Parity RAID implementation incorporated the
best attributes of RAID levels 3 and 5. The design
provided the basis for later implementations of
other forms of RAID technology, notably mirror-
ing. Parity RAID supports the goal of storage fault
tolerance by providing for continued 1/0 service
from an array of several disks in the event that
one disk fails. StorageWorks packaging that pro-
vides redundant power supplies and cooling
should be combined with the Parity RAID tech-
nology to extend storage fault tolerance.

. High performance. The goals for high perfor-

mance were to specify controller throughput
(the number of I/0 operations per unit of time),
latency (responsiveness). and data transter rate
(controller bandwidth) for each of the three con-
troller platforms: CI, DSSI, and SCSI. The through-
put was specified in the maximum number of
read and write requests executed per second.
The controllers had to speed up the response
time for host 170 operations and thus deliver data
with lower command latency than the HSC con-
trollers. StorageWorks controllers had to achieve
the highest possible data transfer rate and were
to do so ona common platform.

The platform-specific controller throughput
goals were as follows. The initial goal for the CI-
to-SCSI controller was 1,100 read requests per
second; the long-term goal was 1,500 to 1,700
read requests per second. The initial goal for the
DSSI-to-SCSI controller was 800 read requests per
second; the long-term goal was 1,300 read
requests per second. The initial goal for the SCSI-
to-SCSI controller was 1,400 read requests per
second; the long-term goal was 2,000 read
requests per second. The controller throughput
for write operations was slightly lower.

To reduce latency, the controller hardware and
firmware implemented controlles I/0 request
caching. Designers initially decided to include
16 to 32 megabytes (MB) of cache memory on
a separate optional cache module. Read caching
was the beginning goal for the project; however,
write-back caching was added during product

development as a result of RAID technology
investigations.

Another approach to reduce latency was to
develop controller-based  disk striping, i.e.,
implement the RAID level O technology.? Specific
goals were to achieve parallel access to all RAID
level 0 array members for read and write opera-
tions and to streamline firmware to increase
RAID level O performance.

The Parity RAID performance goal was to over-
come the well-known weaknesses of RAID level
3 (i.e., poor transaction throughput) and RAID
level 5 (poor small-write performance) and to
approach RAID level O striped array performance
for both small and large read and write requests.?
A combination of hardware-assisted parity
computations and write-back caching helped
achieve this goal. Parity calculations in hardware
reduced firmware overhead to complete RAID
level 5 write operations. Write-back caching
minimized the effects of the RAID level 5 small-
write penalty.® To meet the needs of customers
who require high data transfer rates with RAID,
RAID level 3-style algorithms must be added for
the Parity RAID design.

A common controller processing core had to
be architected and designed to meet the perfor-
mance needs of all the planned StorageWorks
controllers (based on host interface capabili-
ties). The platform had to execute the same base
firmware, coupling new host interface firmware
to the specific platforms. A common platform
was believed to ease product development and
to maximize reuse of firmware for the same
“look and feel™ in all products.

Open Systems Capability

For Storage Works controllers to enter the open sys-
tems market, product designers had to consider
the following aspects of open systems in the con-
troller definition: the use of industry-standard
device interconnects and industry-standard devices
attached to the controller, and the use of industry-
standard and Digital host interconnects.

SCSI-2 Device Interconnect

The SCSI-2 interconnect was chosen for the device
interconnect because of its wide acceptance in the
computer industry. During the controller defini-
tion phase, the StorageWorks packaging group was

6

Vol. 6 No. 4 Tall 1994 Digital Technical Journal



The Architecture and Design of HS-series StorageWorks Array Controllers

concurrently designing and building storage device
enclosures called shelves that would house up to
seven 3.5-inch devices or two 5.25-inch devices.
These shelves, connected to the controller, would
allow a wide variety of SCSI-2 devices to be incorpo-
rated and would do so at a low cost because of the
widespread use of SCSI-2 as a device interconnect.

StorageWorks controllers were designed to sup-
port the following types of SCSI-2 devices:

= Disk—rotating spindle disk drives and solid-
state disks

= Tape—individual tape drives, tape loaders, and
jukeboxes that contain robotic access to multi-
ple drives from a media library

= CD-ROM

= QOptical—individual disks and jukeboxes that
contain robotic access to multiple drives from
a medialibrary

StorageWorks Controllers in System
Environments

The desire to produce a controller with an open
system host interconnect was coupled with a com-
mitment to protect the investments of existing
Digital customers who currently use CI and DSSI
host interconnects. The strategy was to produce CI,
DSSI, and SCSI variants of the StorageWorks array
controller, all based on a common platform. As in
the selection of the device interconnect, the SCSI-2
host interconnect variant was chosen because of its
widespread use and low cost.

The controllers for the CI, DSSI, and SCSI intercon-
nects were named the HSJ30/HSI40, the HSD30, and
the HSZ40, respectively. The designations of “30”
and “40” represent a code for the number of device
ports attached to the controller. The HS30 and
HSD30 controllers have three device ports each,
whereas the HS40 and HSZ40 have six device ports
each. The numbcr of device ports selected for each
controller type was based on (1) the overall capabil-
ity of the host port interconnect to support the
aggregate capability of a number of device ports
and (2) the desire to amortize controller cost
against as many attached devices as possible.

StorageWorks controller configurations depend
on the controller host interface. Marked differ-
ences exist in the configurations supported by
Cl-based OpenVMS VAXcluster configurations, DSSI-
based OpenVMS VAXcluster configurations, and
SCSI-based configurations in OpenVMS, DEC OSF/1,

and other industry system environments. The basic
differences are the number of hosts connected
and whether or not other storage devices can be
on the same host interconnect as the controller and
the other hosts.

The CI configuration supports up to 32 nodes per
bus. Each node may be either a storage controller
(i.e., an HSJ30, an HSJ40, or an HSC device) or a host
computer (i.e., a VAX or an Alpha system).

The DSSI configuration supports up to 8 nodes
per bus. Each node may be either a storage con-
troller (i.e., an HSD30 or an HSDOS), a storage ele-
ment (e.g., an RF73 device), or a VAX or an Alpha
host computer.

The SCSI configuration supports up to 8 targets
per bus. The HSZ40 controller, with its standard
SCSI-2 host interface, may be connected to Digital
Alpha computers (i.e., DEC 3000 and DEC 7000/10000
computers running the DEC OSF/1 operating sys-
tem), Sun Microsystems computers, Hewlett-
Packard computers, and IBM computers. Digital
qualifies the HSZ40 controller for operation with
additional vendors’ systems according to market
demand.

High Availability

To meet the goals of controller and storage fault tol-
erance, the designers of StorageWorks controllers
developed a number of scenarios from which the
controller can be fault tolerant with respect to fail-
ures in controller or attached storage components.
The first aspect of fault tolerance considered is that
of controller fault tolerance; the second is configu-
ration fault tolerance.

Controller Fault Tolerance

Designers achieved controller fault tolerance by
investigating the common faults that the controller
could tolerate without requiring extreme design
measures and incurring high costs. The results of this
investigation drove the design of what became the
dual-redundant HS-series controller configuration.
This configuration incorporates several patented
hardware and firmware features (patent pending).

The following faults can exist within a
StorageWorks array controller and the attached
StorageWorks packaging and do nnot make host data
unavailable:

s Controller failure. In a dual-redundant configu-
ration, if one controller fails, all attached storage
devices continue to be served. This is called

Digital Technical Journal Vol 6 No. 4  Fall 1994




RAID Array Controllers

failover. Failover occurs because the controllers
in a dual-redundant configuration share SCSI-2
device ports and therefore access to all attached
storage devices. If failover is to be achieved, the
surviving controller should not require access to
the failed controller.

= Partial memory failure. If portions of the control-
ler buffer and cache memories fail, the controller
continues normal operation. Hardware error cor-
rection in controller memory, coupled with
advanced diagnostic firmware, allows the con-
troller to survive dynamic and static memory
failures. In fact, the controller will continue to
operate even if a cache module fails.

= Power supply or fan failure. StorageWorks pack-
aging supports dual power supplies and dual
fans. HS-series controllers can therefore be con-
figured to survive a failure of either of these
components.

® SCSI-2 device port failure. A failure in a single
SCSI-2 device port does not cause a controller
to fail. The controller continues to operate on
the remaining device ports.

The controller must be able to sense the fail-
ures just listed in order to notify the host of a fault-
tolerant failure and then to continue to operate
normally until the fault is repaired. The designers
deemed this feature vital to reducing the time

during which a control ler configuration must oper-
ate with a failure present.

Another requirement of fault-tolerant systems
is the ability to “hot swap” or “hot plug” compo-
nents, i.e., to replace components while the system
is still operating and thus to not cause the system to
shut down during repairs. The designers made the
controller and its associated cache module hot
swappable. That is, one controller in the dual con-
figuration can be replaced without shutting down
the second controller, and the second controller
continues to service the requests of the attached
hosts. This feature, coupled with the hot-swap
capability of StorageWorks devices, creates highly
available systems.

Dual-redundant Controller Configuration Like
all StorageWorks components, HS-series con-
trollers are packaged in StorageWorks shelves. The
Storage Works controller shelf contains a backplane
that accommodates one or two controllers and
their associated cache modules, as well as SCSI-2
device port connectors. The packaging is common
to all system environments. HS-series controllers
mounted in a single shelf may be combined in pairs
to form a dual-redundant controller configuration
(shown in Figure 1) in which both controllers can
access the same set of devices.

Figure 2 shows two HS-series controllers
installed in a StorageWorks controller shelf in

HOST . HOST
CPU CPU
% >
HOST INTERFACE
< CACHE |=
HS-SERIES HS-SERIES
CONTROLLER CONTROLLER
MAINTENANCE MAINTENANCE
TERMINAL FAILOVER COMMUNICATION TERMINAL
EIA-423 PORT — — EIA-423 PORT
SCSI-2 DEVICE SCSI-2 DEVICE
PORTS (3 OR 6) PORTS (3 OR 6)
LIT LT ]} moacke f«—{[ [ [ [ [ ]| |

SCSIDEVICE PORTS
SHARED BETWEEN
CONTROLLERS

Figure 1

0,0,0,0,0,0,

StorageWorks Controllers: System Block Diagram

Vol. 6 No. 4 Fall 1994  Digital Technical Journal



The Architecture and Design of HS-series StorageWorks Array Controllers

PROGRAM CARD

(PCMCIA) HSJ40

POWER SUPPLIES RESET
(1 MANDATORY, BUTTON
1 OPTIONAL FOR

FAULT TOLERANCE)

CONTROLLER

MAINTENANCE
TERMINAL
CONNECTION

PORT
BUTTONS

CONTROLLER B

HOST
INTERFACE
CABLE
CONNECTOR

CONTROLLER A

Figure 2 StorageWorks Controller Shelf

a dual-redundant configuration. Figure 3 shows
two dual-redundant controller configurations
mounted in a StorageWorks cabinet with several
device shelves. The control lers connect to storage
devices with cables that emerge from the controller
shelf and attach to the device shelves.

The designers had to decide how the dual-
redundant controller configuration could achieve
high availability through fault tolerance. To meet
the high-availability goals, the team addressed the
concept of controller failover early in the design
process. One fault-tolerant option considered was
to run with a “hot-standby” controller that would
become operational only if the main controller
were to fail. A second option was to design a dual-
active controller configuration in which two con-
trollers would operate simultaneously. They would
share and concurrently use device port buses (not
devices), thus balancing the /0 load from host
computers.

Both options allow for direct failover of devices
without manual intervention. The hot-standby con-
troller option requires either automatic configura-
tion of the attached devices when the hot-standby
controller becomes operational or nonvo latile (i.e.,
impervious to power loss) shared memory to hold

the configuration information. The dual-active con-
troller option requires that each controller have
detailed knowledge about the other controller and
the device state; it does not require that the con-
trollers share a memory. The designers chose the
second option because it provided loacl balancing
and therefore potentially greater performance.
However, they faced the challenge of designing a
backplane and an interface between the controllers
that would achieve the dual-active configuration but
would not require ashared memory. The result of the
design effort was the StorageWorks controller shelf.

StorageWorks Controller Shelf  The StorageWorks
controller shelf is an architected enclosure that
allows a pair of StorageWorks controllers and their
respective cache memory modules to be placed
into the dual-redundant configuration, as shown in
Figure 4. A cache module is attached to each con-
troller for performance purposes. The controller
shelf contains a backplane that includes intercon-
troller communication, control lines between the
controllers, and shared SCSI-2 device ports. Since
the two controllers share SCSI-2 device ports, the
design enables continued device availability if one
controller fails.

Digital Technical Journal Vol. 6 No. a4 Fall 1991

9A




RAID Array Controllers

TAPE DRIVE

CONTROLLER
smmems  SHELF

HOST INTERFACE
'l — CcABLES
b |

] ——— scsipevice

PORT CABLES (6)

DEVICE SHELF

Figure 3 StorageWorks Cabinet

SLOTO SLOT 1
Y KILL B Y
KILL A
¢ CDAL BUS
CACHE B LOCK
CACHE A i CACHE B
CONTROLLER A CACH CACH CONTROLLER B
CACHE A CACHE B
CDAL BUS CDALBUS
CACHE A LOCK
CDAL BUS R
Vl
T FAILOVER UART COMMUNICATION LINE T /H
3/6 SHARED SCSI DEVICE BUSES >

NOTE: Controlier and Cache Present signals to each controller are not shown.

Figure 4 StorageWorks Controller Backplane: Controllers in a Dual-redundant Confisuration

10 Vol 6 No. i lull 1994  Digital Technical Journal



The Architecture and Design of HS-series StorageWorks Array Controllers

The backplane contains a direct communica-

tion path between the two controllers by means
of a serial communication universal asynchronous
receiver/transmitter (UART) on each controller. The
controllers use this communication link to inform
one another about

Controller initialization status. In a dual-redun-
dant configuration, a controller that is initializ-
ing or reinitializing sends information about the
process to the other controller.

“Keep alive” communication. Controllers send
keep alive messages to each other at timed
intervals. The cessation of communication by
one controller causes a failover to occur once
the surviving controller has disabled the other
controller.

Configuration information. StorageWorks con-
trollers in a dual-redundant configuration have
the same configuration information at all times.
When configuration information is entered
into one controller, that controller sends the
new information to the other controller. Each
controllerstores this information in a controller-
resident nonvolatile memory. If one control-
ler fails, the surviving controller continues to
serve the failed controller’s devices to host com-
puters, thus obviating shared memory access.
The controller resolves any discrepancies by
using the newest information.

Synchronized operations between controllers.
Specific firmware components within a control-
ler can communicate with the other controller
to synchronize special events between the hard-
ware on both controllers. Some examples of
these special events are SCSI bus resets, cache
state changes, and diagnostic tests.

The other signals on the backplane pertain to

the current state of the configuration within the
controller shelf and to specific control lines that
determine the operation of the dual-redundant
controller configuration. The backplane state and
control signals include

Status about the presence of a controller's cache
module. Each controller can sense the presence
or absence of its cache to set up for cache diag-
nostics and cache operations.

Status about the presence of a second controller,
which indicates a dual-redundant configura-
tion. Each controller can sense the presence

or absence of the other controller in a dual-
redundant configuration. This assists in control-
ler setup of dual-controller operation as well
as general controller initialization of the dual-
redundant configuration.

Status about the presence of the second con-
troller's cache. Each controller can sense the
presence or absence of the other controller’s
cache for dual-controller setup purposes.

The “KILL” signal. In a dual-redundant config-
uration, each controller has the capability to use
the KILL control signal to cause a hardware reset
of the other controller. However, once one con-
troller asserts the KILL signal, the other control-
ler loses the capability. The KILL signal ensures
that a failed or failing controller will not create
the possibility of data corruption to or from
attached storage devices.

TheKILL signal denotes that failover to the surviv-
ing controller should occur. A controller asserts
the KILL signal when the other controller sends
a message that it is failing or when normally
scheduled keep alive communication from the
other controller ceases. The KILL signal is also
used when both controllers decide to reset one
another, e.g., when the communication path has
failed.

The designers had to ensure that only one con-
troller could succeed in the KILL operation, i.e.,
that no window existed where both controllers
could use the KILL signal. After firmware on
a controller asserts the KILL signal to its dual-
redundant partner, the KILL recognition cir-
cuitry within the controller that asserted the
signal is disabled. The probability of true simul-
taneous KILL signal assertion was estimated at
1072, based on hardware timing and the possi-
bility of synchronous dual-controller operation.

s The cache LOCK signals. The cache LOCK signals

control access to the cache modules. The dual-
controller architecture had to prevent one con-
troller from gaining access to a cache module that
was being used by the other controller and had to
allow the surviving controller to access the failed
controller's cache. The access control had to be
implemented in either firmware or hardware.

A firmware solution would involve a software
locking mechanism that the controllers would
recognize and cooperatively use to limit cache
module access to the associated controller. This

Digital Technical Journal Vol. 6 No.4 Fall 1994

11




RAID Array Controllers

method had an inherent problem: firmware
alone may not prevent inadvertent cache access
by a failing controller. The designers therefore
had to implement a hardware lock mechanism
to prevent such inadvertent access.

The hardware lock mechanism was imple-
mented with control signals from each control-
ler. The signals are utilized by hardware to
prevent inadvertent access and by firmware
to limit cache module access to the associated
controller. From each controlier, the designers
implemented two LOCK signals that extend indi-
vidually to each cache module and are visible to
both controllers. The cache LOCK signals are
illustrated in Figure 4.

The LOCK signals allow a controller to achieve
exclusive access to a specific cache module to
ensure data integrity. LOCK signals from a con-
troller that has been “killed” by its dual-redundant
partner are reset so that the partner may fail over
any unwritten cache data in the write-back cache.

lailover  Controller failover is a feature of the
dual-redundant configuration for StorageWorks
controllers. Failover of a controller’s devices and
cache to the other controller occurs when

= A controller fails to send the keep alive message.
This situation can occur because of a controller
failure in the dual UART (DUART) or in any other
non-fault-tolerant portion of the controller mod-
ule. In this scenario, the surviving controller uses
the KILL signal to disable the other controller,
communicates to the failed controller's devices,
and then serves the failed controller's devices to
hosts.

The failover of a controller’s cache occurs only if
write-back caching was in use before the con-
troller failure was detected. In this case, the sur-
viving controller uses the failed controller’s
cache to write any previously unwritten data to
the failed controller's disks before serving these
disks to hosts. When the surviving controller has
written the data to disks (i.e., flushed the data),
it releases the cache to await the failed con-
troller’s return to the dual-redundant configura-
tion through reinitialization or replacement.

= A customer desires to change the load balance of
one or more devices attached to one controller
to the other controller. This specialized use
of failover provides a load-balancing feature

that the designers considered valuable in a
dual-active controller configuration. Load bal-
ancing is static in the controller, i.e., devices are
allocated to one controller or to the other, not
shared dynamically. To change allocation, the
system manager must change the preferred path
of device access. This is accomplished by access-
ing either the maintenance port of the controller
or the configuration firmware through the host
interface (e.g., the diagnostics and utilities pro-
tocol for CI and DSSI systems).

= The cache module battery is low or has failed.
This special case of failover is used in conjunc-
tion with Parity RAID operations for the reasons
described in the Parity RAID technology portion
ofthe following section. The mainissue is to con-
tinue to provide as much data protection as possi-
ble for Parity RAID disk configurations when the
battery on the write-back cacheislow or bad.

= The controller is unable to communicate with
the devices to which itis currently allocated for
host operations. This situation can occur if
a device port on a controller fails.

Storage Fault Tolerance

Storage fault tolerance is achieved by ensuring that
power or environmental factors do not cause
devices to be unavailable for host access and by
using firmware to prevent a device failure from
affecting host accessibility.

Environmental Factors — StorageWorks enclosures
provide for optional redundant power supplies and
cooling fans to prevent power or fan failures from
making devices unavailable. The SCSI-2 cables that
connect device shelves to the controller shelf carry
extra signals to alert the controller to power supply
or fan failures so that these conditions may be
reported to host computers. The enclosures must
contain light-emitting diodes (LEDs) to allow a con-
troller to identity failed devices. In addition, a
cache module can fail, and the controller will con-
tinue to operate.

RAID Technology To prevent a device failure
from affecting host access to data, the designers
introduced a combined firmware and hardware
implementation of RAID technology.” The designers
had to decide which RAID level to choose and what
tvpe of hardware (if any) was required for the
implementation.

Vol 6 No. i lull 1991 Digital Technical Journal



The Architecture and Design of HS-series StorageWorks Array Controllers

The designers considered RAID levels 1 through S
as options for solving the problem of disk fail-
ures that affect data availability. RAID level 1 (disk
mirroring, which is depicted in Figure 5a) was
rejected because of its higher cost, i.e., the cost of
parts to implement the mirroring.? Each disk to

MEMBER
DISK 0
8l 5

ARRAY
MANAGEMENT
SOFTWARE

MEMBER
DISK ¢

MEMBER

ARRAY
MANAGEMENT N MEMBER
SOFTWARE DISK 4

MEMBER
‘ ISK 0 '
.
X

D!
sl
- > 7

ARRAY
MANAGEMENT

SOFTWARE

be protected implies an inherent cost of one
additional housed, powered, and attached disk.
RAID level 1 was also discounted because software-
based solutions were available for many of the
hosts for which the HS-series controllers were ini-
tially targeted.

DATA DISKS

MEMBER
DISK 1

MEMBER
. DISK O '
s

s
=5

1 1
\

MEMBER
DISK ¢

1
: ’

ARBAY
MANAGEMENT

SOFTWARE

MEMBER
DISK 13

CHECK DISKS

(b) Mapping for a RAID Level 2 Array

VIRTUAL

MEMBER

MEMBER
W DISK 1
% \ BLOCK 2 ’
%.

ARRAY
MANAGEMENT
SOFTWARE

BLOCK 0 2 BLOCK 2 @
BLOCK 4 @ BLOCK 6

(e) A Typical Mapping for a RAID Level 5 Array

Figure 5

Mapping for RAID Levels 1 through 5

Digital Technical Journal Vol.6 No. 4 Fall 1994

13




RAID Array Controllers

RAID levels 2 through 4, illustrated in Figures 5b
through 5d, were rejected because they do not pro-
vide good performance over the entire range of
170 workloads for which the controllers were tar-
geted.? In general, these RAID levels provide high,
single-stream data transfer rates but relatively poor
transaction processing performance.

RAID level 5 inits pure form was rejected because
of its poor write performance, especially for small
write operations.” The designers ultimately chose
RAID level 5 data mapping (i.e., data striping with
interleaved parity, as illustrated in Figure Se) cou-
pled with dynamic update algorithms and write-
back caching to overcome the small-write penalty.
This implementation is called Parity RAID.

An HS-series Parity RAID array appears to hosts as
an economical, fault-tolerant virtual disk unit.
A Parity RAID virtual disk unit with a storage capac-
ity equivalent to that of n disks requires 72 + 1 phys-
ical disks to implement. Data and parity are
distributed (striped) across all disk members in the
array, primarily to equalize the overhead associated
with processing concurrent small write requests.?

If a disk in a Parity RAID array fails, its data can be
recovered by reading the corresponding blocks on
the surviving disk members and performing a par-
ity comparison (using exclusive-OR [XOR] opera-
tions on data from other members). Figure 6
illustrates this regeneration of data.’

HS-series controller developers overcame a num-
ber of challenges. Foremost among them was the
elimination of the RAID level 5 write hole. Parity
RAID with its RAID level 5 striping is susceptible
to the RAID level 5 write hole. A write hole is data
corruption that occurs when all the following
events take place.

DATA 0 @ DATA 16
DATA 2 @ PARITY

s A controller failure occurs with a host's write
request outstanding,

= Eitherthe updated data or the updated parity for
the host’s write request has been written to disk
but not both.

= A failure of a different disk occurs after the con-
troller failure has been repaired.

To eliminate this write hole, designers had to
develop a method of preserving information about
ongoing RAID write operations across power fail-
ures such that it could be conveyed berween part-
ner controllers in a dual-redundant configuration.

Designers decided to use nonvolatile caching of
RAID write operations in progress.> Three alterna-
tives were considered:

1. An uninterruptible power supply (UPS) for the
controller, cache, and all attached disk devices.
This choice was deemed to be a costly and
unwieldy solution because of the range of possi-
ble requirements. The indeterminate amount of
data in the cache to be written and the power
consumption of « wide variety of devices would
necessitate a very large backup power source to
ensure enough time for all cached write data to
be written to attached devices.

2. A battery in the controller and device enclosures
(i.e., shelves) to allow enough time for the writ-
ing of cached data in the event of a power failure.
StorageWorks device enclosures can accommo-
date either redundant power supplies or one
power supply and one backup battery for con-
figurations that do not require redundancy.
There is no provision for both redundant power

REGENERATED

APPLICATION |-

DATA FROM
MEMBER 3

A

—f\
-
MEMBER | | MEMBER || MEMBER G g‘é"ﬁER
pisreo psr pisk2 (PARITY)
PARITY RAID ARRAY

Figure 6 Regenerating Data in a Parity RAID Array with a Failed Veinber Disk

Vol. 6 No. 4 Fall 1994  Digital Technical Journal



The Architecture and Design of HS-series StorageWorks Arrey Controllers

supplies and a battery. This conflict between
fault-tolerant StorageWorks shelf configurations
with dual power supplies and the desire to add
a battery for write-back caching was unaccept-
able to the designers because of the loss of power
redundancy to gain write-back cache integrity.

3. A controller-based nonvolatile cache. The options
for controller-based nonvolatile caching included
(a) abattery-protected cache for write data, (b) an
additional nonvolatile random-access memory
(NVRAM) on the controller to journal RAID writes,
and (¢) a battery-protected cache for both read
and write data.

With a battery-protected write cache, data must
be copied if it is to be cached for subsequent
read requests. Designers deemed the potential
performance penalty unacceptable.

Using controller NVRAM as a RAID write journal
not only closes the RAID level 5 write hole but
also provides a small write cache for data. This
approach also requires data copying and creates
an NVRAM access problem for the surviving con-
troller to the failed controller NVRAM to resolve
any outstanding RAID write requests.

The third controller-based nonvolatile cache
option, to battery-backup the entire cache,
solved the copy issue of option 3a and the
failover issue of option 3b.

The designers chose option 3¢, the battery-
protected read/write cache module. A totally non-
volatile cache had the advantage of not requiring
write-cache flushing, i.e., copying data between
the write cache and the read cache after the write
data has been written to devices. Segregated cache
approaches (part nonvolatile, part volatile) would
have required either copying or discarding data
after write-cache flushing. Such approaches would
have resulted in a loss of part of the value of using
the cachingalgorithm by allowing only read caching
of read data already read. Another benefit of a non-
volatile read/write cache is failover of the cache
module in the event of a controller failure. This fur-
ther reduces the risk associated with a RAID level 5
write hole because unwritten write operations to
Parity RAID arrays can be completed by the surviv-
ing controller after failover.

To achieve a total nonvolatile cache, the design-
ers opted for the battery solution, using two 3-by-5-
by-0.125-inch lead-acid batteries that supply up to

100 hours of battery backup for a 32-MB cache
module. The batteries eliminated the need for
a special (and costly) nonvolatile memory write
cache and allowed data hold-up after power failure.
The designers chose lead-acid batteries over NiCAD
batteries because of their steady power retention
and output over time. This option protects against
most major power outages (of five minutes to five
days) and all minor power outages (of less than five
minutes). Most power outages (according to stud-
ies within Digital) lastless than five minutes and are
handled in the same manner as major outages, that
is, by flushing write data immediately after power
has been restored to the controller configuration.
Battery status is provided to firmware, which uses
this information to make policy decisions about
RAID arrays and other virtual disk units with write-
back caching enabled.

Foran HS-series controller to support Parity RAID,
its cache module must have batteries installed. The
batteries make the cache nonvolatile and enable
the algorithms that close the RAID level 5 write hole
and permit the use of the write-back cache as a per-
formance assist, both vital for proper Parity RAID
operation. If the controller firmware detects a low-
or bad-battery condition, write-back caching is dis-
abled. The controller that detects the condition
tries to fail over Parity RAID units to the other con-
troller in the dual-redundant configuration to keep
the units available to hosts. If the other controller
cache module has a low- or bad-battery condition,
the Parity RAID unit ismade unavailable to hosts to
protect against data loss or data corruption should
a power failure occur. When the batteries are no
longer low, Parity RAID units are again made avail-
able to hosts. Any Parity RAID units that had been
failed over to the other controller would fail back,
i.e., return, to the controller that originally con-
trolled them. The module hardware and firmware
support read caching regardless of the presence of
a battery.

After solving the RAID level S write-hole problem,
the designers decided to automate the Parity RAID
recovery process wherever possible. This goal was
adopted so that customers would not have to under-
stand the technology details in order to use the
technology in the event of a failure. StorageWorks
controller firmware developers, therefore, chose to
add automatic Parity RAID management features
rather than require manual intervention after fail-
ures. Controller-based automatic array management
is superior to manual techniques because the

Digital Technical Journal Vol.6 No. 4 Fall 1994

15




RAID Array Controllers

controller has the best visibility into array problems
and can best manage any situation given proper
guidelines for operation.

An important feature of Parity RAID is the ability
to automatically bring a predesignated disk into ser-
vice to restore data protection as quickly as possi-
ble when a failure occurs. Other controllers in the
industry mandate configurations with a hot-standby
disk, i.e., a spare disk, dedicated to each Parity RAID
unit. A hot-standby disk is powered and ready for
firmware use if an active member disk of its Parity
RALD unit fails. This conceptis potentially wasteful
since the probability that multiple Parity RAID units
will have simultaneous single-member disk failures
is low. The designers therefore had the options of
making spare disks available on a per-Parity RAID
unit basis or having a pool of spares, i.c., a spare set,
that any configured Parity RAID unit could access.
The designers chose the pool of spares option
because it was simpler to implement and less costly
for the customer. and it offered the opportunity to
add selection criteria for spare set usage and thus
maximize either performance or capacity efficiency.

To allow more flexibility in choosing spare set
members, designers made two spare selection
options available: best fit and best performance.
The best fit option allows for disk devices of differ-
ent sizes to compose the pool of spares. When a
spare disk is needed after a member of a Parity RAID
unit fails, the device with the best fit, that is, whose
size most closely matches that of the failed disk
(typically of the same size but possibly of greater
capacity), is chosen. The best performance option
can reduce the need for physical reconfiguration
after a spare is utilized if a spare attached to the
same device portas the failed array member can be
allocated. The best performance option maintains
operational parallelism by spreading array mem-
bers across the controller device ports after a fail-
ure and subsequent spare utilization.

These features allow automatic sparing of faifed
devices in Parity RALD units and automatic recon-
struction after a spare device has been added to the
Parity RAID unit.® Furthermore, any drive of at least
the size of the smallest member of a Parity RAID unit
is a candidate spare, which reduces the need for
like devices to be used as spares. (Typically, how-
ever, spare set members are like members.)

A Parity RAID unit with a failed member will
become unavailable and lose data if a second failure
occurs. The HS-series automatic sparing feature
reduces the window of possible data loss to the

time it takes to reconstruct one Parity RAID unit.
Mecean time between data loss (MTBDL) is 4 combina-
tion of the mean time to repair (MTTR) and the fail-
ure rate of a second device in a Parity RAID unit.
The automatic sparing feature reduces the MTTR
and thus increases the MTBDL. Data loss can occur
only in the highly unlikely event that a failure occurs
in another RAID set member before the reconstruc-
tion completes on the chosen spare. During Parity
RAID reconstruction, the controller immediately
makes the host read or write request to the recon-
structing member redundant by updating parity
and data on the spare after the host read or write
operation. Parity RAID firmware quickly recon-
structs the rest of the Parity RAID unit as a back-
ground task in the controller. If the member that
is being reconstructed happens to fail and other
spare set members remain, reconstruction on a
new spare begins immediately, further reducing the
probability of data loss.

Parity RAID member disk failure declaration is key
to the efficient use of spares and to preventing
unwarranted use of spares. If a write command to a
RAID set member fails, RAID firmware assumes that
the SCSI-2 disk drive has exhausted all internal meth-
ods torecover from the error. SCSI-2 disk drives auto-
matically perform bad block replacement on write
operations as long as there is space available within
the disk drive revector area (the area where spare
data blocks can be mapped to a failed block). The
designers chose this method over more complex
retry algorithms that might encounter intermittent
failure scenarios. Empirical information related to
previous storage devices showed that localized
write failures are rare and that this strategy was
sound for the majority of disk access failures.

When read failures occur, data is regenerated
from the remaining array members, and a forced
bad block replacement is performed. Metadata on
the disk is used to perform this function atomically,
that is, to perform the bad block replacement even
if a powcre failure occurs during the replacement.” If
the disk cannot replace the block, then the Parity
RAID member disk is failed out and an attempt is
made to choose a suitable spare from the spare set.
It no spare is available, the Parity RAID unit operates
in reduced mode, regenerating data from the failed
member when requested by the hosts.

Parity RAID firmware uses the metadata to detect
a loss of data due to catastrophic cache failure, inap-
propriate device removal, or cache replacement
without prior flush of write data. The designers

16

Vol. 6 No.4  Fall 1994  Digital Technical Journal



The Architecture and Design of HS-series StorageWorks Array Controllers

considered it important that the controller
firmware be able to detect these data loss condi-
tions and report them to the host computers.

The failure scenarios just described occur infre-
quently, and the StorageWorks Parity RAID firm-
ware is able to recover after such failures. During
atypicalnormal operation, the main chalienge for
Parity RAID firmware is to achieve a high level of
performance during write operations and a high
level of controller performance in general.

High Performance

As discussed earlier, the performance goals for the
StorageWorks controllers were in the areas of
throughput and latency. Bandwidth goals were
based on the architecture and technology of the
controller platform. The designers met the perfor-
mance goals by producing a controller that had
a low command overhead and that processed
requests with a high degree of parallelism. The
firmware design achieves low overhead by means
of the algorithms running on the controller, cou-
pled with RAID and caching technology. The hard-
ware design that allows for low command overhead
and high data transfer rates (bandwidth) is dis-
cussed in the section Common Hardware Platform.

Command Processing

The StorageWorks designers maximized the num-
ber of requests the controller can process per sec-
ond by reducing the command processing latency
within the controller firmware. The firmware uti-
lizes controller-based caching and also streamlined
command processing that allows multiple out-
standing commands to be present in the controller.

To meet the varying needs of customer applica-
tions, the controller supports both Parity RAID and
RAID level 0. The designers decided to include RAID
level 0 as a controller feature because of its inherent
parallelism, even though RAID level O is not fault tol-
erant without external redundancy.

StorageWorks controllers service all device
types, but the designers felt that disk device per-
formance was the key metric for determining
how well a controller supports RAID technology.
The controller firmware was designed to efficiently
control individual devices (commonly referred
to as “just a bunch of devices™ [JBOD]) and Parity
RAID, prioritizing requests to each of the SCSI-2
device ports on the controller. StorageWorks
controllers comply with SCSI-2 protocols and per-
form advanced SCSI-2 functions, such as tagged

queuing to all attached SCSI-2 storage devices for
greater performance.

Discussions of the RAID level 0 technology and
of how the designers used Parity RAID technology
to overcome some of the performance bottlenecks
follow.

Striping—RAID Level ()

Digital has used RAID level O technology, that is,
striping, in systems for at least five years, in its host
computers using software as well as in its control-
lers. Striping allows a set of disks to be treated as
one virtual unit. Device data blocks are interleaved
in strips, i.e., contiguous sets of blocks, across all
disks, which provides high-speed parallel data
access. Figure 7 illustrates the mapping for a RAID
level O array.' Since a striped disk unit inherently
lacks fault tolerance (i.e., if one device in the set
fails, data is lost), controller-based striping is typi-
cally used in conjunction with host-based mirror-
ing or in cases where data can be easily reproduced.
Stripe sets achieve high performance because of
the potential for parallelism by means of the device
and data organization. The key difference between
RAID level O and RAID levels 3 and higher is that
striping results in the interdependence of data writ-
ten to different devices.

Controller Caching

Caching with StorageWorks controllers was origi-
nally read caching only. When the designers
decided to use a nonvolatile cache to eliminate the
RAID level 5 write hole, write-back caching on the
controller became a viable option.

Controller Read Caching Read caching was
intended to reduce latency in the controller by min-
imizing the need to access devices continuously for
repeated host read requests to the same locations on
attached devices. Read caching must also address
the issue of how to handle write data for later use.
The design could have incorporated on-board con-
troller memory to hold write data. However, this
would require copying the write data to the read
cache after the write data had been written to the
devices and would result in inefficient use of the
read cache. Therefore, the designers decided to
have the read cache serve as a write-through cache
as well. Read caching would be disabled/enabled
perlogical unit presented to the host instead of hav-
ing global read caching, where a logical unit is one
or more devices configured as one virtual device.

Digital Technical Journal Vol. 6 No.+4  [Tull 1994




RAID Array Controllers

VOLUME

ARRAY

SOFTWARE

PHYSICAL PHYSICAL
DISK 0 DISK 1
STAIP 0 W
STRIP 4 W
STRIF 8 W

NSTRP 12 | ! [
\ s / \ < /

~ - ~

MANAGEMENT

Figure 7

Thus, customers can specify for which virtual
devices they want caching enabled.

The read and write-through caching firmware
receives requests from other parts of the controller
firmware (e.g., a host port, a device port, and the
Parity RAID firmware) and proceeds as follows.

For reads requests, the caching firmware provides

1. The data pointers to the cached request, i.c., the
cache hit

2. The data pointers for part of the request, i.c.,
a partial cache hit, which means that the remain-
ing data must be retrieved from the device or
devices being requested

3. A status response of cache miss, which means
that storage management must retrieve the data
from the device or devices being requested

For write requests, the caching firmware offers
the cache manager data from the request. The cache
manager places the previous data pointers into the
read cache tables after the data is written through
the cache to the devices. Firmware tells the device
port hardware where to find write data, and the
port hardware transfers the data.

Read caching in the first version of the controller
firmware allowed the controller to achieve the ini-
tial throughput goals across the three controller
platforms. The current software version, version
2.0, was shipped in October 1994 and exhibits ¢ven
greater throughput performance. Table 1 shows the
170 performance for the three StorageWorks con-
troller platforms with read caching enabled.

Mapping for a RAID Level O Arvay

Table 1 StorageWorks Controller |/0
Performance with Read Caching
Read Requests  Write Requests
Controller per Second per Second
HSJ30/HSJ40 1,550 1,050
HSD30 1,000 800
HSZ40 2,250 1,500

Write-back Caching—Performance Aspects  As
noted earlier, when the cache module contains
batteries, the memory is nonvolatile for up to 100
hours. The StorageWorks controller can use the
nonvolatile cache to increase controller perfor-
mance by reducing latency for write request Parity
RAID performance to a level similar to that of RAID
level 0 (simple disk striping). The controller can
also utilize the write-back cache to reduce the
latency of JBOD and RAID level O disk configura-
tions. As with rcad caching, write-back caching is
disabled/enabled per logical unit.

The write-back caching firmware controls the
usage of both asurviving controller’s cache module
and a failed controller’s cache module. When it
receives a write request, the controller places the
data in the cache, marks the request as complete,
and writes the data based on internal controller
firmware policies (write-back caching). To provide
greater performance during Parity RAID operations
than simple write-back caching could provide, the
write-back cache firmware is also tied to the Parity
RAID firmware.

Vol. 6 No.d  Jull 19949 Digital Technical Journal



The Architecture and Design of HS-series StorageWorks Array Controllers

In addition to dealing with the continual prob-
lem of controller latency on write commands,
designers had to overcome the RAID level 5 small-
write penalty with parity updates to RAID set mem-
bers. Write-back caching was chosen over RAID
level 3 hardware assists as a Parity RAID strategy
because RAID level 3 does not provide a wide range
of benefits for all customer workloads. Write-back
caching provides latency reductions for RAID and
non-RAID configurations. Write-back caching also
increases write-request throughput. For example,
the published performance numbers for write
throughput with write-back caching enabled in ver-
sion 2.0 firmware appear in Table 2.

The use of write-back caching resulted in a 20 to
30 percent increase in write throughput for all plat-
forms as compared to write-through caching. Before
discussing the effect of write-back caching on
latency for individual devices and for Parity RAID
arrays, the paper describes how the write-back
cache firmware was designed and tied directly to
Parity RAID firmware.

The features chosen for write-back caching were
extensively benchmarked against data integrity
issues. The addition of settable timers allows cus-
tomers to flush write data destined for devices that
are idle for a specific length of time. To reduce the
number of read/modify/writes required to update
parity on small write operations, designers tied
flushalgorithms to RAID. Flush algorithms for write-
back caching are vital to customer data integrity
and to latency reduction. The flush algorithms actu-
ally allow Parity RAID to simulate RAID level 3 oper-
ations because of the nonvolatile write-back cache.

As mentioned earlier, Parity RAID configurations
suffer a penalty on small write operations that
includes a series of read and write operations and
XOR operations on blocks of data to update RAID
parity. The write-back cache firmware was
designed with specific attributes to enhance Parity
RAID write operations in general, and not just to

Table 2 StorageWorks Controller
Write Request Throughput
with Write-back Caching

Write Requests

Controller per Second

HSJ30/HSJ40 1,350
HSD30 900
HSZ40 1,850

enhance small write operations. The designers
intentionally chose to overcome both the small-
write penalty and the inherent lack of high band-
width that Parity RAID delivers.

The nonvolatile write-back cache module
afforded the firmware designers more choices for
Parity RAID write request processing and data flush
algorithms. The designers pursued techniques
to speed up all write operations by performing
write aggregations (i.e., combining data from mul-
tiple write requests and read cache data) in three
dimensions:

1. Contiguous aggregation, in which the firmware
looks for consecutive block requests and ties
them together into one device request, thus
eliminating separate device requests.

2. Vertical aggregation, in which the firmware can
detect two write operations to the same block,
thus eliminating one write operation.

3. Horizontal aggregation (for Parity RAID opera-
tions only). This type of aggregation occurs
when all data blocks within a Parity RAID strip
are present in the write-back cache. In such
cases, the firmware can write to all RAID set
members at once, in combination with the FX
chip (discussed later in this section) on-the-fly
hardware XOR operations during the RAID set
member writes. The original request can cause
horizontal aggregation to take place if all blocks
within a strip are part of the first write request.
The firmware can also perform horizontal aggre-
gation after processing several write requests. In
this way, the parity write operation directly fol-
lows the data write operations. Horizontal write
aggregation potentially cuts physical device
access in half when compared to normal RAID
write operations that require data members to
be read.?® The result is pseudo-RAID level 3 oper-
ation, because the write-back cache is combined
with the horizontal aggregation cache policy.

The performance gain for individual disks and for
Parity RAID arrays from using write-back caching is
dramatic, resulting in higher write throughput and
low latency. The write-back cache actually smoothes
out differences in performance that are typical of
workloads that have different read/write ratios,
whether or not Parity RAID is utilized.

Figure 8 shows the relative latency for a controller
with and without write-back caching enabled. The
configurations tested comprised individual devices

Digital Technical Journal Vel 6 No.4 Fall 1994

19




RAID Array Controllers

N w H (o)
(=) o o o
T T T

LATENCY (MILLISECONDS)
3

WL ﬂnhm

(@)

WORKLOAD 1 WORKLOAD 2 WORKLOAD 3

KEY:

JBOD ARRAY MODEL
[] READ CACHE

] WRITE-BACK CACHE

PARITY RAID ARRAY MODEL
Il READ CACHE
] WRITE-BACK CACHE

Figure 8  HSJ40 Arrety Latency Comparisons

and Parity RAID units (in a five-plus-one configura-
tion). The performance measurements were taken
from a version 2.0 HSJ40 array controller.

Workload 1 has a read/write ratio of 70/30, i.e.,
70 percent of the requests were read requests and
30 percent were write requests. Workload 2 has
aread/write ratio of 84/16. Workload 3 has a ratio of
20/80. In all workloads, the latency for individual
devices and for Parity RAID units is lower when
write-back caching is enabled than when only read
caching is enabled. In fact, when write operations
dominate the 170 mix, latency for Parity RAID units
is the same asfor the workloads in whichread oper-
ations are predominant!

RAID/Compare Hardware

StorageWorks controllers contain a hardware Parity
RAID and data compare accelerator called FX, a gate
array that performs on-the-fly XOR operations on
data buffers. Parity RAID and data compare firm-
ware use this gate array to accelerate Parity RAID
parity calculations and host data compare requests.
The FX chip is programmed to (1) observe the bus,
(2) “snoop” the bus for specific addresses, (3) per-
form the XOR operation to compare the associated
data on-the-fly with data in a private memory called
XBUF memory, and (4) write the data back into
the XBUF memory.

XOR operations can take place as data is moving
from buffer or cache memory to device ports or
vice versa. The FX can also perform direct memory
access (DMA) operations to move the contents of
buffer or cache memory to or from XBUF memory.

The designers determined that hardware acceler-
ation of XOR operations for Parity RAID firmware
would speed up RAID parity calculations and thus
further improve Parity RAID latency and through-
put. The firmware also supports FX compare opera-
tions, which eliminates the need for SCSI-2 devices
that have implemented compare commands and for
speeding up compare requests from hosts.

Common Hardware Platform

To produce a high-performance controller in all
three performance dimensions—latency, through-
put, and data transfer ratc—the designers of
StorageWorks controllers faced the challenge of
creating a new controller architecture and using
new technology. In addition, they had to do so at
a reasonable cost.

Although each has its own specific host interface
hardware, the Cl, DSSI, and SCSI controller variants
share a common hardware core. Commonality
was desired to control the development costs and
schedules for such large engineering projects. To
deliver high performance and commonality, the
designers investigated several controller architec-
ture alternatives. The first architecture considered
was similar to Digital's HSC50-95 controller, incor-
porating similar bus structures, processing ele-
ments, and memories, but newer technology.
Figure 9 shows the HSC architecture.”

The HSC architecture is a true multiprocessor sys-
tem. It contains a private memory for its policy pro-
cessor, which manages the work that is coming
from the host port interface and queues this work
to the device interface modules. Data then flows
between the host port and device modules to and
from hosts. The modules have two interfaces
(buses) for access to command processing and data
movement. These buses are called the control mem-
ory interface and the data memory interface. The
policy processor queues work to the host port and
device modules through the control memory inter-
face, and then the modules process the data over
the data memory interface.

Using this architecture would have been too
expensive. The controller cost had to be competi-
tive with other products in the industry, most
of which currently cost considerably less than the
HSC controller. The HSC bus architecture required
three different memory interfaces, which would
require three different, potentially large memories.
The designers had to pursue other options that
met the cost goals but did not significantly reduce

20

Vol. 6 No. 4 tall 1994  Digital Technical Journal



The Architecture and Design of HS-series StorageWorks Arvcay Controllers

contRoL | CONTROL BUS (6.6 MB/S) E
MEMORY B v
POLICY LOAD DISK INTERFACE | S
HOST INTERFACE PROCESSOR DEVICE OR
CIBUS TAPE INTERFACE | b
e — (UPTOB TOTAL)
< >
ROM RAM — TERMINAL ROM e E—
SDI OR STI
(4 PER
INTERFACE)
DATA i s
MEMORY DATABUS (13.3 MB/S)

Figure 9

performance. They considered single internal bus
architectures, but during simulation, these options
were unable to meet either the initial or the long-
term cost goals.

Figure 10 shows the controller architecture
option that became the common hardware base for
StorageWorks controllers. This architecture con-
tains three buses and two memories. A third small
memory is used for Parity RAID and data compare
operations but does not drastically increase con-
troller cost. The architectural design allows the pol-

Block Diagram of the HSC Architecture

icy processor to access one memory while a device
or host port processor accesses the other memory.

The architecture achieves a lower overall cost
than the HSC architecture yet achieves similar
performance. The new architecture, with fewer
memories, does not significantly reduce the perfor-
mance, while the newer technology chosen to
implement the controller enhances performance.
The bus bandwidth of the new controller is much
higher than that of the HSC controller. Conse-
quently, a more cost-effective solution that uses

S LCTION 32-KB 1960 ggg‘gg‘w puAL | [ TMER CONTROL
AND DATA CacHE | | NVRAM | | MICROPROCESSOR | [ (2orioile [ | UART | | HARDWARE | [ REGISTERS
< L i
IBUS BUS
16- OR 32-MB
BUFFER BUS ___ CDALBUS iSO CACHE
MEMORY  |DRAB K——— DRAB | BATTERY
s EXCHANGER BACKED Up | MODULE
WRITE-BACK
RAID H xBUF oA
CHIP
¢ NBUS BUS | 8
HOST PORT DEVICE PORT | | DEVICE PORT | | DEVICE PORT | | DEVICE PORT | | DEVICE PORT | | DEVICE PORT
(1. pssi, scen| | 83¢710 53C710 53C710 53C710 53C710 53C710
' : PROCESSOR | | PROCESSOR PROCESSOR || PROCESSOR || PROCESSOR || PROCESSOR
Figure 10 HSx4® Controller Architecture
Digital Technical Journal Vol (6 No.4  Fall 1994 21




RAID Array Controllers

aless-costly architecture can attain similar to better
performance.

The extreme integration of hardware to the very
large-scale integration (VLSD) level allowed for a
much smaller enclosure than that of the HSC control-
ler, even with a dual-redundant controller configura-
tion (see Figure 3). A StorageWorks dual-controller
configuration measures 56.5 by 209 by 43.2 centi-
meters (22 by 8 by 17 inches), which is approxi-
mately one-tenth the size of the HSC controller.

Conunon Controller Platforn:  The common con-
troller platform consists of the controller without
the associated host port. The common core of hard-
ware consists of the policy processor hardware, the
SCSI-2 device port hardware, and the cache module.
The controller-specific host port interface hardware
includes either the Cl, the DSSI, or the SCSI interface.

Policy Processor Hardware The StorageWorks
controller policy processor is Intel’s 25-MHz iI960CA
microprocessor, which contains an internal instruc-
tion cache and is augmented by a secondary cache
external to the processor. The secondary cache
relieves the potential bottleneck created by shared
memory between the policy processor and host/
device port processors.

The designers had to make trade-offs in two
areas: the memory speed/cost and the number of
buses. After simulation, the external instruction
and data cache showed a significant performance
improvement, given the chosen shared-memory
architecture. The cache covers the first 2 MB of
buffer memory, where policy processor instruc-
tions and local processor data structures reside and
where most of the performance gain for the policy
processor would be achieved.

The policy processor uses the IBUS exclusively to
fetch instructions and to access the program stor-
age card, the NVRAM, the DUART, and the timers.

Program Storage  StorageWorks firmware is con-
tained on a removable program card for quick code
upgrades and to eliminate the need for a boot read-
only memory (ROM) on the controller. The program
card is a PCMCIA, 2-MB flash clectrically erasable,
programmable, read-only memory (EEPROM) card
that contains the firmware image. Designers chose
the PCMCIA card to facilitate code updates in the
field, where host-based downline loading of
firmware was not supported. Although the PCMCIA
card cost more than EEPROM chips attached to the

module, the designers felt that the benefits of such
adesign outweighed the additional cost.

On cach initialization, the controller reads the
firmware image on the program card and copies the
image to the shared memory. The firmware exe-
cutes from the shared buffer memory.

Dual UART (DUART) The DUART is used for two
reasons:

1. Maintenance terminal connection. The main-
tenance terminal is 4 means of entering con-
troller system management commands (with the
command line interpreter, which is the user
interface for controller configuration manage-
ment) and is also a status and error reporting
interface. Designers made extensive use of this
interface for debugging controller hardware and
firmware. Use of the maintenance terminal con-
nectionis optional. The interface remains on the
controller so that users can direct controller
management and status reporting, if desired.

2. Failover communication between two control-
lers in a dual-redundant configuration. The com-
munication path is used to share configuration
and status information between the controllers.

Shared Buffer and Cache Memoiry The dynamic
random-access memory (DRAM) buffer (or shared
memory) has at its heart the dynamic RAM and arbi-
tration (DRAB) chip. This chip supports the buffer
and cache memory accesses from the policy pro-
cessor and from the host and device ports. The data
transfer rate supported by the shared memory is
approximately 35 megabytes per second (MB/S).

The DRAB chip contains error-correcting code
(ECC) hardware to correct single-bit memory, to
detect multibit errors, and to check and generate
bus parity. This feature allows the controller to
survive partial memory failures, which was a fault-
tolerant goal for the controller.

The decision to use DRAM chips in the memory
design rather than static random-access memory
(SRAM) chips led to the use of ECC. DRAMS were
chosen because of their cost and power savings
over equivalent SRAM. However, because the
designers expected large amounts of DRAM (as
much as 40 MB) to be presenton a controller and its
associated cache module, the statistical error prob-
abilities were high enough to warrant the use of
ECC on the memory. The combination of DRAM and
ECC was less costly than an equivalent amount of

22

Vol. 6 No.<d  Tull 1994 Digital Technical Journal



The Architecture and Design of HS-series StorageWorks Array Controllers

more reliable SRAM. The use of parity on the buses
is a standard feature in all StorageWorks controllers.
The bus parity feature provides further error detec-
tion capability outside the bounds of the memory
because it covers the path from memory to or from
external host or device interfaces.

The DRAB chip also controls access to the cache
module in conjunction with slave DRAB chips on
the cache module associated with the controller.
These DRAB chips provide refresh signals for the
DRAM buffer or cache memory that they control,
whereas, the master DRAB on the controller module
provides arbitration for cache accesses that origi-
nate from the various sources on the controller
module. Slave DRAB chips can also be accessed by
the dual-redundant partner controller, depending
on the two controller LOCK signal states.

The controller firmware uses 8 MB of shared
buffer memory to execute the program image, to
hold the firmware data structures, and to read and
write-through cache data (if no cache module is
present). The i960CA policy processor and the host
and device data processing elements on the NBUS
can all access buffer memory.

Cache Memory Each cache memory module
contains one slave DRAB chip and 16 or 32 MB of
DRAM, and also two ports into the module (one
from each controller) for use in failover. Each cache
module optionally contains batteries to supply
power to the DRAM chips in the event of power
failure for write-back caching and Parity RAID use.
The cache modules are interchangeable between
controller types.

FParity RAID XOR and Compare Hardware The
Parity RAID XOR and compare hardware consists of
the FX gate array and 256 kilobytes (KB) of fast
SRAM. The FX allows concurrent access by SCSI-2
device port hardware and the policy processor. The
FX compares the XOR of a data buffer (512 bytes of
data) that is entering or exiting an attached device
with the XOR buffers in the fast SRAM. The policy
processor uses the FX to perform compare opera-
tions at the request of a host and perform DMA
operations to move data to and from memories.
This hardware is common across all the controller
platforms for Parity RAID and compare firmware.

SCSI-2 Device Port Hardware The device ports
(three or six, depending on the controller model)
are controlled by Symbios Logic (the former NCR

Microelectronic Products Division of AT&T Global
Information Solutions Company) 53C710 SCSI-2
processor chips. The SCSI-2 processor chips reside
on the NBUS and access the shared-memory cache
for data structure and data buffer access. These pro-
cessors receive their work from data structures in
buffer memory and perform commands on their
specific SCSI-2 bus for read or write operations.

The Symbios Logic chip provided the most pro-
cessing power, when compared to the other chips
available when the controllers were designed. The
designers felt that direct control of SCSI-2 interfaces
by the policy processor or a separate processor
was too costly in terms of processor utilization
and capital expense. The Symbios Logic chips do
require some policy processor utilization, but the
designers considered this acceptable because high-
performance architectural features in the policy
processor hardware compensated for the extra pro-
cessor utilization.

The SCSI-2 device port supports the SCSI fast,
single-ended, 8-bit interface.! The data transfer
rate supported by this interface is 10 MB/s.

Host Port Hardware The host port hardware
is either a CI, a DSSI, or a SCSI interface imple-
mented with gate arrays or Symbios Logic 53C720
SCSI-2 processors. The host port hardware, the only
noncommon hardware on a StorageWorks con-
troller, requires a separate platform to support each
host interface.

The CI interface is made up of a gate array and
Cl interface hardware that performs DMA write
or read operations from shared memory or cache
memory over the NBUS. The maximum data transfer
rate supported by the CI hardware is approximately
8 MB/s.

The DSSI interface utilizes a Symbios Logic
53C720 chip coupled with a gate array and DSSI
drivers to receive and transmit data to or from the
DSSI bus. The DSSI interface is 8 bits wide, and the
maximum data transfer rate supported by the DSSI
hardware is 4.5 MB/s.

The SCSI interface also uses a Symbios Logic
53C720 chip coupled with differential drivers to
provide a SCSI-2, fast-wide (i.e., 16-bit) differential
interface to hosts. The maximum data transfer rate
supported by the SCSI-2 interface is 20 MB/s for
fast-wide operations.

Table 3 shows the current (version 2.0) maxi-
mum measured (at the host) data transfer rate per-
formance numbers for StorageWorks controllers.

Digital Technical Journal Vol 6 No. <4  Fall 1994

23




RAID Array Controllers

Table 3 SCSI-2 Host Interface Performance

Read Data Transfer Rate

Write Data Transfer Rate

Controller (Megabytes per Second) (Megabytes per Second)
HSJ30/HSJ40* 6.7 4.4
HSD30 3.2 2.8
HSZ40** 14 8.0

* In a multihost environment
** Measured for the HSZ40-B controller

Summary

The StorageWorks HS-series array controllers were
designed to meet the storage subsyvstem necds of
both Digital and non-Digital systems, thereby enter-
ing the world of open systems. The architecture for
the HSJ30, HSJ40, HSDA0, and HSZ40 controllers has
achieved the initial project goals and provides

1.

Opensystems capability. A SCSI-2 device intertuace
allows many types of disk, tape. and optical
devices to be attached to the HSJ30. HSJH0, and
HSD30 controllers. The HSZ40 controller. which is
currently a disk-only controller, provides i SCSI-2
host interface that allows the controller to be
attached to Digital and non-Digital computers.

High availability. Controller fault tolerance and
RAID highly
StorageWorks storage subsystem.

firmware yielded a available

The dual-redundant controller configuration
allows each of a pair of active controllers to
operate independently with host systems., while
sharing device ports, configuration information,
and status. This design allows both controllers
to achieve maximum performance. The dual-
redundant configuration also provides  fault
tolerance it one controller fails, because the
surviving controller serves the failed control-
ler's devices to the host computers. The dual-
controller  confliguration, combined  with
StorageWorks controller packaging, results in
a highly available controlier configuration with
built-in fault tolerance, error recovery, and bat-
tery backup features.

Parity RAID controller firmware, combined with
StorageWorks device packaging, allows for highly
available disk configurations that are less costly
than mirrored configurations.  Furthermore,
Parity RAID firmware performs automatic Parity
RAID management and error recovery functions

in the event of a failure and utilizes spare device
pools in conjunction with user-defined Parity
RAID configuration management policies. The
StorageWorks  Parity  RAID  implementation
exceeds the requirements of the RAID Advisory
Board for RAID availability features.

High performance. The HSJ30/HSJ40, HSD30, and
HS7 10 controllers achieved the respective initial
performance goals of 1,100, 800, and 1,400 1/0s
per second. The controllers met the low request
latency goals by streamlining firmware where
possible and by introducing write-back caching.
Write-back  caching  firmware  dramatically
reduces latency on all write requests, and write-
back cache hardware provides battery backup for
data integrity across power failures. Further-
more, the write-back cache overcomes the RAID
level 5 small-write penalty and high data transfer
rate inctficiencies and thus provides high perfor-
mance with Parity RAID disk configurations.
StorageWorks Parity RAID firmware implements
many of the RAID Advisory Board optional perfor-
mance features to produce a high-performance
RAID solution.

A common controller processing core was
successtully developed for the 118 30/118140,
HSDAO, and 15740 controllers. More than 85 per-
cent of the firmware is common to all three con-
troller plattorms, which allows ftor ease of
maintenance and for the samce look and feel for
customers. ‘The architecture and the technology
used resulted in a core controller design that
supports a high data transfer rate for all
StorageWorks controller platforms.

These achicvements represent the large engi-

neering investment that Digital has made to move
into the open systems market with new technology
for its storage solutions. These controller platforms
are the basis for future controller architectures and

Vol O No.d tall 1994 Digital Techmical Journal



The Archilecture and Design of HS-series StorageWorks Array Controllers

platforms that utilize the knowledge and experi-
ence acquired during the development of the
Storage Works HS-series array controllers.

Acknowledgments

The StorageWorks array controller project was the
cooperative effort of a large number of engineers
who sacrificed considerable personal time to
achieve the project goals. The following people and
groups contributed to the success of the product:
Bob Blackledge, Diana Shen, Don Anders, Richard
Woerner, Ellen Lary, Jim Pherson, Richard Brame,
Jim Jackson, Ron McLean, Bob Ellis, Clark Lubbers,
Susan Elkington, Wayne Umland, Bruce Sardeson,
Randy Marks, Randy Roberson, Diane Edmonds,
Roger Oakey, Rod Lilak, Randy Fuller, Joe Keith,
Mary Ruden, Mike Richard, Tom Lawlor, Jim
Pulsipher, Jim Vagais, Ray Massie, Dan Watt, Jesse
Yandell, Jim Zahrobsky, Mike Walker, Tom Fava,
Jerry Vanderwaall, Dave Mozey, Brian Schow, Mark
Lyon, Bob Pemberton, Mike Leavitt, Brenda Lieber,
Mark Lewis, Reuben Martinez, John Panneton, Jerry
Lucas, Richie Lary, Dave Clark, Brad Morgan, Ken
Bates, Paul Massiglia, Tom Adams, Jill Gramlich,
Leslie Rivera, Dave Dyer, Joe Krantz, Kelly Tappan,
Charlie Zullo, Keith Woestehoff, Rachel Zhou,
Kathy Meinzer, and Laura Hagar. Thanks to the CAD
team, the StorageWorks packaging and manufactur-
ing tcam, the software verification team, and the
problem management team. A final thanks to our
OpenvMS and DEC OSF/1 operating system partners
and to the corporate test groups, all of whom
worked with our engineering team to ensure inter-
operability between the operating systems and the
controllers.

References and Notes

L. Inforrmation Systems—Small Computer Systems
Interface-2 (SCSI-2), ANSI X1.131-1994 (New York:
American National Standards Institute, 1994).

88}

. D Patterson, G. Gibson, and R. Katz, “A Case for
Redundant Arrays of Inexpensive Disks (RAID),”
Report No. UCB/CSD 87/391 (Berkeley: University
of California, December 1987).

3. The RAID level S5 small-write penalty results
when a small write operation does not write all
the blocks associated with a parity block. This
situation requires disk reads to recalculate parity
that must then be written back to the RAID level
5 unit to achieve data redundancy.

4. P Massiglia, ed., The RAIDbook: A Source Book
for Disk Array Technology, 4th ed. (St. Peter,
Minnesota: The RAID Advisory Board, September
1994).

S. P Biswas, K. Ramakrishnan, D. Towsley, and
C. Krishna, “Performance Analysis of Dis-
tributed File Systems with Non-Volatile Caches,”
ACM Sigmetrics (1993).

6. Parity RAID unit reconstruction of data and parity
from a failed array member means regenerating
the data block-by-block from the remaining array
members (see Figure 6) and writing the regen-
erated data onto a spare disk. Reconstruction
restores data redundancy in a Parity RAID unit.

7. Metadata is information written in a reserved
area of a disk. The information, which takes up
approximately 0.01 percent of the total disk
capacity, describes the disk’s configuration and
state with respect toits use in a Parity RAID unit.

8. P Biswas and K. Ramakrishnan, “Trace Driven
Analysis of Write Caching Policies for Disks,”
ACM Sigmetrics (1993).

9. R. Lary and R. Bean, “The Hierarchical Storage
Controller, A Tightly Coupled Multiprocessor
as Storage Server," Digital Technical Journcl,
vol. 1, no. 8 (February 1989): 8-24.

Digital Technical Journal Vol.6 No. 4  Fall 1994

25




Christopbh J. Bufsler |

Policy Resolution in Workflow
Management Systems

O@ize crucial function of a workflow management system (WEMS) is to assign tasks
to users who are eligible to carry them oul. Except in simple woirkflow scenarios,
roles such as secretary and nanager are not a sufficient basis for deterimining eligi-
bility. Additionally, WEMSS are deployed not only in group settings by small compa-
nies but also worldwide by large enterprises. Since local lawes and business policies
have to be followed, task assigniment policies for the sanie task generally differ from
country to country and, therefore, must be specified locally: The Policy Resolution
Architecture (PRA) model provides more generality and expressiveness than role
models do and at the same time supports the independent specification of task
assignment policies in different parts of an enterprise. PRA can be used to model
arbitrary organization structures and to define realistic task assignment (eligibil-
ity) rules by means of precisely defined organizational policies. Thus, PRA provides
real-world organizations with a precise, simple mecns of expressing their coinplex

task assignment policies.

A workflow management system (WFMS) is a soft-
ware system that manages the flow of work
between participants or users according to formal
specifications of business processes called work-
flows. A workflow specifies tasks to be performed
and their execution order. Additionally, a workflow
specification defines the internal flow of data
between tasks as well as all applications required to
carry out the tasks. For example, a travel expense
reimbursement workflow specifies the tasks of fill-
ing, checking and signing a form. and reimbursing
an amount. This workflow specifies that the form
must be signed before an amount is reimbursed.
The workflow specification also defines the flow of
the expense form between tasks and the required
spreadsheet application. Finally, for each task of a
workflow, some rule has to be in place that speci-
fies the users who are eligible to carry out the task.
This set of eligible users is determined at run time,
and the task is subsequently assigned to them.

One of the key issues in successfully deploying
WEMSs in an enterprise is the correct assignment
of a given task to eligible users. An eligible user is
one who is capable of and responsible for carrying
out an assigned task. This distinction is impor-
tant because not every user who is capable of per-
forming a task is necessarily responsible for it. The

successful completion of a task, however, often
requires that crucial, irreversible decisions be made
by a person who is responsible for the task. Making
the right decisions and then carefully and responsi-
bly carrying out the task is essential to conducting,
business successtully.

The criteria used to determine an eligible user tor
a task are manifold. A user must have a specific sct
of capabilities to be able to carry out the task.
Additionally. the position of a user in the organiza-
tion hierarchy and/or the reporting structure of the
organization can determine if the user is responsi-
ble for the task. Furthermore, limits placed on
a user’s decision-making authority can affect eligi-
bility. For example, not every salesperson is autho-
rized to accept an order that leads to a significant
increase in manufacturing output. Such an order
requires special attention and internal coordi-
nation by a senior sales representative. When
cost-optimized task assignments are made, the
experience of the user as well as the user's skill set
has to be taken into consideration. Highly experi-
enced users are in Most Cases exXpensive resources,
but usually they can complete tasks faster than
users with average experience. Although users
with either level of experience may have sufficient
experience to carry out a specific task. if deadlines

206

Vol. 6 No. <t Fall 1991  Digital Technical Journal



Policy Resolution in Workflow Management Systems

are involved or extreme caution with respect to
quality is necessary, a highly experienced user
might be appropriate. In such cases, the additional
cost would be justified.

The previous discussion demonstrates the neces-
sity of a precise definition of eligible users for a
given task. Such a definition, i.e., set of task assign-
ment rules, should contain all the criteria used to
determine eligible users for the task. Early in the
development of Digital's ObjectFlow WFMS prod-
uct, the concept of roles was considered sufficient
to model the assignment of tasks to users.! How-
ever, an analysis of distributed enterprise-wide pro-
duction workflows clearly showed that using roles
as the only assignment mechanism has limited
value in determining eligibility.? The need for a far
more expressive, general, and flexible approach
became obvious. The analysis also revealed that
workflows are often reused in different parts of
an enterprise. A prominent example is the travel
expense reimbursement workflow, which is dis-
cussed throughout this paper. Although a work-
flow is reused, however, the task assignment
policies may differ greatly in the various parts of an
enterprise. This difference is due to the need to
adhere to local laws and/or to business-related devi-
ations from the general rules.

Based on the requirements derived from several
case studies of complex workflows, the Policy
Resolution Architecture (PRA) was developed to
provide a comprehensive way of specifying task
assignment rules.2 To support the fact that different
parts of an organization may require different
assignment rules, PRA and its implementation were
designed as separate components. PRA incorpo-
rates three major elements and thus provides

= Concepts that enable the modeling of any orga-
nization structure (not just roles and groups)
without prescribing structures that are applica-
tion dependent.

= Task assignment rules as entities in themselves,
separate from a workflow specification. This
makes it possible for each of the different parts
of an enterprise to have its own set of task assign-
ment rules for the same workflow.

= Alanguage that enables the explicit specification
of organization schemas and task assignment
rules. Specifications are processed by a compo-
nent called the policy resolution engine during
workflow execution.

Before explaining PRA in detail and providing the
rationale for its development, the paper introduces
the key concepts of workflow management. This
introduction presents a seemingly simple workflow
that specifies travel expense reimbursement, which
is later used to introduce the design objectives of
PRA. Note that a real travel expense reimbursement
workflow for production is by far more complex
than the example used in this paper. A large dis-
tributed enterprise endeavors to reuse the same
workflow in all of its parts because reuse facilitates
administration and leverages the development
investment. At the same time, such an enterprise
probably sponsors numerous business trips, which
makes the travel expense reimbursement workflow
an excellent candidate to use as an example.

Workflow Management

This section introduces a model of workflow man-
agement. The discussion begins with a survey of
preliminary work. The survey suggests the motiva-
tion for workflow management and enumerates
some areas in which workflow management is
deployed. The key concepts of the workflow model
are then used to model a workflow example, i.e.,
the travel expense reimbursement workflow. The
section concludes with a definition of workflow
management systems.

Historical Survey

Looking back in history reveals that workflow man-
agement has many roots. The most important are
office automation, software process management,
manufacturing, and transaction processing. The fol-
lowing short survey of achieved results is given
to help the reader understand the motivation
for workflow management. The discussion also
explains the choice of workflow management con-
cepts. The list of previous and related works indi-
cates the range of literature that exists.

Office Automation One of the primary roots of
workflow management is undoubtedly office
automation. Early research led to the development
of models and tools to support office workers. 3-9
What emerged were not only desktop applications
that imitate concepts such as in basket, out basket,
forms, and documents but also models of the pro-
cedures that the office workers follow while doing
their jobs.™" Furthermore, systems were devel-
oped that execute the office procedures to actively
manage the flow of work within offices.'2¥

Digital Technical Journal Vol 6 No.4 Fall 1994

27




Workflow Models

Software Process Modeling A second major root
of workflow management is software process mod-
cling and execution. > The focus of rescarch in this
arca is the automated support of software develop-
ment processes. Concepts comprise process mod-
els like the waterfall model or the spiral model,
deliverable code, installation and operation manu-
als, requirements documents, and test cases. 22"

Manufacturing  Traditionally, formalized proce-
dures that are executed repeatedly are inherent to
manufacturing, another root of workflow muanage-
ment. Manufacturing involves not only production
processes butalso preproduction procedures start-
ing from, for example, the release of computer-
aided design (CAD) drawings to the preparation of
shop floor schedules. *#-#
Transaction Processing  Another important area
that influenced the development of workflow
management is transaction processing. After the
concept of atomicity, consistency. isolation, and
durability (ACID) transactions was developed,
researchers proposed more advanced transaction
models for processing several interdependent tasks
that must be transactional and recoverable.#-%

Coordination Theory, Enterprise Modeling, and
Speech Act Theory  Another area of research that
contributed to the idea of worktlow managementis
coordination theory." " This arca looks at pro-
cesses as one form of coordination and tries to
apply interdisciplinary research results to it. The
resecarch area of enterprise modeling focuses on
the modeling of the whole multifaccted enter-
prisc.? * Enterprise activities are one part of an
cnterprise that drives the enterprise processes. The
speech act theory is an attempt to model the con-
versation between humans.™ Some rescarch fol-
lows the direction thata workflow is an interwoven
chain of speech acts.

Larly Application-independent Approaches  1In
addition to the application-specific roots of work-
flow management, early approaches that modeled
processes independent of application areas pro-
vided motivation for worldlow management.5:->1

The term process appears in all the areas of work
mentioned above. Also, all these rescarch areas deal
with data, e.g., documents, CAD drawings, and
orders. Most approaches have some notion of sub-
ject or agent. The question arose among researchers,
Does each area need its own definition of terms,

modeling language, and execution mechanism, or
is it possible to provide general concepts that need
to be customized only for a specific area of applica-
tion? This question triggered the development of
the concept of workflow, whose goal it is to serve
as the general and customizable concept.

Workflow Management Concepts
After the specitic application semantics (e.g.. docu-
ments, office workers, release procedures, and CAD
crawings) have been abstracted, the basic concepts
of workflow management can be distilled from the
various approaches mentioned above. Although
workflow management is independent of specific
application semantics, it does supportall the appli-
cation areas cited. It provides an integrated set
of underlying concepts that can be customized
to model the semantics of each application area.
Workflow management is analogous to relational
database systems. Such systems know how to
model and implement tables and how to process
queries; however, they do not know about the
specific concepts of an application area that are
implemented by user-defined tables, e.g., addresses
and orders.

The following list introduces the basic concepts
of workflow management by enumerating the major
aspects that make up a workflow specification: "

= Functional aspect. The functional aspect
describes what has to be done, without say-
ing how, by whom, and with which data. The
functional aspect provides two concepts: ¢le-
mentary workflows and composite workflows.
Elementary workflows are tasks that can be car-
ried out by one person, program, or machine.
For brevity, elementary workflows are called
steps.  Composite  workflows bundle cither
elementary workflows or other composite
workflows to higher-level tasks. In this way,
a reuse hicraechy is built, since the bundled
workflows may very well stand by themselves.
Generally. these higher-level tasks can no longer
be achieved by a single person, program,
or machine but require several such entities.
A workflow that bundles other workflows refer-
ences them. As a naming convention, 4 work-
flow that is referenced by some other workflow
is called a subworkflow. The referencing work-
flow is called the superworkflow. The topmost
workflow of a reuse hierarchy is called the top-
level workflow.

Vol. 6 No. 1 lull 1991 Digital Technical Jouwrnal



Policy Resolution in Workflow Mancagement Systems

= Behavioral aspect. The behavioral aspect
describes the execution order of the subwork-
flows of a workflow. Constructs that describe
the order include sequence, conditional branch-
ing, parallel branching, and the looping and/or
joining of parallel or conditional execution paths.

= Informational aspect. The informational aspect
is twofold: first, it describes the local variables of
a workflow and the external data referenced;
second, it describes the flow of data from sub-
workflow to subworkflow.

= Organizational aspect. The organizational aspect
describes who is eligible te carry out a step. The
“who” can be a human (e.g., an office worker),
a program (e.g.. a compiler in a software pro-
cess), or a machine (e.g., a cell in a shop floor).
The term user was chosen to represent all three.
Most available WFMSs offer the concept of roles to
model the organizational aspect. A role usually
groups a set of users. At run time, tasks are
assigned to roles and all users grouped by these
roles are assigned the task. Although this method
of task assignment is adequate for certain work-
flows such as departmental workflows, as shown
later in the section Task Assignment in a Travel
Expense Reimbursement Workflow, roles are not
sufficient to handle workflows that are deployed
in an enterprise-wide or international setting.

The literature discusses additional aspects, e.g.,
a historical aspect and a technological aspect.>
The historical aspect is used to specify the kind of
information to be stored in a historical database
during the execution of a workflow, e.g., starting
times or values of variables. Instead of having the
default strategy of saving all data, the workflow
specifies in the historical aspect only the important
data that must be stored. The technological aspect
allows the definition of which application program
or programs are available to carry out a step. At run
time, these application programs are made avail-
able to the user. In principle, it is not possible to
enumerate all necessary aspects completely in
advance. Depending on the application area to be
modeled, additional aspects might appear and
require support.

The paper now shows how the key concepts
of workflow management can be applied, i.e., cus-
tomized, to model a specific workflow type. The
example used is a sample travel expense reimburse-
ment workflow.

Travel Expense Reimbursement Workflow

Figure 1 shows the graphical representation of
a simplified workflow for the reimbursement
of travel expenses. (Examples of workflow lan-
guage can be found in the literature.>>5¢) The work-
flow consists of four steps: (1) fill, (2) check,
(3) sign, and (4) reimburse. The graphical represen-
tation shows the functional aspect (task structure)
as ovals and the behavioral aspect (control flow) as
solid arrows. The informational aspect (data flow)
is displayed as forms; dotted arrows indicate the
direction of the flow of data. The organizational
aspect is omitted since the paper will focus later on
this topic. The technological aspect is represented
by icons of the software applications that are avail-
able to carry out the steps. The historical aspect is
represented by icons that symbolize logs in which
information must be recorded.

Step 1 of the travel expense reimbursement
workflow, the fill step, enables a user to enter the
relevant expenses incurred during a business trip
into an electronic travel expense form. After a user
has finished entering the data, validation must take
place. The check step enables a user to look at the
contents of the travel expense form. This user is
prompted to validate the contents but cannot
change entries. If the user who checks the form
detects an error, the form is sent back to the user
who initially filled it out, with a note that explains
the reason for rejection. Otherwise, the form is for-
warded to the next user who has to sign the form to
approve the amount. After the sign step is com-
plete, the amount can be reimbursed. The last step,
reimburse, enables a user to add the amount spent
to the next paycheck of the user who requested
reimbursement.

This sample workflow is intentionally kept sim-
ple because beginning with the next section, the
paper focuses solely on task assignment rules. In
a real organizational setting, the workflow would
involve more steps and additional execution paths.
For example, a user who has to sign the form might
detect an error. In this case, as in the checl step, the
form would be sent back to the user who initially
filled it out.

Workflow Management Systems

Managing the flow of work among users is done by
a software system called a workflow management
system (WFMS). A WFMS contains all the specifica-
tions of the workflow types (e.g., a travel expense

Digital Technical Journal 1ol. 6 No. 4 Fall 1994

29




Workflow Models

TravelExpenseReimbursement

REIMBURSE

3

;
Q

KEY:
O

T s

—  CONTROL FLOW

------ DATA FLOW

E—I

U:r ELECTRONIC FORM SPREADSHEET

= APPLICATION

(. INFORMATION LOG

Figure 1

reimbursement or a capital equipment order) that
are modeled and released for production. If a user
issues a request to start a workflow (e.g., if, after
a business trip, a traveler starts a travel expense
reimbursement workflow), the WFMS creates an
instance of the requested workflow type. Of course,
more than one instance of the same work flow type
can exist simultaneously. A WFMS assigns the steps
of a workflow to users according to the specified
order of the behavioral, functional, and organiza-
tional aspects.

In general, a WFMS performs the following
actions to execute a workflow instance:

= Determine the nextsteps to be executed.

= Determine the eligible users for these steps.
= Assign steps to eligible users.

= Wait for the result of each step.

= Transfer the result back to the step’s superwork-
flow and record the step as complete.

The WFMS repeats these actions until all steps of
a workflow are executed.>>7-3 This list of actions
has to be slightly modified if. in addition to steps,
a workflow contains composite workflows in its
list of subworkflows. In this case, the subworkflow

<~}

main()

MONEY TRANSFER
APPLICATION

Travel Expense Reiinbursement Workflow

is not assigned to users and the list of actions is
applied to each of the subworkflows.

Each user who can potentially be involved in
a workflow is connected to a WFMS by a private
worklist, which is a graphical representation of
a list of steps assigned to the user. Each entry in a
user's worklist represents a task the user is eligible
to carry out. A user can participate in more than
one workflow at the same time. Normally, the user
is free to choose from the worklist any item on
which to start. In well-designed systems, the WFMS
automatically starts the application programs that
the user will require to accomplish the work. In
this way, the user can begin work immediately.

Almost all prototype implementations or prod-
uct developments allow the modeling of the four
main aspects described previously. The list of work-
flow management systems is growing rapidly, and
references to relevant literature are readily avail-
able #77-01 References to literature that describes
the deployment of workflow management systems
in an application area are rare, however.5-01.65-67

The reminder of the paper focuses on the orga-
nizational aspect of workflow management. The
paper discusses the derivation of the requirements
that concepts of this aspect must meet and then
introduces PRA as the model whose concepts

30

Vol. 0 No. 4 Fall 1994 Digital Technical Journal



Policy Resolution in Workflow Management Systems

address the requirements. An analysis of the travel
expense reimbursement workflow illustrates some
of these requirements. Additional requirements are
also described to provide a more complete set.

Task Assignment in a Travel Expense
Reimbursement Workflow

The requirements that must be fulfilled by the con-
cepts of the organizational aspect were derived
from the travel expense reimbursement workflow
example, the author’s project work experiences,
and Marshak’s “Characteristics of a Workflow
System—Mind Your P’s and R’s."® The following
list describes task assignment rules for each step of
the travel expense reimbursement workflow:

= Fill. The fill step can be executed by anyone in
an organization who hasthe potential to travel.
This assignment rule enables an employee to fill
in a travel expense reimbursement form after
a business trip. (An employee who did not travel
can also fill in a form and claim expenses; how-
ever, the check and sign steps are intended to
detect such misbehavior and to reject the form.)
The user who fills in the form is referred to as
the applicant andis known at run time.

= Check. The check step must be executed by
a user who is able to play the role of secretary.
To be able to validate the contents of the form, a
user in this role is expected to know how a travel
expense reimbursement form is structured and
how to correctly fill in the form. This user is also
expected to know the destination and the travel
dates, and if the travel actual ly took place. Not all
secretaries in an enterprise have this knowledge,
but the secretary of the applicant’s manager can
be expected to know the information. This sec-
retary usually plans the trip and often the meet-
ings of the traveler. If the user who is able to play
the role of secretary determines that the con-
tents of the travel expense reimbursement form
are sound, the form is forwarded to the next
step; otherwise it is sent back to the applicant.

The overall task assignment rule is therefore:
Everyone whois able to play the role of secretary
and reports to the same manager as the applicant
is eligible to execute the check step. (Note that
the term manager means a user who is able to
play the role of manager.)

= Sign. The sign step has to be executed by a man-
ager of the applicant because the manager

normally has to approve spending by subordi-
nates. Usually, there is only one user to whom
the applicant reports and who is able to play the
role of manager. If there are two such users,
either can be responsible for signing the form
and only one has to sign it.

The overall task assignment rule is: Everyone
who is able to play the role of manager and
to whom the applicant reports is eligible to exe-
cute the sign step.

s Reimburse. The reimburse step must be exe-
cuted by a financial clerk who is responsible for
the group to which the applicant belongs.

The overall task assignment rule is: Everyone
who is able to play the role of financial clerk and
who is responsible for the applicant’s group is
eligible to execute the reimburse step.

The requirements thus far derived from the
example are

= Organization structure dependencies. To select
one user relative to another (e.g., a user playing
the role of secretary reporting to a user playing
the role of manager) requires describing the
users, the roles, and the dependencies (relation-
ships). This description is called an organization
structure. An organization structure contains all
organizational object types like “user,” “group,”
or “role,” and the relationships among them like
“reports to” or “supervises.” Given such a struc-
ture, users can be selected based on their rela-
tionships to others. Users can also be selected
based on attributes such as their absence status
(i.e., whether they are on vacation or on a busi-
ness trip) or their workload.

= Historical access. In some cases, the eligible user
for a step cannot be determined locally, and his-
torical information is required. For example,
determining the user who can play the role of
manager in one step might require knowing
which user started the workflow. Therefore, it
must be possible to query a log of the history of
a workflow to derive the information necessary
to make task assignments.

The following are additional requirements:

= Data dependency. In the travel expense reim-
bursement example used in this paper, the man-
ager to whom the sign step is assigned can sign
for any amount. In other cases, however, this

Digital Technical Journal Vol. 6 No. 4 Fall 1994




Workflow Models

signatory power may have limitations. For
instance, if the amount exceeds a certain value, a
vice president and not the manager of the appli-
cantmust sign the travel expense reimbursement
form. As this last example shows, task assignment
may depend on data in the workflow.

Delegation. A manager who is out of the office
may want to delegate his/her tasks to keep busi-
ness operations running smoothly. The appro-
priate task assignment rule would then have to
be extended to incorporate the delegation of
tasks. Depending on the status of the manager
(e.g., ona business trip or on vacation), the work
would be assigned to someone c¢lse (i.e.. dele-
gated). However, task assignment rules that
incorporate delegation can be complex. Con-
sider the situation in which a manager leaves
on a business trip after work has already been
assigned. In this situation (and also in the case
where a manager has an excessive amount of
work to accomplish), the manager must be able
to dynamically delegate some or all of the already
assigned tasks. Further consider that a manager
may want to delegate difterent types of tasks not
to the same user but to different users, depend-
ing on the type of task. To avoid leaking informa-
tion or making an inexpedient assignment, the
task assignment rule must make sure that the tar-
get users are eligible to receive the delegated
task assignment.

Separation of duty. Some scenarios require a sep-
aration of duty, i.e., two tasks must be per-
formed by different users. For example, in the
transfer of a large amount of money, two man-
agers must sign the transfer form to double-
check the transaction. Regarding the travel
expense reimbursement workflow, a user who
fills out the claim form should not also sign it.
Task assignment rules must ensure that there is
aseparation of duty.

Responsibility. As previously stated, a subwork-
flow can be either a step or a group of steps that
may be a reuse of building blocks for larger
workflows. A second use of a composite work-
flow is to explicitly express responsibility for
workflows. Sometimes an application domain
requires a user to take responsibility for a set of
tasks even thoughthe user does not actually ¢xe-
cute the tasks. For example. consider a work-
flow that implements the start of a new product
development. The investment plan depends on

the development plan, which is based ona mar-
ket analysis. A manager or a vice president is usu-
ally responsible for these three complex tasks
(market analysis, development plan, investment
plan) but not involved in the detailed work. In
a4 WEMS, this situation would be modeled as a
workflow called Product Development Start,
which contains the three complex tasks as sub-
workflows. The Product Development Start
workflow could then be assigned to a manager
or a vice president to model responsibility. The
assignment to this user means only that the user
must acknowledge the start of the assigned
workflow and therefore accept responsibility
for it. The assignment does not imply that the
user has to perform the detailed work. Thus,
4 WEMS must be able to assign not only steps to
users but also composite workflows.

= Early/late allocation. Often, the application
semantics clearly indicates the single user who
should execute a task. In such cases, the related
task assignment rule (e.g., the role of manager
of applicant) passes to this user at run time. In
other scenarios, however, successful execution
of a task requires some capability thatmore than
one user possesses. This capability is often
expressed through a role (e.g., financial clerk,
which is a role usually played by more than one
user in large enterprises). In the single-user case,
the task is assigned to that user regardless of the
user’s workload; this process is called early allo-
cation. The user must carry out the task unless it
is feasible to delegate it. In the multiple-user
case, the task appears on the worklist of all users
able to plav the role. One user starts the task; in
most cases, this user would not have the highest
workload. Therefore, the final allocation of the
task is made not by the WEMS but by the set of
eligible users themselves. This process is called
late allocation. In this case. if one user starts
work on a step, the other users are no longer
allowed to begin the task.>3? Subsequently, their
assignment must be revoked. “Implementing
Agent Coordination for Workflow Management
Systems Using Active Database Systems” describes
a4 general mechanism for handling the revoca-
tion of assignments.®”

The travel expense reimbursement workflow is
used in the following discussion about the limita-
tions of roles as a basis for task assignment rules.
These limitations influenced the major design
objectives of PRA, which are then discussed.

Vol. 6 No. i Lall 1994  Digital Technical Journal



Policy Resolution in Workflow Management Systeins

Roles As Task Assignment Rules
As stated earlier, roles have limited use as task
assignment rules. Applying the role concept to the
task assignment rules introduced above illustrates
the limitations. Certainly, the term role has many
definitions. In this paper, a role is an abstraction of
a set of users. The abstraction criteria are the set
of capabilities of a user. Whether or not a particular
user belongs to the set of users abstracted by a role
is defined by an explicit relationship between
a user and a role called the “plays” relationship. A
user who has a plays relationship with a role has the
capabilities defined by thatrole, i.e., the useris able
to play the role. For example, if both Ann and Joe
are users who are able to play the role of clerk, then
each one has the capabilities defined by this role
and each is capable of executing the task. A user
might have a wide range of capabilities and be able
to play several roles at the same time. For example,
a user might be able to play the role of employee
and the role of manager simultaneously. Although
this definition of role is not the only one, it is very
common and often applied 6145452626370

For each task assignment rule that was intro-
duced in the travel expense reimbursement exam-
ple, a discussion follows about the extent to which
roles support the requirements.

= Fill. The task assignment rule for the fill step is
the only rule of the example that can be modeled
completely with a role. Assume that every user is
able to play the role of employee. If the fill step
is assigned to the role of employee, every user
can execute the step, thus modeling exactly the
task assignment rule of the fill step.

= Check. Assigning the check step to the role of
secretary does not model the full semantics
of the desired task assignment rule. Such an
assignment models only the requirement that
auser has to be able to play the role of secretary
to carry out the step. The assignment does not
model the additional requirement that only
those users who report to the same manager as
the applicantare eligible.

= Sign. Analogous to the situation in the check
step, assigning the sign step to the role of man-
ager does not model that only a user to whom
the applicant reports is eligible but that any man-
ager is eligible.

= Reimburse. Assigning the reimburse step to the
role of financial clerk ensures only that the step

is assigned to a capable user. The assignment
does not fulfill the additional requirement that
this user must also be responsible for the group
to which the applicant belongs.

The discussion of the last three task assignment
rules demonstrates two tightly coupled limitations
of using roles to model requirements.

1. The concept of roles cannot express organiza-
tional dependencies, such as relationships
between users (e.g., “reports to” and “responsi-
ble for”). It only relates users to roles by a plays
relationship. Furthermore, roles do not provide
a means of introducing additional objects of
organization structures like “group” and “depart-
ment” The only two objects the concept of
roles provides are “role” and “user”

2. The concept of roles, therefore, does not pro-
vide a sufficiently sophisticated language to
express, for instance, that a user not only has
to play a certain role but also has to relate to
some other user in a particular way (e.g.,
“reports to” a particular user).

In addition, the other requirements like historical
access, delegation, and separation of duty cannot
be modeled at all using roles.

To overcome these limitations, PRA introduces
the concepts of organization schema and organiza-
tional policy and the Policy Definition Language.
A brief introduction follows. Details are presented
in the section Policy Resolution Architecture.

Organization Schema

One of the fundamental concepts of PRA is a freely
definable organization schema. An organization
schema contains all types of organizational objects
and relationships that are available for modeling
a particular organization. Figure 2a gives an exam-
ple of an organization schema. If a defined schema
is instantiated, it contains an organization struc-
ture. Since other objects besides roles are required
to model an organization, relationships other than
“plays” must be available. Some necessary addi-
tional relationships are “reports to,” which relates
two users, and “is responsible for” and “belongs to,”
which relate a user and a group. A freely definable
organization schema, such as the one provided by
PRA, allows designers to define roles as required
by the workflow application.

Such a freely definable organization schema may
seem to be a luxury, and a fixed organization

Digital Technical Journal Vol. 6 No. 4 Fall 1994

33




Workflow Models

ROLE

REPORTS_ _ RESPONSIBLE
TO L7 FOR_,H' ------ GROUP
/ ’ o
1 : 5%
1 : -
\ . -7 BELONGS
\\__,, TO
USER

(a) Sample Organization Schema

SALES MANUFACTURING

ENGINEERING ADMINISTRATION

,—«-"’— I

0 8

ﬁﬁﬁﬁﬁ

NINA SUSAN

MATT CHARLES MIKE

FINANCIAL

CLERK

VICE

PRESIDENT

(b) Sample Organization Structure

Figure 2

Sample Organization Schema and Organization Structure

Sfor the Travel Expense Reiinbursement Example

schema that provides the most relevant objects and

relatienships may seem sufficient. An analysis of

various organization structures in different enter-
prises clearly shows, however, that a single organi-
zation schema is not adequate for all situations
in which WFMSs can be deployed. An enterprise
that deploys a schema in which the semantics of
the modeled objects are fixed has to follow the

semantics completely. Consequently, such a
schema does not meet enterprise-specific needs.

Figure 2a shows a graphical representation of a
sample schema for the travel expense reimburse-
ment example. Although this schema may appear
general and an adequate alternative to an all-
embracing schema, it does not contain required
organizational objects such as task forces with

34

Vol. 6 No.4  Fall 1994 Digital Technical Journal



Policy Resolution in Workflow Management Systems

a limited life span, committees, and departments.
Also, this sample schema does not consider objects
or relationships necessary for modeling delegation
and relocation of employees. Figure 2b displays a
superficial organization structure, i.e., an instantia-
tion of the schema. Objects like user and role are
depicted as icons, and relationships are depicted as
arcs and solid, dashed, and dotted lines between
the icons.

Approaches that go beyond using roles as a basis
for task assignment commonly provide organiza-
tional objects in addition to roles and users, usually
group and/or department objects.268572 The litera-
ture contains evidence that the schemas and the
task assignment rules are fixed and have to be used
as they are. Additionally, these approaches do not
separate the workflow from the workflow specifi-
cation, which makes the reuse of a workflow in a
different organizational setting very difficult.

Organizational Policies As Task
Assignment Rules

A second fundamental PRA concept is that of an
organizational policy, which up to this point has
been called a task assignment rule. An organiza-
tional policy specifies all the eligible users for a
task by stating the criteria a user must meet. These
criteria can include a role or roles that a user has
to beable to play and relationships that a user has to
have with other users or groups.

Figure 3a shows an example of an informal orga-
nizational policy for the sign step. This organiza-
tional policy specifies that if the WFMS is to assign
the sign step, it will assign the step to the manager
of the applicant if the amount is less than $1,000.
Otherwise, it will assign the step to the vice presi-
dent responsible for the applicant’s group. A more
advanced rule would not fix the amount at $1,000
but would make this amount dependent on the
authorization level of the manager, as illustrated in
Figure 3b.

The Policy Definition Language is PRA's formal
language for specifying organizational policies.
Policies written in this language are precise and
executable by an execution engine called the pol-
icy resolution engine. Each time the WFMS is about
to assign a step, the system evaluates the corre-
sponding organizational policy to determine the
set of users who can execute the task.

Policy Resolution Architecture

WFMSs operate in global, open, and distributed
environments and in group, department, enter-
prise, and multiple-enterprise settings. The
enterprise-level deployment of workflows is pos-
sible only if the underlying concepts and sys-
tems are developed appropriately. PRA is therefore
based on several design principles that ensure a
general approach that supports enterprise-level
deployment.

(a)

STEP sign
CRITERIA IF amount < 1000

ENDIF

(b)

STEP sign

WORKFLOW TravelExpenseReimbursement

THEN manager of applicant
ELSE VP responsible for applicant’s group

WORKFLOW TravelExpenseReimbursement

CRITERIA IF amount < authorization level of applicant’s manager
THEN manager of applicant
ELSE VP responsible for applicant’s group
ENDIF

Figure 3 Informal Organizational Policies for the Sign Step of the
Travel Expense Reimbursement Workflow

Digital Technical Journal Vel.6 No. 4 Fall 1994




Workflow Models

Design Principles
The PRA design principles are reusability, security.
generality, dynamics, and distribution.

Reusability  In the travel expense reimbursement
example, the sign step was modeled to approve
travel expenses. Other workflows, like capital
equipment orders, can reuse the sign step for simi-
lar tasks, e.g., to approve an order. If an organiza-
tional policy were attached to the step type itself,
this assignment rule would serve to determine eligi-
ble users independent of the workflow in which
the step is reused. Viewed from an organizational
perspective, however, the reuse of steps in differ-
ent workflows requires several policies. For exam-
ple, the signing of a travel expense reimbursement
form is carried out by a manager of the applicant.
whereas the signing of a capital equipment order
for an amount that exceeds a certain value is carried
out by an appropriate vice president. Therefore,
the sign step in the context ofa travel expense reim-
bursement workflow has an organizational policy
that defines the manager of the applicant to be eligi-
ble, whereas the sign step in the context of the cap-
ital equipment order workflow has a different
policy, one that defines an appropriate vice presi-
dent as eligible for the task.

‘The observation that a policy fora step depends
not only on the step itself but also on the workflow
in which the step is reused led to the decision

(a)

STEP sign

ENDIF

(b)

STEP sign

ENDIF

CRITERIA IF amount < authorization level of applicant’s manager
THEN manager of applicant
ELSE VP responsible for applicant’s group

WORKFLOW TravelExpenseReimbursement | CapitalEquipmentOrder

CRITERIA IF amount < authorization level of applicant’s
manager depending on workflow type
THEN manager of applicant
ELSE VP responsible for applicant’s group

to make organizational policies objects in them-
selves, independent of a workflow specification.
Organizational policies name not only the step in
which they are used but also the surrounding work-
flow. The design of organizational policies for a
step depends on the context in which the step is to
be reused.

As mentioned earlier, making organizational poli-
cies independent objects allows different organi-
zation structures to reuse a workflow. To achieve
such reuse, each organizational setting has its own
set of organizational policies for the workflow to be
reused. These organizational policies are tailored
to the specific needs and circumstances of the orga-
nizational setting.

Organizational policies can themselves be reused.
Different steps may require the same set of eligible
users, and, therefore, one policy would be suffi-
cient for more than one kind of step (e.g., sign and
fill) or for more than one use of the same kind of
step. For example, a manager signs not only travel
expense forms but also capital equipment orders.
In both workflows, the organizational policy that
defines the manager of the applicant depends on
the authorization level. Both workflows can reuse
the sign step, as can be seen in the policy shown
in Figure 4a. If the authorization level depends on
the workflow, the policy changes to take into con-
sideration the specific kind of workflow, as shown
in Figure 4b.

WORKFLOW TravelExpenseReimbursement | CapitalEquipmentOrder

Figure 4 Informal Organizational Policies Showing Reuse of the Sign Step

36

Vol 6 No 4 Fall 1994 Digital Technical Journal



Policy Resolution in Workflow Mancagement Systems

Security Because changing an organizational pol-
icy may affect daily business operations, all users
should not be able to make changes at will. For
example, a user (applicant) should not be able to
approve his/her own travel request. Organizational
policies are therefore objects that must be properly
secured to prevent users from performing unau-
thorized tasks. The decision to design organiza-
tional policies as objects makes it easier to secure
the policies, because security mechanisms such as
access control lists (ACLs) can be applied directly
to objects.™

Designers considered and rejected the alter-
native approach of securing the workflow specifi-
cation and, consequently, the organizational
policies included in the specification. Workflow
types do have to be secured to prevent unautho-
rized changes; however, securing the workflow
specification would allow those who are eligible
to change the workflow type to also change the
associated organizational policies. Such an all-
encompassing security design inhibits the separa-
tion of duty between workflow designers who care
about how a business process is implemented by
a workflow and organization designers who care
about the organization structure and the user capa-
bilities and responsibilities. Protecting workflows
independently of organizational policies allows
users to modify a workflow without allowing them
to modify organizational policies and thus gain or
grant unauthorized eligibility. Similarly, organiza-
tion schemas and organization structures must be
secured independently to prevent users from
changing roles or relationships to gain or grant
unauthorized authority.

Generality Although several standard organiza-
tion structures prevail—strong hierarchical, matrix-
shaped, function-oriented, and networked—hybrid
organization structures exist, which contain a myr-
iad of anomalies and exceptions. Independent of
their organization structure, most enterprises have
business processes that are potential candidates for
a WEMS implementation. A WFMS that claims to be
able to implement business processes in all kinds of
enterprises must therefore be able to support all
possible organization structures. A fixed organiza-
tion schema is inadequate for such a universal
implementation capability. Consequently, PRA
supports the modeling of arbitrary organization
schemas and allows WFMSs to implement any orga-
nization that might exist.

Following this general approach, it is apparent
that a fixed set of assignment rules is also inade-
quate. The PRA design hence provides a language
that enables users to define task assignment rules
(organizational policies) as required by the work-
flows of an enterprise.

Dynamics Organizations change for many rea-
sons, e.g., employee numbers fluctuate, restructur-
ing takes place, groups join or split because of new
product strategies, etc. Business operations and
therefore workflows, however, must continue unin-
terrupted. To do so, the organization structure and
the organizational policies of a WFMS must change
to reflect the changes in the real organization. The
decision to separate workflows from organization
structures and organizational policies enables users
to change versions independently. For example, an
organizational policy can change while a workflow
that uses it is running. If the change takes place
before the WFMS assigns the step to a user, the
WFMS will use the new version of the organiza-
tional policy instead of the old version. Policy
changes result in neither the shutting down of the
WFMS nor the stopping and restarting (from the
beginning) of the workflow. This independence
allows WFMSs to deal with the dynamics of an orga-
nization and make correct task assignments while
changes are taking place.

Distribution Not only are enterprises becom-
ing more distributed, but they are also increasing
their worldwide operation. Nations have different
local laws and policies because they decide
autonomously on these issues. A local subsidiary
has to adhere to local law, even though it belongs
to a company that operates worldwide. For exam-
ple, US. companies have a position called vice
president. A US. company may have the rule
that contracts with external suppliers of manu-
facturing parts must be signed by the vice presi-
dent of manufacturing. If the U.S. company has a
German subsidiary, by German law, this subsidiary
is acompany in itself and must have a person called
Geschdifts ftibrer who is responsible for the opera-
tions of the company. If the subsidiary wants to
enter into a contract with a supplier, German law
requires the Geschdiftsfiihrer to sign the contract
even though the US. corporate organizational pol-
icy requires the vice president of manufacturing
to sign. Although the same type of workflow is
running in both countries, e.g., the contract with

Digital Techuical Journal Vol 6 No.4 Tall 1994

37




Workflow Models

external supplier workflow, the organizational
policies for the approval step differ. The US.
version of the organizational policy specifies the
vice president of manufacturing is the only eligible
user, and the German version specifies that the
Geschdiftsfiibrer is the only eligible user.

Domains were introduced to deal with the issue
of autonomous policies. A domain is an abstract
entity of management. Organizational policies as
well as workflows are related to domains. The pre-
vious example might involve two domains: “USA”
and “GERMANY.” (The domains could be further
subdivided.)

The principles just discussed guided the PRA
design. As mentioned in the previous section,
PRA defines the concepts of organization schema,
organizational policy, and a formal language to
model policies. In addition, PRA defines interfaces
for an execution engine and their use by a WFMS. A
detailed discussion of the PRA components follows.

Organization Schema and

Organization Structure

The PRA organization schema is a set of objects and
relationships that can be freely defined, thus
enabling users to model arbitrary organizations.
Each member of the set can be instantiated to popu-
late an organization schema, that is. to produce an
organization structure. PRA allows users to define
constraints on the organization structure to avoid
erroneous structures. For example, if an enterprise
has the policy that an employee must not report
to more than two people, PRA enables the user to
define a constraint that specifies that one person
can be related to only two others through a “reports
to” relationship. If a modeler adds 4 third reporting
line, the system detects the violated constraint.

Organizational Policy

An organizational policy specifies a set of eligible
users for a given workflow, which can be either ele-
mentary (a step) or composite. A set of users is not
stable and therefore fixed but specified through an
expression called an organizational expression. An
organizational expression specifies the selection of
users with particular properties from an organiza-
tion structure. For example, an expression might
enumerate users, select all users able to play a par-
ticular role, or select a user related to some other in
a specific way. Additionally, organizational expres-
sions can refer to the history of a workflow or to its

internal data, such as local variables, and thus be
dependent on the workflow state. Consequently,
the set of users for the same step in two different
instances of the same workflow might be differ-
ent. Consider, for example, the travel expense reim-
bursement workflow, with the user selection for
the sign step dependent on the authorization level.
In two instances of the workflow, the amounts to
be reimbursed might differ such that different peo-
ple, e.g., the manager and the vice president, must
execute the two sign steps.

To provide a general mechanism for determining
a set of eligible users for a workflow, PRA organiza-
tional policies accommodate operations in addi-
tion to executing a step or taking responsibility for
a composite workflow. Delegating a workflow and
undoing a workflow are two examples. To delegate
a workflow, an organizational policy has to ensure
that both the person who delegates the workflow
and the person to whom the workflow is assigned
are eligible users. The operation of undoing a work-
flow (i.e., to undo the results achieved thus far) and
starting again can result in wasted effort and unre-
coverable work. Therefore, a WEMS must carefully
choose eligible users for this operation.

To deal with various workflow operations, a PRA
organizational policy relates a workflow type and
one of its operations in a given domain te an organi-
zational expression. An organizational policy is
defined as the tuple <workflow type, operation,
domain. organizational expression>. For example,
the organizational policy for the fill step in
the travel expense reimbursement example is
<TravelExpenseReimbursement.Fill, execute, USA,
‘every user who plays the role of employee’>. Since
an applicant should be able to undo the step and
start again, the WFMS must also specity the organi-
zational policy <TravelExpenseReimbursement.Fill,
undo, USA, ‘the user who started fill'>. (The next
section describes PRA's formal language for specify-
ing organizational policies.)

When a WFMS determines that a workflow in
a particular domain is to be executed, it calls
the policy resolution engine, which looks for the
appropriate organizational policy and evaluates
its organizational expression. The engine returns
the results of the evaluation, i.e., the set of eligible
users, to the WEMS, which subsequently assigns the
workflow to those users. One organizational policy
can be reused for several workflow types, domains,
etc., by entering a set in the appropriate element
of the tuple. For example, if the organizational

38

Vol. 6 No.4  Fall 1994 Digital Technical Journal



Policy Resolution in Workflow Management Systems

policy for the fill step of the travel expense reim-
bursement workflow is the same in the U.JS.
as it is in Europe, the policy could be modeled as
<TravelExpenseReimbursement.Fill, execute, {USA,
EUROPE}, ‘every user who plays the role of
employee’>.

Policy Definition Language

From the organizational viewpoint, the following
elements are necessary to run a workflow: an organi-
zation schema together with its instantiation, the
organizational policies for this workflow, and the rel-
evant organizational expressions. To describe these
elements in a formal way, PRA defines a language
called the Policy Definition Language (PDL), which
consists of several parts. The first part enables the
definition of an organization schema and its popula-
tion. The second part is concerned with organiza-

tional expressions. Finally, the third part supports
the definition of organizational policies.

The followingfigures illustrate the PDL for a sam-
ple organization schema and organization struc-
ture, some organizational expressions, and some
organizational policies for the travel expense reim-
bursement workflow. Figure 5 shows the PDL for
the organization schema displayed in Figure 2a. The
PDL for the instantiation displayed in Figure 2b
appears in Figure 6.

The organization schema definition part of the
PDL looks like a data definition language (DDL) in a
relational database. Two differences exist, though:
(1) PDL distinguishes organizational object types
from organizational relationship types, and (2) PDL
allows complex data types (e.g., sets as attributes).
If a policy resolution engine is built on top of a rela-
tional database, a compiler or a translator within

ORGANIZATION_ TYPE Role
ATTRIBUTES name: String
authorization_level:
KEYS name;

ORGANIZATION TYPE Group
ATTRIBUTES name: String
KEYS name;

ORGANIZATION_TYPE User
ATTRIBUTES name: String
office_tel_#: String
e_mail: String
absence: {vacation,
KEYS name;

RELATIONSHIP_TYPE Reports_to
FROM User
TO User
ATTRIBUTES kind: {line,
RELATIONSHIP_TYPE Plays
FROM User
TO Role
ATTRIBUTES duration_from: date
duration_to: date

RELATIONSHIP_TYPE Responsible_for
FROM User
TO Group

RELATIONSHIP_TYPE Belongs_to

FROM User
TO Group
Note that,

functional, none}

for simplicity, we assume user names to be unique. In reality,
this is not the case and the modeling must deal with nonunique names.

set (task, amount);

ill, business, available}

Figure 5 Policy Definition Language for the Sample Organization Schema Shown in Figure 2a

Digital Technical Journal Vol. 6 No. 4 Fall 1994

39




Workflow Models

Role

Group “Sales”

User

Reports_to

Plays

Responsible_for

Belon

{}

{ (TravelExpenseReimbursement .Sign, 1000),
(CapitalEquipmentOrder.Sign, 5000))}

“FinancialClerk”, {)}

“Secretary”, {}

“Engineer”, {}

wp”, { (TravelExpenseReimbursement.Sign,

(CapitalEquipmentOrder.Sign, *)}

“Employee”,
“Manager”,

*),

“Manufacturing”
“Engineering”
“Administration”

available
available
available
business

available
available
available

w [1]
w [1]
“[1]

125-5589~,
125-5590”~,
125-5601",
125-5609~,
125-4499”,
125-4580",
125-0101~,

“al@center.com”,
“nina@center.com”,
“ken@center.com”,
“susan@center.com”,
“matt@center.com”,
“charles@center.com”,
“mike@center.com”,

“Al",
“Nina”,
“Ken”,
“Susan”, "“[1]
“Matt”,  “[1]
“Charles”,"“[1]
“Mike”, “[1]

line
line
line
line
line
line
none

V\Al "” ,
“Ken”,
“Nina”,
“Susan”,
“Charles”,
“Matt”,
“Mike”,

“Nina”,
“Nina”,
“Mike”,
“Matt”,
“Matt”,
“Mike”,

wir
.

“al”,
“al~,
“Nina”,
“Nina”,
“Ken”,
“Ken”,
“Susan”,
“Susan”,
“Matt”,
“Matt”,
“Charles”,
“Charles”,
“Mike”,
“Mike”,

“Employee”, 01-02-88, 0-0-0 (* open ended *)
“FinancialClerk”, 01-02-88, 0-0-0

“Employee”, 01-02-90,
“Manager”, 01-02-90,
“Employee”, 01-02-91,
“Secretary”, 01-02-91,
“Employee”, 01-02-92,
“Secretary”, 01-02-92,
“Employee”, 01-02-88,
“Manager”, 01-02-88,
“Employee”, 01-02-88,
“Engineer”, 01-02-88,
“Employee”, 01-02-90,
“WBY, 01-02-93,

0-0-
0-0-
0-0-
0-0-
0-0-
0-0-
0-0-
0-0-
0-0-
0-0-
0-0-

P OOOCOOOOCOOOOoO

[
N
]
w
1
Yol
~

“Sales”
“Manufacturing”
“Engineering”
“Sales”
“Manufacturing”
“Engineering”

\\Al ” ,
“al”,
“alw,
“Mike”,
“Mike”,
“Mike”,

“Administration”
“Engineering”
“Administration”
“Administration”
“Engineering”
“Engineering”

wer

“al”,
“Nina”,
“Ken”,
“Susan”,
“Matt”,
“Charles”,
“Mike”,

gs_to

Figure

6 Policy Definition Langucdage for the Sainple Organization
Structure (Instantiation) Shown in Figure 20

Vol. 6 No. 4 Tall 1991 Digital Technical Journal



Policy Resolution in Workflow Management Systems

the engine translates the organization schema defi-
nition part of PDL into a set of DDL statements.

Figure 7 lists the organizational expressions
required to formulate the organizational policies
for the travel expense reimbursement workflow.
Note that the organizational expression for employ-
ees selects all users who play the role of employee.
The RETURNS statement indicates the search for
users. The definition of the plays relationship type
in Figure S indicates that the employee is of the
type role. This information is sufficient to formu-
late a query to the underlying database system in an
implementation of a policy resolution engine.

The PDL for the organizational policies for the
travel expense reimbursement example appears in
Figure 8. The WFMS applies the first organizational
policy when assigning the fill step ina travel expense
reimbursement workflow. The policy is valid in
three domains, USA, EUROPE, and ASIA, for the exe-
cute operation, which has no parameters. The pol-
icy engine returns a set of all users who are able to
play the role of employee. The second policy listed
in Figure 8 returns a set of all users who play the

role of secretary and who report to the same user
as the applicant.

Independent from the travel expense reimburse-
ment example are the sample separation of duty
and delegation policies shown in Figures 9 and 10.
The organizational policy that specifies separation
of duty ensures that the user who signs the expense
form is different from the user who fills out the
form. The policy that models the delegation opera-
tion contains a parameter that specifies to which
person the sign step is to be delegated. Only the
manager of the applicant can call this operation
and then only if the parameter specifies either the
next higher manager or the responsible vice presi-
dent. The step can be delegated only to one of these
twO users.

Since the PDL is well defined, it can be used not
only by designers to model organizations and poli-
cies but also by developers of graphics-oriented
tools. Such tools could present graphical symbols to
users to be manipulated. When a user decides to
commit the changes, the tool generates a PDL script,
which is fed into the policy resolution engine.

RETURNS User: user
user plays employee

RETURNS User: user
user plays secretary

RETURNS User: user
a_user reports_to user

RETURNS User: user
user reports_to a_user

RETURNS Group: group
a_user belongs_to group

RETURNS User: user
user plays VP
INTERSECTION

RETURNS User

ORGANIZATIONAL_EXPRESSION employees()

ORGANIZATIONAL_EXPRESSION secretaries()

ORGANIZATIONAL_EXPRESSION manager_of (User: a_user)

ORGANIZATIONAL_EXPRESSION subordinates_of (User: a_user)

ORGANIZATIONAL_EXPRESSION group_of (User: a_user)

ORGANI ZATIONAL_EXPRESSION VP_responsible_for group_of (User: a_user)

user responsible_for group_of(a_user)

ORGANIZATIONAL_EXPRESSION executing agent (Workflow: a_workflow)

(* provided by the historical services of WFMS *)

Figure 7 Organizational Expressions for the Travel Expense Reimbursement Example

Digital Technical Journal Vol.6 No. 4  [all 199

41




Workflow Models

ORGANIZATIONAL_POLICY _‘
WORKFLOW TravelExpenseReimbursement .Fill
OPERATION Execute()

DOMAIN USA, EUROPE, ASIA
ORGANIZATIONAL_EXPRESSION employees()

ORGANIZATIONAL_ POLICY
WORKFLOW TravelExpenseReimbursement .Check
OPERATION Execute()
DOMAIN USA, EUROPE, ASIA
ORGANIZATIONAL_EXPRESSION
secretaries()
INTERSECTION
subordinates_of (
manager_of (
executing_agent (
TravelExpenseReimbursement .Fill)))

ORGANIZATIONAL_POLICY
WORKFLOW TravelExpenseReimbursement .Sign
OPERATION Execute()
DOMAIN USA, EUROPE, ASIA
ORGANIZATIONAL_EXPRESSION
manager_of (
executing_agent (
TravelExpenseReimbursement .Fill))

ORGANIZATIONAL_POLICY
WORKFLOW TravelExpenseReimbursement .Reimburse
OPERATION Execute()
DOMAIN USA, EUROPE, ASIA
ORGANIZATIONAL_EXPRESSION
financial_clerks()
INTERSECTION
User: user responsible_for
group_of (
executing_agent (
TravelExpenseReimbursement .Fill))

Figure 8 Organizational Policies for the Travel Expense Reimbursement Example

ORGANIZATIONAL_POLICY
WORKFLOW TravelExpenseReimbursement.Sign
OPERATION Execute()
DOMAIN USA, EUROPE, ASIA
ORGANIZATIONAL_EXPRESSION
manager_of (
executing agent (
TravelExpenseReimbursement .Fill))
DIFFERENCE
executing_agent (
TravelExpenseReimbursement .Fill)

Figure 9  Organizational Policy for the Separation of Duty

Approaches like the ones mentioned earlier in users for a workflow. None of these approaches
the paper provide a fixed set of types for modeling provides a language like PDL that can freely define
an organization or a fixed set of functions, such as the organizational aspect as the application seman-
*role player™ or “supervisor,” from which to select tics requires.

42 Vol. 6 No. 4 Fall 1994 Digital Technical Journal




Policy Resolution in Workflow Management Systems

ORGANIZATIONAL_POLICY
WORKFLOW TravelExpenseReimbursement .Sign
OPERATION Delegate (User: a_user)
DOMAIN USA, EUROPE, ASIA
ORGANIZATIONAL_EXPRESSION
IF a_user IN
(manager_of (
manager_of (

OR

THEN

executing_ agent (
TravelExpenseReimbursement .Fill)))

VP_responsible_for_group_of (
executing_agent (
TravelExpenseReimbursement .Fill)))

manager_of (
executing_agent (
TravelExpenseReimbursement .Fill))

Figure 10  @rganizational Policy for the Delegate @peration

Policy Resolution Engine

The policy resolution engine is a mechanism that
evaluates organizational policies for a WFMS. Serving
as a base service, the policy resolution engine
manages organizational policies and organizational
expressions, as well as the organization schema and
its population. The engine also provides interfaces
for the definition, modification, and evaluation
of these objects. The interfaces are distinguished
by the kind of service they provide. There are basi-
cally two kinds of interfaces: evaluation interfaces
and management interfaces.

Evaluation I[nterfaces Policy resolution engine
clients use evaluation interfaces to evaluate organi-
zational policies or organizational expressions
when necessary. The engine provides four evalua-
tion interfaces: two for organizational policies
(“resolve” and “conform to") and two for organi-
zational expressions (also “resolve” and “conform
to”). The resolve operation for organizational poli-
cies expects a workflow reference and one of its
operations as input values. This operation selects
an appropriate organizational policy, evaluates it,
and returns a set of users eligible to execute the
given task of the workflow. The conform to opera-
tion for organizational policies expects a workflow
reference, one of its operations, and a user as input
values. This operation resolves the appropriate
organizational policy for the workflow and checks
whether the user is contained in the set of results
for that organizational policy (i.e., if the user con-
forms to the policy). If the user is contained in the

set of results, the conform to operation returns the
value “true”; otherwise it returns the value “false.”
Policy resolution engine clients use this operation
to validate a request by a user to execute a certain
task of a workflow.

The resolve and conform to operations for orga-
nizational expressions work analogously. Instead
of a workflow reference, the operations expect
the name of an organizational expression as input.
The operations evaluate the named organizational
expression and return the set of results, which
is used if the resolve operation is called. The con-
form to operation returns true and false values as
described in the previous paragraph.

Management [nterfaces Management interfaces
are used to define, modify, or delete organizational
policies, organizational expressions, or organiza-
tion schemas and their populations. These inter-
faces look like the following operations that are
provided for organizational policies: create, delete,
modify, list, get. The create operation creates an
organizational policy; the delete operation deletes
a policy; the modify operation allows users to
change an organizational policy to adjust to new
requirements; the list operation returns the identi-
fiers of all policies; and the get operation returns
the complete description of a policy.

Designers do not call these management inter-
faces directly, since they communicate their
changes through user-friendly interfaces or tools.
These tools are either graphics oriented or language
oriented. In a graphics-oriented tool, a designer

Digital Techuical Journal Vol. 6 No. 4 Fall 1994

43




Workflow Models

manipulates icons and graphical symbols, which in
turn results in calls to the appropriate management
interfaces. Alternatively, a graphics tool can gener-
ate a PDL script according to the manipulations of a
user and submit this script to the policy resolution
engine. In this case, the engine interprets the sub-
mitted script and changes its internal state accord-
ingly. Language-oriented tools enable a designer to
directly express changes using PDL. These tools take
specifications and translate them into management
interface calls. Of course, they can also submit the
language specifications directly as PDL scripts to
the policy resolution engine, as described above.

Legacy Databases Many large enterprises have
developed databases that contain some or all of the
organizational data the policy resolution engine
needs to evaluate organizational policies. These
databases, called legacy databases, might be sclf-
implemented or based on standards efforts like
those related to providing directory services on
networks, i.e., X500.™ In general, organizations
must deal with one of the following scenarios:

= No legacy database exists. No existing database
has to be considered, and the policy resolution
engine can use its own database to build up orga-
nizational knowledge.

= Legacy databases contain all relevant data. To
use the policy resolution engine, the database
must provide a sufficiently expressive query
interface, on top of which queries issued from
the engine can be evaluated. The only additional
information that has to be stored is organiza-
tional policies and organizational expressions.
The organization has to choose whether to
extend the legacy databases or to use the
database within the policy resolution engine.

= A legacy database contains some relevant data.
In addition to organizational policies and orga-
nizational expressions, organizational objects
and relationships must be stored in either the
legacy database or the database of the policy res-
olution engine.

[f the relevant datais stored in several databases,
the querying interface must be built in such a way
that the policy resolution engine can issue the nec-
essary queries, which might span several databases.
Furthermore, semantics issues have to be dealt
with in heterogencous environments. ™

Architectural Considerations—Clients of a Policy
Resolution Engine  From an architectural point of
view, there are two possible ways to design a policy
resolution engine:

1. Incorporate the policy resolution engine into
a WEMS The engine would be a module. whose
operations are hidden by the exported inter-
faces of the WEMS. All calls to the engine opera-
tions would be made through the interface of
the WIEMS.

2. Make the policy resolution engine an indepen-
dent component. The engine would be a server
with a WEMS system as one of its clients. All
clients of the engine, including the WEMS, would
be able to directly access the exported opera-
tions of the engine.

PRA recommends the implementation of a policy
resolution engine as an independent base service.
which can be used by clients other than a WEMS
For example. an electronic mail system can be
a client of the policy resolution engine. Since elcc-
tronic mail is sent to users, rather than enumerate
the electronic mail addresses of the recipients by
hand, organizational expressions can provide the
addresses. For example, a manager could send an
electronic mail message to “all my subordinates™ or
an engineer could send an electronic mail message
to “all my colleagues who are engineers.” The sam-
ple operational expression shown in Figure 11
returns all electronic mail addresses of all subordi-
nates of a given user.

Another possible client is a transaction process-
ing monitor, which incorporates workflow man-
agement.”” Dayal et al. reference a service called
role resolution, which is an earlier development of
policy resolution.™

ORGANIZATIONAL_EXPRESSION subordinates{User: a_user)
RETURNS String: user.e_mail
user reports_to a_user

Figure 11

Organizational Expression for Electronic Mail

NEN
NEN

Vol. 6 No. 4 tall 1990 Digital Techuical Journal



Policy Resolution in Workflow Management Systems

Figure 12 shows a schematic representation of
a policy resolution engine with three clients—a
WEMS, a transaction processing monitor, and an
electronic mail system.

Summary

The sample workflow discussed in this paper, that
is, the travel expense reimbursement workflow,
illustrates that roles are sufficient as task assign-
ment rules for only the simplest scenarios. Since
workflow management systemsare deployed in sit-
uations where complex workflows are modeled
and executed, a more general and powerful model
called the Policy Resolution Architecture (PRA) was
developed. PRA provides the concept of an organi-
zational policy. An organizational policy is more
general than a role in that it relates a workflow type
to an organizational expression that determines the
set of eligible users for the workflow. Because they
state all criteria a user has to fulfill and do not limit
the selection based on their properties or interrela-
tionships, organizational policies specify all eligible
users. Since an organizational expression is related
to a workflow type by an organizational policy, task
assignment through organizational policiesisavery
general approach. Organizational policies are eval-
uated based on organization schema and their
populations (organization structures). Since PRA
provides a way to model arbitrary complex organi-
zation schemas, arbitrary organizations can be mod-
eled and subsequently populated. This generality,
in conjunction with organizational policies, pro-
vides a powerful and flexible approach to task
assignment in workflow management.

Acknowledgments

I want to thank the anonymous referees whose
remarks helped me a great deal in revising this

WORKFLOW
MANAGEMENT
SYSTEM

TRANSACTION
PROCESSING
MONITOR

ELECTRONIC
MAIL SYSTEM

A A

'y

POLICY
RESOLUTION
ENGINE

Figure 12 Client-server Structure
of a Policy Resolution Engine

paper. Susan Thomas assisted me by improving my
English and thus making the paper more readable.
Kathy Stetson was always very helpful in coordinat-
ing the writing and revision processes.

References

1. T May, “Know Your Work-Flow Tools,” BYTE
(July 1994).

2. T Kreifelts and P. Seuffert, “Addressing in
an Office Procedure System,” Message Hand-
ling Systems, State of the Art and Future
Directions. Proceedings IFIP WG 0.5 Working
Conference on Message Handling Systems,
R. Speth, ed. (Amsterdam: North-Holland,
1987).

3. S, Chang and W. Chan, “Transformation
and Verification of Office Procedures,” /JEEE
Transactions on Software Engineering, vol.
SE-11, no. 8 (August 1985).

4. W. Croftand L. Lefkowitz, “Task Support in an
Office System,” ACM Transactions on Office
Information Systems, vol. 2, no. 3 (July 1984).

5. C. Ellis and G. Nutt, “Office Information Sys-
tems and Computer Science,” Computing
Surveys, vol. 12, no. 1 (March 1980).

6. C. Ellis and M. Bernal, “Officetalk-D: An
Experimental Office Information System)
First SIGOA Conference on Office Informa-
tion Systems (1982).

7. C. Ellis, “Formal and Informal Models of
Office Activity,” Inforination Processing 83,
R Mason, ed. (Amsterdam: North-Holland,
1983).

8. B. Karbe and N. Ramsperger, “Concepts and
Implementation of Migrating Office Pro-
cesses,” Verteilte Kiinstliche Intelligenz und
Kooperatives Arbeiten: 4. Internationaler
GI-Kongrefs Wissensbasierte Systeme, Infor-
inatik Fachberichte 291, W. Brauer and
D. Hernandez, eds. (Munich: Springer-Verlag,

October 1991).

9. T Kreifelts, “Coordination of Distributed
Work: From Office Procedures to Custom-
izable  Activities,” Verteilte Kiinstliche
Intelligenz und Kooperatives Arbeiten: 4.
Internationaler GI-Kongrefs Wissensbasierte
Systeme, Informatik Fachberichte 291,
W. Brauer and D. Hernandez, eds. (Munich:
Springer-Verlag, October 1991).

Digital Technical Journal Vol 6 No. 4  Full 1994




Workflow Models

10.

11.

10.

17.

18.

19.

C. Cook, "Streamlining Office Procedures—
An Analysis Using the Information Control
Net Model,” AFIPS Conference Proceedings of
the 1980 National Computer Conference,
Anaheim, California (May 1980).

[. Ladd and D. Tsichritis, “An Office Form Flow
Model” AFIPS Conference Proceedings of the
1980 National Computer Conference, Ana-
heim, California (May 1980).

L. Baumann and R. Coop, “Automated Work-
flow Control: A Key to Office Productivity,”
AFIPS Conference Proceedings of the 1980
National Computer Conference, Anaheim,
California (May 1980).

M. Zisman, “Representation, Specification
and Automation of Office Procedures,” Ph.D.
dissertation (Philadelphia: University of Penn-
sylvania, Wharton School, 1977).

B. Curtis, M. Kellner, and J. Over, “Process
Modeling,” Communications of the ACM, vol.
35, no. 9 (September 1992).

W. Deiters and V. Gruhn, “The Funsoft Net
Approach to Software Process Management,”
International Journal of Software Engineer-
ing and Knowledge Engineering, vol. 4, no. 2
(1999).

W. Deiters, V. Gruhn, and H. Weber, “Software
Process Evolution in MELMAC," The I'mpact of
CASE  Technology on Software Processes
Series on Software Engineering and Knowl-
edge Engineering, vol. 3, D. Cooke, ed. (Singa-
pore: World Scientific Publishing, 1994).

D. Harel et al., “STATEMATE: A Working Envi-
ronment for the Development of Complex
Reactive Systems,” Proceedings of the Tenth
International Conference on So ftware Engi-
neering (1988).

W. Humphrey and M. Kellner, “Software Pro-
cess Modeling: Principles of Entity Process
Models,” Proceedings of the Eleventh [nter-
national Conference on Software Engineer-
ing (May 1989).

M. Jaccheri and R. Conradi, "Techniques for
Process Model Evolution in EPOS," IEEE Trans-
actions on So ftware Engineering (December
1993).

20.

o
o

[\
N

]
N

T. Katayama, “A Hierarchical and Functional
Software Process Description and Its Enac-
tion,” Proceedings of the Eleventh Internc-
tional Conference on Softwware Engineering
(May 1989).

P Mi and W. Scacchi, Operational Senmiantics
of Process Enactiment and Its Prototype
Implementations (Los Angeles: University
of Southern California, Computer Science
Department, April 1991).

P Mi and W. Scacchi, Modeling Articulation
Work in Software Enginecring Processes (Los
Angeles: University of Southern California,
Computer Science Department, April 1991).

P Mi and W. Scacchi, “A Knowledge-Based
Environment for Modeling and Simulating
Software Engineering Processes,” (ECE Trans-
actions on Knowledge and Data Lngineer-
ing, vol. 2, no. 3 (September 1990).

L. Osterweil, “Software Processes Are Soft-
ware Too,” Proceedings of the Ninth [nhternc-
tional Conference on Software Engineering
(March/April 1987).

L. Williams, “Software Process Modeling:

A Behavioral Approach,” Proceedings of the

Tenth International Conference on Softweare
3 ] C

Engineering (1988).

W. Royce, "Managing the Development of
Large Software Systems,” Proceedings of the
Ninth International Conference on Software
Engineering (March/April 1987).

B. Boehm, “A Spiral Model of Software Devel-
opment and Enhancement;” ACM  Software
Engineering Noles, vol. 11, no. 4 (August 1986).

C. Hegarty and L. Rowe, “Control Loops and
Dynamic Run Modifications Using the Berke-
ley Process-Flow Language,” Proceedings of
the Third International Conference on Data
and Knowledge Systems for Manufacturing
and Engineering, Lyons, France (1992).

S. Jablonski, “Data Flow Management in Dis-
tributed CIM Systems,” Proceedings of the
Third International Conference on Dala
and Knowledge Systerns for Mcnufacturing
and Engineering, Lyons, France (1992).

46

Vol. 6 No. 4 Fall 1994 Digital Technical Journal



Policy Resolution in Workflow Management Systems

30.

31.

32

33.

34.

35.

36.

37

38.

39.

40.

Proceedings of the Third International Con-
Sference on Data and Knowledge Systems for
Manufacturing and Engineering, Lyons,
France (1992).

H. Yoshikawa and J. Goossenaerts, eds., Infor-
mation Infrastructure Systems for Manufac-
turing (Amsterdam: North-Holland, 1993).

T. Hirder and A. Reuter, “Principles of
Transaction-oriented Database Recovery,”
ACM Computing Surveys, vol. 15, no. 4
(December 1983).

P Attie, M. Singh, A. Shet, and M. Rusinkiewicz,
“Specifying and Enforcing Intertask Depen-
dencies,” Proceedings of the Nineteenth
International Conference on Very Large
Databases (VIDB), Dublin, Ireland (1993).

Y. Breitbart, A. Deacon, H. Schek, and
G. Weikum, “Merging Application-centric
and Data-centric Approaches to Support
Transaction-oriented  Multi-system  Work-
flows,” SIGMOD Record, vol. 22, no. 3 (Sep-
tember 1993).

U. Dayal, M. Hsu, and R. Ladin, “A Transac-
tional Model for Long-Running Activities,’
Proceedings of the Seventeenth I[nterna-
tional Conference on Very Large Databases
(VLDB), Barcelona, Spain (September 1991).

H. Garcia-Molina and K. Salem, “Sagas,” Pro-
ceedings of the 1993 ACM SIGMOD Interna-
tional Conference on Management of Data
(1987).

Bulletin of the Technical Committee on Data
Engineering, vol. 16, no. 2 (June 1993).

S. Jablonski, “Transaction Support for Activity
Management,” Proceedings of the Workshop
on High Performance Transaction Processing
Systems (HPTS), Asilomar, California (1993).

H. Wichter and A Reuter, “The ConTract
Model.” in Transaction Models for Advanced
Database Applications, A. Elmagarmid, ed.
(San Mateo, California: Morgan Kaufmann,
1992).

T. Malone and K. Crowston, “The Interdisci-
plinary Study of Coordination,” ACM Comput-
ing Surveys, vol. 26, no. 1 (March 1994).

41.

42.

43,

44.

45.

40.

47.

48.

49.

50.

T. Malone, K. Crowston, J. Lee, and B. Pentland,
“Tools for Inventing Organizations: Toward a
Handbook of Organizational Processes,” CCS
WP #141, Sloan School WP #3562-93 (Cam-
bridge: Massachusetts Institute of Technology,
Center for Coordination Science, May 1993).

R. Burkhart, “Process-based Definition of
Enterprise Models,” Proceedings of the First
International Conference on Enterprise Inte-
gration Modeling Technology (ICEIMT),
Hilton Head, South Carolina (June 1992).

C. BuSiler, “Enterprise Process Modeling and
Enactment in GERAM,” Proceedings of the
International Conference on Automation,
Robotics and Comiputer Vision (ICARCV "94),
Singapore (November 1994).

M. Fox, “The TOVE Project: Towards a Com-
mon-Sense Model of the Enterprise,” Proceed-
ings of the First International Conference on
Enterprise Integration Modeling Technology
(ICEIMT), Hilton Head, South Carolina (June
1992).

Proceedings of the First International Con-
ference on Enterprise Integration Modeling
Technology (ICEIMT), Hilton Head, South Car-
olina (June 1992).

R. Katz, “Business/enterprise Modeling,” /1BM
Systems Journal, vol. 29, no. 4 (1990).

J. Sowa and J. Zachman, “Extending and For-
malizing the Framework for Information Sys-
tems Architecture,” IBM Systems Journal, vol.
31, no. 3 (1992).

E Vernadat, “Business Process and Enterprise
Activity Modelling: CIMOSA Contribution to
a General Enterprise Reference Architecture
and Methodology (GERAM),” Proceedings
of the International Conference on Automa-
tion, Robotics and Computer Vision (ICARCV
’94), Singapore (November 1994).

T. Williams, “Architectures for Integrating
Manufacturing Activities and Enterprises,”
Information Infrastructure Systems for Man-
ufacturing, H. Yoshikawa and J. Goossenaerts,
eds. (Amsterdam: North-Holland, 1993).

E Flores and T. Winograd, Understanding
Computers and Cognition (Reading, MA:
Addison-Wesley, 1987).

Digital Technical Journal

Vol. 6 Ne.4 Fall 1994




Workflow Models

J
~

S
o

i
N

56.

S7.

o0,

ol.

62.

R. Medina-Mores, R. Winograd, T. Flores, and
E Flores, "The Action Workflow Approach to
Workflow Management Technology,” Proceed-
ings of the ACM 1992 Conference on Coni-
puter Supported Cooperctive Work (CSCW),
Toronto, Ontario, Canada (November 1992).

T. Danielsen and U. Pankoke-Babatz, “The
Amigo Activity Model,” in Research into Net-
works and Distributed Applications, R Speth,
ed. (Munich: North-Holland, Elsevier Science
Publishers BV, 1988).

R. Fehling, K. Joerger, and D. Sagalowicz,
Knowledge Systemns for Process Mancageiment
(Palo Alto, CA: Teknowledge Inc., 1980).

J. Guyot, "A Process Model for Data Bases,” SIG-
MOD Recoird, vel. 17, no. 4 (December 1988).

C. Busiler and §. Jablonski, “An Approach to
Integrate Workflow Modeling and Organiza-
tion Modeling in an Enterprise,” Proceedings
of the Third IEEE International Workshop on
Enabling Technologies: Infrastructure for
Collaborative Enterprises (WLT ICE), Mor-
gantown, West Virginia (April 1994).

S. Jablonski, *"MOBILE: A Modular Workflow
Model and Architecture,” Proceedings of the
Fourth Working Conference on Dyncdinic
Modelling and In forimation Systeimns, Noord-
wijkerhout, Netherlands (Scptember 1994).

M. Hsu, A. Ghoneimy, and C. Kleissner, “An
Execution Model for an Activity Management
System,” Proceedings of the Workshop on High
Performance Transcaction Systeints (1991).

M. Hsu and M. Howard, “"Work-Flow and
Legacy Systems,” BYTE (July 1994).

IE Leymann and W. Altenhuber. *“Managing Busi-
ness Processes as an Information Resource;”
[BM Systeins Journal, vol. 33, no. 2 (1994).

Workflow  Manageiient

Business  @pportunity
December 1991).

Software:  The
(Ovum  Reports,

T. White and L. Fischer, “"New Tools for New
Times: The WoiRflow Paradigm (Alameda:
Future Strategies Inc., Book Division, 1994).

J. Bair. “Contrasting Workflow Models: Get-
ting to the Roots of Three Vendors,” Proceed-
ings of the Groupware '93 Conference, San
Jose, California (1993).

63.

65.

66.

67

68.

69.

70.

71.

72.

S. Sarin, K. Abbot, and D. McCarthy, “A Process
Model and System for Supporting Collabora-
tive Work,” Proceedings of the ACM SIGOIS
Conference on Organizational Computing
Systems (November 1991).

M. Shan, "Pegasus Architecture and Design
Principles,” Proceedings of the 1993 ACM SIG-
MOD International Conference on Manage-
ment of Data. Washington. D.C. (May 1993).

M. Ansari. L. Ness, M. Rusinkiewicz, and
A. Sheth, "Using Flexible Transactions to Sup-
port Multi-System Telecommunication Appli-
cations,” Proceedings of the Eighteenth
International Conference on Very Laige
Databases — (VIDB),  Vancouver,  British
Columbia, Canada (1992).

D. Evans, “Putting Elves to Work: Workflow
Technology in a Law Firm,” Proceedings of
the Groupware '93 Conference, San Jose,
California (1993).

D. Sng, A National Information Infrastructure
for the 2Ist Century Collaborative Enter-
prise.” Proceedings of the [nternational Con-
Sference on  Automation, Robotics ancd
Computer Vision (ICARCV °94), Singapore
(November 1994).

R. Marshak, “Characteristics of a Workflow
System—Mind Your P's and R’s,” Proceedings
of the Groupware 93 Conference, San Jose,
California (1993).

C. Bufiler and & Jablonski, “Implementing
Agent Coordination for Workflow Manage-
ment Systems Using Active Database Systems,”
Proceedings of the Fourth International
Worksbop on Research Issues in Data Engi-
neering.: Active Database Systenis (RIDE-ADS
’94), Houston, Texas (February 1994).

C. Ellis, S. Gibbs, and G. Rein, "Groupware—
Some Issues and Experiences,” Communica-
tions of the ACM, vol. 34, no. 1 (January 1991)

L Lawrence, "The Role of Roles,” Computers
and Security, vol. 12, no. 1 (1993).

L. Aiello, D. Nardi, and M. Panti, "Modeling
the Office Structure: A First Step towards the
Office Expert System.” Second ACM SIGOA
Conference on Office Information Systeins
(ACM SIGOA), vol. 5, nos. 1 and 2 (1984)

-L\l
o

Vol. 6 No. tull 1991 Digital Technical Journal



Policy Resolution in Workflow Mancagement Systems

73.

74.

76.

D. Denning, Cryptography and Data Security
(Reading, MA: Addison-Wesley, 1983).

Blue Book, Volume VIII, Fascicle VIIL.S, Data
Communication Networks: Directory, Rec-
ommendations X.500-X.521 (Study Group
vir), Comité Consultatif Internationale de
Telegraphique et Téléphonique.

S. Ceri and ). Widom, "Managing Semantic
Heterogeneity with Production Rules and Per-
sistent Queues,” Proceedings of the Nine-
teenth Conference on Very Large Databases
(VL.DOB), Dublin, Ireland (1993).

W. Kent, “Solving Domain Mismatch and
Schema Mismatch Problems with an Object-

77.

78.

Oriented Database Programming Language,”
Proceedings of the Seventeenth [nterna-
tional Conference on Very Large Databases
(VLDB), Barcelona, Spain (September 1991).

U. Dayal et al, “Third Generation TP Moni-
tors: A Database Challenge,” Proceedings of
the 1993 ACM SIGMOD International Confer-
ence on Management of Data, Washington,
D.C. (May 1993).

C. BuSller, "Capability Based Modeling,
Proceedings of the First International Con-
Sference on Enterprise Integration Modeling
Technology (ICEIMT), Hilton Head, South
Carolina (June 1992).

Digital Technical Journal

Vol 6 No.4 tall 1994




Stewart V. Hoover
Gary L. Kratkiewicz

The Design of DECmodel

Jfor Windows

The DECmoaodel for Windows software tool represents a significant advance in the
development of business process models. The DECmodel tool allows rapid devel-
opment of models and graphical representations of business processes by provid-
ing a laboratory environment for testing processes before propagating thein into
workflows. Such an approach can significantly reduce the risk associated with
large investinents in information technology. The DECmodel design incorpordates
knowledge-based, simulation, and graphical user interface techinology on a PC plat-
Sorm based on the Microsoft Windows operating systein. Unigue to the design is the
manner in which it separates the model of the business processes from the vieiws or

presentations of the inodel.

Many approaches have been developed for under-
standing, specifying, testing, and validating busi-
ness processes. In the late 1980s, Digital began to
reengineer some of its most complex and mission-
critical business processes. It soon became appar-
ent that modeling methodologies and tools were
needed to document, test, and validate the reengi-
necred processes before they were implemented,
as well as to provide a high-level specification for
their design and implementation. Consequently,
Digital decided to provide the business process
engincer with tools similar to those used by archi-
tects, mechanical designers, and computer and soft-
wiare engineers.

The first implementation of Digital's dynamic
business modeling technology, Symbolic Modeling,
was developed at Digital's Artificial Intelligence
Technology Center. The technology was embodied
in an application called Symmod. which in 1991 ran
only on a VAXstation system.! Symmod's knowledge
base and simulation engine were implemented
using the LISP programming language and the
Knowledge Craft product, a frame-bascd knowl-
edge representation package with modeling and
simulation features.? Because modcls were written
in LISP code, users had to be computer program-
mers as well as business consultants. The applica-
tion contained a graphical presentation builder and
viewer implemented in the C programming lan-
guage that used a relational database for presenta-
tion storage. The user had to start the knowledge

base component and the presentation component
as separate processes. A primitive mailbox system
was used for interprocess communication. To serve
the needs of nontechnical business users and to
achieve the necessary product quality, Symmod
needed to be completely redesigned and rebuilt.

In early 1991, the Modeling and Visualization
Group decided to build a product version of the
Symmod application, which would be released as
the DECmodel tool. The team drafted requirements,
specifications, and an architecture. The DECmodel
product was initially targeted at two platforms:
VAXstation  workstations running under the
DECwindows operating system and personal com-
puters (PCs) running under the Windows NT oper-
ating svstem. As users were interviewed and
requirements were accumulated, it became clear,
however. that by far the most important platform
for DECmodel users was the PC platform based
on the Windows operating svstem. Consequently,
the DECmodel development effort shifted to this
platform.

During 1991, the team enhanced the existing ver-
sion of Symmod so that it would meet user needs
until the release of the product version for PCs. The
most significant enhancement was the develop-
ment of an X Window System interface for building
and editing models. A second important enhance-
ment was a graphical shell program that trans-
parently started up the knowledge base and
presentation components for the user.

Vol. 6 No. 1 Iull 1994 Digital Technical Journal



The Design of DECmodel for Windows

In March 1992, Digital officially announced Phase
0 (the strategy and requirements determination
phase) of the DECmodel for Windows product.

Design and Development Goals

The DECmodel product design team had the follow-
ing goals:

= Provide a modeling tool that maps directly to
business processes

= Allow the modeling of both the static and the
dynamic characteristics of the business process

s Allow multiple views of the business process
model by separating the model from the presen-
tation of the business process during simulation

= Allow the user to interact with the tool and to
make decisions while the business process is
being simulated in order to let the user “test-
drive” the business process

= Provide a tool that is easy to use for business con-
sultants and that requires no programming

Note that the designers intentionally omitted the
following goals from the DECmodel design:

= Include resource constraints and queuing

= Allow the user to perform a statistical analysis
of the behavior of the business process

By far the most important goal for the DECmodel
design was the first one listed, an obvious mapping
between elements of the model and business pro-
cesses. The anticipated users of the DECmodel tool
were business analysts and consultants, not system
designers and software engineers. The designers
felt that adding levels of abstractions to a modeling
tool would make it less acceptable to the intended
users. A notable corollary to providing an obvious
mapping was modeling both the static and the
dynamic characteristics of the business process.

To engage the user in interacting with the model
and test-driving the business process required
a graphical interface that was separate from the
model. This “presentation” layer of the DECmodel
tool provides a layout and graphical appearance
that has the look and feel of the actual business pro-
cess, hiding the irrelevant technical details of the
model. The presentation enables the user to step
through the business, watching information and
material flows occur, and thus see where the
dependencies and concurrencies exist.

Designers believed that while simulating the
business, the user should be able to interact with
the model and thereby select and test more than
one scenario. The DECmodel tool was intended to
be a working scale model of the business, giving the
user a sense of how the business process would
work as different choices were made. The tool, by
design, neither predicts congestion and through-
put as a function of resource constraints nor pro-
vides information through statistical reports. The
DECmodel product was designed to provide a slow,
deliberate simulation of the business, not to com-
press weeks or years of activities into a few sec-
onds, leaving behind only a statistical summary.

The team'’s development goals for the DECmodel
productwere to

= Provide a tool that runs on a popular hardware
platform used by business consultants

= Achieve a short time-to-market, i.e., delivery
within one year

= Utilize a widely accepted software base technol-
ogy (for maintainability)

The DECmodel World View

Every modeling and simulation tool is based on
a predefined view of the world.? In the DECmodel
world view, a business process is composed of
aggregate centers capable of performing one or
more tasks or work steps. Each aggregation is
referred to as a process, and the tasks that can occur
in a processare called activities. Processes commu-
nicate through the exchange of messages, which
are sent by activities and received by another pro-
cess or other processes or by the same process that
contains the activity.

This view differs significantly from the one taken
by the typical workflow model in which work steps
are directly linked. In the DECmodel model, an
activity that sends a message to a process has no
knowledge of what work steps will occur next. For
example, when a customer (a process) sends an
order (a message) to a supplier (another process),
the customer does not know what work steps
(activities) the supplier will initiate when it
receives the order. It is invisible to the customer
whether or not the supplier decides to change its
work rules, for instance, by sending the order to a
second source because materials are not available.
Similarly, when the supplier’s activities have been
completed and the material that was ordered has

Digital Technical Journal Vol.6 No. 4 Fall 1994

51




Workflow Models

been sent to the customer, the supplier has neither
knowledge of nor dependencies on the work steps
that the customer undertakes next. In contrast, in
a workflow model each task is directly linked to
another task. Changes in the supplier’s way of doing
business force changes in how the customer’s tasks
connect to the supplier’s tasks. More succinctly, the
DECmodel tool encapsulates the behaviors and
work rules of each individual process in the larger
business process. This difference between the pro-
cess and workflow models is shown in Figure 1.

Processes, Activities, and Messages

As described above, the DECmodel model repre-
sents a business process as a collection of smaller
encapsulated processes. The behavior of each pro-
cess is defined by the activities that it contains. The
DECmodel tool provides three general types of
activities: generating activities, processing activi-
ties, and terminating activities. Generating and ter-
minating activities represent the boundaries of the
model; processing activities represent the work
stepsin the business process.

An activity is characterized by (1) a receive rule,
which defines the messages that the activity neecls
for initiation, (2) a duration, and (3) a send rule,
which defines the messages that the activity sends
out at the end of its duration. Generating activities
have only send rules, and terminating activities
have only receive rules.

PROCESS A PROCESS B

e

() Process Model

(b)) Workflow Model

The Process Mocdel versus
the Work flow Model

Figure 1

Activities can send messages to processes only.
The receiving process makes the message known to
every activity that uses the message in its receive
rule. Messages are universal to the model, and the
same message type can be sent by activities in dif-
ferent processes.

Processes can have state knowledge (attributes)
that can be assigned values as a side effect of an
activity being completed. The activity can use
a process attribute value to decide what messages
to send out and where to send them. "That is, pro-
cesses have a state that can be altered to change the
behavior of the model.

Like processes, messages can contain infor-
mation, which is stored in their attributes. When
a process receives a message and passes it on to
an activity, information in the message can be used
in both the receive rule and the send rule of the
activity. Additionally, the information in a received
message can be copied into the attributes of
any message that an activity sends. In this way, the
DECmodel tool supports information propagation.

The DECmodel representation of business bor-
rows heavily from both the stochastic-timed Petri
net (STPN) model and the object paradigm found in
object-oriented design.3¢

The Stochastic-timed Petri Net Model versus the
DECmodel Model An STPN model represents a
system as a collection of places, transitions, arcs,
and tokens. Places contain tokens and act as inputs
to transitions. A transition results in the movement
of a token to another place if an arc exists between
the transition and the place. Before a transition can
occur, a token must be present at each place that is
connected to the transition by an arc. Associated
with each transition is an exponentially distributed
random variable that expresses the delay between
the enabling of the transition and the firing of the
transition.

The DECmodel model welds the STPN place, tran-
sition, and arc elements into a single object called
an activity. The analogous elements of the STPN and
DECmodel models are

STPN DECmodel

Place Activity receive rule
Transition  Activity duration
Token Message

Arc Activity send rule
o Process

N
N~

Vol. 6 No. b Tall 1991 Digital Technical Journal



The Design of DECmodel for Windouws

The DECmodel model goes beyond the STPN
model by

1. Adding the process object between the activity
send rules (arcs) and the activity receive rules
(places). Each process can have multiple activity
send rules. As the process object receives mes-
sages (tokens), it dispatches them to the appro-
priate activity receive rule (place).

2. Allowing more than one type of message (token)
to exist.

3. Storing information in both the processes and
the messages (tokens).

S

Using AND, OR, and message-matching receive
rules in the activity receive rules (places).

5. Not restricting durations to being exponentially
distributed random variables.

Like an STPN model, a DECmodel model does not
explicitly have resources but can represent the
availability of a resource by sending a message to a
process when the resource is available.

Figure 2 shows the workflow system from
Figure 1 as both an STPN model and a DECmodel
model with the process receiving messages from
the activities.

The DECinodel Model and Object-oriented Design
The elements of object-oriented design that the
DECmodel model fully draws upon are encapsula-
tion of information and the message-method para-
digm. Information is encapsulated within DECmodel

ACTIVITY 1 ACTIVITY 2 ACTIVITY 3 ACTIVITY 4

LA

O PLACE

— TRANSITION

J ARC

TOKEN

(a) Stochastic-tined Petri Net Model of a Four-activity Workflow

PROCESS A

ACTIVITY 1 ACTIVITY 3

KEY:
> PROCESS
(O acTviTy .

— ACTIVITY RECEIVE RULE

PROCESS B

ACTIVITY 2 ACTIVITY 4

’
JACTIVITY SEND RULE
MESSAGE

(b) A DECinodel Model of a Four-activity Workflow with a Process
Dispatching Messages between Activities

Figure 2

The Stochastic-timed Petri Net Model versus the DECmocdel Process-activity Model

Digital Technical Journal Vol .6 No. 4 Fall 1994

53




Workflow Models

objects and is not available globally. However, an
important difference exists between DECmodel sys-
tems and object-oriented systems. In DECmodel
systems, a number of messages may by required to
trigger a behavior; whereas, in classical object-
oriented systems, each message triggers a method.

The DECmodel tool supports polymorphism, in
that the same message can be sent to different pro-
cesses, which can result in different behaviors.
Developers investigated going beyond standard
polymorphism by using one message to trigger dif-
ferent activities within the same process. The
approach considered was to use process “filters” to
examine the information in a message and then
decide which activity or activities in the process
should receive it. This feature was not completely
developed because of time constraints and a less-
than-clear mapping between the concept and the
actual practices in most business. Further, using
activity send rules that utilize the information con-
tained in messages can provide a similar capability.

The DECmodel tool does not support inheri-
tance, but the underlying technology of the prod-
uct does support this feature. As in the case of
nonstandard polymorphism, time-to-market pres-
sures and the lack of clear evidence that the feature
would be used in business processes drove the
decision not to include inheritance support. Also,
the DECmodel product does not currently support
class types beyond the built-in classes of the pro-
cess and the three activity types.

Process Hierarchies

To address the goal of having a strong mapping
between the model and real business processes, the
DECmodel model supports processes within pro-
cesses. Processes can receive messages in two ways:
hierarchical routing and peer-to-peer routing.

[n a business process, a message sent to a high-
level process should travel through the process hier-
archy to the activity that is to act upon the message.
For example, an activity in the sales process should
be able to send a message to the manufacturing pro-
cess and not be concerned that manufacturing con-
tains several subprocesses. The knowledge of how
to relay a message should be in the receiving pro-
cess, not the sending process.

In business, however, much communication
occurs on a peer-to-peer basis, with information
seldom routed up and down the organization hier-
archy. For example, the results of a marketing
research activity go directly to the manufacturing

planning function without traveling down through
the various levels of the manufacturing organiza-
tion. In a PECmodel model, as in most businesscs,
when an activity is completed, a message can be
sent directly to any process in the business.

The DECmodel design feature that allows pro-
cesses to receive messages and then pass them on to
subprocesses and activities can result in multiple
message receipts for a single send operation. That
is, one activity can send a single message that is
received by every activity in the model that includes
the message in its receive rule. Modeling experts dis-
agree about how well this phenomenon maps to
real business processes. The DECmodel user can
avoid this effect, if desired, by using uniquely named
messages in the send rules of activities.

The Presentation

The first DECmodel design goal was supported by the
modeling paradigm of processes, activities, and mes-
sages. The presentation aspect of the DECmodel tool
supports the goals of a strong separation between
the model and the graphical representation of the
business process and the need to support user inter-
action and decisions during model simulation.

The presentation of the model is based on views
that contain networked nodes. Each node in a view
can represent zero or more processes in the model,
however, no process can be represented by more
than one node in a single view. This mapping
between the processes in the model and the nodes
in a view allows the user to develop and animate
multiple views of the model simultaneously. For
example, one view may show the model at its low-
est level of detail, with each process in the model
mapped to a single node. Another view may show
a higher level of mapping, with multiple processes
mapped to the same node. A third view may map
processes based on attributes such as geographic
location, the organizational chart, or technology.
The construction of the views is left to the creativ-
ity of the analyst building the model.

During model simulation, the DECmodel tool
uses animation to show the movement of messages
from one process to another. The user can also
view the messages and their attributes.

To accommodate user interaction, the DECmodel
tool provides a menu send rule in the definition of
an activity. If an activity uses the menu send rule,
just before the activity fires, a menu appears that
allows the user to make a choice that determines
what messages are to be sent by the activity and

I
=N

Vol. 6 No <0 lall 1994 Digital Technical Journal



The Design of DECmodel for Windows

which processes are to receive them. The user is
unaware of the actual send rule; the choice made
forces one of a set of send rules to be selected. The
use of menus, animation of messages moving
between processes, and user-controlled stepping
through the simulation gives the user the feeling of
test-driving the business process.

Architecture and Development Process

The overall DECmodel architecture, shown in Figure
3, contains two layers. The inner layer of the architec-
ture is the internal engine, which provides the means
for representing, storing, and executing (simulating)
models. The internal engine is designed using ROCK,
a frame-based, object-oriented knowledge repre-
sentation system, and AMP, a modeling and simula-
tion frame-class library implemented in ROCK.” The
outer layer of the architecture is the user interface,
which provides the means for all user interaction
with the DECmodel model and has two major com-
ponents: the model builder and the presentation

MODEL
BUILDER

PRESENTATION
BUILDER

API
GENERIC USER \‘JINTERFACE CLASSES

MICROSOFT | FOUNDATION CLASSES

USER | INTERFACE

SCRIPT ENGINE

SIMULATION
il KNOWLEDGE BASE
ANALYSIS
| AMP
] ROCK

INTERNAL ENGINE

DECMODEL APPLICATION

| |
| |
| |
| |
| |
| |
| |
| |
| |
| : |
| e }
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

T o R ——

g S
Y

| DECMODEL I

| EEPEgRT MODELING LANGUAGE | !

| FILES |

|

PERSISTENT STORAGE

Figure 3 DECmodel Architectusre

builder. The user interface is designed as a set of
classes specialized from the Microsoft Foundation
Classes. Interaction between the two layers is
achieved with an internal application programming
interface (API).

This architecture was chosen for both technical
and pragmatic organizational reasons. The parti-
tioning into two layers allowed the internal engine
to be built using state-of-the-art knowledge repre-
sentation technology and the user interface to be
built using state-of-the-art graphical user interface
technology. The disadvantages in this separation
were the necessity of designing an internal APland
the need to duplicate some data (nominally stored
in the knowledge base) in the user interface.

The partitioning mapped well to the human
resources available in the DECmodel team. The
DECmodel engineers had strong skills in developing
LISP, knowledge-based, and X Window System appli-
cations but little experience in developing C++,
ROCK, or Microsoft Windows applications. With the
architectural separation, one team was able to
focus on the internal engine using C++ and ROCK
and, therefore, did not have to learn much about
Windows programming. The other team wasable to
focus on the user interface using C++ and Windows
programming tools and did not have to learn any-
thing about ROCK. The engineering team felt that
the efficient use of human resources in the develop-
ment process overcame the technical disadvan-
tages of the approach.

DECmodel development proceeded with the two
teams. Since the bulk of their development work
was completed first, the members of the knowl-
edge base team also worked on the user interface
team toward the end of the development process.

Design and Implementation

This section describes the design of the two
DECmodel layers: the internal engine and the user
interface.

Internal Engine

The internal engine represents models of dynamic
business processes in a knowledge base and exe-
cutes these models using discrete event simulation.
This layer provides a set of services for interacting
with the knowledge base. These services are
accessed through the DECmodel tool’s internal API.
The internal engine contains the DECmodel knowl-
edge base, simulation engine, and means of persis-
tent storage. Using the DECmodel methodology to

Digital Technical Journal Vol .6 No. 4 Fall 1994




Workflow Models

represent and execute business process models,
the internal engine

= Represents the structure, attributes, and behavior
descriptions of the business processes in a knowl-
edge base. (This representation is the model.)

= Represents the structure, attributes, and behav-
ior descriptions of the animated visualization
of the model in a knowledge base. (This repre-
sentation is the presentation.)

= Represents the connections between the model
and the presentation in a knowledge base.
(This representation is the model-presentation
mapping.)

= Represents the dynamic behavior of the business
processes by allowing for discrete event simula-
tion of the knowledge base.

Knowledge Base  The DECmodel knowledge base
contains the frame-based, object-oriented rep-
resentation of the model, the presentation, and
the connections between them. It also main-
tains the model relations, attributes, and methods.
The knowledge base contains both classes and
instances. The classes specify DECmodel objects;
sets of instances make up specific models and pre-
sentations. In addition to containing all the infor-
mation about model and presentation behavior and
structure, the knowledge base contains all the
graphical information used by the model builder
and the presentation builder. This information is
updated in real time.

Knowledge — Representation — Technology  The
DECmodel knowledge base and simulation engine
are implemented in ROCK, a frame-based, object-
oriented knowledge representation system written
in the C++ programming language. ROCK imple-
ments the IMKA knowledge representation technol-
ogy and is used as a set of APL functions in a C++
programming environment.

ROCK provides useful teatures such as frames,
multiple inheritance of data and methods, user-
defined relationships, and contexts. The basic unit
of knowledge in ROCK is a frame, which represents
an object or a concept. A frame is a collection of
slots that contain the attribute, relationship, and
procedural information about the object or the con-
cept. Attribute slots store values, relation slots
store user-defined links between frames. and mes-
sage slots store methods (functions) that are

executed when the frame receives the approp-
riate message from the application program. Class
frames represent object types or categories.
Instance frames represent particular members of
a class. ROCK requires frame classes to be organized
in a class hierarchy. Attribute slots and message
slots can inherit values and methods from classes at
a higher Jevel in the hierarchy. This mechanism can
be used to define default values for frame classces.
Both frame classes and frame instances are objects,
and both can be dynamically created, operated on,
and deleted during run time. With respect to the
C++ language, all frames appear to have the same
data type. Slots are objects, whose behavior is
defined independent of the frames.

Portions of the knowledge base are built using
AMP, a modeling and simulation frame-class library
implemented in ROCK. AMP contains objects for
representing process models that contain entity
flow, for constructing and running discrete-event
simulations, and for gencrating, collecting, and
reducing statistical data.

The DECmodel frame classes are subclasses of
ROCK and AMP classes and contain relations,
attributes, and methods that describe the content
and behavior of DECmodel objects. Some DECmodel
frame classes are abstract classes used only as
a basis for more specific subclasses; others are used
for instantiation of DECmodel objects. The
DECmodel tool contains three types of frame
classes: model objects, presentation objects, and
project objects. A specitic DECmodel project is rep-
resented within the knowledge basc uas a set of
model. presentation, and project instances. These
instances are created in the knowledge base by
loading a DECmode]l modeling language (DML file
or through interaction with the model builder or
the presentation builder.

Peysistent Storage The DML is a subset of the
ROCK frame definition language and is used by
the knowledge base for persistent storage.
A DECmodel project is stored as ASCII text in three
files that contain the model, presentation, and map-
ping objects. The language employs ROCK syntax
but uses only the frame classes and slots defined in
the DECmodel knowledge base.

The DECmodel tool utilizes the ROCK frame defi-
nition interpreter as the DML interpreter. Since the
ROCK interpreter was not intended to be used for
persistent storage, the DECmodel developers made
several minor modifications to obtain the desired

56

Vol 6 No. i Lall 1991 Digital Techuical Journal



The Design of DECmiodel for Windows

error handling capabilities. The DECmodel tool
contains its own DML code generator.

Simulation Engine The simulation engine exe-
cutes a discrete event simulation of the model in
the knowledge base. This simulation can be per-
formed either interactively or in a batch mode. The
simulation engine was designed to be so robust
that « model can be simulated at any stage of its
development, regardless of inconsistencies or
undefined elements.

The simulation engine interacts with the presen-
tation builder to control simulation, animation, and
graphics. The user controls simulation through
the presentation builder. The presentation builder
calls simulation engine API functions to perform
the requested actions, such as starting, step-
ping through, pausing, ending, and reinitializing
the simulation.

Script Engine and Compiler Scripts provide
a means of specifying user-defined actions to cus-
tomize model animation and to perform spe-
cial presentation actions during simulation. The
DECmodel tool contains a language for defining
scripts, a script compiler, and a script engine for
executing the scripts. Although the DECmodel team
wanted to avoid requiring any programming in the
tool, developers decided that a script language was
the only way to implement these features in the
available time frame.
The script language contains functions for

= Annotating, hiding, showing, flashing, moving,
highlighting, and scaling presentation icons

= Playing sounds and sound loops
= Animating connections between nodes

= Showing, hiding, and clearing certain kinds of
windows

= Starting other applications

= Temporarily stopping execution

= Loadinga new project

= Starting and pausing the simulation
= Displaying files

= Displaying a list of DECmodel development team
members

Analysis and Reporting Services The knowledge
base contains services that allow the user to ana-
lyze models and presentations in the knowledge
base and to generate reports.

The consistency advisor checks models, presenta-
tions, and mappings for inconsistencies and poten-
tial problems at any point in the model development
process. This check is analogous to the syntax check
performed by a compiler. The consistency advisor
check is the primary model-building debugging aid
for users. Inconsistencies in the model do not pre-
vent amodel from being simulated.

The model description report lists the descrip-
tion, messages sent, and messagesreceived for each
activity and process. The model table report con-
tains the basic model information in a table format
for easy access by another application, database, or
spreadsheet. The simulation summary reportcon-
tains information on simulation performance.

Design and Implementation Decisions The inter-
nal engine for the first DECmodel product release,
DECmodel for Windows version 1.0, was imple-
mented as a Windows dynamic link library (DLL)
using the Windows version of ROCK version 1.0, the
Windows version of AMP version 1.0, and Microsoft
C/C++ version 70. For DECmodel for Windows
version 1.1, developers ported the internal engine
to Microsoft Visual C++ version 1.0.

Several options existed for implementing the
DECmodel knowledge base. The knowledge base of
the Symmod application, the precursor to the
DECmoclel product, was implemented in a LISP envi-
ronment. The DECmodel engineering team wanted
to move to a more standard programming environ-
ment and, therefore, focused on C++ and C++-based
tools. However, a straight C++ implementation
would have required the reimplementation of
knowledge representation, simulation, and model-
ing technology available in other tools.

Another modeling and simulation technology,
the Modeling and Simulation System (MSS), had
been developed for Digital’s Artificial Intelligence
Technology Center by the Carnegie Group, Inc.
(CG1) 8 This graphical tool was designed at a lower
level than Symmod. It used a modeling simulation
language and was developed to implement the next
version of Symmod. However, the MSS modeling
paradigm was not compatible with that of the
DECmodel tool.

IMKA had also been recently developed by
CGJ, funded by a consortium of companies, as a

Digital Technical Journal Vol. 6 No. 4  Fall 1994

57




Workflow Models

replacement for the Knowledge Craft product
IMKA's implementation, ROCK, lacked some of the
class libraries included in Knowledge Craft for sim-
ulation and process modeling but ran significantly
faster than Knowledge Craft. The engineering team
decided to use ROCK to implement the knowledge
base because of its knowledge representation
power and its C++ compatibility. Digital contracted
with CGI to port the class libraries to ROCK. The
team, therefore, had a head start in designing and
implementing the internal engine. The portability
of ROCK was also an advantage; switching to the
Windows platform from the DECwindows platform
caused no disruption in development.

The original intent of the engineering team was
to implement the DECmodel tool as a single exe-
cutable file. The knowledge base contains much
global data, however, and restrictions on the
number of data segments required developers to
implement the internal engine as a DLL. This encap-
sulation of the internal engine allows it to be used
in other applications and enables easy porting to
other platforms. The DECmodel team developed
a set of internal API functions and structures to
allow interactions between the DLL-based internal
engine and the executable-based user interfuce.

The Symmod application had a modeling
language based on LISP for persistent storage of
models and used a relational database tor persistent
storage of presentations. Consideration was given
to developing a modeling language specific to
the DECmodel tool. Instead, the engineering team
decided to use the ROCK frame definition lan-
guage, since it was already completely defined and
debugged and had an interpreter. The team used
this language for persistent storage of both models
and presentations to al low easy sharing of projects
between users and to simplify debugging by users
and DECmodel developers.

The knowledge base team was responsible for
implementing the internal AP! between the user
interface and the knowledge base. This interface was
specified in detail early in the project. The team kept
the specification up-to-date throughout the project.
It prepared 19 revisions and produced a final docu-
ment of more than 200 pages. This specification kept
interface problems to a minimum., thus defusing
a potential source of major technical problems.

The team specified the objects in great detail
early in the project. It also held several internal
and external design reviews. These measures
reduced the number of potential design problems

and thus vielded a higher-quality product and
a faster implementation.

User Interface
The user interface provides the means for all user
interaction with the DECmodel tool. It has two
major components: the model builder and the pre-
sentation builder.

The user interface is designed as a set of classes
specialized from the Microsoft Foundation Classes.
Most of these special DECmodel user interface
classes correspond to frame classes in the knowl-
edge base: the remainder are necessary for imple-
menting the user interface. The three main types of
user interface classes—windows, graphic objects,
and dialog boxes—are used by both the model
builder and the presentation builder.

Window Classes  The user interface contains sev-
eral types of window classes: graphics windows,
text windows. and a frame window.

The graphics window classes are all derived from
the generic DECmodel graphics window  class.
Graphics windows contain graphic objects, such as
boxes or lines. Users act upon these windows
through menu commands or through the Windows
messages generated by the mouse and mouse but-
tons. The graphics windows are the model window,
the view windows, and the palettes. Menu com-
mands specific to cach graphics window are han-
dled by message handlers within the window class.

The text window classes are derived from the
generic DECmodel text window class. Text win-
dows are generally read-only and display various
tvpes of textual information, such as descriptions,
the text of files. and clock information. As in the
case of graphics windows, menu commands spe-
cific to each text window are handled by message
handlers within the window class.

The one frame window class, i.e., the top win-
dow class, is derived from the CMDIFrameWnd
Microsoft Foundation Class and serves as the frame
window for the application. The menu commands
not specific to a particular window are handled by
default message handlers within this window.

Graphics Classes
graphic objects to build models and presentations.

Graphics window classes usc¢

These classes implement the processes, activities,
nodes. connections, and annotations displaved in
the Model Editing Window and in the views.

58

Vol. 6 No.+  tall 1991 Bigital Technical Journal



The Design of DECmodel for Windows

Dialog Box Classes The DECmodel tool contains
a large number of dialog boxes derived from the
CModalDialog Microsoft Foundation Class. The tool
uses these dialog boxes to define the information
and relationships contained in the DECmodel
objects.

Menus The DECmodel tool uses a set of menus
individualized to match the capabilities of the
window currently in use. When a user starts the
DECmodel application, the tool presents a reduced
menu that allows the user to start a new project
or to load an existing one. Once a project is in
memory, the menu changes as the user switches
between the Model Editing Window, the views, and
the other windows. Menu commands activate mes-
sage handler functions within the window classes.

Appearance of the User Interface  Figure 4 shows
asmall but typical DECmodel model. The figure dis-
plays each process and its member activities. Note
that each of the three activity types is denoted by
a different icon. Lines indicate the potential flow
of messages. Figure 5 shows the DECmodel presen-
tation for the model that appears in Figure 4. The
presentation contains both a view and the support-
ing windows, e.g., the simulation clock and the
description windows.

Design and Implementation Decisions The team
implemented the user interface for DECmodel for
Windows version 1.0 using Microsoft C/C++ ver-
sion 70 and Microsoft Foundation Classes version
1.0. For DECmodel for Windows version 1.1, devel-
opers ported the user interface to Microsoft Visual

—
Patient > B
, - o Make Diagnosis

|
7

Visit Doctor

Prepare fo; Hospital

Begin Treatment

Home Treatment )
Contact Hospital

Notify Patient

. ——
Pay Bill Hospital
— ."';- y
Hospital Admissions P
o )
=TT

Schedule Room -
A Hospital Records

a J
Admit Patient ) |
V Locate or Create Records

Notify Billing

oo

-~ Doctor
[ Schedule Lab Tests
O 'Evaluate

u Evaluate
Arrange Discharge

===~ |
Insurance Carrier

y
a

Confirm Coverage

4
=
o

Lab Tests
Symptoms
——
. Patient Billing
3 \
e ) |
Laboratory

Set ué Billing
Y

a Contact Insurer
Perform Lab Tests m

Close billing
Yy

Bill Patient

Figure 4 Typical DECmodel Model

Digital Technical Journal Vol 6 No.4 Fall 1994

59




Workflow Models

File

Edit

Dl=lula) @l BE EEFE] GE

Presentation Simulate Options

DECmodel : CH14-EX

Window Help

BcaR] eleleielz]

~1~Y=] Laboratory Services [»{~
4
@ $0.00
= W '
€0
Patientis Not Well  Doftor  Insurance Company =| Physician Services [r]s
$ 100.00
E o s —{=] Lengthof Stay [~]~
: 1. Days
Admissions Lab
. Il: =| Room Charges |v]=
s 4 $1000.00
Records W Billing
+
- L [» [
a Description |zis1=] Trace =lay=] Time [+
_________________ 24 Message sent by : Hospital Admissions |2 100.00 Hours
INOTE: Use of MENU Send to determine] message name : Record Request r
[ whether patient needs hospitalization. ] received by : Hospital Records
3 ¥
1 el d >

Figuire 5

C++ version 1.0 and Microsoft Foundation Classes
version 1.5.

As stated at the beginning ol the paper, the
DECmodel product was initially targeted at both
VAXstation workstations running under the
DECwindows operating system and PCs running
under the Windows NT operating system. Conse-
quently, when developers decided to focus solely
on the PC platform running under the standard
Windows operating system, the user interface
development effort was disrupted. Engineers had
done a significant amount of design work toward
achieving a DECwindows implementation.

The DECmodel engineering team considered
other class libraries and user interface implementa-
tion packages (such as XVT), but most were deti-
cient in Windows features or in the look and feel.
Since the Windows operating system was the only
platform for the foreseeable future, the engineering
team felt that using Microsoft Foundation Classes
was the best choice. However. they made this deci-
sion after they had performed a significant amount
of development work with one of the tools. Much
of the work had to be redone. which contributed to
the schedule delay.

Iypical DECmiodel Presenteation (for the Model Showin in Figure 4)

During the design and development of the
DECmodel product, the team debated how graphical
to make the uscrinterface, thatis, to what extent dia-
log boxes should be used. Although the goal was to
make the user interface as graphical as possible, the
tight schedule forced the team to postpone plans for
graphical editors in favor of dialog boxes, which
were faster to implement. For example. the team had
initially planned to implement an Activity Editing
Window and had partially developed it. This window
was to provide a complete view of an activity and
allow graphical editing of its information. Schedule
constraints required the team to abandon this plan
and to develop a set of dialog boxes that were not as
easy to use but were faster to implement.

The user interface design was not specified or
committed to storyboards in any detail at the begin-
ning of the project, partially to save time after
the disruptions in the development work. This deci-
sion Jed to morc fost time later in the project,
though, because user interface features were
designed quickly and sometimes incompatibly, and
consequently required reworking. In addition, the
resulting user interface was not as easy to use das it
could have been if better planned.

60

Vol O No. @ lall 199F  Digital Technical Journal



The Design of DECmodel for Windowws

External review of the user interface design was
not performed until late in the project. The review
yielded some ideas that would have resulted in
a more usable product; however, there was not
enough time left in the schedule to implement them.

Delivery

A discussion of the released product and the team’s
success in achieving the design and development
goals follows.

Release

Digital released version 1.0 of the DECmodel for
Windows product in November 1993 and version
11 in April 1994. Version 1.0 contained the basic
capabilities for building models and presentations
of business processes; version 1.1 added a set of
minor enhancements and bug fixes. Because of its
small, focused market and the large cost savings
that can result fromits use, the DECmodel tool was
introduced as a low-volume, high-priced product.
The product includes the software, example mod-
els, documentation, and a week of hands-on train-
ing. The DECmodel tool is an integral part of Digital
Consulting’s reengineering practice.

Success of Design Choices

The separation of the model from the presentation
is the single most important element of the prod-
uct’s success. This feature, along with animation,
distinguishes the DECmodel tool from its competi-
tion. Some users have even requested the capability
of building the presentation first and then gener-
ating the corresponding model. Such capability
would require considerable investigation.

The paradigm of process-activity encapsulation
is difficult for some users to become accustomed
to. Many still prefer to build a model using a work-
flow approach, which the DECmodel tool can sup-
port, rather than by defining each process and its
behavior independently.

The exclusion of resource constraints has limited
the application of the DECmodel tool to system
design, thus preventing its use in modeling sys-
tem performance. Although the capability was orig-
inally not a product goal, many users would like
a future version of the DECmodel product to pro-
vide this feature.

To perform special user-defined actions during
the simulation, a script language was included in
the DECmodel tool. This design feature violated the

goal of requiring no programming, and some users
found scripts hard to use. However, many users have
requested that a future DECmodel version provide
more script functions and extend the script language
to be more like the BASIC programming language.
Also, to enhance the use of the DECmodel tool in
the design of business processes, a future version
should support classes to make generic processes
available as building blocks of a business process.

Development Successes and Lessons

The DECmodel engineering team successfully
released a software product on the Microsoft
Windows platform, the one most popular with busi-
ness consultants. This achievement was significant
because the group of engineers began the project
with no PC experience. The team did not meet its
one-year delivery goal, and the goal slipped to one
and one-half years after the Phase O announcement.
However, this time frame was still extremely short
for developing a complex PC product from scratch.

The product retained the existing Symbolic
Modeling paradigm (i.e., a process-activity-message
model and a strong distinction between model and
presentation) and exhibited performance an order
of magnitude better than that of the Symmod prod-
uct, which it replaced. The product utilized the
most widely accepted modern programming tech-
nology base (C/C++), which simplified maintain-
ability and reduced the need for special training
of maintainers.

Splitting the development team into two sub-
teams worked well. It distributed the amount of
learning about new technologies required by the
engineers and minimized the overall development
time. Key factors in the success of this approach
were the detailed object and internal AP specifica-
tions that were kept up-to-date throughout devel-
opment and thus provided a reliable interface
between the two parts of the project.

After the product was released, the DECmodel
team identified certain factors that could have
made the team and the product even more success-
ful. The entire engineering team would have bene-
fited from Windows training at the onset of the
project. The Windows design of the user interface
should have been specified and committed to story-
board in much greater detail much earlier in the
project. In addition, the team should have arranged
for Windows experts to review the design. These
changes in the engineering process would have
helped the team produce a cleaner, easier-to-use,

Digital Technical Journal Vol .6 No 4  Fall 1994

61




Workflow Models

more maintainable user interface and would have
reduced implementation time. The project sched-
ule should have been created using a bottom-up
ratherthan a top-down process. The initial one-year
schedule was based on an unrealistic, management-
imposed release date. When the engineering team
revised the schedule and calculated a release date
based on their detailed estimates, the team met the
new date.

Summanry

Modeling and simulating business processes is an
important part of business process reengineering.
Digital developed the DECmodel tool specifically
for this type of simulation. Although it borrows
many ideas from other disciplines of modeling and
simulation, as well as from object-oriented design,
the DECmodel productis unique in the way it mod-
els business processes, separates the model from
the presentation, and represents the model as
frames in a knowledge base.

Acknowledgments

The authors would like to acknowledge the follow-
ing people who also contributed to the design of
the DECmodel product: Ty Chaney, David Choi,

Laurel Drummond, Peter Floss, Amal Kassatly, Mike
Kiskiel, Kip Landingham, and Janet Rothstein.

References

1. Symmod Users Guide (Maynard, MA: Digital
Equipment Corporation, 1990).

2. Knowledge Craft Reference Manual (Pittsburgh,
PA: Carnegie Group, 1988).

3. S. Hoover and R. Perry, Simulation, A Problem
Solving Approach (Reading, MA: Addison-
Wesley, 1989).

'SN

. DECmodel for Windows: Modeler’s Guide (May-
nard, MA: Digital Equipment Corporation, 1994).

. J. Peterson, Petri Net Theory and Modeling of
Systems (Englewood Cliffs, NJ: Prentice-Hall,
1981).

N

6. G. Booch, Object Oriented Design (Redwood
City, CA: Benjamin-Cummings, 1991).

7. ROCK Software Functional Specification, Ver-
sion 2.0 (Pittsburgh, PA: Carnegie Group, 1991).

8. Modeling and Simulation System User’s Guide
(Pittsburgh, PA: Carnegie Group, 1991).

62

Vol. 6 No.4  Fall 1994 Digital Technical Journal



Dennis G. Giokas
Jobn C. Rokicki

The Design of ManageWORKS:
A User Interface Framework

The ManageWORKS Workgroup Administrator for Windows software product is
Digital’s integration platform for system and network management of heteroge-
neous local area networks. The Manage WORKS product enables multiple, heteroge-
neous network operating system and network interconnect device management
Sfrom a single PC running under the Microsoft Windows operating system. The
ManageWORKS software is a user interface framework; that is, ihe services it pro-
vides are primarily targeted at the integration of the user interface elements of
management applications. [t manifests the organizational, navigational, and func-
tional elements of system and network management in a coberent whole. Viewers,
such as the bierarchical outline viewer and the topological relationships viewer
that are components of the ManageWORKS software, provide the organizational
and navigational elements of the system. Management applications developed by
Digital and by third parties through the ManageWORKS Software Developer's Kit
provide the functional elements to manage network entities. This paper discuisses
the user interface design that implements these three elements and the software sys-
ten design that supports the user interface framework.

The ManageWORKS Workgroup Administrator for
Windows software product is Digital's strategic
tool for providing system and network manage-
ment of heterogeneous local area networks (LANS).
It serves as Digital’s platform for the integration
of PC LAN management. From the perspective
of the end user, i.e., the LAN system administrator
and network manager, the ManageWORKS product
comprises a suite of modules that integrates
a diverse set of management activities into one
workspace. From the perspective of the developer
of system and network management applications,
the ManageWORKS product is an extensible and
flexible software framework for the rapid develop-
ment of integrated management modules, all of
which presents a consistent user interface.

The design of the management system was user
centric, i.e., usability was the top priority. Thus,
we began the design work without any precon-
ceived notions about the management software sys-
tem design. The design that emerged and that is
documented in this paper was driven solely by the
user interface paradigm developed and tested with
our customers.

This paper focuses on how the ManageWORKS
software presents and integrates its functionality
to the end user. Specifically, the paper presents
details of the user interface paradigm and discusses
the design rationale and the design methods
employed. The paper also discusses the design of
ManageWORKS software in support of the user
interface framework.

Driving Forces bebind the Design

The ManageWORKS software was first released
as a component of the PATHWORKS version 5.0
for DOS and Windows product. The foci for
that PATHWORKS release set the tone for the
ManageWORKS design. The PATHWORKS version 5.0
design objectives were to

1. Enhance the usability of the PATHWORKS prod-
uct. Since the PATHWORKS system was rooted in
a command line-based user interface, the goal
was to develop a graphical user interface for the
system that was based on the Microsoft Windows
operating system. Such a user interface would be
contemporary, easier to learn, and easier to use.

Digital Technical Journal Vol. 6 No. 4 Fall 1994




PC LAN and System Management Tools

2. Enhance the manageability of the PATHWORKS
product. The goal was to reduce the cost of own-
ership by improving the installation, configura-
tion, and administration of the system.

The ManageWORKS design team used two voice-
of-the-customer techniques to provide more depth
and detail for the two high-level product design
objectives. First, the team used Contextual Inquiry
to determine a customer profile and to develop
a clearer statement of the user’s work.! Then, the
team tested user interface prototypes with cus-
tomers by means of formal usability testing. From
15 to 20 customers and users parcticipated in each
of three rounds of usability testing.

Early in the investigation, Contextual Inquiry
revealed that the profile of the PATHWORKS system
administrator had changed drastically during the
five years since the PATHWORKS product was first
released. A typical system administrator in the era
of PATHWORKS version 1.0 had been a VAX/VMS sys-
tem manager who inherited the responsibility of
installing and managing a PC file and print-sharing
product. The interface into the system was a VT-class
terminal running command line-based utilities.
Today, a system administrator is usually a PC user
who is quite familiar with graphical user interfaces.
Such an administrator is more likely to be trained in
the installation, configuration, and management of
PCs and PC networking software than his/her pre-
decessors. This change in the profile encouraged
us to shift the PATHWORKS focus from using host-
based command line utilities to manage the system
to using client-based graphical utilities.

We also protiled the customer network configu-
ration. During the same five years, it changed from
avery simple and homogeneous environment with
just a few PATHWORKS servers to a medium-to-large
heterogeneous PC LAN. At present, configurations
comprise network operating systems that consist
of Novell NetWare, Microsoft LAN Manager, and
Apple AppleShare file and print services, as well
as other services that are emerging in the PC LAN
environment. The network operating systems are
deployed on their native platforms and by Digital
on the OpenvMS and DEC OSF/1 platforms. Each sys-
tem has its own tools to manage the clients and
the servers. Each has a different user interface that
results in a long learning curve and thus high train-
ing costs or low productivity for system administra-
tors. Customers reported that they desired tools
with a consistent user interface to manage this
diversity.

The team employed software usability testing
throughout the development life cycle. Two usabil-
ity tests were performed with early design proto-
types; the final test was performed with our first
pass at a detailed concept design. We performed
the usability testing with customers to test user
interface and functional element design concepts
that we developed as a result of the Contextual
Inquiry. The user thus served as a design partici-
pant. With each iteration of the formal testing, we
tested specific functional concepts in three key
areas: (1) mechanisms to navigate among the man-
aged entities, (2) mechanisms to organize these
entities, and (3) the functional capability inherent
in the management directives supported. (Note
that, in this paper, the servers, services, and
resources managed by means of the ManageWORKS
software are collectively referred to as managed
entities.) The major lessons that we learned from
this testing effort and then applied to the user inter-
face and software designs are as follows:

1. The ManageWORKS software had to provide
mechanisms to navigate among a diverse set of
managed entities on the LAN or in some user-
defined management domain. Users want to be
able to view and thus “discover” the entities that
are to be managed. The system had to present
the managed entities in graphical display formats
that were familiar ancl enticing to users. Users
welcome the ability to support different styles
of presentation. Finally, users need easy mecha-
nisms to navigate through the hierarchy of
an entity.

2. Navigation mechanisms, as just described, work
well for novice users but become tedious and
constraining for more experienced users, as we
could attest to after our experience with the pro-
totypes. The solution that we presented to users
allowed them to create custom views of their
managed entities, i.e., to organize their manage-
ment domains. This concept was well received
by users during usability testing.

3. The ManageWORKS product had to provide
mechanisms that consistently performed the
functions that were common among a diverse
set of management applications. The product
design presents users with an object-oriented
view of the managed environment. The building
block of this design is the object, an abstraction
of a manageable entity such as a server or a net-
work router. Each object is a member of a single

64

Vol. 6 No.4  [all 1994  Digital Technical Journal



The Design of ManageWORKS: A User [nterface Framework

object class that describes the set of object
instances within it. The ManageWORKS appli-
cation renders objects to the user as icons in a
viewer. For example, for a LAN that contains
three NetWare servers, the object class called
NetWare Servers would contain three objects,
cach of which represents one of the three indi-
vidual NetWare servers on the LAN. When users
focus on an object, the tool reveals which
actionsare valid in the object’s current context.
This approach differs from the traditional com-
mand line approach in which the user first
selects the utility (action) and then specifies
the objects upon which to act. Interestingly,
whereas novice users found this object-focused
concept easy to grasp, those who considered
themselves strong users of the traditional com-
mand line management utilities experienced dif-
ficulty in grasping the new concept.

4. The typical customer has a diverse and large
(200 to 1,000) number of entities to manage. To
address this need, the prototype testing pre-
sented users with the ability to manage more
than one entity at the same time and the ability
to manage many entities as one. Users liked
being able to view and modify the properties
of multiple entities at the same time as well as
being able to modify the same property across
asetof like entities.

5. In addition to providing a consistent user inter-
face, the ManageWORKS product should integrate
the management tools into one workspace. User
feedback led to the design of the user interface
framework as the delivery vehicle for a diverse
sct of management applications.

The Key Software Design Principles

At this point in the development cycle, the design
focus shifted from developing and testing user
interface and functionality concepts to designing
the ManageWORKS software itself. With what we
considered to be a good understanding of the user’'s
needs, we proceeded to design a software architec-
ture to support those requirements.

Prior architectures that were familiar to the
design team served as starting points for the design.
The following two examples represent sources of
design concepts that we employed and adapted to
suit our objectives. Each represents an opposing
end of the spectrum with respect to design objec-
tives and implementation.

The ManageWORKS team adopted the concept of
plug-in modules, a software design that is supported
by the Windows Dynamic Link Library (DLL) archi-
tecture.? The design is also in common use by many
Windows applications including the Windows
Control Panel, the utility that manages the local
desktop's configuration and user preferences.?

The next challenge was to decide how much
constraint to impose on the design of the
ManageWORKS' plug-in modules and how consis-
tentthe modules must be. Digital's extensible enter-
prise management director, the DECmcc product,
incorporated some excellent concepts.* In particu-
lar, our design was influenced by the way in which
DECmcc layered the management responsibility
into presentation modules, functional modules,
and access modules. Early in the design process, we
decided to separate the navigation and presenta-
tion of managed entities from the access and func-
tional management of the entities.

Another DECmcc concept, which is used, for
example, in the access module layer, was the pre-
sentation of a consistent view to the layers above.!
This concept, however, was not suitable for the
ManageWORKS design because it would have placed
constraints on the user interface design, in particu-
lar, on the presentation of the attributes of man-
aged entities. The design team was not willing to
compromise on this aspect of the design.

Thus, we decided on a ManageWORKS design that
can best be described as a user interface frame-
work. The initial release, which was a component
of PATHWORKS version 5.0 for DOS and Windows,
offered few services other than to tie together the
user interface elements required for system and
network management. The user interface services
needed were dictated by the five user interface
requirements previously described.

The ManageWORKS design incorporates two types
of plug-in modules: navigation modules, referred to
in the ManageWORKS product as Object Navigation
Modules (ONMs), and application modules, referred
to as Object Management Modules (OMMs). The
ManageWORKS framework controls the control
flow and messaging between the modules.

ONMs allow for any number ol navigation models
to be supported and used singly or simultaneously
by the user. Although, by design, ONMs possess no
knowledge of the managed entities or entity rela-
tionships they display, they do possess the ability
to display entities with the relationships inherent
in them. ONMs also provide the mechanisms for

Digital Techuical Journal Vol 6 No.-i  Fall 1991

65




PC LAN and System Management Tools

browsing and navigating through the management
hierarchy. In addition to navigation capabilities,
ONMSs provide the user interface for organizing enti-
ties into a user-defined management domain.

The OMMs are responsible for managing the enti-
ties. The OMM design has three key components.

1. OMMs provide the methods used to manage the
entities. These methods include the functions of
discover, create, view, modify, and delete. The
OMMs also have the option of presenting to the
user additional methods. That is, since each OMM
knows how to manage the entities for which it is
responsible, it knows which actions can be
applied to an entity based on the entity’s current
state and the user’s context.

2. OMMs provide access to the managed entities.
An OMM can use any interprocess communica-
tion mechanism to access or to manage an entity.
Examples include the task-to-task, remote pro-
cedure call, and object request broker mecha-
nisms. Since a PC LAN environment affords no
common way for a management director to com-
municate with all the types of devices present,
the design team decided to leave the choice of
access mechanism up to the OMM.

3. OMMs provide the user interfaces required for
managing the entities. This design component
allows developers to present an interface that
best suits the needs of the user and best maps
to the entity being managed. It also allows for
flexibility, evolution, and innovation in the user
interface of OMMs. The ManageWORKS design
team did not want to impose a user interface
style or present a user interface that was com-
promised by the diversity of applications that we
envisioned running within the context of the
framework, e.g., by being the least common
denominator. Even though one of the key prod-
uct design goals was a consistent user interface,
we felt that it was important to allow the OMMs
to control the user interfaces. First, we thought
the design benefits outweighed the risk of any
inconsistency. Second, we encouraged, but did
not enforce, consistency by means of 