PART I
PDP-15/10 SOFTWARE SYSTEM
INTRODUCTION

1.1 GENERAL

Software for the PDP-15/10 consists of the COMPACT and the BASIC I/O Monitor Software Systems, which are
designed to operate in a paper tape (or card) environment.

1.1.1 COMPACT System

COMPACT is a complete programming system for the PDP-15/10 and includes a symbolic assembler, text editor,
debugging routine, various utility routines, and a library of mathematical routines. With COMPACT software, the user
can prepare symbolic programs on-line using the Text Editor, assemble them using the CAP-15 Assembler, and
execute them under the control of the debugging routine (ODT). The utility and mathematical routines in the system
can be incorporated into user programs as required. With the addition of a DECtape transport and control unit, users
can use the FAST-15 System to store and retrieve frequently used system and user programs. In addition, users can
convert PDP-8 programs (PAL-D, PAL-III, or MACRO-8) to PDP-15 assembly language with the aid of STRAN.

1.1.2 Basic 1/0 Monitor System

The more sophisticated Basic I/O Monitor Software System, available to users with expanded PDP-15/10 Computers
(Refer to Table 1-1), is a complete system for the preparation, compilation, assembly, debugging, and operation of
relocatable programs.

Powerful system programs include FORTRAN IV, FOCAL, a sophisticated macro assembler (MACRO-15), an on-line
debugging system (DDT), an on-line editor (EDIT-15), and a peripheral interchange program (PIP). A versatile and
flexible input-output programming system (IOPS) frees the user from the need to create device handling subroutines
and from the concerns of device timing. The Basic I/O Monitor is upward compatible with the Advanced and
Background/Foreground Monitors of the PDP-15 series; thus, all programs prepared for the Basic I/O Monitor can be
run using the Advanced or Background/Foreground Monitors. In addition, users having PDP-8 programs (PAL-D,
PAL-III or MACRO-8) may convert them to PDP-15 assembly language with the aid of STRAN.

1-1(Part I)

1.1.3 Hardware Requirements

Minimum hardware configurations applicable to the COMPACT and Basic I/O Monitors are provided in Table 1-1.

1.2 COMPACT SYSTEM PROGRAMS

The COMPACT System consists of the programs described in the following paragraphs.

1.2.1 Assembler

The PDP-15/10 Assembler (CAP-15) is a two-pass assembler that requires less than 3K of core memory. It processes
source programs to produce an executable binary code. The Assembler makes machine language programming easier,
faster, and more efficient. It permits the programmer to use mnemonic symbols to represent instruction operation
codes, locations, and numeric data. The programmer can direct the Assembler’s processing by means of a powerful set
of pseudo operations. An output listing that shows the programmer’s source coding, as well as the binary object code
produced by the Assembler, can be obtained.

1.2.2 Text Editor

The Text Editor provides for the creation/modification of source programs and other ASCII text material. Commands
issued from the teletype direct the Editor to bring a group of lines from the input device to an internal buffer. The
user can then, by means of additional commands, examine, delete, and change the contents of the buffer, and insert
new text at any point in the buffer. When a block of lines has been edited, it is punched on the output device.

The Editor is most frequently used to modify PDP-15/10 source programs, but it can also be used to edit any

symbolic text. The Editor operates with either high-speed or low-speed paper tape devices, and occupies
approximately 2000, , locations of core memory. Any additional memory is used for buffers.

Table 1-1. PDP-15/10 Hardware Configurations

2 *
PDP-15/10 Hardware Basic 4K System Expanded 8K System
Configuration
ASR 33 ASR 33
: ASR 33 High-speed High-speed
Applicable ASR 33 igh-sp
Sottwaa DECtape Reader/punch Reader/punch
DECtape

COMPACT ‘/ ‘/ ‘/ ‘/
COMPACT _
FAST 15
BASIC 1/O
MONITOR

*Additional options include the CRO3B Card Reader, the 647D or 647F Line Printer, and the TU20, TU20A, TU30, and TU30A
Magnetic Tape Transports.

1-2(Part I)

1.2.3 Debugging Routine

Octal Debugging Technique (ODT) is a debugging aid that allows the user to conduct an interactive, on-line debugging
session using octal numbers and teletype commands. When errors are found, the programmer can correct them on-line
and execute the program immediately to test the correction. Thus, ODT can be used to compose a program on-line
and check it out as composition progresses. Manual operation of console controls is not required to operate ODT; all
functions are initiated by typing commands on the teletype.

1.2.4 Utility Routines

Utility routines in the COMPACT Software System include a FAST-15 system for DECtape handling, a hardware
readin mode (HRM) punch routine, paper-tape handling routines, teletype I/O routines, an octal dump routine, and a
memory scan routine. These routines are briefly described in the following paragraphs.

1.2.4.1 FAST-15 System — FAST-15 (Fast Acquisition of System Tape) is a loading system used to retrieve
frequently used programs from DECtape and to create system tapes. The main advantages of the system are speed and
ease of access. Equipment required for use of FAST-15 includes a Type TCO2 DECtape Control Unit and a Type
TUSS5 DECtape Transport.

The FAST-15 system tape, as distributed by Digital Equipment Corporation, contains commonly used system
programs such as the Symbolic Editor, the CAP-15 Assembler, and ODT. Since these programs can be called from
DECtape with only a small bootstrap, paper tape handling is eliminated. FAST-15 is not restricted to system
programs; it also can be employed very conveniently for frequently accessed user programs.

1.2.4.2 HRM Puncher — The Hardware Readin Mode (HRM) Puncher is a self-relocating, paper tape dump program.
It can be loaded by means of the PDP-15/10 Hardware Readin (HRI) facility into any block of core memory. When
loaded, the HRM Puncher relocates itself and punches out an area of memory, specified by the user, in the HRI
format.

1.2.4.3 Paper Tape Handling Routines — The paper tape handling routines include PTLIST, a paper tape list and
PTDUP, a paper tape duplicator. PTLIST can be used to read an ASCII coded paper tape from either the high-speed
or low-speed paper tape reader, and provide a character-by-character listing on the teletype. PTDUP can be used to
duplicate/verify ASCII or binary tapes using the high-speed paper tape reader and punch.

1.2.4.4 Teletype Input/Output Routines — The teletype input/output routines include the Teletype 1/O Conversion
(TICTOC) Package and the Decimal and Octal Print Package.

TICTOC is used to read 8-bit ASCII code from the teletype and pack it as a 6-bit trimmed ASCII code, and vice versa.
Routines in the package fall into three main categories: input, output, and formatting.

The decimal and octal print routines are subroutines that can be used to dump the accumulator in either
signed-decimal or octal format.

1.2.4.5 Octal Dump Routine — The octal dump routine allows the user to obtain hard copy or paper tape output
showing the contents of any register or set of registers that he specifies. The user specifies the registers that are to be
dumped via the teletype keyboard.

1-3(Part I)

1.2.4.6 SCAN Routine — SCAN is a small program used to scan areas of memory for a particular bit configuration.
The user specifies the start and stop address for the area to be scanned, the bit configuration to look for, and the bit
positions to be tested. When scanning the area, if a match is found, the address of the match and the matching word
are printed.

1.2.5 Mathematical Routines

The COMPACT Software System mathematical routines are grouped into four major packages: Integer Arithmetic,
Trigonometric Functions, Floating Point, and Floating Point 1/O. The Integer Arithmetic routines allow PDP-15/10
users, without the EAE option, to write programs using simulated multiply and divide instructions. The
Trigonometric Package provides the user with a large repertoire of trigonometric functions in both single- and
double-precision. The Floating Point Package allows the user with the capability of inputting and outputting decimal
data in floating point format. All floating point data transfers are handled through a software accumulator.

1.2.6 8TRAN

8TRAN is used to translate programs written in Pal III, Pal-D, or MACRO-8 assembly language to MACRO-15
assembly language for assembly and execution in the PDP-15 Basic Software environment. The translator produces a
straightforward translation that clearly indicates the parts of the translated program to be reviewed in light of the
PDP-15’s greater word length and more powerful instruction set. It does not simulate the PDP-8 or produce directly

executable code.

A full description is contained in PDP-15 8TRAN Manual (DEC-15-ENZA-D).

1.3 BASIC I/O0 MONITOR

The PDP-15/10 Basic I/O Monitor System simplifies the handling of input/output functions and facilitates the
creation, debugging, and use of PDP-15/10 programs. It allows overlapped input/output and computation, as well as
simultaneous operation of a number of asynchronous peripheral devices, while freeing the user from the need to
create device handling subroutines. The Monitor, operating in conjunction with the Input/Output Programming

System (IOPS), provides a complete interface between the user’s programs and the peripheral hardware.

The Monitor accepts I/O commands from the system or user programs and supervises their execution. By calling upon
the device manipulation routines of IOPS, it provides for simultaneous I/O and computation.

The Basic I/O Monitor contains:
a. Routines for its own initialization and control

b. Tables to allow communication between the Monitor, system programs, user programs, and the Input/Output
Program System

¢. The CAL Handler, which is used to dispatch to the appropriate Monitor and I/O subroutines
d. Device handlers for the teletype and clock.

The Monitor resides in lower core and occupies about 880, , locations.

1-4(Part 1)

1.3.1 Input/Output Programming System {IOPS)

The Input/Output Programming System (IOPS) consists of an I/O control routine and individual hardware device
handling subroutines that process file and data level commands to the devices. These handlers exist for all standard
PDP-15/10 peripherals (see Part II, Chapter 4).

The I/O control routine accepts user program commands and transfers control to the appropriate device handlers.
These device handlers are responsible for transferring data between the program and I/O devices, for initiating the
reading or writing of files, for the opening and closing of files, and for the performance of all other functions peculiar
to a given hardware device. They are also responsible for ignoring functions which they are incapable of handling (for

example, trying to rewind a card reader, or skipping files on a non-file-oriented device). All device handlers operate
either with or without the Automatic Priority Interrupt (API) option.

1.3.2 System Programs
The Basic I/O Monitor, in addition to the IOPS, is complemented by the following system programs:
a. FORTRAN IV Compiler, Object Time System, and Science Library
b. MACRO-15 Assembler
c. FOCAL
d. Dynamic Debugging Technique (DDT) Program
e. Text Editor Program (EDITOR)
f. Peripheral Interchange Program (PIP)
g. Linking Loader (LOADER)
h. 8TRAN, PDP-8 to PDP-15 Translator

i. Chain Builder Program (CHAIN)

[

j. Chain Execute Program (EXECUTE)

k. PUNCH-15
1.3.2.1 FORTRAN IV Compiler — The PDP-15 FORTRAN IV compiler is a two-pass system that accepts statements
written in the FORTRAN IV language and produces a relocatable object program capable of being loaded by the

Linking Loader. It is completely compatible with USA FORTRAN 1V, as defined in USA Standard X3.9-1966, with
the exception of the following features, which were modified to allow the compiler to operate in 8192 words of core

storage:
a. Complex arithmetic is not legal.

b. Adjustable array dimensions are not allowed at source level, but can be implemented by calling
dimension-adjustment subroutines.

1-5(Part I)

c. Blank Common is treated as Named Common except when object program is used in chaining.
d. The implied DO feature is not included for the DATA statement.

e. Maximum of 5 characters in Hollerith constants.

-

Specification statements must be strictly positioned and ordered.

The FORTRAN IV compiler operates with the PDP-15/10 program interrupt or API facilities enabled. It generates
programs that operate with the program interrupt or API enabled and can work in conjunction with assembly lan-
guage programs that recognize and service real-time devices. Subroutines written in either FORTRAN IV or MACRO-
15 assembly language can be loaded with and called by FORTRAN IV main programs. Comprehensive source lan-

guage diagnostics are produced during compilation, and a symbol table is generated for use in on-line debugging with
DDT.

The PDP-15 FORTRAN IV Compiler, Object Time System, and Science Library are described fully in the FORTRAN
IV Manual (DEC-15-KFZA-D).

1.3.2.2 FOCAL — The FOCAL (Formulating On-Line Calculations in Algebraic Language) compiler is an on-line
interactive (conversational) system for non-programmers which makes use of standard mathematical notation and
short imperative English command statements to solve user problems.

Arithmetic capabilities of FOCAL permit single commands to generate random numbers and to evaluate standard
functions including: square root, absolute value, sign, integer, and natural exponent of any number; sine, cosine,

arctangent, and Naperian log value.

With FOCAL, user defined mathematical operations are executed by a single command. In addition, specific
hardware, text format, and error codes can be defined to facilitate user needs.

The FOCAL compiler is described fully in the PDP-15 FOCAL Manual (DEC-15-KJZA-D).
1.3.2.3 MACRO-15 — The MACRO-15 Assembler provides PDP-15/10 users with highly sophisticated macro

generating and calling facilities within the context of a symbolic assembler. MACRO-15 is described in detail in the
MACRO-15 Assembler Manual (DEC-15-AMZA-D). Some of the prominent features of MACRO-15 include:

a. The ability to -
(1) define macros
(2) define macros within macros (nesting)
(3) re-define macros (in or out of macro definitions)
(4) call macros within macro definitions
(5) have macros call themselves (recursion)

b. Conditional assembly based on the computational results of symbols or expressions.

1-6(Part I)

o

. Repeat functions.

d. Boolean manipulation.

o

. Optional octal and symbolic listings.

f. Two forms of radix control (octal, decimal) and two text modes (ASCI and 6-bit trimmed ASCII).

g

. Global symbols for easy linking of separately assembled programs.

h. Choice of output format: relocatable, absolute binary (check summed); or full binary capable of being loaded
via the hardware READIN switch.

i. Ability to call input/output system macros that expand into IOPS calling sequences.

1.3.2.4 Dynamic Debugging Technique (DDT) Program — DDT provides on-line debugging facilities within the
PDP-15/10 Basic Software System, enabling the user to load and operate his program in a real-time environment while
maintaining strict control over the running of each section. DDT allows the operator to insert and delete breakpoints,
examine and change registers, patch programs, and search for specific constants or word formats.

The DDT-15 breakpoint feature allows for the insertion and simultaneous use of up to four breakpoints, any one (or
all) of which may be removed with a single keyboard command. The search facility allows the operator to specify a
search through any part or all of an object program with a printout of the locations of all registers that are equal (or
unequal) to a specified constant. This search feature also works for portions of words as modified by a mask. With
DDT-15, registers may be examined and modified in either instruction format or octal code, and addresses may be
specified in symbolic relative, octal relative, or octal absolute. Patches may be inserted in either source language or
octal.

DDT-15 is described more fully in the PDP-15 Utility Program Manual (DEC-15-YWZA-D).

1.3.2.5 Text Editor Program — The Text Editor of the PDP-15/10 Basic I/O Monitor provides the ability to read
alphanumeric text from an input device (paper tape reader), to examine and correct it, and to write it on an output
device. It can also be used to create new symbolic programs.

The Editor operates on lines of symbolic text delimited by carriage return (CR) or ALT MODE characters. These lines
can be read into a buffer, selectively examined, deleted or modified, and written out. New text may be substituted,
inserted, or appended.

For further details on the Text Editor, refer to the PDP-15 Utility Programs Manual (DEC-15-YWZA-D).

1.3.2.6 Peripheral Interchange Program (PIP) — The primary function of PIP is to facilitate the manipulation and
transfer of data files from any input device to any output device. It can be used to segment or combine files, perform
code conversions, and copy tapes.

Directions for the use of PIP-15 can be found in the PDP-15 Utility Programs Manual (DEC-15-YWZA-D).

1.3.2.7 Linking Loader — The Linking Loader loads any PDP-15, FORTRAN IV, or MACRO-15 object program
which exists in relocatable format (or absolute format if pseudo-ops .ABS and .FULL are not used). Its tasks include

1-7(Part 1)

loading and relocation of programs, loading of called subroutines, retrieval and loading of implied subroutines, and
building and relocation of the necessary symbol tables. Its operation is discussed in the PDP-15 Utility Program
Manual (DEC-15-YWZA-D).

1.3.2.8 8TRAN — 8TRAN is used to translate programs written in Pal III, PAL-D or MACRO-8 assembly language to
MACRO-15 assembly language for assembly and execution within the PDP-15 Basic Software environment. The
Translator produces a straightforward translation that clearly indicates the parts of the translated program requiring
review, in light of the PDP-15’s greater word length and more powerful instruction set. It does not simulate the PDP-8
or produce directly executable code. A full description is contained in PDP-15 — 8TRAN Manual (DEC-15-ENZA-D).

1.3.2.9 Chain Builder and Execute Programs — The Chain Builder and Execute programs provide the user with a
capability for program segmentation which allows for multiple core overlap of executable code and certain types of
data areas. A more complete description of the Chain Builder and Execute programs is given in the Utility Programs
Manual (DEC-15-YWZA-D).

1.3.2.10 PUNCH-15 — PUNCH-15 is a utility program used to output selected areas of core memory onto paper tape
for use with the PDP-15 Basic I/O Monitor. The primary applications of PUNCH-15 in the Basic I/O Monitor
environment are:

a. System program modification

b. +.DAT SLOT reassignment

¢. Production of an executable user program core load on a single paper tape. This is particularly useful when
that core load consists of a main program and several subroutines/library routines, the constant reloading of which
may be time consuming.

The PDP-15 Utility Programs Manual (DEC-15-YWZA-D) describes PUNCH-15 more fully.

1-8(Part I)

COMPACT SOFTWARE

PART 11

ACT Assembler

APPENDICES

PART 1l
COMPACT SOFTWARE

CHAPTER 1
COMPACT ASSEMBLER (CAP-15)

1.1 INTRODUCTION

The CAP-15 Assembler processes symbolic source programs to produce a binary code that can be executed by the
PDP-15/10 computer. It normally processes source programs in two passes and requires 3K of core memory. The
Assembler makes machine language programming for the PDP-15/10 easier, faster, and more efficient. It permits the
programmer to use mnemonic symbols to represent instruction operation codes, locations, and numeric quantities;
thus, the programmer can easily refer to any point in his program without knowing actual machine locations.

The programmer can direct the Assembler’s processing by means of a powerful set of pseudo-operation (pseudo-op)
instructions, These pseudo-ops can be used for program control, to reserve blocks of core storage, to set the radix for
numerical interpretation by the Assembler, to handle strings of text characters in 6-bit ASCII code, to define
symbolic addresses, and many other functions that are described in detail in Section 1.4.

An output listing, showing both the programmer’s source coding and the object program produced by the Assembler,
can be printed. This listing includes all the symbols used by the programmer and their assigned values. If assembly
errors are detected, erroneous lines are marked with meaningful letter codes, which can be interpreted by referring to
Section 1.5.4. Operating procedures are found in Section 1.5.

The Assembler normally processes a source program in two passes; that is, it reads the same source program twice,
producing a printed listing and/or outputting the object code during the second pass. (However, if the listing and
binary output utilize the same device, then a third pass is required to produce the binary output.) Assembler coding
for the two passes is resident in memory at the same time. PASS1 and PASS?2 are almost identical in operation. The
main function of PASS1 is to identify locations that are to be assigned symbols, and to construct a symbol table.
PASS?2 uses the information derived by PASS1 (and left in memory) to produce the final listing object code output.

1.2 HARDWARE REQUIREMENTS AND OPTIONS
The Assembler operates with PDP-15/10 systems having at least 4K of core memory and a console Teletype (ASR33).

With the addition of a high-speed paper tape reader/punch;, the user can significantly decrease assembly time and also
have the capability of simultaneously producing a listing and binary output during PASS?2,

1-1(Part II)

Q
Q
=z
=
>
e
-
>
%
(&
5

1.3 ASSEMBLY LANGUAGE ELEMENTS

1.3.1 Program Statements

A single statement may be written on a 72-character teletype line, in which case a carriage return delimits the
statement. Since a carriage return is not a printable character, it is represented in this manual as J)

STATEMENT)
Several statements may be written on a single line, separated by semicolons:
STATEMENT ;STATEMENT;STATEMENT)

In this case, the statement line ends with a carriage return character, but semicolons are used as internal statement
delimiters. Thus, if a statement is followed by another statement on the same line, it must end with a semicolon.

A statement may contain up to four fields separated by a space, spaces, or tab characters. These four fields are the
label (or tag) field, the operation field, the address field, and the comments field. Because the space and tab characters
are not printed, the space is represented by +— , and the tab by —-| in this manual. Tabs are normally set ten spaces
apart on most teletype machines, and are used to line the fields up in columns in the source program listing.

The basic statement format is as follows:

LABEL —| OPERATION - ADDRESS ~ JCOMMENTS)

where each field is delimited by a tab or space, and each statement is terminated by a semicolon or carriage return.
The comments field is preceded by a tab (or space) and a slash (/).

An assembly statement may have an entry in any or all of the four fields. The following forms are acceptable:

TAG)
TAG - OP)
TAG —| OP —| ADDR)
TAG —{ OP —| ADDR v comments)
TAG —| OP . comments
TAG -/ —| ADDR)
TAG =] - ADDR v comments)
TAG - comments)
~| OP)
~| OP —| ADDR)
- OP —{ ADDR | comments)
-| (0] 4 "| comments
-| ADDR
-| ADDR - comments)
/comments
—| comments p)

Note that when a label field is not used, its delimiting tab is written, except for lines containing only comments. When
the operation field is not used, its delimiting tab is written if an address field follows, except in label only and
comments only statements.

1-2(Part II)

A label (or tag) is a symbolic address created by the programmer to identify the statement. When a label is processed
by the Assembler, it is said to be defined. A label can be defined only once. The operation code field may contain a
machine mnemonic instruction code, a pseudo-op code, a number, or a symbol. The address field may contain a
symbol, number, or expression which is evaluated by the Assembler to form the address portion of a machine
instruction. In some pseudo-operations, this field is used for other purposes, as explained later in this manual.
Comments are usually short explanatory notes that the programmer adds to statement as an aid in analysis and
debugging. Comments do not affect the object program or assembly processing; they are merely printed in the
program listing. Comments must be preceded by a slash (/); the slash must be preceded by one of the following:

. Space

Tab

. Semicolon

. Carriage return

o6 o e

1.3.2 Symbols

A symbol consists of a string of alphabetic or alphanumeric characters (including periods and percent signs). The first
character of a symbol must be a letter, a period or a percent sign. The first character of a symbol in the label field
must not be a digit. A period can not be used alone as a symbol in the label field. The letter X, if used alone, can only
appear in an address field (see 1.3.4.4).

The following symbols are legal:

MARK 1 .. 1234 A
A% %50.99 R
P9.3 INPUT SA

The following symbols are illegal:

TAG:1 L @Bl The colon (:) and @ are illegal characters.
SABC The first character may not be a digit.
X See section 1.3.4.4.

Only the first six characters of a symbol are meaningful to the Assembler, but the programmer may use more for his
own information. If he writes,

SYMBOL1
SYMBOL2
SYMBOLS3

as the symbolic labels on three different statements in his program, the Assembler will recognize only SYMBOL and

type error flags on the lines containing SYMBOL1, SYMBOL?2 and SYMBOLS3 because to the Assembler they are
duplicates of SYMBOL.

1.3.2.1 Evaluation of Symbols — When the Assembler encounters a symbol during processing of a source language
statement, it evaluates the symbol by reference to two tables: The user’s symbol table and the permanent symbol

1-3(Part II)

table. The user’s symbol table contains all symbols defined by the user. The user defines symbols by using them as
labels or by direct assignment statements (see Section 1.3.2.2). A label is defined when first used, and cannot be
redefined. When a label is defined by the user, it is given the current value of the Location Counter (see Section
1.3.4).

The Assembler has, in its permanent symbol table, definitions of the symbols for all of the PDP-15/10 memory
reference instructions, operate instructions, index and limit register instructions, and some input/output transfer
instructions. (See Appendix B for a complete list of these instructions.) Both the permanent symbol table and the
user’s symbol table reside in storage in alphanumeric sequence. The permanent symbol table symbols can be used in
the operation field of a statement without prior definition by the user.

Example
-'| LAC = A) When the LAC symbol appears in the operation field of a statement,
the Assembler treats it as an op code rather than a symbolic address. It
has a value of 2000004, which is taken from the operation code
definition in the permanent symbol table.

The user can use instruction mnemonics (see Appendix B) or the pseudo-instruction mnemonics code (see Appendix
C) as symbol labels. For example,

DZM - DZM wa Y)

where the label DZM is entered in the user’s symbol table and given the current value of the Location Counter, and
the op code DZM is given the value 140000 from the permanent symbol table. The user must be careful, however, in
his usage of these dual purpose (field dependent) symbols. Symbols in the operation field will be interpreted as either
instruction codes or pseudo-ops, rather than as a symbolic label, if they are in the permanent symbol table. In the
following example, several symbols with values have been entered in the user’s symbol table and the permanent
symbol table. The sample coding shows how the Assembler uses these tables to form object program storage words.

User Symbol Table Permanent Symbol Table
Symbol Value Symbol Value
TAGI1 100 LAC 200000
TAG2 200 DAC 040000
DAC 300 JMP 600000
If the following statements are written, the following code is generated by the Assembler
TAG! - DAC - TAGZ‘) 040200
TAG2 - LAC = DAC) 200300

1-4(Part II)

DAC —{IMP | TAGI) 600100
- TAGL) 000100

-~ -] DAC) 000300

1.3.2.2 Direct Assignment Statements — The programmer may define a symbol directly in the user’s symbol table by
means of a direct assignment statement, written in the form:

SYMBOL =n)
or
SYM1 = SYM2)

where n is any number or expression. There should be no spaces before the symbol or between the symbol and the
equal sign. (The operation field is assumed to be to the right of the equal sign, unless it is followed by a space or a tab,
in which case the address field is assumed.) The Assembler enters the symbol in the user’s symbol table, along with
the assigned value. Symbols entered in this way can be redefined. The following are legal direct assignments:

Z=28;A= 1;B=2‘)

A symbol can also be assigned a symbolic value:
A=4 H)
B=A \)

The symbol B is given the value 4. Direct assignment statements do not generate storage words in the object pro-
gram. In general, it is good programming practice to define symbols before using them in statements which gener-
ate storage words. The Assembler will interpret the following sequence without trouble.

Z=5)
Y=17)
V=Y)
—|LAC oV 1 /[SAME ASLAC5

A symbol may be defined after use. For example,

+|LAC v YJ
Y=1J

This is called a forward reference, and is resolved properly in PASS2, When first encountered in PASS1, the LACY
statement is incomplete because Y is not yet defined. Later in PASS1, Y is given the value 1. In PASS 2, the Assembler
finds that Y = 1 in the symbol table, and forms the complete storage word.

1-5(Part 1)

Since the Assembler operates in two passes, only one-step forward references are allowed. The following forward
reference is illegal:

-~ LAC Y
Y=2
Z=1

In the listing, during PASS1, the line which contains Y = Z will be printed with an A error code indicating a direct

assignment error.

1.3.2.3 Undefined Symbols — If any symbols remain undefined at the end of PASS1 of assembly, they are
automatically defined as the addresses of successive registers following the end of the program (i.e., following the
highest program counter value encountered by the Assembler). All statements that referenced the undefined symbol
will be flagged as undefined. One memory location is reserved for each undefined symbol with the initial contents of

the reserved location being unspecified.

Example

Location Source Statement Generated Comments

Counter Code
100 -{LAC UNDEF1) | 200104 ™\
101 -+ LAC UNDEF3 200106
102 —| LAC UNDEF4 200107 > Flagged as an error
103 - LAC UNDEF2 200105

- END)

1.3.3 Numbers

1.3.3.1 Integer Values — An integer is a string of digits, with or without a leading sign. Negative numbers are

represented internally in two’s complement form. The range of integers is as follows.

Unsigned 0— 262143, , (7777774) e.g.,2'8 -1
Signed 0 131071, (377777,) e, t217.]

An octal integer® is a string of digits (0-7), signed or unsigned. If a non-octal digit is encountered (8 or 9) it will be

flagged as a numerical error.

*Initiated by usage of .OCT pseudo-instruction and is also the initial assumption if no radix control pseudo-instruction was encountered (see

Section 1.4.4).

1-6(Part II)

Example

Coded Value Generated Value (Octal) Comment
-5 777773 two’s complement
3347 003347
3779 000000 error
A decimal integer* is a string of digits (0-9), signed or unsigned.
Example
Coded Value Generated Value (Octal) Comment
-8 777770 two’s complement
256 000400

1.3.3.2 Expressions — Expressions are strings of symbols and numbers separated by arithmetic or Boolean operators.
Expressions represent unsigned numeric values ranging from 0 to 2'® -1. All arithmetic is performed in unsigned
integer arithmetic (two’s complement), modulo 2! . Division by zero is regarded as division by one and results in the
original dividend; this condition will not be regarded as an error. Fractional remainders are ignored. The value of an
expression is calculated by substituting the numeric value for each element (symbol) of the expression and performing

the specified operations.

The following are allowable operators to be used with expressions:

Character
Function
Name Symbol
Plus + Addition (two’s complement)
Minus - Subtraction (convert to two’s complement
and add)
Asterisk * Multiplication (unsigned)
Slash / Division (unsigned)

*Initiated by usage of DEC pseudo-op (see Section 1.4.4).

1-7(Part II)

Character
Function
Name Symbol

Ampersand & Logical AND
Exclamation point ! Inclusive OR Boolean
Back slash \

Exclusive OR
Comma >

Operations are performed from left to right (i.e., in the order in which they are encountered). For example, the
assembly language statement A + B*C + D/E - F * G is equivalent to the following algebraic expression

((((A +B)* C) + D)/E) -F)*G.

Example
Assume the following symbol values:

Symbol Value (Octal)
A 000002
B 000010
C 000003
D 000005

The following expressions would be evaluated according to the rules above.

Expression Evaluation (Octal)

A+B -C 000007

A/B+A *C 000006 (The remainder of A/B is lost)
B/A -2* A -1 000003

A&B 000000

C+A & D 000005

B*D/A 000024

B*C/A*D 000074

1-8(Part IT)

The expression (A + B) * (C + D) cannot be represented in one source statement. To circumvent this problem, at least
one of the members of the expression should be defined by a direct assignment statement (see Section 1.3.2.2).

Examples

E=A+ B)

C+D*E /Represents (A + B) * (C + D))
or

E=A+ B)

F=C+ D)

E*F /Represents (A + B) * (C + D))

1.3.4 Address Assignments

As source program statements are processed, the Assembler assigns consecutive memory locations to the storage
words of the object program. This is done by reference to the Location Counter, which is initially set to zero, and
incremented by one each time a storage word is formed in the object program. Some statements, such as machine
instructions, cause only one storage word to be generated, incrementing the Location Counter by one. Other
statements, such as those used to enter data or text, or to reserve blocks of storage words, cause the Location Counter
to be incremented by the number of storage words generated.

1.3.4.1 Referencing the Location Counter — The programmer may directly reference the Location Counter by using
the period symbol (.) in the address field. He can write

- IMP o .-1)

which will cause the program to jump to the storage word the address of which was previously assigned by the
Location Counter. The Location Counter can be set to another value by using the .LOC pseudo-op, as described in
1.4.8.

1.3.4.2 Direct Addressing — Direct Addressing occurs when bits 4 and 5 of the Memory Reference Instruction word
(see Figure 1-1) are set to 0. The machine action defined by the operation code field is applied to the operand
specified by the 12-bit address field. The 12-bit address field allows addressing of any location of the 4,096 word
memory page. Access to locations outside the current page is gained via execution of indexed or indirect address
instructions.

1.3.4.3 Indirect Addressing — To specify an indirect address, which can be used only in memory reference
instructions, the programmer writes an asterisk (*) immediately following the operation field symbol. This sets the
Defer Bit (bit 4) for the storage word (see Figure 1-1) and the contents of the address field point to a location (within
the current page) which contains the 15-bit effective address.

The error flag S results if an asterisk (*) suffixes a non-memory reference instruction.

1-9(Part II)

Two examples of legal indirect addressing are as follows:

- TAD* —| A)
~| LAC* —+{B)

The following example is illegal.

—~| CLA* J Indirect addressing cannot be specified in non-memory reference
instructions.

NOTE

A symbol followed by an asterisk and by another symbol is interpreted as a
multiplication operation (e.g., LAC*SYMBOL).

0 3 4 5 6 17

Operation

* X Add i
Code ress Field

>
I

Indexed Address Indicator

*= Indirect Address Indicator

Figure 1-1. Memory Reference Instruction Format

1.3.4.4 Indexed Addressing — Indexed Addressing is specified by bit 5 (indirect bit) of the Memory Reference
Instruction word (see Figure 1-1) being set to 1. Indexed Addressing can be either Diiect or Indirect. For Direct
Indexed Addressing, bit 4 is O and bit 5 is 1. In this mode, the effective address is taken as the sum of the 12-bit
address field (bits 6-17) and the contents of the Index Register. The Index Register is an 18-bit hardware register
which may contain a signed 2’s complement number.

Indirect Indexed Addressing is specified by bits 4 and 5 being set to 1. In this mode of addressing, the effective
address (EFA) is taken as the contents of the location specified by the sum of the 12-bit address field and the Index
Register.

1-10(Part 1I)

Example

LAC* =] 30,X
/C(30) + C(XREG) = EFA
Contents /37 +20=EFA
C(30) = 37 /57 = EFA
C(XREG) =20 JC(57) = AC
C(57)= 101 /101 = AC

Using a comma X(,X) in the address field causes bit 5 of the current address value to be exclusively ORed with 10000.
For example, if bit 5 of the previous address value was 1, this operation sets it to 0. The Assembler takes this into
consideration when the operation field value and the address field value are combined (see 1.3.6.2).

In all cases when X is used, the value 10000 is used to perform the operation specified.* Standard usage of X is shown
below.

Example

A=50
LAC —+|AX

Storage word generated 210050

Using X to denote Index Register usage causes the following restrictions:

a. X cannot be used as a TAG.
b. X may not be used more than once in an expression.
¢. X can only appear in an address field.

d. X cannot be used with a .DSA statement.

1.3.4.5 Literals — Symbolic data references in the operation and address fields may be replaced with direct represen-
tation of the data enclosed in parentheses**. This inserted data is called a literal. The Assembler sets up the address
link, therefore one less statement is necessary in the source program.

The following examples show how literals may be used, and their equivalent statements. The information contained
within the parentheses, whether a number, symbol, expression, or machine instruction, is assembled and assigned
consecutive memory locations after the highest location used by the program (including registers reserved for
undefined symbols). The address of the generated word will appear in the statement that referenced the literal.
Duplicate literals are stored only once so that many uses of the same literal in a given program result in only one
memory location being allocated for that literal. Nested literals are not allowed and result in an L error diagnostic at
assembly time.

*The symbol X should only be used for indexing purposes. After the expression has been evaluated, bit 5 will be set to 1 regardless of
the expression result.
**The opening parenthesis [(] is mandatory while the closing parenthesis [)] is optional. The operation field is assumed to be to the
right of the opening parenthesis [(] unless it is followed by a space or tab, in which case the address field is assumed.

1-11(Part II)

Usage of Literal

Equivalent Statements

-} ADD 1 (1)

—+| ADD «u ONE

ONE 1

—| LAC v (TAG

—| LAC « TAGAD

TAGAD - TAG

-+ LAC v« (DAC -] TAG)

—| LAC «u INST

INST - DAC -] TAG

| LAC v (JMP —| +2)

HERE -+ LAC . INST

INST -] JMP v« HERE+2

The following sample program illustrates how the Assembler handles literals.

Location Counter Source Statement Generated Code

- .LOC , 100

100 TAG1 —| LAC ., (100) 200110

101 —| DAC 1 100 040100

102 - LAC o« (JMP +5) 200111

103 - LAC o (TAG)) 200110

104 -+ LAC s (JMP s TAGI) 200112

105 -} LAC o, (JMP o TAG2) 200112

TAG2=TAGI

106 —-{ LAC . (JMP) 200113

107 DAC —| LAC 1 (DAC —-| DAC) 200114
—| .END

1-12(Part II)

Location Generated
Counter Source Statement Code
Generated Literals
110 000100
111 600107
112 600100
113 600000
114 040107

1.3.5 Statement Fields

1.3.5.1 Label Field — If the user wishes to assign a symbolic label to a statement, to facilitate references to the
storage word generated by the Assembler, he may do so by beginning the source statement with any desired symbol.
The symbol must be terminated by a space (spaces) or tab, or a statement terminating semicolon, or carriage return.

Examples

TAG 1 any value)

TAG . any value)

TAG
TAG;

TAG)

-] any value)

These examples are equivalent to coding

TAG ——|0)

in that a word of all Os will be output with
the symbol TAG associated with it.

Symbols used as labels are defined in the user’s symbol table with a numerical value equal to the present value of the
Location Counter. A label is defined only once; if it was previously defined by the user, the current definition of the
symbol will be flagged as a multiple definition error. All references to a multiply-defined symbol will be made to the

first value encountered by the Assembler.
Example
Location St Storage Word
Counter atemant Generated Notes
100 A -|LAC —B 200103
101 A - LAC = C 200104 error, multiple definition
first value of A referenced
102 - LAC —A 200100

1-13(Part II)

Location Stetement Storage Word Not
Counter Generated otes
103 B -+ 0 000000
104 c —-lo 000000

Anything more than a single symbol to the left of the label-field delimiter is an error; it will be flagged and ignored.
The following statements are illegal.

TAG+1 —| LAS)
LOC* 2 —| RAR)

Redefinition of certain symbols can be accomplished by using direct assignments; that is, the value of a symbol can be
modified. If an Assembler permanent symbol or user symbol (which was defined by a direct assignment) is redefined,
the value of the symbol can be changed without causing an error message. If a user symbol, which was first defined as
a label, is redefined by either a direct assignment or by using it again in the label field, it will cause an error.

Example
Coding Generated Value (Octal) Comments
A=3 sets current value of A to 3
- LAC - A 200003
- DAC -] A 040003
A=4 redefines value of A to 4
- LAC —| A 200004
* B —={DAC —|A 040004
B=A illegal usage; a label cannot be
redefined
-|DAC —| B 040105
PSF=700201 to redefine possibly incorrect
. permanent syribol definition.

*Assume that this instruction will occupy location 105.

1.3.5.2 Operation Field — Whether or not a symbol label is associated with the statement, the operation field must be
delimited on its left by a space(s) or tab. If it is not delimited on its left, it will be interpreted as the label field. The
operation field may contain any symbol, number, or expression which will be evaluated as an 18-bit quantity using
unsigned arithmetic modulo 2!'®. In the operation field, machine instruction op-codes and pseudo-op mnemonic

1-14(Part II)

symbols take precedence over identically named user defined symbols. The operation field must be terminated by one
of the following characters:

~] or 1 (s) field delimiters
) or; statement delimiters
Examples
TAG —| ISZ)
- 31
1 CMA!CML

- TAG/5+TAG2; -| TAG3)

1.3.5.3 Address Field — The address field, if used in a statement, must be separated from the operation field by a tab,
or space(s). The address field may contain any symbol, number, or expression which will be evaluated as an 18-bit
quantity using unsigned arithmetic, modulo 2'®. If op-code or pseudo-op code symbols are used in the address field,
they must be user defined, otherwise they will be undefined to the Assembler and cause an error message. The symbol
X cannot be user defined (see section 1.3.4.4). The address field must be terminated by one of the following
characters:

-] or 1 (s) field delimiters
Dot statement delimiters
Examples
TAG2 -+ DAC - +3 - /[COMMENT))

- ~} TAG2/5+3 1 (5))
- I1SZ +{ TAG2, X +4)

-~ IMP —| BEGIN,)

~| TAD —| A; +DAC —{B)

In the last example, a tab or space(s) is required after the semicolon so the Assembler can interpret DAC as being the
operation field rather than the label field.

An error condition will exist if the bank and page bits (3, 4 & 5) of the address do not match the bank and page bits
of the bank currently being assembled into and the extended memory bits of the address are not zero:-

Examples
Location .
Instruction Comments
(octal)
1000 —- LAC 4 100
win not cause error messages
1001 - DAC , 101

1-15(Part IT)

Location .
Instruction Comments
{octal)
1002 —-| JMS o4 250 will not cause error messages
1003 | ISZ « 40146 will cause a bank error message code B
(see 1.3.5.3)
1004 - LAC 1 10100 will cause a bank error message code
(see 1.3.5.3)

1.3.5.4 Comments Field — Comments may appear anywhere in a statement. They must begin with a slash (/)
immediately preceded by a

a (s) ’space(s)

- tab

) " carriage return (end of previous line)
: semicolon

Comments are terminated only by a carriage return.
Examples
s (s)/ THIS IS A COMMENT)
TAG1 ——| LAC , /after the ;is still a comment)
/THIS IS A COMMENT)
-~/ RTR s /COMMENT)

—| RTR; - RTR; /THIS IS A COMMENT)

Observe that -'I A/COMMENT) is not a comment, but rather an operation field expression. A line that is
completely blank; that is, there is no data between two sets of) (s), will be treated as a comment by the Assembler.

1.3.6 Statement Evaluation

When the Assembler evaluates a statement, it examines the first character position in the label, operation, and address
fields for a numeric character. (Comments fields are ignored.) If the first character of a field is numeric, the contents
of the whole field is treated as a number.

1.3.6.1 Numbers — Numbers are not field dependent. When the Assembler encounters a number (or expression) in
the operation or address fields (a number in the first character position of the label field is illegal), it uses those values
to form the storage word. The following statements are equivalent:

1-16(Part IT)

- 200000 s 10)

-1 10+ LAC)

- LAC '« 10)
All three statements cause the Assembler to generate a storage word containing 200010.
A statement can consist of a number or expression which generates a single 18-bit storage word; forv example,

= 23; L 45; 4 357; La62)
This group of four statements generates four words interpreted under the current radix.
Zero words are generated by statements containing only labels. For example,

A:B;C;D; E)

generates five words set to zero, which can be referenced by the labels defined.
1.3.6.2 Word Evaluation — When the Assembler encounters a symbol in a statement field, it determines the value of
the symbol by referring to the user’s symbol table and the permanent symbol table, according to the priority list
shown below. The value of a storage word is computed by combining the 18-bit operation field quantity with the
18-bit address field quantity, in the following manner.

[(OPERATION FIELD + (ADDRESS FIELD & 017777))] = Value of Word
0-17 0-17

If the operation code is one of the 9-bit operators (see Appendix B), the word value is computed as follows.

[(OPERATION FIELD + (ADDRESS FIELD & 777))F Value of Word
0-17 0-17

Extensive error checking is performed on the address field value to ensure correct results. If the page bit of the
address field is different from that of the program counter, the line is flagged with a ‘B’ error code at assembly time,
indicating a page error. Page bits are always set to O if the address value is legal and Index Register usage is not
specified.

Example:
Error Object
Flag LOC Code Source Code
.LOC 100
B 00100 210000 A LAC B /ADDRESS OF B ON A DIFFERENT PAGE
.LOC 10000
B 10000 040100 B DAC A /ADDRESS OF A ON A DIFFERENT PAGE

The LAW instruction and the 9-bit operators check the low order 5 bits (or 9 bits) of the address value for validity by
ANDing off the low order bits and checking the result for O or for equality with the ‘AND’ value.

1-17(Part II)

[address field & 760000] = 760000 or 000000
OR
IF A 9 BIT OPERATOR
[address field & 777000] = 777000 or 000000
Example

LAW -1 /The value for -1 is 777777.
/When this value is ANDed
Jwith 760000, the result
/is 760000 and valid.

If the ADDRESS FIELD and 7600004 does not equal 7600005 or 000000, any erroneous results produced are
flagged by the Assembler. This validity check is performed only if an operation field and an address field are present.

If the ADDRESS FIELD ANDed with 7600005 does not equal 7600005 or 000000, any erroneous results produced
are flagged by the Assembler. This validity check is performed only if an operation field and an address field are
present.

If the instruction is a Memory Reference instruction, the low order 5 bits of the address value are examined to make
sure they are not set¥*. If any of the 5 bits are set, the line is flagged with an E error code during assembly.

+|2 =|5 -] /GENERATES 000007

The value of a symbol depends on whether it is in the label field, or the address field. The Assembler attempts to
evaluate each symbol by running down a priority list, depending on its field as shown.

Label Field Operation Field Address Field
Current value of 1. Pseudo-op 1. User symbol table,
Location Counter (including direct

2. Direct assignment in user assignments)

symbol table.
2. Undefined
3. Permanent symbol table

4. User symbol table

5. Undefined

This means that if a symbol is used in the address field, it must be defined in the user’s symbol table; otherwise, it is
undefined.

In the operation field, pseudo-ops take precedence and cannot be redefined. Direct assignments allow the user to
redefine machine op codes, as shown in the example below.

*Does not include LAW instruction.

1-18(Part II)

Example
DPOSIT = DAC)
The user can use machine instruction codes and Assembler pseudo-op codes in the label field and refer to them later

in the address field.

1.4 PSEUDO OPERATIONS

In the discussion of symbols in the previous chapter, it was stated that the Assembler has, in its permanent symbol
table, definitions of the symbols for all the PDP-15 memory reference instructions, operate instructions, and some
IOT instructions (listed in Appendix B) which may be used in the operation field without prior definition by the user.
Also contained in the permanent symbol table are a class of symbols called pseudo-operations (pseudo-ops) which,
instead of generating instructions or data, direct the assembler on how to proceed with the assembly.

By convention, the first character of every pseudo-op symbol is a period (.). This convention is used to prevent the

programmer from inadvertently using, in the operation field, a pseudo-instruction symbol as one of his own.
Pseudo-ops may be used only in the operation field.

1.4.1 Program Control (.END)
One pseudo-op that must be included in every source program is .END, which must be the last statement in the

program. This statement marks the physical end of the source program and may also contain the location of the first
instruction in the object program to be executed at run-time.

The .END statement is written in the general form

~| .END v START))

where START may be a symbol, number, or expression whose value is the address of the first program instruction to
be executed.

If a starting address is not present in an .END statement, the program will halt after being loaded and the user must
manually start his program.

The following are legal .END statements:
- .END « BEGIN +5)
—~| .END o 200)
-| .END)

1.4.2 Program Segments (.EOT)

If the input source program is physically segmented, each segment except the last must terminate with an .EOT
(end-of-tape) statement. The last segment must terminate with an .END statement. For example, if the input source

1-19(Part II)

program is prepared on three different tapes, the first two are terminated by .EOT statements, and the last by an
.END statement. The .EOT statement is written without label and address field, as follows.

- .EOT))

1.4.3 Reserving Storage Words In The Object Program

The programmer may reserve blocks of storage words, or single words, for use during program execution.

1.4.3.1 Reserving Blocks of Storage (.BLOCK) — .BLOCK reserves a block of memory equal to the value of the
expression contained in the address field. If the address field contains a numerical value, it will be evaluated according
to the radix in effect. The symbolic elements of the expression must have been defined previously; otherwise, phase
errors (see Section 1.5.5) might occur in PASS2.

The user may reference the first location in the block of reserved memory by defining a symbol in the label field. The
initial contents of the reserved locations are unspecified.

Label Field Operation Field Address Field

User Symbol .BLOCK Predefined Expression

Examples
BUFF —| BLOCK 12

.~ .BLOCK v A-B+65)

1.4.3.2 Reserving Single Storage Words — Storage words set to zero are set up as

A +0; ={0; ={0)

In this way, three words are set to zero, starting at A. Storage words set to zero are also set up by statements
containing only labels:

A;B;C;DiE)
1.4.4 Radix Control (.OCT and .DEC)

The initial radix (base) used in all number interpretation by the Assembler is octal (base 8). In order to allow the user
to express decimal values, and then restore to octal values, two radix setting pseudo-ops are provided.

Pseudo-op Code Meaning
.OCT Interpret all succeeding numerical values in base 8 (octal)
.DEC Interpret all succeeding numerical values in base 10 (decimal)

1-20(Part II)

These pseudo-instructions must be coded in the operation field of a statement. All numbers are decoded in the
current radix until a new radix control pseudo-instruction is encountered. The programmer may change the radix at
any point in a program.

Source Program Generated Value (Octal) Radix in Effect

-] LAC -] 100 200100 8
initial Vélléle és
assumed to tal

- 25 000025 ¢ octa

-| .DEC

- LAC -] 100 200144 10

- 275 000423 10

-] .OCT

- 76 000076 8

—-| 85 000000 error

1.4.5 Text Handling (.SIXBT)

Label Field Operation Field Address Field

SYMBOL SIXBT delimiter | character string delimiter

SIXBT denotes 6-bit trimmed ASCIlI characters, which are formed by truncating the leftmost bit of the
corresponding 7-bit ASCII character. The Assembler converts the characters to their appropriate numerical equivalent
(see Appendix A). The characters are packed, three per word left justified, with unused bits set to zero.

0 5 6 11 12 17

1st character 2nd character 3rd character

Spaces or tabs prior to the text delimiter are ignored. Any printing character may be used as the text delimiter,
except) . The text delimiter must be present on both ends of the text string, otherwise, the user may get more
characters than desired; however,,) may be used to terminate the test string. After a carriage return, a new .SIXBT
pseudo-op is necessary to continue with 6-bit text.

1-21(Part 11)

Examples

Source Generated Code
—|.SIXBT | /ABCDE]) 010203
040500
TAG —|.SIXBT —|-/125/-) 576162
655700
-| SIXBT - /ABCD)) 010203
040000

1.4.6 Defining A Symbolic Address (.DSA)

.DSA (define symbol address) is used in the operation field when it is desired to create a word composed only of an
address field. It is especially useful when a user symbol is also an instruction or pseudo-op symbol.

Label Field Operation Field Address Field

User Symbol .DSA Any expression

Examples
IMP —| LAC -] TAG

—-l .DSA —’l JMP Equivalent methods of defining the user symbol JMP to be in the

address field.
-~ - IMP

1.4.7 Conditional Assembly (.IFDEF, .IFUND and .ENDC)

It is often useful to assemble some parts of the source program on an optional basis. This is done by means of
conditional assembly statements of the form:

- IF... -] expression

The pseudo-op may be one of the two conditional pseudo-ops shown below, and the address field may contain any
symbol or expression. If the condition is satisfied, that part of the source program starting with the statement
immediately following the conditional statement and up to the .ENDC (end conditional) pseudo-op is assembled. If
the condition is not satisfied, this coding is not assembled (it is treated as comments).

The two conditional pseudo-ops (sometimes called IF statements) and their meanings are shown below.

Conditional Assemble

Pseudo-op IF x is:
AFDEF x defined (present) in user symbol table
JFUND x undefined (not present) in user’s symbol table

1-22(Part 1I)

In the following sequence, the pseudo-op .IFDEF is satisfied, and the source program coding between .IFDEF and
ENDC is assembled.

Y=5)
-~ IFDEF —| Y)
= LAC v A)
—| DAC B)

- .ENDC)

Conditional statements may be nested. For each IF statement there must be a terminating .ENDC statement. If the
outermost IF statement is not satisfied, the entire group is not assembled. If the first IF is satisfied, the succeeding
coding is assembled. If another IF is encountered, however, its condition is tested, and the succeeding coding is
assembled only if the second IF statement is satisfied. Logically, nested IF statements are like AND circuits. If the
first, second and third conditions are satisifed, then the coding that follows the third nested IF statement is
assembled.

Example
—| IFDEF a1 W) conditional 1 initiator
-~ LAC —| TAG)
- IFUND o Y)) conditional 2 initiator
~| DAC -+ TAG1)
"| -ENDC)) conditional 2 terminator
—| .IFDEF Z) conditional 3 initiator
- DAC —{ TAG2)
- ENDC)) conditional 3 terminator
-~ ENDC) conditional 1 terminator

IF statements may be activated by means of a strip of tape which precedes the regular source tapes. The strip tape
may take on the following form:

Strip Tape
A=0 /Causes A and B to be
B=0 /entered into the user’s symbol table.
-| .EOT /Terminates the strip tape

1-23(Part I1)

Source Program

—| IFDEF | A

/This coding would be assembled.

~| .ENDC

-] IFUND - B

/This coding would not be assembled.

- .ENDC

-| .END

Since the purpose of the strip tape is to enter definitions into the user’s symbol table, it is only necessary to have the
strip tape read in PASS1 of assembly.

1.4.8 Setting The Location Counter (.LOC)

Label Field Operation Field Address Field

Predefined symbolic

Not Used .LOC .
expression, or number

The .LOC pseudo-op sets or resets the Location Counter to the value of the expression contained in the address field.
The symbolic elements of the expression must have been defined previously; otherwise, phase errors might occur in
PASS2. The .LOC pseudo-op may be used anywhere and as many times as required. If the .LOC pseudo-op is not
used, the assembler assumes location O as the starting point of the program.

Examples
Location Counter Instruction
100 -+ .LOC s 100
100 - LAC ., TAGI

1-24(Part I1)

Location Counter Instruction
101 —| DAC 1 TAG2
102 - LOC v
102 A - LAC uB
103 ~|DAC 1 C
107 - .LOC o A+5
107 - LAC «u C
110 —| DAC a1 D
111 ~|LAC o E
112 -+ DAC «a F

1.4.9 Listing Control (.XLIST and .LIST)

The following assembler listing controls are effective only when a listing was requested in the command string
(Section 1.5.2).

The .XLIST statement causes the assembler to stop listing the assembled program. The listing printout actually starts
at the beginning of PASS2; therefore, to suppress all of the program listing, . XLIST must be the first statement in the
program. If only a part of the program listing is to be suppressed, the .XLIST statement can be inserted at any point
to stop listing from that point.

The .LIST statement, which is normally used following an .XLIST statement, causes the assembler to resume the
listing at the point at which it is encountered.

1.4.10 Object Output Control (.FULL)

Label Field Operation Field Address Field

Not Used FULL Not Used

The .FULL pseudo-op causes hardware readin-mode binary output to be produced (see Section 1.5.4.3 for a.
description of the normal binary output). It must appear before any coding (except comments), otherwise, it will be
flagged and ignored. The program is assembled as unchecksummed binary code and each physical record of output
contains nothing other than 18-bit binary storage words generated by the Assembler. The Assembler will cause the
address of the .END statement to contain a punch in channel 7, thereby allowing the output to be loaded via
hardware readin mode. If no address is specified in the .END statement, a halt (rather than a jump) will be output as
the last word.

1-25(Part IT)

The following specific restrictions apply to programs assembled in .FULL mode output

.LOC Should be used only at the beginning of the program.

.BLOCK May be used only if no literals appear in the program, and must
immediately precede .END.

Undefined symbols may be used if no literals appear in the program.

Literals may be used only if the program has no undefined symbols.

1.4.11 Size of Program (.SIZE)

When the Assembler encounters .SIZE, it outputs, at that point, the address of the last location plus one occupied by
the object programs. This is normally the length of the object program (in octal).

Label Field

Operation Field

Address Field

User Symbol

SIZE

Not Used

Example
Generated Code Source Code

00100

00100 000105
00101 200103
00102 040104
00103 000000
00104 000000

000000

1.5 OPERATING PROCEDURES

1.5.1 Loading Procedures

-{.Loc {100
- .SIZE)
- LAC ~{A)
~|DAC —|B)
A ~o)
B -|0)
-| END)

The loading procedure depends on whether the Teletype paper tape reader or the high-speed paper tape reader is used

as the loading device.

1-26(Part II)

1.5.1.1 Teletype Reader as Loading Device — Place paper tape of the hardware readin low-speed binary loader (see
Appendix D) into the teletype reader. Engage the start switch on the reader. Enter 7700 into the ADDRESS switches
(17700 if computer has 8K of memory). Press I/O RESET and then press READIN. When the computer halts
(AC=777777), disengage the start switch, place the Assembler binary tape into keyboard reader, engage the start
switch, and press START.

1.5.1.2 High-Speed Reader as Loading Device — Place paper tape of the Hardware Readin High-speed Binary Loader
(see Appendix D) into the high-speed reader. Enter 7720 into the ADDRESS switches (17720 if computer has 8K of
memory). Press [/O RESET and then press READIN. When computer halts (AC = 777777) place the Assembler
binary tape into high-speed reader and press START.

1.5.2 COMMAND String

After the Assembler has been loaded into memory, it will type out a sequence of messages. The user’s responses to
these messages indicate the options and devices that are to be used for the current assembly.

1.5.2.1 Binary Option — The first message typed is *BIN -. If no binary output is desired, the user responds with
carriage return ()).

If binary output is desired, the user types L) if the binary device is the low-speed punch, or H) if the binary device
is the high-speed punch. If any other character is typed it is ignored and the message (*BIN -) is repeated.*

1.5.2.2 Listing Option — The second message typed is *LST-. If no listing is desired, the user responds with). If a
listing is desired, the user types L) to produce the listing on the teleprinter, or H)to produce the listing on the
high-speed punch. If any other character is typed, it is ignored and the message (*LST-) is repeated.*

1.5.2.3 Symbol Table Option — The third message typed is *SMB-. If no symbol table output is desired, the user
responds with) . If symbol table output is desired, the user types L) to produce the symbol table on the teleprinter,
or types H) to produce the symbol table on the high-speed punch. If any other character is typed it is ignored and
the message (*SMB-) is repeated.*

1.5.2.4 Source Input Device — The last message typed is *SRC-. If the source program is to be read from the
keyboard reader, the user types L). If it is to be read from the high-speed reader, the user responds with H J.IfH
or L is not specified, or if any other character is typed, it is ignored and the message (*SRC-) is repeated.* When the
carriage return is typed, the Assembler starts reading from the input device.

1.5.2.5 Error Printout — Normally, all errors that are encountered by the Assembler are output to the listing device
and to the Teletype, if it is not the listing device. If no error printout is desired on the Teletype, it can be suppressed
by typing N in addition to the normally typed character on any of the four command string messages prior to typing
the carriage return.

*Note, that the character just prior to the carriage return ()) is the one accepted by the Assembler, and therefore, if it is desired to
change it, it may be retyped before the) is typed.

1-27(Part 1)

Examples

(All characters underlined are typed by the Assembler)

*BIN -H) Binary on high-speed punch.

*LST -N) No listing, and suppress error printout on Teletype.
*SMB-L) Symbol printed on Teletype.

*SRC -H) Source input from high-speed reader.

*BIN -F) Tllegal request, message repeated.

*BIN-L) Binary output on Teletype punch.

*LST-L) Listing on Teletype.

*SMB - L) Symbol table printout on Teletype.

*SRC-L1) Source input from keyboard reader.

NOTE

Normally, the Assembler requires two passes to assemble any program:
however, if the binary output device and the listing device are the same
device, then three passes are required. PASS2 produces the listing and PASS3
produces the binary object code. PASS2 always produces the symbol table,
if requested. When assembly is completed, the Assembler returns to the
command string processor for additional assemblies.

1.5.3 Continuation and Termination Control

Two control characters are available to control Assembler processing: CTRL C and CTRL P. They are typed by
holding the CTRL key and striking either C or P. The Assembler echoes these characters as 1C or 1P.

CTRL C may be typed when it is desired to prematurely terminate assembly and return to the beginning of assembly.
The Assembler echoes tC and returns to the command string processor. CTRL C may also be used to return to the
beginning of the command string if it is desired to change the options before starting the assembly. (Note that the
keyboard reader start switch must be disengaged before typing CTRL C.)

Examples

(All characters underlined are typed by the Assembler)

TAG]I 00045:00200 1C

*BIN-

1-28(Part 1)

A multiple definition error occurred and the user prematurely terminated the assembly by typing CTRL C.

*BIN-)

*LST-H)

*SMB- 1C)

*BIN- L)

CTRL C was typed to change the binary request from no binary output to binary output on the Teletype.

Two pseudo-ops control the termination of a segment or total source input to assembly. They are .EOT and .END
(see Sections 3.1 and 3.2).

When .EOT is encountered by the Assembler it outputs EOT 1P on the Teletype. It then waits for the user to load the
next tape into the tape reader and type CTRL P to continue.

When .END is encountered and another pass is required, the Assembler types END OF PASS 1P. When the tape is
reloaded in the reader for the next pass, the user types CTRL P to proceed.

1.5.4 Assembly Output

1.5.4.1 Symbolic Listing — If the user requests a symbolic listing, via the command string, the Assembler will
produce an output listing on the requested output device. (Teletype or high-speed punch)

The body of the listing will be formatted as follows.

Error Flags Location Object Code Source Statement
XXX XXXXX XXXXXX X X
where
Error Flags = Errors encountered by the Assembler (see Section 1.5.5)
Location = Location assigned to the binary code.
Object Code = The contents of the location (in octal)

NOTE

Locations and object codes assigned for literals are listed following the
program.

When 56 lines have been encountered or when a form feed is encountered, the Assembler precedes the following
output with a new page number. In the case of a form feed the Assembler also outputs three up arrows (t11)

1-29(Part II)

preceding the new page number, to indicate that a form feed caused the new page. At the end of the assembly listing
will be an error line count indicating any errors encountered during assembly.

*BIN-
*LST-L
*SAb-L
*3RC=-H
JUPL dule6;e081217
uNu v 13y
ENv OrF PASS
TP
tP
PaGE i
/THIS 1S5 A COMPLETE SAMPLE PROGRAM LISTING.
/THE LAST COLUMN (COMMENTS) CONTAINS THE
/PARAGRAPH NUvibER IN THIS MANUAL WHERE
/FULL EXPLANATIONS MAY BE FOUND.
/
wdloib .LOC 139 /1.4.8
+DEC /1.4.4
Yl vd dudl a4 ABC 1993 2049
vwlvl QU314
+OCT /1.4.4
vl o2 771775 DEF -3 +75
dolud d40075
wold4 puallz ADDR .DSA TAGL /1.4.6
Bélud .BLOCK 5 /1.4.3,1
vdvuld Az1d /1.3.2.2
DBidv20 B=20
Q801D C=A
Voll2 vadl33 TAGI .SI1IZE /ledolal
Jdlld 01203 TAG2 «SIXBT /ABCD/ /1.4.5
gdll4 J40d02
+IFDEF A /14,7
Julls Bddvil 1
Jiull6 J28dve 2
+ENDC
LIFUND B /lebaT
1
«ENDC /1l ebaT
wolll cvdl2l JP o t+2 /1.3.4.1
v lew sy Py DAC J
00121 2udled LAC DAC /1434503
Qdulel 220018 LACx o /1.3.4.3
wdled 20d131 LAC (loo /l1e3eded
bal24 344132 TAD (JMP ABC)
U wwleh Q69136 UND /1e3.243
qow¥les 2u0185 DUPL LAC ABC+5
b bulzd 208126 JUPL LAC bUPL /163651
D61 dd +END ABC /14,1

buldl vov10d
Yo lde 608109

3 ERROR LINES

1-30(Part IT)

1.5.4.2 Symbol Table Output — After the assembly listing has been typed, the Assembler will output a symbol table
(if requested) which lists all user defined symbols. There will be two symbol lists; the first will be an alphabetically
ordered list of the symbols and the second will be a list in numerical value order. The symbol table listing is useful in
tracing or debugging a program for which the programmer does not have a complete assembly listing (symbols defined
by labels will have a value of 5 octal digits and symbols defined by direct assignments will have a value of 6 octal

digits).

Sample Symbol Table Listing

PAGE

A
asC
ADUR
D

C
VAC
DEF
JUPL
TAGI
TaGe
UND

2

Wwvddlo
Bdlvd
Yolv4

Jbidd20

vdddlé
bélzo
wdlue
woled
Yolle
wiolld
0139

Jbvulo
v ld
VIUB2Y
6149
dyliva
w104
walle
83113
09128
voles
va13e

1.5.4.3 Object Program Output — If the user requests binary output, the normal object code produced by the
Assembler is a binary paper tape which can be loaded at run time by either of the hardware readin binary loaders (see
Appendix D). The format of the binary output is as follows:

Block Heading — (three binary words)

WORD 1

WORD 2

WORD 3

Block Body — (n binary words)

Starting address to load the block body which follows.
Number of words in the block body (two’s complement).

Checksum of block body (two’s complement). It also includes Word 1
and Word 2 of the block heading.

The block body contains the binary data to be loaded under block heading control.

1-31(Part II)

Starting Block — (two binary words)

WORD 1 Locations to start execution of program. It is distinguished from the
block heading by having bit O set to 1 (negative).

WORD 2 Dummy word

If the value of the expression of the .END statement is equal to zero, the provided loader halts before transferring
control to the object program, thereby allowing manual intervention by the user. (See Section 1.4.10 for an alternate
form of binary output.)

1.5.5 Error Detection and Flagging

The Assembler examines each source statement for possible errors. The statement which contains the error will be
flagged by one or several letters in the left-hand margin of the line. The following table shows the error flags and their

meanings.

Flags Meaning
A Error in direct symbol table assignments ignored (see Section 2.5.1).
B Memory bank error (see Section 1.3.5.3).
D The statement contains a reference to a multiply-defined symbol. It is

assembled with the first value defined.

E Erroneous results may have been produced. Will also occur on
undefined .END value (see Section 1.3.5.3).

L Literal phase error; literal encountered in PASS2 does not equal any
literal encountered in PASSI.

M An attempt is made to define a symbol which has already been defined.
The symbol retains its original value.

N Error in number usage.

(6] Operand error. Non-Memory Reference Instruction has an address
value.

P Phase error; PASS1 value does not equal PASS2 value of a symbol.

PASS1 value will be used.

1-32(Part II)

Flag Meaning

Q Questionable line
S Symbol error; an illegal character was encountered and ignored.
T TAG or LABEL error.

1. Unrecognizable character in TAG field.
2. A period used alone in a TAG field.
3. A TAG begins with a number.

4, Xisused as a TAG.

6] An undefined symbol was encounterd.

X Illegal use of Index Register.
1. X occurs in a .DSA statement.
2. X occurs more than once in an expression.
3. X occurs in a TAG or OP-Code field.

In addition to flagging error lines, the Assembler, during PASS1, will print the following conditions.

Condition Example
Multiple definitions ABC 00100; 00125
Direct assignment forward references A=B
Undefined symbols UNDF 06255

The following condition will cause assembly to be terminated prematurely in PASS1.
Message Cause

TABLE OVERFLOW Too many symbols and/or literals

1.5.6 Internal Operations

1.5.6.1 Symbol Table Capacity — The Assembler occupies approximately 3000, , memory locations, leaving about
1090, o registers free for symbols and literals. (The Assembler determines the physical size of memory of the

1-33(Part 11)

computer; therefore, if it is an 8K machine, 5190, , registers are available for table space.) Each symbol defined by
the user requires three memory locations and each literal requires one memory location. For a 4K PDP-15/10 this
means that about 360, , symbols (or 300, , symbols and 190, , literals) may be used before overflow occurs.

1.5.6.2 Halts — Normally, the Assembler does not halt for any reason except if an unknown program interrupt
occurs. If this happens the machine halts with the status word in the AC. In order to clear the condition the user must
deposit, in the location the program counter is pointing to, the instruction to clear the flag that caused the unknown

interrupt, and then press CONTINUE.

1-34(Part II)

CHAPTER 2
COMPACT TEXT EDITOR

2.1 INTRODUCTION

The PDP-15/10 Compact Text Editor provides for the creation and/or modification of source programs and other
ASCII text material. Commands issued from the Teletype direct the Editor to bring a group of lines from the input
device to an internal buffer. The user may then, by means of additional commands, examine, delete, and change the
contents of the buffer, and insert new text at any point in the buffer. When a block of lines has been edited, it is
punched on the paper tape reader.

Editor operation codes are divided into two basic categories: control instructions and Editor commands. Control
instructions determine whether the Editor is to be used to create new ASCII material (input level) or to modify
existing text (edit level). Within the edit level there are four Editor command classes: I/O requests, pointer
manipulation, editing requests, and examination requests.

The Editor is most frequently used to modify PDP-15/10 source programs, but it also can be used to edit any
symbolic text. The Editor operates with either high-speed or low-speed (ASR33) paper tape devices, and occupies
approximately 2000, o locations of core memory. Any additional memory is used for buffers.

Appendix E provides a concise summary of Editor commands. Appendix F contains a simple procedure for creating
ASCII text using the Editor. Appendix G contains examples of Editor operation, written for the user who is not
familiar with the Editor, but wishes to edit an ASCII tape immediately. The user should at least read 2.3, Operating

Procedures, before attempting to use the Editor as described in Appendix G. A more comprehensive, annotated
example of an actual editing session is contained in Appendix H.

2.2 FUNCTIONAL DESCRIPTION

2.2.1 Input Format

The following paragraphs describe the control levels, operation code formats, and data modes far the Editor.

2-1(Part II)

58
o
g5
= a
g3

2.2.1.1 Control Levels — The PDP-15/10 Compact Editor operates on one of two control levels: input or edit. The
input level is used to create new text material; on this level the Editor interprets lines from the Teletype as text to be
added to an open block. Instructions are available to conveniently change the control level. The edit level is used to
modify existing text; on this level the Editor accepts and acts upon control words and data strings to bring in lines of
text, to change, delete, or replace the line currently in the work area, and to insert single or multiple lines after the
current line. '

2.2.1.2 Operation Code Format — The format for all Editor operations consists of the operation code, followed by a
! (space), followed by arguments where applicable. The space is a blank delimiter which is considered by the
Editor to be a part of the command itself, not part of the argument string which follows the command. Legal
abbreviations are indicated with square brackets in this manual. Certain commands (e.g., FIND and RETYPE) require
the presence of arguments. Others (DELETE, NEXT) may take explicit arguments at the option of the user. Optional
arguments are given in parentheses. For a description of the command language see 2.4.

2.2.1.3 Data Mode — The Editor can accept input from a maximum of two devices* in addition to the keyboard. The
first device normally holds previously prepared text upon which changes are to be carried out. The second, the
subsidiary input device, is usually the medium through which additional, previously prepared text is inserted in the
object text.

Data from the input device is made available for editing in block form. A user-specified portion of the input is held in
a core buffer for editing until the user requests that the contents of the buffer be added to the output text.
Commands to the Editor are performed on that portion of the text currently in the buffer. Lines may be accessed
repeatedly until the buffer is emptied by the user. The lines of text in the buffer are made available for modification
by manipulating a software pointer (see Figure 2-1).

— PSEUDO LINE

POINTER—>»

fLINES OF ASCII TEXT

S

Figure 2-1. Line Buffer and Software Pointer

2.2.2 Output Format

The teleprinter is used by the Editor to echo user requests, to make responses to those requests, and to print error
messages. Edited text is punched out on either the low-speed (ASR33) or the high-speed paper tape punch (if
available and requested by the user during the initialization sequence). Edited source programs are punched in a form
that is ready to be read by the Assembler; parity is not punched; channel 8 8 is always punched (see Figure 2-2).

*The low-speed (ASR33) paper tape reader, and a high-speed paper tape reader (if available).

2-2(Part II)

CHANNEL 8 (ALWAYS PUNCHED)

CHANNEL 7

CHANNEL 6

CHANNEL 5

CHANNEL 4

TAPE - SPEED SPROCKET HOLES
+ 3 CHANNEL 3
o5 0 670 CHANNEL 2
@ 00000000 CHANNEL, 1
®000000O0O0 FRAME n
® 00 0O0O©O0O0O0 FRAME n+1
®000000O0CO0 FRAME n+2

DIRECTION OF ® 0000000 0f —— ETC
TAPE MOVEMENT @e0000000O0 OCTAL 000=NULL FRAME
@eO0OCO®@OC @O0 Ee OCTAL 015:= CARRIAGE RETURN
®000®@0O0@O0 OCTAL 012:LINE FEED
® ®0 000000 OCTAL 100:= @
®@®ee0000c00Ce OCTAL 104:= A
®© @0 000O0®O|—— OCTAL 102- B
® 00000000
’__\%O‘
o ©
O= HOLE POSITION

® = HOLES PUNCHED

Figure 2-2. PDP-15/10 ASCII Tape Format
2.3 OPERATING PROCEDURES

2.3.1 Loading Procedure

Prior to loading the Editor, proceed as follows to generate leader:
Turn Teletype switch to OFF LINE.
Press punch switch ON.
Press HERE IS key several times to generate leader.
Press punch switch OFF.
Turn Teletype switch to ON LINE.

The loading procedure used depends on whether the low-speed (ASR33) or high-speed paper tape reader is used as the
loading device.

2.3.1.1 Low-Speed Reader — The low-speed reader loading procedure is as follows:
Place paper tape containing low-speed, hardware readin binary loader in the Teletype reader.
Turn reader switch to ON

Set ADDRESS Switches to 7700 (17700 for 8K systems).

Press I/O RESET and READIN. The computer will halt (AC=777777).

2-3(Part II)

Turn reader switch to OFF and place binary tape of Editor in Teletype reader.
Turn reader switch to ON and press START. The Editor will be loaded into memory and will type EDITOR on the
Teletype.
2.3.1.2 High-Speed Reader — The high-speed reader loading procedure is as follows:
Place paper tape containing high-speed, hardware readin binary loader in the high-speed paper tape reader.
Set ADDRESS Switches to 7720 (17720 for 8K systems).
Press I/O RESET and READIN. The computer will halt (AC=777777).
Place binary tape of Editor in high-speed reader and press START. The Editor will be loaded into memory and will
type EDITOR on the Teletype.
2.3.1.3 Loader Halts —
AC=1777777 Program loaded.
AC=non-zero Checksum error on last block loaded. Reposition tape to blank frame prior to
beginning of last block and press START to read again. To ignore error, press
CONTINUE.
2.3.2 Initialization
The Editor always begins with control at the edit level and assumes that the user wishes to modify some existing text.

When first loaded, or when restarted, the Editor types EDITOR, followed by the I/O initialization request sequence
(the underlined portion is typed by the Editor).

Select input device: INTXT* p)

H,L) User specifies high-speed (H)
Select subsidiary device: GETXT*) or low-speed (L) paper tape

HL) device,)= carriage return.
Select output device: OUTXT*‘)

H,L

The user’s response to INTXT* initializes the Editor to handle the READ command. If it is L) ,the low-speed reader
on the Teletype is used to read ASCII text into the block buffer for editing. If the response is H) , the Editor expects
to find the ASCII text on the high-speed paper tape reader. Similarly, the user’s response to GETXT#* initializes the
Editor to handle the GET command by selecting the high- or low-speed reader as the subsidiary device. (The user may
specify that the same device be used for both READ and GET.) The response to OUTXT* selects the output device,
initializing the Editor to handle the WRITE command on the high- or low-speed punch. To obtain a listing of the
edited text, the user must specify the ASR33 punch as the output device by responding to OUTXT* with L D

The carriage return is the signal to the Editor to process each step in the initialization. The Editor interprets only the
letter immediately preceding the carriage return to be the desired device selection (i.e., HXL p) is equivalent to L)).

2-4(Part II)

If that letter is not an H or L, the Editor assumes that a mistake has been made and repeats the initialization message.
If the user’s response specifies the device that is not ON, or is not even part of the system, the Editor goes into an
indefinite loop, the first time it attempts to use that device, waiting for a response from a device that is not available.
In that event, the Editor may be restarted (press STOP, set the Address switches to 224, and press START) and
reinitialized.

2.3.3 Operation

All text in the buffer is available for editing until a WRITE command is issued or until each individual line is deleted.
Using a block buffer has the advantage of rapid correction of command errors. If the user finds that he has typed the
wrong command, he can immediately correct it since the buffer has not yet been added to the output file.

If the ASR33 is the output device, the punch switch must be OFF except when actually outputting edited text (see
Paragraph 2.3.3.2). This avoids contamination of the output tape by command echoing and typing of Editor
commands. The Teletype punch must be specified as the output device to obtain a listing.

2.3.3.1 Editor Break (CTRL P) — Frequently, having made a mistake in his command string, the user may wish to
stop processing and reissue his command. When the user types the break character CTRL P (formed by depressing the
CTRL key while striking P) during command processing, the normal instruction sequence is interrupted as soon as
processing of the current line has been completed.

Control is transferred from the command processor to the edit command decoder. The line after the line that was
being processed when CTRL P was typed is left in the work area as the current line for examination or modification.
The Editor then awaits a new command from the keyboard.

The break character (echoed as tP) results in program restart when the Editor is waiting for a command. On input
level, the break character results in a transfer of control to the edit level (see paragraph 2.4.1.2).

2.3.3.2 Editor Continue — If the INTXT* device is the Teletype, the Editor halts after a READ. The user must turn
the Teletype reader switch to OFF and then press CONTINUE. Similarly, if the GETXT* device is the Teletype
reader, the Editor halts after a GET to allow the user to turn the reader switch to OFF and press CONTINUE. If the
OUTXT* device is the Teletype punch, the Editor halts twice in the execution of a WRITE. After the
command-terminating carriage return, the Editor halts to allow the user to turn on the punch, thus avoiding
contamination of his output tape. When punching stops, the Editor halts and waits for the user to press CONTINUE
as a sign that the Teletype punch has been turned off, and messages may be typed safely.

2.3.3.3 Editor Recovery — If a paper tape reader out-of-tape condition occurs during the execution of a command,
the user can recover by typing CTRL R (formed by depressing the CTRL key while striking R).

2.3.3.4 Using the Erase and Kill Characters — The Editor allows the use of two keyboard characters for correction of
the line currently being typed by the user. The RUBOUT key (erase character) results in the deletion of the
immediately preceding character. The Editor echoes a backslash (\) for each RUBOUT typed. CTRL U (“kill line”
character) results in deletion of the entire line typed so far. CTRL U is formed by depressing the CTRL key while
striking the letter U. The Editor echoes an at sign (@) each time CTRL U is typed.

2.3.3.5 Editor Restart — To restart the Editor at the beginning of the initialization sequence, the user should press
STOP, set the Address switches to 2254, and press I/O RESET and START.

2-5(Part II)

If, during command processing (especially FIND and LOCATE), the Editor attempts to move the current-line pointer
past the end of the block buffer, it is assuming the user has made a mistake and types

END OF BUFFER REACHED BY:

followed by the command string. The user must issue a TOP request if further modifications to the current block are
required.

If the user requests SIZE wan, where n is greater than the number of full-length lines that the block buffer can hold,
the Editor types

CAPACITY WARNING

The user may respond with CTRL U to proceed as though the SIZE _, n request were never issued, or he can type a
carriage return to ignore the warning and continue. If the user types a carriage return, the command is processed and
the Editor’s buffer capacity may be exceeded.

CAPACITY WARNING is also typed when the Editor calculates that execution of a command will result in more than
SIZE or the internal parameter SYSMAX (whichever is greater) lines in the buffer. Again, the user has the option of
killing the command (CTRL U) or of processing it anyway (carriage return). The Editor calculates the number of lines
in the buffer without regard to their length. For example, with a 4K system, the Editor could easily hold 30 lines of
CAP-15 assembly language instructions without comments. Thus

>SIZE v 30
CAPACITY WARNING
>READ

>

would be extremely dangerous if the user intends to add extensive commands throughout his code with the APPEND
command. Since the APPEND command does not change the number of lines in the buffer, the user would receive no
additional capacity warnings unless he attempted to use INSERT, INPUT, or GET.

2.3.4 Error Recovery
Operator command errors are detected by the Editor. The message
NOT A REQUEST:

is typed, followed by the command string in error. The user should then retype his command in the correct form.

2.4 COMMAND LANGUAGE

2.4.1 Control Commands

Editor control commands consist of three commands that cause the Editor to enter the input level, and one command
to enter the edit level. (Control is initially at the edit level). These commands are described in the following para-

graphs.

2-6(Part II)

2.4.1.1 Transfer from Edit to Input Level — Any one of the following three commands causes the Editor to transfer
control from the edit level to the input level.

a. Carriage return ()) typed as the first character on a line.

b. The INSERT command (see Section 2.4.4.4) with no arguments. In this case the current line is added to the
output before the control level is changed.

c. The OVERLAY (v n) command (see Section 2.4.4.7). In this case, n lines (or the current line only if n is
omitted) are deleted from the buffer before the control level is changed.

2.4.1.2 Transfer from Input to Edit Level — A carriage return typed as the first character of a line when operating in
the input level causes the Editor to transfer control from input level to edit level. The user can also change the control
level by typing CTRL P (formed by depressing the CTRL key while striking P). When control has been transferred to
the edit level, the Editor awaits the next command from the Teletype. The line after the line that was being processed
when CTRL P was typed is left in the work area as the current line, ready for examination or modification.

2.4.2 Editor Commands

2.4.2.1 SIZE [S] { L n) — Set the total number of lines that will occupy a buffer to n. The SIZE command may
be issued at any time, and takes effect when the next group of lines is loaded into the buffer via a READ command.
The integer variable n is initially set to 20,, for a 4K system, or 55,, for an 8K system, and must always be set
greater than 1.

2.4.2.2 READ) — Reads sequential lines from the input device, loading them into the buffer as they are
encountered, until the number of lines in the buffer is equal to the argument specified in the SIZE request. The
pointer is set to the first line of the buffer when the operation is complete (see Figure 2-3). The READ request will
not be accepted if any lines remain in the current buffer. The buffer must have been cleared by DELETE requests or a
WRITE command.*

POINTER

—— PSEUDO LINE (BLANK)
~N

LINES READ FROM INPUT
DEVICE AS SPECIFIED
BY SIZE REQUEST

Figure 2-3. Line Buffer After READ Command

*If the input device runs out of tape, the user may terminate the processing of this command by typing a CTRL R on the Teletype.

2-7(Part II)

If more than one block of text is to be read, the READ command inputs the first line of the next block into an
intermediate buffer. This means that if the user changes tapes on the input device between READs, he will find the
“next line” from the previous tape at the top of the block buffer, followed by SIZE-1 lines from the new tape. This

does not occur if GET is used to input the new tape into the block buffer, since GET does not use an intermediate
buffer.

NOTE

If the input device is the low-speed paper tape reader, the Editor halts at the
beginning of a READ to allow the user to turn on the reader. Also, the Edi-
tor halts at the completion of a READ to allow the user to turn off the
reader; the user should press CONTINUE to proceed.

2.4.2.3 GET [G] (s n) D~ The next n lines from the subsidiary input device are added to the buffer below the
current line. When command processing is complete, the nth line read is left in the work area as the current line. If n
is omitted, it is assumed to be 1. The pointer remains at the last line read (see Figure 2-4).

2.4.2.4 RENEW D - The contents of the block buffer are written on the output device and a new block is read into
core.*

2.4.2.5 WRITE)) — Punches the current contents of the block buffer on the OUTXT device, and clears the buffer.*

2.4.2.6 CLOSE) — This command must be preceded by a WRITE request. The remainder of the input file is then
written on the output device.*

2.4.3 Pointer Manipulation

The pointer is a software device that places the current line in a work area to facilitate editing. After a page of text
has been read, the pointer is positioned at the top of the block buffer to allow the user to insert text before the first
line in that block. This is done by keeping a pseudo line in the buffer which is never punched out. Thus, the first line
of the text in a block is the “second” line in the buffer. Consequently, the first line of the block of text in the buffer
is shifted one position to the right when examined with the PRINT command. This “space” is not printed. The
following paragraphs describe commands that enable the user to manipulate the pointer.

2.43.1 TOP [T]1)) — This command moves the pointer to the beginning of the edit block buffer. The first line of the
buffer becomes the current line (see Figure 2-5). :

*If the output device is the low-speed punch, the Editor Continue feature provides protection against output contamination (see para-
graph 2.3.3.2).

2-8(Part II)

POINTER

(BEFORE GET)

POINTER

(AFTER GET)

— PSUEDO LINE

— CURRENT LINE
BEFORE GET

T{— 1 LINES

“—7'" LINE (CURRENT
LINE AFTER GET)

—— LAST LINE
IN BUFFER

GET T{ISSUED WITH POINTER WITHIN BUFFER

POINTER ——PSEUDO LINE
(BEFORE GET)

TI—1 LINES

POINTER
(AFTER GET)

— —n™une

—— LAST LINE IN BUFFER

GET n ISSUED WITH POINTER AT TOP OF BUFFER

—— PSEUDO LINE

POINTER

(BEFORE GET)

——LAST LINE IN

BUFFER

N-1 LINES

th
m'"&t_——j T 7 LINE

(AFTER GET) ~ ———==—=—===<

GET T] ISSUED WITH POINTER AT BOTTOM OF BUFFER

NOTE: If GET n attempts to exceed the maximum line buffer size, CAPACITY WARNING will be typed. The user
may type a carriage return ()) to ignore the warning and continue, or he may type CTRL U to proceed as though the

command were never issued.

Figure 2-4. Line Buffer After GET Command

NOTE

If the input device is the low-speed paper tape reader, the Editor halts at the
beginning of a GET to allow the user to turn on the reader. Also, the Editor
halts at the completion of a GET to allow the user to turn off the reader; the
user should press CONTINUE to proceed.

2-9(Part II)

POINTER — PSEUDO LINE
(AFTER TOP) — FIRST LINE OF TEXT

POSSIBLE POSITION OF
POINTER) — CURRENT LINE BEFORE
(BEFORE TOP) TOP COMMAND

Figure 2-5. Line Buffer After TOP Command
2.4.3.2 NEXT [N] (ra n),) — The pointer is moved past the next n lines, beginning with the line currently in the
work area. Line N+1 is brought into the work area for modification (see Figure 2-6). If omitted, n is assumed to be 1.

If the command results in the pointer moving past the last line of buffer, the error message

END OF BUFFER REACHED BY:
NEXT n

is printed and the pointer is moved to the top of the buffer.

— PSEUDO LINE
— FIRST LINE OF TEXT

POINTER — CURRENT LINE
(BEFORE NEXT)
TI-| LINES
POINTER — LINE M +1 (NEW "CURRENT" LINE)

(AFTER NEXT)

Figure 2-6. Line Buffer After NEXT Command

2.4.3.3 FIND [F] v string,)) — This command searches the buffer for the next line that begins with the character
group “string”. The search begins with the line following the current line. If the search is successful, the line beginning
with “string” is brought into the work area (see Figure 2-7). If the search is unsuccessful, the END OF BUFFER
message is printed and the pointer is moved to the top of the buffer. “String” may contain any number of characters.

2.4.3.4 LOCATE [L] 1 string) — This command searches the buffer for the next occurrence of a line that
contains the character group ‘“‘string.”” The search begins with the line following the current line. If the search is
successful, the line containing “‘string” is brought into the work area (see Figure 2-8). If the search is unsuccessful, the
END-OF-BUFFER message is printed and the pointer is moved to the top of the buffer. ““‘String’” may contain any
number of characters.

2-10(Part II)

— PSEUDO LINE

I
POINTER — CURRENT LINE (BEFORE
(BEFORE FIND) FIND IS EXECUTED)
FOINTER — CURRENT LINE (AFTER
(AFTER FIND) FIND IS EXECUTED)
OR LINE BEGINNING WITH
"STRING"
FIND STRING WHEN "STRING" IS FOUND
POINTER
BFTER FINET — — PSEUDO LINE (CURRENT LINE
AFTER FIND IS EXECUTED)
POINTER
—— CURRENT LINE (BEFORE
(BEFORE FIND) FIND IS EXECUTED)

FIND STRING WHEN "STRING" IS NOT FOUND

Figure 2-7. Line Buffer After FIND Command

2.4.3.5 BOTTOM [B]) — This command moves the pointer to the beginning of the last line in the buffer. The last
line is typed on the Teletype (see Figure 2-9).

2.4.3.6 SEARCH o string — The entire input tape is searched for the next occurrence of a line beginning with the
character group “string.” This command must be preceded by a WRITE to clear the block buffer. If the search is
successful, the line beginning with “string” is brought into the work area with the remainder of the buffer left empty
for inputting new text or large inserts for the subsidiary input device using the GET command.

NOTE

If the output device (OUTXT¥) is the Teletype punch (L), the Editor will
halt at the beginning of a SEARCH to allow the user to turn on the punch.
The user should press CONTINUE to proceed with the SEARCH. When the
line beginning with “string” has been found, the Editor will again halt to
allow the user to turn off the punch. Again, the user should press
CONTINUE to proceed.

2-11(Part II)

N 5

— PSEUDO LINE

POINTER ___ CURRENT LINE
(BEFORE LOCATE) (BEFORE LOCATE IS EXECUTED)

CURRENT LINE
POINTER — (AFTER LOCATE IS EXECUTED)
(AFTER LOCATE) OR LINE CONTAINING "STRING"

LOCATE STRING WHEN "STRING" IS FOUND

POINTER ___ PSEUDO LINE
(AFTER LOCATE) (CURRENT LINE AFTER LOCATE
IS EXECUTED)

POINTER __ CURRENT LINE
(BEFORE LOCATE) (BEFORE LOCATE 1S EXECUTED)

LOCATE STRING WHEN "STRING" IS NOT FOUND
Figure 2-8. Line Buffer After LOCATE Command

2.4.4 Editing Requests

The following paragraphs describe commands that enable the user to accomplish his actual editing task.

2.4.4.1 RETYPE [R] Iine) — The character string “line” replaces the current line. The new line is left in the
work area and may be modified.

2.4.4.2 APPEND [A] +u string) — “String” is added to the current line following the last character preceding the
terminating carriage return. Thus, to add a comment to the current line

JMS GETNUM)
the command might be

A v ——l /Get decimal argument. J NOTE: "l indicates a tab

2-12(Part 1)

-—— PSEUDO LINE
— FIRST LINE OF TEXT

POINTER

— CURRENT LINE
(BEFORE BOTTOM) (BEFORE BOTTOM 1S EXECUTED)
POINTER
—LAST LINE IN BUFFER
(AFTER BOTTOM) (CURRENT LINE AFTER BOTTOM

IS EXECUTED)

Figure 2-9. Line Buffer After BOTTOM Command

The new current line would be:
JMS GETNUM -+ /Get decimal argument.)

If “string” is absent, the current line is unchanged. When the current line is changed, the new line is left in the work
area and may be modified.

2.4.4.3 CHANGE [C] .., gstringlgstring2q) — In the current line, the first character group (stringl) which
matches that occurring between the first pair of delimiting characters (q’s in this case) is replaced by the character
group (string2) appearing between the second pair of delimiting characters. The delimiting characters are chosen by
the user and can be any character (including blank) that does not appear in either of the character strings. Both
“stringl” and ‘‘string2” may contain any number of characters, including zero. If VERIFY is ON (see paragraph
2.4.5.2), the program will print the new current line on the Teletype when the request change has been accomplished.
The new line is left in the work area and may be modified.

Examples
Current Line: NXTLIN JMS TYPOUT /PRNT THE LINE.
a. In the comment, spell PRINT properly, JMS TYPOUT /PRINT THE LINE.
REQUEST: CHANGEwL_/RN/RIN/)
NEW LINE: NXTLIN JMS TYPOUT /PRINT THE LINE.

b. Make the “JMS” a “JMP”".

REQUEST: CHANGE XSXP*X)
NEW LINE: NXTLIN JMP* TYPOUT /PRINT THE LINE.

2-13(Part 1I)

c¢. Delete the “T” in the tag,

REQUEST: Cwa [T/)
NEW LINE: NXLIN JMP* TYPOUT /PRINT THE LINE.

2.4.4.4 INSERT [I] v line — The character string “line” is inserted below the current line. The pointer is stepped
to place “line” in the work area and “line” becomes the new current line (see Figure 2-10). The program remains at
the edit level when the request processing is completed.

— PSEUDO LINE

(BEFORE INSERT)

POINTER — CURRENT LINE(BEFORE INSERT COMMAND)
— — INSERTED LINE OR CURRENT LINE AFTER
POINTER INSERT COMMAND,

(AFTER INSERT)

Figure 2-10. Line Buffer After INSERT Command

2.4.4.5 GET [G] (., n)) —This command adds n lines from subsidiary input device to buffer below the current
line (see Section 2.4.2.3). If the subsidiary device runs out of tape, the user may terminate processing of this
command by typing CTRL R on the Teletype. ,

2.4.4.6 DELETE [D] («u n)) — The next n lines, including the current line, are deleted from the buffer. The line
following the last line deleted becomes the current line (see Figure 2-11). If n is omitted, only the current line is
deleted. If n is large enough to cause the pointer to pass the end of the buffer, the END-OF-BUFFER message is
printed and the pointer is moved to the top of the buffer.

2.4.47 OVERLAY [O] (. n)) — Starting with the current line, n lines (or the current line only, if n is omitted)
are deleted from the buffer and the control level is changed to input level. When control returns to edit level, the
pointer will be positioned at the last line typed by the user.

2.4.5 Examination Requests
The following paragraphs describe commands that allow the user to examine text within the block buffer.

2.4.5.1 PRINT [P] («w n)) — The next n lines from the buffer, including the current line, are printed on the
Teletype. The pointer is left at the last line printed (see Figure 2-12); n is assumed to be one if omitted.

If, as a results of the request, the pointer moves past the last line of the buffer, the error message

END OF BUFFER REACHED BY:
PRINT n

2-14(Part 11)

is printed and the pointer is moved to the top of the buffer (see Figure 2-12).

~— PSEUDO LINE

PQINTER (S

(BEFORE DELETE) — CURRENT LINE (BEFORE DELETE)
| |
\ | -1 LINES DELETED
! 1
POINTER LINE T} + 1 (NEW "CORRECT"LINE)
(AFTER DELETE) n

DELETE n THAT DOES NOT REACH END OF BUFFER

POINTER PSEUDO LINE

(AFTER DELETE) " (CURRENT LINE AFTER DELETE)
POINTER

(BEFORE DELETE)] CURRENT LINE (BEFORE DELETE}

*
LINES DELETED

pm—---———-

DELETE 7] THAT REACHES END OF BUFFER

Figure 2-11. Line Buffer After DELETE Command

ON

2.4.5.2 VERIFY [V] (OFF)— Set Editor response according to the parameter. When VERIFY is ON, text
lines are printed in response to certain editing requests, as follows:

a. The line brought into the work area as a result of a FIND or LOCATE request is printed. ‘
b. The last line of the buffer, brought in by the BOTTOM request, is printed.

c. The new line resulting from a CHANGE request is printed.

When VERIFY is OFF, only error messages are printed. After the Editor is loaded initially, VERIFY is ON. The
verify request without arguments is equivalent to requesting VERIFY ON.

2-15(Part 1I)

POINTER
(BEFORE PRINT)

POINTER
(AFTER PRINT)

PRINT 7? THAT

POINTER
(AFTER PRINT)

POINTER
(BEFORE PRINT)

— PSEUDO LINE

— CURRENT LINE (BEFORE PRINT)

T—2 LINES PRINTED

Z_ n™ UNE PRINTED OR CURRENT

LINE AFTER PRINT

DOES NOT REACH END OF BUFFER

PSEUDO LINE
{CURRENT LINE AFTER PRINT}

— CURRENT LINE (BEFORE PRINT)

LINES PRINTED ®

»*
END OF BUFFER MESSAGE TYPED

PRINT TI THAT REACHES END OF BUFFER

Figure 2-12. Line Buffer After PRINT Command

ON

2.4.5.3 BRIEF . \ OFF) — Set Editor verification according to the parameter. BRIEF ON results in the abbre-
viated printing of the current line when responding to edit requests. An attempt is made to print only the tag, opera-
tion code, and address fields of lines brought into the word area as a result of the FIND, LOCATE, and BOTTOM
requests. The printing of the new line resulting from a CHANGE request is terminated at the last newly inserted
character. BRIEF is initially set to OFF. The setting of this indicator is of no consequence when VERIFY is OFF.

The brief request without arguments is equivalent to BRIEF ON.

2-16(Part II)

CHAPTER 3
OCTAL DEBUGGING TECHNIQUE

3.1 INTRODUCTION

Octal Debugging Technique (ODT) is a debugging aid that allows the user to conduct an interactive, on-line debugging
session using octal numbers and Teletype commands. The program, which is self-contained and completely
independent, is designed to run on a basic 4K or 8K PDP-15/10 with an ASR33 and will operate with PI or API
enabled. ODT is written in CAP-15 Assembly Language and may be assembled along with the user programs with
which it is to run. All symbols that are internal to ODT begin with a percent sign (%). Thus, if the user avoids
beginning his own symbols with this character, multiple definition of symbols will not occur when ODT is assembled
with the user program. However, ODT would normally be assembled separately from the user’s programs and then
loaded into memory only when desired. Standard versions which are delivered in object program form may be used
for the debugging of any programs as long as enough memory is available to load ODT at the proper locations.

Using ODT, the programmer can conduct a debugging session, and when errors are found, correct them on-line and
execute the program immediately to test the correction. Thus, ODT can be used to compose a program on-line and
check it out as composition progresses. Manual operation of console controls is not required to operate ODT; all
functions are initiated by typing commands on the Teletype.. The source coding for ODT is so designed that many
features can be removed by defining parameters at assembly time. This will be of prime interest to users who are
checking out large programs and wish to conserve core storage.

Appendix I provides a convenient listing of the Teletype code in octal form. Appendix J is a concise listing of ODT
commands.
3.2 GENERAL DESCRIPTION

All input to ODT is initiated through the console Teletype keyboard. In general, the user types commands to ODT
which control the following operations:

Starting the user program at any point.

3-1(Part II)

anbruyoa],

=}
(2}
(s
=
=)
&
=2
=
]
(]
e
5
ga

Stopping and subsequently continuing the user program at selected points called breakpoints.
Examining and/or modifying the AC and Link at a breakpoint.

Examining and/or modifying any memory locations (registers).

Searching user defined areas for registers with specified bit configurations.

Punching out areas of memory to be loaded later for more debugging and/or execution.
Initializing buffer areas to any desired value.
Selection of hardware options such as a high-speed or low-speed paper tape punch.

There are two outputs from ODT: teleprinter and paper tape punch (either high-speed punch or ASR33 punch). The
teleprinter is used by ODT to type all information concerning register contents and error indications. This output is
very useful since it contains the user’s commands as well as ODT responses, which can be analyzed off-line if
necessary. The paper tape punch is used to save or dump the user program, or portions of it, as the user desires. The
tapes generated when dumping a program are fully checksummed and can be loaded by the PDP-15/10 Loader. The
format of this tape is shown in Figure 3-1. Each memory word consists of three data frames of six bits each. The
program start address is distinguished from the other load addresses by having bit O set to 1.

v\M\

> Leader ($F command)
2 feet

~

Figure 3-1. PDP-15/10 Loader Format
3.2.1 Operational Organization
ODT can be loaded and used in four basic ways:
It can be loaded immediately following the user program, with control being given to ODT after it is loaded.
It can be loaded after the user program has been running.

It can be loaded before the user program(s) and initiated by manual control after the user program(s) has been
running.

It can be loaded by itself and used as a stand-alone program.

3-2(Part IT)

Block Start Address

of words in block (2's complement)

Checksum of block including the previous
two words (2's complement)

Block Body (any length)

Block Spacer (10 Frames)

More Data Blocks

Last Data Block

Program Start Address

Dummy word

Trailer

Figure 3-1. PDP-15/10 Loader Format (cont)

Data Block
>(k]; k2 $D command)

> Terminal Block (k$T command)

3-3(Part II)

In any case, ODT is initiated by starting the processor at location %ODT. The distributed version is loaded and
initiated at location %ODT (6000 for 4K and 16000 for 8K). However, the user may assemble versions of ODT which
are loaded at any location in memory. Also, by choice of .END statements, ODT may be initiated automatically by
the loader or may require manual initiation at location %ODT. Once initiated, the user has control over running and
stopping his program with keyboard commands. If ODT breakpoints are requested, the following modifications are
made to the user program:

Each instruction that the user designates as a breakpoint is replaced with JMS* AUTOX. This instruction gives
control to ODT when the breakpoint is encountered, and is removed when a breakpoint is executed so that the user
will see his own instructions if he examines these locations or dumps memory.

An auto-index register, the address of which may be examined and/or modified by using the $V command, is used
by ODT and may not be modified or referenced by the user program.

If the PI (program interrupt) is used, ODT must, during breakpoints, intercept all TTY interrupts and pass all other
to the user. Therefore the instruction at location 1 is replaced with the instruction JMP %INT. Location 1 is
restored when a dump is performed but it is not restored during other ODT operations.

3.2.2 Functional Organization

The internal organization of ODT is almost totally modularized into independent subroutines. In general, the internal
structure consists of major functions, as follows:

Initialization

TTY Character Input/Output
TTY Message Output

PI Intercept

Command Decode

Command Execution

3.2.2.1 Initialization — This function is performed when ODT is started at location %ODT. The tasks performed
include disabling the entire system (similar to an I/O reset), resetting miscellaneous registers internal to ODT, clearing
all breakpoint requests, clearing hardware and software flags, and initiating the command decode function.

3.2.2.2 Teletype Character Input/Output — All teletype communication is performed a character at a time; that is,
the input and output is not buffered. This means that the user must not type commands unless ODT is waiting for
one. If characters are typed while a requested operation is in progress, they will not be seen by ODT and will not be
echoed on the teleprinter.

3-4(Part I1)

3.2.2.3 Teletype Message Output — This function is performed by repeated use of the teletype character output
routine. The functions performed include the typing of addresses, register contents, operational messages and error
messages.

3.2.2.4 Pl Interrupt — If the PI is enabled, the Teletype will interrupt when it is ready for service. Therefore, during a
breakpoint, ODT must be able to handle the Teletype I/O interrupts. This function is performed with the help of the
PI Intercept (%INT) routine. This routine is entered, instead of the users interrupt program, on every program
interrupt which occurs while ODT has control. If the interrupt is not from the Teletype, control continues to the user

trap program.

3.2.2.5 Command Decoder - The functions performed by the command decoder include:

Reading the keyboard.

Assembling and saving all octal numbers typed by the user.

Detecting the command character.

Allocating control to the proper command execution subroutines.

Detection of illegal numbers and commands.
3.2.2.6 Command Execution — In general, each command has a separate entry point into the command execution
routines. These routines are entered from the command decoder. They exit either to the user’s program ($G, $C) or
back to the command decoder to interpret the next command.
3.3 COMMAND LANGUAGE

The following conventions are used throughout this section and the remainder of this chapter:

$ represents either the ALT MODE key or the dollar sign ($) key ($ is echoed).

k represents an octal number of six or less digits. When used to specify an address, k is five or less
octal digits.

n represents a single octal digit.
J represents carriage return
l represents line feed.

T (up arrow) is formed by depressing the shift key and typing N.

Any underlined text in the examples refers to that which is typed by ODT.

3-5(Part II)

Aindicates a blank or space.

Priority levels are specified as follows:

Highest 0
A 1 Hardware API levels.
2
3 Optional
4
5 Software API levels.
6
7
4 g8 T« PI level
Lowest 9 <« Program level

When a command is typed by the user, ODT responds in one of the following ways:

If the command does not require a typed response, ODT will respond with a carriage return and line feed (J4) to
indicate that the command has been accepted. On this type of command, the user should not type anything on the
keyboard until after ODT has typed the) |. Anything typed after the command and before the) will be ignored;
in fact, it won’t be echoed on the teleprinter.

On commands that request the contents of a register to be displayed, ODT performs the typed response but does
not follow with the) }; this allows modification and/or other commands to be typed on the same line.

On commands that cause multiple words, messages, or multiple lines to be typed, ODT terminates the output
with) L 4.

Illegal or incorrect commands are ignored, and ODT responds with ?) |.

3.3.1 Register Examination and Modification

The following paragraphs describe all ODT register examination and modification commands.

3.3.1.1 Open a Register (k/,/) — The command k/ causes ODT to open register k. This means that ODT fetches the
contents of register k, types the contents on the teleprinter, and then leaves the register open for modification. Once a
register is opened, the user may close it, or he may type a new octal value for the register and then close it. ODT
allows only one register to be open at any particular time. Thus, another register-opening command will close the
open register.

The / command causes the last referenced register to be opened. This allows the user to open and close register N,
perform some non-register-opening commands (possibly including the execution of his program), and then type / to
have register N opened again.

Example
400/002066) 1 Open and close register 400
397014 9 is illegal
3765/012643 17/001326) | Open and close register 3765 and then
open register 17
/001326)| Re-examine register 17
0/001472 Open register 0

3-6(Part II)

3.3.1.2 Close Register {))) — Typing a carriage return ()) closes any open register. If a register is open and the user
typesk) the value k will be stored in the open register and the register will be closed.

Example
300/000206) 4 Register 300 unchanged
300/000206 3333 pry Register 300 changed
/003333) 1 Verifies contents of location 300
0/001472 2791)4 Open register 0; Register O is not changed

If a register is open, typing another register-opening command will close it.

Example

300/003333 426/ 010000 Closes 300 and opens 426

3.3.1.3 Close Register and Open Next {{) — The line feed ({) works the same as the carriage return ()) except that
after modifying (optional) and closing the open register, the next sequential register is opened and its location and
contents are printed. Note that on the 4K machine, location O follows 7777.

Example

300/003333 126 4) Change contents of location 300 to 1264
00301/700301 - and open 301

Note that ODT types addresses as five digits and register contents as six digits with no leading zero suppression.

3.3.1.4 Close Register and Open Previous (1) — The up arrow (1) acts like the line feed ({) except that the register
previous to the currently open register is opened.
Example

30/7003141) 4 Open register 30. The 1 causes
0027/700002 ODT to open register 27.

3.3.1.5 Close Register and Interpret Contents as Address (<) — The left arrow (<) closes (optionally modifies) the
currently open register. It then interprets the contents of the register as a memory referencing instruction. ODT then
opens the register referenced by the address portion of that instruction. The indirect bit is not tested so that if the
register contained the instruction LAC* 200 the following would occur:

326/220200¢-) 4 Ignore the indirect bit and
00200/nnnnnn___ open register 200.

3.3.1.6 Open AC and Link Register (8A) — Typing SA at any time opens and displays the register holding the current
AC value. The value may be modified if desired.

3-7(Part II)

Typing | opens the next register which holds the Link status in bit 17. This may also be modified.
3.3.1.7 Display Pl and API Status ($J) — Typing $J causes ODT to sample and print the current PI and API status
registers. Since both of these may be running, the values may be constantly changing.
Example
$1)4

PI/nninnnn) |
APl/nnnnnn)4

The PI is sampled with an IORS instruction and the API is sampled with the RPL instruction. Definitions of the bits
in these registers may be found in the PDP-15 Reference Manual.

3.3.2 Execute Instruction k (k$X)

The instruction k will be executed. The saved AC and Link are restored before execution and saved again after. As
long as k is not a CAL, JMP or JMS, control will remain in ODT. On a JMS or CAL, control returns to ODT on the
instruction following the JMS or CAL, even if control is transferred to a routine that normally contains a breakpoint.
The JMP A instruction will be executed as though the command k$G were given, where k is address A. All other
instructions, except for the DBR instruction and the multiply/divide instructions of the EAE class, may be executed
in this manner. Note that a skip instruction that actually skips causes the current breakpoint return address to be
incremented by one.

ODT responds with)| as soon as the $X command is accepted. When ODT is ready to accept another command, it
types another carriage return — line feed sequence.

Example
1400128X)4 User executes a DZM 12.
PR T

3.3.3 Setting User Start Address

3.3.3.1 Open User Start Address ($Z) — Typing $Z opens a register internal to ODT and types its contents. The user
can then type the start address of his program followed by . Then the command $G (see Section 3.3.3.2) will
transfer control to the address specified. (The initial content of the $Z register is unspecified.)

Example

$Z000000 200) | Set start address equal to 000200.

3.3.3.2 Transfer to User Start Address or Address k (G, kG) — This command is used to start the user program at
any location. The command k$G starts the program at location k. The command $G starts the program as specified
by the $Z register.

3-8(Part II)

The normal use of $G is to initially start the user program. If breakpoints have been specified, they are set before
control goes to the user program. The AC and link are unspecified unless the user has used the $A command to set
particular values. The AC and link may also be specified by executing AC modifying instructions with the $X
command. The status of the PI and API are not altered by a $G command.

Another use of $G is to restart the user program at any point after a breakpoint has been encountered. That is,
instead of continuing after the breakpoint with a $C, the user can start at some other location by typing the $G
command. The user’s AC and link are restored for a $C command. Again, the PI and API are not disturbed.

3.3.4 Using Breakpoints
ODT allows the user to specify up to four breakpoints at selected locations in his program (except location 1). The

breakpoint facility of ODT provides a means of suspending the program operation at any desired point and then
examining the status of the program through the use of the other ODT commands.

3.3.4.1 Setting Breakpoints (kB, knB) — To set a breakpoint at location k, the user types k$nB, where nis 1, 2, 3,
or 4. If breakpoint n is already set at some location, it is moved to location k. The command k$B will assume
breakpoint 1.

3.3.4.2 Removing Breakpoints {($nB, $B) — To remove breakpoint n, the user can type $nB where nis 1, 2, 3 or 4.
To remove all breakpoints, the user can type $B.
NOTE

The above described commands do not immediately alter the breakpoints.
The mechanism is set so that the desired changes occur at the next $G or $C

command.
Example
$B) I Remove all breakpoints
30084B) ¢ Set breakpoint 4 at location 300.
17603BJ) | Set breakpoint 1 at location 1760.

3.3.4.3 Continue from Breakpoint (C, kC) — The $C command causes the user’s instruction at the breakpoint to
be executed and control to be returned to the user program. The k$C command does the same thing except that a
loop count is set so that the break does not occur until the kth time it is encountered. This command may be given
only while a breakpoint is in progress. Note that even though the loop count may not be satisfied, ODT is still entered
and has control for about 200 us on every pass through the breakpoint. During this time, re-entrancy may occur (see
paragraph 3.3.4.9). Note that $C is the same as 15C.

3.3.4.4 Kill Pl and APl During Breaks ($K) — Typing $K causes the PI and API to be disabled during all breakpoints.
Their status is saved and restored at the $C command. The $K command stays in effect until the $U command is
given.

3-9(Part II)

3.3.4.5 Allow Pl and API During Breaks ($U) — Typing $U re-enables the PI and API after having been disabled by
the $K command. This is the normal operating mode for ODT.

3.3.4.6 Vary Autoindex ($V) — The operation of breakpoints requires the use of one autoindex register. The user
may not use this register if ODT is used. Normally, ODT uses location 17 but the user may change this with the $V
command. Typing $V opens a register internal to ODT, which holds the address of the autoindex register. The user
may alter this value to any number in the range 10 through 17. This alteration, if performed, should be accomplished
before the first $G command is given to ODT. The user should also note that the autoindex register is used by ODT
even if breakpoints are not specified. Starting ODT at location %ODT will reset the autoindex location to 17.
Restarting ODT at %ZREST will leave the autoindex specification unaltered.

3.3.4.7 Open Re-entrant PC List ($Y) — This command, which is really only meaningful after a re-entrancy error,
opens the first breakpoint return address. Typing | opens the succeeding PC values. The list is terminated by an IOT
class instruction (op code 70). Note that the values in this list are the addresses + 1 of the active breakpoints.

3.3.4.8 Breakpoint Operation — When, during execution, the user program encounters the location of the breakpoint,
control is transferred immediately to ODT. ODT saves the user program AC and link. The status of the teleprinter flag
is also saved. From this point on, until a $G or $C command is given, the user does not have control of the Teletype.
ODT then replaces all break instructions and types the breakpoint number and location as follows:

DV 8BnAkyl
where n is the breakpoint number and k is the address of the breakpoint.

ODT is now in control and is waiting for the user to type commands. The user can examine and change any registers.
The current AC and link may be examined and modified by using the $A command. The user should note that the
instruction at the breakpoint has not been executed. It will not be executed until a $C command is given. The user
can remove and/or move any breakpoints at this time.

At a breakpoint, while ODT has control, the status of the PI and API is not altered (except for short periods of time
as described below). Thus, a breakpoint at priority n causes ODT to be entered and executed at that priority. This
means all processing at that priority level and below will stop.

However, all processing at priority levels above the level of the breakpoint will continue. It may be that the user will
want all processing to stop at a breakpoint. This may be accomplished in two ways. The user may set the breakpoint
in a section of code that is executed at the highest priority. If this cannot be done, the user can type the command $§K
to “kill” PI and API processing at the next breakpoint. The PI and API status is saved and then restored on the $C
command. The $K command can be typed at any time that ODT has control; it stays in effect until the $U command
is typed and vice versa.

3.3.4.9 Breakpoint Restrictions — The following restrictions apply when using breakpoints:

a. Breakpoints may not be placed at the following types of instructions:

(1) Instructions that are modified by the user program.

3-10(Part II)

(2) Instructions that are executed out of line by an XCT.

(3) Instructions or data that are not actually executed, such as instructions used as arguments following a
JMS.

(4) An instruction that uses indirect addressing and is the first indirect following a DBR instruction.
Breakpoints on other indirect instructions are not restricted.

(5) An instruction in an area operating in the extend mode.

(6) On any of the exit sequence instructions of a PI or API routine. For example, a breakpoint must not be
set on any of the instructions .

ION
DBR
JMP* 0

in the exit of a PI routine.

b. If a breakpoint is placed on a CAL instruction, the breakpoint will occur as normal. However, when the $C
command is given, the breakpoint will be removed before control returns to the user. Thus, a breakpoint on a CAL
instruction may only be executed once. A breakpoint may be set on any of the other memory referencing instructions
(op codes 04 through 60), any operate instruction (op code 74), and the EAE instructions (op code 64). The 10T
instructions are discussed in the next paragraph.

c. There is one IOT class instruction that cannot be at a location where a breakpoint is set; this is the DBR
instruction. Generally, this instruction requires that it be followed by a JMP* referencing the location holding the PC,
link and extend mode status. This will not occur if the DBR instruction is at the breakpoint, since many ODT
instructions will be executed after the DBR is executed and before the user regains control.

If the $K command is in effect, breakpoints should not be set at the IOT instructions listed below. If a breakpoint is
set at these instructions, the results will be as indicated.

IORS The PI bit will always indicate that the PI is disabled.
IOF No operation
ION Could cause ODT to fail if any breakpoints are defined within an

interrupt routine.

SPI SPI will operate correctly if the APl was off when the break was
executed; however, if the API was enabled, then ODT raises the priority
to level O (highest priority). This may cause SPI not to skip when the
user expects it to do so.

ISA If the API was disabled when the break was executed and if the ISA is
enabling the API, ODT may fail if any breakpoints are defined within
the API level routines. If the API was enabled when the break was
executed, then the API will be enabled and active at level O when the
ISA is executed. ODT will then DBK. Thus, if the user’s ISA has

3-11(Part IT)

RPL

requested an interrupt at levels 4-7, the ISA will work. If the ISA has
turned off the API, the ISA will operate correctly. But if the ISA has
tried to raise the priority to levels 1-7, the ISA will operate as a no-op.

If the API was off when the break was executed, RPL will work.
Otherwise, RPL will read a word into the AC which indicates that the
API is enabled and level 0 is active.

d. There are several timing considerations for setting breakpoint instructions.

(1) If the user is operating with no PI or API, then setting a breakpoint merely stops his program. Hence,
all I/O in progress will be terminated until the $C command is given.

(2)

3-12(Part IT)

If a XX8$C command is given, the breakpoint is not executed again until the XXth occurence. The user
must realize that on every pass over the breakpoint, ODT is entered, the user instruction is executed by
ODT, and then control is returned to the user program. Therefore, the instruction at the breakpoint,
which normally takes from 1.5 to 12 us to execute, will actually take about 200 us to execute.

If the use is running with PI and API enabled, then several additional timing restrictions must be
considered.

(a.)

(b))

(c)

Assume the user inserts breaks only at the program level (that is, at non-PI, API levels). When a
breakpoint is encountered, independent of the status of the iteration loop count, the PI is
disabled for short periods of less than 80 us and the API is temporarily raised to level O (highest
priority) for periods of less than 50 us.

Assume that the user inserts multiple breakpoints on the same priority level. When the breakpoint
is encountered at level n, ODT will operate at that level (except for the short intervals, described
in paragraph (2) (a) above where ODT operates at level 0). Therefore as long as the break is in
progress, which could be several minutes, all interrupts on that priority and below will be
inhibited.

Several possibilities exist if the user places breakpoints on more than one level. In general, ODT is
designed such that only one breakpoint may be in progress at any given time. However, it is
possible that a breakpoint is executed at level N and then, before ODT can remove the other
breakpoints, another breakpoint is encountered at a level M, where M has a higher priority than
level N. ODT always detects this situation, but there is no way to recover to the extent that the
user can continue his program. However, ODT will do the following:

Disable PI, API

Print the message ODT REENTERED
Halt

The user may press CONTINUE to restart ODT or he may manually restart ODT at location
%REST (16011 on the distributed version). Thus, the user may examine, with ODT commands,
the status of the program. In particular, he may use the $Y (see below) command to open up the
first location of list of PC values of all breakpoints which are now active. By stepping down the
list, he may determine which breaks occurred and in which order. The list may have from two to
four entries, but is terminated with an IOT class instruction (op code 70). At first glance, it may
appear that if a break is in progress, then the next break which interrupts the currently active
break will cause ODT to terminate. However, the following may occur:

A breakpoint instruction is executed at some level. This saves the PC (return address which is
the breakpoint address + 1).

A higher priority level becomes active and takes control away from ODT, possibly before
ODT can even save the AC. Of course, this may occur at any time before ODT removes the
other breakpoints.
Another break is executed on the higher level. This instruction will save the PC in the
location following the PC of the interrupted breakpoint. If this breakpoint routine (in ODT)
executes one more instruction, then ODT will detect the re-entrancy and the re-entrant error
process will be initiated. However, this second breakpoint may be interrupted by a higher
level request before it executes its first instruction (following the breakpoint instruction). Of
course, the higher level routine may contain another breakpoint; etc.

In any case, the following can be guaranteed:
In no case will the PC value of an executed breakpoint be lost.
Since there are a maximum of four breakpoints, either some breakpoint will get far enough
to detect the re-entrancy or the breakpoint at the highest level will be executed. This means

all other breaks are locked out so that the re-entrancy will be detected.

On multiple entries, all AC values after the first will be lost. The first AC may or may not be
lost.

Thus, in case of re-entrancy, ODT will not collapse and the user will be able to determine what
happened. The user may not issue a $C command. The 3G must be used to restart the program.

3.3.5 Searching Operations
ODT has the capability to search a specified area of memory for any bit configuration in any specified bit position.
When a match is found, ODT types the location and the contents of the memory register. The search is performed
between a low and high limit with the following algorithm:

a. Get the memory word

b. Mask with the search mask (see below)

¢. Compare with k£ from the k§W command

d. If equal, print location address and unmasked contents. If not equal, go to next memory register.

The following command sequence is used to set the mask, low limit, high limit. and initiate the search:

™M Open mask register for modification
{ Open low limit register

{ Open high limit register

kSW Search for &k

3-13(Part II)

The mask and limits must be set before the k§W command is given. Otherwise, whatever is in these locations will be
used.

Note that a core dump between the low and high limits is performed if the user specifies a mask of O and then types
0O$W (SW is the same as a OSW).

Example

Suppose the user wants to locate all IMS instructions between location 200 and 1500. The command sequence would
be as follows:

$M 077336 7400008) User opens and changes the mask.
07745/00100 200¢) The line feed on previous line opens low limit
07746/007000 1500)4 Opens and changes high limit.

1000008W)| User types JMS op code and then
00300/102030)V ODT starts the search

01476/1 26750) W There are two JMS instructions

JMS 2030 at location 300 and

JMS* 6750 at location 1476.

NOTE
The address of low-limit and high-limit registers may vary depending upon
the assembled version of ODT.
3.3.6 Initialize Buffers ($I)
This command is used to load a specified value into any contiguous block of memory. The user defines the block to
be loaded by setting start and stop addresses into the low and high limits of the word search routine. This means the
user must first open the mask with $M and then type a line feed ({) to open the low limit. Once the start and stop
addresses have been set up, typing k$1 causes the value k to be loaded into the buffer. Typing $1 is the same as typing
O8I.
Example
M 74000O¢_‘_)_ User opens MASK and then types | to open low limit. Change to 433.
Open high limit and change to 624. Fill buffer with 400000.
07745/000200 433})
07746/007000 624)4

40000081) |4

3-14(Part II)

NOTE

The address of low-limit and high-limit registers may vary depending upon
the assembled version of ODT.

3.3.7 Paper Tape Output

The following paragraphs describe the ODT paper tape output commands.

3.3.7.1 High-Speed/Low-Speed Punch Available ($H, $L) — Typing $H indicates to ODT that all punching is to be
performed on the high-speed punch. Typing SL indicates to ODT that all punching is to be performed on the
low-speed punch (ASR Teletype). Since the low-speed punch and the teleprinter are physically connected, the user
always has the punch turned off until after a command to punch has been given to ODT. ODT halts to allow the user
to turn the punch on and off at the correct times. The user operates the CONTINUE switch on the operator’s console
to resume ODT operations.

3.3.7.2 Feed Leader ($F) — The $F command causes about 2 feet of leader to be punched either on the high- or
low-speed punch (depending on whether $H or $L has been seen by ODT). For the low-speed punch, ODT halts to
allow the user to turn on the punch. The user then operates the CONTINUE lever. When the punching is complete
ODT halts again so that the punch may be turned off before the next command is typed. The punch must be off
when the keyboard is used or else the commands will be punched as they are typed. The halts are not performed
when the high-speed punch is used.

NOTE

The initiation of any punching permanently disables the PI and API. The
user’s program may not be continued with $C. The program must be
restarted with a $G.

3.3.7.3 Dump Block of Memory (k, ; k, $D) — This command causes the dumping of all locations between k, and
k,, inclusive. If the low-speed punch is used, halts occur before and after punching. If k, is not specified, an error is
assumed.

All dumping is performed in the PDP-15/10 Loader format (see Figure 3-1). The main feature is that noncontiguous
blocks may be punched, each with a separate checksum. After the last block there is a special start block that tells the
loader to stop loading and transfer control to a specified address. This terminal block is punched by using the k§T
command. As many blocks as desired may be dumped before the k3T is issued.

3.3.7.4 Terminate Punching (k$T) — The k$T command causes the terminal block (see paragraph 3.3.7.3) to be
punched. If $T is typed, the loader halts when loading is complete. If k$T is typed, the loader gives control to
location k when loading is completed.

3-15(Part I1)

3.4 OPERATING PROCEDURE

This section contains paragraphs describing the ODT loading procedure, start-up procedure, conditional assembly, and
€ITOT TECOVery.

3.4.1 Loading Procedure

ODT can be loaded in several different ways. Since the user will have the symbolic source tape of ODT, he may
assemble it into any convenient, contiguous block of memory. The pseudo-op .LOC must be supplied by the user.
ODT would not, in general, be assembled below location 101; ODT may not, under any circumstances, be assembled
below location 21. ODT may either be assembled and loaded with the user program, or assembled separately and
loaded with the user program. It could even be loaded after the user program has been running. ODT may be
assembled in the .FULL mode if desired.

ODT will also be supplied as a binary tape that can be loaded by the PDP-15/10 Loader. Assuming that the loader is
already in memory, proceed as follows:

Press I0 RESET

Set the Address switches to 7700 or 7729 (17700 or 17720, if 8K). Note that these two addresses are for the two
versions of the Loaders; the first one for the low-speed and the second for the high-speed paper tape reader.

Press START. ODT will be initiated automatically by the loader unless a checksum error occurs. The distributed
binary version loads at location 6000 (16000 if 8K) and runs almost up to the PDP-15/10 Loader. The addresses for
starting and restarting are:

%0DT

1

6000 %0DT 16000
4K systems or 8K systems
6011 %REST = 16011

%REST

3.4.2 Start-Up Procedure

Several start-up procedures may be used with ODT. The distributed binary version starts automatically when loaded.
User-assembled versions are started in a manner dependent upon the .END statement used. The source tape will not
have an .END statement. Instead, it will have the .EOT pseudo operation. When the .EOT is encountered the user
may continue with another segment of his program or he may insert a segment consisting of the .END statement. In

any case, the .END determines the start-up procedure as follows:

END %0ODT - ODT will start automatically when the binary tape is loaded.

.END X - The user program will start at location X when the binary tape is loaded. The user will have to manually
give control to ODT at location %ODT.

.END - The loader will halt when loading is complete. The user must manually start at %#ODT when he is ready.

If ODT is in control initially, the user program is initiated with the $G command. Normally, control will then stay
in the user program until a breakpoint is executed.

In general, when ODT is started manually, an IO reset should be performed first.

3-16(Part II)

When ODT is initiated, it types) {{ to indicate that it is ready to accept commands.

3.4.3 Conditional Assembly

The ODT source program is designed such that certain features may be deleted under the control of assembly
parameters. At assembly time, a parameter tape may be read before the ODT source tape in pass 1. This tape contains
definitions of parameters that allow the user to generate a particular version of ODT. The parameter tape need not be
read on pass 2; however, reading it on pass 2 will provide a list of all defined parameters for the assembly.

A parameter is either “defined” or ‘““undefined.” Defined means that the parameter name appears in the Assembler
symbol table. “Undefined” means that it does not appear in the symbol table. None of the parameters are defined in
the ODT source code. If the source tape is assembled without a parameter tape, all of the parameters listed below will
be undefined; thus a version with all features will be produced. To define a parameter, %%J for example, include the
assignment statement

%%I=0) |

on the parameter tape. The parameter tape should be terminated by the .EOT pseudo-op. A complete description of
how to define a parameter is given in Paragraph 1.4.7.

The following paragraphs list the parameters available for ODT and their effect.

3.4.3.1 %%J — If undefined, the command $J (display PI and API status) is available. If defined, $J is not available,
thus saving approximately 21 (17,) locations.

3.4.3.2 %%X — If undefined, the $X (execute instruction k) command is available. If defined, the $X command is
not available, thus saving about 46 (38, 4) locations.

3.4.3.3 %%MULD — If undefined, there is no restriction on setting a breakpoint at a multiply or divide EAE class
instruction. However, if the user’s PDP-15/10 does not have the EAE option or if the user does not want to set
breakpoints at multiply or divide EAE instructions (the other EAE instructions are not restricted), then 25 (21;,)
locations may be saved by defining %%MULD

3.4.3.4 %%WM — If undefined, the word searching commands $M, $W, and the $I command are available. If defined,
these commands are not available, thus saving about 54 (44,,) locations. If the user defines %%WM, the utility
program SCAN may be used to perform the word searching or scanning function.

3.4.3.5 %%KU — If undefined, the commands $K and $U are available to control the PI and API at breakpoints. If
defined, these commands are not available, saving about 23 (19, ,) locations. In this case, $U is always in effect.

3.4.3.6 %%DFT — If undefined, the commands $H, $L, $D, $F, and $T are available to dump segments of memory in
the PDP-15/10 Loader format on either the high-speed ($H) or low-speed ($L) paper tape punches. If defined, these
commands are not available, saving about 213 (139, ,) locations. When these commands are not available, dumping
may be performed, in the HRI format, by the HRM Puncher utility program.

3.4.3.7 %%V — This parameter controls the $V command for varying the autoindex number. If %%V is undefined,
the $V command is available. But if %%O0B (see below) is defined, ODT will not need an autoindex register and the

3-17(Part II)

$V command will not be available even if %%V is undefined. If %%V is defined, then the $V command is not
available. In this case, ODT assumes register 17*. If %%V is defined and %%OB is undefined, approximately 30 (24,)
locations are saved. But if %%OB is defined, these 30 locations are included in the locations saved.

3.4.3.8 %%0B — This parameter controls the number of breakpoints allowed in ODT. As described in the paragraph
about the $B command (see paragraph 3.3.4.1), there are four breakpoints available. This is the case when %%OB is
undefined.
If %%0B is defined, there is only one breakpoint available. This has several consequences which are listed below. It is
assumed that the reader is familiar with the description of the breakpoint commands and restrictions described in
paragraph 3.3.4.

a. The command $B removes the breakpoint. (If $nB is typed, ODT ignores the n).

b. The command k$B sets the breakpoint at location k. If it was already set somewhere else, it is moved to
location k. (If k$nB is typed, ODT ignores the n).

¢. When the breakpoint is encountered, the message printed is “‘)l $B A k) |7 where k is the address of the
break.

d. The re-entrancy problem does not exist when only one breakpoint is available.
e. The command $Y (open re-entrant PC list) is not available.
f. No autoindex register is used; thus, the command $V (vary autoindex) is not available.

g. Approximately 214 (140,) locations are saved.

3.4.3.9 %AUTOX — The default assumption is 17 for which autoindex register to use. The parameter ZAUTOX may
be defined to change the default assumption; that is, if %2AUTOX is undefined, then register 17 is used unless changed
by the $V command. If %ZAUTOX is defined as

%AUTOX=XX

where XX is an octal number in the range of 10-17, then the default assumption will be autoindex register XX.

3.4.4 Error Recovery

3.4.4.1 Runaway Program — If the user program does not execute a breakpoint, ODT will not regain control. The
following sequence of operations may be performed to give ODT control:

Depress PROGRAM STOP.

Depress 10 RESET

*The assumed autoindex register may be changed by a parameter definition. (See ZAUTOX)

3-18(Part 1)

Set the address of %REST in the Address switches (6011 or 16011 on the distributed version).

Depress START

This will cause ODT to restore the breakpoint instructions and transfer control to the command decoder. The $G
command must be used to start the user’s program.

3.4.4.2 Re-Entrancy — The problem of re-entrancy on breakpoints is discussed in Section 3.3.4.9. ODT always
detects the re-entrancy and prints an error message. At this time the user cannot determine if the PI and/or API were
enabled when the re-entrancy occurred. However, the other PI and API status bits may be examined with the $J
command. The $Y command is used to open the first entry of a list of PC values with the following meanings:

PC, = Adr+ 1 of first breakpoint to occur
PC, = Adr+ 1 of next breakpoint to occur
PC, = Adr + 1 of nth breakpoint to occur (maximum of four)

70XXXX = End of PC list

After the first value has been printed (by the 3Y), each successive value may be printed by using the § command. The
end of the list is indicated by an IOT class instruction (70XXXX).

After a re-entrancy error, the user must again specify all breakpoints before restarting his program with the $G
command.

3.4.4.3 Breakpoint Entry Error — In the event of a software error in the user program or in ODT, it is possible that
control could come to ODT as though a breakpoint had been executed. ODT would not be able to determine which
breakpoint was executed; ODT would, therefore, proceed as follows:

Disable PI, API
Print BAD BREAK ENTRY
Halt

ODT can be continued by pressing CONTINUE or by manually starting at location %ZREST. Since, after a software
failure, the user program or ODT may be destroyed, the user should reload both his program and ODT.

Another situation, which is not a software error but an operational error, will cause the above error procedure to

occur. This is the execution of the instruction at the breakpoint address, out of line, with an XCT. If this is the case,
reloading is not necessary but the user’s program may be restarted only with the $G command.

3.4.4.4 Command Error — If a command is illegal or contains illegal characters, ODT ignores the command and
responds with ?) }. If, while typing a command, the user changes his mind, he can cause ODT to ignore the
command in the following ways:

Type an 8 or 9.

Type two ALT MODEs (or two $s)

3-19(Part II)

Type CTRL

Type an illegal command character (e.g., “E”).

3.5 ODT ASSEMBLY INSTRUCTIONS

ODT will be delivered both as an object program tape and as a source tape. The object program tape is loaded and
initiated at location ZODT (6000 for 4K and 16000 for 8K). This version includes all ODT commands defined in this
manual.

The source tape is provided to allow the user freedom to assemble ODT at different locations, in the .FULL or
PDP-15/10 Loader format, and with certain features and options deleted or changed.

Paragraph 3.4.3 described all of the conditional features of ODT. The largest version of ODT (no parameters defined
except possibly for ZAUTOX) is approximately 950, , locations. The smallest version (all parameters defined except
possibly %ZAUTOX) is approximately 530, , locations.

The source tape has no .LOC statement and does not have an .END statement. If the user assembles ODT by itself a
.LOC and .END must be provided on separate tapes (segmented source tapes are described in paragraph 1.4.2 (Part
II)). The main reason for leaving off the .LOC and .END is to allow the user freedom to change the .LOC or .END or
follow ODT with user programs without requiring an editing of the ODT source tape.

The following shows the coding for the tapes necessary to assemble ODT at location 200 in the .FULL mode with
automatic initiation and with the dumping and word searching commands deleted.

Tape 1
%%DFT 0!
%% WM 004
- .EOT pX
Tape 2
- .FULL) !
- .LOC - 20004
EOT D |
Tapes 3,4, 5
Supplied ODT source tape (segmented into three pieces).
Tape 6

~| END-|%0DT) |

On pass 1 of the assembly, tapes 1 through 6 must be read by the Assembler. On successive passes, it is not necessary
to include tape 1; however, doing so will cause the parameter assignments to appear on the assembly listing. All tapes
other than the parameter tape must be read on all passes.

3-20(Part II)

CHAPTER 4
COMPACT UTILITY ROUTINES

4.1 INTRODUCTION

This section provides descriptions of all utility routines supplied with the PDP-15/10 COMPACT Software System.
These routines include a FAST-15 system for DECtape handling, a hardware readin mode (HRM) punch routine,
paper-tape handling routines, Teletype 1/O routines, an octal dump routine, and a scan routine used to search core
memory.

4.2 FAST-15

4.2.1 General Description

FAST-15 (Fast Acquisition of System Tape) is a loading system for use in the PDP-15/10 COMPACT Software
System to retrieve frequently used programs from DECtape and to create system tapes. The main advantages of the
system are speed and ease of access.

The equipment required for use of FAST-15 includes a basic PDP-15/10 with 4,096 words of core memory, one Type
TCO02 DECtape Control unit, and one Type TU55 DECtape Transport.

The FAST-15 system tape, as distributed by Digital Equipment Corporation, contains commonly used system
programs such as the Symbolic Editor, the CAP-15 Assembler, and ODT. Since these can be called from DECtape
with only a small bootstrap, paper-tape handling is eliminated. This results not only in a significant time savings, but
also in increased reliability. FAST-15 is by no means restricted to systems programs; it can be employed very
conveniently for frequently accessed user-created programs. This chapter contains complete directions for use of the
FAST-15 system tape, as well as directions for adding user programs to the system.

4.2.2 The FAST System

The FAST System includes four programs: the FAST Loader, the High Writer, the Low Writer, and the Reader.

4-1(Part 1I)

-
-
-
-
=
-
-

<
.;CU
o
=
=
4]
v

Q
=}
=
=
>
@]
3

In normal use, once the FAST Loader and FAST Writer have prepared a DECtape for system use, only the FAST
Reader need be used; this program is commonly designated FAST.

4.2.2.1 FAST Loader — The FAST Loader writes a table of contents or directory onto block 1 of a certified
DECtape. The directory consists of 18 three-word entries; one entry for each of the 18 accumulator (AC) switches.
Each directory entry specifies three parameters for the program to be stored and retrieved, under the control of an
AC switch, as follows:

The first location in memory occupied by the program (load point),
The number of locations allocated in memory,

The starting location of the program.

4.2.2.2 FAST Writer — The FAST Writer transfers a program from core memory to DECtape as specified by the table
in the first DECtape block. Program selection is determined by the leftmost AC switch in the 1 position. The FAST
Writer exists in both high and low versions. The high version, which occupies location 7600 - 77774, is normally used.
However, it is permissable for programs read by the FAST Reader to overlay the first 1005 locations of the Reader
(e.g., locations 7600 - 76774). So that such programs may be written on a FAST DECtape, a low version of the FAST
writer, which occupies locations 100 - 3005, is used.

4.2.2.3 FAST Reader — The FAST Reader transfers a program from the DECtape to the computer memory in the
locations specified by the table in the first DECtape block. Program selection is determined by the leftmost AC switch
in the 1 position.

4.2.3 The FAST Loader
The FAST Loader writes a table of contents (directory) of predetermined programs onto the first block of certified

DECtape. This table determines the order of programs on DECtape and can be modified by the user. This table, which
is located at the end of the FAST Loader, contains the following information for all programs:

Its first location in memory (load point).
The total number of words to be loaded.

Its starting address.

One program or core image is assigned to each of the 18;, accumulator switches. To each switch, 32, , DECtape
blocks are assigned which allows 176005 words to be written and/or read. The number of blocks assigned to each
switch is not variable, but the number of words read or written is variable. Switch 17 has 30, , blocks assigned. This
allows 1700053 words to be written instead of 176005 .

To load the directory onto the first block of the DECtape, the user should first modify the table of contents in the

FAST Loader as necessary. This is most conveniently done by using the Symbolic Editor and punching a revised
source tape. Using the CAP-15 Assembler, prepare a binary object tape. Select the DECtape for unit 1-WRITE. Load

4-2(Part II)

the FAST Loader using the PDP-15/10 Loader; it will stop with all Is in the AC. Press CONTINUE to execute the
writing of the directory on block 1. If an error occurs, the Loader will return to the beginning and halt with all Is in
the AC; otherwise, it will halt with the AC clear (all 0s).

4.2.4 The FAST Writer

This description assumes that the DECtape which is about to be prepared is ready; that is, the FAST Loader has been
appropriately modified and the directory has been written onto block 1 of the DECtape.

To transfer a program from memory to the DECtape:
Load the program into memory.
Place the desired DECtape on a transport and select unit 1-WRITE.
Press I/O RESET.

Place the Writer in the paper tape reader, set the ADDRESS switches to 7600 (17600 for 8K systems), and press
START*. The Writer will stop with all 1s in the AC.

Set the DATA (AC) switches to select the desired program. Selection is controlled by the leftmost switch that is
up; all switches to the right of that one are ignored. (No switches up is equivalent to switch O up).

Press CONTINUE to execute the transfer. If no error occurs, the computer will halt with the AC clear. If an error
occurs, the Writer will return to the beginning and stop with all 1s in the AC.

4.2.5 The FAST Reader

The FAST Reader (commonly designated FAST) occupies memory locations 7600 - 77775 (17600 - 177774 for 8K
systems). FAST destroys the 665 locations immediately preceding the first location of FAST before the program is
read from the DECtape. However, the program read-in may overlay all of these 664 locations. If several programs are
to be loaded through repeated use of FAST, only the last program to be loaded may overlay the 66g locations
mentioned above since each call to FAST destroys these locations.

4.2.5.1 Standard FAST System Tape — The FAST System DECtape (prepared for system program retrieval)
distributed by Digital Equipment Corporation, allocates the first five DATA (AC) switches as follows:

Leftmost Program
Switch Up

0 Symbolic Tape Editor

1 CAP-15 Assembler

2 ODT (with all commands

defined)

*f the area of core to be written will overlay the Writer, then the user must read in the low version of the Writer and set the Address
switches to 100g.

4-3(Part 1)

Leftmost

Switch Up Program
3 Paper Tape Lister
4 Paper Tape Duplicator

The user can, however, prepare different system DECtapes and working program DECtapes by the method described
in paragraphs 4.2.3,4.2.4, and 4.2.6.

All of the standard system programs as distributed by DEC are initiated automatically by FAST after they are loaded.
All system programs, except for ODT, are not normally loaded into memory with user programs; thus, their memory
requirements are of no concern. ODT is loaded with user programs. This program is an overlay of FAST*, and must
be loaded by FAST after other programs have been loaded. The memory requirement for ODT is exactly the same as
the object program distributed on paper tape.

Program Load Address Start Address Size

ODT 6000 6000 (%0DT) 1665

6011 (%REST)

4.2.5.2 The FAST Start — These instructions are for use with DECtapes (similar to the one distributed by DEC) that
have been properly prepared.

Place the FAST System DECtape on a transport and select unit 1-WRITE LOCK.

Assuming FAST is already in memory, set the ADDRESS switches to 7600 (17600 for 8K systems) and press
START (this is known as FAST Start). The computer will halt with all 1s in the AC.

If FAST is not in memory, perform the following:
Press I/O RESET.

Place the FAST binary tape in the paper tape reader.

Set the ADDRESS switches to 7600 (17600 for 8K systems) and press START.
The computer will halt with all 1sin the AC.

Set the AC switches to select the program desired, according to the table of contents (written onto block 1 by the
FAST loader) associated with the DECtape.

*The first 1004 locations of FAST can be overlayed by a program read from DECtape.

4-4(Part 1I)

Press CONTINUE. The DECtape will rewind to block 1, search forward to the appropriate block, and transfer the
program. If no error occurs, control will transfer to the start of the program. If an error occurs, the computer halts
with all 1s in the AC. Check for an incorrect setting of the DECtape switches. The DECtape status flags can be
examined for possible malfunctions.

If the program just loaded did not overlay any part of FAST, then FAST is ready for the procedure beginning with
“Set the AC switches”. However, if the program did overlay FAST, FAST must be reloaded.

NOTE

The program selected is determined by the leftmost AC switch that is up; the
positions of other switches to the right are ignored by FAST. No switches up
is equivalent to switch O up.

4.2.6 Example Writing A FAST System Tape

This example shows how to add a program to the standard system DECtape. The program to be added uses 426
locations beginning with location 2000. The start address is 2010. The binary tape is in the CAP-15 Loader format.

4.2.6.1 Preparing the Directory — The standard systems tape has a directory with five programs assigned to switches
0 through 4. This example will use switch 5 for the new program. The directory may be changed in two ways. The
best method is to edit the source tape of the FAST Loader and assemble the new FAST Loader as described in
paragraph 4.2.3. This always generates a hard copy of the new directory. The other method, which may be faster but
is prone to errors, is to load the FAST Loader into memory, manually alter the proper directory entries and then
execute the FAST Loader. In any case, the first 6 entries in the directory are initially as follows:

TABLE TABLE /DUMMY LOCATION
ZERO 1 /SWITCH 0: SYMBOLIC TAPE EDITOR
' 7477
22 /STARTING ADDRESS
ONE 1 /SWITCH 1 PDP-15/10 ASSEMBLER
7477
22
TWO 16000 /SWITCH 2 ODT-15
1700
16000 J/OVERLAYS FAST
THREE 1 /SWITCH 3 PAPER TAPE LISTER
1000
22
FOUR 1 /SWITCH 4 PAPER TAPE DUPLICATOR
2000
22

4-5(Part II)

FIVE 1 /SWITCH 5 UNASSIGNED
7477
22

The standard system programs will remain as they are. Therefore, the entries for switches 0 through 4 need not be
changed. The entry for switch 5 will be changed to

FIVE 2000 /PROGRAM LOADED AT 2000
426 JUSES 426 WORDS
2010 /INITIATE AT 2010

When the directory has been properly prepared, it may be written on DECtape as described in paragraph 4.2.3.

4.2.6.2 Writing the Program on DECtape — To add the program to the system DECtape, proceed as follows:
Place the prepared DECtape on unit 1 - WRITE.

Place the binary tape containing the program in the paper tape reader.

Set the ADDRESS switches to 7720 (or 7700) and press [O RESET and then START.

Set the ADDRESS switches to 7600 (17600 for 8K systems), place the HRI tape for the FAST Writer in the paper
tape reader, and press READIN.

Set AC switch 5 up (all others down).

Press CONTINUE. The DECtape will rewind to block 1 and then will search forward to the proper block and write
out the program.

If no errors occur, the Writer will halt with Os in the AC. If it halts with all ls, an error has occurred. The program
will be written again if the user presses CONTINUE.

When the DECtape stops and the program halts with the 0 in the AC, the writing is complete. To check that the
program may be read again, proceed as follows:

Change the DECtape unit to unit 1 - WRITE LOCK.

Load the FAST Reader by placing the tape in the paper tape reader. Set the Address switches to 7600 (17600 for

8K systems) and press READIN.

Set AC switch S up. Press CONTINUE to read the program. Control should be transferred to location 2010 when
loading is complete. If an error occurs, the reader will halt with all Is in the AC. In this case, press CONTINUE to
read program A again.

4-6(Part 1I)

4.2.7 Assembling The High And Low Writers

As mentioned previously, the FAST Writer exists in two versions. The high version occupies locations 7600 - 77774
(17600 - 177774 for 8K systems) and the low version occupies locations 100 - 2774 . There is only one source tape for
the two versions of the Writer. The source code is conditionalized so that if the symbol LOW is defined, the low
version is produced at assembly time; if undefined, the high version is produced. (See Part II, paragraph 1.4.7, for a
complete description of conditional assemblies.) Thus, if the source tape is assembled by itself, the high version is
produced since LOW is undefined. The low version is produced by preceding the source tape with a parameter tape
containing the following two statements.

LOW =04

-|.EOTJ

4.3 HRM PUNCHER

4.3.1 General Description

The Hardware Readin Mode (HRM) Puncher is a self-relocating dump program, written in CAP-15 Assembly
Language. It can be loaded by means of the PDP-15/10 hardware readin (HRI) facility (see PDP-15 Reference Manual)
into any block of memory. Once loaded, the HRM Puncher relocates itself and punches out a block of contiguous
memory locations, specified by the user, in the HRI format. The HRM Puncher operates anywhere in up to 8K of
memory.

4.3.2 Output Format
Binary output is punched in the HRI format which consists of the data words followed by the hardware readin word.
The data words correspond to consecutive memory words from the start address through the stop address. Each word

is punched as three frames. Each frame has channel 8 punched and channel 7 not punched. Channels 1 through 6
contain six bits of the data word. The three frames correspond to the memory word as follows:

Frames i I 0 X X X X XX Bits 0-5
2 1 0 X X X X XX Bits 6-11
3 1 0 X X X X XX Bits 12-17
“‘ CYl1c:nne|s 1-6
Channel 7 not punched

Channel 8 always punched

Following all the data words is the HRI word which halts the processor. This word is different than the data words in
that channel 7 of the third frame is punched. The HRI word is punched as follows:

4-7(Part 1I)

e O © ¢ ¢ ¢ 0 O 74
e 0 0 0 0 0 O O 00 740040 = HLT

e ¢ ¢ 0 0 0 O © 40

The HRI reads this word and executes the instruction, i.e., the processor halts.

4.3.3 Functional Description

The HRM Puncher is self-relocating and self-initializing. It uses several locations external to itself. These are:

Location O

Locations 7766-7777, see below; (17766-17777 for 8K).

The source tape may be assembled under the control of two parameters to get four versions of the HRM puncher. The
parameters are defined (or left undefined) at assembly time by means of a parameter tape (See Paragraph 1.4.7). The
parameters are:

SLOW Defined for low-speed punch (ASR).
Undefined for high-speed punch.

V2 Defined to punch leader/trailer.
Undefined to punch no leader or trailer.

The four versions are described below. The distributed object program, in the .FULL mode, is for the low-speed
punch and produces leader/trailer.

4.3.3.1 High-Speed Punch With No Leader/Trailer — For this version, both parameters are undefined. The leader and
trailer should be provided manually. This version requires 733 locations for the puncher, plus locations O and
7770-77717 for pointers and temporary storage.

4.3.3.2 High-Speed Punch With Leader/Trailer — This version is assembled with V2 defined and SLOW undefined.
The memory requirements are 1155 locations for the puncher and locations O and 7766-7777.

4.3.3.3 Low-Speed Punch (ASR) With No Leader/Trailer — This version is assembled with only SLOW defined. The
memory requirements are 1023 locations for the puncher and locations 0 and 7770-7777. The leader and trailer
should be provided manually.

4.3.3.4 Low-Speed Punch With Leader/Trailer — Both V2 and SLOW are defined to assemble this version. The
memory requirements are 1244 locations for the puncher and locations 0 and 7766-7777.

4-8(Part 1)

4.3.3.5 HRM Puncher — The HRM puncher is divided into two almost equal parts. The first part performs the
relocation and initialization (which includes the reading of the switches to set the start and stop addresses for the
dump). The second part performs the actual dumping process.

4.3.4 Operating Procedure

The following paragraphs contain procedures for loading and starting the HRM puncher.

4.3.4.1 Loading Procedure — Proceed as follows to load the HRM puncher:

Press IO RESET.

Place the HRM puncher in the reader.

Set the address of where the HRM puncher is to be loaded in the ADDRESS switches.

Press the READIN key. -
The load address must not be 0. The address must be selected so that the HRM puncher does not overlay locations
7766-7777. The size of the puncher is defined for the various versions in Section 4.3.3.
4.3.4.2 Start-up Procedure — The HRM puncher can be started and/or restarted at any time after it has been loaded.
The procedure is:

Manually generate leader if necessary.

Press 10 RESET.
Initiate at the selected load address by pressing START. The program will halt immediately.

Load the start address for the dump into the AC switches. Press CONTINUE. The program will halt immediately.

Load the stop address for the dump into the AC switches (this address must be greater than the start address). Press
CONTINUE.

When punching is complete, the program will halt. Manually generate the trailer if necessary.

To repeat, or to punch out another area, repeat the procedure from the beginning.
4.4 PAPER TAPE HANDLING ROUTINES
4.4.1 Paper Tape Lister (PTLIST)

The Paper Tape Lister (PTLIST) is used to read an ASCII-coded paper tape from either the high-speed or low-speed
paper tape reader, and to provide a character-by-character listing on the Teletype. Carriage return and line feed

4-9(Part 1I)

characters must be punched on the tape if these operations are to take place (they are not handled automatically by

PTLIST). If a tab is encountered by PTLIST, it is converted to the appropriate number of spaces. Each tab stop is

assumed to be every tenth print position.

When the program has been loaded by the PDP-15/10 Loader, it will type the following message on the Teletype:
PLEASE READY THE INPUT DEVICE AND SET THE AC SWITCH.

If input is to be from the low-speed (ASR) paper-tape reader, the user should set the reader switch to the ON
position, set the AC switches to 400000, and depress the CONTINUE switch to start the listing. The program enters a
wait loop when the reader runs out of tape. Inserting more input will cause the reader to continue. Typing CTRL U
will cause the program to terminate*.

If input is to be from the high-speed paper tape reader, the user should set the AC switches to O and depress the

CONTINUE switch to start the listing. The listing will terminate when the reader runs out of tape. At termination, the
program types whatever is left in the input buffer and halts at location 21. Press CONTINUE to restart.

4.4.2 Paper Tape Duplicator (PTDUP)

The Paper Tape Duplicator (PTDUP) is used to duplicate and/or verify ASCII or binary paper tapes using the
high-speed paper tape reader and punch. The program can also be used to punch a title on a tape that is being
duplicated.

After the program has been loaded using the PDP-15/10 Loader, it prints the following message:

SWITCH? (M, V, or D)

The user should type the letter of the function that he wishes to perform, as described in the following paragraphs.

NOTE
At the end of the job the program halts at location 21. Press CONTINUE to

restart.

M (Master Tape Duplicator) — This switch allows the user to type in a title and have that title punched in readable
format preceding his duplicated tape. The following characters have a special meaning while typing in a title line.

ASCH Character Action
212 LINE FEED Punch a title line and return for more input
215 CARRIAGE RETURN Punch a title line and return for more input.
377 RUB OUT(S) Ignore the previous character(s)

*CTRL U is formed by depressing the CTRL key while striking the U key.

4-10(Part II)

ASCII Character Action

375 ALT MODE Punch title line and begin duplicating the tape (acts like D switch after
it punches the title).

225CTRLU Ignore whatever is typed on this line and begin to type a new line.
D (Duplicate a Tape) — The following message is printed:

PARITY

The user should type Y if ke wants even parity to be generated. Any other character will cause the paper tape image
to be duplicated as is. If the high-speed reader runs out of tape, the program will terminate when it has completed

punching the input buffer.
NOTE

The tape being duplicated must have at least one inch of trailer. The last ten
frames are not duplicated. '

V (Verify a Tape) — A parity check is performed on each frame. Frames not having even parity cause PARITY
ERROR to be printed. The program will stop with the reader positioned at one frame past the frame in error.
Depressing CONTINUE will cause the program to continue verifying.

At the end of duplication the input frame count and output frame count are printed in octal, as follows:

INPUT FRAME COUNT xxxxxx .
OUTPUT FRAME COUNT xxxxxx

If the input and output frame counts are unequal, an error has occurred. The user should then restart the job.

NOTE
If the punch runs out of tape, the programs halts with all 1s in the AC. Refill
the punch and continue.
The following message is always printed when verification has been completed.
PARITY ERROR = nnnnnn

where nnnnnn indicates the number of error frames in octal.

4.5 TELETYPE INPUT/OUTPUT ROUTINES
The Teletype Input/Output routines include the Teletype I/O Conversion (TICTOC) and the Decimal and Octal Print

packages. Each of the routines in these packages is described in the following paragraphs. Each package should be
assembled along with the program with which it is to run. The Teletype must be initialized by the user program to

4-11(Part II)

enable use of the Teletype I/O routines. This is accomplished by the statement TLS+10 at the beginning of the user
program (see PDP-15 Reference Manual).

4.5.1 Teletype 1/0 Conversion (TICTOC) Package

The Teletype Input/Output Conversion (TICTOC) Package is used to convert 8-bit ASCII code to a 6-bit trimmed
ASCII code, and vice versa. Formatting facilities are also available. Routines in the package fall into three main
categories: input, output, and formatting. The routines in each of these categories are described in the following
paragraphs, along with input and output formats and character sets.

NOTE

When using output and formatting routines, ensure that all characters have
been printed before halting. This can be accomplished by means of the “skip
if teleprinter flag set” instruction TSF (see PDP-15 Reference Manual).

4.5.1.1 Input Routines — The input routines include %TIC and %TIC1. %TIC is used to input a string of characters
from the Teletype and pack them three to a word into memory. The first, second, and third characters (in order of
arrival) are packed into the left, middle, and right sections of a word. Subroutine %TIC requires two arguments for
execution; the calling sequence is as follows:

%TIC (PC-1) LAW (Stop Character)
148} IMS %TIC
(PC+1) .DSA (Buffer Area)
(PC+2) (Return)

Stop Character may be the trimmed ASCII (see Section 5.1.4) or 8-bit ASCII of any character. %TIC will only look at
the rightmost six bits of the Stop Character. When this character is typed, %TIC stores it with the rest of the text and
returns to the calling program at location (PC + 2). Buffer Area is the address of the first location of a block of
storage into which the incoming text is to be packed. When the Stop Character (terminating character) is
encountered, it is packed and the rest of the word filled out with zeros, if necessary. The user is not allowed to use
the character @ as part of his text.

Four teletype keys have special meaning for %TIC:

LINE FEED (ASCII 212) — causes %TIC to ignore what has been typed and start over again. The input buffer
address is reinitialized to receive the new text, and %TIC outputs a carriage-return and line feed to the Teletype. The
tab count is set to 0.

AT SIGN (@ ASCII 300) — delimits the text externally. The @ performs the same function as the Stop Character.
The rightmost six bits are stored with the rest of the text and, if necessary, the word is filled out with zeros. Return is
made to location PC + 2 of the calling program (see calling sequence).

TAB KEY (ASCII 211) — TICTOC keeps a tab count. When the TAB key is struck, the Teletype spaces to the next
TAB stop. The spaces are stored in the input buffer with only the rightmost six bits being packed. The tab count is
then set to 0.

4-12(Part II)

CARRIAGE RETURN (ASCII 215) — The tab count is cleared and a Teletype carriage return and line feed are
executed. No data is packed and %TIC keeps listening. %TIC will not stop listening until either the Stop Character or
an @ (at sign) has been typed. %TIC uses subroutine %TICI1 to get an 8-bit ASCII character. %ZTIC restores the AC and
link before returning. Refer to Section 5.1.4 for list of valid %TIC characters.

%TIC1 Calling sequence:
(PC) IMS %TIC1 /Subroutine Call

(PC+1) (Return) /Return with 8-bit ASCII
character in AC.

Subroutine %TIC1 inputs a single 8-bit ASCII character from the Teletype. %TIC1 uses subroutine %TOC! to echo
the character that was typed on the keyboard.

4.5.1.2 Output Routines — The output routines include %TOC, %TOC1, and %TDIG.

%TOC — Subroutine %TOC is used to type out a string of text in the same format as described for %TIC (three
6-bit characters per word). Each 6-bit set is tested for being less than 40g. If the 6-bit set is less than 404, then 3005 is
added to it to form an 8-bit ASCII character. 2005 will be added to the 6-bit set if it is 404 or greater. When the 8-bit
character has been built, ZTOC will use subroutine %TOCI1 to print it. The calling sequence is as follows:

(PC-1) LAW (Stop Character)
(148} IMS %TOC

(PC+1) .DSA (Buffer Address)
(PC+2) (Return)

The AC and link are restored by subroutine %TOC. The buffer address is the address of the first word of the block of
storage containing the text. The last character in the typing string is the Stop Character, which is not typed. As in
%TIC, the rightmost six bits of the Stop Character are the only bits considered. If an at sign (@) is encountered, it will
act as if it were the Stop Character.

%TOC1 — Subroutine %TOC1 outputs an 8-bit ASCII character to the teleprinter. A tab count is kept by %TOCI
which is used by subroutines ZTABIT and %TIC. No assumption is made concerning the position of the teleprinter.
%TOC]1 types one character at the current position of the Teletype. The 8-bit character is not examined in any way
before printing on the Teletype. The calling sequence is as follows:

(PC) IMS %TOC1 /Call with 8-bit character
in AC.

(PC+1) (Return) /Return with AC and link
unchanged.

%TDIG — Subroutine %TDIG is used to type a single digit. The calling sequence is as follows:

4-13(Part II)

(PC) JMS %TDIG /AC must already be loaded.
(PC+1) (Return) /AC and link unchanged.
The AC must be set before calling %TDIG. The leftmost fourteen bits are stripped from the AC. The four bits left are

added to 2603 to form an 8-bit ASCII character. %TDIG uses subroutine %TOC1 to print the character.

4.5.1.3 Formatting Routines — The formatting routines include %CARR, %TABIT, and %SPACE. The calling
sequence and description of each routine follows.

%CARR — Calling sequence:
(PC) IMS %CARR /Subroutine call
(PC+1) (Return)
A carriage return (ASCII 215) and line feed (ASCII 212) are printed. The tab count is then set to 0.
%TABIT — Calling sequence:
(PC) IMS %TABIT /Subroutine call
(PC+1) (Return)

The Teletype spaces to the next tab stop. The tab count is then set to 0. This count is kept automatically. %TIOCN,
the number of spaces in a tab, is normally assembled as 8 (decimal), but may be altered by the user.

%SPACE — Calling sequence:
(PO) IMS %SPACE /Subroutine call
(PC+1) (Return)
A space (ASCII 240) is printed on the Teletype. The accumulator and link are unchanged by calling the formatting

routines.

4.5.1.4 Input Format and Character Set — The input characters read from the Teletype buffer by %TIC1 and %TIC
are 8-bit ASCII. They are converted to 6-bit ASCII by stripping off the high-order 2-bits. The character set is as shown
in Appendix [.

4.5.1.5 Output Format and Character Set — The 6-bit code is expanded to 8-bit ASCII by adding 2003 or 3005 to it.
If the 6-bit number is less than 404, 300, is added; otherwise, 2004 is added (see Appendix A).

4.5.2 Decimal And Octal Print Package

The Decimal and Octal Print Routines (%DIP, %OPT, %OPS, and %OPZ) are subroutines which dump the
accumulator in either signed-decimal or octal mode.

4-14(Part II)

4.5.2.1 Decimal Integer Print (%DIP) — This routine prints the signed decimal equivalent of an 18-bit binary number.
The binary number to be printed must be loaded into the AC before calling %DIP. Insignificant Os (leading Os) are not
printed; the routine types a space in place of each leading zero. In the case of a negative number, before typing the
first significant figure, the routine types a minus sign. If the number is positive, the sign is omitted (space) and

understood to be plus.

4.5.2.2 Octal Print Subroutines (%OPS, %OPT, %OPZ)} — The Octal Print subroutines type the contents of the
accumulator as an octal number, suppressing nonsignificant leading zeros if desired. Two methods of suppression are

available through two entry points.

a. %0PS - The (JMS %GPS) entry causes leading zeros to be suppressed; the printed number occupying only the

number of spaces needed to print all significant digits (left justified).

b. %OPT - The (JMS %OPT) entry causes leading zeros to be suppressed by blanks; the printed number is right

justified in six spaces.

c. %OPZ - The (JMS %OPZ) entry causes no zero suppression to take place.

4.5.2.3 Operation — Input to the subroutines is provided in the accumulator by the user.

The subroutines are called directly:

(PC-1) LAC NUM
(PC) IMS %DIP[%OPZ[%OPS/%OPT
PC+1) (Return)

Control is returned to the user at location PC + 1.

The link and AC are restored upon return to the calling program.

The character set for the decimal and octal print routines is as follows.
%DIP: -0,1,..9,Space

%0PS/%OPT 0,1,...7,Space

%0PZ: 0,1,..7
Examples
Input (AC) %DIP %O0OPT %0P2
7777177 -1 777777 777777
377777 131071 377777 377777
400000 -131072 400000 400000

%0PS

777777

377777

400000

4-15(Part II)

Input (AC) %DIP %OPT %0P2 %OPS

000000 0 0 000000 0
400055 -131027 400055 400055 400055
000055 45 55 000055 55

4.6 OCTAL DUMP ROUTINE

4.6.1 General Description

The Octal Dump Program allows the user to obtain either Teletype hard copy or paper tape output showing the
contents of any register or set for registers that he specifies. The user specifies which registers are to be dumped via
the Teletype keyboard as described in the following paragraph.

4.6.2 Input Format And Character Set

To obtain the dump of all memory locations between registers A (represented by xxx..) and B (represented by yyy..)

where A < B, the user must type xxx..-yyy..-. A minus sign must be placed after each address; there is no need to type
leading zeros in the address.

Examples

To dump from 10g to 254, type: 10-25-

To dump from 1004 to 13774, type: 100-1377-
To obtain the contents of a single register, type the address twice, followed by a minus sign each time, as usual.
Examples

To obtain 10, type: 10-10-

To obtain 7725, type: 7725-7725-

To obtain the contents of all registers from address A up to the end of memory (7777 in a 4K machine, 17777 in an
8K machine) type address A followed by a slash.

Example
1500/

To print out memory locations between two registers A and B, type the smallest register first and the largest second,
each followed by a minus sign.

Example

If A<B, type: A-B-
IfA>B,type: B-A-

4-16(Part II)

If the user types 6 characters and the sixth character is not a slash (/), or minus (-) the program will interpret this as
an illegal character. The highest possible address is 7777g (or 177773 for an 8K machine).

Always place a minus sign after each address. If an illegal (not octal) character is typed, the program does not
recognize it and types back a question mark (?) followed by a carriage return and line feed.

The input character set includes the numbers 0,1,...7, and the special characters / and -.

4.6.3 Output Format And Character Set
The output format appears as follows
LLLLL XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX

LLLLL xXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX

where the LLLLLs represent a five-character octal address in increments of 10g, and the xxxxxx’s represent the
contents (in octal) of locations LLLLL to LLLLL + 74.

Example
00100 123014 530126 430765 110476 104572 271246 312467 764213
00110 453123 693530 511430 610110 222104 631221 745311 113457
If all locations in any line or group of lines of at least 104 locations are equal, the output would appear as follows.
00120 123456 711111 740040 000000 000000 123123 740040 740040
740040 omitted
00160 740040 740040 740040 740040 740040 123123 600000 000000

The output character set includes only the digits O through 7.

4.6.4 Operation

DUMP is normally loaded starting at location 7300 (17300 for an 8K machine). The user can change this starting
address by reassembling the DUMP program, preceded by a strip tape. The strip tape satisfies conditional assembly
statements in the DUMP program by defining a start address. This is accomplished by setting the symbol LOW to the
desired starting address.

Example

LOW =224

-| .EOTJ/
(DUMP program follows)

4-17(Part 1I)

The above example would cause the DUMP program to be assembled starting at location 22. If the symbol LOW is not
defined, the default start address is location 7300 (17300 for an 8K machine).

After loading the program starts automatically. It types a carriage return/line feed and prints the following message:
OUTPUT DEVICE =

The user must respond with H if the output is to go to the high-speed paper tape punch. Any other character will

cause the program to assume the teleprinter as the output device. The program then outputs a carriage return/line

feed and goes into a wait loop. The user should then type his parameters.

After the user’s parameters have been satisfied, the program restarts automatically with a carriage return/line feed and

waits for more parameters. If the user wishes to change the output device, he must restart the DUMP program at the
original start address.

4.7 SCAN ROUTINE

4.7.1 General Description

SCAN is a small (1005 locations) program used to scan areas of memory for a particular bit configuration. The user
specifies the start and stop address for the area to be scanned, the bit configuration to look for, and the bit positions
to be tested (e.g., a mask). SCAN then scans the area. When a match is found, the address of the match is printed

along with the unmasked matching word. Proper selection of the operating parameters allows SCAN to be used as a
dump. SCAN operates in either 4K or 8K without reassembly.

4.7.2 Output Format

The output of SCAN is a sequence of addresses and their contents printed on the Teletype. When SCAN is initiated, it
prints a carriage return ()) and a line feed ({). As matches are found, the addresses and contents are printed as:

AAAAA/XXXXXX)4

where AAAAA is the address (5 octal digits) and XXXXXX is the unmasked contents (6 octal digits). After the last
line has been printed, another carriage return/line feed sequence is printed and SCAN halts.

Example

The following is an example of a SCAN output to search an area for all JMS instructions:

Remarks

pl

00200/100600 2/ { JMS 600 at location 200.

4-18(Part II)

Remarks (cont)
00377/100670) il JMS 670 at location 377.
pX END of SCAN.
4.7.3 Functional Description
SCAN is a self-contained and self-initializing program. Once loaded, it may be started and restarted at any time. SCAN
never alters any locations outside of itself. SCAN consists of a main program and three subroutines. The actual scan is

accomplished by the main program. All output is performed by the three closed subroutines. The SCAN process is
performed for all locations between the beginning address and the end address as follows:

Fetch the contents of the core location.
Mask* it with the contents of MASK (specified by user).
Compare the result with the contents of WORD (specified by user).

If not equal, repeat for next core location. If the compare is equal, print the address and the unmasked
contents.

In general, SCAN operates at I/O speed. If no matches are detected, a 4K area is scanned in the time it takes to print
two carriage return/line feed sequences.

SCAN may be used as a dump or as a search for any particular bit configurations. For example, the user may:
Locate all instructions with a particular op code (such as all JMSs or all XCTs).
Locate all references to a particular address.

Locate all indirect references.

4.7.4 Operating Procedure
The following paragraphs describe the loading procedure and start-up procedure for the SCAN program.
4.7.4.1 Loading Procedure — SCAN is loaded by the hardware readin (HRI) facility of the PDP-15/10. The procedure
is as follows.
Load the paper tape into the reader.

Set the address of BEGIN in the Address switches. This address is 7700 (17700 for 8K) on the supplied binary
tape.

Depress the IO RESET key.

*“Mask” indicates an 18-bit Boolean AND function.

4-19(Part II)

Depress the READIN key.

When loading is complete, the processor will halt.

4.7.4.2 Start-Up Procedure — The following procedure can be used at any time to start or restart SCAN. The purpose
of this process is to set four parameters for SCAN. These are, in the order that they are set:

Location
4K 8K
7701 17701 WORD /Bit configuration to look for.
7702 17702 MASK /Specifies which bits to test.
/(1 to test, a O to not test.)
7703 17703 BEGLOC [First location to test.
7704 17704 ENDLOC /Last location to test.

Initially, the first three values are O and the last is 7777. Once a value has been set, it does not have to be set again for
another run if it is desired to use the same value again.

The Start-up procedure is as follows:
Press IO RESET key.

Set the beginning address of SCAN into the ADDRESS switches. This is 7700 for 4K or 17700 for 8K.
Press EXAMINE to store the address in the AR register.
Set the desired value for WORD into the AC switches. Operate the DEPOSIT NEXT key. This sets the value from
the AC switches into memory.
NOTE

If it is not desired to change the present value of the parameter, step d may
be replaced with the operation EXAMINE NEXT.

Repeat the preceding step for MASK, BEGLOC, and ENDLOC.
Operate the START key. This starts SCAN at location BEGIN.

To search for all references to 7200 between locations 500 and 1500:

(WORD) = 7200
(MASK) = 7777
(BEGLOC) = 500
(ENDLOC) = 1500

4-20(Part 1)

To dump all of the area between the BEGLOC and ENDLOC, specify WORD = 0 and MASK = 0. This causes a match,
and associated printout, to occur at every location.

If a restart is desired and no parameters are to be set, only the first three steps and the sixth step need be performed.
After the first three steps have been performed, the sixth step may be performed at any time to start the program.

4-21/22(Part 1)

CHAPTER 5
COMPACT MATHEMATICAL ROUTINES

5.1 INTRODUCTION

All mathematical routines in the PDP-15/10 COMPACT Software System library are described in this section. These
routines are grouped in four major packages: Integer Arithmetic, Trigonometric Functions, Floating Point, and
Floating Point I/O. Table 5-1 on page 5-19 provides a concise listing of their important characteristics. Each package,
if used, must be assembled and loaded with the user program. The size and number of tapes furnished for each
package are as follows.

Package Size (decimal) Number of Tapes

Integer Arithmetic 184 4

Trigonometric Functions 760 2
. . a
Floating Point 574 1 o
=
Floating Point I/O 480 1 =
-

Separate tapes are supplied for each of the four Integer Arithmetic routines. Trigonometric Functions are on two
tapes - one single precision and one double precision. Each of the above tapes is terminated with a .EOT pseudo-op.
All symbols that are internal to the math routines begin with a percent sign (%) so that the user can avoid using them
as his own symbols.

=
=3
3
&
=
Q
-~
c
=
-
=3
5
3
»n

If any of the trigonometric functions are not required by a user program, the user can specify that they are not to be
assembled by means of a strip tape. The strip tape contains symbols that are used in conditional assembly statements,
and is ended with a .EOT pseudo-op. This procedure can save a great deal of core space, and symbol table space, for

S-1(Part II)

users who do not require all of the trigonometric functions. The following symbols (set equal to 0) should be included
on the strip tape, as desired, to specify that a function should not be assembled.

Single-Precision Functions

Function Size (decimal) Symbol
SQRT 34 %NSQRT
SIN 7 %NSIN
COS 11 %NCOS
%SIN (internal routine) 55 (both of the above)
EXP 69 ZNEXP
ALOG 11 ZNALOG
ALOG 10 11 ZNLG10
%LOGS (internal routine) 51 (both of the above)
ATAN 50 %NATAN
TANH 33 %NTANH
POLY 32 %NPOLY

Double Precision Functions

DSQRT 35 %NDSQ
DSIN 7/ ZNDSIN
DCOS 12 %NDCOS
%DSIN (internal routine) 69 (both of the above)
DEXP 86 %NDEXP
DLOG 12 %NDLG
DLOG 10 12 %NDL10
%DLOGS (internal routine) 59 (both of the above)
DATAN 90 %NDTAN
DPOLY 35 %NDPOL

For example, if a user program did not require the functions SQRT, TANH, and ALOG 10, and wished to conserve
core space, he would assemble a strip tape containing the following symbols before assembling his own program and

the trigonometric functions.
%NSQRT=0

%NTANH=0)

5-2(Part II)

%NLG10=02

- .EOT ./

Assuming that the double-precision trigonometric functions were not required, the following functions would then be
assembled.

SIN
COosS
%SIN
EXP
ALOG
%LOGS
ATAN

POLY

The same procedure applies to the Floating Point Package and to Floating Point I/0. Both the single precision and
double precision sections of the Floating Point Package require that the general floating point section be assembled
with them. However, if either the single precision or double precision section of the Floating Point Package is not
required by a user program, the user can delete them by including the symbols ZNSING or %NDQUB on the strip
tape. In like manner, if either the floating point input (FLIP) program or the floating point output (FLOP) program is
not required in the Floating Point I/0 Package, the symbols %NFLIP or %ZNFLOP, respectively, should be included on
the strip tape.

5.2 INTEGER ARITHMETIC SIMULATION

The Integer Arithmetic Simulation routines include multiply (MULT), logical multiply (LMUL), divide (D1V), and
logical divide (LDIV). The purpose of these routines is to allow PDP-15/10 users to program using simulated multiply
and divide instructions. A description of each routine is given in the following paragraphs. The reader is referred to
Table 5-1 (Page 5-19) for a tabular summary of all COMPACT mathematical routines. Included in the summary for
each routine is the name, mnemonic, calling sequence, function, errors, accuracy, timing, storage requirements, and
pertinent comments.

5.2.1 Multiply Routines {(MULT/LMUL)
The purpose of MULT is to multiply a signed 18-bit multiplicand by a signed 18-bit multiplier and produce a signed

36-bit product. Return is made with the low-order product in the AC and the high-order product in location
9%MHIGH.

5-3(Part II)

The purpose of LMUL is to multiply a logical (unsigned) 18-bit multiplicand by a logical 18-bit multiplier and
produce a logical 36-bit product. Return is made to the calling program with the low-order product in the AC and the
high-order product in location %LMHY .

The calling sequence for the multiply routines is as follows.

PC-1 LAC Multiplier

PC IMS MULT (or LMUL)
PC+1 LAC Multiplicand
PC+2 (Return)

The algorithm used by the multiply routines is as follows: the least significant bit of the multiplier is tested; if it is
equal to 1, the multiplicand is added to the developing product, which is then shifted right one bit position; if it
equals 0, no addition is made before the shift. The process is repeated until all the bits of the multiplier, in order from
least significant to most significant, have been processed.

Example

For this example, assume that register MP1 is the multiplier, MP2 is the multiplicand, and that the product will be
developed in registers MP3 and MP1, combined. Each of these registers is 5 bits long for purposes of illustration. The
multiplier (MP1) is equal to 9, and the multiplicand (MP2) is equal to 4.

MP3 MP1 MP2 Comments

00000 01001 00100 |} Initial state of registers. The least significant bit of MP1 is tested.

00100 01001 00100 |Sinceitisa 1, the contents of MP2 are added to MP3.

00010 00100 00100 | The combined contents of MP3 and MP1 are shifted right one position. The least
significant bit of MP1 is tested.

00001 00010 00100 |Since it is a 0, no addition takes place, the combined contents of MP3 and MP1 are
shifted right one position, and the least significant bit of MP1 is tested again.

00000 10001 00100 | Since it is a 0, no addition takes place, the combined contents of MP3 and MP1 are
shifted right one position, and the least significant bit of MP1 is tested again.

00100 10001 00100 | Since itis a 1, the contents of MP2 are added to the contents of MP3.

00010 01000 00100 | The combined contents of MP3 and MP1 are shifted right one position and the
least significant bit of MP1 is tested again.

00001 00100 00100 [Since it is a 0, no addition takes place, the combined contents of MP3 and MPI are
shifted right one position, and the multiplication is complete (with a product of 36
in locations MP3 and MP1 combined).

5-4(Part II)

5.2.2 Divide Routines (DIV/LD1V)

The purpose of DIV is to divide a signed 36-bit dividend by a signed 18-bit divisor. The signed 18-bit quotient that is
developed is returned to the AC. The remainder, signed the same as the dividend, is returned in location %REM. When
the magnitude of the divisor is equal to or less than that of the high-order dividend, no division takes place since the
quotient cannot be expressed by an 18-bit signed integer. In this case, the program exits with the link bit set to 1. If
division takes place, the link bit is set to O prior to exit.

The purpose of LDIV is to divide a logical (unsigned) 36-bit dividend by an unsigned 18-bit divisor. The 18-bit
quotient that is developed is returned to the AC. The remainder is returned in location %LREM. When the high-order
dividend is greater than or equal to the divisor, division does not take place, and the link bit is set to 1. If division
takes place, the link bit is set to O prior to exit.

The calling sequence for the divide routines is as follows.

PC-1 LAC Dividend (high order)
PC IMS DIV (or LDIV)

PC+1 LAC Dividend (low order)
PC+2 LAC Divisor

PC+3 (Return)

The algorithm used by both division routines is binary long division, where the quotient is determined by a
subtraction process. Unlike decimal long division, where a single quotient digit can be one of 10 numbers, in binary
long division the quotient digit is either 1 or 0. To determine this digit, the divisor is subtracted from the dividend and
if the remainder is negative, the quotient digit is O, the remainder is ignored, the divisor is moved one place to the
right with respect to the dividend, and the process is repeated. If the remainder is positive, the quotient is 1 and the
remainder is used as the next dividend, as in ordinary long division. In either case, the divisor is moved one place to
the right and the next bit from the original dividend is included with the new dividend. The following example
demonstrates the algorithm. The divisor is equal to 5, and the dividend is equal to 454.

Example
Step 1 0 Result of division is negative; therefore, quotient is O.
101 /TOOTO1 Disregard remainder. Move divisor one place to right.
101
-111
Step 2 01 Result of division is positive; therefore, quotient is 1. Retain
101 /TOOTOT remainder as new dividend and bring down next digit from
101 dividend.
+100

5-5(Part II)

Step 3 011 Result of subtraction is positive; therefore, quotient is 1.
101 /TO0T0T Retain remainder as new dividend and bring down next digit.

101

1000

101

+11

Step 4 0111 Final quotient is 111 with a remainder of 010.

101 /TODTOT —
101

In implementing the algorithm, the divide routines rotate the dividend left instead of moving the divisor right. No
division occurs if the high-order dividend is greater than or equal to the divisor. This eliminates situations where the
high-order dividend is divisible by at least one (which, if allowed to continue, would produce erroneous results).

NOTE

DIV does not check for the overflow condition that will occur when the
high-order dividend is zero, the low-order dividend is greater than 377777
(bit zero is set), and the divisor is equal to 1.

5.3 TRIGONOMETRIC FUNCTIONS

Detailed algorithms for all trigonometric functions in the PDP-15/10 COMPACT Software System Mathematical
Library are described in this chapter. Most of the functions are computed by methods of approximation as described
by Cecil Hastings in his book Approximation for Digital Computers.

The trigonometric routines must be assembled along with the user program. The Floating Point Package (paragraph
5.4) must also be assembled to enable use of the trigonometric routines. Execution time for the trigonometric

routines is greatly reduced if the EAE option is available since multiplication and division can then be accomplished
by the hardware.

The reader is referred to Table 5-1 for a tabular summary of all PDP-15/10 mathematical routines. Included in the
summary for each routine is the name, mnemonic, calling sequence, function, errors, accuracy, timing, and pertinent
comments.

5.3.1 Square Root (SQRT, DSQRT)

The calling sequence for the square root routines is as follows.

PC IMS SQRT (or DSQRT)

5-6(Part ID)

PC+1 .DSA ARG (+400000 if indirect)

PC+2 (Error Return)

PC+3 (Normal Return)
If the argument (ARG) is negative, return is made to the error return (PC+2) with the argument in the floatir
accumulator and the AC set equal to 1; otherwise, return is made to location PC+3 with the square root of th.
argument in the floating accumulator.

A first-guess approximation of the square root of the argument is obtained as follows.

If the exponent (EXP) of the argument is odd:

EXP-1 EXP-1
Pp=.5\ 2 + ARG 2

If the exponent (EXP) of the argument is even:

EXP (EXP-I)
P0=.5(2)+ARG £

Newton’s iterative approximation is then applied three times for SQRT or four times for DSQRT.

Py =172 (Pi+ APlilG)

5.3.2 Sine And Cosine (SIN, COS, DSIN, DCOS)

The calling sequence for the sine and cosine routines is as follows.

PC IMS SIN (or COS, DSIN, DCOS)
PC+1 .DSA ARG (+400000 if indirect)
PC+2 (Error Return)

PC+3 (Normal Return)

If the integer portion of the product (ARG*7/2) is too large (i.e., the exponent of the product is greater than 21g),
return is made to the error return (PC+2) with the AC set equal to 3. Otherwise, return is made to location PC+3 with
the sine or cosine of the argument in the floating accumulator.

The argument is converted to quarter circles by multiplying by 2/m. The low two bits of the integral portion
determine the quadrant of the argument and produce a modified value of the fractional portion (F) as follows.

5-7(Part 1I)

Low 2 Bits Quadrant Modified Value (Z)

00 I F

01 11 1-F
10 HI -F

11 v <(1-F)

Z is then applied to the following polynominal expression:

n :
sin x=(z: Coi+1 z2i+ 1>

i=0

where n = 4 for SIN and COS, and n = 6 for DSIN and DCOS. The values of C are as follows.

SIN, COS DSIN, DCOS

C, = .157080 x 10! C, = .157079633 x 10!
C, =-.645964 x 10° C; =-.645964097 x 10°
Cs = 796897 x 107! Cs = .796926260 x 107!
C, =-467377 x 10 C, =-468175300 x 102
Cy = .151484 x 1073 C, = .160438400 x 107

Cy, =-.359518435 x 10°

Cy3 = .544652850 x 107

The argument for COS and DCOS routines is adjusted by adding n/2. The sine function is then used to compute the
cosine as follows.

cosx=sin(;— + %)

5.3.3 Exponential (EXP, DEXP)

The calling sequence for the exponential routines is as follows.

PC IMS EXP (or DEXP)

PC+1 DSA ARG (+400000 if indirect)
PC+2 (Error Return)

PC+3 (Normal Return)

5-8(Part 11)

If the integer portion of the product ARG*log, e is too large (i.e., the exponent of the product is greater than 213),
return is made to the error return (PC+2) with the AC set equal to 3. Otherwise, return is made to location PC+3 with
the exponential of the argument in the floating accumulator.

The function eX is calculated as

2 x log, e

which will have an integral portion (1) and a fractional portion (F). Then

e*=h @)

where

and n = 6 for EXP, and n = 8 for DEXP. The values of C are as follows.

EXP DEXP
C, = .100000 x 10! C, = .100000000 x 10!
C, =.346574 x 10° C, =.346573590 x 10°
C, =.600566 x 10! C, =.600566267 x 107!
C; =.693801 x 1072 C; =.693801368 x 1072
C, =.601130x 1073 C, =.601133075 x 1073
C; =.416700 « 107 Cs = 416670330 x 10
Ce =.240977 x 1073 Ce =.240678700 x 1078

C, =.119610000 x 10

Cg = .518000000 x 1078

5.3.4 Natural And Common Logarithms (ALOG, ALOG10, DLOG, DLOG10)

The calling sequence for the logarithm routines is as follows.

PC IMS ALOG (or ALOG10, DLOG, DLOG10)

5-9(Part II)

PC+1 DSA ARG (+400000 if indirect)
PC+2 (Error Return)

PC+3 (Normal Return)

If the argument is less than or equal to zero, return is made to the error return (PC+2) with the AC set equal to 2.
Otherwise, return is made to location PC+3 with the result in the floating accumulator.

The exponent of the argument is saved as one greater than the integral portion of the result. The fractional portion of
the argument is considered to be a number between 1 and 2. Z is computed as follows:

X - VA

‘x+/—2_-

then

n
logax=1/2+[3 Cy4q 22H1
i=0

where n = 2 for ALOG and ALOG10, and n = 3 for DLOG and DLOG10.

The values of C are as follows.

ALOG & ALOG10 DLOG & DLOG10
C, =.288539 x 10! C, =.288539007 x 10!
C; =.961471 x 10° C; =.961800762 x 10°
Cs =.598979 x 10° Cs =.576584342 x 10°
C, = .434259751 x 10°
Finally, log.x = (log, x) (log,2) for ALOG and DLOG
and log, ¢x = (log, x) (log, ¢ 2) for ALOG10 and DLOG10.

5.3.5 Arc Tangent (ATAN, DATAN)

The calling sequence for the arc tangent routines is as follows.

PC JMS ATAN (or DATAN)
PC+1 .DSA ARG (+400000 if indirect)
PC+2 (Return)

5-10(Part 1I)

Return is made to location PC+2 with the arc tangent of the argument in the floating accumulator. There are no error
conditions.

For x less than or equal to 1, Z = x, and

n
arc tangent x =[3. Cpi4q 2411
i=0

where n = 8 for ATAN, and n = 3 for DATAN. For x greater than 1, Z = 1/x, and

n
arc tangent x =m/2 -[Coi+1
i=0

22i+l

where n = 7 for ATAN, and n = 3 for DATAN. The values of C are as follows.

ATAN DATAN

C, = .999999 x 10° C, = 999215000 x 10°
C, =-333299 x 10° C, =-.321181900 x 10°
Cs = .199465 x 10° Cs = .146276600 x 10°
C, =-.139085x 10° C, =-.389929000 x 10~
C, = .964200x 107!

Cyy =-.559099 x 107!

Cis3 = .218612x 107

C, s = -405406 x 10

To get full 34-bit accuracy in DATAN, the tangent of the first approximation is taken, and the small angle theory is
then used to minimize the error angle as follows:

tan (P - x)
arctanx =P -

l1+xtanP

where P is the result of the first approximation.

5.3.6 Hyperbolic Tangent (TANH)

S-11(Part II)

The calling sequence for the hyperbolic tangent routine is as follows.

PC IMS TANH

PC+1 .DSA ARG (+400000 if indirect)
PC+2 (Error Return)

PC+3 (Normal Return)

If the integer portion of the product x * log,e is too large (i.e., the exponent of the product is greater than 21g),
return is made to the error return (PC+2) with the AC set equal to 3. Otherwise, return is made to location PC+3 with
the hyperbolic tangent of the argument in the floating accumulator.

The function

2

1+e2lx'

tanh |[x|= {I-

eX is computed as 2% 10g2¢ which will have an integral portion (I) and a fractional portion (F). Then,

ex=2h 2F)

n 2
where oF = Z CiFi andn= 6.
i=0
The values of C are as follows.
C, = .100000 x 10* C, =.601130 x 10°3
C, =.346574 x 10° Cs =.416700 x 107
C, =.600566 x 107! Ce =.240977 x 1075
C, = .693801 x 1072

5.3.7 Polynomial Evaluation (POLY, DPOLY)

The calling sequence for the polynomial evaluation routine is as follows.

PC IMS POLY (or DPOLY)
PC+1 .DSA PLIST
PC+2 (Return)

5-12(Part II)

The value of Z must be loaded in the floating accumulator prior to calling POLY or DPOLY. PLIST refers to a list of
constants stored in contiguous locations within the calling program as follows:

PLIST -N /2’s complement of number or terms
C, /Last term
Ch1
Co /First term

Return is made to location PC+2 with the result in the floating accumulator. There are no error conditions.

The polynomial

n
x=[X Coiq 287!
i=0
is evaluated as follows.
x=2Z(Cy +Z% (C,. .. A (CnZZ+Cn_1)))

5.4 FLOATING POINT PACKAGES

The purpose of the Floating Point Package is to allow PDP-15/10 users to program for floating-point data using
simulated floating-point instructions. The Floating Point Package must be assembled and loaded with the user
program at run time. All simulated floating-point instructions exist as subroutines within this package and must be
called as such by the user program.

The reader is referred to Table 5-1 for a tabular summary of all PDP-15/10 mathematical routines. Included in the
summary for each routine is the name, mnemonic, calling sequence, function, errors, accuracy, timing, storage
requirements, and pertinent comments. The following paragraphs provide a brief description of the floating-point
accumulator, and single-precision, double-precision, and general floating-point operations.

5.4.1 Floating Point Accumulators
The floating accumulator is a software accumulator which is included in the Floating Point Package. It is a three-word
accumulator, %FAC1 being the label of the first word, %#FAC2 the second, and %#FAC3 the third. Floating-point data

is stored in the floating accumulator in the following format; negative mantissae are indicated by the setting of bit O
of word %FAC2.

5-13(Part II)

% FAC | EXPONENT (2'S COMPLEMENT)

0 17
L—— SIGN OF MANTISSA
% FAC 2 HIGH~ORDER MANTISSA
0 | 7
% FAC 3 LOW-ORDER MANTISSA
o 17

Used by both single- and double-precision routines, this format is also the general format of double-precision
numbers. Single-precision numbers have a different format and must be converted before and after use in the floating
accumulator. This conversion is taken care of automatically by the floating arithmetic load and store routines FLAC
and FDAC (see Table 5-1). The format of single-precision numbers is as follows.

DATA WORD | LOW ORDER MANTISSA EXPONENT (2'S COMPLEMENT)
0 8 9 17
SIGN OF MANTISSA
DATA WORD 2 HIGH ORDER MANTISSA
0 { 17

5.4.2 Single Precision Operations

Single-precision routines perform floating-point operations on double-word quantities as described in paragraph 5.4.1.
The arithmetic operations are performed with one operand in the floating accumulator and the other operand taken
from storage. The computed result is developed in the floating accumulator, and is accurate to 26 bits.

All routines in the single-precision floating-point package are summarized in Appendix A. In general, the calling
sequence for arithmetic routines is as follows:

IMS SUBR
.DSA ARG2
(Return)

5-14(Part II)

where ARG2 is the address of the first location of the argument from storage. The single-precision load and store
routines (FLAC and FDAC) must be used to load ARG1 into the floating accumulator prior to calling an arithmetic
routine, and to store the result upon return.

5.4.3 Double Precision Operations

Double-precision routines perform floating-point operations on triple-word quantities as described in paragraph 5.4.1.
The arithmetic operations are performed with one operand in the floating accumulator and the other operand taken
from storage. The computed result is developed in the floating accumulator, and is accurate to 34 bits.

All routines in the double precision floating point package are summarized in Appendix A. The calling sequence is the

same as for single-precision routines except that the double-precision load and store routines (DLAC and DDAC) must
be used for loading and storing the floating accumulator.

5.4.4 General Floating Point Operations

General floating-point routines perform the actual computation for arithmetic operations set up by the individual
single- and double-precision routines. All arithmetic operations are performed with one operand in the floating
accumulator and the other in the held accumulator (#HAC1 - %HAC3). All floating-point operations are performed
on normalized operands.

All general floating point routines are summarized in Table 5-1. The calling sequence for these routines is simply
PC IMS SUBR
PC+1 (Return)

except for the unfloat routine<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>