21264/EV68A Microprocessor
Hardware Reference Manual

Part Number: DS-0038B-TE

This manual is directly derived from the internal 21264/EV68A Specifications, Revi-
sion 1.1. You can access this hardware reference manual in PDF format from the
following site:

ftp://ftp.compaqg.com/pub/products/alphaCPUdocs

Revision/Update Information: Revision 1.1, March 2002

Compaq Computer Corporation
CDMPA a Shrewsbury, Massachusetts

March 2002
The information in this publication is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL
ERRORS OR OMISSIONS CONTAINED HEREIN, NOR FOR INCIDENTAL OR CONSEQUENTIAL DAM-
AGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. THIS
INFORMATION IS PROVIDED “AS IS” AND COMPAQ COMPUTER CORPORATION DISCLAIMS ANY
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY AND EXPRESSLY DISCLAIMS THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, GOOD TITLE AND AGAINST
INFRINGEMENT.

This publication contains information protected by copyright. No part of this publication may be photocopied or
reproduced in any form without prior written consent from Compaq Computer Corporation.

© Compaq Computer Corporation 2002.
All rights reserved. Printed in the U.S.A.
COMPAQ, the Compagq logo, the Digital logo, and VAX Registered in United States Patent and Trademark Office.

Pentium is a registered trademark of Intel Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their respective compa-
nies.

21264/EV68A Hardware Reference Manual

Table of Contents

Preface

1 Introduction

11 The ArChiteCtUre
111 AdAreSSINg . . . oo e
1.1.2 INteger Data TYPES. . . o
1.1.3 Floating-Point Data TyYpesot
1.2 21264/EV68A MIiCroproCessor Featuresottt

2 Internal Architecture

21 21264/EV68A MicroarchiteCture e e
2.1.1 Instruction Fetch, Issue, and Retire Unit
21.1.1 Virtual Program Counter LOgiCot e
2112 Branch Predictor
2113 Instruction-Stream Translation Buffer.
2114 Instruction Fetch Logic e
2115 Register Rename Maps e e
2.1.1.6 Integer ISSUe QUEUEttt e e
2.1.1.7 Floating-Point ISsue QUEUE i e e s
2.1.1.8 Exception and Interrupt LOgIiCot
2.1.1.9 Retire LOgiC. . ..o e
21.2 Integer Execution Unit e
2.1.3 Floating-Point Execution Unit. e e e
214 External Cache and System Interface Unit
2141 Victim Address File and Victm Data File,
2142 HO Write BUffer e
2.1.4.3 Probe QUEUE. e e
2144 Duplicate Dcache Tag Arrayt e
215 ONChip Caches. . .. o e
2151 Instruction Cache e
2152 Data Cache
2.1.6 Memory Reference Unit. e
2.16.1 Load QUEUE e
2.1.6.2 SIOre QUEBUE . . . oo e e
2.16.3 Miss Address File
2164 Dstream Translation Buffer.
217 SROM INterface e
2.2 Pipeline Organization e e
221 Pipeline AboOmtS o e
23 Instruction Issue RUIES e

21264/EV68A Hardware Reference Manual

Lo
DO UTWNN P

N
||I\)I\)II\JI\JI\)I\)I\)I\)I\)I\JI\)I\)

|
PP O0WOoWOoWNO®

PPN
N e =
HH

2-11
2-11
2-11
2-12
2-12
2-13
2-13
2-13
2-13
2-13
2-13
2-16
2-16

231 Instruction Group Definitions e

232 EDOX SIOtiNgo e
233 INStruction Latencies
24 Instruction Retire RUlES e
241 Floating-Point Divide/Square Root Early Retire.
25 Retire of Operate Instructions into R31/F31 s
2.6 Load Instructionsto R3L and F31 o
2.6.1 Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU, HW_LDL Instructions
2.6.2 Prefetch with Modify Intent: LDS Instruction
2.6.3 Prefetch, Evict Next: LDQ and HW_LDQ Instructions
2.7 Special Cases of Alpha Instruction Execution.
271 Load Hit Speculation e
2.7.2 Floating-Point Store INStructions
2.7.3 CMOV INSHIUCHION.ot e e e e
2.8 Memory and I/O Address Space InStructions
281 Memory Address Space Load Instructions i
2.8.2 I/0O Address Space Load INStruCtions.t
283 Memory Address Space Store INStructions
284 I/O Address Space Store INStructionst
2.9 MAF Memory Address Space Merging Rules
2.10 INStrUCHION OFderiNg. ot e e e e e e e e e e
211 ReplaY TrapsS . . . oot
2111 MBOX Order Trapsottt e
21111 Load-Load Order Trapvv it e e e e e
2.111.2 Store-Load Order Trap . .. oottt e e e
2.11.2 Other Mbox Replay Traps e
212 I/O Write Buffer and the WMB Instruction e
2121 Memory Barrier (MB/WMB/TB Fill Flow)
21211 MB Instruction Processingottt
2.121.2 WMB INStruction ProCeSsSINg.ottt e e
2.12.1.3 TB R FIOW . . .
2.13 Performance Measurement Support—Performance Counters
2.14 Floating-Point Control Register. e e e e
2.15 AMASK and IMPLVER Instruction Values
2.15.1 AM ASK .
2.15.2 IMPLVER . . .
2.16 Design EXamples e

Hardware Interface

3.1 21264/EV68A Microprocessor Logic Symbol
3.2 21264/EV68A Signal Names and Functions i
3.3 Pin ASSIgNMENtS e e
3.4 Mechanical Specifications
3.5 21264/EVE8A Packagingo oo e

Cache and External Interfaces

4.1 Introduction to the External Interfaces.
41.1 System INterface e
4111 Commands and AdAreSSeS.ot e
4.1.2 Second-Level Cache (Bcache) Interface
4.2 Physical Address Considerations i e
4.3 Bcache Structure. e
4.3.1 Bcache Interface Signals e
4.3.2 System Duplicate Tag Stores. ottt e e

2-17
2-18
2-20
2-21
2-22
2-22
2-23
2-23
2-23
2-24
2-24
2-24
2-26
2-26
2-27
2-27
2-27
2-28
2-29
2-30
2-30
2-31
2-31
2-31
2-31
2-32
2-32
2-32
2-33
2-33
2-34
2-35
2-35
2-37
2-38
2-38
2-38

21264/EV68A Hardware Reference Manual

4.4

4.5
45.1
45.2
453
454
455
4.6
46.1
46.2
4.6.3
46.4
4.7
4.7.1
4.7.2
4.7.3
4731
47.3.2
4.7.4
4.7.5
4.7.6
4.7.7
47.7.1
47.7.2
4.7.8
4781
4.7.8.2
4.7.8.3
47.8.4
4785
4.7.8.6
4.7.9
4.7.10
4.7.10.1
4.7.10.2
4.8
48.1
48.2
48.2.1
4.8.3
4831
48.3.2
48.3.3
48.4
48.4.1
48.4.2
48.4.3
4.8.5
4.8.6
4.9

Victim Data Buffer
Cache CONEIENCY e e
Cache Coherency BasiCS.ottt
Cache BIOCK States
Cache Block State Transitions e
Using SYysDC Commandsottt e
Dcache Statesand Duplicate Tags.o oo i i e
Lock MeChanism e
In-Order Processing of LDx_L/STx_C Instructionsccvvv....
Internal Eviction of LDX_L BIOCKS.o e
Liveness and Fairnessttt e
Managing Speculative Store Issues with Multiprocessor Systems
SYSteM PO . . .
System PoOrt PiNS . .. e
Programming the System Interface Clocks
21264/EV68A-t0-System Commandso
Bank Interleave on Cache Block Boundary Mode

Page Hit Mode
21264/EV68A-to-System Commands Descriptions
ProbeResponse Commands (Command[4:0] =00001).............ccovvvvinn...
SysAck and 21264/EV68A-to-System Commands Flow Control
System-t0-21264/EV68A COMMANdS oo
Probe Commands (Four CycCles) e

Data Transfer Commands (TWo CyClesS).o i

Data Movement In and Out of the 21264/EV68A. i
21264/EV68A CIOCK BaSICS . . . ot

Fast Data Mode

Fast Data Disable Mode
SysDatalnValid_L and SysDataOutValid_L
SysFillValid_L e

Data WrapPINg . o e
Nonexistent Memory ProCesSiNg . . . oo oo e
Ordering of System Port Transactions. i e
21264/EV68A Commands and System Probes,

System Probes and SysDc Commands

Bcache Port.
Bcache Port Pins
Bcache ClocKing e
Setting the Period ofthe Cache Clock

Bcache Transactions
Bcache Data Read and Tag Read Transactionsc.ccoiuu..

Bcache Data Write Transactions i

Bubbles on the Bcache Data Bus e

Pin DeSCIIPliONS . . . e e
BCAAA_H[23:4] . ..

Bcache Control Pins
BcDatalnClk_Hand BcTagInCIk_H e

Bcache Bankingo e e
Disabling the Bcache for Debugging i

I TUPES . . o e

5 Internal Processor Registers

51

511
512
513

EDOX IPRS . .. e
Cycle Counter Register — CC.ttt e e e e e
Cycle Counter Control Register —CC_CTL .. .o oo i e
Virtual Address Register — VA

21264/EV68A Hardware Reference Manual

vi

5.14 Virtual Address Control Register —VA_CTL e 5-4
5.15 Virtual Address Format Register —VA_FORM. i 5-5
5.2 DOX P RS . . ot e 5-6
5.21 ITB Tag Array Write Register — ITB_TAG e 5-6
5.2.2 ITB PTE Array Write Register — ITB_PTE e 5-6
5.2.3 ITB Invalidate All Process (ASM=0) Register —ITB_IAP 5-7
5.24 ITB Invalidate All Register — ITB_IA. e e 5-7
5.25 ITB Invalidate Single Register — ITB_IS. e 5-7
5.2.6 ProfileMe PC Register — PMPC 5-8
5.2.7 Exception Address Register —EXC_ADDR 5-8
5.2.8 Instruction Virtual Address Format Register — IVA_FORM. 5-9
5.2.9 Interrupt Enable and Current Processor Mode Register —IER_CM. 5-9
5.2.10 Software Interrupt Request Register —SIRR 5-10
5.2.11 Interrupt Summary Register — ISUM e 5-11
5.2.12 Hardware Interrupt Clear Register —HW_INT_CLR 5-12
5.2.13 Exception Summary Register —EXC_SUM 5-13
5.2.14 PAL Base Register — PAL_BASE 5-15
5.2.15 Ibox Control Register — |_CTL o e 5-15
5.2.16 Ibox Status Register — | ST AT o 5-18
5.2.17 Icache Flush Register — IC_FLUSH. e 5-21
5.2.18 Icache Flush ASM Register — IC_FLUSH_ASM 5-21
5.2.19 Clear Virtual-to-Physical Map Register —CLR_MAP 5-21
5.2.20 Sleep Mode Register —SLEEP 5-21
5.2.21 Process Context Register — PCTX.ottt e 5-21
5.2.22 Performance Counter Control Register —-PCTR_CTL 5-23
5.3 MBOX P RS . . o 5-25
531 DTB Tag Array Write Registers 0 and 1 — DTB_TAGO, DTB_TAG1 5-25
5.3.2 DTB PTE Array Write Registers 0 and 1 — DTB_PTEO, DTB_PTE1 5-26
5.3.3 DTB Alternate Processor Mode Register - DTB_ALTMODE. 5-26
5.3.4 Dstream TB Invalidate All Process (ASM=0) Register —DTB_IAP 5-27
5.35 Dstream TB Invalidate All Register —DTB_IA e 5-27
5.3.6 Dstream TB Invalidate Single Registers0and 1 -DTB_1S0,1 5-27
5.3.7 Dstream TB Address Space Number Registers 0 and 1 — DTB_ASNO,1 5-28
5.3.8 Memory Management Status Register —MM_STAT 5-28
5.3.9 Mbox Control Register = M_CTL i e e e e 5-29
5.3.10 Dcache Control Register = DC_CTL ..o e e e e 5-30
5.3.11 Dcache Status Register — DC_ ST AT .. . oo e e e e 5-31
5.4 Cbox CSRs and IPRS e 5-32
5.4.1 Chox Data Register — C_DAT A . . . e e e e 5-33
5.4.2 Chox Shift Register — C_SHFT e e 5-33
5.4.3 Cbox WRITE_ONCE Chain Descriptionttt 5-33
5.4.4 Cbox WRITE_MANY Chain Descriptiont 5-38
5.4.5 Cbox Read Register (IPR) Description e 5-41
Privileged Architecture Library Code

6.1 PALCOde DeSCHptiON.o e e 6-1
6.2 PALMoOde Environment e 6-2
6.3 Required PALcode FUNCtion COdeSottt e e e e e 6-3
6.4 Opcodes Reserved for PALCOAE.ot e e e e e e 6-3
6.4.1 HW_LD INStrUCtiON o e e e e 6-3
6.4.2 HW ST INStrUCtiONo e e e e 6-4
6.4.3 HW _RET INStrUCtiON e e e e e e e 6-5
6.4.4 HW_MFPR and HW_MTPR INStruCtionso e e e e e 6—6
6.5 Internal Processor Register Access Mechanisms. 6-7
6.5.1 IPR Scoreboard BitS. 6-8
6.5.2 Hardware Structure of Explicitly Written IPRs i 6-8

21264/EV68A Hardware Reference Manual

6.5.3 Hardware Structure of Implicitly Written IPRs

6.5.4 IPR ACCESS Ordering ... oottt e e e
6.5.5 Correct Ordering of Explicit Writers Followed by Implicit Readers.
6.5.6 Correct Ordering of Explicit Readers Followed by Implicit Writers.
6.6 PALShadow RegiSters. e e
6.7 PALcode Emulation of the FPCR e
6.7.1 StatUS Flags . . . oo e
6.7.2 ME P CR
6.7.3 MT P CR .
6.8 PALcOode ENtry POINtS e e
6.8.1 CALL _PAL ENtry POINtS. . ..o e e e e e
6.8.2 PALcode Exception Entry POINtS oo e
6.9 Translation Buffer (TB) Fill FIOWS e e e
6.9.1 DB Fill ..
6.9.2 ITB Fill
6.10 Performance Counter SUPPOItot e e
6.10.1 General Precautions
6.10.2 Aggregate Mode Programming Guidelines i
6.10.2.1 Aggregate Mode Precautions e
6.10.2.2 OPEratiON ..ot e
6.10.2.3 Aggregate Counting Mode Description. e
6.10.2.3.1 CyYCle COUNtING .« vttt e e e e
6.10.2.3.2 Retired instructions cycles. o i e
6.10.2.3.3 Bcache miss or long latency probescycles.
6.10.2.3.4 Mbox replay traps cycles e
6.10.2.4 Counter Modes for Aggregate Mode. i
6.10.3 ProfileMe Mode Programming Guidelines
6.10.3.1 ProfileMe Mode Precautions.
6.10.3.2 OPEratiON ..ot e
6.10.3.3 ProfileMe Counting Mode Descriptionttt
6.10.3.3.1 CyYCle COUNtING .« . et e e e e e e
6.10.3.3.2 Inumretiredelay cycles. e
6.10.3.3.3 Retired instructions cycles. i e
6.10.3.3.4 Bcache miss or long latency probescycles.
6.10.3.3.5 Mbox replay traps cycCleso e
6.10.3.4 Counter Modes for ProfileMe Mode i

7 Initialization and Configuration

7.1 Power-Up Reset Flow and the Reset L and DCOK HPins.........................
7.1.1 Power Sequencing and Reset State for SignalPins
7.1.2 Clock Forwarding and System Clock Ratio Configuration
7.1.3 PLL RaMP U, .o
7.1.4 BiST and SROM Load and the TestStat HPin
7.1.5 Clock Forward Reset and System Interface Initialization.
7.2 Fault Reset FIOWo e
7.3 Energy Star Certification and Sleep Mode Flow
7.4 Warm Reset FIOW e
7.5 Array Initialization e
7.6 Initialization Mode ProCessing.ottt e e
7.7 External Interface Initialization e
7.8 Internal Processor Register Power-Up ResetState, ..
7.9 IEEE 1149.1 Test POrt ReSet. oot e e
7.10 Reset State Machine. e
7.11 Phase-Lock Loop (PLL) Functional Descriptionc.o it
7.111 Differential Reference Clocks.
7.11.2 PLL OUtpUt CIOCKS o e e e e e

21264/EV68A Hardware Reference Manual

Vii

10

11

viii

7.11.2.1 GCLK . 7-19

7.11.2.2 Differential 21264/EV68A Clocks 7-19
7.11.2.3 Nominal Operating Frequency e 7-19
7.11.2.4 Power-Up/Reset CIOCKING« .o e 7-20

Error Detection and Error Handling

8.1 Data Error Correction Code.t e 8-2
8.2 Icache Data or Tag Parity Error. e e 8-2
8.3 Dcache Tag Parity Erroro e 8-2
8.4 Dcache Data Single-Bit Correctable ECC Error i 8-3
8.4.1 Load INSIIUCHION oo 8-3
8.4.2 Store Instruction (Quadword or Smaller) 8-4
8.4.3 Dcache VIictim EXIracts o e 8-4
8.5 Dcache Store Second Error 8-4
8.6 Dcache Duplicate Tag Parity Efrorot e 84
8.7 Bcache Tag Parity Error e 8-5
8.8 Controlling Bcache Block Parity Calculation i 8-5
8.9 Bcache Data Single-Bit Correctable ECC Efrort 8-5
8.9.1 Icache Fillfrom Bcache 8-5
8.9.2 Dcache Fillfrom Bcache e 8-6
8.9.3 Bcache Victim Read. 8-7
8.9.3.1 Bcache Victim Read During a Dcache/Bcache Miss 8-7
8.9.3.2 Bcache Victim Read During an ECB Instruction. 8-7
8.10 Memory/System Port Single-Bit Data Correctable ECC Error. 8-7
8.10.1 Icache Fill from Memory. 8-7
8.10.2 Dcache Fill from Memory e 8-8
8.11 Bcache Data Single-Bit Correctable ECC ErroronaProbe 8-9
8.12 Double-Bit Fill EFTOrSo 8-9
8.13 Error Case SUMMaArY.ot e e e e e 8-10

Electrical Data

9.1 Electrical CharaCteristiCs.t e 9-1
9.2 DC CharacCteristiCst e 9-2
9.3 Power Supply Sequencing and Avoiding Potential Failure Mechanisms 9-5
9.4 AC CharaCteristiCs. oo e 9-6
Thermal Management
10.1 Operating TemMPEIratUIE o oot e e e e e 10-1
10.2 Heat Sink Specifications, ... i e 10-3
10.3 Thermal Design Considerationsttt e e e e e e 10-6
Testability and Diagnostics
111 TSt PINS . . o e 11-1
11.2 SROM/Serial Diagnostic Terminal Port. e e 11-2
11.2.1 SROM Load Operation. vv v e e 11-2
11.2.2 Serial Terminal Port 11-2
11.3 IEEE 1149.0 PO, . .ottt e e e e 11-3
11.4 TestStat H Pin ... e e 11-4
115 Power-Up Self-Test and Initialization i 11-5
1151 Built-in Self-Test. e 11-5

21264/EV68A Hardware Reference Manual

11.5.2
11521

11.6

SROM Initialization. 11-5
Serial Instruction Cache Load Operation, 11-6
Notes on IEEE 1149.1 Operationand Compliance iiiiinn. 11-7

A Alpha Instruction Set

Al
A2
A21
A2.2
A3
A4
A5
A.6
A7
A8

Alpha INStruction SUMMAIYo oo e e e A-1
Reserved OpCOUESo A-8

Opcodes Reserved for COmMPaq.ot i e A-8

Opcodes Reserved for PALCOde A-9
IEEE Floating-Point INStrUCtiONSo e A-9
VAX Floating-Point INStruCtioNS. e e A-11
Independent Floating-Point INStructions A-11
OPCOdE SUMMAIY . . . ettt et e e e e e e e e A-12
Required PALcode Function Codest A-13
IEEE Floating-Point Conformance e A-14

B 21264/EV68A Boundary-Scan Register

B.1 Boundary-Scan Register e B-1
B.1.1 BSDL Description of the Alpha 21264/EV68A Boundary-Scan Register. B-1
C Serial Icache Load Predecode Values
D PALcode Restrictions and Guidelines
D.1 Restriction 1 : Reset Sequence Required by Retire Logic and Mapper. D-1
D.2 Restriction 2 : No Multiple Writers to IPRs in Same Scoreboard Group D-8
D.3 Restriction 4 : No Writers and Readers to IPRs in Same Scoreboard Group D-8
D.4 Guideline 6 : Avoid Consecutive Read-Modify-Write-Read-Modify-Write D-9
D.5 Restriction 7 : Replay Trap, Interrupt Code Sequence, and STF/ITOF D-9
D.6 Restriction 9 : PALmode Istream Address Ranges D-10
D.7 Restriction 10: Duplicate IPRMode BitS e D-10
D.8 Restriction 11: Ibox IPR Update Synchronization D-11
D.9 Restriction 12: MFPR of Implicitly-Written IPRs EXC_ADDR, IVA_FORM, and EXC_SUM D-11
D.10 Restriction 13 : DTB Fill Flow Collision e D-11
D.11 Restriction 14 : HW_RET e e e D-11
D.12 Guideline 16 : JISR-BAD VA D-12
D.13 Restriction 17: MTPR to DTB_TAGO0/DTB_PTEO/DTB_TAG1/DTB_PTE1l D-12
D.14 Restriction 18: No FP Operates, FP Conditional Branches, FTOI, or STF in Same Fetch Block as
HW M T P R L D-12
D.15 Restriction 19: HW_RET/STALL After Updating the FPCR by way of MT_FPCR in PALmode D-12
D.16 Guideline 20:1_CTL[SBE] Stream BufferEnable. D-12
D.17 Restriction 21: HW_RET/STALL After HW_MTPR ASNO/ASN1. D-12
D.18 Restriction 22: HW_RET/STALL After HW_MTPRISO/ISL. i D-13
D.19 Restriction 23: HW_ST/P/CONDITIONAL Does Not Clear the Lock Flag. D-13
D.20 Restriction 24: HW_RET/STALL After HW_MTPR IC_FLUSH, IC_FLUSH_ASM, CLEAR_MAP
... D-14
D.21 Restriction 25: HW_MTPR ITB_IA AfterReset. i e D-14
D.22 Guideline 26: Conditional Branches in PALcode D-14
D.23 Restriction 27: Reset of ‘Force-Fail Lock Flag’ State in PALcode. D-15
D.24 Restriction 28: Enforce Ordering Between IPRs Implicitly Written by Loads and Subsequent Loads
... D-15
D.25 Guideline 29 : JSR, JMP, RET, and JSR_COR inPALcode. D-15

21264/EV68A Hardware Reference Manual iX

D.26
D.27
D.28
D.29
D.30
D.31
D.32
D.33
D.34
D.35
D.36
D.37
D.38
D.39
D.40
D.41
D.42
D.43
D.44

Restriction 30 : HW_MTPR and HW_MFPRtothe CboxCSR....................... D-15
Restriction 31 : |_CTL[VA_48]Update i D-17
Restriction 32 : PCTR_CTL Update e D-17
Restriction 33 : HW_LD Physical/lLock Use. e D-18
Restriction 34 : Writing Multiple ITB Entries in the Same PALcode Flow D-18
Guideline 35:HW_INT_CLR UpPdate e e D-18
Restriction 36 : Updating |_CTL[SDE].ot D-18
Restriction 37 : Updating VA_CTL[VA_48]o e D-18
Restriction 38 : Updating PCTR_CTL it D-18
Guideline 39: Writing Multiple DTB Entries in the Same PALFlow. D-19
Restriction 40: Scrubbing a Single-BitError D-19
Restriction 41: MTPR ITB_TAG, MTPR ITB_PTE Must be in the Same Fetch Block D-21
Restriction 42: Updating VA_CTL, CC_CTL,orCCIPRS i D-21
Restriction 43: No Trappable Instructions Along with HW_MTPR. D-21
Restriction 44: Not Applicable to the 21264/EV68A D-21
Restriction 45: No HW_JMP or JMP Intructionsin PALcode D-21
Restriction 46: Avoiding Livelocks in Speculative Load CRD Handlers D-22
Restriction 47: Cache Eviction for Single-Bit Cache Errors D-22

Restriction 48:

MB Bracketing of Dcache Writes to Force Bad Data ECC and Force Bad Tag Parity
D-24

E 21264/EV68A-to-Bcache Pin Interface

E.l
E.2
E.3

Glossary

Index

Forwarding Clock Pin GroupingsS. o oottt e e e
Late-Write Non-Bursting SSRAMs
Dual-Data Rate SSRAMs

21264/EV68A Hardware Reference Manual

Figures

2-1 21264/EV68A Block Diagramo
2-2 Branch PrediCtor e
2-3 Local Predictor e
2-4 Global PrediCtor. e
2-5 Choice PrediCtor e
2-6 Integer Execution Unit—Clusters 0 and 1t
2-7 Floating-Point Execution UNItS e
2-8 Pipeline Organization e
2-9 Pipeline Timing for Integer Load InStructions
2-10 Pipeline Timing for Floating-Point Load Instructions. o,
2-11 Floating-Point Control Register e
2-12 Typical Uniprocessor Configurationt
2-13 Typical Multiprocessor Configuration i
3-1 21264/EV68A Microprocessor Logic Symbol
3-2 Package DIMeNSIONS. . . . ottt e
3-3 21264/EV68A Top View (PINDOWN)ot e
34 21264/EV68A Bottom View (PINUP).ot
4-1 21264/EV68A System and Bcache Interfaces
4-2 21264/EV68A Bcache Interface Signals
4-3 Cache Subset Hierarchy e
4-4 System Interface Signals.
4-5 Fast Transfer Timing Example e
4-6 SysFillValid_L TimiNgo e e
5-1 Cycle Counter REgISIErt e
5-2 Cycle Counter Control Register. e e
5-3 Virtual Address Registero e
5-4 Virtual Address Control Register. e
5-5 Virtual Address Format Register (VA_48=0,VA_ FORM_32=0)....................
5-6 Virtual Address Format Register (VA_48 =1, VA FORM_32=0)....................
5-7 Virtual Address Format Register (VA_ 48=0,VA_ FORM 32=1)....................
5-8 ITB Tag Array Write Register e e e
5-9 ITB PTE Array Write RegisSter e e e e e
5-10 ITB Invalidate Single Register. i e e
5-11 ProfileMe PC ReQiSter. e e
5-12 Exception Address Register e
5-13 Instruction Virtual Address Format Register (VA_48=0,VA_ FORM_32=0)
5-14 Instruction Virtual Address Format Register (VA 48=1,VA FORM_32=0)
5-15 Instruction Virtual Address Format Register (VA_48=0,VA FORM_32=1)
5-16 Interrupt Enable and Current Processor Mode Register.
5-17 Software Interrupt Request Register. i e e
5-18 Interrupt SUMMary RegiSter e
5-19 Hardware Interrupt Clear Register i e e e e
5-20 Exception Summary Registert e
5-21 PAL Base ReQiSter o
5-22 IboX Control RegISter.
5-23 IbOX Status ReQiSter e
5-24 Process Context RegiSterot
5-25 Performance Counter Control Register. i e e
5-26 DTB Tag Array Write RegistersOand 1 i e
5-27 DTB PTE Array Write Registers 0 and 1. i e
5-28 DTB Alternate Processor Mode Register i e
5-29 Dstream Translation Buffer Invalidate Single Registers
5-30 Dstream Translation Buffer Address Space Number RegistersOand1................
5-31 Memory Management Status Register i
5-32 MbOX CoNntrol RegiSter. e
5-33 Dcache Control Registerot e e e e

21264/EV68A Hardware Reference Manual

U'IU'IU'IU'IU'ILI)'IU'IU'IU'IU'IU'IU'I
© O 00NN O OA~

T
(o]

5-10
5-11
5-11
5-12
5-14
5-15
5-16
5-19
5-22
5-23
5-25
5-26
5-26
5-27
5-28
5-28
5-29
5-31

Xi

il

5-34
5-35
5-36
5-37

10-1
10-2
10-3
111
11-2
11-3

Dcache Status Register. e 5-32
Chox Data RegISter. o e e 5-33
Cbox Shift RegiSter e 5-33
WRITE_MANY Chain Write Transaction Example 5-39
HW_LD Instruction Formatt e e e e e e 6-4
HW_ST Instruction Formatt e e e e 6-4
HW_RET Instruction Format. e e e et 6—6
HW_MFPR and HW_MTPR Instructions Format., 6—6
Single-Miss DTB Instructions Flow Example. 6-14
ITB Miss Instructions Flow Example e 6-16
Power-Up Timing SEQUENCE oot e e e e e e e 7-3
Fault Reset Sequence of Operationt et 7-9
Sleep Mode Sequence of Operation i 7-11
Example for Initializing Bcache e 7-13
21264/EV68A Reset State Machine State Diagram i 7-17
Type L Heat SinK. e 10-3
Type 2 Heat SinK. e 10-4
Type 3 Heat SiNK. e 10-5
TestStat_H Pin Timing During Power-Up Built-In Self-Test (BiST) 11-5
TestStat_H Pin Timing During Built-In Self-Initialization (BiSI) 11-5
SROM Content Map oot 11-6

21264/EV68A Hardware Reference Manual

Tables

1-1 INteger Data TYPESttt e
2-1 Pipeline Abort Delay (GCLK CycCles). oo e
2-2 Instruction Name, Pipeline, and TYPes
2-3 Instruction Group Definitions and Pipeline Unit.
2-4 Instruction Class Latency in CycCles.
2-5 Minimum Retire Latencies for Instruction Classes
2-6 Instructions Retired Without Execution e
2-7 Rules for I/O Address Space Load Instruction DataMerging
2-8 Rules for I/O Address Space Store Instruction Data Merging.
2-9 MAF Merging RUIES. e
2-10 Memory Reference Ordering.ttt e
2-11 /O Reference Orderingot e e e e
2-12 TBFillFlow Example Sequence 1 e
2-13 TBFillFlow Example Sequence 2
2-14 Floating-Point Control Register Fields.
2-15 21264/EV68A AMASK Values.
2-16 AMASK Bit ASSIGNMENTSot e
3-1 Signal Pin Types Definitionso
3-2 21264/EV68A Signal DesCriptionsot
3-3 21264/EV68A Signal Descriptions by Function.
34 Pin List Sorted by Signal Name. e
3-5 Pin List Sorted by PGA Location. i e
3-6 Ground and Power (VSS and VDD) Pin List i
4-1 Translation of Internal References to External Interface Reference
4-2 21264/EV68A-Supported Cache Block States
4-3 Cache Block State Transitionst e
4-4 System Responses to 21264/EV68A Commands. oot
4-5 System Responses to 21264/EV68A Commands and Reactions.
4-6 SysStem POt PiNS. e
4-7 Programming Values for System Interface Clocks
4-8 Program Values for Data-Sample/Drive CSRS e
4-9 Forwarded Clocks and Frame Clock Ratio i
4-10 Bank Interleave on Cache Block Boundary Mode of Operation
4-11 Page Hit Mode of Operation e
4-12 21264/EV68A-to-System Command Fields Definitions.
4-13 Maximum Physical Address for Short Bus Format,
4-14 21264/EV68A-to-System Commands Descriptions. i
4-15 Programming INVAL_TO_DIRTY_ENABLE[L:0]. oo e
4-16 Programming SET_DIRTY_ENABLE[2:0]. i e e
4-17 21264/EV68A ProbeResponse Command i
4-18 ProbeResponse Fields Descriptions e e e
4-19 System-t0-21264/EV68A Probe Commands.
4-20 System-t0-21264/EV68A Probe Commands Fields Descriptions
4-21 Data Movement Selection by Probe[4:3].
4-22 Next Cache Block State Selection by Probe[2:0]
4-23 Data Transfer Command Format e
4-24 SysDc[4:0] Field DesCriptiono e e
4-25 SYSCLK Cycles Between SysAddOutand SysData.,
4-26 Cbox CSR SYSDC_DELAY[4:0] Examples i
4-27 Four Timing EXamples e
4-28 Data Wrapping RUIES e e
4-29 System Wrap and Deliver Data.t e e
4-30 Wrap Interleave Order. e e
4-31 Wrap Order for Double-Pumped Data Transfers.
4-32 21264/EV68A Commands with NXM Addresses and System Response
4-33 21264/EV68A Response to System Probe and In-Flight Command Interaction.

21264/EV68A Hardware Reference Manual

1-2
2-16
2-17
2-18
2-20
2-21
2-23
2-28
2-29
2-30
2-30
2-31
2-34
2-34
2-36
2-38
2-38

3-3

3-3

3-8
3-12
3-16

4-5

4-9
4-10
4-10
4-11
4-17
4-18
4-18
4-19
4-19
4-20
4-20
4-21
4-21
4-23
4-24
4-24
4-25
4-26
4-27
4-27
4-27
4-28
4-29
4-32
4-33
4-34
4-36
4-37
4-37
4-38
4-39
4-41

Xiii

Xiv

[A
© 00

[
PRRPRRPRPERRRRR
©CO~NOUINWNRO

(6]
|

5-20
5-21
5-22
5-23
5-24
5-25
5-26

Rules for System Control of Cache Status Update Order. 4-42

Range of Maximum Bcache Clock Ratios. i 4-43
Bcache Port Pins. 4-43
BC_CPU_CLK_DELAY[L:0] ValUES ottt e e e 4-45
BC_CLK_DELAY[L:0]VaAlUESottt e e e e 4-45
Program Values to Set the Cache Clock Period (Single-Data) 4-46
Program Values to Set the Cache Clock Period (Dual-DataRate) 4-46
Data-Sample/Drive ChoX CSRS e 4-47
Programming the Bcache to Support Each Size of the Bcache 4-51
Programming the Bcache Control Pins. e 4-51
Control Pin Assertion for RAM_TYPE A e 4-51
Control Pin Assertion for RAM_TYPE B e e 4-52
Control Pin Assertion for RAM_TYPE C e 4-52
Control Pin Assertion for RAM_TYPE D e e 4-52
Internal Processor RegISterSo e e 5-1
Cycle Counter Control Register Fields Description. 5-4
Virtual Address Control Register Fields Description 5-5
ProfileMe PC Fields Description e 5-8
IER_CM Register Fields DesCription. e e i 5-10
Software Interrupt Request Register Fields Description 5-11
Interrupt Summary Register Fields Description. 5-12
Hardware Interrupt Clear Register Fields Description. 5-13
Exception Summary Register Fields Description i 5-14
PAL Base Register Fields Description e 5-15
Ibox Control Register Fields DesCription. e e 5-16
Ibox Status Register Fields Description 5-19
IPR Index Bits and Register Fields 5-21
Process Context Register Fields Description i 5-22
Performance Counter Control Register Fields Description 5-23
Performance Counter Control Register Input Select Fields. 5-25
DTB Alternate Processor Mode Register Fields Description. 5-26
Memory Management Status Register Fields Description 5-28
Mbox Control Register Fields Description e 5-30
Dcache Control Register Fields Description e 5-31
Dcache Status Register Fields Description e 5-32
Cbox Data Register Fields Description i e 5-33
Cbox Shift Register Fields Description e 5-33
Cbhbox WRITE_ONCE Chain Orderttt 5-34
Cbhbox WRITE_MANY Chain Orderttt e e 5-39
Cbox Read IPR Fields DeSCHptionttt i 5-41
Required PALcode FUNction Codest 6-3
Opcodes Reserved for PALCOE.t e e e e e 6-3
HW_LD Instruction Fields DescCriptions.ot e e e e 6-4
HW_ST Instruction Fields Descriptions. i e e e es 6-5
HW_RET Instruction Fields Descriptions e 6—6
HW_MFPR and HW_MTPR Instructions Fields Descriptions.. 6-7
Paired Instruction Fetch Order e 6-9
PALcode Exception Entry LOCAtioNSot 6-13
IPRs Used for Performance Counter SUPPOrt.ttt e e 6-18
Aggregate Mode Returned IPR Contentst eee e 6-19
Aggregate Mode Performance Counter IPR Input SelectFields. 6—-20
CMOV DECOMPOSEttt e e e e e e e e 6-21
ProfileMe Mode Returned IPR Contents. it 6-22
ProfileMe Mode PCTR_CTL Input SelectFields. 6-24
21264/EV68A Reset State Machine Major Operationso ii i 7-1
Signal Pin Reset State e 7-3
Pin Signal Names and Initialization State 7-5
Power-Up Flow Signals and Their Constraints -7
Effect on IPRs After Fault Reset 7-8

21264/EV68A Hardware Reference Manual

7-6 Effect on IPRs After Transition Through SleepMode
-7 Signals and Constraints for the Sleep Mode Sequenceiuun.
7-8 Effect on IPRs After Warm Reset e e
7-9 WRITE_MANY Chain CSR Values for Bcache Initialization
7-10 Internal Processor Registers at Power-Up ResetState
7-11 21264/EV68A Reset State Machine State Descriptions i,
7-12 Differential Reference Clock Frequencies in Full-Speed Lock
8-1 21264/EV68A Error Detection Mechanisms i
8-2 64-Bit Data and Check Bit ECC Code.ttt e
8-3 Error Case SUMMaArY.ot e e e e e e
9-1 Maximum Electrical Ratings e
9-2 SIgNAl TYPES . o vt e
9-3 VDD (I_DC_POWER) . . . oot e e e
9-4 Input DC Reference Pin (I_DC_REF) e
9-5 Input Differential Amplifier Receiver (I_DA). e e e
9-6 Input Differential Amplifier Clock Receiver (I_DA_CLK) e,
9-7 Pin Type: Open-Drain Output Driver (O_OD)o oo e e e e
9-8 Bidirectional, Differential Amplifier Receiver, Open-Drain Output Driver (B_DA _OD)
9-9 Pin Type: Open-Drain Driver for Test Pins (O_OD_TP) i
9-10 Bidirectional, Differential Amplifier Receiver, Push-Pull Output Driver (B_DA PP)
9-11 Push-Pull Qutput Driver (O_PP) e e e e e e
9-12 Push-Pull Output Clock Driver (O_PP_CLK). o e e
9-13 AC SPECIICALIONS . .. i e e
10-1 Operating Temperature at Heat Sink Center (TC) it e e e e
10-2 gca at Various Airflows for 21264/EVB8A
10-3 Maximum Ta for 21264/EV68A @ 750 MHz and @ 1.7 V with Various Airflows
10-4 Maximum Ta for 21264/EV68A @ 833 MHz and @ 1.7 V with Various Airflows
10-5 Maximum Ta for 21264/EV68A @ 875 MHz and @ 1.7 V with Various Airflows
10-6 Maximum Ta for 21264/EV68A @ 940 MHz and @ 1.7 V with Various Airflows
11-1 Dedicated Test POrt PiNS. e
11-2 IEEE 1149.1 Instructions and OpCodesSttt e e
11-3 TAP Controller State Machine.
11-4 Icache Bit Fields inan SROM LINE e e e
A-1 Instruction Format and Opcode Notation e
A-2 Architecture INStrUCtiONSo e
A-3 Opcodes Reserved for Compag oo oo e
A-4 Opcodes Reserved for PALCOE.t e e e e e
A-5 IEEE Floating-Point Instruction Function Codes i
A-6 VAX Floating-Point Instruction Function Codes
A-7 Independent Floating-Point Instruction Function Codes
A-8 OPCOdE SUMMAIY . . oottt e e e e e e
A-9 Key to Opcode Summary UsedinTable A=8 i
A-10 Required PALcode Function Codesttt et e e
A-11 Exceptional Input and Output Conditions i i
E-1 Bcache Forwarding Clock Pin Groupingso oo e e
E-2 Late-Write Non-Bursting SSRAMs Data PinUsage i
E-3 Late-Write Non-Bursting SSRAMs Tag PinUsage
E-4 Dual-Data Rate SSRAM Data PinUsaget e ees
E-5 Dual-Data Rate SSRAM Tag PinUsage. e e e

21264/EV68A Hardware Reference Manual

7-10
7-11
7-11
7-12
7-14
7-17
7-20

8-2
8-10

]
I
[

| |
AR OWWWN

N

[Eny
|

it
(o]

A-11
A-12
A-12
A-13
A-13
A-15

E-1

Tron
A OWONN

XV

Audience

Content

Preface

This manual is for system designers and programmers who use the Alpha 21264/
EV68A microprocessor (ferred to as th1264/EV68A).

This manual contains the following chapters and appendixes:

Chapter 1, Introduction, introduces the 21264/EV68A and provides an overview of the
Alpha architecture.

Chapter 2, Internal Architecture, describes the major hardware functions and the inter-
nal chip architecture. It describes performance measurement facilities, coding rules, and
design examples.

Chapter 3, Hardware Interfadésts and describes the internal hardware interface sig-
nals, and provides mechanical data and packaging information, including signal pin
lists.

Chapter 4, Cache and External Interfaces, describes the external bus functions and
transactions, lists bus commands, and describes the clock functions.

Chapter 5, Internal Processor Registers, lists and describes the internal processor regis-
ter set.

Chapter 6, Privileged Architecture Library Code, describes the privileged architecture
library code (PALcode).

Chapter 7, Initialization and Configuration, describes the initialization and configura-
tion sequence.

Chapter 8, Error Detection and Error Handling, describes error detection and error han-
dling.

Chapter 9, Electrical Data, provides electrical data and describes signal integrity issues.
Chapter 10, Thermal Management, provides information about thermal management.
Chapter 11, Testability and Diagnostics, describes chip and system testability features.
Appendix A, Alpha Instruction Set, summarizes the Alpha instruction set.

Appendix B, 21264/EV68A Boundary-Scan Register, presents the BSDL description
of the 21264/EV68A boundary-scan register.

21264/EV68A Hardware Reference Manual XVii

Xviii

Appendix C, Serial Icache Load Predecode Values, provides a pointer to the Alpha
Motherboards Software Developer’s Kit (SDK), which contains this information.

Appendix D, PALcode Restrictions and Guidelines, lists restrictions and guidelines
that must be adhered to when generating PALcode.

Appendix E, 21264/EV68A-to-Bcache Pin Interface, provides the pimfante
between the 21264/EV68A and Bcache SSRAMSs.

The Glossary lists and defines terms associated with the 21264/EV68A.
An Index is provided at the end of the document.
Documentation Included by Reference

The companion volume to this manual, thpha Architecture Reference Manual,
Fourth Edition can be accessed from the following websifg.compaqg.com/
pub/products/alphaCPUdocs.

21264/EV68A Hardware Reference Manual

Terminology and Conventions

This section defines the abbreviations, terminology, and other conventions used
throughout this document.

Abbreviations
- Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values.

K = 2101024)

M = 220(1,048,576)

G = 2%0(1,073,741,824)

For example:

2KB = 2kilobytes = 2x2%pytes
4MB = 4 megabytes = 4x220pytes
8GB = 8gigabytes = gx 230pytes
2K pixels = 2kilopixels = 2x 210 pixels
4Mpixels = 4 megapixels= 4 x 220 pixels

» Register Access

The abbreviations used to indicate the type of access to register fields and bits have
the following definitions:

Abbreviation Meaning

IGN Ignore
Bits and fields specified are ignored on writes.
MBZ Must Be Zero

Software must never place a nonzero value in bits and fields specified as
MBZ. A nonzero read produces an lllegal Operand exception. Also, MBZ
fields are reserved for future use.

RAZ Read As Zero
Bits and fields return a zero when read.
RC Read Clears

Bits and fields are cleared when read. Unless otherwise specified, such bits
cannot be written.
RES Reserved

Bits and fields are reserved by Compaq and should not be used; however,
zeros can be written to reserved fields that cannot be masked.

RO Read Only
The value may be read by software. It is written by hardware. Software write
operations are ignored.

ROnN Read Only, and takes the valo@at power-on reset.
The value may be read by software. It is written by hardware. Software write
operations are ignored.

21264/EV68A Hardware Reference Manual XiX

XX

Abbreviation Meaning

RW Read/Write
Bits and fields can be read and written.

RW,n Read/Write, and takes the valnat power-on reset.
Bits and fields can be read and written.
wWicC Write One to Clear

If read operations are allowed to the register, then the value may be read by
software. If it is a write-only register, then a read operation by software
returns an UNPREDICTABLE result. Software write operations of a 1 cause
the bit to be cleared by hardware. Software write operations of a 0 do not
modify the state of the bit.

W1s Write One to Set
If read operations are allowed to the register, then the value may be read by
software. If it is a write-only register, then a read operation by software
returns an UNPREDICTABLE result. Software write operations of a 1 cause
the bit to be set by hardware. Software write operations of a 0 do not modify
the state of the bit.

\We Write Only
Bits and fields can be written but not read.

WO,n Write Only, and takes the valueat power-on reset.
Bits and fields can be written but not read.

» Sign extension
SEXT(X) meanx s sign-extended to the required size.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned

The termsalignedandnaturally alignedare interchangeable and refer to data objects
that are powers of two in size. An aligned datum of siné?stored in memory at a

byte address that is a multiple ofizhat is, one that haslow-order zeros. For ex-
ample, an aligned 64-byte stack frame has a memory address that is a multiple of 64.

A datum of size 8 is unalignedif it is stored in a byte address that is not a multiple of
2n.

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in square

brackets ([]). Muliple contiguous bits are indicated by a pair of numbers separated by a
colon [:]. For example, [9:7,5,2:0] specifies bits 9,8,7,5,2,1, and 0. Similarly, single bits
are frequently indicated with square brackets. For example, [27] specifies bit 27. See

also Field Notation.

Caution

Cautions indicate potential damage to equipment or loss of data.

21264/EV68A Hardware Reference Manual

Data Units

The following data unit terminology is used throughout this manual.

Term Words Bytes Bits Other

Byte Yo 1 8 —

Word 2 16 —
Longword 2 4 32 Dword
Quadword 4 8 64 2 longword

Do Not Care (X)

A capital X represents any valid value.

External

Unless otherwise stated, external means not contained in the chip.
Field Notation

The names of single-bit and multiple-bit fields can be used rather than the actual bit
numbers (see Bit Notation). When the field name is used, it is contained in square
brackets ([]). For exampld®isterName[LowByte]specifiesRegisterName[7:0]

Note
Notes emphasize particularly important information.
Numbering

All numbers are decimal or hexadecimal unless otherwise indicated.r&fig Px indi-

cates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A are hexa-
decimal (also see Addresses). Otherwise, the base is indicated by a subscript; for
example, 109is a binary number.

Ranges and Extents

Rangesare specified by a pair of numbers separated by two periods (..) and are inclu-
sive. For example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extentsare specified by a pair of numbers in square brackets ([]) separated by a colon
(:) and are inclusive. Bit fields are often specified as extents. For example, bits [7:3]
specifies bits 7, 6, 5, 4, and 3.

Register Figures
The gray areas in gaster figures indicate reserved or unused bits and fields.

Bit ranges that are coupled with the field name specify the bits of the named field that
are included in the register. The bit range may, but need not necessarily, correspond to
the bitExtentin the register. See the explanation above Table 5-1 for more information.

Signal Names

The following examples describe signal-name conventions used in this document.

21264/EV68A Hardware Reference Manual XXi

xXii

AlphaSignal[n:n] Boldface, mixed-case type denotes signal names that are
assigned internal and external to the 21264/EV68A (that
is, the signal traverses a chip inflacepin).

AlphaSignal_x[n:n] When a signal has high and low assertion states, a lower-
case italicx represents the assertion states. For example,
SignalName x[3:0] representSignalName_H[3:0]and
SignalName_L[3:0]

UNDEFINED

Operations specified as UNDEFINED may vary from moment to moment, implementa-

tion to implementation, and instruction to instruction within implementations. The

operation may vary in effect from nothing to stopping system operation.

UNDEFINED operations may halt the processor or cause it to lose information. How-
ever, UNDEFINED operations must not cause the processor to hang, that is, reach an
unhalted state from which there is no transition to a normal state in which the machine
executes instructions.

UNPREDICTABLE

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the pro-
cessor; it continues to execute instructions in its normal manner. Further:

» Results or occurrences specified as UNPREDICTABLE may vary from moment to
moment, implementation to implementation, and instruction to instruction within
implementations. Software can never depend on results specified as UNPREDICT-
ABLE.

« An UNPREDICTABLE result may acquire an arntity valuesubject to a few con-
straints. Such a result may be an arbitrary function of the input operands or of any
state information that is accessible to the process in its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

« Anoccurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints as
are UNPREDICTABLE results and, in particular, must not constitute a security
hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function of,
the contents of memory locations or registers that are inaccessible to the current
process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

— Write or modify the contents of memory locations or registers to which the cur-
rent process in the current access mode does not have access, or

— Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of processor
temporary registers left behind by some previously running process, or on a
sequence of actions of défent processes.

21264/EV68A Hardware Reference Manual

X

Do not care. A capital X represents any valid value.

21264/EV68A Hardware Reference Manual Xxiii

1

Introduction

This chapter provides a brief introduction to the Algrahitecture, Compaq’s RISC
(reduced instruction set computing) architecture designed for high performance. The
chapter then summarizes the specific features of the Alpha 21264/EV68A microproces-
sor (hereafter called th&1264/EV68A) that implements the Alpha architecture. Appen-
dix A provides a list of Alpha instructions.

The companion volume to this document, tpha Architecture Reference Manual
Fourth Edition contains the complete architecture information.

1.1 The Architecture

The Alpha architecture is a 64-bit load and store RISC architecture designed with par-
ticular emphasis on speed, multiple instruction issue, multiple processors, and software
migration from many operating systems.

All registers are 64 bits long and all operations are performed between 64-bit registers.
Allinstructions are 32 bits long. Memory operations are either load or store operations.
All data manipulation is done between registers.

The Alpha architecture supports the following data types:

e 8-, 16-, 32-, and 64-bit integers

* |EEE 32-bit and 64-bit floating-point formats

* VAX architecture 32-bit and 64-bit floating-point formats

In the Alpha architecture, instructions interact with each other only by one instruction
writing to a register or memory location and another instruction reading from that regis-
ter or memory location. This use of resoas makes it easy to build implememndats

that issue multiple instructions every CPU cycle.

The 21264/EV68A uses a set of subroutines, called privileged architecture library code
(PALcode), that is specific to a particular Alpha operating system implementation and
hardware platform. These subroutines provide operating system primitives for context
switching, interrupts, exceptions, and memory management. These subroutines can be
invoked by hardware or CALL_PAL instructions. CALL_PAL instructions use the
function field of the instruction to vector to a specified subroutine. PALcode is written

in standard machine code with some implementation-specific extensions to provide
direct access to low-level hardware functions. PALcode supports optimizations for mul-
tiple operating systems, flexible memory-management implementations, and multi-
instruction atomic sequences.

21264/EV68A Hardware Reference Manual Introduction 1-1

The Architecture

The Alpha architecture performs byte shifting and masking with normal 64-bit, regis-
ter-to-register instructions. The 21264/EV68Arformssingle-byte and single-word
load and store instructions.

1.1.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. The 21264/
EV68A supports a 48-bit or 43-bit virtual address (selectable under IPR control).

Virtual addresses as seen by the program are translated into physical memory addresses
by the memory-management mechanism. The 21264/EV68A supports a 44-bit physical

address.
1.1.2 Integer Data Types

Alpha architecture supports the four integer data types listed in Table 1-1.

Table 1-1 Integer Data Types

Data Type Description

Byte A byte is 8 contiguous hits that start at an addressable byte boundary.
A byte is an 8-bit value.

Word A word is 2 contiguous bytes that start at an arbitrary byte boundary.
A word is a 16-bit value.

Longword A longword is 4 contiguous bytes that start at an arbitrary byte boundary. A
longword is a 32-bit value.

Quadword A quadword is 8 contiguous bytes that start at an arbitrary byte boundary.

Note: Alpha implementations may impose a significant performance penalty

when accessing operands that are not naturally aligned. Refer &dgha
Architecture Handbook, Versionfdr details.

1.1.3 Floating-Point Data Types

The 21264/EV68A supports the following floating-point data types:
* Longword integer format in floating-point unit
* Quadword integer format in floating-point unit
* |EEE floating-point formats
— S floating
— T _floating
* VAX floating-point formats
— F_floating
— G_floating
— D_floating (limited support)

1-2 Introduction 21264/EV68A Hardware Reference Manual

21264/EV68A Microprocessor Features

1.2 21264/EV68A Microprocessor Features

The 21264/EV68A microprocessor is a superscalar pipelined processor. It is packaged
in a 587-pin PGA carrier and has removable application-specific heat sinks. A number
of configuration options allow its use in a range of system designs ranging from
extremely simple uniprocessor systems with minimum component count to high-per-
formance multiprocessor systems with very high cache and memory bandwidth.

The 21264/EV68A can issue four Alpha instructions in a single cycle, thereby minimiz-
ing the average cycles per instruction (CPI). A number of low-latency and/or high-
throughput features in the instruction issue unit and the onchip components of the mem-
ory subsystem further reduce the average CPI.

The 21264/EV68A and associated PALcode implements IEEE single-precision and
double-precision, VAX F_floating and G_floating data types, and supports longword
(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is pro-
vided by byte-manipulation instructions. Limited hardware support is provided for the
VAX D_floating data type.

Other 21264/EV68A features include:
e The ability to issue up to four instructions during each CPU clock cycle.
* A peakinstruction execution rate of four times the CPU clock frequency.

* Anonchip, demand-paged memory-management unit with translation buffer, which,
when used with PALcode, can implement a variety of page table structures and trans-
lation algorithms. The unit consists of a 128-entry, fully-associative data translation
buffer (DTB) and a 128-entry, fully-associative instruction translation buffer (ITB),
with each entry able to map a single 8KB page or a group of 8, 64, or 512 8KB
pages. The allocation scheme for the ITB and DTB is round-robin. The size of each
translation buffer entry’s group is specified hint bits stored in the entry. The
DTB and ITB implement 8-bit address space numbers (ASN), MAX_ASN=255.

e Two onchip, high-throughput pipelined floating-point units, capable of executing
both VAX and IEEE floating-point data types.

* Anonchip, 64KB virtually-addressed instruction cache with 8-bit ASNs
(MAX_ASN=255).

* Anonchip, virtually-indexed, physically-tagged duabhd-ported64KB data
cache.

e Supports a 48-bit or 43-bit virtual address (program selectable).

e Supports a 44-bit physical address.

* Anonchip I/O write buffer with four 64-byte entries for I/O write transactions.
* Anonchip, 8-entry victim data fer.

* Anonchip, 32-entry load queue.

* Anonchip, 32-entry store queue.

* Anonchip, 8-entry miss address file for cache fill requests and I/O read
transactions.

* Anonchip, 8-entry probe queue, holding pending system port probe commands.

21264/EV68A Hardware Reference Manual Introduction 1-3

21264/EV68A Microprocessor Features

14

An onchip, duplicate tagreay used to maintain level 2 cache coherency.
A 64-bit data bus with onchip parity and error cotien code (ECC) support.

Support for an external second-level (Bcache) cache. The size and some timing
parameters of the Bcache are programmable.

An internal clock generator providing a high-speed clock used by the 21264/
EV68A, and two clocks for use by the CPU module.

Onchip performance counters to measure and analyze CPU and system p
mance.

Chip and module level test support, including an instruction cache tesfdoe to
support chip and module level testing.

A 2.0-V external interface.

Refer to Chapter 9 for 21264/EV68A dc and ac electrical characteristics. Refer to the
Alpha Architecture Handbook, Version #ppendix E, for waivers and any other
implementation-dependent information.

Introduction

21264/EV68A Hardware Reference Manual

2

Internal Architecture

This chapter provides both an overview of the 21264/EV68A microarchitecture and a sys-
tem designer’s view of the 21264/EV68A implementation of the Alpha architecture. The
combination of the 21264/EV68A microarchitecture and privileged architecture library
code (PALcode) defines the chip’s implementation of the Alpha architecture. If a certain
piece of hardware seems to be “architecturally incomplete,” thesinmg functionality is
implemented in PALcode. Chapter 6 provides more information on PALcode.

This chapter describes the major functional hardware units and is not intended to be a
detailed hardware description of the chip. It is organized as follows:

e 21264/EV68A microarchitecture

* Pipeline organization

* Instruction issue and retire rules

e Load instructions to R31/F31 (software-directed instructicsfetich)
e Special cases of Alpha instruction execution

e Memory and I/O address space

* Miss address file (MAF) and load-merging rules
* Instruction ordering

* Replay traps

* 1/O write buffer and the WMB instruction

* Performance measurement support

* Floating-point control register

* AMASK and IMPLVER instruction values

e Design examples

2.1 21264/EV68A Microarchitecture

The 21264/EV68A microprocessor is a high-performance third-generation implementa-
tion of the Compagq Alpha architecture. The 21264/EV68A consists of the following
sections, as shown in Figure 2—1.

* Instruction fetch, issue, and retire unit (Ibox)

* Integer execution unit (Ebox)

21264/EV68A Hardware Reference Manual Internal Architecture 2-1

21264/EV68A Microarchitecture

Floating-point execution unit (Fbox)

Onchip caches (Icache and Dcache)

Memory reference unit (Mbox)

External cache and system interface unit (Cbox)

Pipeline operation sequence

2.1.1 Instruction Fetch, Issue, and Retire Unit

The instruction fetch, issue, and retire unit (Ibox) consists of the following subsections:

Virtual program counter logic

Branch predictor

Instruction-stream translation fier (ITB)
Instruction fetch logic

Register rename maps

Integer and floating-point issue queues
Exception and interrupt logic

Retire logic

2.1.1.1 Virtual Program Counter Logic

2-2

The virtual program counter (VPC) logic maintains the virtual addresses for instruc-
tions that are in flight. There can be up to 80 instructions, in 20 successive fetch slots, in
flight between the register rename mappers and the end of the pipeline. The VPC logic
contains a 20-entry table to store these fetched VPC addresses.

Internal Architecture 21264/EV68A Hardware Reference Manual

21264/EV68A Microarchitecture

Figure 2—-1 21264/EV68A Block Diagram

Instruction Cache

A A
Ibox ;
- Four Physical
Fetch Unit virtual Address »| ITB Instructions Address
VPC
Queue | | _ Next Address | Predecode |-
A
Y
Branch Retire Decode and 128
Predictor Unit Rename Registers
I
Y [Y
Integer Issue Queue FP Issue Queue
(20 Entries) (15 Entries) Chox CDa cthe
Probe ata
Queue 128
Ebox Y / Y Y Fbox Y Y - Cache
Duplicate
Address INT INT Address FP FP Tag Store Index
ALU O UNIT UNIT ALU 1 ADD MUL 20
(LO) 0 1 (L1) DIV
(U0) (U1) SQRT IOWB System
—TAA TALA KA AR Bus
Y r r Y Victim o
Integer Registers 0 Integer Registers 1 FP Registers Buffer System
(80 Registers) (80 Registers) (72 Registers) Address
|l ————
A A T T A A A A Arbiter 15
A A
Y Y Y Y
Mbax Data
DTB Load Store Miss Address| | _
(Dual-ported, 128-entry)| | Queue Queue File T 128
Physical A
Y Address Y Y Data
Dual-Ported Data Cache <<
FM-05642-Al4

2.1.1.2 Branch Predictor

The branch predictor is composed of three units: the local, global, and choice predic-
tors. Figure 2—2 shows how the branch predictor generates the predicted branch

address.

21264/EV68A Hardware Reference Manual Internal Architecture 2-3

21264/EV68A Microarchitecture

Figure 2—2 Branch Predictor

Local Global Choice
Predictor Predictor Predictor

Y Y

N A&c—

Predicted
L Branch
Address

FM-05810.Al4

Local Predictor

The local predictor uses a 2-level table that holds the history of individual branches.
The 2-level table design approaches the prediction accuracy of a larger single-level
table while requiring fewer total bits of storage. Figure 2—3 shows how the local pre-
dictor generates a prediction. Bits [11:2] of the VPC of the current branch are used as
the index to a 1K entry table in which each entry is a 10-bit value. This 10-bit value is
used as the index to a 1K entry table of 3-bit saturating counters. The value of the satu-
rating counter determines the predication, taken/not-taken, of the current branch.

Figure 2—-3 Local Predictor

% Loca|
History
Table
>»1 1K x 10
10
10 Llal
Index
»| Predictor +/-
1K x 3

A X

1

Y

Local Branch Prediction

FM-05811.Al4

Global Predictor

The global predictor is indexed by a global history of all recent branches. The global
predictor correlates the lochistory of the curent branctwith all recent branches. Fig-

ure 2—4 shows how the global predictor generates a prediction. The global path history
is comprised of the taken/not-taken state of the 12 most-recent branches. These 12
states are used to form an index into a 4K entry table of 2-bit saturating counters. The
value of the saturating counter determines the predication, taken/not-taken, of the cur-
rent branch.

2-4 Internal Architecture 21264/EV68A Hardware Reference Manual

Figure 2—4 Global Predictor

Global
Path
History
12 v
Index GIo_baI
»| Predictor +/-
4K X 2

21264/EV68A Microarchitecture

2 X

1

Y

Global Branch Prediction

FM-05812.Al4
Choice Predictor

The choice predictor monitors the history of the local and global predictors and chooses
the best of the two predictors for a particular branch. Figure 2-5 shows how the choice
predictor generates its choice of the result of the local@og prediction. The 12-bit
global path history (see Figure 2—4) is used to index a 4K entry table of 2-bit saturating

counters. The value of the saturating counter determines the choice between the outputs
of the local and global predictors.

Figure 2-5 Choice Predictor

Global
Path
History
12 Y 2
Choice
> Predictor 5 1 > Choice Prediction
4K x 2

FM-05813.Al4

2.1.1.3 Instruction-Stream Translation Buffer

The Ibox includes a 128-entry, fully-associative instruction-stream translation buffer
(ITB) that is used to store recently used instruction-stream (Istream) address transla-
tions and page protection information. Each of the entries in the ITB can map 1, 8, 64,
or 512 contiguous 8KB pages. The allocation scheme is round-robin.

The ITB supports an 8-bit ASN and contains an ASM bit. Tteche is virtually

addressed and contains the access-check information, so the ITB is accessed only for
Istream references that miss in the Icache.

Istream transactions to 1/0O address space are UNNEBIL

21264/EV68A Hardware Reference Manual

Internal Architecture 2-5

21264/EV68A Microarchitecture

2.1.1.4 Instruction Fetch Logic

The instruction pefetcher (predecode) reads an octaword, containing up to four natu-
rally aligned instructions per cycle, from the Icache. Branch prediction and line predic-
tion bits accompany the four instructions. The branch prediction scheme operates most
efficiently whenonly one branch instruction is contained among the four fetched
instructions. The line prediction scheme attempts to predict the Icache line that the
branch predictor will generate, and is described in Section 2.2.

An entry from the subroutine return prediction stack, together with set prediction bits
for use by the Icache stream controller, are fetched along with the octaword. The Icache
stream controller generates fetch requests for additional Icache lines and stores the
Istream data in the Icache. There is no separate buffleoldIstream requests.

2.1.1.5 Register Rename Maps

The instruction pefetcher forwards instraions to the integer and floating-point regis-
ter rename maps. The rename maps perform the two functions listed here:

* Eliminate register write-after-read (WAR) and write-after-write (WAW) data
dependencies while preserving true read-after-write (RAW) data dependencies, in
order to allow instructions to be dynamically rescheduled.

* Provide a means of speculatively executing instructions before the control flow
previous to those instructions is resolved. Both exceptions and branch
mispredictions represent deviations from the control flow predicted by the
instruction prefetcher.

The map logic translates each instruction’s operand register specifiers frornmttred
register numbers in the instruction to thRysicalregister numbers that hold the corre-
sponding architecturally-correct values. The map logic also renames each instruction’s
destination register specifier from the virtual number in the instruction to a physical
register number chosen from a listfofe physical registers, and updates the register
maps.

The map logic can process four instructions per cycle. It does not return the physical
register, which holds the old value of an instruction’s virtual destination register, to the
free list until the instruction has been retired, indicating that the control flow up to that
instruction has been resolved.

If a branch mispredict or exception occurs, the map logic backs up the contents of the
integer and floating-point register rename maps to the state associated with the instruc-
tion that triggered the condition, and the prefetcher restarts at the appropriate VPC. At
most, 20 valid fetch slots containing up to 80 instructions can be in flight between the
register maps and the end of the machine’s pipeline, where the control flow is finally
resolved. The map logic is capable of backing up the contents of the maps to the state
associated with any of these 80 instructions in a single cycle.

The register rename logic places instructions into an integer or floating-point issue
gueue, from which they are later issued to functional units for execution.

2.1.1.6 Integer Issue Queue

The 20-entry integer issue queue (1Q), associated with the integer execution units
(Ebox), issues the following types of instructions at a maximum rate of four per cycle:

2-6 Internal Architecture 21264/EV68A Hardware Reference Manual

21264/EV68A Microarchitecture

* Integer operate

* Integer conditional branch

e Unconditional branch — both displacement and memory format
* Integer and floating-point load and store

e PAL-reserved instructions: HW_MTPR, HW_MFPR, HW_LD, HW_ST,
HW_RET

* Integer-to-floatingpoint (ITOFX) and floating-point-to-integer (FTQ)

Each queue entry asserts four request signals—one for each of the Ebox subclusters. A
gueue entry asserts a request when it contains an instruction that can be executed by the
subcluster, if the instruction’s operand register values are available within the subclus-
ter.

There are two arbiters—one for the upper subclusters and one for the lower subclusters.
(Subclusters are described in Section 2.1.2.) Each arbiter picks two of the possible 20
requesters for service each cycle. A given instruction only requests upper subclusters or
lower subclusters, but because many instructions can only be executed in one type or
another this is not too limiting.

For example, load and store instructions can only go to lower subclusters and shift
instructions can only go to upper subclusters. Other instructions, such as addition and
logic operations, can execute in either upper or lower subclusters and are statically
assigned before being placed in the IQ.

The 1Q arbiters choose between simultaneous requesters of a subcluster based on the
age of the request—older requests are given priority over newer requests. If a given
instruction requests both lower subclusters, and no older instruction requests a lower
subcluster, then the arbiter assigns subcluster L0 to the instruction. If a given instruction
requests both upper subclusters, and no older instruction requests an upper subcluster,
then the arbiter assigns subcluster U1 to the instruction. This asymmetry between the
upper and lower subcluster arbiters is a circuit implementation optimization with negli-
gible overall performance effect.

2.1.1.7 Floating-Point Issue Queue

The 15-entry floating-point issue queue (FQ) associated with the Fbox issues the fol-
lowing instruction types:

* Floating-point operates

* Floating-point conditional branches

* Floating-point stores

* Floating-point register to integer register transfers (FOI

Each queue entry has three request lines—one for the add pipeline, one for the multiply
pipeline, and one for the two store pipelines. There are three arbiters—one for each of
the add, multiply, and store pipelines. The add and multiply arbiters pick one requester
per cycle, while the store pipeline arbiter picks two requesters per cycle, one for each
store pipeline.

21264/EV68A Hardware Reference Manual Internal Architecture 2-7

21264/EV68A Microarchitecture

The FQ arbiters pick between simultaneous requesters of a pipeline based on the age of
the request—older requests are given priority over newer requests. Floating-point store
instructions and FTQdinstructions in even-numbered queue entries arbitrate for one
store port. Floating-point store instructions and FX{ktructions in odd-numbered

gueue entries arbitrate for the second store port.

Floating-point store instructions and FDOhstructions are queued in both the integer
and floating-point queues. They wait in the floating-point queue until their operand reg-
ister values are available. They subsequently request service from the store arbiter.
Upon being issued from the floating-point queue, they signal the corresponding entry in
the integer queue to request service. Upon being issued from the integer queue, the
operation is completed.

2.1.1.8 Exception and Interrupt Logic

There are two types of exceptions: faults and synchronous traps. Arithmetic exceptions
are precise and are reported as synchronous traps.

The four sources of interrupts are listed as follows:
* Level-sensitive hardware interrupts sourced bylR@ H[5:0] pins

e Edge-sensitive hardware interrupts geated by the serial line receive pin,
performance aunter overflows, and hardware corrected read errors

e Software interrupts sourced by the software interrupt request (SIRR) register
* Asynchronous system traps (ASTs)

Interrupt sources can be individually masked. In addition, AST interrupts are qualified
by the current procesor mode.

2.1.1.9 Retire Logic

The Ibox fetches instructions in program order, executes them out of order, and then
retires them in order. The Ibox retire logic maintains #nehitectural state of the

machine by retiring an instruction only if all previous instructions have executed with-
out generating exceptions or branch mispredictions. Retiring an instruction commits the
machine to any changes the instruction may have made to the software-visible state.
The three software-visible states are listed as follows:

* Integer and floating-point registers
e Memory

* Internal processor registers (including control/status registers and translation
buffers)

The retire logic can sustain a maximum retire rate of eight instructions per cycle, and
can retire up to as many as 11 instructions in a single cycle.

2.1.2 Integer Execution Unit

The integer execution unit (Ebox) is a 4-path integer execution unit that is implemented
as two functional-unit “clusters” labeled 0 and 1. Each cluster contains a copy of an 80-
entry, physical-register file and two “subclusters”, named upper (U) and lower (L). Fig-

ure 2—6 shows the integer execution unit. In the figiwp, wris the cross-cluster bus

for moving integer result values between clusters.

2-8 Internal Architecture 21264/EV68A Hardware Reference Manual

21264/EV68A Microarchitecture

Figure 2—-6 Integer Execution Unit—Clusters 0 and 1

eff_ VA " i eff_ VA

iop_wr
iop_wr
Y Y
uo U1l
Register Register
LO L1
kA A op_r KT kA
iop_wr
Load/Store Data

Load/Store Data

Y Y

FM-05643.Al4

Most instructions have 1-cycle latency for consumers that execute within the same clus-
ter. Also, there is another 1-cycle delay associated with producing a value in one cluster
and consuming the value in the other cluster. The instruction issue queue minimizes the
performance effect of this oss-cluster delay. The Ebox contains the following
resources:

Four 64-bit adders that are used to calculate results for integer add instructions
(located in U0, U1, LO, and L1)

The adders in the lower subclusters that are used to generatéfdhtive virtual
address for load and store instructions (located in LO and L1)

Four logic units

Two barrel shifters and associated byte logic (located in U0 and U1)
Two sets of conditional branch logic (located in U0 and U1)

Two copies of an 80-entry register file

One pipelined multiplier (located in U1) with 7-cycle latency for all integer multiply
operations

One fully-pipelined unit (located in U0), with 3-cycle latency, that executes the fol-
lowing instructions:

— CTLZ,CTPOPR,CTTZ
— PERR, MINxxx, MAXxxx, UNPKxx, PKxx

21264/EV68A Hardware Reference Manual Internal Architecture 2-9

21264/EV68A Microarchitecture

The Ebox has 80 register-file entries that contain storage for the values of the 31 Alpha
integer registers (the value of R31 is not stored), the values of 8 PALshadow registers,
and 41 results written by instructions that have not yet been retired.

Ignoring cross-cluster delay, the two copies of the Ebox register file contain identical
values. Each copy of the Ebox register file contains four read ports and six write ports.
The four read ports are used to source operands to each of the two subclusters within a
cluster. The six write ports are used as follows:

e Two write ports are used to write results generated within the cluster.

e Two write ports are used to write results generated by the other cluster.

e Two write ports are used to write results from load instructions. These two ports
are also used for FTQlinstructions.

2.1.3 Floating-Point Execution Unit

The floating-point execution unit (Fbox) has two paths. The Fbox executes both VAX
and IEEE floating-point instructions. It supports IEEE S_floating-point and T_floating-
point data types and all rounding modes. It also supports VAX F_floating-point and
G_floating-point data types, and provides limited support for D_floating-point format.
The basic structure of the floating-point execution unit is shown in Figure 2—7.

Figure 2—7 Floating-Point Execution Units

Floating-Point
Execution Units

FP Mul

Reg

FP Add

FP Div

SQRT

LK98-0004A

The Fbox contains the following resources:

e 72-entry physical register file

* Fully-pipelined multiplier with 4-cycle latency

* Fully-pipelined adder with 4-cycle latency

* Nonpipelined divide unit associated with the adder pipeline

* Nonpipelined square root unit associated with the adder pipeline

The 72 Fbox register file entries contain storage for the values of the 31 Alpha floating-
point registers (F31 is not stored) and 41 values written by instructions that have not
been retired.

2-10 Internal Architecture 21264/EV68A Hardware Reference Manual

21264/EV68A Microarchitecture

The Fbox register file contains six reads ports and four write ports. Four read ports are
used to source operands to the add and multiply pipelines, and two read ports are used
to source data for store instructions. Two write ports are used to write results generated
by the add and multiply pipelines, and two write ports are used to write results from
floating-point load instructions.

2.1.4 External Cache and System Interface Unit

The interface for theystem and external cache (Chox) controls teadhe and system
ports. It contains the following structures:

* Victim address file (VAF)

* Victim data file (VDF)

e |/O write buffer (IOWB)

* Probe queue (PQ)

e Duplicate Dcache tag (DTAG)
2.1.4.1 Victim Address File and Victim Data File

The victim address file (VAF) and victim data file (VDF) together form an 8-entry vic-
tim buffer used for holding:

* Dcache blocks to be written to the Bcache

* |stream cachélocks from memory to be written to the Bcache

* Bcache blocks to be written to memory

e Cache blocks sent to the system in response to probe commands
2.1.4.2 1/O Write Buffer

The 1/O write buffer (IOWB) onsists of four 64-byte entries and associated address
and control logic used for Biering 1/0 write data between the store queue and the sys-
tem port.

2.1.4.3 Probe Queue

The probe queue (PQ) is an 8-entry queue that holds pending system port cache probe
commands and addresses.

2.1.4.4 Duplicate Dcache Tag Array

The duplicate Dcache tag (DTAG) array holds a duplicate copy of the Dcache tags and
is used by the Cbox when processing Dcache fills, Icache fills, and system port probes.

2.1.5 Onchip Caches

The 21264/EV68A contains two onchip primary-level caches.
2.1.5.1 Instruction Cache

The instruction cachddache) is ®4KB virtual-addressed, 2-way set-predict cache.
Set prediction is used to approximate the performance of a 2-set cache without slowing
the cache access time. Each Icache block contains:

e 16 Alpha instructions (64 bytes)

21264/EV68A Hardware Reference Manual Internal Architecture 2-11

21264/EV68A Microarchitecture

e Virtual tag bits [47:15]

e 8-bit address space number (ASN) field

e 1-bit address space match (ASM) bit

e 1-bit PALcode bit to indicate physical addressing
e Valid bit

e Data and tag parity bits

* Four access-check bits for the following modes: kernel, executive, supervisor, and
user (KESU)

e Additional predecoded information to assist with instruction processing and fetch
control

2.1.5.2 Data Cache

The data cache (Dcache) is a 64KB, 2-way set-associative, virtually indexed, physically
tagged, write-back, read/write allocate cache with 64-byte blocks. Derdrh cycle
the Dcache can perform one of the following transactions:

e Two quadword (or shorter) read transactions to arbitrary addresses

e Two quadword write transactions to the same aligned octaword

* Two non-overlapping less-than-quadword writes to the same aligned quadword
* One sequential read and write transaction from and to the shgmed octaword
Each Dcache block contains:

* 64 data bytes and associated quadword ECC bits

* Physical tag bits

e Valid, dirty, shared, and modified bits

* Tag parity bit calculated across the tag, dirty, shared, and modified bits

* One bit to control round-robin set allocation (one bit per two cache blocks)

The Dcache contains two sets, each with 512 rows containing 64-byte blocks per row
(that is, 32K bytes of data per set). The 21264/EV68A requires two additional bits of
virtual address beyond the bits that specify an 8KB page, in order to specify a Dcache
row index. A given virtual address might be found in four unique locations in the
Dcache, depending on the virtual-to-physical translation for those two bits. The 21264/
EV68A prevents this aliasing by keeping only one of the four possible translated
addresses in the cache at any time.

2.1.6 Memory Reference Unit

2-12

The memory reference unit (Mbox) controls the Dcache and ensures architecturally
correct behavior for load and store instructions. The Mbox contains the following struc-
tures:

* Load queue (LQ)
e Store queue (SQ)

Internal Architecture 21264/EV68A Hardware Reference Manual

Pipeline Organization

* Miss address file (MAF)
e Dstream translation buffer (DTB)
2.1.6.1 Load Queue

The load queue (LQ) is a reorder buffer for load instructions. It contains 32 entries and
maintains the state associated with load instructions that have been issued to the Mbox,
but for which results have not been delivered to the processor and the instructions
retired. The Mbox assigns load instructions to LQ slots based on the order in which
they were fetched from the Icache, then places them into the LQ after thessaesliby

the 1Q. The LQ helps ensure corredpha memory eference behaor.

2.1.6.2 Store Queue

The store queue (SQ) is a reordefffenand graduation unit fastore instructions. It
contains 32 entries and maintains the state associated with store instructions that have
been issued to the Mbox, but for which data has not been written to the Dcache and the
instruction retired. The Mbox assigns store instructions to SQ slots based on the order
in which they were fetched from the Icache and places them into the SQ after they are
issued by the IQ. The SQ holds data associated with store instructions issued from the
IQ until they are retired, at which point the store can be allowed to update the Dcache.
The SQ also helps ensure correct Alpha memory reference behavior.

2.1.6.3 Miss Address File

The 8-entry miss address file (MAF) holds physical addresses associated with pending
Icache and Dcache fill requests and pending I/O space read transactions.

2.1.6.4 Dstream Translation Buffer

The Mbox includes a 128-entry, fully associative Dstream translation buffer (DTB) used

to store Dstream address translations and page protection information. Each of the entries
inthe DTB can map 1, 8, 64, or 512 contiguous 8KB pages. The allocation scheme is
round-robin. The DTB supports an 8-bit ASN and contains an ASM bit.

2.1.7 SROM Interface

The serial read-only memory (SROM) interface provides the initialization data load
path from a system SROM to theache. Refer to Chapter 7 for more information.

2.2 Pipeline Organization

The 7-stage pipeline provides an optimized environment for executing Alpha instruc-
tions. The pipeline stages (0 to 6) are shown in Figure 2—8 and described in the follow-
ing paragraphs.

21264/EV68A Hardware Reference Manual Internal Architecture 2-13

Pipeline Organization

Figure 2—-8 Pipeline Organization

0 1 2 3 4 5 6
o ALU
Branch - Shifter
Predictor Integer — Y
Register Integer > Shifter
Integer Multiplier
A _y|Rename | | Issue - : < >
Map - Queue - Reglster System
Y File Address
(20) —)-ALU <> Bus
(64 Bits)
Address
- > A J—
— Four _ 64KB Bus
| etetons Data |-« Interface |—
Instruction Cache Unit Cache
Cache Floating-Point Bus)
(64KB)) Floating-) »| Add, Divide, (128 Bits)
(2-Set) Floating- Point Float_mg- and Square Root
—>»1 Point | |ssue - Po}mt
Register Queue Rngi:seter « | Floating-Point
Rename (15) ™ wuttiply Physica
ap Address
) (44 Bits)
T FM-05575.A14

Stage 0 — Instruction Fetch

The branch predictor uses a branch history algorithm to predict a branch instruction tar-
get address.

Up to four aligned instructions are fetched from thache, in program order. The

branch prediction tables are also accessed in this cycle. The branch predictor uses tables
and a branch history algorithm to predict a branch instruction target address for one
branch or memory format JSR instruction per cycle. Therefore, the prefetcher is limited
to fetching through one branch per cycle. If there is more than one branch within the
fetch line, and the branch predictor predicts that the first branch will not be taken, it will
predict through subsequent branches at the rate of one per cycle, until it predicts a taken
branch or predicts through the last branch in the fetch line.

The Icache array also contains a line prediction field, the contents of which are applied
to the Icache in the next cycle. The purpose of the line predictor is to remove the pipe-
line bubble which would otherwise beeated when the branch predictor predicts a
branch to be taken. In effect, the line predictor attempts to predict the IcacheHinb

the branch predictor will generate. On fills, the line predictor value at each fetch line is
initialized with the index of the next sequential fetch line, and later retrained by the
branch predictor if necessary.

Stage 1 — Instruction Slot

The Ibox maps four instructions per cycle from the 64KB 2-way set-predict Icache.
Instructions are mapped in order, executed dynamically, but are retired in order.

2-14 Internal Architecture 21264/EV68A Hardware Reference Manual

Pipeline Organization

In the slot stage, the branch predictor compares the next Icache index that it generates to
the index that was generated by the line predictor. If there is a mismatch, the branch
predictor wins—the instructions fetched during that cycle are aborted, and the index
predicted by the branch predictor is applied to kteche during the next cycle. Line
mispredictions result in one pipeline bubble.

The line predictor takes precedence over the branch predictor during memory format
calls or jumps. If the line predictor was trained with a true (as opposed to predicted)
memory format call or jump target, then its contents take precedence over the target
hint field associated with these instructions. This allows dynamic calls or jumps to be
correctly predicted.

The instruction fetcher produces the full VPC address during the fetch stage of the pipe-
line. The Icache produces the tags for both Icache sets 0 and 1 each time it is accessed.
That enables the fetcher to separate set mispredictions from true Icache misses. If the
access was caused by a set misprediction, the instruction fetcher aborts the last two
fetched slots and refetches the slot in the next cycle. It also retrains the appropriate set
prediction bits.

The instruction data is transfred from the Icache to thiateger and floating-point reg-
ister map hardware during this stage. When the integer instruction is fetched from the
Icache and slotted into the 1Q, the slot logic determines whether the instruction is for
the upper or lower subclusters. The slot logic makes the decision based on the
resources needed by the (up to four) integer instructions in the fetch block. Although all
four instructions need not be issued simultaneously, distributing their resource usage
improves instruction loading across the units. For example, if a fetch block contains
two instructions that can be placed in either cluster followed by two instructions that
must execute in the lower cluster, the slot logic would designate that combination as
EELL and slot them as UULL. Slot combinations are described in Section 2.3.2 and
Table 2-3.

Stage 2 — Map

Instructions are sent from the Icache to the integer and flogtoigt register maps dur-

ing the slot stage and register renaming is performed during the map stage. Also, each
instruction is assigned a unique 8-bit number, calletham, which is used to identify

the instruction and its program order with respect to other instructions during the time
that it is in flight. Instructions are considered to be in flight between the time they are
mapped and the time they are retired.

Mapped instructions and their associated inums are placed in the integer and floating-
point queues by the end of the map stage.

Stage 3 — Issue

The 20-entry integer issue queue (IQ) issues instructions at the rate of four per cycle.
The 15-entry floating-point issue queue (FQ) issues floating-poietaip hstructions,
conditional branch instructions, and store instructions, at the rate of two per cycle. Nor-
mally, instructions are deleted from the 1Q or FQ two cycles after they are issued. For
example, if an instruction is issued in cycigit remains in the FQ or 1Q in cycle+1

but does not request service, and is deleted in ayele

21264/EV68A Hardware Reference Manual Internal Architecture 2-15

Instruction Issue Rules

Stage 4 — Register Read

Instructions issued from the issue queues read their operands from the integer and float-
ing-point register files and receive bypass data.

Stage 5 — Execute
The Ebox and Fbox pipelines begin execution.
Stage 6 — Dcache Access

Memory reference instructions access the Dcache and data translation buffers. Nor-
mally load instructions access the tag and datays while storénstructions only

access the tag arrays. Store data is written to the store queue where it is held until the
store instruction is retired. Most integer operate instructions write their register results
in this cycle.

2.2.1 Pipeline Aborts

The abort penalty as given is measured from the cycle after the fetch stage of the
instruction which triggers the abort to the fetch stage of the new target, ignoring any
Ibox pipeline stalls or queuing delay that the triggering instruction might experience.
Table 2-1 lists the timing associated with each common source of pipeline abort.

Table 2—1 Pipeline Abort Delay (GCLK Cycles)

Penalty
Abort Condition (Cycles) Comments
Branch misprediction 7 Integer or floating-point conditional branch
misprediction.
JSR misprediction 8 Memory format JSR or HW_RET.
Mbox order trap 14 Load-load order or store-load order.

Other Mbox replay traps 13 —

DTB miss 13 —
ITB miss 7 —
Integer arithmetic trap 12 —

Floating-point arithmetic 13+latency Add latency of instruction. See Section 2.3.3 for
trap instruction latencies.

2.3 Instruction Issue Rules

This section defines instruction classes, the functional unit pipelines to which they are
issued, and their associated latencies.

2-16 Internal Architecture 21264/EV68A Hardware Reference Manual

Instruction Issue Rules

2.3.1 Instruction Group Definitions

Table 2-2 lists the instruction class, the pipeline assignments, and the instructions
included in the class.

Table 2-2 Instruction Name, Pipeline, and Types

Class

Name Pipeline Instruction Type

ild LO, L1 All integer load instructions

fid LO, L1 All floating-point load instructions

ist LO, L1 All integer store instructions

fst FSTO, FST1, LO, L1 All floating-point store instructions

Ida LO, L1, U0, Ul LDA, LDAH

mem_misc L1 WH64, ECB, WMB

rpcc L1 RPCC

rx L1 RS, RC

mxpr LO, L1 HW_MTPR, HW_MFPR

(depends on IPR)

icbr uo, U1 Integer conditional branch instructions

jsr LO BR, BSR, JMP, CALL, RET, COR, HW_RET,
CALL_PAL

iadd LO, UO, L1, Ul Instructions with opcode {{) except CMPBGE

ilog Lo, U0, L1, U1 AND, BIC, BIS, ORNOT, XOR, EQV, CMPBGE

ishf uo, U1 Instructions with opcode 1

cmov LO, UO, L1, Ul Integer CMOV — either cluster

imul Ul Integer multiply instructions

imisc uo CTLZ, CTPOP, CTTZPERR, MINxxx, MAXXXX,
PKxx, UNPKxx

fcbr FA Floating-point conditional branch instructions

fadd FA All floating-point operate instructions except multiply,
divide, square root, and conditional move instructions

fmul FM Floating-point multiply instruction

fcmovl FA Floating-point CMOV—first half

fcmov2 FA Floating-point CMOV— second half

fdiv FA Floating-point divide instruction

fsqrt FA Floating-point square root instruction

nop None TRAP, EXCB, UNOP - LDQ_U R31, 0(Rx)

21264/EV68A Hardware Reference Manual Internal Architecture 2-17

Instruction Issue Rules

Table 2-2 Instruction Name, Pipeline, and Types (Continued)

Class

Name Pipeline Instruction Type

ftoi FSTO, FST1, L0, L1 FTOIS, FTOIT

itof LO, L1 ITOFS, ITOFF, ITOFT

mx_fpcr FM Instructions that move data from the floating-point

control register

2.3.2 Ebox Slotting

Instructions that are issued from the 1Q, and could execute in either upper or lower
Ebox subclusters, are slotted to one pair or the other during the pipeline mapping stage
based on the instruction mixture in the fetch line. The codes that are used in Table 2—3
are as follows:

e U—The instruction only executes in an upper subcluster.
* L—The instruction only executes in a lower subcluster.
e E—The instruction could execute in either an upper or lower subcluster.

Table 2—3 defines the slotting rules. The table figstruction Class 3, 2, 1 and iden-
tifies each instruction’s location in the fetch line by the value of bits [3:2] in its PC.

Table 2—3 Instruction Group Definitions and Pipeline Unit

Instruction Class Slotting Instruction Class Slotting
3210 3210 3210 3210
EEEE ULUL LLLL LLLL
EEEL ULUL LLLU LLLU
EEEU ULLU LLUE LLUU
EELE ULLU LLUL LLUL
EELL UuulLL LLUU LLUU
EELU ULLU LUEE LULU
EEUE ULUL LUEL LUUL
EEUL ULUL LUEU LULU
EEUU LLUU LULE LULU
ELEE ULUL LULL LULL
ELEL ULUL LULU LULU
ELEU ULLU LUUE LUUL
ELLE UuLLU LUUL LUUL
ELLL ULLL LUUU LUUU
ELLU ULLU UEEE UuLuUL
ELUE ULuUL UEEL ULUL
ELUL ULUL UEEU ULLU

2-18 Internal Architecture 21264/EV68A Hardware Reference Manual

Instruction Issue Rules

Table 2—3 Instruction Group Definitions and Pipeline Unit (Continued)

Instruction Class Slotting Instruction Class Slotting

3210 3210 3210 3210

ELUU LLUU UELE ULLU
EUEE LULU UELL UulLL
EUEL LUUL UELU ULLU
EUEU LULU UEUE ULUL
EULE LULU UEUL ULUL
EULL UULL UEUU UuLuUuU
EULU LULU ULEE ULUL
EUUE LUUL ULEL ULUL
EUUL LUUL ULEU ULLU
EUUU LUUU ULLE ULLU
LEEE LULU ULLL ULLL

LEEL LUUL ULLU ULLU
LEEU LULU ULUE ULUL
LELE LULU ULUL ULUL
LELL LULL UuLUU UuLuUuU
LELU LULU UUEE UUuULL
LEUE LUUL UUEL UULL
LEUL LUUL UUEU UuuLuU
LEUU LLUU UULE UULL
LLEE LLUU UuULL UuulLL
LLEL LLUL UuuLuU UuuLuU
LLEU LLUU UUUE UuulL
LLLE LLLU UuulL UuulL
— — uuuu uuuu

21264/EV68A Hardware Reference Manual

Internal Architecture 2-19

Instruction Issue Rules

2.3.3 Instruction Latencies

After an instruction is placed in the 1Q or FQ, its issue point is determined by the avail-
ability of its register operands, functional unit(s), and relationship to other instructions
in the queue. There are register producer-consumer dependencies and dynamic func-
tional unit availability dependencies thaffect instruction issue. The mapper removes
register producer-producer dependencies.

The latency to produce a register result is generally fixed. The one exception is for load
instructions that miss the Dcache. Table 2—4 lists the latency, in cycles, for each
instruction class.

Table 2—4 Instruction Class Latency in Cycles

Class Latency Comments
ild 3 Dcache hit.
13+ Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency if

Bcache latency is greater than 6 cycles.

fid 4 Dcache hit.

14+ Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency if

Bcache latency is greater than 6 cycles.

Ida 1 Possible 1-cycle Ebox cross-cluster delay.

mem_misc — Does not produce register value.

ist — Does not produce register value.

fst — Does not produce register value.

rpcc 1 Possible 1-cycle cross-cluster delay.

rx 1 —

mxpr lor3 HW_MFPR: Ebox IPRs = 1.

Ibox and Mbox IPRs = 3.

HW_MTPR does not produce a register value.

icbr — Conditional branch. Does not produce register value.

ubr 3 Unconditional branch. Does not produce register value.

jsr 3 —

iadd 1 Possible 1-cycle Ebox cross-cluster delay.

ilog 1 Possible 1-cycle Ebox cross-cluster delay.

ishf 1 Possible 1-cycle Ebox cross-cluster delay.

cmovl 1 Only consumer is cmov2. Possible 1-cycle Ebox cross-cluster delay.

cmov2 1 Possible 1-cycle Ebox cross-cluster delay.

imul 7 Possible 1-cycle Ebox cross-cluster delay.

imisc 3 Possible 1-cycle Ebox cross-cluster delay.

fcbr — Does not produce register value.

2-20 Internal Architecture 21264/EV68A Hardware Reference Manual

Instruction Retire Rules

Table 2—4 Instruction Class Latency in Cycles (Continued)

Class Latency Comments
fadd 4 Consumer other than fst or ftoi.
6 Consumer fst or ftoi.
Measured from when an fadd is issued from the FQ to when an fst or ftoi is issued
from the 1Q.
fmul 4 Consumer other than fst or ftoi.
6 Consumer fst or ftoi.
Measured from when an fmul is issued from the FQ to when an fst or ftoi is issued
from the 1Q.
fcmovl 4 Only consumer is fcmov2.
fcmov2 4 Consumer other than fst.
6 Consumer fst or ftoi.
Measured from when an fcmov2 is issued from the FQ to when an fst or ftoi is
issued from the 1Q.
fdiv 12 Single precision - latency to consumer of result value.
9 Single precision - latency to using divider again.
15 Double precision - latency to consumer of result value.
12 Double precision - latency to using divider again.
fsqrt 18 Single precision - latency to consumer of result value.
15 Single precision - latency to using unit again.
33 Double precision - latency to consumer of result value.
30 Double precision - latency to using unit again.
ftoi 3 —
itof 4 —
nop — Does not produce register value.

2.4 Instruction Retire Rules

An instruction is retired when it has been executed to completion, and all previous
instructions have been retired. The execution pipeline stage in which an instruction
becomes eligible to be retired depends upon the instruction’s class.

Table 2-5 gives the minimum retire latencies (assuming that all previous instructions
have been retired) for various classes of instructions.

Table 2-5 Minimum Retire Latencies for Instruction Classes

Instruction Class

Retire Stage Comments

Integer conditional branch 7 —

Integer multiply 7113 Latency is 13 cycles for the MUL/V instruction.
Integer operate 7 —

Memory 10 —

Floating-point add 11 —

Floating-point multiply 11 —

21264/EV68A Hardware Reference Manual Internal Architecture 2-21

Retire of Operate Instructions into R31/F31

Table 2-5 Minimum Retire Latencies for Instruction Classes (Continued)

Instruction Class Retire Stage Comments

Floating-point DIV/SQRT 11 + latency Add latency of unit reuse for the instruction indicated in Table
2—4. For example, latency for a single-precision fdiv would be
11 plus 9 from Table 2—4. Latency is 11 if hardware detects that
no exception is possible (see Section 2.4.1).

Floating-point conditional 11 Branch instruction mispredict is reported in stage 7.
branch
BSR/JSR 10 JSR instruction mispredict is reported in stage 8.

2.4.1 Floating-Point Divide/Square Root Early Retire

The floating-point divider and square root unit can detect that, for many combinations
of source operand values, no extiep can be generated. Instructions with these oper-
ands can be retired before the result is generated. When detected, they are retired with
the same latency as the FP add class. Early retirement is not possible for the following
instruction/operana@tchitecture state conditions:

e Instruction is not a DIV or SQRT.

* SOQRT source operand is negative.
e Divide operand exponent_a is 0.

e Either operand is NaN or INF.

e Divide operand exponent_bis 0.

* Trapping mode is /I (inexact).

* INE status bit is O.

Early retirement is also not possible for divide instructions if the resulting exponent has
any of the following characteristics (EXP is the result exponent):

« DIVT, DIVG: (EXP >= 3FF,¢) OR (EXP <= 2¢)
« DIVS, DIVF: (EXP >=7F ¢ OR (EXP <= 383y)

2.5 Retire of Operate Instructions into R31/F31

Many instructions that have R31 or F31 as their destination are retired immediately
upon decode (stage 3). These instructions do not produce a result and are removed from
the pipeline as well. They do not occupy a slot in the issue queues and do not occupy a
functional unit. Table 2—6 lists these instructions and some of their characteristics. The
instruction type in Table 2—6 is from Table C-6 in Appendix C of &lgha Architecture
Handbook, Version 4

2-22 Internal Architecture 21264/EV68A Hardware Reference Manual

Load Instructions to R31 and F31

Table 2—6 Instructions Retired Without Execution

Instruction Type Notes

INTA, INTL, INTM, INTS All with R31 as destination.

FLTI, FLTL, FLTV All with F31 as destination. MT_FPCR is not included
because it has no destination—it is never removed from the
pipeline.

LDQ U All with R31 as destination.

MISC TRAPB and EXCB are always removed. Others are never
removed.

FLTS All (SQRT, ITOF) with F31 as destination.

2.6 Load Instructions to R31 and F31

This section describes how the 21264/EV68A processes saftdieected prefetch
transactions and load instructions with a destination of R31 and F31.

Prefetches allocate a MAF entry. How the MAF entry is allocated is what distinguishes
the type of prefetch. A normal prefetch is equivalent to a normal load MAF (that is, a
MAF entry that puts the block into the Dcache in a readable state). A prefetch with
modify intent is equivalent to a normal store MAF (that is, a MAF entry that puts the
block into the Dcache in a writeable state). A prefetch, evict nexgisvalent to a nor-

mal load MAF, with the additional behavior described in Section 2.6.3.

A prefetch is not performed if the prefetch hits in the Dcache (as if it were a normal
load).

Load operations to R31 and F31 may generate exceptions. These exceptions must be
dismissed by PALcode.

The following sections describe the operational prefetch behavior of these instructions.

2.6.1 Normal Prefetch: LDBU, LDF, LDG, LDL, LDT, LDWU, HW_LDL Instructions

The 21264/EV68A processes these instructions as normal cache line prefetches. If the
load instruction hits the Dcache, the instruction is dismissed, otherwise the addressed
cache block is allocated into the Dcache.

The HW_LDL instruction construct equates to the HW_LD instruction with the LEN
field clear. See Table 6-3.

2.6.2 Prefetch with Modify Intent: LDS Instruction

The 21264/EV68A processes an LDS instruction, with F31 as the destination, as a
prefetch with modify intent transaction (ReadBIkMod command). If the transaction hits

a dirty Dcache block, the instruction is dismissed. Otherwise, the addressed cache block
is allocated into the Dcache for write access, with its dirty and modified bits set.

21264/EV68A Hardware Reference Manual Internal Architecture 2-23

Special Cases of Alpha Instruction Execution

2.6.3 Prefetch, Evict Next: LDQ and HW_LDQ Instructions

The 21264/EV68A processes this instruction like a nornmafgich transaction (Read-
BIkSpec command), with one exception—if the load misses the Dcache, the addressed
cache block is allocated into the Dcache, but the Dcache set allocation pointer is left
pointing to this block. The next miss to the same Dcache line will evict the block. For
example, this instruction might be used when software is reading an array thatis known
to fit in the offchip Bcache, but will not fit into the onchip Dcache. In this case, the
instruction ensures that the hardware provides the desired prefetch function without dis-
placing useful cache blocks stored in the other set within the Dcache.

The HW_LDQ instruction construct equates to the HW_LD instruction with the LEN
field set. See Table 6-3.

2.7 Special Cases of Alpha Instruction Execution

This section describes the mechanisms that the 21264/EV68A uses to proegskar
instructions in the Alpha instruction set, and cases in which the 21264/EV68A pro-
cesses instructions in a non-intuitive way.

2.7.1 Load Hit Speculation

2-24

The latency of integer load instructions that hit in the Dcache is three cycles. Figure 2—
9 shows the pipeline timing for these integer load instructions. In Figure 2-9:

Symbol Meaning

Q Issue queue

R Register file read
E Execute

D Dcache access
B Data bus active

Figure 2—-9 Pipeline Timing for Integer Load Instructions

Hit

Cycle Number 1 2 3 4 (5 6 7 8
ILD Q R E D B
Instruction 1 Q R
Instruction 2 Q

FM-05814.A14

There are two cycles in which the 1Q may speculatively issue instructions that use load
data before Dcache hit information is known. Any instructions that are issued by the 1Q
within this 2-cycle speculative window are kept in the 1Q with their requests inhibited
until the load instruction’s hit condition is known, even if they are not dependent on the
load operation. If the load instruction hits, then these instructions are removed from the
gueue. If the load instruction misses, then the execution of these instructions is aborted
and the instructions are allowed to request service again.

Internal Architecture 21264/EV68A Hardware Reference Manual

Special Cases of Alpha Instruction Execution

For example, in Figure 2-9, instruction 1 and instruction 2 are issued within the specu-
lative window of the load instruction. If the load instruction hits, then both instructions
will be deleted from the queue by the start of cycle 7—one cycle later than normal for
instruction 1 and at the normal time for instruction 2. If the load instruction misses, both
instructions are aborted from the execution pipelines and may request service again in
cycle 6.

IQ-issued instructions are aborted if issued within the speculative window of an integer
load instruction that missed in the Dcache, even if they are not dependent on the load
data. However, if software misses are likely, the 21264/EV68A can still benefit from
scheduling the instruction stream for Dcache miss latency. The 21264/EV68A includes
a saturating counter that is incremented when load instructions hit andrisndented

when load instructions miss. When the upper bit of the counter equals zero, the integer
load latency is increased to five cycles and the speculative window is removed. The
counter is 4 bits wide and is incremented by 1 on a hit and is decremented by two on a
miss.

Since load instructions to R31 do not produce a result, they do not create a speculative
window when they execute and, therefore, never waste 1Q-issue cycles if they miss.

Floating-point load instructions that hit in the Dcache have a latency of four cycles. Fig-
ure 2-10 shows the pipeline timing for floating-point load instructions. In Figure 2—10:

Symbol Meaning

Q Issue queue

R Register file read
E Execute

D Dcache access
B Data bus active

Figure 2-10 Pipeline Timing for Floating-Point Load Instructions

Hit
Cycle Number 1 2 3 4 (5 6 7 8
FLD Q R E D B
Instruction 1 Q R
Instruction 2 Q

FM-05815.A14

The speculative window for floating-point load instructions is one cycle wide.
FQ-issued instructions that are issued within the speculative window of a floating-point
load instruction that has missed, are only aborted if they depend on the load being suc-
cessful.

For example, in Figure 2—10 instruction 1 is issued in the speculative window of the
load instruction.

If instruction 1 is not a user of the data returned by the load instruction, then it is
removed from the queue at its normal time (at the start of cycle 7).

21264/EV68A Hardware Reference Manual Internal Architecture 2-25

Special Cases of Alpha Instruction Execution

If instruction 1 is dependent on the load instruction data and the load instruction hits,
instruction 1 is removed from the queue one cycle later (at the start of cycle 8). If the
load instruction misses, then instruction 1 is aborted from the Fbox pipeline and may
request service again in cycle 7.

2.7.2 Floating-Point Store Instructions

Floating-point store instructions are duplicated and loaded into both the 1Q and the FQ
from the mapper. Each IQ entry contains a control bit, fpWait, that when set prevents
that entry from asserting its requests. This bit is initially set for each floating-point store
instruction that enters the 1Q, unless it was the target of a replay trap. The instruction’s
FQ clone is issued when its Ra register is about to become clean, resulting in its 1Q
clone’s fpWait bit being cleared and allowing the IQ clone to issue and be executed by
the Mbox. This mechanism ensures that floating-point store instructions are always
issued to the Mbox, along with the associated data, without requiring the floating-point
register dirty bits to be available within the 1Q.

2.7.3 CMOQV Instruction

For the 21264/EV68A, the Alpha CMOV instruction has three operands, and so pre-
sents a special case. The required operation is to move either the value in register Rb or
the value from the old physical destination register into the new destination register,
based upon the value in Ra. Since neither the mapper nor the Ebox and Fbox data paths
are otherwise required to handle three operand instructions, the CMOV instruction is
decomposed by the Ibox pipeline into two 2-operand instructions:

The Alpha architecture instruction CMOV Ra, RbRc
Becomes the 21264/EV68A instructions CMOV1 Ra, oldRmewRc1l
CMOV2 newRcl, Rb= newRc2

The first instruction, CMOV1, tests the value of Ra and records the result of this test in
a 65th bit of its destination register, newRcLl. It also copies the value of the old physical
destination register, oldRc, to newRcl.

The second instruction, CMOV2, then copies either the value in newRc1 or the value in
Rb into a second physical destination register, newRc2, based on the Gividi¢ate
bit stored in newRc1.

In summary, the original CMOV instruction is decomposed into two dependent instruc-
tions that each use a physical register from the free list.

To further simplify this operation, the two component instructions of a CMQV instruc-
tion are driven through the mappers in successive cycles. Hence, if a fetch line contains
n CMOQV instructions, it takes+1 cycles to run that fetch line through the mappers.

For example, the following fetch line:
ADD CMOVx SUB CMOW

Results in the following three map cycles:
ADD CMOVx1
CMOVx2 SUB CMOW1
CMOW2

2-26 Internal Architecture 21264/EV68A Hardware Reference Manual

Memory and I/O Address Space Instructions

The Ebox executes integer CMOV instructions as two distinct 1-cycle laterenaop
tions. The Fbox add pipeline executes floating-point CMOV instructions as two distinct
4-cycle latency operations.

2.8 Memory and I/0O Address Space Instructions

This section provides an overview of the way the 21264/EV68A processes memory and
I/0O address space instructions.

The 21264/EV68A supports, and internally recognizes, a 44-bit physical address space
that is divided equally between memory address space and I/O address space. Memory
address space resides in the lower half of the physical address space (PA[43]=0)

and 1/0O address space resides in the upper half of the physical address space
(PA[43]=1).

The IQ can issue any combination of load and store instructions to the Mbox at the rate
of two per cycle. The two lower Ebox subclusters, LO and L1, generate the
48-bit effective virtual address for these instructions.

An instruction is defined to beewerthan another instruction if it follows that instruc-
tion in program order and islder if it precedes that instruction in program order.

2.8.1 Memory Address Space Load Instructions

The Mbox begins execution of a load instruction by translating its virtual address to a
physical address using the DTB and by accessing the Dcache. The Dcache is virtually
indexed, allowing these two operations to be done in parallel. The Mbox puts informa-
tion about the load instruction, including its physical address, destination register, and
data format, into the LQ.

If the requested physical location is found in the Dcache (a hit), the data is formatted
and written into the appropriate integer or floating-point register. If the location is notin
the Dcache (a miss), the physical address is placed in the miss address file (MAF) for
processing by the Cbox. The MAF performs a merging function in which a new miss
address is compared to miss addresses already held in the MAF. If the new miss address
points to the same Dcache block as a miss address in the MAF, then the new miss
address is discarded.

When Dcache fill data is returned to the Dcache by the Chox, the Mbox satisfies the
requesting load instructions in the LQ.

2.8.2 1/0 Address Space Load Instructions

Because I/O space load instructions may have sftéets, they canot be performed
speculatively. When the Mbox receives an I/O space load instruction, the Mbox places
the load instruction in the LQ, where it is held until it retires. The Mbox replays retired
I/0 space load instructions from the LQ to the MAF in program order, at a rate of one
per GCLK cycle.

21264/EV68A Hardware Reference Manual Internal Architecture 2-27

Memory and I/O Address Space Instructions

The Mbox allocates a new MAF entry to an I/O load instruction and increases 1/0O band-
width by attempting to merge 1/O load instructions in a merge register. Table 2—7 shows
the rules for merging data. The columns represent the load instructions replayed to the
MAF while the rows represent the size of the load in the merge register.

Table 2—7 Rules for I/O Address Space Load Instruction Data Merging

Merge Register/

Replayed Instruction Load Byte/Word Load Longword Load Quadword

Byte/Word No merge No merge No merge

Longword No merge Merge up to 32 bytes No merge
Quadword No merge No merge Merge up to 64 bytes

In summary, Table 2—7 shows some of the following rules:

e Byte/word load instructions and different size load instructions are not allowed to
merge.

* A stream of ascending non-overlapping, but not necessarily consecutive, longword
load instructions are allowed to merge into naturally aligned 32-byte blocks.

* Astream of ascending non-overlapping, but not necessarily consecutive, quadword
load instructions are allowed to merge into naturally aligned 64-byte blocks.

* Merging of quadwords can be limited to naturally-aligned 32-byte blocks based on
the Cbox WRITE_ONCE chain 32_BYTE_IO field.

* |ssued MB, WMB, and I/O load instructions close the 1/O register merge window.
To minimize latency, the merge window is also closed when a timer detects no 1/O
store instruction activity for 1024 cycles.

After the Mbox I/O register has closed its merge window, the Cbox sends /O read
requests offchip in the order that they were received from the Mbox.

2.8.3 Memory Address Space Store Instructions

2-28

The Mbox begins execution of a store instruction by translating its virtual address to a
physical address using the DTB and by probing the Dcache. The Mbox puts informa-
tion about the store instruction, including its physical address, its data and the results of
the Dcache probe, into the store queue (SQ).

If the Mbox does not find the addressed location in the Dcache, it places the address
into the MAF for processing by the Chox. If the Mbox finds the addressed location in a
Dcache block that is not dirty, then it places a ChangeToDirty request into the MAF.

A store instruction can write its data into the Dcache when it is retired, and when the
Dcache block containing its address is dirty and not shared. SQ entries that meet these
two conditions can be placed into theitable state. These SQ entries are placed into
thewritable state in program order at a maximum rate of two entries per cycle. The
Mbox transferswritable store queue entry data from the SQ to the Dcache in program
order at a maximum rate of two entries per cycle. Dcache lines associateditéble

store queue entries are locked by the Mbox. System port probe commands cannot evict
these blocks until their associated writable SQ entries have beengmatsinto the

Dcache. This restriction assists in STx_C instruction and Dcache ECC processing.

Internal Architecture 21264/EV68A Hardware Reference Manual

Memory and I/O Address Space Instructions

SQ entry data that has not been transferred to the Dcache may source data to newer load
instructions. The Mbox compares the virtual Dcache index bits of incoming load
instructions to queued SQ entries, andrees the data from the SQypassing the

Dcache, when necessary.

2.8.4 1/0 Address Space Store Instructions

The Mbox begins processing I/O space store instructions, like memory space store
instructions, by translating the virtual address and placing the state associated with the
store instruction into the SQ.

The Mbox replays retired I/O space store entries from the SQ to the IOWB in program
order at a rate of one per GCLK cycle. The Mbox never allows queued I/O space store
instructions to source data to subsequent load instructions.

The Cbox maximizes I/0O bandwidth when it allocates a new IOWB entry to an 1/O

store instruction by attempting to merge 1/O store instructions in a merge register. Table
2—-8 shows the rules for I/O space store instruction data merging. The columns represent
the load instructions replayed to the IOWB while the rows represent the size of the store
in the merge register.

Table 2-8 Rules for I/O Address Space Store Instruction Data Merging

Merge Register/ Store

Replayed Instruction Byte/Word Store Longword Store Quadword
Byte/Word No merge No merge No merge

Longword No merge Merge up to 32 bytes No merge
Quadword No merge No merge Merge up to 64 bytes

Table 2—-8 shows some of the following rules:

e Byte/word store instructions andfféirent sizestore instructions are not allowed to
merge.

* A stream of ascending non-overlapping, but not necessarily consecutive, longword
store instructions are allowed to merge into naturally aligned 32-byte blocks.

* Astream of ascending non-overlapping, but not necessarily consecutive, quadword
store instructions are allowed to merge into naturally aligned 64-byte blocks.

* Merging of quadwords can be limited to naturally-aligned 32-byte blocks based on
the Cbox WRITE_ONCE chain 32_BYTE_IO field.

* Issued MB, WMB, and I/O load instructions close the 1/O register merge window.
To minimize latency, the merge window is also closed when a timer detects no 1/0O
store instruction activity for 1024 cycles.

After the IOWB merge register has closed its merge window, the Cbox sends I/0O space
store requests offchip in the order that they were received from the Mbox.

21264/EV68A Hardware Reference Manual Internal Architecture 2-29

MAF Memory Address Space Merging Rules

2.9 MAF Memory Address Space Merging Rules

Because all memory transactions are to 64-byte blocks, efficiency is improved by merg-
ing several small data transactions into a single larger data transaction. Table 2-9 lists
the rules the 21264/EV68A uses when merging memory transactions into 64-byte natu-
rally aligned data block transactions. Rows represent the merged instruction in the
MAF and columns represent the new issued transaction.

Table 2-9 MAF Merging Rules

MAF/New STx WHG64 ECB Istream
LDx
STx
STx_C
WH64 —

ECB — —

LDx STx_C

Merge — — — — —
Merge Merge — — — —
Merge — —
Merge —

Istream — — — Merge

In summary, Table 2—9 shows that only like instruction types, with the exception of
load instructions merging with store instructions, are merged.

2.10 Instruction Ordering

In the absence of explicit instruction ordering, such as with MB or WMB instructions,
the 21264/EV68A maintains a default instruction ordering relationship between pairs of
load and store instructions.

The 21264/EV68A maintains the default memory data instruction ordering as shown in
Table 2-10 (assume address X and address Y are different).

Table 2-10 Memory Reference Ordering

First Instruction in Pair Second Instruction in Pair Reference Order

Load memory to address X
Load memory to address X
Store memory to address X
Store memory to address X
Load memory to address X
Load memory to address X
Store memory to address X

Store memory to address X

Load memory to address X
Load memory to address Y
Store memory to address X
Store memory to address Y
Store memory to address X
Store memory to address Y
Load memory to address X

Load memory to address Y

Maintained (litmus test 1)
Not maintained
Maintained

Maintained

Maintained

Not maintained
Maintained

Not maintained

Internal Architecture

21264/EV68A Hardware Reference Manual

Replay Traps

The 21264/EV68A maintains the default I/O instruction ordering as shown in Table 2—
11 (assume address X and address Y are different).

Table 2-11 1/0 Reference Ordering

First Instruction in Pair

Second Instruction in Pair

Reference Order

Load I/O to address X
Load I/O to address X
Store I/O to address X
Store I/O to address X
Load I/O to address X
Load I/O to address X
Store I/O to address X
Store I/O to address X

Load I/O to address X
Load I/O to address Y
Store I/O to address X
Store I/O to address Y
Store I/O to address X
Store I/O to address Y
Load I/O to address X
Load I/O to address Y

Maintained
Maintained
Maintained
Maintained
Maintained
Not maintained
Maintained

Not maintained

2.11 Replay Traps

There are some situations in which a load or store instruction cannot be executed due to
a condition that occurs after that instruction issues from the 1Q or FQ. The instruction is
aborted (along with all newer instructions) and restarted from the fetch stage of the
pipeline. This mechanism is called a replay trap.

2.11.1 Mbox Order Traps

Load and store instructions may be issued from the |Q irffardint order than they

were fetched from the Icache, while the architecture dictates that Dstream memory
transactions to the same physical bytes must be completed in order. Usually, the Mbox
manages the memory reference stream by itself to achieve architecturally correct
behavior, but the two cases in which the Mbox uses replay traps to manage the memory
stream ardoad-loadandstore-loadorder traps.

2.11.1.1 Load-Load Order Trap

The Mbox ensures that load instructions thedid the same piical byte(s) ultimately

issue in correct order by using ttead-loadorder trap. The Mbox compares the

address of each load instruction, as it is issued, to the address of all load instructions in
the load queue. If the Mbox finds a newer load instruction in the load queue, it invokes
aload-loadorder trap on the newer instruction. This is a replay trap that aborts the tar-
get of the trap and all newer instructions from the machine and refetches instructions
starting at the target of the trap.

2.11.1.2 Store-Load Order Trap

The Mbox ensures that a load instruction ultimately issues after an older store instruc-
tion that writes some portion of its memory operand by usingstbes-loadorder trap.

The Mbox compares the address of each store instruction, as it is issued, to the address
of all load instructions in the load queue. If the Mbox finds a newer load instruction in
the load queue, it invokesstiore-loadorder trap on the load instruction. This is a replay
trap. It functions like thdoad-loadorder trap.

21264/EV68A Hardware Reference Manual Internal Architecture 2-31

I/O Write Buffer and the WMB Instruction

The Ibox contains extra hardware to reduce the frequency dfttre-loadtrap. There

is a 1-bit by 1024-entry VPC-indexed table in the Ibox called the stWait table. When an
Icache instruction is fetched, the associated stWait table entry is fetched along with the
Icache instruction. The stWait table produces 1 bit for each instruction accessed from
the Icache. When a load instruction getstare-loadorder replay trap, its associated bit

in the stWait table is set during the cycle that the load is refetched. Hence, the trapping
load instruction’s stWait bit will be set the next time it is fetched.

The IQ will not issue load instructions whose stWait bit is set while there are older unis-
sued store instructions in the queue. A load instruction whose stWait bit is set can be
issued the cycle immediately after the last older store instruction is issued from the
gueue. All the bits in the stWait table are unconditionally cleared every 16384 cycles, or
every 65536 cycles if | CTL[ST_WAIT_64K] is set.

2.11.2 Other Mbox Replay Traps

The Mbox also uses replay traps to control the flow of the load queue and store queue,
and to ensure that there are never multiple outstanding misseifeiedt physical

addresses that map to the same Dcache or Bcache line. Unlike the order traps, however,
these replay traps are invoked on the incoming instruction that triggered the condition.

2.12 1/0O Write Buffer and the WMB Instruction

The 1/O write buffer (IOWB) onsists of four 64-byte entries with the associated
address and control logic used toftew I/O write data between thgtore queue (SQ)
and the system port.

2.12.1 Memory Barrier (MB/WMB/TB Fill Flow)

The Cbox CSR SYSBUS_MB_ENABLE bit determines if MB instructions produce
external system port transactions. When the SYSBUS_MB_ENABLE bit equals 0, the
Cbox CSR MB_CNTI[3:0] field contains the number of pending uncommitted transac-
tions. The counter will increment for each of the following commands:

* RdBIk, RdBlkMod, RdBIKI

* RdBIkSpec (valid), RdBIkModSpec (valid), RdBIkSpecl (valid)
* RdBIkVic, RdBIkModVic, RdBIkVicl

e CleanToDirty, SharedToDirty, STChangeToDirty, InvalToDirty
* FetchBIk, FetchBlkSpec (valid), Evict

* RdByte, RdLw, RdQw, WrByte, WrLW, WrQW

The counter is decremented with the C (commit) bit in the Probe and SysDc commands
(see Section 4.7.7). Systems can assert the C bit in the SysDc fill response to the com-
mands that originally incremented the counter, or attached to the last probe seen by that
command when it reached the system serialization point. If the number of uncommitted
transactions reaches 15 (saturating the counter), the Cbox will stall MAF and IOWB
processing until at least one of the pending transactions has been committed. Probe pro-
cessing is not interrupted by the state of this counter.

2-32 Internal Architecture 21264/EV68A Hardware Reference Manual

I/O Write Buffer and the WMB Instruction

2.12.1.1 MB Instruction Processing

When an MB instruction is fetched in the predicted instruction execution path, it stalls
in the map stage of the pipeline. This also stalls all instructions after the MB, and con-
trol of instruction flow is based upon the value in Cbox CSR SYSBUS_ MB_ENABLE
as follows:

If Cbox CSR SYSBUS_MB_ENABLE is clear, the Cbox waits until the 1Q is
empty and then performs the following actions:

a. Sends all pending MAF and IOWB entries to the system port.

b. Monitors Cbox CSR MB_CNT[3:0], a 4-bit counter of outstanding committed
events. When the counter decrements from one to zero, the Cbox marks the
youngest probe queue entry.

c. Waits until the MAF contains no more Dstreagferences and the SQ, LQ, and
IOWB are empty.

When all of the above have oacad and a probe sponse has been sent to the sys-
tem for the marked probe queue entry, instruction execution continues with the
instruction after the MB.

If Cbox CSR SYSBUS_MB_ENABLE is set, the Cbox waits until the IQ is empty
and then performs the following actions:

a. Sends all pending MAF and IOWB entries to the system port
b. Sendsthe MB command to the system port

c. Waits until the MB command is acknowledged, then marks the youngest entry
in the probe queue

d. Waits until the MAF contains no more Dstreagferences and the SQ, LQ, and
IOWB are empty

When all of the above have oacad and a probe sponse has been sent to the sys-
tem for the marked probe queue entry, instruction execution continues with the
instruction after the MB.

Because the MB instruction is executed speculatively, MB processing can begin
and the original MB can be killed. In the internal acknowledge case, the MB may
have already been sent to the systemrfatee, and the system is still expected to
respond to the MB.

2.12.1.2 WMB Instruction Processing

Write memory barrier (WMB) instructions are issued into the Mbox store-queue, where
they wait until they are retired and all prior store instructions become writable. The
Mbox then stalls the writable pointer and informs the Cbox. The Chox closes the IOWB
merge register and responds in one of the following two ways:

If Cbox CSR SYSBUS _MB_ENABLE is clear, the Cbox performs the following
actions:

a. Stalls further MAF and IOWB processing.

b. Monitors Cbox CSR MB_CNT[3:0], a 4-bit counter of outstanding committed
events. When the counter decrements from one to zero, the Cbox marks the
youngest probe queue entry.

21264/EV68A Hardware Reference Manual Internal Architecture 2-33

I/O Write Buffer and the WMB Instruction

C.

When a probe response has been sent to the system for the marked probe queue

entry, the Cbox considers the WMB to be satisfied.

* |f Cbox CSR SYSBUS_MB_ENABLE is set, the Chox performs the following
actions:

a.
b.

C.

2.12.1.3 TB Fill Flow

Stalls further MAF and IOWB processing.
Sends the MB command to the system port.

Waits until the MB command is acknowledged by the system with a SysDc
MBDone command, then sends acknowledge and marks the youngest entry in
the probe queue.

When a probe response has been sent to the system for the marked probe queue
entry, the Cbox considers the WMB to be satisfied.

Load instructions (HW_LDs) to a virtual page table entry (VPTE) are processed by the
21264/EV68A to avoid litmus test problems associated with the ordering of memory
transactions from another processor against loading of a page table entry and the subse-
guent virtual-mode load from this processor.

Consider the sequence shown in Table 2—12. The data could be in the Bcache. Pj should
fetch datai if it is using PTEi.

Table 2-12 TB Fill Flow Example Sequence 1

Pi Pj

Write Datai Load/Store datai

MB <TB miss>

Write PTEI Load-PTE
<write TB>

Load/Store (restart)

Also consider the related sequence shown in Table 2—-13. In this case, the data could be
cached in the Bcache; Pj should fetch datai if it is using PTEi.

Table 2-13 TB Fill Flow Example Sequence 2

Pi Pj
Write Datai Istream read datai
MB <TB miss>
Write PTEI Load-PTE

<write TB>

Istream read (restart) - will miss the Icache

The 21264/EV68A processes Dstream loads to the PTE by injecting, in hardware, some
memory barrier processing between the PTE transaction and any subsequent load or
store instruction. This is accomplished by the following mechanism:

1. Theinteger queue issues a HW_LD instruction with VPTE.

2-34 Internal Architecture 21264/EV68A Hardware Reference Manual

Performance Measurement Support—Performance Counters

2. Theinteger queue issues a HW_MTPR instruction with a DTB_PTEDO, that is data-
dependent on the HW_LD instruction with a VPTE, and is required in order to fill
the DTBs. The HW_MTPR instruction, when queued, sets IPR scoreboard bits [4]
and [O].

3. When a HW_MTPR instruction with a DTB_PTEO is issued, the Ibox signhals the
Cbox indicating that a HW_LD instruction with a VPTE has been processed. This
causes the Cbox to begin processing the MB instruction. The Ibox prevents any
subsequent memory operations being issued by not clearing the IPR scoreboard bit
[0]. IPR scoreboard bit [0] is one of the scoreboard bits associated with the
HW_MTPR instruction with DTB_PTEO.

4. When the Cbox completes processing the MB instruction (using one of the above
sequences, depending upon the state of SYSBUS_MB_ENABLE), the Cbhox sig-
nals the Ibox to clear IPR scoreboard bit [0].

The 21264/EV68A uses a similar mechanism to process Istream TB misses and fills to
the PTE for the Istream.

1. Theinteger queue issues a HW_LD instruction with VPTE.

2. ThelQ issues a HW_MTPR instruction with an ITB_PTE that is data-dependent
upon the HW_LD instruction with VPTE. This is required in order to fill the ITB.
The HW_MTPR instruction, when queued, sets IPR scoreboard bits [4] and [0].

3. The Cbox issues a HW_MTPR instruction for the ITB_PTE and signals the Ibox
that a HW_LD/VPTE instruction has been processed, causing the Cbox to start pro-
cessing the MB instruction. The Mbox stalls Ibox fetching from when the HW_LD/
VPTE instruction finishes until the probe queue is drained.

4. Whenthe 21264/EV68Ais finished (SYS_MB selects one of the above sequences),
the Cbox directs the Ibox to clear IPR scoreboard bit [0]. Also, the Mbox directs the
Ibox to start prefetcimg.

Inserting MB instruction processing within the TB fill flow is only required for multi-
processor systems. Uniprocessor systems can disable MB instruction processing by
deasserting Ibox CSR|_CTL[TB_MB_EN].

2.13 Performance Measurement Support—Performance Counters

The 21264/EV68A provides hardware support for two methods of obtaining program
performance feedback information. The two heds do not require program modifica-
tion. The first method offers similar capidities to earlier microprocessor performance
counters. The second method supports the new ProfileMe way of statistically sampling
individual instructions during program execution to develop a model of program execu-
tion. Both methods use the same hardware registers.

See Section 6.10 for information about counter control.

2.14 Floating-Point Control Register

The floating-point control register (FPCR) is shown in Figure 2—11.

21264/EV68A Hardware Reference Manual Internal Architecture 2-35

Floating-Point Control Register

Figure 2-11 Floating-Point Control Register

6362 61 60 5958 57 56 55 54 53 5251 50 49 4847 0

SUMJ

INED —
UNFD
UNDZ
DYN
1oV

INE
UNF

OVF
DZE

INV

OVFD

DZED

INVD

DNz

LK99-0050A

The floating-point control register fields are described in Table 2-14.

Table 2-14 Floating-Point Control Register Fields

Name

Extent

Type

Description

SUM [63]

INED [62]

UNFD [61]

UNDZ [60]

2-36

RW

RW

RW

RW

Internal Architecture

Summary bit. Records bit-wise OR of FPCR exception bits.The summary bit is
not directly modified by writes to bit 63 of the FPCR, but is indirectly modified
by changes to FPCR bits 57-52.

Inexact Disable. If this bit is set and a floating-point instruction that enables
trapping on inexact results generates an inexact value, the result is placed in the
destination register and the trap is suppressed.

Underflow Disable. The 21264/EV68A hardware cannot generate IEEE com-
pliant denormal results. UNFD is used in conjunction with UNDZ as follows:

UNFD UNDZ
0 X
1 0
1 1

Result

Underflow trap.
Trap to supply a possible denormal result.

Underflow trap suppressed. Destination is written
with a true zero (+0.0).

Underflow to zero. When UNDZ is set together with UNFD, underflow traps
are disabled and the 21264/EV68A places a true zero in the destination register.
See UNFD, above.

21264/EV68A Hardware Reference Manual

AMASK and IMPLVER Instruction Values

Table 2-14 Floating-Point Control Register Fields (Continued)

Name Extent Type Description
DYN [59:58] RW Dynamic rounding mode. Indicates the rounding mode to be used by an IEEE
floating-point instruction when the instruction specifies dynamic rounding
mode:
Bits Meaning
00 Chopped

01 Minus infinity
10 Normal
11 Plus infinity

[e)Y] [57] RwW Integer overflow. A CVTGQ, CVTTQ, or CVTQL overflowed the destination
precision.
INE [56] RwW Inexact result. A floating-point arithmetic or conversion operation gave a result

that differed from the mathematically exact result.

UNF [55] RW Underflow. A floating-point arithmetic or conversion operation gave a result
that underflowed the destination exponent.

OVF [54] RW Overflow. A floating-point arithmetic or conversion operation gave a result that
overflowed the destination exponent.

DZE [53] RwW Divide by zero. An attempt was made to perform a floating-point divide with a
divisor of zero.

INV [52] RW Invalid operation. An attempt was made to perform a floating-point arithmetic
operation and one or more of its operand values were illegal.

OVFD [51] RW Overflow disable. If this bit is set and a floating-point arithmetic operation gen-
erates an overflow condition, then the appropriate IEEE nontrapping result is
placed in the destination register and the trap is suppressed.

DZED [50] RW Division by zero disable. If this bit is set and a floating-point divide by zero is
detected, the appropriate IEEE nontrapping result is placed in the destination
register and the trap is suppressed.

INVD [49] RW Invalid operation disable. If this bit is set and a floating-point operate generates
an invalid operation condition and 21264/EV68A is capable of producing the
correct IEEE nontrapping result, that result is placed in the destination register
and the trap is suppressed.

DNz [48] RW Denormal operands to zero. If this bit is set, treat all Denormal operands as a
signed zero value with the same sign as the Denormal operand.

Reserved [47:0] — —

1 Alpha architecture FPCR bit 47 (DNOD) is not implemented by the 21264/EV68A.

2.15 AMASK and IMPLVER Instruction Values

The AMASK and IMPLVER instructions return the supported architecture extensions
and processor type , respectively.

21264/EV68A Hardware Reference Manual Internal Architecture 2-37

Design Examples

2.15.1 AMASK

The 21264/EV68A returns the AMASK instruction values provided in Table 2—15. The
|_CTL register reports the 21264/EV68A pass level (see |_CTL[CHIP_ID], Section
5.2.15).

Table 2—-15 21264/EV68A AMASK Values

21264/EV68A Pass Level AMASK Feature Mask Value

See |_CTL[CHIP_ID], Table 5-11 1397

The AMASK bit definitions provided in Table 2—15 are defined in Table 2-16.

Table 2-16 AMASK Bit Assignments

Bit Meaning

0 Support for the byte/word extension (BWX)
The instructions that comprise the BWX extension are LDBU, LDWU, SEXTB,
SEXTW, STB, and STW.

1 Support for the square-root and floating-point convert extension (FIX)
The instructions that comprise the FIX extension are FTOIS, FTOIT, ITOFF, ITOFS,
ITOFT, SQRTF, SQRTG, SQRTS, and SQRTT.

2 Support for the count extension (CIX)
The instructions that comprise the CIX extension are CTLZ, CTPOP, and CTTZ.

8 Support for the multimedia extension (MVI)
The instructions that comprise the MVI extension are MAXSB8, MAXSW4,
MAXUB8, MAXUW4, MINSB8, MINSW4, MINUB8, MINUW4, PERR, PKLB,
PKWB, UNPKBL, and UNPKBW.

9 Support for precise arithmetic trap reporting in hardware. The trap PC is the same as
the instruction PC after the trapping instruction is executed.

12 Support for using a prefetch with modify intent to improve the performance of the
first attempt to acquire a lock. When clear, indicates possible prefetch error with
locks, described in waiver 10 to the Alpha Architecture and in the prefetch section of
the appropriate processor (21264/EV6 and 21264/EV67) documents.

2.15.2 IMPLVER

For the 21264/EV68A, the IMPLVER instruction returns the value 2.

2.16 Design Examples

The 21264/EV68A can be designed into manfyedient uniprocessor anduttiproces-
sor system configurations. Figures 2—12 and 2-13 illustrate two possible configura-
tions. These configurations employ additional system/memory controller chipsets.

Figure 2—12 shows a typical uniprocessor system with a second-level cache. This sys-
tem configuration could be used in standalone or networked workstations.

2-38 Internal Architecture 21264/EV68A Hardware Reference Manual

Design Examples

Figure 2—-12 Typical Uniprocessor Configuration

L2 Cache 21264 21272 Core Duplicate
Logic Chipset |=€ > Tag Store
(Optional)
ag > Tag
Store
Address Control
\ Out - Chips
Address SRAM
Address Data Slice
<< ; Arrays
Y In Chips
Data
Store >| Data
Host PCI »| Address
Data [<«——1 | gidge chi
9 P € > Data

Yy
< 64-bit PCI Bus >
FM-05573-EV67

Figure 2—13 shows a typical multiprocessor system, each processor with a second-level
cache. Each interface controller must employ a duplicate tag store to maintain cache
coherency. This system configuration could be used in a networked database server
application.

Figure 2-13 Typical Multiprocessor Configuration

21272 Core
21264 - : DRAM
L Ch t
<> - ogic Chipse Arrays
L2
Cache [o »1 Address
<—> <—> Control < »1Data
Chip
21264 Data Slice
<> = Chips DRAM
Arrays
L2 -
Cache [~ 7 =
»1 Address
<> <> Host PCI Host PCI
Bridge Chip Bridge Chip | |« »1 Data
A A A)

Y)\
< 64-bit PCI Bus >
Y)\
< 64-bit PCI Bus >
FM-05574-EV67

21264/EV68A Hardware Reference Manual Internal Architecture 2-39

3

Hardware Interface

This chapter contains the 21264/EV68A microprocessor logic symbol and provides
information about signal names, their function, and their location. This chapter also
describes the mechanical specifications of the 21264/EV68A. It is organized as fol-
lows:

The 21264/EV68A logic symbol

The 21264/EV68A signal names and functions

Lists of the signal pins, sorted by name and PGA location
The specifications for the 21264/EV68A mechanical package
The top and bottom views of the 21264/EV68A pinouts

3.1 21264/EV68A Microprocessor Logic Symbol
Figure 3—1 show the logic symbol for the 21264/EV68A chip.

21264/EV68A Hardware Reference Manual Hardware Interface 3-1

21264/EV68A Microprocessor Logic Symbol

Figure 3—1 21264/EV68A Microprocessor Logic Symbol

21264
System Interface Bcache Interface
—» SysAddin_L[14:0] BcAdd_H[23:4] ——»
—>» SysAddInCIk_L BcData_H[127:0] <€—>»
<€— SysAddOut_L[14:0] BcCheck_H[15:0] €—>»
<— SysAddOutClk_L BcDatalnClk_H[7:0] <€——
—» SysVref BcDataOutClk_[3:0] ——»
<—»| SysData_L[63:0] BcDataOE_L —»
<€—»| SysCheck_L[7:0] BcDatawWr_ L ——»
—»| SysDatalnCIk_H[7:0] BcTag_H[42:20] <€«—>»
<— SysDataOutClk_L[7:0] BcTaginClk_H <€——
—»| SysDatalnValid_L BcTagOutClk_x ——»
—»| SysDataOutValid_L BeVref €——
—»| SysFillvalid_L BcTagDirty H €—>»
BcTagParity H <€—>»
BcTagShared_H <€«—»
BcTagValid_H €&—»
BcTagOE_L —»
BcTagWr L —»
BcLoad L —»
—> Clkin_x Clocks
—»| FrameClk_x
—» EV6CIk_x
25V — PLL_VDD
Miscellaneous
—» IRQ_HI5:0]
—» CIkFwdRst_H
—>» SromData_H
—» Tms_H
—» Trst_L
—» Tick_H
—» Tdi_H
—>» PlIBypass_H SromClk_ H ——»
—» MiscVref SromOE_L —»
—» Reset L TestStat H ——»
—>» DCOK_H Tdo H —»
FM-05646b
3-2 Hardware Interface

21264/EV68A Hardware Reference Manual

21264/EV68A Signal Names and Functions

3.2 21264/EV68A Signal Names and Functions

Table 3—1 defines the 21264/EV68A signal typesnefd to inthis section.

Table 3—-1 Signal Pin Types Definitions

Signal Type Definition

Inputs

|_ DC_REF Input DC reference pin

I|_DA Input differential amplifier receiver

| DA_CLK Input clock pin

Outputs

O_0OD Open drain output driver

O_OD_TP Open drain driver for test pins

O_PP Push/pull output driver

O_PP_CLK Push/pull output clock driver

Bidirectional

B_DA _OD Bidirectional differential amplifier receiver with open drain output
B_DA PP Bidirectional differential amplifier receiver with push/pull output
Other

Spare Reserved to COMPAQ

NoConnect No connection — Do not connect to these pins for any revision of the

21264/EV68A. These pins must float.

LAl Spare connections are Reserved to COMPAQ to maintain compatibility between
passes of the chip. Designers should not use these pins.

Table 3-2 lists all signal pins in alphabetic order and provides a full functional descrip-
tion of the pins. Table 3—4 lists the signal pins and their corresponding pingag a
(PGA) locations in alphabetic order for the signal type. Table 3-5 lists the pin grid array
locations in alphabetical order.

Table 3-2 21264/EV68A Signal Descriptions

Signal Type Count Description

BcAdd_H[23:4] O_PP 20 These signals provide the index to the Bcache.

BcCheck _H[15:0] B DA PP 16 ECC check bits f@dcData_H[127:0].

BcData_H[127:0] B DA PP 128 Bcache data signals.

BcDatalnClk_HJ[7:0] |_DA 8 Bcache data input clocks. These clocks are used with high

BcDataOE_L

21264/EV68A Hardware Reference Manual

speed SDRAMSs, such as DDRs, that provide a clock-out with
data-output pins to optimize Bcache read bandwidths. The
21264/EV68A internally synchronizes the data to its logic with
clock forward receive circuits similar to the system interface.

1 Bcache data output enable. The 21264/EV68A asserts this sig-
nal during Bcache read operations.

Hardware Interface 3-3

21264/EV68A Signal Names and Functions

Table 3-2 21264/EV68A Signal Descriptions (Continued)

Signal Type Count Description

BcDataOutClk_H[3:0] O_PP 8 Bcache data output clocks. These free-running clocks are dif-

BcDataOutCIk_L[3:0] ferential copies of the Bcache clock and are derived from the
21264/EV68A GCLK. Their period is a multiple of the GCLK
and is fixed for all operations. They can be configured so that
their rising edge lagBcAdd_H[23:4] by 0to 2 GCLK cycles.
The 21264/EV68A synchronizes tag output information with
these clocks.

BcDataWr_L O_PP 1 Bcache data write enable. The 21264/EV68A asserts this signal
when writing data to the Bcache data arrays.

BcLoad_L O_PP 1 Bcache burst enable.

BcTag_H[42:20] B DA PP 23 Bcache tag bits.

BcTagDirty H B DA PP 1 Tag dirty state bit. During cache write operations, the 21264/
EV68A will assert this signal if the Bcache data has been mod-
ified.

BcTagInClk_H |_DA 1 Bcache tag input clock. The 21264/EV68A uses this input
clock to latch the tag information on Bcache read operations.
This clock is used with high-speed SDRAMs, such as DDRs,
that provide a clock-out with data-output pins to optimize
Bcache read bandwidths. The 21264/EV68A internally syn-
chronizes the data to its logic with clock forward receive cir-
cuits similar to the system interface.

BcTagOE_L O_PP 1 Bcache tag output enable. This signal is asserted by the 21264/
EV68A for Bcache read operations.

BcTagOutClk_H O_PP 2 Bcache tag output clock. These clocks “echo” the clock-for-

BcTagOutClk_L wardedBcDataOutClk_x[3:0] clocks.

BcTagParity H B DA PP 1 Tag parity state bit.

BcTagShared_H B DA PP 1 Tag shared state bit. The 21264/EV68A will write a 1 on this
signal line if another agent has a copy of the cache line.

BcTagValid_H B DA PP 1 Tag valid state bit. If set, this line indicates that the cache line
is valid.

BcTagWr_L O_PP 1 Tag RAM write enable. The 21264/EV68A asserts this signal
when writing a tag to the Bcache tag arrays.

BcVref | DC_REF 1 Bcache tag reference voltage.

CIkFwdRst_H |_DA 1 Systems assert this synchronous signal to wake up a powered-
down 21264/EV68A. Th€lkFwdRst_H signal is clocked
into a 21264/EV68A register by the captutedhmeClk_x
signals. Systems must ensure that the timing of this signal
meets 21264/EV68A requirements (see Section 4.7.2).

Clkin_H | DA CLK 2 Differential input signals provided by the system.

ClkIn_L

DCOK_H |_DA 1 dc voltage OK. Must be deasserted until dc voltage reaches
proper operating level. After thabCOK_H is asserted.

EV6CIk_H O PP CLK 2 Provides an external test point to measure phase alignment of

EV6CIk_L the PLL.

3-4 Hardware Interface

21264/EV68A Hardware Reference Manual

21264/EV68A Signal Names and Functions

Table 3-2 21264/EV68A Signal Descriptions (Continued)

Signal Type Count Description

FrameClk_H | DA CLK 2 A skew-controlled differential 50% duty cycle copy of the sys-

FrameClk_L tem clock. It is used by the 21264/EV68A as a reference, or
framing, clock.

IRQ_H[5:0] |_DA 6 These six interrupt signal lines may be asserted by the system.
The response of the 21264/EV68A is determined by the system
software.

MiscVref | DC_REF 1 Voltage reference for the miscellaneous pins
(see Table 3-3).

PliIBypass_H |_DA 1 When asserted, this signal will cause the two input clocks
(Clkin_x) to be applied to the 21264/EV68A internal circuits,
instead of the 21264/EV68A global clock (GCLK).

PLL_VDD 25V 1 2.5-V dedicated power supply for the 21264/EV68A PLL.

Reset L |_DA 1 System reset. This signal protects the 21264/EV68A from
damage during initial power-up. It must be asserted until
DCOK_H is asserted. After that, it is deasserted and the
21264/EV68A begins its reset sequence.

SromCIlk_H O OD TP 1 Serial ROM clock. Supplies the clock that causes the SROM to
advance to the next bit. The cycle time for this clock is 256
times the cycle time of the GCLK (internal 21264/EV68A
clock).

SromData_H |_DA 1 Serial ROM data. Input data line from the SROM.

SromOE_L O OD TP 1 Serial ROM enable. Supplies the output enable to the SROM.

SysAddin_L[14:0] |_DA 15 Time-multiplexed command/address/ID/Ack from system to
the 21264/EVE8A.

SysAddInClk_L |_DA 1 Single-ended forwarded clock from system for
SysAddin_L[14:0] andSysFillvalid_L .

SysAddOut_L[14:0] O_0OD 15 Time-multiplexed command/address/ID/mask from the 21264/
EV68A to the system bus.

SysAddOutCIk_L O_0OD 1 Single-ended forwarded clock output for
SysAddOut_L[14:0].

SysCheck_L[7:0] B DA OD 8 Quadword ECC check bits f@ysData_L[63:0].

SysData_L[63:0] B DA OD 64 Data bus for memory and I/O data.

SysDatalnClk_H[7:0] | _DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDatalnValid_L |_DA 1 When asserted, marks a valid data cycle for data transfers to
the 21264/EVE8A.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264/EV68A-generated clocks for clock for-
warded output system data.

SysDataOutValid_L |_DA 1 When asserted, marks a valid data cycle for data transfers from
the 21264/EV68A.

SyskFillvalid_L |_DA 1 When asserted, this bit indicates validation for the cache fill

21264/EV68A Hardware Reference Manual

delivered in the previous system SysDc command.

Hardware Interface 3-5

21264/EV68A Signal Names and Functions

Table 3-2 21264/EV68A Signal Descriptions (Continued)

Signal Type Count Description

SysVref | DC_REF 1 System interface reference voltage.

Tck H |_DA 1 IEEE 1149.1 test clock.

Tdi_H |_DA 1 IEEE 1149.1 test data-in signal.

Tdo_H O OD TP 1 IEEE 1149.1 test data-out signal.

TestStat H O OD TP 1 Test status pin. System reset drives the test status pin low.
TheTestStat_Hpin is forced high at the start of the Icache
BiST. If the Icache BiST passes, the pin is deasserted at the end
of the BiST operation; otherwise, it remains high.
The 21264/EV68A generates a timeout reset signal if an
instruction is not retired within one billion cycles.
The 21264/EV68A signals the timeout reset event by output-
ting a 256 GCLK cycle wide pulse oflestStat H.

Tms_H |_DA 1 IEEE 1149.1 test mode select signal.

Trst_ L |_DA 1 IEEE 1149.1 test access port (TAP) reset signal.

Table 3-3 lists signals by function and provides an abbreviated description.

Table 3-3 21264/EV68A Signal Descriptions by Function

Signal Type Count Description

BcVref Domain

BcAdd_H[23:4] O_PP 20 Bcache index.

BcCheck H[15:0] B_DA PP 16 ECC check bits f@dcData_H[127:0].
BcData_H[127:0] B_DA PP 128 Bcache data.
BcDatalnClk_HJ[7:0] |_DA 8 Bcache data input clocks.
BcDataOE_L O_PP 1 Bcache data output enable.
BcDataOutClk_H[3:0] O_PP 8 Bcache data output clocks.
BcDataOutCIk_L[3:0]

BcDataWr_L O_PP 1 Bcache data write enable.
BcLoad_L O_PP 1 Bcache burst enable.
BcTag_H[42:20] B_DA PP 23 Bcache tag bits.
BcTagDirty H B_DA PP 1 Tag dirty state bit.
BcTagInClk_H |_DA 1 Bcache tag input clock.
BcTagOE_L O_PP 1 Bcache tag output enable.
BcTagOutClk_H O_PP 2 Bcache tag output clocks.
BcTagOutClk_L

BcTagParity H B_DA PP 1 Tag parity state bit.
BcTagShared_H B_DA PP 1 Tag shared state bit.
BcTagValid_H B_DA PP 1 Tag valid state bit.
BcTagWr_L O_PP 1 Tag RAM write enable.

3-6 Hardware Interface

21264/EV68A Hardware Reference Manual

21264/EV68A Signal Names and Functions

Table 3-3 21264/EV68A Signal Descriptions by Function (Continued)

Signal Type Count Description

BcVref | DC REF 1 Tag data input reference voltage.

SysVref Domain

SysAddin_L[14:0] |_DA 15 Time-multiplexed SysAddIn, system-to-21264/EV68A.

SysAddInClk_L |_DA 1 Single-ended forwarded clock from system for
SysAddIn_L[14:0] andSysFillValid_L.

SysAddOut_L[14:0] O_0OD 15 Time-multiplexed SysAddOut, 21264/EV68A-to-system.

SysAddOutCIk_L O_0OD 1 Single-ended forwarded-clock.

SysCheck_L[7:0] B DA OD 8 Quadword ECC check bits f@ysData_L[63:0].

SysData_L[63:0] B DA OD 64 Data bus for memory and I/O data.

SysDatalnClk_H[7:0] | _DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDatalnValid_L |_DA 1 When asserted, marks a valid data cycle for data transfers to
the 21264/EV68A.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264/EV68A-generated clocks for clock for-
warded output system data.

SysDataOutValid_L |_DA 1 When asserted, marks a valid data cycle for data transfers
from the 21264/EV68A.

SyskFillvalid_L |_DA 1 Validation for fill given in previous SysDC command.

SysVref | DC_ REF 1 System interface reference voltage.

Clocks and PLL

Clkin_H | DA CLK 2 Differential input signals provided by the system.

Clkin_L

EV6CIk_H O_PP_CLK 2 Provides an external test point to measure phase alignment of

EV6CIk_L the PLL.

FrameClk_H | DA CLK 2 A skew-controlled differential 50% duty cycle copy of the

FrameClk_L system clock. It is used by the 21264/EV68A as a reference,
or framing, clock.

PLL_VDD 25V 1 2.5-V dedicated power supply for the 21264/EV68A PLL.

MiscVref Domain

CIkFwdRst_H |_DA 1 Systems assert this synchronous signal to wake up a powered-
down 21264/EV68A. Th€lkFwdRst_H signal is clocked
into a 21264/EV68A register by the capturethmeCIk_x
signals.

DCOK_H I_DA 1 dc voltage OK. Must be deasserted until dc voltage reaches
proper operating level. After thahCOK_H is asserted.

IRQ_H[5:0] I_DA 6 These six interrupt signal lines may be asserted by the system.

MiscVref | DC_ REF 1 Reference voltage for miscellaneous pins.

PliIBypass_H I_DA 1 When asserted, this signal will cause the input clocks

21264/EV68A Hardware Reference Manual

(CIkIn_x) to be applied to the 21264/EV68A internal circuits,
instead of the 21264/EV68A’s global clock (GCLK).

Hardware Interface 3-7

Pin Assignments

Table 3-3 21264/EV68A Signal Descriptions by Function (Continued)

Signal Type Count Description

Reset L |_DA 1 System reset. This signal protects the 21264/EV68A from
damage during initial power-up. It must be asserted until
DCOK_H is asserted. After that, it is deasserted and the
21264/EV68A begins its reset sequence.

SromClk_H O OD TP 1 Serial ROM clock.

SromData_H I_DA 1 Serial ROM data.

SromOE_L O OD TP 1 Serial ROM enable.

Tck H |_DA 1 IEEE 1149.1 test clock.

Tdi_H |_DA 1 IEEE 1149.1 test data-in signal.

Tdo_H O OD TP 1 IEEE 1149.1 test data-out signal.

TestStat H O OD TP 1 Test status pin.

Tms_H |_DA 1 IEEE 1149.1 test mode select signal.

Trst_ L |_DA 1 IEEE 1149.1 test access port (TAP) reset signal.

3.3 Pin Assignments

The 21264/EV68A package has 587 pins aligned in a pin grid array (PGA) design.
There are 380 functional signal pins, 1 dedicated 2.5-V pin for the PLL, 112 ground
VSSpins, and 94/DD pins. Table 3—4 lists the signal pins and their corresponding pin
grid array (PGA) locations in alphabetical order for the signal type. Table 3-5 lists the

pin grid array locations in alphabetical order

Table 3—-4 Pin List Sorted by Signhal Name

Signal Name PGA Location Signal Name PGA Location Signal Name PGALocation
BcAdd_H_10 B30 BcAdd_H_11 D30 BcAdd_H_12 c31
BcAdd_H_13 H28 BcAdd_H_14 G29 BcAdd_H_15 A33
BcAdd_H_16 E31 BcAdd_H_17 D32 BcAdd_H_18 B34
BcAdd_H_19 A35 BcAdd_H_20 B36 BcAdd_H_21 H30
BcAdd_H_22 C35 BcAdd_H_23 E33 BcAdd_H_4 B28
BcAdd_H_ 5 E27 BcAdd_H_6 A29 BcAdd_H_7 G27
BcAdd_H_8 c29 BcAdd_H_9 F28 BcCheck H_0 F2
BcCheck H_1 AB4 BcCheck H_10 AW1 BcCheck H_11 BD10
BcCheck H_12 E45 BcCheck H_13 AC45 BcCheck H_14 AT44
BcCheck H_15 BB36 BcCheck H_2 AT2 BcCheck H_3 BC11
BcCheck H_4 M38 BcCheck H_5 AB42 BcCheck H_6 AU43
BcCheck H_7 BC37 BcCheck_H_8 M8 BcCheck_H_9 AA3
BcData_ H O B10 BcData H 1 D10 BcData_H_10 L3
BcData_H_100 D42 BcData_H_101 D44 BcData_H_102 H40
BcData_H_103 H42 BcData_H_104 G45 BcData_H_105 L43

3-8

Hardware Interface

21264/EV68A Hardware Reference Manual

Table 3—-4 Pin List Sorted by Signal Name (Continued)

Pin Assignments

Signal Name PGA Location Signal Name PGA Location Signal Name PGA Location
BcData_H_106 L45 BcData_H_107 N45 BcData H_108 T44
BcData_H_109 u45 BcData H_11 M2 BcData_H_110 w45
BcData_H_111 AA43 BcData H_112 AC43 BcData H_113 AD44
BcData_H_114 AE41 BcData_H_115 AG45 BcData H_116 AK44
BcData H_117 AL43 BcData_H_118 AM42 BcData H_119 AR45
BcData_H_12 T2 BcData_H_120 AP40 BcData H_121 BA45
BcData H_122 AV42 BcData H_123 BB44 BcData H_124 BB42
BcData H_125 BC41 BcData_H_126 BA37 BcData H_127 BD40
BcData H 13 Ul BcData H 14 V2 BcData H_15 Y4
BcData H_16 AC1 BcData_H_17 AD2 BcData H_18 AE3
BcData_H_19 AG1 BcData_ H_2 A5 BcData_H_20 AK2
BcData_H_21 AL3 BcData_H_22 AR1 BcData_H_23 AP2
BcData_H_24 AY2 BcData H_25 BB2 BcData H_26 AW5
BcData_H_27 BB4 BcData H_28 BBS BcData_H_29 BE5
BcData_H_3 cs5 BcData_H_30 BB10 BcData_H_31 BE7
BcData_H_32 G33 BcData_H_33 c37 BcData_H_34 B40
BcData H_35 c41 BcData_H_36 c43 BcData_H_37 E43
BcData_H_38 G41 BcData_H_39 F44 BcData H 4 C3
BcData_H_40 K44 BcData_H_41 N41 BcData_H_42 M44
BcData_H_43 P42 BcData H_44 u43 BcData_H_45 V44
BcData_H_46 Y42 BcData_H_47 AB44 BcData_H_48 AD42
BcData_H_49 AE43 BcData_H_5 E3 BcData_H_50 AF42
BcData_H_51 AJ45 BcData_H_52 AK42 BcData_H_53 AN45
BcData H_54 AP44 BcData H_55 AN41 BcData_H_56 AW45
BcData_H_57 AU41 BcData_H_58 AY44 BcData_H_59 BA43
BcData_H_6 H6 BcData_H_60 BC43 BcData_H_61 BD42
BcData_H_62 BB38 BcData_H_63 BE41 BcData_H_64 c11
BcData_H_65 A7 BcData_H_66 (01°] BcData_H_67 B6
BcData_H_68 B4 BcData_H_69 D4 BcData H_7 El
BcData_H_70 G5 BcData_H_71 D2 BcData H_72 H4
BcData_H_73 Gl BcData_H_74 N5 BcData_H_75 L1
BcData_H_76 N1 BcData_H_77 U3 BcData_ H_78 W5
BcData_H_79 W1 BcData_H_8 J3 BcData_H_80 AB2
BcData_H_81 AC3 BcData_H_82 AD4 BcData_H_83 AF4
BcData_H_84 AJ3 BcData_H_85 AK4 BcData_H_86 AN1
BcData_H_87 AM4 BcData_H_88 AU5 BcData_H_89 BAL

21264/EV68A Hardware Reference Manual

Hardware Interface

3-9

Pin Assignments

Table 3—-4 Pin List Sorted by Signal Name (Continued)

Signal Name PGA Location Signal Name PGA Location Signal Name PGA Location
BcData H 9 K2 BcData_H 90 BA3 BcData H 91 BC3
BcData_H_92 BD6 BcData H_93 BA9 BcData H_94 BC9
BcData H_95 AY12 BcData H_96 A39 BcData_H_97 D36
BcData H 98 A4l BcData H 99 B42 BcDatalnClk_ H_0O E7
BcDatalnClk_ H 1 R3 BcDatalnClk H 2 AH2 BcDatalnClk_ H_3 BC5
BcDatalnClk_ H 4 F38 BcDatalnClk_ H 5 U39 BcDatalnClk H 6 AH44
BcDatalnClk H 7 AY40 BcDataOE_L A27 BcDataOutClIk H 0 J5
BcDataOutCIk_ H 1 AU3 BcDataOutClk H 2 J43 BcDataOutClk_ H 3 AR43
BcDataOutClk_ L 0 K4 BcDataOutClk_ L 1 Av4 BcDataOutClk_ L 2 K42
BcDataOutClk_L_3 AT42 BcDataWr_L D26 BcLoad L F26
BcTag_H_20 E13 BcTag_H_21 H16 BcTag_H_22 All
BcTag_H_23 B12 BcTag_H_24 D14 BcTag_H_25 E15
BcTag_H_26 Al13 BcTag_H_27 G17 BcTag_H_28 C15
BcTag_H_29 H18 BcTag_H_30 D16 BcTag_H_31 B16
BcTag_H_32 c17 BcTag_H_33 Al7 BcTag_H_34 E19
BcTag_H_35 B18 BcTag_H_36 Al19 BcTag_H_37 F20
BcTag_H_38 D20 BcTag_H_39 E21 BcTag_H_40 c21
BcTag_H_41 D22 BcTag_H_42 H22 BcTagDirty_H Cc23
BcTagInClk_H G19 BcTagOE_L H24 BcTagOutClk_H C25
BcTagOutClk_L D24 BcTagParity H B22 BcTagShared_H G23
BcTagValid_H B24 BcTagWr_L E25 BcVref F18
ClkFwdRst_H BE11l Clkin_H AMS8 Clkin_L AN7
DCOK_H AY18 EV6CIk_H AM6 EV6CIk_L AL7
FrameClk_H AV16 FrameClk_L AW15 IRQ H O BA15
IRQ H 1 BE13 IRQ H 2 AW17 IRQ H_3 AV18
IRQ H_4 BC15 IRQ H 5 BB16 MiscVref AV22
NoConnect BB14 NoConnect BD2 PLL_VDD AV8
PlIBypass_H BD12 Reset_L BD16 Spare AJl
Spare V38 Spare AT4 Spare BE9
Spare F8 Spare BD4 Spare AJ43
Spare AR3 Spare T4 Spare E39
Spare BA39 Spare BC21 SromClk_H AW19
SromData_H BC17 SromOE_L BE17 SysAddin_L_0 BD30
SysAddin_L_1 BC29 SysAddin_L_10 BB24 SysAddin_L_11 AV24
SysAddin_L_12 BD24 SysAddin_L_13 BE23 SysAddin_L_14 AW23
SysAddin_L_2 AY28 SysAddin_L_3 BE29 SysAddin_L_4 AW27

3-10 Hardware Interface 21264/EV68A Hardware Reference Manual

Pin Assignments

Table 3—-4 Pin List Sorted by Signal Name (Continued)

Signal Name PGA Location Signal Name PGA Location Signal Name PGA Location
SysAddin_L_5 BA27 SysAddin_L_6 BD28 SysAddin_L_7 BE27
SysAddin_L_8 AY26 SysAddin_L_9 BC25 SysAddInCIk_L BB26
SysAddOut_L_0 AW33 SysAddOut_L_1 BE39 SysAddOut_L_10 BE33
SysAddOut L 11 AW29 SysAddOut L 12 BC31 SysAddOut_L 13 AV28
SysAddOut_L_14 BB30 SysAddOut_L_2 BD36 SysAddOut_L_3 BC35
SysAddOut_L_4 BA33 SysAddOut_L_5 AY32 SysAddOut_L_6 BE35
SysAddOut_L_7 AV30 SysAddOut_L_8 BB32 SysAddOut_L_9 BA31
SysAddOutClk_L BD34 SysCheck_L_0O L7 SysCheck_L_1 AA5
SysCheck_L_2 AK8 SysCheck_L_3 BA13 SysCheck_L_4 L39
SysCheck_L_5 AA41 SysCheck_L_6 AMA40 SysCheck_L_7 AY34
SysData_L_0O F14 SysData_L_1 G13 SysData_L_10 P6
SysData_L_11 T8 SysData L 12 V8 SysData_L_13 V6
SysData_L_14 W7 SysData_L_15 Y6 SysData_L_16 ABS8
SysData L 17 AC7 SysData_L_18 AD8 SysData_L_19 AES
SysData_L_2 F12 SysData_L_20 AH6 SysData L 21 AH8
SysData_L_22 AJ7 SysData_L_23 AL5 SysData_L_24 APS8
SysData_L_25 AR7 SysData_L_26 AT8 SysData_L_27 AV6
SysData_L_28 AV10 SysData_L_29 AW11 SysData_L_3 H12
SysData_L_30 AV12 SysData L 31 AW13 SysData_L_32 F32
SysData_L_33 F34 SysData_L_34 H34 SysData_L_35 G35
SysData_L_36 F40 SysData_L_37 G39 SysData_L_38 K38
SysData_L_39 J41 SysData_L_4 H10 SysData_L_40 M40
SysData L 41 N39 SysData_L_42 P40 SysData_L_43 T38
SysData_L_44 V40 SysData_L_45 w41l SysData_L_46 W39
SysData_L_47 Y40 SysData_L_48 AB38 SysData_L_49 AC39
SysData_L_5 G7 SysData_L_50 AD38 SysData L 51 AF40
SysData_L_52 AH38 SysData_L_53 AJ39 SysData_L_54 AL41
SysData_L_55 AK38 SysData_L_56 AN39 SysData_L_57 AP38
SysData_L_58 AR39 SysData_L_59 AT38 SysData_L_6 F6
SysData_L_60 AY38 SysData_L_61 AV36 SysData_L_62 AW35
SysData_L_63 AV34 SysData_L_7 K8 SysData_L_8 M6
SysData_L_9 N7 SysDatalnClk_H_0 D8 SysDatalnClk_H_1 P4
SysDatalnClk_H_2 AF6 SysDatalnClk_H_3 AY6 SysDatalnClk_H_4 E37
SysDatalnClk_H_5 R43 SysDatalnClk_H_6 AG41 SysDatalnClk_H_7 AV40
SysDatalnValid_L BD22 SysDataOutClk_L_0 G11 SysDataOutClk_L_1 U7
SysDataOutClk_L_2 AG7 SysDataOutClk_L_3 AY8 SysDataOutClk_L_4 H36

21264/EV68A Hardware Reference Manual Hardware Interface 3-11

Pin Assignments

Table 3—-4 Pin List Sorted by Signal Name (Continued)

Signal Name

PGA Location Signal Name

PGA Location Signal Name

PGALocation

SysDataOutClk_L_5 R41

SysDataOutValid_L BB22
Tek H BE19
TestStat_H BA19

SysDataOutClk_L_6 AH40

SysFillvalid_L BC23
Tdi_H BA21
Tms_H BD18

SysDataOutClk_L_7 AwW39

SysVref BA25
Tdo_H BB20
Trst_L AY20

Table 3-5 Pin List Sorted by PGA Location

PGA Location Signal Name

PGA Location Signal Name

PGA Location Signal Name

All BcTag_H_22
Al19 BcTag_H_36

A33 BcAdd_H_15

A4l BcData H_98

AA3 BcCheck H_9

AA5 SysCheck_L_1

AB4 BcCheck H_1

ABS8 SysData_L_16
AC39 SysData_L_49

AC7 SysData_L_17

AD4 BcData_H_82

AD8 SysData_L_ 18
AE43 BcData_H_49

AF40 SysData_L_ 51

AG1 BcData_H_19

AG7 SysDataOutCIlk_L_2
AH40 SysDataOutClk_L_6
AH8 SysData_L_ 21
AJ39 SysData_L 53

AJ7 SysData_L_ 22

AK4 BcData_H_85

AK8 SysCheck_L_2
AL43 BcData H_117
AM4 BcData_H_87

AM6 EV6CIk_H

AN39 SysData_L_56

AN7 Clkin_L

AP40 BcData_H_120

3-12 Hardware Interface

Al13 BcTag_H_26
A27 BcDataOE_L

A35 BcAdd_H_19

A5 BcData_ H_2
AA41 SysCheck_L_5
AB2 BcData_H_80
AB42 BcCheck H_5
AC1 BcData H_16
AC43 BcData_H_112
AD2 BcData_H_17
AD42 BcData_H_48
AE3 BcData_H_18
AES SysData_L_19
AF42 BcData_H_50
AG41 SysDatalnClk_H_6
AH2 BcDatalnClk_H_2
AH44 BcDatalnClk_H_6
AJl Spare

AJ43 Spare

AK2 BcData_H_20
AK42 BcData_H_52
AL3 BcData_H_21
AL5 SysData_L_23
AMA40 SysCheck_L_6
AMS8 Clkin_H

AN41 BcData_H_55
AP2 BcData_H_23
AP44 BcData_H_54

Al7 BcTag_H_33
A29 BcAdd_H_6
A39 BcData_H_96
A7 BcData_H_65
AA43 BcData H_111
AB38 SysData_L_48
AB44 BcData_H_47
AC3 BcData_H_81
AC45 BcCheck H_13
AD38 SysData_L_50
AD44 BcData H_113
AE41 BcData H_114
AF4 BcData_H_83
AF6 SysDatalnClk_H_2
AG45 BcData H_115
AH38 SysData_L_52
AH6 SysData_L_20
AJ3 BcData_H_84
AJ45 BcData_H_51
AK38 SysData_L_55
AK44 BcData_H_116
AL41 SysData_L_54
AL7 EV6CIk_L
AM42 BcData H_118
AN1 BcData_H_86
AN45 BcData_H_53
AP38 SysData_L_57
AP8 SysData_L_24

21264/EV68A Hardware Reference Manual

Pin Assignments

Table 3-5 Pin List Sorted by PGA Location (Continued)

PGA Location Signal Name PGA Location Signal Name PGA Location Signal Name

AR1 BcData H_22 AR3 Spare AR39 SysData_L_58
AR43 BcDataOutClk H 3 AR45 BcData_H_119 AR7 SysData_L_25
AT2 BcCheck H 2 AT38 SysData_L_59 AT4 Spare

AT42 BcDataOutClk_L 3 AT44 BcCheck H 14 AT8 SysData_L_26
AU3 BcDataOutClk H 1 Au4l BcData_H_57 AU43 BcCheck H_6
AU5 BcData_H_88 AV10 SysData_L_28 AV12 SysData_L_30
AV16 FrameClk_H AV18 IRQ H_3 AV22 MiscVref

AV24 SysAddin_L_11 AV28 SysAddOut_L 13 AV30 SysAddOut_L_7
AV34 SysData_L 63 AV36 SysData L 61 Av4 BcDataOutClk_L_1
AV40 SysDatalnCIk_H_7 Av42 BcData H_122 AV6 SysData_L_27
AVS8 PLL_VDD AW1 BcCheck H_10 AW11 SysData_L_29
AW13 SysData_L_31 AW15 FrameClk_L AW17 IRQ H 2

AW19 SromCIk_H AW23 SysAddin_L_14 AW27 SysAddin_L_4
AW29 SysAddOut_L_11 AW33 SysAddOut_L_0 AW35 SysData_L_62
AW39 SysDataOutClk_L_7 Aw45 BcData_H_56 AWS5 BcData_H_26
AY12 BcData H_95 AY18 DCOK_H AY2 BcData_H_24
AY20 Trst L AY26 SysAddin_L_8 AY28 SysAddin_L_2
AY32 SysAddOut_L_5 AY34 SysCheck_L_7 AY38 SysData_L_60
AY40 BcDatalnClk_H_7 AY44 BcData H_58 AY6 SysDatalnClk_H_3
AY8 SysDataOutClk_L_3 B10 BcData H 0 B12 BcTag_H_23
B16 BcTag_H_31 B18 BcTag_H_35 B22 BcTagParity_H
B24 BcTagValid_H B28 BcAdd_H_4 B30 BcAdd_H_10
B34 BcAdd_H_18 B36 BcAdd_H_20 B4 BcData_H_68
B40 BcData H_34 B42 BcData_H_99 B6 BcData_H_67
BA1 BcData_H_89 BA13 SysCheck_L_3 BA15 IRQ H O

BA19 TestStat_H BA21 Tdi_H BA25 SysVref

BA27 SysAddin_L_5 BA3 BcData H_90 BA31 SysAddout_L_9
BA33 SysAddOut_L_4 BA37 BcData H_ 126 BA39 Spare

BA43 BcData_H_59 BA45 BcData H_121 BA9 BcData_H_93
BB10 BcData_H_30 BB14 NoConnect BB16 IRQ H 5

BB2 BcData H_25 BB20 Tdo_H BB22 SysDataOutValid_L
BB24 SysAddin_L_10 BB26 SysAddInCIk_L BB30 SysAddOut_L_14
BB32 SysAddout_L_8 BB36 BcCheck H_15 BB38 BcData_H_62
BB4 BcData_H_27 BB42 BcData_H_124 BB44 BcData H_123
BBS BcData_H_28 BC11 BcCheck H_3 BC15 IRQ H_4

BC17 SromData_H BC21 Spare BC23 SysFillvalid_L

21264/EV68A Hardware Reference Manual Hardware Interface 3-13

Pin Assignments

Table 3-5 Pin List Sorted by PGA Location (Continued)

PGA Location Signal Name

PGA Location Signal Name

PGA Location Signal Name

BC25
BC31
BC41
BC9
BD16
BD22
BD30
BD4
BD6
BE17
BE27
BE35
BES
Cc1
c21
C29
C35
C43
D10
D2
D24
D32
D42
El
E19
E27
E33
E43
F12
F2
F28
F38
F6
G1i1
G19
G29

SysAddIn_L_9
SysAddOut_L_12
BcData H_125
BcData H 94
Reset L
SysDatalnValid_L
SysAddin_L_0
Spare

BcData H_92
SromOE_L
SysAddIn_L_7
SysAddOut_L_6
BcData_H_29
BcData_H_64
BcTag_H_40
BcAdd_H_8
BcAdd_H_22
BcData_H_36
BcData H_1
BcData H_71
BcTagOutClk_L
BcAdd_H_17
BcData_H_100
BcData H_7
BcTag_H_34
BcAdd H 5
BcAdd_H_23
BcData_H_37
SysData_L_2
BcCheck_H_0
BcAdd H_9
BcDatalnClk_H_4
SysData_L_6
SysDataOutCIlk_L_0
BcTagInClk_H
BcAdd H_14

3-14 Hardware Interface

BC29
BC35
BC43
BD10
BD18
BD24
BD34
BD40

BE11
BE19
BE29
BE39
BE7
C15
Cc23
C3
C37
C5
D14
D20
D26
D36
D44
E13
E21
E3
E37
E45
F14
F20
F32
F40

G13
G23
G33

SysAddin_L_1
SysAddOut_L_3
BcData_H_ 60
BcCheck H 11
Tms_H
SysAddin_L_12
SysAddOutClk_L
BcData H 127
ClkFwdRst_H
Tck_H
SysAddIn_L_3
SysAddOut_L_1
BcData_H_31
BcTag_H_28
BcTagDirty_H
BcData H 4
BcData_H_33
BcData_H_3
BcTag_H_24
BcTag_H_38
BcDataWr_L
BcData_H_97
BcData_ H_101
BcTag_H_20
BcTag_H_39
BcData_H 5
SysDatalnClk_H_4
BcCheck_H_12
SysData_L_0O
BcTag_H_37
SysData_L_32
SysData_L_36
Spare

SysData _L_1
BcTagShared_H
BcData_H_32

BC3
BC37
BC5
BD12
BD2
BD28
BD36
BD42
BE13
BE23
BE33
BE41
BE9
C17
C25
C31
C41
C9
D16
D22
D30
D4
D8
E15
E25
E31
E39
E7
F18
F26
F34
F44
Gl
G17
G27
G35

BcData H 91
BcCheck H 7
BcDatalnClk_ H_ 3
PlIBypass_H
NoConnect
SysAddIn_L_6
SysAddOut_L_2
BcData H_61
IRQ H 1
SysAddIn_L_13
SysAddOut_L_10
BcData_H_63
Spare
BcTag_H_32
BcTagOutClk_H
BcAdd_H_12
BcData_H_35
BcData_H_66
BcTag_H_30
BcTag_H_41
BcAdd H_11
BcData_H_69
SysDatalnClk_H_0
BcTag_H_25
BcTagWr_L
BcAdd_H_16
Spare
BcDatalnClk_H_0
BcVref

BcLoad L
SysData_L_33
BcData_H_39
BcData_H_73
BcTag_H_27
BcAdd H_7
SysData_L_35

21264/EV68A Hardware Reference Manual

Pin Assignments

Table 3-5 Pin List Sorted by PGA Location (Continued)

PGA Location Signal Name PGA Location Signal Name PGA Location Signal Name

G39 SysData_L 37 G41 BcData H 38 G45 BcData H_ 104

G5 BcData H_70 G7 SysData_L_5 H10 SysData_L_4

H12 SysData_L 3 H16 BcTag_H_21 H18 BcTag_H_29

H22 BcTag_H_42 H24 BcTagOE_L H28 BcAdd_H_13

H30 BcAdd_H 21 H34 SysData_L_34 H36 SysDataOutCIlk_L_4
H4 BcData H_72 H40 BcData_H_102 H42 BcData H_103

H6 BcData H_6 J3 BcData H 8 J41 SysData_L_39

J43 BcDataOutClk H 2 J5 BcDataOutClk H 0 K2 BcData H 9

K38 SysData_L_38 K4 BcDataOutClk_ L 0 K42 BcDataOutClk_L_2
K44 BcData_H_40 K8 SysData_L_7 L1 BcData_H_75

L3 BcData H_10 L39 SysCheck_L_4 L43 BcData H_105
L45 BcData_ H_106 L7 SysCheck_L_0O M2 BcData H_11

M38 BcCheck H_4 M40 SysData_L_40 M44 BcData H_42

M6 SysData_L_8 M8 BcCheck_H_8 N1 BcData H_76

N39 SysData_L_ 41 N41 BcData_H_41 N45 BcData_H_107

N5 BcData H_74 N7 SysData_L_9 P4 SysDatalnClk_H_1
P40 SysData_L_42 P42 BcData_H_43 P6 SysData_L_10

R3 BcDatalnClk_H_1 R41 SysDataOutClk_L_5 R43 SysDatalnClk_H_5
T2 BcData_ H_12 T38 SysData_L_43 T4 Spare

T44 BcData_H_108 T8 SysData_L_11 Ul BcData_H_13

U3 BcData H_77 U39 BcDatalnClk_H_5 u43 BcData H_44

u45 BcData H_109 u7 SysDataOutClk_L_1 V2 BcData H_14

V38 Spare V40 SysData_L_44 V44 BcData_H_45

V6 SysData_L_ 13 V8 SysData_L_12 w1 BcData_H_79
W39 SysData_L_46 w41 SysData_L_45 w45 BcData_H_110
W5 BcData_H_78 W7 SysData_L_14 Y4 BcData_H_15

Y40 SysData_L_47 Y42 BcData_H_46 Y6 SysData_L_15

21264/EV68A Hardware Reference Manual

Hardware Interface 3-15

Pin Assignments

Table 3-6 lists the 21264/EV68A ground and pow¢sSandVDD, respectively) pin
list.

Table 3-6 Ground and Power (VSS and VDD) Pin List

Signal PGA Location

VSS Al5 A21 A25 A3 A3l A37 A43 A9 AAl AA39
AA45 AA7 AC41 AC5 AE1 AE39 AE45 AE7 AG3 AG39
AG43 AG5 AJ41 AJS AL1 AL39 AL45 AN3 AN43 AN5
AR41 AR5 AUl AU39 AU45 AU7 AW21 AwW25 AW3 AwW31l
AW37 Aw41 AwW43 AW7 AW9 AY1l4 BAl1l BAl17 BA23 BA29
BA35 BA41 BA5 BA7 BC1 BC13 BC19 BC27 BC33 BC39
BC45 BC7 BE15 BE21 BE25 BE3 BE31 BE37 BE43 Cl1
C13 C19 c27 C33 C39 C45 Cc7 DS8 Ell E17
E23 E29 E35 E41 E5 E9 G15 G21 G25 G3

G31 G37 G43 G9 J1 J39 J45 J7 L41 LS

N3 N43 R1 R39 R45 R5 R7 T42 u41 us

w3 w43 — — — — — — — —
VDD A23 AB40 AB6 AD40 AD6 AF2 AF38 AF44 AF8 AH4

AH42 AK40 AK6 AM2 AM38 AM44 AP4 AP42 APG6 AT40
AT6 AV14 AV2 AV20 AV26 AV32 AV38 Av44 AY10 AY1l6
AY22 AY24 AY30 AY36 AY4 AY42 Bl4 B2 B20 B26
B32 B38 B44 B8 BB12 BB18 BB28 BB34 BB40 BBG6
BD14 BD20 BD26 BD32 BD38 BD44 BD8 D12 D18 D28
D34 D40 D6 F10 F16 F22 F24 F30 F36 F4
F42 H14 H2 H20 H26 H32 H38 H44 K40 K6
M4 M42 P2 P38 P44 P8 T40 T6 V4 V42
Y2 Y38 Y44 Y8 — — — — — —

3-16 Hardware Interface 21264/EV68A Hardware Reference Manual

Mechanical Specifications

3.4 Mechanical Specifications

This section shows the 21264/EV68A mechanical package dimensions without a heat
sink. For heat sink information and dimensions, refer to Chapter 10.

Figure 3—-2 shows the package physical dimensions without a heat sink.

Figure 3—2 Package Dimensions

—> <—=1.27 mm (.050 in) Typ
—»| |{<=4.32mm (.170in) Typ

—>‘ ‘<— 2.54 mm (.10 in) Typ »‘ '« 1.377 mm (.055 in) Typ

BE O O (OXS) Q. O O z“
o5 ¢ . =
oA Aj:ff OO0 00 O 0 0 00 0000 587x 1.40 mm (.055 in) Typ = |
AW- AOX®) (@) (OX®) (@) (@) O O = A
s =355 <t =< = {127 mm (050 im) Typ
Pt o R oo—1
s =
<
= ol f
gy n2 i _
s B 4 s Ve 1/4-20 Stud (2x)
m 00 @ }m
Ve o
: r—%a X O g
M ;:g{ P RSRSK 27.94 mm 7.62 mm (.300 in) Typ
i K*%ﬁ 2 oo | (1.100 in)
I ::E: ® o oXe} O ®) @)
E =)]
c sz:) (@) (ON®) (OX®) (@) (@) (ON@)
=
A e] e e 2 e e e e 1 e e K S K 13 mm
AR AR AR AR AR AN AR AR RN A (.005in) R
02|04 05|08 | 10[12 |14 | 16| 18| 20|22 |24 26| 28 0 [32 |34 a5 | s |0 |42 | a4
0103 0507 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
27.94 mm —»| |« 1.905 mm (.075 in) Typ
(1.100 in)
[————59.94 mm (2.360 in) Typ =———>|
29.62 mm
(1.180in) Typ
e s I e ﬁ e e e P
=== [=1=]=]
== — =
[e o[o |
29.62 mm
(1.180 in) Typ

A

oo

o I | o I
[— | =i
o | s s I s s | s I s s s

s e e e | s e s e |

25.40 mm
(1.000 in) Typ

53.85 mm
(2.120in) Typ
FM-05662.A14

21264/EV68A Hardware Reference Manual Hardware Interface 3-17

21264/EV68A Packaging

21264/EV68A Packaging

3.5

Figure 3—-3 shows the 21264/EV68A pinout from the top view with pins facing down.

Figure 3—-3 21264/EV68A Top View (Pin Down)

OQOQOQOQOQOQOQOQOQOQOQOQOQOQOQOQOQOQO@OQO

OOO

ONONOAGAGHONGAGNONGAGNONGAGNONGAGNONGNONONGNC,

OOO

ONONONONONCHONONCHONONCHONONCHONONGIONOXC,

00700 GNONONE
CNONON® SNONONC
00700 GNONONE
CNONON® SNONONC
00700 GNONONE
CNONON® SNONONC
00700 GNONONE
CNONON® SNONONC
OO EOXOROXE
00700 < GNONONE
CNONON® Dy SNONONC
00700 C 2T GNONONE
CNONON® iS3 SNONONC
00700 3-8 GNONONE
CNONON® Tac SNONONC
00700 NEoT GNONONE
CNONON® 5 SNONONC
00700 GNONONE
CNONON® SNONONC
00700 GNONONE
CNONON® SNONONC
00700 GNONONE
CNONON® SNONONC
00700 GNONONE
CNONON® SNONONC
OO EOXOROXE
00700 GNONONE

0000000000000 00000 00006

ONONOAGAGAOAGAGAOAGAGNOAGAGROAGAGRONGHONONONC,

ONOGAGHONGAGHONGAGHONGAGHONGAGNONGAGNONONGXC,

OOO@OOO

44(42140(38|36 3432|3028)26 (2422|2018 |16 |14 |12 |10 |08 |06 |04 | 02

%OOOOOOOOOOOOOOOOOOOOO@

%@%@%@%@%@%@Jv@ﬂ@ﬁﬁ%@ﬁ%ﬁﬁﬁ@_%

[a)

45 43 41 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 09 07 05 03 01

FM-05644

21264/EV68A Hardware Reference Manual

3-18 Hardware Interface

21264/EV68A Packaging

Figure 3—4 shows the 21264/EV68A pinout from the bottom view with pins facing up.

Figure 3—4 21264/EV68A Bottom View (Pin Up)

R OR R OR XX O CX SR ER SR R SR SR OR DX ORGSR SN

O OO

ONONOAGAGHONGAGNONGAGHONGAGNONGAGNONGNGNONGNC,

OOO

ONOAONONONCHONONCHONONCHONONCHONONOGNONONGXC,

OHONOxOK <OXOHONE
0-0-0-0 OXONONE
0-0-0-0 0-0-0=G
0-0-0-0 OXONONE
0-0-0-0 0-0-0=G
0-0-0-0 OXONONE
0-0-0-0 0-0-0=G
0-0-0-0 OXONONE
0-0-0-0 0-0-0=G
Co=000 %3 OO
0-0-0-0 gL _ OXONONE
00 bes RO RORONE
0-0-0-0 ISE 0-0-0=G
OHONOxOK g% HOXOHOXE
0-0-0-0 'y OXONONE
0-0-0-0 0-0-0=G
0-0-0-0 OXONONE
0-0-0-0 0-0-0=G
0-0-0-0 OXONONE
0-0-0-0 0-0-0=G
0-0-0-0 OXONONE
0-0-0-0 0-0-0=G
Co=000 OO
0-0-0-0 ONONONE

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOO

ONOGAGHONGAGHOAGAGHONGAGHONGAGNONGAGNONGNGXC,

OOO@OOO

ONOAOAGAGHOAGAGNONGAGNONGAGNONGAGNONGNAGNONON:,

QOO@m/

0204106 (0810121411618)20 (22|24 |26 |28 |30 (32 |34 |36 |38 |40 |42 | 44
01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

[m Wi oS |ZT|lw|a|lm o ¥|T|w om
AEHEEEEHEEBEEE DG e

w O < DX Z2 42 92 0 W o< D@ Z2 4 - L
BBBMAAAAAAAAAW © o <

FM-05645

Hardware Interface 3-19

21264/EV68A Hardware Reference Manual

A

Cache and External Interfaces

This chapter describes the 21264/EV68A cache and external interface, which includes
the second-level cache (Bcache) interface and the syistenfiace. It also describes
locks, interrupt signals, and ECC/parity generation. It is organized as follows:

* Introduction to the external intiaces
e Physical address considerations

* Bcache structure

* Victim data buffer

e Cache coherency

* Lock mechanism

e System port

e Bcache port

* Interrupts

Chapter 3 lists and defines all 21264/EV68A hardware fatar $gnal pins. Chapter 9
describes the 21264/EV68A hardware interface electrical requirements.

4.1 Introduction to the External Interfaces

A 21264/EV68A-based system can be divided into three major sections:
e 21264/EV68A microprocessor

* Second-level Bcache

e System interface logic

— Optional duplicate tag store
— Optional lock register
— Optional victim buffers

The 21264/EV68A external interface is flexible and mandates few design rules, allow-
ing a wide range of prospective systems. The external interface is composed of the
Bcache interface and tleystem interface.

* Inputclocks must have the same frequency as theiesponding output clock. For
example, the frequency &ysAddInClk_L must be the same as
SysAddOutClk_L.

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-1

Introduction to the External Interfaces

¢ The Bcache interface includes a 128-bit bidirectional data bus, a 20-bit unidirec-
tional address bus, and several control signals.

— TheBcDataOutClk_x[3:0] clocks are free-running and are derived from the
internal GCLK. The period oBcDataOutClk_x[3:0] is a programmable mul-
tiple of GCLK.

— The Bcache turns thecDataOutClk_x[3:0] clocks around and returns them
to the 21264/EV68A aBcDatalnClk_H[7:0]. Likewise,BcTagOutClk_x
returns aBcTagInClk_H.

— The Bcache interface supports a 64-byte block size.

* The system interface includes a 64-bit bidirectional data bus, two 15-bit
unidirectional address buses, and several control signals.

— TheSysAddOutCIlk_L clock is free-unning and is derived from the internal
GCLK. The period ofSysAddOutClk_L is a programmable multiple of
GCLK.

— TheSysAddInClk_L clock is a turned-around copy &ysAddOutCIk_L.

Figure 4—-1 shows a simplified view of the externakiriace. The funiton and purpose
of each signal is described in Chapter 3.

4-2 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

Introduction to the External Interfaces

Figure 4-1 21264/EV68A System and Bcache Interfaces

SysAddin_L[14:0]
SysAddInClk_L
SysAddOut_L[14:0]
SysAddOutClk_L
SysVref
SysData_L[63:0]
SysCheck_L[7:0]
SysDatalnClk_H[7:0]
SysDataOutClk_L[7:0]
SysDatalnValid_L
SysDataOutValid_L
SysFillvalid_L
BcAdd_H[23:4]

21264

BcLoad_L
BcData_H[127:0]
BcCheck_H[15:0]
BcDatalnClk_H[7:0]
BcDataOutClk_ x[3:0]
BcDataOE_L
BcDataWr_L
BcTag_H[42:20]
BcTagInClk_H
BcTagOutClk_ x
BcVref
BcTagWr_L
BcTagOE_L
BcTagValid_H
BcTagDirty H
BcTagShared_H
BcTagParity_H
IRQ_H[5:0]

A

\

Yv

A A

[

A A
Y

Al

[Y

[23:4] ¥ [23:6] Y [23:6]
Data | | Tag | | Status | System
AAA A A AN AAAAAA

A A

A A AL J W)]

FM-05818B-EV67

4.1.1 System Interface

This section introduces the system (external) busrfate. The system interface is

made up of two unidirectional 15-bit address buses, 64 bidirectional data lines, eight
bidirectional check bits, two single-ended unidirectional clocks, and a few control pins.
The 15-bit address buses provide time-shared address/command/ID in two or four
GCLK cycles. The Cbox controls the system interface.

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-3

Physical Address Considerations

4.1.1.1 Commands and Addresses

The system sends probe and data movement commands to the 21264/EV68A. The
21264/EV68A can hold up to eight probe commands from the system. The system con-
trols the number of outstanding probe commands and must ensure that the 21264/
EV68A 8-entry probe queue does not overflow.

The Cbox contains an 8-entry miss buffer (MAF) and an 8-entry victiffelb (VAF).

A miss occurs when the 21264/EV68A probes the Bcache but does not find the
addressed block. The 21264/EV68A can queue eight cache misses to the system in its
MAF.

4.1.2 Second-Level Cache (Bcache) Interface

The 21264/EV68A Chox provides control signals and an interface for a second-level
cache, the Bcache. The 21264/EV68A supports a Bcache from 1MB to 16MB, with 64-
byte blocks. A 128-bit data bus is used for transfers between the 21264/EV68A and the
Bcache. The Bcache must be comprised of synchronous static RAMs (SSRAMs) and
must contain either one, two, or three internal registers. All Bcache control and address
pins are clocked synchronously on Bcache cycle boundaries. TahehB clock rate

varies as a multiple of the CPU clock cycle in half-cycle increments from 1.5 to 4.0,
and in full-cycle increments of 5, 6, 7, and 8 times the CPU clock cycle. The 1.5 multi-
ple is only available in dual-data mode.

4.2 Physical Address Considerations

The 21264/EV68A supports a 44-bit physical address space that is divided equally
between memory space and I/O space. Memory space resides in the lower half of the
physical address space (PA[43] = 0) and I/O space resides in the upper half of the phys-
ical address space (PA[43] = 1). The 21264/EV68A recognizes these spaces internally.

The 21264/EV68A-generated externdlamnces to memory space are always of a

fixed 64-byte size, though the internal access granularity is byte, word, longword, or
quadword. All 21264/EV68A-generated externeflerences to memory or I/O space

are physical addresses that are either successfully translated from a virtual address or
produced by PALcode. Speculative execution may causteeerce to nonexistent
memory. Systems must check the range of all addresses and report nonexistent
addresses to the 21264/EV68A.

Table 4-1 describes the translation of internal references to external interface refer-
ences. The first column lists the instructions used by the programmer, including load
(LDx) and store (STx) instructions of several sizes. The column headings are described
here:

e DcHit (block was found in the Dcache)
* DcW (block was found in a writable state in the Dcache)
e BcHit (block was found in the Bcache)
* BcW (block was found in a writable state in the Bcache)

e Status and Action (status at end of instruction and actenfopmed by the21264/
EV68A)

4-4 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

Physical Address Considerations

Prefetches (LDL, LDF, LDG, LDT, LDBU, LDWU) to R31 use the LDx flow, and
prefetch with nodify intent (LDS) uses the STx flow. If the prefetch target is addressed
to I/O space, the upper address bit is cleared, converting the address to memory space
(PA[42:6]). Notes follow the table.

Table 4—1 Translation of Internal References to External Interface Reference

Instruction DcHit DcW BcHit BcW Status and Action

LDx Memory 1 X X X Dcache hit, done.

LDx Memory 0 X 1 X Bcache hit, done.

LDx Memory 0 X 0 X Miss, generate RdBlk command.

LDx 1/O X X X X RdBytes, RdLWs, or RdAQWSs based on size.

Istream Memory 1 X X X Dcache hit, Istream serviced from Dcache.

Istream Memory 0 X 1 X Bcache hit, Istream serviced from Bcache.

Istream Memory 0 X 0 X Miss, generate RdBIkl command.

STx Memory 1 1 X X Store Dcache hit and writable, done.

STx Memory 1 0 X X Store hit and not writable, set dirty flow (note 1).

STx Memory 0 X 1 1 Store Bcache hit and writable, done.

STx Memory 0 X 1 0 Store hit and not writable, set-dirty flow (note 1).

STx Memory 0 X 0 X Miss, generate RdBIkMod command.

STx1/0O X X X X WrBytes, WrLWs, or WrQWs based on size.

STx_C Memory 0 X X X Fail STx_C.

STx_C Memory 1 0 X X STx_C hit and not writable, set dirty flow (note 1).

STx_C /O X X X X Always succeed and WrQws or WrLws are generated,
based on the size.

WH64 Memory 1 1 X X Hit, done.

WH64 Memory 1 0 X X WH64 hit not writable, set dirty flow (note 1).

WH64 Memory 0 X 1 1 WH64 hit dirty, done.

WH64 Memory 0 X 1 0 WH64 hit not writable, set dirty flow (note 1).

WH64 Memory 0 X 0 X Miss, generate InvalToDirty command (note 2).

WH®64 1/0 X X X X NOP the instruction. WH64 iy NDEFINED for I/O
space.

ECB Memory X X X X Generate evict command (note 3).

ECB 1/O X X X X NOP the instruction. ECB instruction is UNDEFINED
for 1/0 space.

MB/WMB X X X X Generate MB command (note 4). Also see Section 3.2.5.
TBFill Flows

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-5

Physical Address Considerations

Table 4-1 notes:

1. Set Dirty Flow: Based onthe Cbox CSR SET_DIRTY_ENABLE[2:0], SetDirty
requests can be either internally acknowledged (called a SetModify) or sent to the
system environment for processing. When externally acknowledged, the shared sta-
tus information for the cache block is also broadcast. The commands sent exter-
nally are SharedToDirty or CleanToDirty. Based on the Chox CSR
ENABLE_STC_COMMANDIO0], the external system can be informed of a STx_C
generating a SetDirty using the STCChangeToDirty command. See Table 4-16 for
more information.

2. InvalToDirty: Based on the Cbox CSR INVAL_TO_DIRTY_ENABLEJ1:0], Inval-
ToDirty requests can be either internally acknowledged or sent to the system envi-
ronment as InvalToDirty commands. This Cbox CSR provides the ability to convert
WH&64 instructions to RdModx operations. See Table 4-15 for more information.

3. Evict: There are two aspects to the commands that are generated by an ECB
instruction: first, those commands that are generated to notify the system of an evict
being performed; second, those commands that are generated by any victim that is
created by servicing the ECB.

— If Cbox CSR ENABLE_EVICTI0] is clear, no command is issued by the
21264/EV68A on the external interface to notify the system of an evict being
performed. If Cbox CSEENABLE_EVICTI0] is set, the 21264/EV68A issues
an Evict command on the system interface only if a Bcache index match to the
ECB address is found in the 21264/EV68A cache system.

Note that whenever ENABLE_EVICTI[0] is true (in the write-many chain),
BC_CLEAN_VICTIM must also be true (in the write-once chain). Otherwise,

the 21264/EV68A could respond miss to a probe, rather than hit, before an
Evict command has been sent off chip, but after the Evict command has
removed a (clean) block from the internal caches and the Bcache. That behav-
ior might cause systems that maintain an external duplicate copy of the Bcache
tags to become confused, because the system could receive the probe response
indicating the miss before it receives the Evict command.

— The 21264/EV68A can issue the commands CleanVictimBIk and WrVictimBIk
for a victim that is created by an ECB. CleanVictimBIKk is issued only if Cbox
CSR BC_CLEAN_VICTIM is set and there is a Bcache index match valid but
not dirty in the 21264/EV68A cache system. WrVictimBIk is issued for any
Bcache match of the ECB address that is dirty in the 21264/EV68A cache sys-
tem.

4., MB: Based onthe Cbox CSR SYSBUS MB_ENABLE, the MB command can be
sent to the pins.

Each of these CSRs is programmed appropriately, based on the cache coherence proto-
col used by the system environment. For example, uniprocessor systems would prefer
to internally acknowledge most of these transactions. In contrast, multiprocessor sys-
tems may require naotification and control of any change in cache state. The 21264/
EV68A and the external system must cooperate to maintain cache coherence. Section
4.5 explains the 21264/EV68A part of the cache coherency protocol.

4-6 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

Bcache Structure

4.3 Bcache Structure

The 21264/EV68A Chox provides control signals and an interface for a second-level
cache (Bcache).

The 21264/EV68A supports a Bcache from 1MB to 16 MB, with 64-byte blocks. A 128-
bit bidirectional data bus is used for transfers between the 21264/EV68A and the
Bcache. The Bcache is fully synchronous and the synchronous static RAMs (SSRAMS)
must contain either one, two, or three internal registers. All Bcache control and address
pins are clocked synchronously on Bcache cycle boundaries. TahehB clock rate

varies as a multiple of the CPU clock cycle in half-cycle increments from 1.5 to 4.0,
and in full-cycle increments of 5, 6, 7, and 8 times the CPU clock cycle. The 1.5 multi-
ple is only available in dual-data mode.

4.3.1 Bcache Interface Signals

Figure 4-2 shows the 21264/EV68A systeneifdce signals.

Figure 4-2 21264/EV68A Bcache Interface Signals

BcData_H[127:0]

21264 BcCheck_H[15:0]

__ BeDatalnCIk_H[7:0]

- BcDataOutClk_x[3:0]
BcDataOE_L
BcDataWr_L
BcAdd_H[23:4]
BcTag_H[42:20]
BcTagInClk_H

- BcTagOutClk_ x

__ Bevref

D BcTagDirty_H
BcTagParity_H
BcTagShared_H
BcTagValid_H
BcTagOE_L
BcTagWr_L
BcLoad_L

YYYy

Y

YVYY

FM-05650

4.3.2 System Duplicate Tag Stores

The 21264/EV68A provides &che stateupport for systems with and without dupli-
cate tag stores, and will take different actions on this basis. The system sets the Cbox
CSR DUP_TAG_ENA|O], indicating that it has a duplicate tag store for the Bcache.
Systems using the DUP_TAG_ENA[0] bit must also use the Cbox CSR
BC_CLEAN_VICTIM[O] bit to avoid deadlock situations.

Systems using a Bcache duplicate tag storeazamelerate system performance by:

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-7

Victim Data Buffer

* Issuing probes and SysDc fill commands to the 21264/EV68A out-of-order with
respect to their order at the system serialization point

e Filtering out all probe misses from the 21264/EV68A cache system

If a probe misses in the 21264/EV68A cache system (Bcache miss and VAF miss), the
21264/EV68A stalls probe processing with the expectation that a SysDc fill will allo-
cate this block. Because of this, in duplicate tag mode, the 21264/EV68A can never
generate a probe miss response.

When Cbox CSR DUP_TAG_ENA[0] equals 0, the 21264/EV68A delivers a miss
response for probes that do not hit in its cache system.

4.4 Victim Data Buffer

The 21264/EV68A has eight victim dataffers (VDBs). They have the ftdwing
properties:

* The VDBs are used for both victims (fills that are replacing dirty cache blocks) and
for system probes that require data movement. The CleanVictimBlk command
(optional) assigns and uses a VDB.

* Each VDB has two valid bits that indicate the buffer is valid for a victim or valid
for a probe or valid for both a victim and a probe. Probe commands that match the
address of a victim address file (VAF) entry with an asserted probe-valid bit (P)
will stall the 21264/EV68A probe queue. No ProbeResponses will be returned until
the P bit is clear.

* The release victim buffer (RVB)it, when asserted, causes the victim valid bit, on
the victim data buffer (VDB) specified in the ID field, to be cleared. The RVB bit
will also clear the IOWB when systems move data on 1/O write transactions. In this
case, ID[3] equals one.

* The release probe buffer (RPB) bit, when asserted (with a WriteData or Release-
Buffer SysDc command), €ars the P bit in the victim buffer entry specified in the
ID field.

¢ Read data commands and victim write commands use IDs 0-7, while IDs 8-11 are
used to address the four I/O write buffers.

4.5 Cache Coherency

This section describes the basics and protocols of the 21264/EV68A cache coherency
scheme.

4.5.1 Cache Coherency Basics

The 21264/EV68A systems maintain the cache hierarchy shown in Figure 4-3.

4-8 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

Cache Coherency

Figure 4-3 Cache Subset Hierarchy

System
Main Memory

Bcache

FM-05824.Al14

The following tasks must be performed to maintain cache coherency:

Istream data from memory spaces may be cached in the Icache and Bcache. Icache
coherence is not maintained by hardware—it must bmtaened by software using
the CALL_PAL IMB instruction.

The 21264/EV68A maintains the Dcache as a subset of the Bcache. The Dcache is
set-associative but is kept a subset of the larger externally implemented direct-
mapped Bcache.

System logic must help the 21264/EV68A to keep tlwm&he coherewith main
memory and other caches in the system.

The 21264/EV68A requires the system to allow only one change to a block at a
time. This means that if the 21264/EV68A gains the bus to read or write a block, no
other node on the bus should be allowed to access that block until the data has been
moved.

The 21264/EV68A provides hardware mechanisms to support several cache coher-
ency protocols. The protocols can be separated into two classes: write invalidate
cache coherency ptocol and flush cache coherency protocol.

4 5.2 Cache Block States

Table 4-2 lists the cache block states supported by the 21264/EV68A.

Table 4-2 21264/EV68A-Supported Cache Block States

State Name Description
Invalid The 21264/EV68A does not have a copy of the block.
Clean This 21264/EV68A holds a read-only copy of the block, and no other agent in the system

holds a copy. Upon eviction, the block is not written to memory.

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-9

Cache Coherency

Table 4-2 21264/EV68A-Supported Cache Block States (Continued)

State Name Description

Clean/Shared This 21264/EV68A holds a read-only copy of the block, and at least one other agent in the
system may hold a copy of the block. Upon eviction, the block is not written to memory.

Dirty This 21264/EV68A holds a read-write copy of the block, and must write it to memory after it
is evicted from the cache. No other agent in the system holds a copy of the block.

Dirty/Shared This 21264/EV68A holds a read-only copy of the dirty block, which may be shared with
another agent. The block must be written back to memory when it is evicted.

4 5.3 Cache Block State Transitions

Cache block state transitions agflected by21264/EV68A-generated commands to

the system. Cache block state transitions can also be caused by system-generated com-
mands to the 21264/EV68A (probes). Probes control the next state for the cache block.
The next state can be based on the previous state of the cache block. Table 4-3 lists the
next state for the cache block.

Table 4-3 Cache Block State Transitions

Next State Action Based on Probe Hit

No change Do not update cache state. Useful for DMA transactions that sample data but
do not want to update tag state.

Clean Independent of previous state, update next state to Clean.

Clean/Shared Independent of previous state, update next state to Clean/Shared. This transac-
tion is useful for systems that update memory on probe hits.

T1: Based on the dirty bit, make the block clean or dirty shared. This transaction

Clean= Clean/Shared is useful for systems that do not update memory on probe hits.

Dirty = Dirty/Shared

T3: If the block is Clean or Dirty/Shared, change to Clean/Shared. If the block is

Clean= Clean/Shared Dirty, change to Invalid. This transaction is useful for systems that use the

Dirty = Invalid Dirty/Shared state as an exclusive state.

Dirty/Shared= Clean/Shared

The cache state tranisins caused by 21264/EV68A-generated commands are under the
full control of the system environment using the SysDc (system data control) com-
mands. Table 4—4 lists these commands.

Table 4-4 System Responses to 21264/EV68A Commands

Response Type 21264/EV68A Action

SysDc ReadData Fill block with the associated data and update tag with clean cache status.
SysDc ReadDataDirty Fill block with the associated data and update tag with dirty cache status.
SysDc ReadDataShared Fill block with the associated data and update tag with shared cache status.

SysDc ReadDataShared/Dirty Fill block with the associated data and update tag with dirty/shared status.
SysDc ReadDataError Fill block with all-ones reference pattern and update tag with invalid status.
SysDc ChangeToDirtySuccess Unconditionally update block with dirty cache status.

SysDc ChangeToDirtyFalil Do not update cache status and fail any associated STx_C instructions.

4-10 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

Cache Coherency

4.5.4 Using SysDc Commands

Note the following:

* The conventional response for RdBIk commands is SysDc ReadData or ReadD-
ataShared.

* The conventional response for a RdBlkMod command is SysDc ReadDataDirty.

* The conventional response for ChangeToDirty commands is
ChangeToDirtySuccess or ChangeToDirtyFail.

However, the system environment is not limited to these responses. Table 4-5 shows all
21264/EV68A commands, system responses, and the 21264/EV68A reaction. The
21264/EV68A commands are described in the following list:

* Rdx commands are generated by load or Istream references.
* RdBIkModx commands are generated by store references.

* The ChxToDirty command group includes CleanToDirty, SharedToDirty, and STC-
ChangeToDirty commands, which are generated by stfezences that hit in the
21264/EV68A cache system.

* InvalToDirty commands are generated by WH64 instructions that miss in the
21264/EV68A cache system.

* FetchBIlk and FetchBlkSpec are noncached references to memory space that have
missed in the 21264/EV68A cache system.

* Rdiox commands are noncached references to I/O address space.

* Evict and STCChangeToDirty commands are generated by ECB and STx_C
instructions, respectively.

Table 4-5 shows the system responses to 21264/EV68A commands and 21264/EV68A
reactions.

Table 4-5 System Responses to 21264/EV68A Commands and Reactions

21264/EV68A

CMD SysDc 21264/EV68A Action

Rdx ReadData This is a normal fill. The cache block is filled and marked clean or
ReadDataShared shared based on SysDc.

Rdx ReadDataShared/Dirty The cache block is filled and marked dirty/shared. Succeeding store

commands cannot update the block without external reference.
Rdx ReadDataDirty The cache block is filled and marked dirty.
Rdx ReadDataError The cache block access was to NXM address space. The 21264/

EV68A delivers an all-ones pattern to any load command and evicts
the block from the cache (with associated victim processing). The
cache block is marked invalid.

Rdx ChangeToDirtySucces®8oth SysDc responses are illegal for read commands.
ChangeToDirtyFail

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-11

Cache Coherency

Table 4-5 System Responses to 21264/EV68A Commands and Reactions (Continued)

21264/EV68A
CMD SysDc 21264/EV68A Action
RdBIkModx ReadData The cache block is filled and marked with a nonwritable status. If the
ReadDataShared store instruction that generated the RdBIkModx command is still
ReadDataShared/Dirty active (not killed), the 21264/EV68A will retry the instruction, gener-
ating the appropriate ChangeToDirty command. Succeeding store
commands cannot update the block without external reference.
RdBIkModx ReadDataDirty The 21264/EV68A performs a normal fill response, and the cache

block becomes writable.

RdBIkModx ChangeToDirtySuccesd8oth SysDc responses are illegal for read/modify commands.
ChangeToDirtyFail

RdBIkModx ReadDataError The cache block command was to NXM address space. The 21264/
EV68A delivers an all-ones pattern to any dependent load command,
forces a fail action on any pending store commands to this block, and
any store to this block is not retried. The Cbox evicts the cache block
from the cache system (with associated victim processing). The cache
block is marked invalid.

ChxToDirty ReadData The original data in the Dcache is replaced with the filled data. The
ReadDataShared block is not writable, so the 21264/EV68A will retry the store instruc-
ReadDataShared/Dirty tion and generate another ChxToDirty class command. To avoid a

potential livelock situation, the STC_ENABLE CSR bit must be set.
Any STx_C instruction to this block is forced to fail. In addition, a
Shared/Dirty response causes the 21264/EV68A to generate a victim
for this block upon eviction.

ChxToDirty ReadDataDirty The data in the Dcache is replaced with the filled data. The block is
writable, so the store instruction that generated the original command
can update this block. Any STx_C instruction to this block is forced
to fail. In addition, the 21264/EV68A generates a victim for this
block upon eviction.

ChxToDirty ReadDataError Impossible situation. The block must be cached to generate a ChxTo-
Dirty command. Caching the block is not possible because all NXM
fills are filled noncached.

ChToDirty ChangeToDirtySuccess Normal response. ChangeToDirtySuccess makes the block writable.
The 21264/EV68A retries the store instruction and updates the
Dcache. Any STx_C instruction associated with this block is allowed
to succeed.

ChxToDirty ChangeToDirtyFail The MAF entry is retired. Any STx_C instruction associated with the
block is forced to fail. If a STx instruction generated this block, the
21264/EV68A retries and generates either a RdBlkModx (because the
reference that failed the ChangeToDirty also invalidated the cache by
way of an invalidating probe) or another ChxToDirty command.

InvalToDirty =~ ReadData The block is not writable, so the 21264/EV68A will retry the WH64
ReadDataShared instruction and generate a ChxToDirty command.
ReadDataShared/Dirty

InvalToDirty =~ ReadDataError The 21264/EV68A doesn’t send InvalToDirty commands offchip

speculatively. This NXM condition is a hard error. Systems should
perform a machine check.

InvalToDirty =~ ReadDataDirty The block is writable. Done.
ChangeToDirtySuccess

4-12 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

Cache Coherency

Table 4-5 System Responses to 21264/EV68A Commands and Reactions (Continued)

21264/EV68A
CMD SysDc 21264/EV68A Action
InvalToDirty ~ ChangeToDirtyFail lllegal. InvalToDirty instructions must provide a cache block.
Fetchx ReadData The 21264/EV68A delivers the data block, independent of its
Rdiox ReadDataShared status, to waiting load instructions and does not cache the block in the
ReadDataShared/Dirty 21264/EV68A cache system.
ReadDataDirty
Fetchx ReadDataError The cache block address was to an NXM address space. The 21264/
EV68A delivers the all-ones patterns to any dependent load instruc-
tions and does not cache the block in the 21264/EV68A cache system.
Rdiox ReadDataError The cache block access was to NXM address space. The 21264/
EV68A delivers an all-ones pattern to any load command and does
not cache the block in the 21264/EV68A cache system.
Evict ChangeToDirtyFalil Retiring the MAF entry is the only legal response.
STCChangeTo ReadDataX All fill and ChangeToDirtyFail responses will fail the STx_C require-
Dirty ChangeToDirtyFail ments.
STCChangeTo ChangeToDirtySuccess The STx_C instruction succeeds.
Dirty
MB MBDone Acknowledgment for MB.

The 21264/EV68A sends a WrVictimBlk command to the system when it evicts a Dirty
or Dirty/Shared cache block. The 21264/EV68A may be configured to send a CleanVic-
timBIk to the system (by way of the Cbox CSR BC_CLEAN_VICTIM[O]) when evict-
ing a clean or shared block. Both commands allocate buffers in the VAF (victim address
file). This buffer is a coherent part of the 21264/EV68A cache system. Write data con-
trol and deallocation of the VAF can be directly controlled by using the SysDc Write-
Data and ReleaseBuffer commands.

45.5 Dcache States and Duplicate Tags

Each Dcache block contains an extra state bit (modified bit), beyond those required to
support the cache protocol. If set, this bit indicates that the associated block should be
written to the Bcache when it is evicted from the Dcache. The modified bit is set in two

cases:

1. When a block is filled into the Dcache from memory its modified bit is set, ensur-
ing that it also gets written back into the Bcache at some future time.

2. When the processor writes to a dirty Dcache block the modified bit is set, indicating
it should be written to the Bcache when evicted.

The contents of the modified bit are functionally invisible to the external cache environ-
ment, but knowledge of the bits function is useful to programmers optimizing the
scheduling of the Bcache data bus.

The Cbox contains a duplicate copy of the Dcacheaiagy. In ©ntrast to the Dcache

tag array (DTAG), which is virtually indexed, the Cbox copy of the Dcache tag array
(CTAG) is physically-indexed. The Chox uses the CTAG array entries in the following
situations.

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-13

Lock Mechanism

1. When the Mbox requests a Dcache fill, the Cbox uses the CTAG array entry to find
if the Dcache already contains the requested physical address in another virtually-
indexed Dcache line. If it does, the Cbox invalidates that cache line after first writ-
ing the data back to the Bcache if it was in the modified state. The Chox also checks
to see if the Dcache contains an address different from the requested address, but
maps to the same Bcache line. If it does, the Dcache line is evicted in order to keep
the Dcache a subset of the Bcache.

2. When the Ibox requests an Icache fill, the Cbox uses the CTAG array entries to find
if the Dcache contains the requested physical address in the modified state. If it
does, the Chox forces the line to be written back to the Bcache before servicing the
Icache fill request. The Cbox also checks to see if the Dcache contains an address
different from the requested address titich maps to the same Bcache line. In
this case the Istream request will miss the Bcache, and the Chox will
service the request by launching a noncached Fetch command to the system port
and will not put the Istream block into the Bcache. This mechanism allows the
21264/EV68A to use a cache resident lock flag for LDx_L/STx_C instructions.

3. The Cbox uses the CTAG array entries to find whether probe addresses are held in
the Dcache without imfrrupting load/store instruction processing in the processor
core.

4.6 Lock Mechanism

The 21264/EV68A does not contain a dedicated lock register, nor are system compo-
nents required to do so.

When a load-lock (LDx_L) instruction executes, data is accessed from the Dcache or
Bcache. If there is a cache miss, data is accessed from memory with a RdBIk command.
Its associated cache line is filled into the&xhe in the clean state, if it is not already
there.

When the store-conditional (STx_C) instruction executes, it is allowed to succeed if its
associated cache line is still present in the Dcache and can be made writable; otherwise,
it fails.

This algorithm is successful because another agent in the system writing to the cache
line between the load-lock and the store-conditional cache line would make the cache
line invalid. This mechanism’s coherence is based on the following four items:

1. LDx_L instructions are processed in-order in relation to the associated STx_C.

2. Once ablockis locked by way of an LDx_L instruction, no internal agent can evict
the block from the Dcache as a side-effect of its processing.

3. Any external agent that intends to update the contents of the stored block must use
an invalidating probe command to inform the 21264/EV68A.

4. The system is the only agent with sufficient information to manage the tasks of fair-
ness and liveness. However, to enable these tasks, the 21264/EV68A oatgtgsn
external commands for nonspeculative STx_C instructions, and once given a suc-
cess indication from the system, must faithfully update the Dcache with the STx_C
value.

The system is entirely responsible for item number three. The 21264/EV68A plays an
active role in items one, two, and four.

4-14 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

Lock Mechanism

4.6.1 In-Order Processing of LDx_L/STx_C Instructions

The 21264/EV68A uses the stWait logic in the 1Q to ensure that LDx_L/STx_C pairs
are issued in order. The stWait logic treats an Ldx_L instruction like Stx instructions.
STx_C instructions are always loaded into the 1Q with their associate stWait bit set.

Thus, a STx_C instruction is not issued until the older LDx_L is out of the I1Q.

4.6.2 Internal Eviction of LDx_L Blocks

The 21264/EV68A prevents the eviction of cache blocks in the Dcache due to either of
the followingreferences:

Istream referencesith a Bcache index that matches the Dcache block and a
Bcache tag that mismatches the Dcache block.

To avoid evictions of LDx_L blocks, Istream exences that match thedex of a
block in the Dcache are converted to noncactefdrences.

Ldx or Stx references with a Dcache index that matches the block.

In the Alpha architecture, Dstream references betwedebya L/STx_C pair force

the value of the STx_C success flag to he UNPREDICTABLE. The 21264/EV68A
forces all STx_C instructions that interrupt an LDx_L/STx_C pair to fail in pro-
gram order.

There should be no Dstream references between LDx_L/STx_C pairs; however, the
out-of-order nature of the 21264/EV68A can introduce Dstregfierences between
LDx_L/STx_C pairs. To prevent load or store instructions older than the LDx_L
from evicting the LDx_L cache block, the Mbox invokes a replay trap on the
incoming load or store instruction, which also aborts the LDx_L. These instructions
are issued in program order in the next iteration of the trap retry down the pipeline.
To prevent newer load or store instructions from evicting the locked cache line, the
Ibox ensures that a STx_C is issued before any newer load or store instruction by
placing the STx_C into the IQ and stalling all subsequent instructions in the map
stage of the pipe until the 1Q is empty.

Branch instructions between the LDx_L/STx_C pair may be mispredicted, intro-
ducing load and store instructions that evict the locked cache block. To prevent that
from happening, there is a bit in the instruction fetcher that is set for a LDx_L refer-
ence and cleared on any other memmaference. Whethis bit is set, the branch
predictor predicts all branches to fall through.

4.6.3 Liveness and Fairness

To prevent a livelock condition, the 21264/EV68A processes the STx_C as follows:

1.

If a STx_C misses the Dcache, then no system port transaction is started and the
STx_C fails.

If a STx_C hits a block that is not dirty, then a ChangeToDirty (Shared or Clean) is
launched after the STx_C retires and all older store queue entries are in the writable
state. This ensures that once the ChangeToDirty command is launched on behalf of
the STx_C, the STx_C will be executed to completion if the ChangeToDirty com-
mand succeeds.

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-15

System Port

If the ChangeToDirty command succeeds, the STx_C enters the writable state, and the
Mbox locks the Dcache line. The Mbox does not release the Dcache line until the
STx_C data is trarferred to the Dcachd&his ensures that no other agent, by way of a
probe, can take the block before the STx_C can update the locked block.

4.6.4 Managing Speculative Store Issues with Multiprocessor Systems

The 21264/EV68A provides two mechanisms to manage an inherent potential side
effect of speculive execution with multiprocessor systems — a livelock condition
caused by a speculative store that misses in one processor affecting the execution of a
LDx_L/STx_C pair in another processor. The potential livelock condition in multipro-
cessor systems can be effectively controlled by placing processors in a conservative
mode, where speculative store MAFs are blocked. The 21264/EV68A manages conser-
vative mode with the Mbox IPR, M_CTL[SMC], described in Table 5-19.

e M_CTL[SMC] can be set to place the 21264/EV68A in full-time conservative
mode.

e M_CTL[SMC] can be set to place the 21264/EV68A in periodic conservative
mode, timed by two counters: an 8-bit primary counter that tracks branch mispre-
dicts and conditional branch retires, and a backup counter that places the 21264/
EV68A in conservative mode for a period of 16K cycles every 2 million cycles.

The 8-bit counter is enabled by placing M_CTL[SMC] in periodic conservative
mode. The backup counter takeffect whenever the 8-bit counter is enabled. Fur-
ther, the backup counter can be reset to 0 by clearing a previously set
M_CTL[SMC], allowing synchronization between processors.

4.7 System Port

The system port is the 21264/EV68A’s connection to either a memory or I/O controller
or to a shared multiprocessor system controller. System port interface signals are shown
in Figure 4—4.

The system port supports transactions between the 21264/EV68A and the system. Sys-
tems must receive and drive signals that are asserted low. Transaction commands are
communicated on signal lin€&ysAddOut_L[14:0] (21264/EV68A-to-system) and
SysAddin_L[14:0] (system-to-21264/EV68A). Transaction data is transferred on a
bidirectional data bus over pirf®ysData_L[63:0]with ECC on pinsSysCheck_L[7:0}

4-16 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

System Port

Figure 4-4 System Interface Signals

SysAddin_L[14:0]

21264 : SysAddInClk_L
SysAddOut_L[14:0]
SysAddOutCIk_L
SysVref

D SysData_L[63:0]
SysCheck_L[7:0]
SysDatalnClk_H[7:0]

B SysDataOutClk_L[7:0]
SysDatalnValid_L

D SysDataOutValid_L

D SyskFillValid_L

; IRQ_HI[5:0]

Yy

FM-05652-EV67

4.7.1 System Port Pins

Table 3—1 defines the 21264/EV68A signal type®rafd to inthis section. Table 4—6
lists the system port pin groups along with their type, number, and functional descrip-
tion.

Table 4-6 System Port Pins

Pin Name Type Count Description

IRQ_H[5:0] |_DA 6 These six interrupt signal lines may be asserted by the sys-
tem.

SysAddin_L[14:0] I_DA 15 Time-multiplexed SysAddIn, system-to-21264/EV68A.

SysAddInClk_L I_DA 1 Single-ended forwarded clock from system for
SysAddIn_L[14:0] andSysFillValid_L.

SysAddOut_L[14:0] O_0OD 15 Time-multiplexed SysAddOut, 21264/EV68A-to-system.

SysAddOutCIk_L O_0OD 1 Single-ended forwarded clock.

SysVref | DC_REF 1 System interface reference voltage.

SysCheck_L[7:0] B DA OD 8 Quadword ECC check bits f@ysData_L[63:0].

SysData_L[63:0] B_ DA OD 64 Data bus for memory and I/O data.

SysDatalnClk_H[7:0] |_DA 8 Single-ended system-generated clocks for clock forwarded
input system data.

SysDatalnValid_L |_DA 1 When asserted, marks a valid data cycle for data transfers to
the 21264/EV68A.

SysDataOutClk_L[7:0] O_OD 8 Single-ended 21264/EV68A-generated clocks for clock for-
warded output system data.

SysDataOutValid_L |_DA 1 When asserted, marks a valid data cycle for data transfers
from the 21264/EV68A.

SyskFillvalid_L |_DA 1 Validation for fill given in previous SysDc command.

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-17

System Port

4.7.2 Programming the System Interface Clocks

The system forwarded clocks are free running and derived from the 21264/EV68A
GCLK. The period of the system forwarded clocks is controlled by three Cbox CSRs,
based on the bit-rate ratio (similar to the Bcache bit-rate ratio) except that all transfers
are dual-data.

e SYS_CLK_LD_VECTOR[15:0]

e SYS _BPHASE_LD_VECTORJ[3:0]

e SYS_FDBK_ENJ[7:0]

Table 47 lists the programming values used to program the system interface clocks.

Table 4-7 Programming Values for System Interface Clocks

System Transfer SYS_CLK_LD_VECTOR ! SYS_BPHASE_LD_VECTOR! SYS_FDBK_EN1
1.5X-DD 9249 5 02
2.0X-DD 3333 0 01
2.5X-DD 8C63 5 02
3.0X-DD 71C7 0 10
3.5X-DD C387 A 04
4.0X-DD OFOF 0 01
5.0X-DD 7C1F 0 40
6.0X-DD FO3F 0 10
7.0X-DD CO7F 0 04
8.0X-DD OOFF 0 01

1 These are hexadecimal values.

In addition to programming of the clock CSRs, the data-sample/drive Cbox CSRs at the
pads have to be set appropriately. Table 4-8 shows the programmed values for these
system CSRs. In Table 4-8, each system forwarded clock is the inversion of the low-
assertion signal at the corresponding pin.

Table 4-8 Program Values for Data-Sample/Drive CSRs

CBOX CSR Description

SYS_DDM_FALL_EN]O] Enables the update of 21264/EV68A system outputs based on the falling edge
of the system forwarded clock. (Always asserted)

SYS_DDM_RISE_EN]J0] Enables the update of 21264/EV68A system outputs based on the rising edge

of the system forwarded clock. (Always asserted)

SYS_DDM_RD_FALL_EN[0] Enables the sampling of incoming data on the falling edge of the incoming
forwarded clock. (Always asserted)

4-18 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

System Port

Table 4-8 Program Values for Data-Sample/Drive CSRs (Continued)

CBOX CSR Description

SYS_DDM_RD_RISE_EN|O0] Enables the sampling of incoming data on the rising edge of the incoming
forwarded clock. (Always asserted)

SYS_DDMF_ENABLE Enables the falling edge of the system forwarded clock. (Always asserted)
SYS_DDMR_ENABLE Enables the rising edge of the system forwarded clock. (Always asserted)

Table 4-9 lists the program values for CSR SYS_FRAME_LD_VECTORJ[4:0] that set
the ratio between the forwarded clocks and the frame clock.

Table 4-9 Forwarded Clocks and Frame Clock Ratio

Clock Ratio Transfer Mode Value 1!
1:1 All 00

21 3.0X, 3.5X, 8.0X 1E
2:1 1.5X, 2.0X, 2.5X 4.0X, 5.0X, 6.0X 7.0X 1F
4:1 8X 15
4:1 1.5X, 4.0X, 5.0X, 6.0X, 7.0X 0B
4:1 3.0X, 3.5X 14
4:1 2.0X, 2.5X 0A

1 These are hexadecimal values.

4.7.3 21264/EV68A-to-System Commands

This section describes the 21264/EV68A-to-system commands format and operation.
The command, address, ID, and mask bits are transmitted in four consecutive cycles on
SysAddOut_L[14:0]. The 21264/EV68A sends the command information in one of the
two following modes as selected by the Cbox CSR bit.

* Bank interleave on cache block boundary mode—SYSBUS FORMAT[0] =0
e Page hit mode—SYSBUS_FORMAT[0] =1

The physical address (PA) bits arrangements for the two modes is shown in Tables 4-10
and 4-11. The purpose of the two modes is to give the system the PA bits that allow it to
select the memory bank and drive the RAS address as soon as possible.

4.7.3.1 Bank Interleave on Cache Block Boundary Mode

Table 4—10 shows the command format for the bank interleave on cache block bound-
ary mode of operation (21264/EV68A-to-system).

Table 4-10 Bank Interleave on Cache Block Boundary Mode of Operation

SysAddOut_L[14:2] 5ysAddOut_L[1] SysAddOut L[0]
Cyclel | M1 Command[4:0] ‘ PA[34:28] PA[36] PA[38]

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-19

System Port

Table 4-10 Bank Interleave on Cache Block Boundary Mode of Operation (Continued)

SysAddOut_L[14:2] BysAddOut_L[1] SysAddOut_L[0O]
Cycle 2 PA[27:22], PA[12:6] PA[35] PA[37]
Cycle3 | M2 Mask[7:0] CH ID[2:0] PA[40] PA[42]
Cycle4 | RV PA[21:13], PA[5:3] PA[39] PA[41]

4.7.3.2 Page Hit Mode
Table 4-11 shows the command format for page hit mode (21264/EV68A-to-system).

Table 4-11 Page Hit Mode of Operation

SysAddOut_L[14:2] BysAddOut_L[1] SysAddOut_L[0O]
Cyclel | M1 Command[4:0] PA[31:25] PA[32] PA[33]
Cycle 2 PA[24:12] PA[11] PA[34]
Cycle3 | M2 Mask[7:0] CH ID[2:0] PA[35] PA[37]
Cycle4 | RV PA[34:32], PA[11:3] PA[36] PA[38]

Table 4—12 describes the field definitions for Tables 4-10 and 4-11.

Table 4-12 21264/EV68A-to-System Command Fields Definitions

SysAddOut Field Definition

M1 When set, reports a miss to the system for the oldest probe.
When clear, has no meaning.
Command[4:0] The 5-bit command field is defined in Table 4-14.

SysAddOut[1:0] This field is needed for systems with greater than 32GB of memory, up to a maximum of 8
Terabyte (8TB). Cost-focused systems can tie these bits high and use a 13-bit command/
address field.

M2 When set, reports that the oldest probe has missed in cache. Also, this bit is set for system-
t0-21264/EV68A probe commands that hit but have no data movement (see the CH bit,
below).

When clear, has no meaning.

M1 and M2 are not asserted simultaneously. Reporting probe results as soon as possible is
critical to high-speed operation, so when a result is known the 21264/EV68A uses the ear-
liest opportunity to send an M signal to the system. M bit assertion can occur either in a
valid command or a NZNOP.

ID[2:0] The ID number for the MAF, VDB, or WIOB associated with the command.

RV If set, validates this command.
In speculative read mode (optional), RV =1 validates the command and RV = 0 indicates
a NOP.
For all nonspeculative commands RV = 1.

Mask[7:0] The byte, LW, or QW mask field for the corresponding I/O commands.

CH The cache hit bit is asserted, along with M2, when probes with no data movement hit in

the Dcache or Bcache. This response can be generated by a probe that explicitly indicates
no data movement or a ReadIfDirty command that hits on a valid but clean or shared
block.

4-20 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

System Port

System designers can minimize pin count for systems with a small memory by config-
uring both the bank interleave on cache block boundary mode and the page hit mode
formats into ashort busformat. The pinSysAddOut_L[1] and/orSysAddOut_L[0]

are not used (selected by Cbox CSR SYS_BUS_SIZE[1:0]). Table 4—-13 lists the values
for SYSBUS FORMAT and SYS_BUS_SIZE[1:0] and shows the maximum physical
memory size.

Table 4-13 Maximum Physical Address for Short Bus Format

SYSBUS_ SYSBUS_

FORMAT SIZE[1:0]

Maximum PA Comment

0 00
01
10
11
00
01
10
11

B B B P O O O

42
36
lllegal
34
38
36
lllegal
34

Bank interleave + full address

Bank interleave $ysAddOut_L[0] unused

Illegal combination

Bank interleave + botBysAddOut_L[1:0] are used for 1/O
Page hit mode + full address

Page hit mode $ysAddOut_L[0] unused

Illegal combination

Page hit mode + bo8ysAddOut_L[1:0] are unused

Because addresses above the maximum PA are not visible to the external system, any
memory transaction generated to addresses above the maximum PA are detected and
converted to transactions to NXM (nonexistent memory) and processed internally by
the 21264/EV68A.

4.7.4 21264/EV68A-to-System Commands Descriptions

Table 4-14 describes the 21264/EV68A-to-system commands.

Table 4-14 21264/EV68A-to-System Commands Descriptions

Command

Command [4:0] Function

NOP 00000 The 21264/EV68A drives this command on idle cycles during reset. After
the clock forward reset period, the first NZNOP is generated and this
command is no longer generated.

ProbeResponse 00001 Returns probe status and ID number of the VDB entry holding the
requested cache block.

NZNOP 00010 This nonzero NOP helps to parse the command packet.

VDBFlushRequest 00011 VDB flush request. The 21264/EV68A sends this command to the system
when an internally generated transaction Bcache index matches a Bcache
victim or probe in the VDB. The system should flush VDB entries
associated with all probe and WrVictimBIk transactions that occurred
before this command.

mB1 00111 Indicates an MB was issued, optional when Cbox CSR
SYSBUS_MB_ENA[O] is set.

ReadBIlk 10000 Memory read.

21264/EV68A Hardware Reference Manual

Cache and External Interfaces 4-21

System Port

Table 4-14 21264/EV68A-to-System Commands Descriptions (Continued)

Command
Command [4:0] Function
ReadBlkMod 10001 Memory read with modify intent.
ReadBIKI 10010 Memory read for Istream.
FetchBIk 10011 Noncached memory read.
ReadBIkSpe% 10100 Speculative memory read (optional).
ReadBIkModSpe% 10101 Speculative memory read with modify intent (optional).
ReadBIkSpe@l 10110 Memory read for Istream (optional).
FetchBIkSpe% 10111 Speculative memory noncached ReadBlk (optional).
ReadBIkVic 11000 Memory read with a victim (optional).
ReadBIkModVié 11001 Memory read with modify intent, with a victim (optional).
ReadBIkVicP 11010 Memory read for Istream with a victim (optional).
WrVictimBIk 00100 Write-back of dirty block.
CleanVictimBlk 00101 Address of a clean victim (optional).
Evict* 00110 Invalidate evicted block at the given Bcache index (optional).
ReadBytes 01000 I/0O read, byte mask.
ReadlLWs 01001 I/0 read, longword mask.
ReadQWs 01010 1/0 read, quadword mask.
WrBytes 01100 1/0 write, byte mask.
WrLWs 01101 I/0 write, longword mask.
WrQWs 01110 I/0 write, quadword mask.
CIeanToDirt)f3 11100 Sets a block dirty that was previously clean (optional for duplicate tags).
SharedToDirt)@ 11101 Sets a block dirty that was previously shared (optional for multiprocessor

STCChangeToDiry 11110

InvalToDirtyVic®®> 11011
InvalToDirty® 11111

systems).

Sets a block dirty that was previously clean or shared fora STx_C
instruction (optional for multiprocessor systems).

Invalid to dirty with a victim (optional).

WH64 Acts like a ReadBlkMod without the fill cycles (optional).

4-22 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

System Port

Table 4-14 footnotes:

1. Systems can optionally enable MB instructions to the external system by asserting

Cbox CSR SYSBUS_MB_ENABLE. This mode is described in Section 2.12.1.

To minimize load-to-use memory latency, systems can optionally enable specula-
tive transactions to memory space by asserting the Cbox CSR
SPEC_READ_ENABLE]JO0]. If the Cbox system command queue is empty, a

bypass between the Bcache interface and the system interface is enabled (in combi-
nation with this mode). When the next new transaction is delivered by the Mbox,

the Cbox starts MAF memory references to thistem interface before the results

of Bcache hit is known. The RV bit is deasserted on a Bcache hit, or in
BC_RDVICTIM[0] mode (see footnote 3, below), and for Bcache miss transactions
that generate a victim (clean or dirty). Otherwise, the RV bit is asserted.

Systems can optionally enable RdBIkVic, RdBIkModVic, and InvalToDirtyVic
commands using Cbox CSR BC_RDVICTIMIO0]. In this mode of operation
RdBIkxVic command cycles are always followed immediately by the WrVictimBIk
commands. Also, when CleanVictimBlk commands are enabled, they
immediately follow RdBIkVic, RdBIkModVic, and InvalToDirtyVic commands.

Systems can optionally enable Evict commands by asserting the Cbox CSR
ENABLE_EVICT. In this mode, all ECB instructions will generate an Evict com-
mand, and in combination with BC_RDVICTIM[0] mode, the WriteVictim or
CleanVictim (when Cbox CSR BC_CLEAN_VICTIMIO0] is asserted) is associated
with the Evict command is atomically sent after the Evict command.

Optionally, systems can enable InvalToDirty commands by programming Cbox
CSR INVAL_TO_DIRTY_ENABLE[1:0]. Table 4-15 shows how to program
INVAL_TO_DIRTY_ENABLE[1:0].

Optionally, systems can enable CleanToDirty or SharedToDirty commands by
using Cbox CSR SET_DIRTY_ENABLE[2:0]. These three bits control the Cbox
action upon a block that was hit in the Dcache with a status of dirayésh clean/
shared, or clean respectively.

Table 4-15 Programming INVAL_TO_DIRTY_ENABLE[1:0]

INVAL_TO_DIRTY_ENABLE[1:0] Chox Action

X0

01

11

WH@64 instructions are converted to RdModx commands at the interface.
Beyond this point, no other agent sees the WH64 instruction. This mode is
useful for microprocessors that do not want to support InvalToDirty transac-
tions.

WH64 instructions are enabled, but they are acknowledged within the
21264/EV68A.

WH64 instructions are enabled, and generate InvalToDirty transactions at
the 21264/EV68A pins.

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-23

System Port

Table 4-16 Programming SET_DIRTY_ENABLE[2:0]

SET_DIRTY_ENABLE

[2,0] (DS,CS,C) Cbox Action

000 Everything acknowledged internally (uniprocessor).

001 Only clean blocks generate external acknowledge (CleanToDirty commands only).

010 Only clean/shared blocks generate external acknowledge (SharedToDirty command
only).

011 Clean and clean/shared blocks generate external acknowledge.

100 Orllly)/ dirty/shared blocks generate external acknowledge (SharedToDirty commands
only).

101 Only dirty/shared and clean blocks generate external acknowledge.

110 Only dirty/shared and clean/shared blocks generate external acknowledge.

111 All transactions generate external acknowledge.

Systems that require an explicit indication of ChangeToDirty status changes initi-
ated by STx_C instructions can assert Cbox CSR STC_ENABLE[0]. When this
register field = 000, CleanToDirty and SharedToDirty commands are used. The dis-
tinction between a ChangeToDirty command generated by a STx_C instruction and
one generated by a STx instruction is important to systems that want to service
ChangeToDirty commands with dirty data from a source processor. In this case, the
distinction between a locked exclusive instruction and a normal instruction is criti-
cal to avoid livelock for a LDx_L/STx_C sequence.

4.7.5 ProbeResponse Commands (Command[4:0] = 00001)

The 21264/EV68A responds to system probes that did not miss with a 4-cycle transfer
on SysAddOut_L[14:0]. As shown in Table 4-14, the Command[4:0] field for a Prob-
eResponse command equals 00001. Table 4-17 shows the format of the 21264/EV68A
ProbeResponse command.

Table 4-17 21264/EV68A ProbeResponse Command

SysAddOut_L[14:2] 5ysAddOut_L[1] SysAddOut L[0]
Cycle 1 0 |00001 |Status[1:0] DM | VS | VDB|X X
[2:0]
Cycle 2 0 MS | MAF| X X
[2:0]
Cycle3 |0 X X X
Cycle 4 X X X

4-24 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

System Port

Table 4-18 describes the ProbeResponse command fields.

Table 4-18 ProbeResponse Fields Descriptions

ProbeResponse Field Description

Command[4:0]

DM
VS
VDB[2:0]

MS
MAF[2:0]

Status[1:0]

The value 00001 identifies the command as a ProbeResponse.
Indicates that data movement should occur (copy of probe valid bit). See Section 4.4.
Write victim sent bit.

ID number of the VDB entry containing the requested cache block. This field is valid
when either the DM bit or the VS bit equals 1.

MAF address sent.

This field indicates the SharedToDirty, CleanToDirty, or
STCChangetoDirty MAF entry that matched the full probe address.

Result of probe:
Status[1:0] Probe state

00 HitClean

01 HitShared

10 HitDirty

11 HitSharedDirty

The system uses the SysDc signal lines to retrieve data for probes that requested a cache

block from the 21264/EV68A. See Section 4.7.7.2 for more information about 2-cycle
data transfer commands. Probes that respond with M1, M2, or CH=1 will not be
reported to the system in a probe response command.

4.7.6 SysAck and 21264/EV68A-to-System Commands Flow Control

21264/EV68A Hardware Reference Manual

Controlling the flow of 21264/EV68A-to-system commands is a joint task of the
21264/EV68A and the system. The flow is controlled using the A bit, which is asserted
by the system, and the Cbox CSR SYSBUS_ACK_LIMIT[4:0] counter. The counter
has the following properties:

The 21264/EV68A increments its command-outstanding counter when it sends a
command to the system. The 21264/EV68Adanents theaunter by one each

time the A bit SysAddIn_L[14]) is asserted in a system-t0-21264/EV68A com-
mand. The A bit is transmitted during cycle four of a probe mode command or dur-
ing cycle two of a SysDc command.

The 21264/EV68A stops sending new commands when the counter hits the maxi-
mum count specified by Cbox CSR SYSBUS_ACK_LIMIT[4:0]. When this
counter is programmed to zero, the CMD_ACK count is ignored (unlimited com-
mands are allowed in-flight).

Because RdBIkVic and WrVictimBlk commands are atomic when the CSR
BC_RDVICTIMIO] is set, the 21264/EV68A does not send a Rd®ik command

if the SYSBUS_ACK_LIMIT[4:0] is equal to one less than the maximum outstand-
ing count. The limit cannot be programmed with a value of one when Rtk
commands are enabled unless the Cbox CSR RDVIC_ACK_INHIBIT command is
also asserted (see Table 5-24).

Cache and External Interfaces 4-25

System Port

* There is no mechanism for the system to reject a 21264/EV68A-to-system com-
mand. ProbeResponse, VDBFlushReq, NOP, NZNOP, and R&BHc (with a
clear RV bit) commands do not require a response from the system. Systems must
provide adequate resources for responses to all probes sent to the 21264/EV68A.

e Systems that program the Cbox CSR BC_RDVICTIM][0] to immediately follow
victim write transactions with read transactions and allocate combinedroesou
for the pair, may find it useful to increment the SYSBUS _IAQ.IMIT[4:0]
counter only once for the pair. These systems may assert Chox CSR
RDVIC_ACK_INHIBIT, which does not increment the
SYSBUS_ACK_LIMIT[4:0] count for RdBIkVic, RdBIkModVic, and RdBIkVicl
commands.

e Systems that maintain victim data buffers may find it useful to limit the number of
outstanding WrVictimBlk commands. This can be accomplished by using the Cbhox
CSR SYSBUS_VIC_LIMIT[2:0]. When the number of outstanding WrVictim
commands or CleanVictim commands reaches this programmed limit, the Cbox
stops generating victim commands on the system port. Because victim and read
commands are atomic when BC_RDVICTIMI[0] = 1, the RdBlic commands are
stalled when the victim limit is reached. Programming the
SYSBUS_VIC_LIMIT[2:0] to zero disables this limit.

4.7.7 System-t0-21264/EV68A Commands

The system can send either probes (4-cycle) or data movement (2-cycle) commands to
the 21264/EV68A. Signal piBysAddin_L[14] in the first command cycle indicates

the type of command being sent (1 = probe, 0 = data fesnsSecions 4.7.7.1 and

4.7.7.2 describe the formats of the two types of commands.

4.7.7.1 Probe Commands (Four Cycles)

Probes are always 4-cycle commands that contain a field to indicate a valid SysDc com-
mand. The format of the 4-cycle command is shown below.

Note: The SysAddIn_L[1:0] signal lines are optional and are used for memory
designs greater than 32GB. The position of the address bits matches the
selected format of the SysAddOut bus. The example below shows the bank
interleave format.

Table 4-19 shows the format of the system-to-21264/EV68A probe commands.

Table 4-19 System-t0-21264/EV68A Probe Commands

SysAddin_L[14:2] SBysAddin_L[1] SysAddin_L[0]
Cyclel| 1 Probe[4:0] PA[34:28] PA[36] PA[38]
Cycle 2 PA[27:22], PA[12:6] PA[35] PA[37]
Cycle3| 0 SysDc[4:0] | RVB RPB A | ID[3:0] | PAJ40] PA[42]
Cycle4| C PA[21:13], PA[5:3] PA[39] PA[41]

4-26 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

System Port

Table 4-20 describes the system-to-21264/EV68A probe commands fields descriptions.

Table 4-20 System-t0-21264/EV68A Probe Commands Fields Descriptions
SysAddin_L[14:0]

Field Description

Probe[4:0] Probe type and next tag state (see Tables 4-21 and 4-22).

SysDc[4:0] Controls data movement in and out of the 21264/EV68A. See Table 4-24 for a list of data
movement types.

RVB Clears the victim or I/O write buffer (IOWB) valid bit specified in ID[3:0].

RPB Clears probe valid bit specified in ID[2:0].

A Command acknowledge. When set, the 21264/EV68A decrements its command outstand-
ing counter (SYSBUS_ACK_LIMIT[4:0]).

ID[3:0] Identifies the victim data buffer (VDB) number or the 1/O write buffer (IOWB) number.

Bit [3] is only asserted for the IOWB.

C Commit bit. This bit decrements the uncommitted event counter (MB_CNTR) used for
MB acknowledge.

The probe command field Probe[4:0] has two sections, Probe[4:3] and Probe[2:0].
Table 4-21 lists the data movement selected by Probe[4:3].

Table 4-21 Data Movement Selection by Probe[4:3]

Probe[4:3] Data Movement Function

00 NOP

01 Read if hit, supply data to system if block is valid.

10 Read if dirty, supply data to system if block is valid/dirty.
11 Read anyway, supply data to the system at index of probe.

Table 4-22 lists the next cache block state selected by Probe[2:0].

Table 4-22 Next Cache Block State Selection by Probe[2:0]

Probe[2:0] Next Tag State

000 NOP

001 Clean

010 Clean/Shared

011 Transition3: Clean= Clean/Shared

Dirty = Invalid
Dirty/Shared= Clean/Shared

100 Dirty/Shared

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-27

System Port

Table 4-22 Next Cache Block State Selection by Probe[2:0] (Continued)

Probe[2:0] Next Tag State
101 Invalid
110 Transition?: Clean= Clean/Shared

Dirty = Dirty/Shared
111 Reserved

L Transition3 is useful in nonduplicate tag systems that want to give writable status to the reader and do
not know if the block is clean or dirty.

2 Transitionl is useful in nonduplicate tag systems that do not update memory on ReadBlk hits to a
dirty block in another processor.

The 21264/EV68A holds pending probe commands in a 8-entry deep probe queue. The
system must count the number of probes that have been sent and ensure that the probes
do not overrun the 21264/EV68A queue. The 21264/EV68A removes probes from the
internal probe queue when the probe response is sent.

The 21264/EV68A expects to hit tache on a probe sponse, so it always fetches a
cache block from the Bcache on system probes. This can becoerfoarpance prob-

lem for systems that do not monitor the Bcache tags, so the 21264/EV68A provides
Cbox CSR PRB_TAG_ONLY[0], which only accesses Bcache tags for system probes.
For a Bcache hit, the 21264/EV68A retries the probenefice to get the associated

data. In this mode, the 21264/EV68A has a cache-hit counter that maintains some his-
tory of past cache hits in order to fetch the data with the tag in the cases where streamed
transactions are being performed to the host processor.

4.7.7.2 Data Transfer Commands (Two Cycles)

Data transfer commands use a 2-cycle formaSgaAddin_L[14:0]. The SysDc[4:0]
field indicates success or failure for ChangeToDirty and MB commands, and error con-
ditions as shown in Table 4-24.

The pattern of data is controlled by tBgsDatalnValid_L andSysDataOutValid_L
signals. These signals are valid each cycle of data transfer, indicating any gaps in the
data cycle pattern. Th8ysDatalnValid_L andSysDataOutValid_L signals are
described in Section 4.7.8.4. Table 4-23 shows the format of the data transfer com-
mand.

Table 4-23 Data Transfer Command Format

SysAddin_L[14:2] SysAddin_L[1] SysAddin_L[0]
Cyclel |0 SysDc[4:0] RvB | RPB | A | ID[3:0] | X X
Cycle2 | C X X X

4-28 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

System Port

Table 4-24 describes the SysDc[4:0] field.

Table 4-24 SysDc[4:0] Field Description

SysDc[4:0] Command SysDc[4:0] Description

NOP 00000 NOP, SysData is ignored by the 21264/EV68A.

ReadDataError 00001 Data is returned for read commands. The system drives the SysData
bus, 1/0, or memory NXM.

ChangeToDirtySuccess 00100 No data. SysData is ignored by the 21264/EV68A. This command is
also used for the InvalToDirty response.

ChangeToDirtyFail 00101 No data. SysData is ignored by the 21264/EV68A. This command is
also used for the Evict response.

MBDone 00110 Memory barrier operation completed.

ReleaseBuffer 00111 Command to alert the 21264/EV68A that the RVB, RPB, and 1D
field are valid.

ReadData 100xx Data returned for read commands. The system drives SysData. The

(System Wrap) system uses SysDc[1:0] to control the wrap order. See Section
4.7.8.6 for a description of the data wrapping scheme.

ReadDataDirty 101xx Data is returned for Rcand RdMod commands. The ending tag

(System Wrap) status is dirty. The system uses SysDc[1:0] to define the wrap order.

ReadDataShared 110xx Data is returned for read commands. The system drives the data. The

(System Wrap) tag is marked shared. The system uses SysDc[1:0] to control the
wrap order.

ReadDataShared/Dirty 111xx Data is returned for the RdBlk command. The ending tag status is

(System Wrap) Shared/Dirty. The system uses SysDc[1:0] to control the wrap order.

WriteData 010xx Data is sent for 21264/EV68A write commands or system probes.

The 21264/EV68A drives during the SysData cycles. The lower two
bits of the command specify the octaword address around which the
21264/EV68A wraps the data.

The A bit in the first cycle indicates that the command is acknowledged. When A = 1, the
21264/EV68A decrements its command outstanding counter, but the A bit is not neces-
sarily related to the currentySDc command.

Probe commands can combine a SysDc command along with MBDone. In that event,
the probe is considered ahead of the SysDc command. If the SysDc command allows
the 21264/EV68A to retire an instruction before an MB, or allows the 21264/EV68A
itself to retire an MB (SysDc is MBDone), that MB will not complete until the probe is
executed.

The system can select the ending cache status for a cache fill operation by specifying
the status in one of the following SysDc commands:

ReadData (Clean) ReadDataShared (Clean/Shared)
ReadDataDirty (Dirty) ReadDataShared/Dirty (Shared/Dirty)

The system returns ReadDataShared or ReadData for ReadBlk commands, and ReadD-
ataDirty for a ReadMod command. However, other combinations are possible, but
should be used only after aeful study of thesituation.

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-29

System Port

The ChangeToDirtySuccess and ChangeToDirtyFail commands cannot be issued in the
shadow of SysDc cache fill commands (ReadDataError, ReadData, ReadDataDirty,
ReadDataShared, and ReadDataShared/Dirty). Each cache fill command allocates eight
cycles on the SysData bus. Systems are required to ensure that any future SysDc com-
mands do not cause conflicts with those eight SysData bus cycles. In addition, the sys-
tem must not issue ChangeToDirtySuccess or ChangeToDirtyFail commands in the six
SysAddrin cycles after any of the ReadDatmmmands because doing so will over-

load internal MAF resources in the 21264/EV68A.

Because of an internal 21264/EV68A constraint, a minimum memory latency of
4x BCACHE_CLK_PERIOD is imposed. This latency is measured from A3 of the out-
going command (the last cycle) to the delivery of the SysDc command to the processor.

4.7.8 Data Movement In and Out of the 21264/EV68A

There are two modes of operation for data movement in and out of the 21264/EV68A:
fast mode and fast mode disable. The data movement mode is selected using Cbox CSR
FAST_MODE_DISABLEJQ]. Fast data mode allows movement of data from the
21264/EV68A to bypass protocol and achieve the lowest possible latency for probe’s
data, write victim data, and I/O write data. Rules and conditions for the two modes are
listed and described in Sections 4.7.8.2 and 4.7.8.3. Before discussing data movement
operation, 21264/EV68A clock basics are described in Section 4.7.8.1.

4.7.8.1 21264/EV68A Clock Basics

The 21264/EV68A uses a clock forwarding technique to achieve very high bandwidth
on its pin interfaces. The clock forwarding technigque has three mainiplsc

1. Local point-to-point trarfers can be made safely, and at vaigh bandwidth, if the
sender can provide the receiver with a forward clock (FWD_CLK) to latch the
transmitted data at the receiver.

— TheSysAddOutClk_L andSysDataOutCIlk_L[7:0] pins provide the forward-
ing clocks for transfers out of the 21264/EV68A.

— TheSysAddInClk_L andSysDatalnCIk_H][7:0] pins provide the forwarding
clocks for transfers into the 21264/EV68A.

2. If only one state element was used to capture the transmitted data, and the skew
between the two clock systems was greater then the bit-rate of the transfer, the data
valid time of the transmitted data would not be sufficient to safely transfer the
latched data into the receivers clock domain. In order to avoid this problem, the
receiver provides a queue that is manipulated in the transmitter’s time domain.
Using this queue, the data valid window of the transmitted data is extended (to an
arbitrary size based on the queue size), and the transfer to the receiver’s clock
domain can be safely made by delaying the unloading of this queue element beyond
the skew between the two clock domains. The internal clock that unloads this queue
is labelled INT_FWD_CLK. INT_FWD_CLK is timed at both the rising and fall-
ing edges of the external clock, thus appearing to run at twice the external clock’s
frequency.

3. The first two points provide the steady state basis for clock forwarded transfers;
however, both the sender and receiver must besctly initialized to enable coher-
ent and predictable transferBhis clock initialization is performed during system
initialization using theClkFwdRst_H andFrameClk_H signals.

4-30 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

System Port

If both the sender and the receiver are sampling at the same rate, these three principles
are sufficient to safely make point-to-point tré@s using clock forwardingdowever,

it is often desirable for systems to align clock-forwarded transactions on a slower
SYSCLK that is the basis of all non-processor system transactions.

The 21264/EV68A supports three ratios for SYSCLK to INT_FWD_CLK:

one-to-one (1-1), two-to-one (2-1), and four-to-one (4-1). Using one of these ratios, the
21264/EV68A starts transactions on SYSCLK boundaries. This ratio is programmed
into the 21264/EV68A using the Cbox CSR SYS_FRAME_LD_VECTORJ4:0]. This
ratio is independent of the frequencyfameCIlk_H.

For data movement, the 21264/EV68&acts to $sDc commands when they are
resolved into the 21264/EV68A’s clock domain. This occurs when the 21264/EV68A’s
INT_FWD_CLK unloads the SysDc command from the clock forwarding queue. This
moment is determined by the amount of delay programmed into the clock forwarding
silo (by way of Cbox CSR SYS_RCV_MUX_ CNT_PRESETI[1:0]). Thus, all the tim-
ing relationships are relative to this unload point in time, which will bemrefdto as

the point the command is perceived by 21264/EV68A.

4.7.8.2 Fast Data Mode

The 21264/EV68A is the default driver of the bidirectional SysDate}bels the
21264/EV68A is processing WrVictim, ProbeResponse (only the hit case), and IOWB
commands to the system, accompanying data is made available at the clock-forwarded
bus.

Because there is a bandwidth difference between address (4 cycles) and data (8 cycles)
transfers, the 21264/EV68A tries to fully use fast data mode by delaying the next
SysAddOut write command until a fast data mode slot is available on the SysDataOut
bus.

SysDc command&ache fill or explicit write commiads) that collide with the fast data

on the SysData bus have higher priority, and so magriapt the successful completion

of the fast transfer. Systems are responsible for detecting and replaying all interrupted
fast transfers. There are no gaps in a fast transfer and no data wrapping (the first cycle
contains QWO0, addressed by PA[5:3] = 000).

The system must release victimffars, and probe buffers and IOWB entries by send-
ing a SysDc command with the appropriate RVB/RPB bit for both successful fast data
transfers and for transfers that have been replayed. Fast data transfers have two parts:

1. SysAddOut command with the probe response, WrVictim, oliAD)
2. Data

The command precedes data by at least one SYSCLK period. Table 4-25 shows the
number of SYSCLK cycles between SysAddOut and SysData for all system clock
ratios (clock forwarded bit times) and system framing clock multiples.

1 The SysData bus contai8ysData_L[63:0]andSysCheck_L[7:0]

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-31

System Port

Table 4-25 SYSCLK Cycles Between SysAddOut and SysData

GCLK/INT_FWD_CLK (Data Rate Ratio)

System framing clock ratio| 1.5X 2.0X 25X 3.0X 35X 4.0X 5.0X 6.0X 7.0X 8.0X

1
2
4

4 3 2 2 2 2 1 1 1 1
2 2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Figure 4-5 show a simple example of a fast transfer. The data rate ratio is 1.5X with a
4:1 SYSCLK to INT_FWD_CLK ratio.

Figure 4-5 Fast Transfer Timing Example

SysAddOut_L[14:0] :XProbe esponse X

\ \
SysData_L[63:0] :X X X X
\ \
\ \
\

\
\
SysAddOutClk_L _/___/__/__/ \ / \ /Y
\
INT_FWD_CLK||||||||||||||I|I|||||I

\ [\ \ \ [[[[\

FMO05822B.Al14

In fast data mode, movement of data into the 21264/EV68A requires turning around the
SysData bus that is being actively driven by the 21264/EV68A. Given a SysDc fill
command (ReadDataError, ReadData, ReadDataShared, ReadDataShared/Dirty, Read-
DataDirty), the 21264/EV68A responds as follows:

1. Three GCLK cycles after perceiving the SysDc fill command, the 21264/EV68A
turns off its drivers, interrupting any ongoing fast data write transactions.

2. The 21264/EV68A drivers stay off until the last piece of fill data is received, or a
new SysDc write command overrides the current SysDc fill command. It is the
responsibility of the external system to schedule SysDc fill or write commands so
that there is no conflict on the SysData bus.

3. The 21264/EV68A samples fill data in the GCLK clock domain, 10 +
SYSDC_DELAY GCLK cycles after perceiving the SysDc fill command. The
Cbox CSR SYSDC_DELAY[4:0] provides GCLK granularity for precisely placing
fills into the processor pipeline discussed in Section 2.2.

4-32 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

System Port

Table 4-26 shows four example configurations and shows their use of the
SYSDC_DELAY[4:0].

Table 4-26 Chox CSR SYSDC_DELAY[4:0] Examples

System Bit Rate System Framing Clock Ratio 1 SYSDC_DELAY

System 1 1.5X 4:1 5 (3 SYSCLK cycles)
System 2 2.0X 2:1 2 (3 SYSCLK cycles)
System 3 2.5X 2:1 0 (2 SYSCLK cycles)
System 4 4X 2:1 6 (2 SYSCLK cycles)

L The system framing clock ratio is the number of INT_FWD_CLK cycles per
SYSCLK cycles.

System 1 has six GCLKs to every SYSCLK and only sends 4-cycle commands to the
21264/EV68A. Thus, a period of three SYSCLKSs between the SysDc command and
data leaves a period of 15 GCLKs between SysDc and data (SysDc is in the middle of
the 4-cycle command). A SYSDC_DELAY[4:0] of five would align sampling and
receipt of SysData.

System 2 has four GCLKs in every SYSCLK, so leading data by three SYSCLK cycles,
and programming the SYSDC_DELAY[4:0] to two, aligns sampling and receiving.

Timing for systems 3 and 4 is derived in a similar manner.

Note: The maximum valid value for SYSDC_DELAY must be less than the min-
imum number of GCLK cycles between two consecutive SYSDC com-
mands to the 21264/EV68A.

If a fast data transfer is interrupted and fails to complete, the system must use the con-
ventional protocol to send a SysDc WriteData command to the 21264/EV68A, remov-
ing the desired data buffer. Section 4.7.8.3 describes the timing events for transferring
data from the 21264/EV68A to the system.

4.7.8.3 Fast Data Disable Mode

The system controls all data movement to and from the 21264/EV68A. Movement of
data into and out of the 21264/EV68A is preceded by a SysDc command. The 21264/
EV68A drivers are only enabled for the duration of an 8-cycle transfer of data from the
21264/EV68A to the system. Systems must ensure that there is no overlap of enabled
drivers and that there is adequate settle time on the SysData bus.

Given a SysDc fill command, the 21264/EV68A samples data 10 + SYSDC_DELAY
GCLK cycles after the command is perceived within the 21264/EV68A clock domain.
Because there is no linkage with the output driver, fills into the 21264/EV68A are not
affected by the SYS_RCV_MX_PRESET[1:0] value.

In both modes, given a SysDc write command, the 21264/EV68A looks for the next
SYSCLK edge 8.5 cycles after perceiving the SysDc write command in its clock
domain. Because the SysDc write command must be perceived before its use, SysDc
write commands are dependent upon the amount of delay introduced by Cbox CSR
SYS_RCV_MUX_CNT_PRESETJ1:0].

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-33

System Port

Table 4-27 lists information for the four timing examples. In Table 4—-27, note the fol-
lowing:

e SysDc write commands are not affected by the SYSDC_DELAY parameter.

e The SYS _RCV_MUX_ PRESET adds delay at the rate of one INT_FWD_CLK ata
time. For example, adding the delay of one bit time to system 1 adds 1.5 GCLK
cycles to the delay and drives the SysDc write command-to-data relationship from
one to two SYSCLKs.

e For write transfers, the 21264/EV68A drivers are enabled on the preceding GCLK
BPHASE, before the start of a write transfer, and disabled on the succeeding GCLK
BPHASE at the end of the write transfer. The write data is enveloped by the 21264/
EV68A drivers to guarantee that every data transfer has the same data valid win-
dow.

Table 4-27 Four Timing Examples

System Bit Rate System Framing Clock Ratio 1 Write Data

System 1 1.5X 4:1 2 SYSCLKs
System 2 2.0X 2:1 3 SYSCLKs
System 3 2.5X 2:1 2 SYSCLKs
System 4 4X 2:1 2 SYSCLKs

1 The system framing clock ratio is the number of INT_FWD_CLK cycles per
SYSCLK cycles.

The four examples described here assume no skew for the 2.0X and 4.0X cases and one
bit time of skew for the 1.5X and 2.5X cases.

For system 1, the distance between SysDc and the first SYSCLK is nine GCLK cycles
but the additional delay of one bit time (1.5 GCLKSs) puts the actual delay after perceiv-
ing the SysDc command to 7.5 GCLKS, which misses the 8.5 cycle constraint. There-
fore, the 21264/EV68A drives data two SYSCLKSs after receiving the SysDc write
command.

For system two, the distance between SysDc and the second SYSCLK is eight GCLK
cycles, which also misses the 8.5 cycle constraint, so the 21264/EV68A drives data
three SYSCLK cycles after receiving the SysDc write command (12 cycles).

The other two cases are derived in a similar manner.
4.7.8.4 SysDatalnValid_L and SysDataOutValid_L

The SysDataValid sighal$fsDatalnValid_L andSysDataOutValid_L) are driven by
the system and control the rate of data delivery to and from the 21264/EV68A.

SysDatalnValid _L

The SysDatalnValid_L signal controls the flow of data into the 21264/EV68A, and
may be used to introduce an araity number of cycles between octaword transfers into
the 21264/EV68A. The rules for usirgysDatalnValid_L follow:

4-34 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

System Port

1. TheSysDatalnValid_L signal must be asserted for both cycles of a SysDc fill
command, and two quadwords of data must be delivered to the 21264/EV68A in
succeeding bit-clock cycles with the appropriate timing in reference to the SysDc
fill command (SYSDC_DELAY + 10 CPU cycles).

2. Any number of bubble cycles can be introduced within the fill by deasserting
SysDatalnValid_L between octaword transfers.

3. The transfer of fill data can continue by assert8ygDatalnValid_L for at least
two bit-clock cycles, and delivering data SYSDC_DELAY + 10 CPU cycles after
the assertion ogysDatalnValid_L.

4. The 21264/EV68A must s&kysDatalnValid_L asserted for eight data cycles in
order to complete afill. When the eighth cycle of an asse®gzDatalnValid_L is
perceived by the 21264/EV68A, the transfer is complete.

5. Systems that do not u§ysDatalnValid_L may tie the pin to the asserted state.

If SYSDC_DELAY is greater than the bit-time of a transfer, 8ysDatalnValid_L
signal must be internally pipelined. To enable thereot samfing of
SysDatalnValid_L, the 21264/EV68A provides a delay, with Cbox CSR
DATA_VALID DELAY[1:0], that is equal to SYSDC_DELAY[4:0]/bit-time. For
example, consider system 1 in Table 4-26, which has a SYSDC_DELAY of five
GCLKs. Running at a bit-time of 1.5X, the DATA_VALID DELAY[1,0] is pro-
grammed with a value of tee.

SysDataOutValid_L

Systems that use a ratio of 1:1 for SYSCLK:INT_FWD_CLK may control the flow of
data out of the 21264/EV68A by usir®ysDataOutValid_L as follows:

1. TheSysDataOutValid_L pin must be asserted for at least the first cycle of the
SysDc write command that initiates a write transfer.

2. Any number of bubble cycles may be introduced between quadword transfers by
deassertinggysDataOutValid_L.

3. The 21264/EV68A must see tligysDataOutValid_L signal asserted for eight data
cycles to complete a write transaction, and when the eighth cycle of an asserted
SysDataOutValid_L is perceived by the 21264/EV68A, the transfer is complete.

4.7.8.5 SysFillvalid_L

The SysFillvalid_L pin, when asserted, validates theremt memory and I/O data
transfer into the 21264/EV68A. The system designer may tie this pin to the asserted
state (validating all fills), or use it to enable or cancel fills as they progress. The 21264/
EV68A samplessysFillValid_L at D1 time (when the 21264/EV68A samples the sec-
ond data cycle).

If SysFillvalid_L is asserted at D1 time, the fill will continue unémtupted. If it is not
asserted, the 21264/EV68A cancels the fill, but expects all eight QWSs of dat&awe

at its system bus before continuing to the next fill. Also, the 21264/EV68A maintains
the state of the MAF, expecting another valid fill to the same MAF entry. Figure 4-6
illustratesSysFillvalid_L timing.

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-35

System Port

Figure 4-6 SysFillvValid_L Timing
SysAddin_L[14:0] :XSysDCX)K X X X X

Transport Delay on Address
| | |

| | |
Command Receiver—‘—((T3 / /

\ \ \ \ \
| | | | |
SysFillvalid_L \ \ \ \ \
\ \ \ \ \
\ \ \ \ \

\ \

\ \

\ \

\ \

\ \

| |

\ \

[[\ \ \ [

\ \ \ \ \ \
SysData_L[63:0] X po X b1 X b2 X D3 X D4)

FM-05823B.FH8

4.7.8.6 Data Wrapping

All data movement between the 21264/EV68A and the system is composed of 64 bytes
in eight cycles on the data bus. All 64 bytes of memory data are valid. This applies to
memory read transactions, memory write transactions, and systemnasxbé&ransac-

tions. The wrap order is interleaved. The internal data bus, which delivers data to the
functional units and the Dcache, is 16 bytes wide, and so, nofen@isappemnintil two

data cycles occur on the interface.

Table 4-28 lists the rules for data wrapping. I/O read and write addresses on the
SysAddOut bus point to the desired byte, word, LW, or QW, with a combination of
SysAddOut_L[5:3] and the mask field [7:0].

Table 4-28 Data Wrapping Rules

Significant Address Mask

Command Bits Type Rules

ReadQW and SysAddOut_L[5:3] QW SysAddOut_L[5:3] contains the exact PA bits of the first

WrQw LDQ or STQ to the block. The mask bits point to the valid
QWs merged in ascending order.

ReadlW and SysAddOut_L[5:3] LW SysAddOut_L[5:3] contain the exact PA bits of the first

WrLW LDL or STL to the block. The mask bits point to the valid

LWs merged in ascending order within one hexword.

LDByte/Word SysAddOut_L[5:3] Byte SysAddOut_L[5:3] contain the exact QW PA bits of the
and LDByte/Word or STByte/Word instruction. The mask bits
STByte/Word point to the valid byte in the QW.

The order in which data is provided to the 21264/EV68A (for a memory or I/O fill) or
moved from the 21264/EV68A (write victims or probe reads) can be determined by the
system. The system chooses to reflect back the same low-order address bits and the cor-
responding octaword found in the SysAddOut field or the system chooses any other
starting point within the block.

SysDc commands for the ReadData, ReadDataShared, and WriteData groups require
that systems define the position of the first QW by inserting the appropriate value of
SysAddOut_L[5:3] into bits [1:0] of the command field. The recommended starting

4-36 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

Table 4-29 System Wrap and Deliver Data

System Port

point is the QW pointed to by the 21264/EV68A; however, some systems may find it
more beneficial to begin the transfer elsewhere. The system must always indicate the
starting point to the 21264/EV68A. The wrap order for subsequent QWs is interleaved.

Table 4-29 defines the method for systems to specify wrap and deliver data.

Source/
Destination SysDc[4:2] SysDc[1:0] Size Rules
Memory 100 (ReadData) SysAddOut_L[5:4] Block (64 Bytes) See Note 1
Memory 101(ReadDataDirty) SysAddOut_L[5:4] Block (64 Bytes) See Note 1
Memory 110 (ReadDataShared) SysAddOut_L[5:4] Block (64 Bytes) See Note 1
Memory 111(Read DataShared/Dirty) SysAddOut L[5:4] Block (64 Bytes) See Note 1
Memory 010 (WriteData) SysAddOut_L[5:4] Block (64 Bytes) See Note 1
/0 100 (ReadData) SysAddOut_L[5:4] QW (8-64 Bytes) See Note 1
/0 100 (ReadData) SysAddOut_L[4:3] LW(4-32 Bytes) See Note 2
/0 100 (ReadData) SysAddOut_L[4:3] Byte/Word See Note 2
/0 010 (WriteData) SysAddOut_L[5:4] QW (8-64 Bytes) See Note 1
/0 010 (WriteData) SysAddOut_L[5:4] LW(4-32 Bytes) See Note 1
/0 010 (WriteData) SysAddOut_L[5:4] Byte/Word See Note 1
Note 1: Transfers to and from the 21264/EV68A have eight data cycles for a total
of eight quadwords. The starting point is defined by the system. The pre-
ferred starting point is the one pointed to by SysAddOut_L[5:4]. Systems
can insert the SysAddOut_L[5:4] into the SysDc[1:0] field of the com-
mand. See Table 4-30 for the wrap order.
Note 2: LW and byte/word read transferdfdir from all other transfers. The/stem

unloads only four QWSs of data into eight data cycles by sending each QW
twice (referred to asalible-pumped data transfer). The first QW returned
is determined bysysAddOut_L[4:3]. The system again may elect to
choose its own starting point for the transfer and insert that value into
SysDc[1:0]. See Table 4-31 for the wrap order.

Table 4-30 defines the interleaved scheme for the wrap order.

Table 4-30 Wrap Interleave Order

PA Bits [5:3] of Transferred QW

First quadword
Second quadword
Third quadword
Fourth quadword

Fifth quadword

21264/EV68A Hardware Reference Manual

000 010 100 110
001 011 101 111
010 000 110 100
011 001 111 101
100 110 000 010

Cache and External Interfaces 4-37

System Port

Table 4-30 Wrap Interleave Order (Continued)

PA Bits [5:3] of Transferred QW

Sixth quadword 101 111 001 011
Seventh quadword 110 100 010 000
Eighth quadword 111 101 011 001

Table 4-31 defines the wrap order for double-pumped dataftnans

Table 4-31 Wrap Order for Double-Pumped Data Transfers

PA [5:3] of Transferred QW

First quadword x00 x01 x10 x11
Second quadword x00 x01 x10 x11
Third quadword x01 x00 x11 x10
Fourth quadword x01 x00 x11 x10
Fifth quadword x10 x11 x00 x01
Sixth quadword x10 x11 x00 x01
Seventh quadword x11 x10 x01 x00
Eighth quadword x11 x10 x01 x00

4.7.9 Nonexistent Memory Processing

Like its predecessors, the 21264/EV68A can geneedfgences to nonexistent (NXM)
memory or I/O space. However, unlike tharlier Alpha microprocessor implementa-
tions, the 21264/EV68A can generate speculative references to memory space. To
accommodate the speculative nature of the 21264/EV68A, the system must not gener-
ate or lock error registers because of speculativeregfces. Th@1264/EV68A trans-

lates all memory references through the translation lookaside buffer (TLB) and, in some
cases, the 21264/EV68A may generate speculagferences (instruction exation

down mispredicted paths) to NXM space. In these cases, the system sends a SysDc
ReadDataError and the 21264/EV68A does the following:

e Delivers an all-ones pattern to all load instructions to the NXM address

* Force-fails all store instructions to the NXM address (much like a STx_C
failure)

* Invalidates the cache block at the same index by way of an atomic Evict
command

4-38 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

System Port

Table 4-32 shows each 21264/EV68A command, with NXM addresses, and the appro-
priate system response.

Table 4-32 21264/EV68A Commands with NXM Addresses and System Response

21264/EV68A

Command NXM

Address System/21264/EV68A Response

ProbeResponse Probe responses for addresses to NXM space are of UNPREDICTABLE status. Although
the final status of a ReadDataError is Invalid, the 21264/EV68A fills the block Valid/
Clean and uses an atomic Evict command to invalidate the block. Systems that send
probes to NXM space to the 21264/EV68A must disregard the probe result.

RdBIk Load references to NXM space can be speculative. In this case, systems should respond

RdBIkSpec with a SysDc ReadDataError fill that the 21264/EV68A uses to service the original load/

RdBIkVic Istream command. If the original load command was speculative, the 21264/EV68A will
remove the load instruction that generated the NXM command, and start processing
instructions down the correctly predicted path. If the command was not speculative, there
must be an error in the operating system mapping of a virtual address to an illegal physi-
cal address, and the 21264/EV68A provides an all ones pattern as a signature for this bug.
The NXM block is not cached in the Dcache or Bcache.

RdBIKI Istream references to NXM space can be speculative. In this case, systems should respond

RdBIkSpecl with a SysDc ReadDataError fill, which the 21264/EV68A will use to service and exe-

RdBIkVicl cute the original Istream reference. If the original Istream reference was speculative, the
21264/EV68A will remove the instructions started after the mispredicted instruction that
generated the NXM reference, and start instruction processing down the correctly pre-
dicted path. If the reference was not speculative, there must be an error in the operating
system mapping of a virtual address to an illegal physical address, and the 21264/EV68A
provides an all ones pattern as a signature for this bug. The NXM block is not cached in
the Bcache, but can be cached in the Icache.

RdBIkMod Store instructions to NXM space initiate RdBIkMod commands. Again, speculative store

RdBIkModSpec instructions are removed. Nonspeculative store instructions are forced to fail, much like

RdBIkModVic STx_C instructions that fail. The NXM block is not cached in the Dcache or Bcache.

WrVictimBIk Dirty Victims to NXM space are illegal. Systems should perform a machine check, with

CleanVictimBlk

Evict

RdBytes
RdLWs
RdQWs

WrBytes
WrLWs
WrQWs

FetchBlk
FetchBlkSpec

21264/EV68A Hardware Reference Manual

the 21264/EV68A indicating a severe error.

The 21264/EV68A can generate CleanVictimBlk commands to NXM space if the Cbhox
CSR BC_CLEAN_VICTIM[O0] bit is asserted and a SysDc ReadDataError has been gen-
erated. Systems that use clean victims must faithfully deallocate the CleanVictim VAF
entry.

If the Cbox CSR ENABLE_EVICT is asserted, the 21264/EV68A will generate Evict
commands to NXM space. Systems may use this command to invalidate their duplicate
tags. Systems must respond with SysDc ChangeToDirtyFail to retire the NXM MAF
entry.

Load instructions to I/O space are not speculative, so an 1/O reference to NXM space is
an error. Systems must respond with ReadDataError and should generate a machine
check to indicate an operating system error.

Store instructions to 1/0O space are not speculative, so an I/O reference to NXM space is
an error. Systems must respond by deallocating the appropriate IOWB entries, and should
generate a machine check to indicate an operating system error.

Loads to noncached memory in NXM space may be speculative. Systems must respond
with a SysDc ReadDataError to retire the MAF entry.

Cache and External Interfaces 4-39

System Port

Table 4-32 21264/EV68A Commands with NXM Addresses and System Response (Continued)

21264/EV68A
Command NXM
Address

System/21264/EV68A Response

CleanToDirty
SharedToDirty
STCChangeToDirty

InvalToDirty
InvalToDirtyVic

ChangeToDirty commands to NXM space are impossible in the 21264/EV68A because
all NXM references to memory space are atomically filled with an Invalid cache status.

InvalToDirty commands are not speculative, so InvalToDirty commands to NXM space
indicate an operating system error. Systems should respond with a SysDc ReadDataError,
and should generate a machine check to indicate error.

4.7.10 Ordering

of System Port Transactions

This section describes ordering of system port transactions. The two classes of transac-

tion
[]

s are listed here:
21264/EV68A commands and system probes

System probes and SysDc transfers

4.7.10.1 21264/EV68A Commands and System Probes

This section describes the interaction of 21264/EV68A-generated commands and sys-

tem

-generated probes that reference the same cache block. Sonigotefiare pre-

sented here:

Tab
and

Tab
inte

ProbeResponses generated by the 21264/EV68A respond to all system-generated
probe commands. System-generated data transfer commands respond to all 21264/
EV68A-generated data transfer commands.

The victim address file (VAF) and victim data buffer (VDB) entries each have inde-
pendent valid bits for both a victim and a probe.

Probe results indicate a hit on a VAF/VDB and when a WrVictim command has
been sent to the system. Systems can decide whether to move the buffer once or
twice.

ProbeResponses are issued in the order that the system-generated probes were
received; however, there is no requirement for the system to retain order when issu-
ing release buffer commands.

Probe processing can stall inside the 21264/EV68A when the probe entry index
matches PA[19:6] of a previous probe entry in the VAF.

The 21264/EV68A reserves one VAF entry for probe processing, so that VAF-full
conditions cannot stall the processing of probes at the head of the queue.

le 4-33 lists all interactions between pending internal 21264/EV68A commands
the Probe[2:0] command field, Next Cache Block State, described in Table 4-22.

le 4-33 shows the 21264/EV68A response to system probe and in-flight command
raction. In the table, note the following:

ReadBIlkVic and ReadBlIkModVic commands do not appear in Table 4-33. If there
is interaction between the probe and the victim, it is the same as a WrVictimBIk
command.

4-40 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

System Port

* Probesthatinvalidate locked blocks do not generate a ReadBlkMod command. The
21264/EV68A fails the STx_C instruction as defined in &lpha Architecture
Handbook, Version 4

e All read commands (RdBIk, RdBIkMod, Fetch, InvalToDirty) do notergct
because the 21264/EV68A does not yet own the block.

Table 4-33 21264/EV68A Response to System Probe and In-Flight Command Interaction

Pending Internal

21264/EV68A
Command 21264/EV68A Response to System Probe and In-Flight Command Interaction
ReadBlk This case assumes that a WrVictimBlk command has been sent to the system and another
ReadBlkMod agent has performed a load/store instruction to the same address. The 21264/EV68A pro-
FetchBIk vides VAF hit information with the probe response so that the system can manage the race
InvalToDirty condition between the WrVictimBlk command from this processor and a possible WrVic-
WrVictimBIk timBlk command from the probing processor. This race condition can be managed by
either forcing the completion of the WrVictimBlk command to memory before allowing
the progress by the probing processor, or by killing the WrVictimBlk command in this
processor.
CleanToDirty This case assumes that a SetDirty command has been sent to the system environment
SharedToDirty because of a store instruction that hit in the 21264/EV68A caches and that another proces-

sor has performed a load/store instruction to the same address. The 21264/EV68A pro-
vides MAF hit information so that the system can correctly respond to the Set/Dirty
command. If the next state of the probe was Invalid (the other processor performed a store
instruction), and the probe reached the system serialization point before the Set/Dirty
command, the system must either fail the Set/Dirty command or provide the updated data
from the other processor.

STCChangeToDirty This case is similar to case 2, except that the initiating instruction for the Set/Dirty com-
mand is a STx_C. An address match with an invalidating probe must fail the Set/Dirty
command. Delivering the updated data from the other processor is not an option because
of the requirements of the LDx_L/STx_C instruction pair.

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-41

Bcache Port

4.7.10.2 System Probes and SysDc Commands

Ordering of cache transactions at the system serialization point mustibeted in the
21264/EV68A cache system. Table 4-34 shows the rules that a system must follow to
control the order of cache status update within the 21264/EV68A cache structures
(including the VAF) at the 21264/EV68A pins.

Table 4-34 Rules for System Control of Cache Status Update Order

First Second Rule

Probe Probe To control the sequence of cache status updates between probes, systems
can present the probes in order to the 21264/EV68A, and the 21264/
EV68A will update the appropriate cache state (including the VAF) in
order.

Probe SysDc MAF To ensure that a probe updates the internal cache status before a SysDc
MAF transaction (including fills and ChangeToDirtySuccess commands),
systems must wait for the probe response before presenting the SysDc
MAF command to the 21264/EV68A. To ensure that a probe updates a
VAF entry before a SysDc VAF (release buffer), systems must wait for the
probe response.

Probe SysDc VAF Same as Probe/SysDc MAF, above.

SysDc MAF Probe To ensure that a SysDc MAF command updates the 21264/EV68A cache
system before a probe to the same address, systems must deliver the D1
(the second QW of data delivered to the 21264/EV68A) before or in the
same cycle as the A3 of the probe (the last cycle of the 4-cycle probe com-
mand). This rule also applies to ChangeToDirtySuccess commands that
have a virtual DO and D1 transaction.

SysDc MAF SysDc MAF SysDc MAF transactions can be ordered into the 21264/EV68A by order-
ing them appropriately at the 21264/EV68A interface.

SysDc MAF SysDc VAF SysDc MAF transactions and SysDc VAF transactions cannetant
within the 21264/EV68A because the 21264/EV68A does not generate
MAF transactions to the same address as existing VAF transactions.

SysDc VAF Probe To ensure that a SysDc VAF invalidates a VAF entry before a probe to the
same address, the SysDc VAF command must@de the first cycle of the
4-cycle probe command.

SysDc VAF SysDc MAF SysDc MAF transactions and SysDc VAF transactions cannetant
within the 21264/EV68A because the 21264/EV68A does not generate
MAF transactions to the same address as existing VAF transactions.

SysDcVAF SysDc VAF SysDc VAF transactions can be ordered into the 21264/EV68A by order-
ing them appropriately at the 21264/EV68A interface.

4.8 Bcache Port

The 21264/EV68A supports a second-level cache (Bcache) with 64-byte blocks. The
Bcache size can be 1MB, 2MB, 4MB, 8MB, or 16MB. The Bcache port has a 144-bit
data bus that is used for data transfers between the 21264/EV68A and the Bcache. All
Bcache control and address signal lines are clocked synchronously on Bcache clock cycle
boundaries.

4-42 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

Bcache Port

The Bcache supports the following multiples of the GCLK period: 1.5X (dual-data
mode only), 2X, 2.5X, 3X, 3.5X, 4X, 5X, 6X, 7X, and 8X. However, the 21264/EV68A
imposes a maximum @&che clock period based on the SYSCLK ratio. Tabi85 lists
the range of maximum Bcache clock jmats. Section 4.7.8.2 describes fast mode.

Table 4-35 Range of Maximum Bcache Clock Ratios

Bcache Clock Ratio with Fast Mode Bcache Clock Ratio with Fast Mode
SYSCLK Ratio Enabled Disabled
1.5X 4.0X 7.0X
2.0X 4.0X 7.0X
2.5X 5.0X 8.0X
3.0X 6.0X 8.0X
3.5X 7.0X 8.0X
4.0X 7.0X 8.0X
5.0X 8.0X 8.0X
6.0X 8.0X 8.0X
7.0X 8.0X 8.0X
8.0X 8.0X 8.0X

The 21264/EV68A provides a range of programmable Cbox CSRs to manipulate the
Bcache port pins so that a variety of industry-standard SSRAMs can communicate effi-
ciently with the 21264/EV68A. The following SSRAMs can be used:.

* Nonburst mode Reg/Reg late-write SSRAMs
e Burst mode Reg/Reg late-write dual-data SSRAMs
4.8.1 Bcache Port Pins

Table 3—1 defines the 21264/EV68A signal typeferred to inthis section. Table 4-36
lists the Bcache port pin groups along with their type, numbeeresice clock, and
functional description.

Table 4-36 Bcache Port Pins

Pin Name Type Count Reference Clock Description
BcAdd_H[23:4] O_PP 20 Int_Index_BcClk Bcache index
BcCheck _H[15:0] B DA PP 16 Int_Data_BcClk> output ECC check bits for BcData
BcDatalnClk_H= input
BcData_H[127:0] B DA PP 128 Int_Data_BcCHe output Bcache data
BcDatalnClk_H= input
BcDatalnClk_HJ[7:0] I_DA 8 NA Bcache data input clocks
BcDataOE_L O_PP 1 Int_Index_BcClIk Bcache data output enable/chip
select
BcDataOutClk_H[3:0] O_PP 8 NA Bcache data clocks— high and low
BcDataOutCIk_L[3:0] version

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-43

Bcache Port

Table 4-36 Bcache Port Pins (Continued)

Pin Name Type Count Reference Clock Description

BcDataWr_L O_PP 1 Int_Index_BcClIk Bcache data write enable

BcLoad_L O_PP 1 Int_Index_BcClk Bcache burst enable

BcTag_H[42:20] B DA PP 23 Int_Data_BcClk> output Bcache tag data
BcTagInClk_H= input

BcTagDirty H B DA PP 1 Int_Data_BcClks output Bcache tag dirty bit
BcTagInClk_H= input

BcTagInClk_H |_DA 1 NA Tag input data reference clock

BcTagOE_L O_PP 1 Int_Index_BcClk Bcache tag output enable/chip

select

BcTagOutClk_H O_PP 2 NA Bcache tag clock— high and low

BcTagOutClk_L versions

BcTagParity H B DA PP 1 Int_Data_BcClk> output Bcache tag parity bit
BcTagInClk_H= input

BcTagShared_H B DA PP 1 Int_Data_BcClk> output Bcache tag shared bit
BcTagInClk_H= input

BcTagValid_H B DA PP 1 Int_Data_BcClks> output Bcache tag valid bit
BcTagInClk_H= input

BcVref | DC_REF 1 NA Input reference voltage for tag data

BcTagWr_L O_PP 1 Int_Index_BcClk Bcache data write enable

4.8.2 Bcache Clocking

For clocking, the Bcache port pins can be divided into three groups.

1. The Bcache index pins (address and control) aereeiced to IntAdd_BcClk, an
internal version of the Bcache forwarded clock. The index pins are valid for the
whole period of the Int_Add_BcCIlk. The index pins are:

BcAdd_H[23:4]
BcDataOE_L
BcDataWr_L
BcLoad L
BcTagOE_L
BcTagWr_L

2. The data pins, when driven as outputs, aferemced to Int_Data BcCIk, another
internal version of the Bcache forwarded clock. The data pins, when used as inputs,
can be referenced to the incoming Bcache clo8chatalnClk_H[7:0] and
BcTagInClk_H. Int_Data_BcClk can be delayed relative to Int_Add_BcClk from
0to 3 GCLK cycles by using Cbox CSR BC_CPU_CLK_DELAY[1:0]. The data
pins are:

BcCheck H[15:0]
BcData_H[127:0]
BcTag_H[42:20]
BcTagDirty H
BcTagParity H

4-44 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

Bcache Port

BcTagShared H
BcTagValid H

3. The Bcache clock pin8¢DataOutClk_x[3:0] andBcTagOutClk_x) clock the
index and data pins at the SSRAMs. These clocks can be delayed from
Int_Data BcClIk from 0to 2 GCLK phases (half cycles) using Cbox CSR
BC_CPU_CLK_DELAYJ1:0].

Table 4-37 provides the BC_CPU_CLK_DELAY[1:0] values, which is the delay
from BC_ADDRESS to BC_WRITE_DATA (and BC_CLOCK_OUT) in GCLK
cycles.

Table 4-37 BC_CPU_CLK_DELAY[1:0] Values
BC_CPU_CLK_DELAY[1:0] Value GCLK Cycles of Delay
0 0

1 1
2 2
3 3

In the 21264/EV68A topology, the index pins are loaded by all the SSRAMs, while the
clock and data pins see a limit load. Thisamgement requires a relatively large amount

of delay between the index pins and the Bcache clock pins to meet the setup constraints
at the SSRAMSs. The 21264/EV68A Chbox CSRs can provide a programmable amount
of delay between the index and clock pins by using Cbox CSRs
BC_CPU_CLK_DELAY[1:0] and BC_CLK_DELAY[1:0].

Table 4-38 provides the BC_CLK_DELAY[1:0] values, which is the delay from
BC_WRITE_DATA to BC_CLOCK_OUT, in GCLK phases.

Table 4-38 BC_CLK_DELAY[1:0] Values
BC_CLK_DELAY[1:0] Value GCLK Phases

0 Invalid (turns off BC_CLOCK_OUT)
1 0
2 1
3 2

With BC_CPU_CLK_DELAY[1:0] and BC_CLK_DELAY[1:0], a 500-MHz 21264/
EV68A can provide up to 8 ns (82 + 2) of delay between the index and the outgoing
forwarded clocks. The relative loading difence between the data and the clock is
minimal, so Cbox CSR BC_CLK_DELAY[1:0] alone is sufficient to provide the delay
needed for the setup constraint at the Bcache data register.

4.8.2.1 Setting the Period of the Cache Clock

The free rmning Bcache clocks are derived from the 21264/EV68A GCLK. The period
of the Bcache clocks is programmed using the following three Cbox CSRs:

1. BC_CLK_LD_VECTORI[15:0]
2. BC_BPHASE_LD_VECTORI[3:0]

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-45

Bcache Port

3. BC_FDBK_EN[7:0]

To program these three CSRs, the programmer must know the bit-rate of the Bcache
data, and whether only the rising edge or both edges of the clock are used to latch data.
For example, a 200-MHz late-write SSRAM has a data period of 5 ns. For a 2-ns
GCLK, the READCLK _RATIO must be set to 2.5X. This partis called a 2.5X SD (sin-
gle-data part).

Table 4-39 shows how the three CSRs are programmed for single-data devices.

Table 4-39 Program Values to Set the Cache Clock Period (Single-Data)

Bcache Transfer

BC_CLK LD VECTOR ! BC_BPHASE LD VECTOR! BC FDBK EN!?

2.0X-SD
2.5X-SD
3.0X-SD
3.5X-SD
4.0X-SD
5.0X-SD
6.0X-SD
7.0X-SD
8.0X-SD

5555 0 01
94A5 3 02
9249 A 02
4C99 C 04
3333 0 01
8C63 5 02
71C7 0 10
c387 A 04
OFOF 0 01

1 These are hexadecimal values.

With the exception of the 2.5X-SD and 3.5X-SD cases, the clock waveform generated
by the 21264/EV68A for the forwarded clocks has a 50-50 duty cycle. In the 2.5X-SD
case, the 21264/EV68A produces an asymmetric clock that is high for two GCLK
phases and low for three phases. Likewise, for the 3.5X-SD case, the 21264/EV68A
produces an asymmetric clock that is high for three GCLK phases and low for four
GCLK phases. Also, for both of these cases, the 21264/EV68A will only start transac-
tions on the rising edge of the GCLK and the Bcache clock. The 1.5X-SD case is hot
supported.

A dual-data rate (DDR) SSRAM'’s data rate is derived in a similar manner, except that
because both edges of the clock are used, the SSRAM clock generated is 2X the period
of the data. This part is called a 2.5X DDR SSRAM.

Table 4—-40 shows how the three CSRs are programmed for dual-data devices.

Table 4-40 Program Values to Set the Cache Clock Period (Dual-Data Rate)

Bcache

Transfer BC_CLK_LD_VECTOR ! BC_BPHASE_LD VECTOR! BC_FDBK_EN!

1.5X-DD 9249 A 02

2.0X-DD 3333 0
2.5X-DD 8C63 5 02
3.0X-DD 71C7 0

01

10

4-46 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

Bcache Port

Table 4-40 Program Values to Set the Cache Clock Period (Dual-Data Rate) (Continued)

'?rca?:shf(;r BC_CLK LD VECTOR ! BC BPHASE LD VECTOR! BC FDBK _EN?
3.5X-DD C387 A 04
4.0X-DD OFOF 0 01
5.0X-DD 7C1F 0 40
6.0X-DD FO3F 0 10
7.0X-DD CO7F 0 04
8.0X-DD OOFF 0 01

1 These are hexadecimal values.

In addition to programming the clock CSRs, the data-sample/drive Chox CSRs, at the
pads, must be set appropriately. Table 4—-41 lists these CSRs and provides their pro-
grammed value.

Table 4-41 Data-Sample/Drive Cbox CSRs

CBOX CSR

Description

BC_DDM_FALL_ENJ0]

BC_TAG_DDM_FALL_EN[0]

BC_DDM_RISE_EN[0]

BC_TAG_DDM_RISE_EN[O0]

BC_DDMF_ENABLE[0]
BC_DDMR_ENABLE[0]

BC_FRM_CLK[O]

BC_CLKFWD_ENABLE[0]

Enables the update of the 21264/EV68A’s Bcache outputs referenced to the
falling edge of the Bcache forwarded clock. Dual-data RAMs assert this
CSR.

Enables the update of the 21264/EV68A’s Bcache tag outputs referenced to
the falling edge of the Bcache forwarded clock. Alway deasserted.

Enables the update of the 21264/EV68A’s Bcache outputs referenced to the
rising edge of the Bcache forwarded clock. Always asserted.

Enables the update of the 21264/EV68A’s Bcache tag outputs referenced to
the rising edge of the Bcache forwarded clock. Always asserted.

Enables the rising edge of the Bcache forwarded clock. Always asserted.
Enables the falling edge of the Bcache forwarded clock. Always asserted.

Forces the 21264/EV68A to only start Bcache transactions on the rising edge
of Bcache clocks that also coincide with the rising edge of GCLK. Must be
asserted for all dual-data parts and single-data parts at 2.5X and 3.5X.

Enables clock forward enable. Always asserted.

4.8.3 Bcache Transactions

The Cbox uses the programmed clock values to start data read, tag read, data write, and

tag write transactions on the rising edge of a Bcache clock. The Cbox can also be con-
figured to introduce a programmable number of bubbles when changing between write
and read commands. The following three sections describe these Bcache transactions.

4.8.3.1 Bcache Data Read and Tag Read Transactions

21264/EV68A Hardware Reference Manual

The 21264/EV68A always reads four pieces of data (64 bytes) from the Bcache during
a data read transaction, and always interrogates the tag array on the first cycle. Once

started, data read transactions are never cancelled. Assuming that the appropriate values

Cache and External Interfaces 4-47

Bcache Port

4.8.3.2 Bcache

have been programmed for the Bcache clock period, and with satisfactory delay param-
eters for the SSRAM setup/hold Bcache address latch requirements, a Bcache read
command proceeds through the 21264/EV68A Chox as follows:

1. Whenthe 21264/EV68A clocks out the first address value on the Bcache index pins
with the appropriate Int_Add_BcClk value, the Cbox loads the values of Cbox CSR
BC_LAT_DATA_ PATTERN[31:0] and Cbox CSR
BC_LAT_TAG_PATTERN[23:0] into two shift registers, which shift during every
GCLK cycle.

2. The address and control pins are latched into the SSRAMSs. During the next cycle,
the SSRAMSs provide data and tag information to the 21264/EV68A.

3. Using the returning forwarded clockB¢DatalnClk_H[7:0], BcTagInClk_H), the
data/tag information is loaded into the 21264/EV68A clock forwarding queue for
the Bcache.

4. Based onthe value of BC_RCV_MUX_PRESET_CNT[1,0] (the unload pointer),
the result of a Bcache write command is loaded into a 21264/EV68A GCLK
(BPHASE) register.

5. The Cbox CSR BC_LAT_DATA_PATTERN[31:0] and
BC_LAT_TAG_PATTERN][23:0] contain the GCLK frequency at which the output
of the clock forward FIFO can be consumed by the processor. This provides GCLK
granularity for the Bcache interface, so that the 21264/EV68A can minimize
latency to the Bcache. When the values based on these Cbox CSRs are shifted
down to the bottom of the shift register, the processor samples the Bcache data and
delivers it to the consumers of load data in the 21264/EV68A functional units.

For example, when a 2.5X-SD SSRAM has a latency of eight GCLK cycles from
BcAdd_H[23:4] to the output of Bcache FIFO, Cbox CSR
BC_LAT_DATA_PATTERNI[31:0] is programmed to 948and Cbox CSR
BC_LAT_TAG_PATTERN[23:0] is programmed to § The data pattern contains the
placement for four pieces of data and the aggregate rate of the data is 2.5X. In addition,
bit one of the BC_LAT _DATA_PATTERN is placed at a GCLK latency of six GCLK
cycles, which is the minimum latency supported by the 21264/EV68A. The
BC_LAT_TAG_PATTERN contains the placement of the tag data to the 21264/EV68A.

A shift of one to the left increases the latency of the Bcache transfer to nine GCLK
cycles, and a shift to the right reduces the latency of the Bcache transfer to seven GCLK
cycles.

The Cbox performs isolated tag read transactions in response to system probe com-
mands. In addition, when using burst-mode SSRAMs, the Cbox can combine a separate
tag read transaction with the tail end of a dedad transaction, thusptimizing Bcache
bandwidth. A Bcache tag read transaction proceeds exactly like a Bcache data read
transaction, except that only the BC_LAT TAG PATTERN is used to update the tag
shift register.

Data Write Transactions

During a data write transaction, the 21264/EV68A always writes four pieces of data (64
bytes of data and 8 bytes of ECC) to the Bcache, and always writes the tag array during
the first cycle. Once started, data write operations are never cancelled. Given the appro-

4-48 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

Bcache Port

priate programming of the Bcache clock period and delay parameters to satisfy SSRAM
setup/hold requirements of the Bcache address latch, a Bcache write transaction pro-
ceeds through the Cbox as follows:

1. The Chox transmits the index and write control signals during an Int_Adr_BcClk
edge.

2. The datais placed on Bcache data, tag, and tag status pins on the appropriate
Int_Data_ BcClIk edge from 0 to 7 Bcache bit-times later, based on the Cbox CSR
BC_LATE_WRITE_NUM[2:0]. The BC_LATE_WRITE_NUM]J[2:0] supports the
late-write SSRAM, which optimize Bcache data bus bandwidth by minimizing
bubbles between read and write transactions. For example, single-data late-write
SSRAMSs would need this CSR programmed to a value of one, and dual-data late-
write SSRAMs would need this CSR programmed to a value of two.

3. The difference between the data delivery (Int_Data BcCIk) and forwarded clocks
out provides the setup for the data at the Bcache data flip-flop.

4. For Bcache writes, the 21264/EV68A drivers are enabled on the GCLK BPHASE
preceding the start of a write transfer, and disabled on the succeeding GCLK
BPHASE at the end of a write transfer. Thus, the write data is enveloped by the
21264/EV68A drivers to guarantee that every data transfer has the same data-valid
window.

4.8.3.3 Bubbles on the Bcache Data Bus

When changing between read and write tratieas on the bidirectional bus, it is often
necessary to introduce NOP cycles (bubbles) to allow the bus to settle and to drain the
Bcache read pipeline. The Cbox provides two CSRS, BC_RD_WR_BUBBLES|5:0]
and BC_WR_RD_BUBBLES[3:0], to help control the bubbles between read and write
transactions.

The optimum parameters for these CSRs are determined by formulas that include the
following terms:

Term Description

bcfrm Bcache frame clock.
¢ |n dual-data mode, bcfrm is twice the ratio.

* Insingle-data mode, the value for bcfrm is determined by whether
the ratio is even or odd:
— When the ratio is even, bcfrm is equal to the ratio.
— When the ratio is odd, bcfrm is twice the ratio.

For example, in single-data mode:

Ratio Bcfrm
2 2
2.5 5

GCLK The processor clock.

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-49

Bcache Port

Term

Description

Ratio

rd_wr

wr_rd

The number of GCLK cycles per peak Bcache bandwidth transfer. For example, a

ratio of 2.5 means the peak Bcache bandwidth is 16 bytes for every 2.5 GCLK
cycles.

The minimum spacing required between the read and write indices at the data/tag
pins, expressed as GCLK cycles.

The minimum spacing required between the write and read indices at the data/tag
pins, expressed as GCLK cycles.

The Relationship Between Write-to-Read — BC_WR_RD_BUBBLES and wr_rd

The following formulas calculate the relationship between the Chox CSR
BC_WR_RD_ BUBBLES and wr_rd:

wr rd = BC_WR_RD _BUBBLES — 1) * bcfm

or

BC_WR_RD BUBBLES = (wr_rd + bcfm — 1) / befm) + 1

There is never a need to use a value of 0 or 1 for BC_WR_RD_BUBBLES.

If wr_rd =

4*ratio , then value 3 would be the minimum

BC_WR_RD_BUBBLES value whebcfrm = 2*ratio , and value 5 would be the
minimum BC_WR_RD_BUBBLES value wheicfrm = ratio

There is a special case fowtio = 2.0 in single-data mode. In this case, the for-

mula is:

wr_rd = (BC_WR_RD BUBBLES — 2) * bcfrm
The Relationship Between Read-to-Write — BC_RD_WR_BUBBLES and rd_wr

Use the following formula to calculate the value for the Chox CSR
BC_RD_WR_BUBBLES that produces the minimum rd_wr restriction:

BC_RD_WR BUBBLES = rd wr — 6

Note that a value for BC_RD_WR_BUBBLES of zero really means 64 GCLK cycles.
In that case, amend the formula. For example, it is impossible tolltwer = 6 in
the 1.5x dual-data rate mode case.

4.8.4 Pin Descriptions

This section describes the characteristics of the Bcache interface pins.

4-50 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

4.8.4.1 BcAdd_H[23:4]

Bcache Port

TheBcAdd_H[23:4] pins are high drive outputs that provides the index for the Bcache.
The 21264/EV68A supports Bcache sizes of 1MB, 2MB, 4MB, 8MB, and 16 MB.
Table 4-42 lists the values to be programmed into Cbox CSRs BC_ENABLE[0] and
BC_SIZE[3:0] to support each size of the Bcache.

Table 4-42 Programming the Bcache to Support Each Size of the Bcache

BC_ENABLEI0] BC_SIZE[3:0] Bcache Size
1 0000 1MB

1 0001 2MB

1 0011 4MB

1 0111 8MB

1 1111 16MB

4.8.4.2 Bcache Control Pins

Table 4-43 Programming the Bcache Control Pins

When the Cbox CSR BC_BANK_ ENABLEJ0] is not set, the unugsdhdd_H[23:4]

pins are tied to zero. For example, when configured as a 4MB cache, the 21264/EV68A
never changeBcAdd_H[23:22] from logic zero, and when BC_BANK_ENABLE][0]

is asserted, the 21264/EV68A drives the complement of the MSB index on the next
higherBcAdd_H pin.

The Bcache control pind¢cLoad_L, BcDataWr_L, BcDataOE_L, BcTagWr_L,
BcTagOE_L) are controlled using Cbox CSRs BC_BURST_MODE_ENABLEJ[0] and

BC_PENTIUM_MODEI0].

Table 4-43 shows the four combinations of Bcache control pin behavior obtained using

the two CSRs.

BC_PENTIUM_MODE BC_BURST_MODE_ENABLE RAM_TYPE

0 0 RAM_TYPE A
0 1 RAM_TYPE B
1 0 Unsupported
1 1 Unsupported

Table 4-44 lists the combination of control pin assertionfaM_TYPE A.

Table 4-44 Control Pin Assertion for RAM_TYPE A

TYPE_A NOP RAO0O RA1 RA2 RA3 NOP NOP WAO WAl WA2 WA3 NOP
BcLoad_L H H H H H H H H H H H H
BcDataOE_L H L L L L H H L L L L H
BcDataWr_L H H H H H H H L L L L H
BcTagOE_L H L H H H H H L H H H H
BcTagWr_L H H H H H H H L H H H H

21264/EV68A Hardware Reference Manual

Cache and External Interfaces 4-51

Bcache Port

Table 4-45 lists the combination of control pin assertion for RAM_TYPE B.

Table 4-45 Control Pin Assertion for RAM_TYPE B

TYPE_B NOP RAO0O RA1 RA2 RA3 NOP NOP WAO WAl WA2 WA3 NOP
BcLoad_L H L H H H H H L H H H H
BcDataOE_L H L L L L H H L L L L H
BcDataWr_L L H H H H L L L L L L L
BcTagOE_L H L H H H H H L H H H H
BcTagWr_L H H H H H H H L H H H H

Table 4-46 lists the combination of control pin assertion for RAM_TYPE C.

Table 4-46 Control Pin Assertion for RAM_TYPE C

TYPE_C NOP RAO RA1 RA2 RA3 NOP NOP WAO WAl WA2 WA3 NOP
BcLoad_L H H H H H H H H H H H H
BcDataOE_L H H L L L L L H H H H H
BcDataWr_L H H H H H H H L L L L H
BcTagOE_L H L L H H H H H H H H H
BcTagWr_L H H H H H H H L H H H H

Table 4-47 Control Pin Assertion for RAM_TYPE D

Table 4-47 lists the combination of control pin assertion for RAM_TYPE D.

TYPE_D NOP RAO RA1 RA2 RA3 NOP NOP WAO WAl WA2 WA3 NOP
BcLoad_L H L H H H H H L H H H H
BcDataOE_L H H L L L L L H H H H H
BcDataWr_L H H H H H H H L L L L H
BcTagOE_L H H L L H H H H H H H H
BcTagWr_L H H H H H H H L H H H H

4-52 Cache and External Interfaces

Notes:

1. The NOP condition for RAM_TYPE B is consistent with bursting nonPentium

style SSRAMs.

2. In bothRAM_TYPE A and RAM_TYPE B, the pin8cDataOE_L andBcTagOE_L
function changes from output-enable control to chip-select control.

3. Inboth RAM_TYPE C and RAM_TYPE D SSRAMs, the piesDataOE_L and
BcTagOE_L function as an asynchronous output enable that envelopes the Bcache
read data by providing an extra cycle of output enable.

Using these Cbox CSRs, late-write nonbursting and dual-data rate SSRAMs can be
connected to the 21264/EV68A as described in Appendix E.

21264/EV68A Hardware Reference Manual

Bcache Port

4.8.4.3 BcDatalnClk_H and BcTagInClk_H

TheBcDatalnClk_H[7:0] andBcTagInClk_H pins are used to capture tag data and

data from the Bcache data and tag RAMs respectively. Dual-data rate SSRAMSs provide
a clock output with the data output pins to minimize skew between the data and clock,
thus allowing maximum bandwidth. The 21264/EV68A internally synchronizes the

data to its GCLK with clock forward receive circuitry similar to that in the system inter-
face. FornonDDR SSRAMSs, systems can connect the Bcache data and tag output clock
pins to the Bcache data and tag input clock pins.

4.8.5 Bcache Banking

Bcache banking is possible by decoding the index MSB (as determined by Cbox CSR
BC_SIZE[3:0]) and asserting Cbox CSR BC_BANK_ENABLE[0]. To facilitate bank-
ing, the 21264/EV68A provides the complement of the MSB bit in the next higher
unused index bit. For example, when configured as an 8MB cache with banking
enabled, the 21264/EV68A drives the inversion of PA[22BaAdd_H[23] for use as

a chip enable in a banked configuration. Because there is no higher index bit available
for 16MB caches, this scheme only works for cache sizes of 1MB, 2MB, 4MB, and
8MB.

Setting BC_RD_RD_BUBBLE to 1 introduces one Bcache clock cycle of delay
between consecutive read transactions, regardless of whether or not they are read trans-
actions to the same bank.

Setting BC_WR_WR_BUBBLE to 1 introduces one Bcache clock cycle of delay
between consecutive write transactions, regardless of whether or not they are write
transactions to the same bank.

Setting BC_SJ BANK_ENABLE to 1 introduces one Bcache clock cycle of delay
between consecutive read transactions tdfamint bank (based on the MSB of the

index), even if BC_RD_RD_BUBBLE is set to 0. No additional delay is inserted
between consecutive read transactions to the same bank or between consecutive write
transactions.

4.8.6 Disabling the Bcache for Debugging

The Bcache is a required component for a 21264/EV68A-based system. However, for
debug purposes, the 21264/EV68A can be operated with the Bcache disabled. The
Bcache can be disabled by clearing all of the BC_ENABLE bits in the Cbox
WRITE_MANY CSR. When disabling the Bcache, the following additional steps must
be taken:

1. The various Bcache control bits in the Cbox WRITE_ONCE chain must be pro-
grammed to a valid combination (normally the same settings that would be used if
the Bcache were enabled).

2. The Bcache must still be initialized (using BC_INIT mode) during the reset PAL
flow, after which the Bcache should be left disabled.

3. Error Detection and Correction should be disabled by clearing DC_DAT_ERR_EN
(bit 7 of the DC_CTL IPR), or the following bits in the Cbox WRITE_ONCE chain
must be programmed to the indicated values:

BC_CLK_DELAY[L0] = 0xl
BC_CPU_CLK_DELAY[L.0] = 0xl

21264/EV68A Hardware Reference Manual Cache and External Interfaces 4-53

Interrupts

BC_CPU_LATE_WRITE_NUMIL:0] = Ox1
BC_LATE_WRITE_NUM[2:0] = 0x0
BC_LATE_WRITE_UPPER =0
DUP_TAG_ENABLE 0

4.9 Interrupts

The system may request interrupts by way of fR® H[5:0] pins. These six interrupt
sources are identical. They may be asynchronous, are level sensitive, and can be indi-
vidually masked by way of the EIE field of the CM_IER IPR. The system designer
determines how these signals are used and selects their relative priority.

4-54 Cache and External Interfaces 21264/EV68A Hardware Reference Manual

5

Internal Processor Registers

This chapter describes 21264/EV68A internal processor registers (IPRs). They are sep-
arated into the following circuit logic groups: Ebox, Ibox, Mbox, and Cbox.

The gray areas in gaster figures indicate reserved fields. Bit ranges that are coupled
with the field name specify those bits in that named field that are included in the IPR.
For example, in Figure 5-2, the field named COUNTER][31:4] contains bits 31 through

4 of the COUNTER field from Section 5.1.1. The bit range of COUNTER][31:4] in the
IPR is also listed in the columiBxtentin Table 5-2. In many cases, such as this one, the

bit ranges correspond. However, the bit range of the named field need not always corre-
spond to théxtentin the IPR. For example, in Figure 5—-14, the field VA[47:13] resides

in IPR IVA_FORM][37:3] under the stated conditions.

The register contents after initialization are listed in Section 7.8.

Table 5-1 lists the 21264/EV68A internal processor registers.

Table 5-1 Internal Processor Registers

MT/MF Latency
Score- Issued for
Index Board from Ebox MFPR
Register Name Mnemonic (Binary) Bit Access Pipe (Cycles)
Ebox IPRs
Cycle counter cC 11000000 5 RW 1L 1
Cycle counter control CC_CTL 11000001 5 WO 1L —
Virtual address VA 1100 0010 4,5,6,7 RO 1L 1
Virtual address control VA_CTL 11000100 5 WO 1L —
Virtual address format VA_FORM 11000011 4,5,6,7 RO 1L 1
Ibox IPRs
ITB tag array write ITB_TAG 0000 0000 6 WO oL —
ITB PTE array write ITB_PTE 0000 0001 4,0 WO oL —
ITB invalidate all process (ASM=0) ITB_IAP 0000 0010 4 WO oL —
ITB invalidate all ITB_IA 0000 0011 4 WO oL —
ITB invalidate single ITB_IS 0000 0100 4,6 WO oL —
ProfileMePC PMPC 0000 0101 — RO — —
Exception address EXC_ADDR oo@u10 — RO oL 3

21264/EV68A Hardware Reference Manual

Internal Processor Registers 5-1

Table 5-1 Internal Processor Registers (Continued)

MT/MF Latency
Score- Issued for

Index Board from Ebox MFPR
Register Name Mnemonic (Binary) Bit Access Pipe (Cycles)
Instruction VA format IVA_FORM 00000111 5 RO oL 3
Current mode CM 0000 1001 4 RW oL 3
Interrupt enable IER 0000 1010 4 RW oL 3
Interrupt enable and current mode IER_CM 0000 10xx 4 RW oL 3
Software interrupt request SIRR 0000 1100 4 RW oL 3
Interrupt summary ISUM 0000 1101 — RO — —
Hardware interrupt clear HW_INT_CLR 0000 1110 4 WO oL —
Exception summary EXC_SUM 0000 11117 — RO oL 3
PAL base address PAL_BASE 0001 0000 4 RW oL 3
Ibox control I_CTL 00010001 4 RW oL 3
Ibox status |_STAT 00010110 4 RW oL 3
Icache flush IC_FLUSH 00010011 4 W oL —
Icache flush ASM IC_FLUSH_ASM 0001 0010 4 \We oL —
Clear virtual-to-physical map CLR_MAP 0001 0101 4,5,6,7 WO oL —
Sleep mode SLEEP 00010111 4,5,6,7 \We} oL —
Process context register PCTX ownnt 4 w oL 3
Process context register PCTX 01xx xxxx 4 R oL 3
Performance counter control PCTR_CTL 00010100 4 RW oL 3
Mbox IPRs
DTB tag array write O DTB_TAGO 00100000 2,6 WO oL —
DTB tag array write 1 DTB_TAG1 10100000 1,5 WO 1L —
DTB PTE array write O DTB_PTEO 00100001 0,4 WO oL —
DTB PTE array write 1 DTB_PTE1l 1010 0001 3,7 WO oL —
DTB alternate processor mode DTB_ALTMODE 00100110 6 WO 1L —
DTB invalidate all process (ASM =0) DTB_IAP 10100010 7 WO 1L —
DTB invalidate all DTB_IA 1010 0011 7 WO 1L —
DTB invalidate single (array 0) DTB_ISO 00100100 6 WO oL —
DTB invalidate single (array 1) DTB_IS1 1010 0100 7 WO 1L —
DTB address space number O DTB_ASNO 00100101 4 WO oL —
DTB address space number 1 DTB_ASN1 10100101 7 WO 1L —
Memory management status MM_STAT 00100111 — RO oL 3
Mbox control M_CTL 0010 1000 6 WO oL —
Dcache control DC_CTL 00101001 6 WO oL —
Dcache status DC_STAT 0010 1010 6 RW oL 3

5-2

Internal Processor Registers

21264/EV68A Hardware Reference Manual

Ebox IPRs

Table 5-1 Internal Processor Registers (Continued)

MT/MF Latency
Score- Issued for
Index Board from Ebox MFPR
Register Name Mnemonic (Binary) Bit Access Pipe (Cycles)
Cbox IPRs
Chox data C_DATA 00101011 6 RW oL 3
Cbox shift control C_SHFT 0010 1100 6 WO oL o)

IWnhenn equals 1, that process context field is selected (FPE, PPCE, ASTRR, ASTER, ASN).

5.1 Ebox IPRs

This section describes the internal processor registers that control Ebox functions.
5.1.1 Cycle Counter Register — CC

The cycle counter register (CC) is a read-write register. The lower half of CC is a
counter that, when enabled by way of CC_CTL[32], increments once each CPU cycle.
The upper half of the register is 32 bits of register storage that may be used as a counter
offset as described in thipha Architecture Handbook, Versionuhder Processor Cycle
Counter (PCC) Register.

A HW_MTPR instruction to the CC writes the upper half of the register and leaves the
lower half unchanged. The RPCC instruction returns the full 64-bit value of the register.
Figure 5-1 shows the cycle counter register.

Figure 5-1 Cycle Counter Register

63 3231 0

OFFSET
COUNTER LK99-0008A

5.1.2 Cycle Counter Control Register — CC_CTL

The cycle counter control register (CC_CTL) is a write-only register through which the
lower half of the CC register may be written and its associated counter enabled and dis-
abled. Figure 5-2 shows the cycle counter control register.

Figure 5-2 Cycle Counter Control Register

63 333231 4 3 0

CC_ENA
COUNTER([31:4] LK99-0009A

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-3

Ebox IPRs

Table 5-2 describes the CC_CTL register fields.

Table 5-2 Cycle Counter Control Register Fields Description

Name Extent Type Description
Reserved [63:33] — —
CC_ENA [32] WO Counter Enable.
When set, this bit allows the cycle counter to increment.
COUNTER[31:4] [31:4] WO CC[31:4] may be written by way of this field. Write transactions

to CC_CTL result in CCJ[3:0] being cleared.
Reserved [3:0] — —

5.1.3 Virtual Address Register — VA

The virtual address register (VA) is a read-only register. When a DTB miss or fault
occurs, the associatedfective virtual address is written into the VA register. VA is not
written when a LD_VPTE gets a DTB miss or Dstream fault. Figure 5-3 shows the vir-
tual address register.

Figure 5-3 Virtual Address Register

63

VA[63:0]

LK99-0010A

5.1.4 Virtual Address Control Register — VA _CTL

The virtual address control register (VA_CTL) is a write-only register that controls the
way in which the faulting virtual address stored in the VA register is formatted when it
is read by way of the VA_FORM register. It also contains control bits that affect the
behavior of the memory pipe virtual address sign extension checkers and the behavior

of the Ebox extract, insert, and mask instructions. Figure 5—4 shows the virtual address
control register.

Figure 5-4 Virtual Address Control Register

63 3029 3210

VPTB[63:30]
VA_FORM_32
VA_48
B_ENDIAN

LK99-0014A

5-4 Internal Processor Registers 21264/EV68A Hardware Reference Manual

Ebox IPRs

Table 5-3 describes the virtual address control register fields.

Table 5-3 Virtual Address Control Register Fields Description

Name Extent Type Description

VPTBI[63:30] [63:30] WO Virtual Page Table Base.

See the VA_FORM register section for details.

Reserved [29:3] — —

VA_FORM_32 [2] WO This bit is used to control address formatting when reading the
VA_FORM register. See the section on the VA_FORM register for
details.

VA_48 [1] WO,0 This bit controls the format applied to effective virtual addresses

by the VA_FORM register and the memory pipe virtual address
sign extension checkers. When VA_48 is clear, the 43-bit virtual
address format is used, and when VA _48 is set, the 48-bit virtual
address format is used.

When VA_48 is set, the sign extension checkers generate an
access control violation (ACV) if VA[63:0f SEXT (VA[47:0]).
When VA_48 is clear, the sign extension checkers generate an
ACV if VA[63:0] # SEXT(VA[42:0]).

B_ENDIAN [0] WO Big Endian Mode.

When set, the shift amount (Rbv[2:0]) is inverted for EXTxx,
INSxx, and MSKxx instructions. The lower bits of the physical
address for Dstream accesses are inverted based upon the length
of the reference as follows:

Byte: Invert bits [2:0]

Word: Invert bits [2:1]

Longword: Inverts bit [2]

5.1.5 Virtual Address Format Register — VA_FORM

The virtual address format register (VA_FORM) is a read-only register. It contains the
virtual page table entry address derived from the faulting virtual address stored in the
VA register. It also contains the virtual page table base and associated control bits stored
in the VA_CTL register.

Figure 5-5 shows VA_FORM when VA_CTL(VA_48) equals 0 and
VA_CTL(VA_FORM_32) equals O.

Figure 5-5 Virtual Address Format Register (VA_48 =0, VA_FORM_32 = 0)

63 3332 3 2 0

VPTB[63:33] ————
VA[42:13] LK99-0011A

Figure 5-6 shows VA_FORM when VA_CTL(VA_48) equals 1 and
VA_CTL(VA_FORM_32) equals O.

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-5

Ibox IPRs

Figure 5-6 Virtual Address Format Register (VA_48 =1, VA FORM_32 =0)

63 4342 3837 3 2 0

VPTB[63:43]
SEXT(VA[47])
VA[47:13] LK99-0012A

Figure 5-7 shows VA_FORM when VA_CTL(VA_48) equals 0 and
VA _CTL(VA_FORM_32) equals 1.

Figure 5-7 Virtual Address Format Register (VA_48 =0, VA_FORM_32 =1)

63 3029 2221 3 2 0

VPTB[63:30]
VA[31:13] LK99-0013A

5.2 Ibox IPRs
This section describes the internal processor registers that control Ibox functions.
5.2.1 ITB Tag Array Write Register — ITB_TAG

The ITB tag array write register (ITB_TAG) is a write-only register. The ITB tag array
is written by way of this register. A write transaction to ITB_TAG writes a register out-
side the ITB array. When a write to the ITB_PTE register is retired, the contents of both
the ITB_TAG and ITB_PTE registers are written into the ITB entry. The specific ITB
entry that is written is determined by a round-robin algorithm; the algorithm writes to
entry number 0 as the first entry after the 21264/EV68A is reset. Figure 5-8 shows the
ITB tag array write register.

Figure 5-8 ITB Tag Array Write Register

63 4847 1312 0

VA[47:13] LK99-0015A

5.2.2 ITB PTE Array Write Register — ITB_PTE

The ITB PTE array write register (ITB_PTE) is a write-only register through which the
ITB PTE array is written. A round-robin allocation algorithm is used. A write to the
ITB_PTE array, when retired, resultslwth the ITB_TAG and ITB_PTE arrays being
written. The specific entry that is written is chosen by the round-robin algorithm
described above. Figure 5-9 shows the ITB PTE array write register.

5-6 Internal Processor Registers 21264/EV68A Hardware Reference Manual

Ibox IPRs

Figure 5-9 ITB PTE Array Write Register

63 44 43 13121110 9 8 7 6 5 4 3 0

PFN[43:13]
URE

SRE

ERE

KRE
GHI1:0]
ASM

LK99-0016A

5.2.3 ITB Invalidate All Process (ASM=0) Register — ITB_IAP

The ITB invalidate all process register (ITB_IAP) is a pseudo register that, when writ-
ten to, invalidates all ITB entries whose ASM bit is clear. An explicit write to
IC_FLUSH_ASM is required to flush the Icache of blocks with ASM equal to zero.

5.2.4 ITB Invalidate All Register — ITB_IA

The ITB invalidate all register (ITB_IA) is a pseudo register that, when written to,
invalidates all ITB entries. An explicit write to IC_FLUSH is required to flush the
Icache.

5.2.5 ITB Invalidate Single Register —ITB_IS

The ITB invalidate single register (ITB_IS) is a write-only register. Writing a virtual
page number to this register invalidates any ITB entry that meets one of the following
criteria:

* The ITB entry’s virtual page number matches ITB_IS[47:13] (or fewer bits if gran-
ularity hint bits are set in the ITB entry) and its ASN field matches the address
space number supplied in PCTX[46:39].

* The ITB entry’s virtual page number matches ITB_1S[47:13] and its ASM bit is set.

Figure 5-10 shows the ITB invalidate single register.

Figure 5-10 ITB Invalidate Single Register

63 4847 1312 0

INVAL_ITB[47:13] LK99-0017A

Note: Because the Icache is virtually indexed and tagged, it is normally not nec-
essary to flush the Icache when paging. Therefore, a write to ITB_IS will
not flush the Icache.

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-7

Ibox IPRs

5.2.6 ProfileMe PC Register - PMPC

The ProfileMe PC register (PMPC) is a read-only register that contains the PC of the
last profiled instruction. Additional information is available in the |_STAT and
PCTR_CTL register descriptions.

Usage of PMPC in performance monitoring is described in Section 6.10.

Figure 5-11 shows the ProfileMe PC register.

Figure 5-11 ProfileMe PC Register

63

PC[63:2]
PAL

LK99-0018A

Table 5—4 describes the ProfileMe PC register fields.

Table 5-4 ProfileMe PC Fields Description

Name Extent Type Description

PC[63:2] [63:2] RO Address of the profiled instruction

Reserved [1] RO Read as zero

PAL [0] RO Indicates that the PC field contains a physical-mode PALmode
address

5.2.7 Exception Address Register — EXC_ADDR

The exception address register (EXC_ADDR) is a read-only register that is updated by
hardware when it encounters an exception or interrupt.

EXC_ADDR]0] is set if the associated exception occurred in PALmode. The exception
actions are listed here:

* Ifthe exception was a fault or a synchronous trap, EXC_ADDR contains the PC of
the instruction that triggered the fault or trap.

* |f the exception was an interrupt, EXC_ADDR contains the PC of the next instruc-
tion that would have executed if the interrupt had not occurred.

Figure 5-12 shows the exception address register.

Figure 5-12 Exception Address Register

63

PC[63:2]
PAL

LK99-0018A

5-8 Internal Processor Registers 21264/EV68A Hardware Reference Manual

Ibox IPRs

5.2.8 Instruction Virtual Address Format Register — IVA_FORM

The instruction virtual address format register (IVA_FORM) is a read-only register. It
contains the virtual PTE address derived from the faulting virtual address stored in the

EXC_ADDR register, and from the virtual page table base, VA_48 and VA_FORM_32
bits, stored in the |_CTL register.

Figure 5-13 shows IVA_FORM when |_CTL(VA_48) equals 0 and
| CTL(VA_FORM_32) equals 0.

Figure 5-13 Instruction Virtual Address Format Register (VA_48 = 0, VA_FORM_32 = 0)

63 3332 3 2 0

VPTB[63:33]
VA[42:13]

LK99-0019A

Figure 5-14 shows IVA_FORM when |_CTL(VA_48) equals 1 and
| CTL(VA_FORM_32) equals 0.

Figure 5-14 Instruction Virtual Address Format Register (VA_48 =1, VA_FORM_32 = 0)

63 4342 38 37 3 2 0

VPTB[63:43]
SEXT(VA[47])
VA[47:13]

LK99-0020A

Figure 5-15 shows IVA_FORM when |_CTL(VA_48) equals 0 and
| CTL(VA_FORM_32) equals 1.

Figure 5-15 Instruction Virtual Address Format Register (VA_48 =0, VA_FORM_32 = 1)

63 3029 2221 3 2 0

VPTB[63:30]
VA[31:13]

LK99-0021A

5.2.9 Interrupt Enable and Current Processor Mode Register — IER_CM

The interrupt enable and current processor mode register (IER_CM) contains the inter-
rupt enable and current processor mode bit fields. These bit fields can be written either
individually or together with a single HW_MTPR instruction. When bits [7:2] of the

IPR index field of a HW_MTPR instruction contain the value 000910is register is
selected. Bits [1:0] of the IPR index indicate which bit fields are to be written: bit[1]
corresponds to the IER field and bit[0] corresponds to the processor mode field. A
HW_MFPR instruction to this register returns the values in both fields. Figure 5-16
shows the interrupt enable and current processor mode register.

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-9

Ibox IPRs

Figure 5-16 Interrupt Enable and Current Processor Mode Register

63 39 38 333231302928 141312 5432 0

EIEN[5:0]
SLEN
CREN

PCEN[1:0]
SIEN[15:1]
ASTEN
CM[1:0]

LK99-0022A

Table 5-5 describes the interrupt enable and current processor mode register fields.

Table 5-5 IER_CM Register Fields Description

Name Extent Type Description

Reserved [63:39] — —

EIEN[5:0] [38:33] RwW External Interrupt Enable

SLEN [32] RW Serial Line Interrupt Enable

CREN [31] RW Corrected Read Error Interrupt Enable
PCENJ1:0] [30:29] RW Performance Counter Interrupt Enables
SIEN[15:1] [28:14] RW Software Interrupt Enables

ASTEN [13] RW AST Interrupt Enable

When set, enables those AST interrupt requests that are also
enabled by the value in ASTER.

Reserved [12:5] — —
CM[1:0] [4:3] RwW Current Mode
00 Kernel
01 Executive
10 Supervisor
11 User
Reserved [2:0] — —

5.2.10 Software Interrupt Request Register — SIRR

The software interrupt request register (SIRR) is a read-write register containing bits to
request software interrupts. To generate a particular software interruptyriéspond-

ing bits in SIRR and IER[SIER] must both be set. Figure 5-17 shows the software
interrupt request register.

5-10 Internal Processor Registers 21264/EV68A Hardware Reference Manual

Ibox IPRs

Figure 5-17 Software Interrupt Request Register

63 2928 1413 0

SIR[15:1] LK99-0023A

Table 5-6 describes the software interrupt request register fields.

Table 5-6 Software Interrupt Request Register Fields Description

Name Extent Type Description

Reserved [63:29] — —

SIR[15:1] [28:14] RW Software Interrupt Requests
Reserved [13:0] — —

5.2.11 Interrupt Summary Register — ISUM

The interrupt summary register (ISUM) is a read-only register that records all pending
hardware, software, and AST interrupt requests that have their corresponding enable bit
set.

If a new interrupt (hardware, serial line, crd, or performance counters) occurs simulta-
neously with an ISUM read, the ISUM read returns zeros. That condition is normally
assumed to be a passive release condition. The interrupt is signaled again when the
PALcode returns to native mode. The effectgho$ condition can be minimized by
reading ISUM twice and ORIing the results.

Usage of ISUM in performance monitoring is described in Section 6.10. Figure 5-18
shows the interrupt summary register.

Figure 5-18 Interrupt Summary Register

63 3938 333231302928 1413 11109 8 5432 0

EI[5:0]
SL

CR
PC[1:0]
SI[15:1]
ASTU
ASTS
ASTE
ASTK

LK99-0024A

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-11

Ibox IPRs

Table 5—7 describes the interrupt summary register fields.

Table 5-7 Interrupt Summary Register Fields Description

Name Extent Type Description

Reserved [63:39] — —

EI[5:0] [38:33] RO External Interrupts

SL [32] RO Serial Line Interrupt

CR [31] RO Corrected Read Error Interrupts
PC[1:0] [30:29] RO Performance Counter Interrupts

PCO when PCJ[0] is set.
PC1 when PC[1] is set.

SI[15:1] [28:14] RO Software Interrupts
Reserved [13:11] — —
ASTU, ASTS [10],[9] RO AST Interrupts

For each processor mode, the bit is set if an associated AST
interrupt is pending. This includes the mode’s ASTER and
ASTRR bits and whether the processor mode value held in the
IER_CM register is greater than or equal to the value for the
mode.

Reserved [8:5] — —

ASTE, ASTK [4],[3] RO AST Interrupts

For each processor mode, the bit is set if an associated AST
interrupt is pending. This includes the mode’s ASTER and
ASTRR bits and whether the processor mode value held in the
IER_CM register is greater than or equal to the value for the
mode.

Reserved [2:0] — —

5.2.12 Hardware Interrupt Clear Register - HW_INT_CLR

The hardware interrupt clear register (HW_INT_CLR) is a write-only register used to
clear edge-sensitive interrupt requests. See Section D.31 for more information about the
PALcode restriction concerning this register. Figure 5—-19 shows the hardwenejsit

clear register.

Figure 5-19 Hardware Interrupt Clear Register

63 333231302928272625 0

SL

CR
PC[1:0]
MCHK_D
FBTP

LK99-0025A

5-12 Internal Processor Registers 21264/EV68A Hardware Reference Manual

Ibox IPRs

Table 5-8 describes the hardware interrupt clear register fields.

Table 5-8 Hardware Interrupt Clear Register Fields Description

Name Extent Type Description

Reserved [63:33] — —

SL [32] wicC Clears serial line interrupt request

CR [31] wicC Clears corrected read error interrupt request

PC[1:0] [30:29] wicC Clears performance counter interrupt requests

MCHK_D [28] WiC Clears Dstream machine check interrupt request

Reserved [27] — —

FBTP [26] W1s Forces the next Bcache hit that fills the Icache to generate bad

Icache fill parity
Reserved [25:0] — —

5.2.13 Exception Summary Register — EXC_SUM

The exception summary register (EXC_SUM) is a read-only register that contains
information about instructions that have triggered traps. The register is updated at trap
delivery time. Its contents are valid only if it is read (by way of a HW_MFPR) in the
first fetch block of the exception handler. There are three types of traps for which this
register captures related information:

* Arithmetic traps: The instruction generated an exceptional condition that should be
reported to the operating system, and/or the FPCR status bit associated with this
condition is clear and should be set by PALcode. Additionally, the REG field con-
tains the register number of the destination specifier for the instruction that trig-
gered the trap.

* |stream ACV: The B\D_IVA bit of this register indicates whether thé&ending
Istream virtual address is latched into the EXXDDR register or the VA register.

e Dstream exceptions: The REG field contains the register number of either the
source specifier (for stores) or the destination specifier (for loads) of the instruction
that triggered the trap.

Figure 5-20 shows the exception summary register.

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-13

Ibox IPRs

Figure 5-20 Exception Summary Register

63

484746 454443424140

876543210

SEXT(SET_IOV)
SET_IOV
SET_INE

SET_UNF
SET_OVF
SET_DZE
SET_INV
PC_OVFL
BAD_IVA
REG[4:0]
INT

lo}Y;

INE

UNF

FOV

DZE

INV

sSwC

Table 5-9 describes the exception summary register fields.

Table 5-9 Exception Summary Register Fields Description

LK99-0026A

Name Extent Type Description

SEXT(SET_IOV) [63:48] RO, 0 Sign-extended value of bit 47, SET_IOV.

SET_IOV [47] RO PALcode should set FPCR[IOV].

SET_INE [46] RO PALcode should set FPCR[INE].

SET_UNF [45] RO PALcode should set FPCR[UNF].

SET_OVF [44] RO PALcode should set FPCR[OVF].

SET_DZE [43] RO PALcode should set FPCR[DZE].

SET_INV [42] RO PALcode should set FPCR[INV].

PC_OVFL [41] RO Indicates that EXC_ADDR was improperly sign extended for 48-
bit mode over/underflow IACV.

Reserved [40:14] RO, 0 Reserved for COMPAQ.

BAD_IVA [13] RO Bad Istream VA.

5-14 Internal Processor Registers

This bit should be used by the IACV PALcode routine to deter-
mine whether the offending I-stream virtual address is latched in
the EXC_ADDR register or the VA register. f BAD_IVAis clear,
EXC_ADDR contains the address; if BAD_IVA is set, VA con-
tains the address.

21264/EV68A Hardware Reference Manual

Ibox IPRs

Table 5-9 Exception Summary Register Fields Description (Continued)

Name Extent Type Description

REG[4:0] [12:8] RO Destination register of load or operate instruction that triggered
the trap OR source register of store that triggered the trap. These
bits may contain the Rc field of an operate instruction or the Ra
field of a load or store instruction. The value is UNPREDICTABLE
if the trap was triggered by an ITB miss, interrupt, OPCDEC, or
other non load/st/operate.

INT [71 RO Set to indicate Ebox integer overflow trap, clear to indicate Fbox
trap condition.

[e)Y] [6] RO Indicates Fbox convert-to-integer overflow or Ebox integer over-
flow trap.

INE [5] RO Indicates floating-point inexact error trap.

UNF [4] RO Indicates floating-point underflow trap.

FOV [3] RO Indicates floating-point overflow trap.

DZE [2] RO Indicates divide by zero trap.

INV [1] RO Indicates invalid operation trap.

sSwcC [0] RO Indicates software completion possible. This bit is set if the

instruction that triggered the trap contained the /S modifier.

5.2.14 PAL Base Register — PAL_BASE

The PAL base register (PAL_BASE) is a read-write register that contains the base phys-
ical address for PALcode. Its contents are cleared by chip reset but are not cleared after

waking up from sleep mode or from fault reset. Figure 5-21 shows the PAL base regis-
ter.

Figure 5-21 PAL Base Register

63 4443 1514 0

PAL_BASE[43:15]

LK99-0027A

Table 5-10 describes the PAL base register fields.

Table 5-10 PAL Base Register Fields Description

Name Extent Type Description

Reserved [63:44] RO, 0 Reserved for COMPAQ.
PAL_BASE[43:15] [43:15] RwW Base physical address for PALcode.
Reserved [14:0] RO, 0 Reserved for COMPAQ.

5.2.15 Ibox Control Register —1_CTL

The Ibox control register (I_CTL) is a read-write register that controls various Ibox
functions. Its contents are cleared by chip reset. Figure 5—-22 shows the Ibox control
register.

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-15

Ibox IPRs

Figure 5-22 |box Control Register

63

48 47

3029 242322212019181716151413121110 9 8 7 6 5 3210

SEXT(VPTB[47]) —

VPTB[47:30]

CHIP_ID[5:0]

BIST_FAIL

TB_MB_EN

MCHK_EN
ST_WAIT_64K

PCT1_EN
PCTO_EN

SINGLE_ISSUE_H
VA_FORM_32

VA_48

SL_RCV

SL_XMIT

HWE

BP_MODE[1:0]

SBE[1:0]
SDE[1:0]

SPE[2:0]
IC_EN[1:0]

SPCE

LK99-0029A

Table 5-11 describes the Ibox control register fields.

Table 5-11 Ibox Control Register Fields Description

Name

Type

Description

SEXT(VPTB[47])
VPTB[47:30]
CHIP_ID[5:0]

BIST_FAIL

TB_MB_EN

MCHK_EN

RW,0
RW,0
RO

RO,0

RW,0

RW,0

5-16 Internal Processor Registers

Sign extended VPTB[47].
Virtual Page Table Base. See Section 5.1.5 for details.

This is a read-only field that supplies the revision ID number
for the 21264/EV68A part.
21264/EV68A pass 2.1 ID is 010040

Indicates the status of BiST (clear = pass, set = fail),
described in Section 11.5.1.

When set, the hardware ensures that the virtual-mode loads
in DTB and ITB fill flows that access the page table and the
subsequent virtual mode load or store that is being retried are
‘ordered’ relative to another processor’s stores. This must be
set for multiprocessor systems in which no MB instruction is
present in the TB fill flow, unless there are other mecha-
nisms present that ensure coherency.

Machine check enable — set to enable machine checks.

21264/EV68A Hardware Reference Manual

Ibox IPRs

Table 5-11 Ibox Control Register Fields Description (Continued)

Name

Extent Type

Description

ST_WAIT_64K

PCT1 _EN

PCTO_EN

SINGLE_ISSUE_H

VA_FORM_32

VA 48

SL_RCV
SL_XMIT
HWE

BP_MODEJ[1:0]

SBE[1:0]

[20] RW,0

[19] RW,0

[18] RW,0

[17] RW,0

[16] RW,0

[15] RW,0

[14] RO
[13] WO
[12] RW,0

[11:10] RW,0

[9:8] RW,0

21264/EV68A Hardware Reference Manual

The stWait table is used to reduce load/store order traps.
When set, the stWait table is cleared after 64K cycles. When
clear, the stWait table is cleared after 16K cycles. See Sec-
tion 2.11.

Enable performance counter #1. If this bit is one, the perfor-
mance counter will count if either the system (SPCE) or pro-
cess (PPCE) performance counter enable is asserted.

Enable performance counter #0. If this bit is one, the perfor-
mance counter will count if EITHER the system (SPCE) or
process (PPCE) performance counter enable is set.

When set, this bit forces instructions to issue only from the
bottom-most entries of the IQ and FQ.

This bit controls address formatting on a read of the
IVA_FORM register.

This bit controls the format applied to effective virtual
addresses by the IVA_FORM register and the Ibox virtual
address sign extension checkers. When VA_48 is clear, 43-
bit virtual address format is used, and when VA_48 is set,
48-bit virtual address format is used. The effect of this bit on
the IVA_FORM register is identical to the effect of
VA_CTL[VA_48] on the VA_FORM register. See Section
5.1.5.

When VA_48 is set, the sign extension checkers generate an
ACV ifva[63:0] # SEXT(va[47:0]). When VA_48 is clear,
the sign extension checkers generate an ACV if va[63:0]
SEXT(va[42:0]).

This bit also affects DTB_DOUBLE traps. If set, the DTB
double miss traps vector to the DTB_DOUBLE_4 entry
point.

DTB_DOUBLE PALcode flow selection is not affected by
VA_CTL[VA_48].

See Section 11.2.
When set, drives a value @romClk_H. See Section 11.2.

If set, allow PALRES intructions to be executed in kernel
mode. Note that modification of the ITB while in kernel
mode/native mode may cause UNPREDICTABLE behavior.

Branch Prediction Mode Selection.

BP_MODE[1], if set, forces all branches to be predicted to
fall through. If clear, the dynamic branch predictor is chosen.
BP_MODE[O0]. If set, the dynamic branch predictor chooses
local history prediction. If clear, the dynamic branch predic-
tor chooses local or global prediction based on the state of
the chooser.

Stream Buffer Enable.

The value in this bit field specifies the number of Istream
buffer prefetches (besides the demand-fill) that are launched
after an Icache miss. If the value is zero, only demand
requests are launched.

Internal Processor Registers 5-17

Ibox IPRs

Table 5-11 Ibox Control Register Fields Description (Continued)

Name Extent Type Description

SDE[1:0] [7:6] RW,0 PALshadow Register Enable.
Enables access to the PALshadow registers. If SDE[1] is set,
R4-R7 and R20-R23 are used as PALshadow registers.
SDE[0] does not affect 21264/EV68A operation.

SPE[2:0] [5:3] RW,0 Super Page Mode Enable.
Identical to the SPE bits in the Mbox M_CTL SPE[2:0]. See
Section 5.3.9.

IC_ENI[1:0] [2:1] RW,3 Icache Set Enable.
At least one set must be enabled. The entire cache may be
enabled by setting both bits. Zero, one, or two Icache sets
can be enabled.
This bit does not clear the Icache, but only disables fills to
the affected set.

SPCE [0] RW,0 System Performance Counting Enable.

Enables performance counting for the entire system if indi-
vidual counters (PCTRO or PCTRL1) are enabled by setting
PCTO_EN or PCT1_EN, respectively.

Performance counting for individual processes can be
enabled by setting PCTX[PPCE]. See Section 5.2.21 for
more information.

See Section 6.10 for information about performance count-
ing.

5.2.16 Ibox Status Register — |_STAT

The Ibox status register (I_STAT) is a read/write-1-to-clear register that contains Ibox

status information.

Usage of |_STAT in performance monitoring is described in Section 6.10.

Figure 5-23 shows the Ibox status register.

5-18 Internal Processor Registers

21264/EV68A Hardware Reference Manual

Figure 5-23 Ibox Status Register

63

Ibox IPRs

4140393837 343332 30292827 0

Reserved
MIS

TRP

LSO

TRAP TYPE[3:0]
ICM

OVR[2:0]

PAR

LAM

Reserved

LK99-0031A

Table 5—-12 describes the Ibox status register fields.

Table 5-12 I|box Status Register Fields Description

Name Extent

Type

Description

Reserved [63:41]

MIS [40]

TRP [39]

LSO [38]

21264/EV68A Hardware Reference Manual

RO

RO

RO

RO

Reserved for COMPAQ.

ProfileMe Mispredict Trap.

If the |_STAT[TRP] bit is set, this bit indicates that the profiled instruc-

tion caused a mispredict trap. JSR/JMP/RET/COR or HW_JSR/
HW_JMP/HW_RET/HW_COR mispredicts do not set this bit but can be
recognized by the presence of one of these instructions at the PMPC loca-
tion with the |_STAT[TRP] bit set. This identification is exact in all cases
except error condition traps. Hardware corrected Icache parity or Dcache
ECC errors, and machine check traps can occur on any instruction in the
pipeline.

ProfileMe Trap.

This bitindicates that the profiled instruction caused a trap. The trap type
field, PMPC register, and instruction at the PMPC location are needed to
distinguish all trap types.

ProfileMe Load-Store Order Trap.
If the profiled instruction caused a replay trap, this bit indicates that the
precise trap cause was an Mbox load-store order replay trap.
If clear, this bit indicates that the replay trap was any one of the follow-
ing:
Mbox load-load order
Mbox load queue full
Mbox store queue full
Mbox wrong size trap (such as, STL LDQ)
Mbox Bcache alias (2 physical addresses map to same Bcache line)
Mbox Dcache alias (2 physical addresses map to same Dcache line)
Icache parity error
Dcache ECC error

Internal Processor Registers 5-19

Ibox IPRs

Table 5-12 |box Status Register Fields Description (Continued)

Name Extent Type Description
TRAP [37:34] RO ProfileMe Trap Types.
TYPE[3:0] If the profiled instruction caused a trap (indicated by |_ STAT[TRP]), this
field indicates the trap type as listed here:
Value Trap Type
0 Replay
1 Invalid (unused)
2 DTB Double miss (3 level page tables)
3 DTB Double miss (4 level page tables)
4 Floating point disabled
5 Unaligned Load/Store
6 DTB Single miss
7 Dstream Fault
8 OPCDEC
9 Invalid (use PMPC, described below)
10 Machine Check
11 Invalid (use PMPC, described below)
12 Arithmetic
13 Invalid (use PMPC, described below)
14 MT_FPCR
15 Reset
Traps due to ITB miss, Istream access violation, or interrupts are not
reported in the trap type field because they do not cause pipeline aborts.
Instead, these traps cause pipeline redirection and can be distinguished by
examining the PMPC value for the presence of the corresponding PAL-
code entry offset addresses indicated below. Inthese cases, the ProfileMe
interrupt will normally be delivered when exiting the trap PALcode flow
and the EXC_ADDR register will contain the original PC that encoun-
tered the redirect trap.
PMPC[14:0] Trap
0581 ITB miss
0481 Istream Access Violation
0681 Interrupt
ICM [33] RO ProfileMe Icache Miss.

OVR[2:0] [32:30] RO

PAR

LAM

[29] W1cC

[28] RO

Reserved [28:0] RO

This bit indicates that the profiled instruction was contained in an aligned
4-instruction Icache fetch block that requested a new Icache fill stream.

ProfileMe Counter 0 Overcount.

This bit indicates a value (0-7) that must be subtracted from the counter 0
result to obtain an accurate count of the number of instructions retired in
the interval beginning three cycles after the profiled instruction reaches
pipeline stage 2 and ending four cycles after the profiled instruction is
retired.

Icache Parity Error.

This bit indicates that the Icache encountered a parity error on instruction
fetch. When a parity error is detected, the Icache is flushed, a replay trap
back to the address of the error instruction is generated, and a correctable
read interrupt is requested. See also |_STAT[LAM].

When set, indicates that an error in the line predictor set |_ STAT[PAR].
|_STAT[LAM] is set only when |_STAT[PAR] is set; is subsequently
cleared when |_STAT[PAR] is cleared (when a 1 is written to
|_STAT[PAR]).

Reserved for COMPAQ.

5-20

Internal Processor Registers

21264/EV68A Hardware Reference Manual

Ibox IPRs

5.2.17 Icache Flush Register — IC_FLUSH

The Icache flush register (IC_FLUSH) is a pseudo register. Writing to this register
invalidates all Icache blocks. The cache is flushed when the next HW_RET/STALL
instruction is retired. See Section D.20 for more information.

5.2.18 Icache Flush ASM Register — IC_FLUSH_ASM

The Icache flush ASM register (IC_FLUSH_ASM) is a pseudo register. Writing to this
register invalidates alcacheblocks with their ASM bit clear.

5.2.19 Clear Virtual-to-Physical Map Register - CLR_MAP

The clear virtual-to-physical map register (CLR_MAP) is a pseudo register that, when
written, results in the clearing of the current map of virtual to physical registers. This
register must only be written after there are no register-borne dependencies present and
there are no unretired instructions. See an example in the PALcode restrictions.

5.2.20 Sleep Mode Register — SLEEP

The sleep mode register (SLEEP) is a pseudo register that, when written, results in the
PLL speed being reduced and the chip entering a low-power mode. This register must
only be written after a sequence of code has been run which saves all necessary state to
DRAM, flushes the caches, and unmasks certain interrupts so the chip can be woken up.
See Section 7.3 for details.

5.2.21 Process Context Register — PCTX

The process context register (PCTX) contains information associated with the context
of a process. Any combination of the bit fields within this register may be written with
a single HW_MTPR instruction. When bits [7:6] of the IPR index field of a

HW_MTPR instruction contain the value 9%his register is selected. Bits [4:0] of the
IPR index indicate which bit fields are to be written. Usage of PCTX in performance
monitoring is described in Section 6.10.

Table 5-13 lists the adoespondence between IPR index bits and register fields.

Table 5-13 IPR Index Bits and Register Fields

IPR Index Bit Register Field

0 ASN

1 ASTER
2 ASTRR
3 PPCE
4 FPE

A HW_MFPR from this register returns the values in all of its component bit fields.

Figure 5—-24 shows the process context register.

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-21

Ibox IPRs

Figure 5-24 Process Context Register

63

4746

1312 9 8 543210

ASN[7:0]

ASTRR[3:0]

ASTER[3:0]

FPE

PPCE

LK99-0032A

Table 5—-14 describes the process context register fields.

Table 5-14 Process Context Register Fields Description

Name

Extent Type

Description

Reserved
ASNJ[7:0]
Reserved

ASTRR[3:0]

ASTER[3:0]

Reserved

[63:47] —
[46:39] RW
[38:13] —
[12:9] RW

[8:5] RW

[4:3] —

5-22 Internal Processor Registers

Address space number.

AST request register—used to request AST interrupts in
each of the four processor modes.
To generate a particular AST interrupt, its corresponding
bits in ASTRR and ASTER must be set, along with the
ASTE bitin IER.
Further, the value of the current mode bits in the PS register
must be equal to or higher than the value of the mode associ-
ated with the AST request.
The bit order with this field is:

User Mode 12

Supervisor Mode 11

Executive Mode 10

Kernel Mode 9

AST enable register—used to individually enable each of

the four AST interrupt requests.

The bit order with this field is:
User Mode
Supervisor Mode
Executive Mode
Kernel Mode

o y®

21264/EV68A Hardware Reference Manual

Ibox IPRs

Table 5-14 Process Context Register Fields Description (Continued)

Name Extent Type Description

FPE [2] RwW,1 Floating-point enable—if clear, floating-point instructions
generate FEN exceptions. This bit is set by hardware on
reset.

PPCE [1] RW Process performance counting enable.

Enables performance counting for an individual process
with counters PCTRO or PCTR1, which are enabled by set-
ting PCTO_EN or PCT1_EN, respectively.

Performance counting for the entire system can be enabled
by setting |_CTL[SPCE]. See Section 5.2.15 for more infor-
mation.

See Section 6.10 for information about performance count-
ing.

Reserved [0] — —

5.2.22 Performance Counter Control Register - PCTR_CTL

The performance counter control register (PCTR_CTL) is a read-write register that
controls the function of the performance counters for either aggregate counting or Pro-
fileMe sampling counting.

Usage of PCTR_CTL in performance monitoring is described in Section 6.10.

Figure 5-25 shows the performance counter control register.

Figure 5-25 Performance Counter Control Register

63 48 47 28272625 6543210

SEXT(PCTRO_CTL[47])
PCTRO[19:0]
PM_STALLED
PM_KILLED_BM
PCTR1[19:0]

SLO

SL1[1:0]

VAL

TAK

LK99-0034A

Table 5-15 describes the performance counter control register fields.

Table 5-15 Performance Counter Control Register Fields Description

Name Extent Type Description

SEXT(PCTRO_CTL[47]) [63:48] RO When read, this field is sign extended from PCTR_CTL[47]. Writes
to this field are ignored.

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-23

Ibox IPRs

Table 5-15 Performance Counter Control Register Fields Description (Continued)

Name

Extent Type Description

PCTRO[19:0] [47:28] RW

PM_STALLED [27] RO

PM_KILLED_BM [26] RO

PCTR1[19:0] [25:6] RW

Reserved [5] RO

SLO

[4] RW

SL1[1:0] [3:2] RW

5-24

Internal Processor Registers

Performance counter O.
PCTROis enabled by |_CTL[PCTO_EN] and either|_CTL[SPCE] or
PCTX[PPCE].

In Aggregate mode:

When enabled, PCTRO is incremented at each cycle by the selected
input. (See Section 6.10.2 for more information.)

On overflow, if enabled by IER_CM[PCENQO],

ISUM[PCO] is set and an interrupt is triggered.

In ProfileMe mode:

On overflow, a count window is opened and PCTRO is incremented
as described in Section 6.10.3. When the count window overflows, if
enabled by IER_CM[PCENO], ISUM[PCO] is set and an interrupt is
triggered.

See Table 5-16 for counter modes.

The profiled instruction stalled for at least one cycle between the
fetch and map stages of the pipeline.

The profiled instruction was killed during or before the cycle in
which it was mapped.

Performance counter 1.

PCTR1isenabled by | CTL[PCT1_EN]and either|_CTL[SPCE] or
PCTX[PPCE].

In Aggregate mode:

When enabled, PCTRL1 is incremented at each cycle by the selected
input. (See Section 6.10.2 for more information.)

On overflow, if enabled by IER_CM[PCEN1], ISUM[PC1]is setand
an interrupt is triggered.

In ProfileMe mode, how PCTR1 is incremented is described in Sec-
tion 6.10.3.

In either case, PCTRL1 is incremented no more than 1 per cycle.

See Table 5-16 for counter modes.
Reads to this field return zero. Writes to this field are ignored.

Selector 0.

0 = Aggregate counting mode

1 = ProfileMe mode

See Table 5-16 for more information.

Selector 1.
Selects counter PCTRO and PCTR1 modes. See Table 5-16 for more
information.

21264/EV68A Hardware Reference Manual

Mbox IPRs

Table 5-15 Performance Counter Control Register Fields Description (Continued)

Name Extent Type Description

VAL [1] RO Profiled instruction valid.
When set, indicates a nontrapping profiled instruction retired valid.
When clear, indicates that a nontrapping profiled instruction was
killed after the cycle in which it was mapped. Valid retire/abort status
for a trapping profiled instruction is determined by the trap type (see
|_STAT[TRAP_TYPE]).

TAK [0] RO ProfileMe conditional branch taken.
Indicates program branch direction, if the profiled instruction is a
conditional branch.

Table 5-16 Performance Counter Control Register Input Select Fields

SLO[4] SL1[3:2] Mode PCTRO PCTR1

0 00 Aggregate Retired instructions Cycle counting

0 01 Aggregate Cycle counting Not defined

0 10 Aggregate Retired instructions Bcache miss or long latency probes
0 11 Aggregate Cycle counting Mbox replay traps

1 00 ProfileMe Retired instructions Cycle counting

1 01 ProfileMe Cycle counting Inum retire delay

1 10 ProfileMe Retired instructions Bcache miss or long latency probes
1 11 ProfileMe Cycle counting Mbox replay traps

5.3 Mbox IPRs

This section describes the internal processor registers that control Mbox functions.

5.3.1 DTB Tag Array Write Registers 0 and 1 — DTB_TAGO, DTB_TAG1

The DTB tag array write registers 0 and 1 (DTB_TAGO and DTB_TAGL1) are write-
only registers through which the two memory pipe DTB &apys are witten. Write
transactions to DTB_TAGO and DTB_TAGL1 write data to registers outside the DTB
arrays. When write transactions to themwsponding DTB_PTE registers are retired,

the contents of both the DTB_TAG and DTB_PTE registers are written into their
respective DTB arrays, at locations determined by the round-robin allocation algorithm.
Figure 5-26 shows the DTB tag array write registers 0 and 1.

Figure 5-26 DTB Tag Array Write Registers 0 and 1

63 4847 1312 0

VA[47:13]

LK99-0035A

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-25

Mbox IPRs

5.3.2 DTB PTE Array Write Registers 0 and 1 — DTB_PTEO, DTB_PTE1

The DTB PTE array write registers 0 and 1 (DTB_PTEO and DTB_PTEL) are registers
through which the DTB PTE arrays are written. The entries to be written are chosen by
a round-robin allocation scheme. Write transactions to the DTB_PTE registers, when
retired, result in both the DTB_TAG and DTB_PTE arrays being written. Figure 5-27
shows the DTB PTE array write registers 0 and 1.

Figure 5-27 DTB PTE Array Write Registers 0 and 1

6362 3231 161514131211109 8 7 6 54 3 2 1 0

PA[43:13]
UWE
SWE
EWE
KWE
URE
SRE
ERE
KRE

GHI1:0]
ASM
FOW
FOR

5.3.3 DTB Alternate Processor Mode Register —- DTB_ALTMODE

The DTB alternate processor mode register (DTB_ALTMODE) is a write-only register
whose contents specify the alternate processor mode used by some HW_LD and
HW_ST instructions. Figure 5-28 shows the DTB alternate processor mode register.

Figure 5-28 DTB Alternate Processor Mode Register

63

ALT_MODE[1:0]

LK99-0037A

Table 5-17 describes the DTB_ALTMODE register fields.

Table 5-17 DTB Alternate Processor Mode Register Fields Description

Name Extent Type Description

Reserved [63:2] — —

5-26 Internal Processor Registers 21264/EV68A Hardware Reference Manual

Mbox IPRs

Table 5-17 DTB Alternate Processor Mode Register Fields Description (Continued)

Name Extent Type Description
ALT_MODE[1:0] [1:0] woO Alt_Mode:
ALT_MODE[1:0] Mode
00 Kernel
01 Executive
10 Supervisor
11 User

5.3.4 Dstream TB Invalidate All Process (ASM=0) Register — DTB_IAP

The Dstream tnaslation bdfer invalidate all process (ASM=0) register (DTB_IAP)isa
write-only pseudo register. Write transactions to this register invalidate all DTB entries
in which the address space match (ASM) bit is clear.

5.3.5 Dstream TB Invalidate All Register — DTB_IA

The Dstream translation Har invalidate all register (DTB_IA) is a write-only pseudo
register. Write transactions to this register invalidate all DTB entries and reset the DTB
not-last-used pointer to its initial state.

5.3.6 Dstream TB Invalidate Single Registers 0 and 1 — DTB_IS0,1

The Dstream translation buffer invalidate single registers (DTB_ISO and DTB_IS1) are
write-only pseudo registers through which software may invalidate a single entry in the
DTB arrays. Writing a virtual page number to one of these registers invalidates any

DTB entry in the corresponding memory pipeline which meets one of the following cri-
teria:

* The DTB entry’s virtual page number matches DTB_IS[47:13] and its ASN field
matches DTB_ASN[63:56].

* The DTB entry’s virtual page number matches DTB_IS[47:13] and its ASM bit is
set.

Figure 5-29 shows the Dstream translation buffer invalidate single registers.

Figure 5-29 Dstream Translation Buffer Invalidate Single Registers

63

4847 1312 0

VA[47:13]

LK99-0015A

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-27

Mbox IPRs

5.3.7 Dstream TB Address Space Number Registers 0 and 1 — DTB_ASNO,1

The Dstream translation Har address space number registers (DTB_ASNO and
DTB_ASN1) are write-only registers that should be written with the address space
number (ASN) of the current process. Figure 5-30 shows the Dstream translation buffer
address space number registers 0 and 1.

Figure 5-30 Dstream Translation Buffer Address Space Number Registers 0 and 1

63 56 55 0

ASN[7:0] J

5.3.8 Memory Management Status Register — MM_STAT

LK99-0038A

The memory management status register (MM_STAT) is a read-only register.

When a Dstream TB miss or fault occurs, information abouttner is latched in
MM_STAT. MM_STAT is not updated when a LD_VPTE gets a DTB miss instruction.
Figure 5-31 shows the memory management status register.

Figure 5-31 Memory Management Status Register

63 1110 9 43210

DC_TAG_PERR
OPCODE[5:0]
FOW

FOR

ACV

WR

LK99-0039A

Table 5-18 describes the memory management status register fields.

Table 5-18 Memory Management Status Register Fields Description

Name Extent Type Description
Reserved [63:11] — —
DC_TAG_PERR [10] RO This bit is set when a Dcache tag parity error occurred during the

initial tag probe of a load or store instruction. The error created a
synchronous fault to the D_FAULT PALcode entry point and is
correctable. The virtual address associated with the error is avail-
able in the VA register.

OPCODE][5:0] [9:4] RO Opcode of the instruction that caused the error.
HW_LD is displayed as 3 and HW_ST is displayed as 7.

FOW [3] RO This bit is set when a fault-on-write error occurs during a write
transaction and PTE[FOW] was set.

5-28 Internal Processor Registers 21264/EV68A Hardware Reference Manual

Mbox IPRs

Table 5-18 Memory Management Status Register Fields Description (Continued)

Name Extent Type Description
FOR [2] RO This bit is set when a fault-on-read error occurs during a read
transaction and PTE[FOR] was set.
ACV [1] RO This bit is set when an access violation occurs during a transac-
tion. Access violations include a bad virtual address.
WR [0] RO This bit is set when an error occurs during a write transaction.
Note: The Ra field of the instruction that triggered the error can be obtained from

the Ibox EXC_SUM register.

5.3.9 Mbox Control Register - M_CTL

The Mbox control register (M_CTL) is a write-only register. Its contents arareld by
chip reset. Figure 5-32 shows the Mbox control register.

Figure 5-32 Mbox Control Register

63 6 5 4 3 10

SMC[1:0]
SPE[2:0]

LK99-0040A

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-29

Mbox IPRs

Table 5-19 describes the Mbox control register fields.

Table 5-19 Mbox Control Register Fields Description

Name Extent Type Description

Reserved [63:6] — —
SMCJ[1:0] [5:4] WO,0 Speculative miss control (see Section 4.6.4).

Bits Meaning When Set
00 Allow full-time speculation.

01 Force full-time conservative mode. Make retries wait until retire,
force all new stores that do not hit dirty to retry, and cause prefetches
with modify intent (see Section 2.6.2) to behave like normal
prefetches.

10 Place 21264/EV68A in periodic conservative mode by using an 8-bit
counter to add by 4 each time a branch mispredict happens and sub-
tract by one each time a conditional branch retires. Enter conserva-
tive mode if the MSB of the counter is set.

11 Place 21264/EV68A in periodic conservative mode by using an 8-bit
countner to add by 8 each time a branch mispredict happens and sub-
tract by one each time a conditional branch retires. Enter conserva-
tive mode if the MSB of the counter is set.

SPE[2:0] [3:1] WO,0 Superpage mode enables.

SPE[2], when set, enables superpage mapping when VA[47:46] = 2. In this
mode, VA[43:13] are mapped directly to PA[43:13] and VA[45:44] are
ignored.

SPE[1], when set, enables superpage mapping when VA[47:41} 5 #E
this mode, VA[40:13] are mapped directly to PA[40:13] and PA[43:41] are
copies of PA[40] (sign extension).

SPE[0], when set, enables superpage mapping when VA[47:30] = 3FFE
In this mode, VA[29:13] are mapped directly to PA[29:13] and PA[43:30] are
cleared.

Reserved [0] — —

Note: Superpage accesses are only allowed in kernel mode. Non-kernel mode ref-
erences to superpages result in access violations.

5.3.10 Dcache Control Register — DC_CTL

The Dcache control register (DC_CTL) is a write-only register that controls Dcache
activity. The contents of DC_CTL are initialized by chip reset as indicated. Figure 5—-33
shows the Dcache control register.

5-30 Internal Processor Registers 21264/EV68A Hardware Reference Manual

Mbox IPRs

Figure 5-33 Dcache Control Register

63 876543210

DCDAT_ERR_EN
DCTAG_PAR_EN
F_BAD_DECC
F_BAD_TPAR
F_HIT
SET_EN[1:0]

LK99-0041A
Table 5-20 describes the Dcache control register fields.

Table 5-20 Dcache Control Register Fields Description

Name Extent Type Description

Reserved [63:8] — —

DCDAT_ERR_EN [7] WO,0 Dcache data ECC and parity error enable.
DCTAG_PAR_EN [6] WO,0 Dcache tag parity enable.

F_BAD_DECC [5] WO,0 Force Bad Data ECC. When set, ECC dataisvritten into

the cache along with the block that is loaded by a fill or store.
Writing data that is different from that already in the block will
cause bad ECC to be present. Since the old ECC value will
remain, the ECC will béad

F_BAD_TPAR [4] WO,0 Force Bad Tag Parity. When set, this bit causes bad tag parity to
be put into the Dcache tag array during Dcache fill operations.

Reserved [3] — —

F _HIT [2] WO,0 Force Hit. When set, this bit causes all memory space load and
store instructions to hit in the Dcache, independent of the
Dcache tag address compare. F_HIT does not force the status of
the block to register as DIRTY (the tag status bits are still con-
sulted), so stores may still generate offchip activity.
In this mode, only one of the two sets may be enabled, and tag
parity checking must be disabled (set DCTAG_PER_EN to
Zero).

SET_EN[1:0] [1:0] WO,3 Dcache Set Enable. At least one set must be enabled.

5.3.11 Dcache Status Register — DC_STAT

The Dcache status register (DC_STAT) is a read-write register. If a Dcache tag parity
error or data ECC error occurs, information about the error is latched in this register.
Figure 5-34 shows the Dcache status register.

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-31

Cbox CSRs and IPRs

Figure 5-34 Dcache Status Register

63 543210

SEO
ECC_ERR_LD
ECC_ERR_ST

TPERR_P1
TPERR_PO

LK99-0042A

Table 5-21 describes the Dcache status register fields.

Table 5-21 Dcache Status Register Fields Description

Name Extent Type Description
Reserved [63:5] — —
SEO [4] wicC Second error occurred. When set, this bit indicates that a second

Dcache store ECC error occurred within 6 cycles of the previous
Dcache store ECC error.

ECC_ERR_LD [3] WwicC ECC error on load. When set, this bit indicates that a single-bit ECC
error occurred while processing a load from the Dcache or any fill.
ECC_ERR_ST [2] wicC ECC error on store. When set, this bit indicates that an ECC error

occurred while processing a store.

TPERR_P1 [1] wicC Tag parity error — pipe 1. When set, this bit indicates that a Dcache
tag probe from pipe 1 resulted in a tag parity error. The error is uncor-
rectable and results in a machine check.

TPERR_PO [0] wicC Tag parity error — pipe 0. When set, this bit indicates that a Dcache
tag probe from pipe 0 resulted in a tag parity error. The error is uncor-
rectable and results in a machine check.

5.4 Cbox CSRs and IPRs

This section describes the Cbox CSRs and IPRs.
The Cbox configuration registers are split into three shift register chains:

* The hardware allocates 367 bits for the WRITE_ONCE chain, of which the 21264/
EV68A uses 304 bits. During hardware reset (after BiST), 367 bits are always
shifted into the WRITE_ONCE chain from the SROM, MSB first, so that the
unused bits are shifted out the end of the WRITE_ONCE chain.

* A 36-bit WRITE_MANY chain thatis loaded using MTPR instructions to the Cbox
data register. Six bits of information are shifted into the WRITE_MANY chain dur-
ing each write transaction to the Cbox data register.

* A 60-bit Cbox ERROR_REG chain that is read by using MFFR instructions from
the Cbox data register in combination with MTPR instructions to the Cbox shift
register. Each write transaction to the Chox shift register destructively shifts six bits
of information out of the Cboxerror ragister.

5-32 Internal Processor Registers 21264/EV68A Hardware Reference Manual

Cbox CSRs and IPRs

5.4.1 Cbox Data Register — C_DATA

Figure 5-35 shows the Cbox data register.

Figure 5-35 Chox Data Register

63 6 5 0

C_DATA[5:0]

LK99-0043A

Table 5-22 describes the Cbox data register fields.

Table 5-22 Chox Data Register Fields Description

Name Extent Type Description
Reserved [63:6] — —
C_DATAJ5:0] [5:0] RW Cbox data register. AHW_MTPR instruction to this register causes six

bits of data to be placed into a serial shift register. When the
HW_MTPR instruction is retired, the data is shifted into the Cbox. After
the Cbox shift register has been accessed, performing a HW_MFPR
instruction to this register will return six bits of data.

5.4.2 Cbox Shift Register — C_SHFT
Figure 5-36 shows the Cbox shift register.

Figure 5-36 Cbox Shift Register

63 10

C_SHIFT

LK99-0044A

Table 5-23 describes the Cbox shift register fields.

Table 5-23 Cbox Shift Register Fields Description

Name Extent Type Description
Reserved [63:1] — —
C_SHIFT [0] w1l Writing a 1 to this register bit causes six bits of Cbox IPR data to shift into

the Cbox data register. Software can then use a HW_MFPR read operation
to the Cbox data register to read the six bits of data.

5.4.3 Cbox WRITE_ONCE Chain Description
The WRITE_ONCE chain order is contained in Table 5-24. In the table:

* Many CSRs are duplicated for ease of hardware implementation. These CSRs are
indicated in italics. They must be written with values that are identical to the values
written to the original CSRs.

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-33

Cbox CSRs and IPRs

* Only a brief description of each CSR is given. The functional description of these
CSRs is contained in Chapter 4.

e The order of multibit vectors is [MSB:LSB], so the LSB is first bit in the Cbox

chain.

Table 5-24 describes the Cbox WRITE_ONCE chain order from LSB to MSB.

Table 5-24 Chox WRITE_ONCE Chain Order

Cbox WRITE_ONCE Chain

Description

32_BYTE_IO[0]
BC_CLK_RATIO[1]
SKEWED_FILL_MODE[0]

DCVIC_THRESHOLDI[7:0]

BC_CLEAN_VICTIM[O]
SYS_BUS_SIZE[1:0]
SYS_BUS_FORMATI[0]
SYS_CLK_RATIO[4:1]

DUP_TAG_ENABLE[0]
PRB_TAG_ONLYI[0]
FAST_MODE_DISABLE[0]
BC_RDVICTIM[0]
BC_CLEAN_VICTIM[O]
RDVIC_ACK_INHIBIT

SYSBUS_MB_ENABLE
SYSBUS_ACK_LIMIT[0:4]
SYSBUS_VIC_LIMIT[0:2]
BC_CLEAN_VICTIM[O]
BC_WR_WR_BUBBLE[0]
BC_RD_WR_BUBBLES[0:5]
BC_RD_RD_BUBBLE[0]
BC_SJ_BANK_ENABLE

5-34 Internal Processor Registers

Enable 32_BYTE I/O mode.
Asserted when Bcache is at 1.5x ratio.

Must be asserted for Bcache 1.5x ratio; for maximum performance,
can also be asserted for 3.0x and 3.5x ratios.

Threshold of the number of Dcache victims that will accumulate
before streamed write transactions to the Bcache are initiated. The
Cbox can accumulate up to six victims for streamed Dcache pro-
cessing. This register is programmed with the decoded value of the
threshold count.

Enable clean victims to the system interface.
Size of SysAddOut and SysAddOut buses.
Indicates system bus format.

Speed of system bus.

Code Multiplier
0001 1.5X
0010 2.0X
0100 2.5X
1000 3.0X

Enable duplicate tag mode in the 21264/EV68A.
Enable probe-tag only mode in the 21264/EV68A.
When asserted, disables fast data movement mode.
Enables RdVictim mode on the pins.

Duplicate CSR.

Enable inhibition of incrementing acknowledge counter for RdVic
commands.

Enable MB commands offchip.
Sysbus acknowledge limit CSR.
Limit for victims.
Duplicate CSR.
Write to write GCLK bubble.
Read to write GCLK bubbles for the Bcache interface.
Read to read GCLK bubble for banked Bcaches.

Enable bank mode for Bcache.

21264/EV68A Hardware Reference Manual

Cbox CSRs and IPRs

Table 5-24 Chox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain

Description

BC_WR_RD_BUBBLES[0:3]
DUP_TAG_ENABLE
SKEWED_FILL_MODE
BC_RDVICTIM
SKEWED_FILL_MODE
BC_RDVICTIM
BC_CLEAN_VICTIM
DUP_TAG_MODE
SKEWED_FILL_MODE
ENABLE_PROBE_CHECK
SPEC_READ_ENABLE[0]
SKEWED_FILL_MODE
SKEWED_FILL_MODE
MBOX_BC_PRB_STALL

BC_LAT_DATA_PATTERN[0:31]
BC_LAT_TAG_PATTERN[0:23]
BC_RDVICTIM
ENABLE_STC_COMMANDI0]
BC_LATE_WRITE_NUMI[0:2]

BC_CPU_LATE_WRITE_NUM[0:1]

BC_BURST_MODE_ENABLE[0]
BC_PENTIUM_MODE[0]
BC_CLK_RATIO[1]
BC_FRM_CLK[0]

BC_CLK_DELAY[0:1]
BC_DDMR_ENABLE[0]

BC_DDMF_ENABLE[0]

BC_LATE_WRITE_UPPER][0]

21264/EV68A Hardware Reference Manual

Write to read GCLK bubbles.

Duplicate CSR.

Duplicate CSR.

Duplicate CSR.

Duplicate CSR.

Duplicate CSR.

Duplicate CSR.

Duplicate CSR.

Duplicate CSR.

Enable error checking during probe processing.
Enable speculative references to the system port.
Duplicate CSR.

Duplicate CSR.

Must be asserted when BC_RATIO = 4.0X, 5.0X, 6.0X, 7.0X, or
8.0X.

Bcache data latency pattern.

Bcache tag latency pattern.

Duplicate CSR.

Enable STx_C instructions to the pins.

Number of Bcache clocks to delay the data for Bcache write com-
mands.

Number of GCLK cycles to delay the Bcache clock/data from
index.

Burst mode enable signal.
Enable Pentium mode RAM behavior.
Duplicate CSR.

Force all Bcache transactions to start on rising edges of the A phase
of a GCLK.

Delay of Bcache clock for 0,0,1,2 GCLK phases.

Enables the rising edge of the Bcache forwarded clock (always
enabled).

Enable the falling edge of the Bcache forwarded clock. (always
enabled).

Asserted when (BC_LATE_WRITE_NUM > 3) or
((BC_LATE_WRITE_NUM = 3) and
(BC_CPU_LATE_WRITE_NUM > 1)).

Internal Processor Registers 5-35

Cbox CSRs and IPRs

Table 5-24 Chox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain

Description

BC_TAG_DDM_FALL_EN[0]

BC_TAG_DDM_RISE_EN[O0]

BC_CLKFWD_ENABLE[0]
BC_RCV_MUX_CNT_PRESET[0:1]
BC_LATE_WRITE_UPPER][0]
SYS_DDM_FALL_ENJ0]

SYS_DDM_RISE_EN[0]

SYS_CLKFWD_ENABLE[0]
SYS_RCV_MUX_CNT_PRESET[0:1]
SYS_CLK_DELAY[0:1]

SYS_DDMR_ENABLE[0]

SYS_DDMF_ENABLEJ0]

BC_DDM_FALL_ENJ0]

BC_DDM_RISE_EN[0]

BC_CLKFWD_ENABLE
BC_RCV_MUX_CNT_PRESET[0:1]
BC_CLK_DELAY[0:1]
BC_DDMR_ENABLE
BC_DDMF_ENABLE
SYS_DDM_FALL_EN
SYS_DDM_RISE_EN
SYS_CLKFWD_ENABLE
SYS_RCV_MUX_CNT_PRESET[0:1]
SYS_CLK_DELAY[0:1]
SYS_DDMR_ENABLE
SYS_DDMF_ENABLE
BC_DDM_FALL_EN
BC_DDM_RISE_EN

5-36 Internal Processor Registers

Enables the update of the 21264/EV68A Bcache tag outputs based
on the falling edge of the forwarded clock.

Enables the update of the 21264/EV68A Bcache tag outputs based
on the rising edge of the forwarded clock.

Enable clock forwarding on the Bcache interface.
Initial value for the Bcache clock forwarding unload pointer FIFO.
Duplicate CSR.

Enables the update of the 21264/EV68A system outputs based on
the falling edge of the system forwarded clock.

Enables the update of the 21264/EV68A system outputs based on
the rising edge of the system forwarded clock.

Enables clock forwarding on the system interface.
Initial value for the system clock forwarding unload pointer FIFO.

Delay of 0 to 2 phases between the forwarded clock out and
address/data.

Enables the rising edge of the system forwarded clock (always
enabled).

Enables the falling edge of the system forwarded clock (always
enabled).

Enables update of data/address on the rising edge of the system for-
warded clock.

Enables the update of data/address on the falling edge of the system
forwarded clock.

Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.

21264/EV68A Hardware Reference Manual

Table 5-24 Chox WRITE_ONCE Chain Order (Continued)

Cbox CSRs and IPRs

Cbox WRITE_ONCE Chain

Description

BC_CLKFWD_ENABLE
BC_RCV_MUX_CNT_PRESET[0:1]
SYS_DDM_FALL_EN
SYS_DDM_RISE_EN
SYS_CLKFWD_ENABLE
SYS_RCV_MUX_CNT_PRESET[0:1]
SYS_CLK_DELAY[0:1]
SYS_DDMR_ENABLE
SYS_DDMF_ENABLE
BC_DDM_FALL_EN
BC_DDM_RISE_EN
BC_CLKFWD_ENABLE
BC_RCV_MUX_CNT_PRESET[0:1]
BC_CLK_DELAY[0:1]
BC_DDMR_ENABLE
BC_DDMF_ENABLE
SYS_DDM_FALL_EN
SYS_DDM_RISE_EN
SYS_CLKFWD_ENABLE
SYS_RCV_MUX_CNT_PRESET[0:1]
SYS_CLK_DELAY[1:0]
SYS_DDMR_ENABLE
SYS_DDMF_ENABLE
BC_DDM_FALL_EN
BC_DDM_RISE_EN
BC_CLKFWD_ENABLE
BC_RCV_MUX_CNT_PRESET[1:0]
SYS_CLK_DELAY[0:1]
SYS_DDMR_ENABLE
SYS_DDMF_ENABLE
SYS_DDM_FALL_EN
SYS_DDM_RISE_EN
SYS_CLKFWD_ENABLE
SYS_RCV_MUX_CNT_PRESET[0:1]

Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.

Duplicate CSR.

Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.

Duplicate CSR.

Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.
Duplicate CSR.

Duplicate CSR.

21264/EV68A Hardware Reference Manual

Internal Processor Registers 5-37

Cbox CSRs and IPRs

Table 5-24 Chox WRITE_ONCE Chain Order (Continued)

Cbox WRITE_ONCE Chain

Description

CFR_GCLK_DELAY[0:3]
CFR_EV6CLK_DELAY[0:2]
CFR_FRMCLK_DELAY[0:1]
BC_LATE_WRITE_NUM][0:2]

BC_CPU_LATE_WRITE_NUM][1:0]

JITTER_CMD[0]
FAST_MODE_DISABLE[0]
SYSDC_DELAY[3:0]

DATA_VALID_DLY[1:0]

BC_DDM_FALL_EN
BC_DDM_RISE_EN
BC_CPU_CLK_DELAY[0:1]
BC_FDBK_EN[0:7]

BC_CLK_LD_VECTOR[0:15]

BC_BPHASE_LD_VECTORI[0:3]
SYS_DDM_FALL_EN
SYS_DDM_RISE_EN
SYS_CPU_CLK_DELAY[0:1]

SYS_FDBK_EN[0:7]

SYS_CLK_LD_VECTOR][0:15]

SYS_BPHASE_LD_VECTOR][0:3]

SYS_FRAME_LD_VECTOR[0:4]

SYSDC_DELAY[4]

Number of GCLK cycles to delay internal CIkFwdRst.
Number of EV6CIkx cycles to delay internal CIkFwdRst.
Number of FrameClkk cycles to delay internal CIkFwdRst.
Duplicate CSR.
Duplicate CSR.
Add one GCLK cycle to the SYSDC write path.
Duplicate CSR.

Number of GCLK cycles to delay SysDc fill commands before
action by the Cbox.

Number of Bcache clock cycles to delay signal SysDatalnValid
before sample by the Cbox.

Duplicate CSR.
Duplicate CSR.
Delay of Bcache clock for 0, 1, 2, 3 GCLK cycles.

CSR to program the Bcache forwarded clock shift register feedback
points.

CSR to program the Bcache forwarded clock shift register load val-
ues.

CSR to program the Bcache forwarded clock b-phase enables.
Duplicate CSR.
Duplicate CSR.

Delay of 0..3 GCLK cycles between the forwarded clock out and
address/data.

CSR to program the system forwarded clock shift register feedback
points.

CSR to program the system forwarded clock shift register load val-
ues.

CSR to program the system forwarded clock b-phase enables.

CSR to program the ratio between frame clock and system for-
warded clock.

Fifth SYSDC_DELAY bit.

5.4.4 Cbox WRITE_MANY Chain Description
The WRITE_MANY chain order is contained in Table 5-25. Note the following:

* Many CSRs are duplicated for ease of hardware implementation. These CSR names

are indicated in italics and have two leading asterisks.

* Only a brief description of each CSR is given. The functional description of these
CSRs is contained in Chapter 3.

5-38 Internal Processor Registers

21264/EV68A Hardware Reference Manual

Cbox CSRs and IPRs

* The order of multibit vectors is [MSB:LSB], so the LSB is first bit in the Chox

chain.

Table 5-25 describes the Cbox WRITE_MANY chain order from LSB to MSB.

Table 5-25 Chox WRITE_MANY Chain Order

Cbox WRITE_MANY Chain

Description

For Information:

BC_VALID_MODE
INIT_MODE[0]

BC_SIZE[3:0]

BC_ENABLE[0]

BC_ENABLE

BC_SIZE[0:3]

BC_ENABLE

BC_ENABLE

BC_ENABLE
INVAL_TO_DIRTY_ENABLE[1]
ENABLE_EVICT

BC_ENABLE
INVAL_TO_DIRTY_ENABLE[0]
BC_ENABLE

BC_ENABLE

BC_ENABLE
SET_DIRTY_ENABLE[0]
INVAL_TO_DIRTY_ENABLE[0]
SET_DIRTY_ENABLE[2:1]
BC_BANK_ENABLE[0]
BC_SIZE[0:3]

INIT_MODE
BC_WRT_STS[0:3]

Control Bcache block parity calculation

Enable initialize mode
Bcache size
Enable the Bcache
Duplicate CSR
Duplicate CSR
Duplicate CSR
Duplicate CSR
Duplicate CSR
WH64 acknowledges
Enable issue evict
Duplicate CSR
WH64 acknowledges
Duplicate CSR
Duplicate CSR
Duplicate CSR

SetDirty acknowledge programming

Duplicate CSR

SetDirty acknowledge programming

Enable bank mode for Bcache

Duplicate CSR
Duplicate CSR

Write status for Bcache in initialize-mode

(Valid, Dirty, Shared, Parity)

Section 8.8
Section 7.6
Table 4-42
Table 4-42

Table 4-42
Table 4-42
Table 4-42
Table 4-42
Table 4-42
Table 4-15
Table 4-1
Table 4-42
Table 4-15
Table 4-42
Table 4-42
Table 4-42
Table 4-16
Table 4-15
Table 4-16
Section 4.8.5
Table 4-42
Section 7.6
Section 7.6

1 mBZz during initialization mode; see Section 7.6 for information.

Figure 5-37 shows an example of PALcode used to write to the WRITE_MANY chain.

Figure 5-37 WRITE_MANY Chain Write Transaction Example

BC_VALID_MODE = 1
BC_ENABLE = 1

; Initialize the Bcache configuration in the Cbox

21264/EV68A Hardware Reference Manual

Internal Processor Registers 5-39

Cbox CSRs and IPRs

INIT_MODE = 0
BC_SIZE = OxF
INVALID_TO_DIRTY_ENABLE = 3
ENABLE_EVICT = 1
SET_DIRTY_ENABLE = 6
BC_BANK_ENABLE = 1
BC_WRT_STS = 0

shifting right by 6 after each write.

WRITE_MANY chain = 0x07FBFFFFD
value to be shifted in

= OXF7FFEFFC1

The value for the write_many chain is based on Table 5-25.
The value is sampled from MSB, 6 bits at a time, as it is written

to EV6__DATA. Therefore, before the value can be shifted in, it must be
inverted on a by 6 basis. The code then writes out 6 bits at a time,

So the following transformation is done on the write_many value:

[35:30]|[29:24]|[23:18]|[17:12]|[11:06]|[05:00] =>
[05:00]|[11:06]|[17:12]|[23:18]|[29:24]|[35:30]

Before the chain can be written, |_CTL[SBE] must be disabled,
and the code must be forced into the Icache.

ALIGN_CACHE_BLOCK <"x47FFO041F>; align with nops

mb

Ida r0, ~x0086(r31)
hw_mtpr r0, EV6__|_CTL
br ro, .

addq r0, #17, r0

hw_mtpr r31, EV6__IC_FLUSH
bne r31, .

hw_jmp_stall (r0)

ALIGN_CACHE_BLOCK <"x47FF041F>

bc_config:

mb

Ida rl, "xFFC1(r31)

Idah r0, "X7FFE(r31)

zap rl, #'x0c, rl

bis rl, r0, rl1

addq r31, #6, r0
bc_config_shift_in:

hw_mtpr rl, EV6__DATA

subq r0, #1, r0

beq r0, bc_config_done

srl rl, #6, rl

br r31, bc_config_shift_in
bc_config_done:

hw_mtpr r31, <EV6__MM_STAT ! 64>

beq r31, bc_config_end

br r31, .-4

bis r31, r31, r31

bis r31, r31, r31

bc_config_end:

5-40 Internal Processor Registers

; wait for MEM-OP’s to complete

; load |_CTL.....

Do SDE=2, IC_EN=3, SBE=0
. create dest address

; finish computing dest address
; flush the Icache
; separate retires
. force flush

; align with nops

; pull this block in Icache
; data[15:00] = OxFFC1
; data[31:16] = OX7FFE
; clear out bits [31:16]

; or in bits [31:16]
; shift in 6 x 6 bits

; shift in 6 bits
; decrement RO

; done if RO is zero
; align next 6 bits

; continue shifting

; wait until last shift

; predicts fall thru

; predict infinite loop
; hop
; hop

21264/EV68A Hardware Reference Manual

Cbox CSRs and IPRs

5.4.5 Cbox Read Register (IPR) Description

The Cbox read register is read 6 bits at a time. Table 5-26 shows the ordering from LSB
to MSB.

Table 5-26 Chox Read IPR Fields Description

Name Description
C_SYNDROME_1[7:0] Syndrome for upper QW in OW of victim that was scrubbed.
C_SYNDROME_Q[7:0] Syndrome for lower QW in OW of victim that was scrubbed.

21264/EV68A Hardware Reference Manual Internal Processor Registers 5-41

Table 5-26 Chox Read IPR Fields Description (Continued)

Name Description
C_STAT[4:0] As follows:
Bits Error Status

00000 Either no error, or error on a speculative load, or a Bcache victim read
due to a Dcache/Bcache miss

00001 BC_PERR (Bcache tag parity error)
00010 DC_PERR (duplicate tag parity error)
00011 DSTREAM_MEM_ERR

00100 DSTREAM_BC_ERR

00101 DSTREAM_DC_ERR

0011X PROBE_BC_ERR

01000 Reserved

01001 Reserved

01010 Reserved

01011 ISTREAM_MEM_ERR

01100 ISTREAM_BC_ERR

01101 Reserved

0111X Reserved

10011 DSTREAM_MEM_DBL

10100 DSTREAM_BC_DBL

11011 ISTREAM_MEM_DBL

11100 ISTREAM_BC_DBE

1 When the Cbox WRITE_ONCE chain bit
SKEWED_FILL_MODE[O] is clear, the error status is as specified,;
when set, the error status applies only to first octaword of the fill, and
error status for the rest of the fill is generic DOUBLE_BIT_ERROR
(AXXXX).

C_STSJ[3:0] If C_STAT equalzxx MEM_ERR orxxx BC_ERR, then C_STS contains the
status of the block as follows; otherwise, the value of C_STS is X:

Bit Value Status of Block

7:4 Reserved
3 Parity
2 Valid
1 Dirty
0 Shared
C_ADDR[6:42] Address of last reported ECC or parity error. If C_STAT value is

DSTREAM_DC_ERR, only bits 6:19 are valid.

6

Privileged Architecture Library Code

This chapter describes the 21264/EV68A privilegedhitecture library code (PAL-
code). The chapter is organized as follows:

e PALcode description

* PALmode environment

* Required PALcode function codes

* Opcodes reserved for PALcode

* Internal processor registeceess mechanisms
e PALshadow registers

* PALcode emulation of FPCR

* PALcode entry points

* Translation buffer fill flows

* Performance counter support

6.1 PALcode Description

PALcode is macrocode thatgrides an architecturally-defined, operating-system-spe-
cific programming interface that is common across all Alpha microgsaes. The

actual implementation of PALcode differs for each operating system. PALcode runs
with privileges enabled, instruction stream (Istream) mapping disabled, and interrupts
disabled. PALcode has privilege to use five special opcodes that allow functions such as
physical data stream (Dstream) references and internal gsoceegister (IPR) manip-
ulation.

PALcode can be invoked by the following events:
* Reset

e System hardware exceptions (MCHK, ARITH)
* Memory-management exceptions

* Interrupts

e CALL_PAL instructions

PALcode has characteristics that make it appear to be dication of microcode,
ROM BIOS, and system service routines, though the analogy to any of these other
items is not exact. PALcode exists for several major reasons:

21264/EV68A Hardware Reference Manual Privileged Architecture Library Code 6-1

PALmMode Environment

* There are some necessary support functions that are too complex to implement
directly in a processor chip’s hardware, but that cannot be handled by a normal
operating system software routine. Routines to fill the translation buffer (TB),
acknowledge interrupts, and dispatch exceptions are some examples. In some archi-
tectures, these functions are handled by microcode, but the Alpha architecture is
careful not to mandate the use of microcode so as to allow reasonable chip imple-
mentations.

* There are functions that must run atomically, yet involve long sequences of instruc-
tions that may need complete access to all of the underlying computer hardware.
An example of this is the sequence that returns from an exceptionesrupt.

* There are some instructions that are necessary for backward compatibility or ease
of programming; however, these are not used often enough to dedicate them to
hardware, or are so complex that they would jeopardize the overall performance of
the computer. For example, an instruction that does a VAX style interlocked mem-
ory access might be familiar to someone used to programming on a CISC machine,
but is not included in the Alpharchitecture. Another example is the emulation of
an instruction that has no direct hardware support in a particular chip implementa-
tion.

In each of these cases, PALcode routines are used to provide the function. The routines
are nothing more than programs invoked at specified times, and read in as Istream code
in the same way that all other Alpha code is read. Once invoked, however, PALcode
runs in a special mode called PALmode.

6.2 PALmode Environment
PALcode runs in a special environment called PALmode, defined as follows:

* |stream memory naping is disabled. Because the PALcode is used to implement
translation buffer fill routines, Istream mapping clearly cannot be enabled. Dstream
mapping is still enabled.

* The program has privileged access to all of the computer hardware. Most of the
functions handled by PALcode are privileged and need control of the lowest
levels of the system.

* Interrupts are disabled. If a long sequence of instructions need to be executed
atomically, interrupts cannot be allowed.

An important aspect of PALcode is that it uses normal Alpha instructions for most of its
operations; that is, the same instruction set that nonprivileged Alpha programmers use.
There are a few extra instructions that are only available in PALmode, and will cause a
dispatch to the OPCDEC PALcode entry point if attempted while not in PALmode. The
Alpha architecture allows some flexibility in what these special PALmode instructions do.
In the 21264/EV68A, the special PALmode-only instructions perform the following func-
tions:

* Read or write internal processor registers (HW_MFPR, HW_MTPR)

* Perform memory load or store operations without invoking the normal memory-
management routines (HW_LD, HW_ST)

* Return from an exception or interrupt (HW_RET)

6-2 Privileged Architecture Library Code 21264/EV68A Hardware Reference Manual

Required PALcode Function Codes

When executing in PALmode, there are certain restrictions for using the privileged
instructions because PALmMode gives the programmer complete access to many of the

internal details of the 21264/EV68A. Refer to Section 6.4 for information on these spe-
cial PALmode instructions.

Caution: Itis possible to cause unintended side effects by writing what appears to be
perfectly acceptable PALcode. As such, PALcode is not something that

many users will want to change. Before writing PALcode, at least become
familiar with the information in Appendix D.

6.3 Required PALcode Function Codes
Table 6-1 lists opcodes required for all Alpha implementations. The notation used is
oo.ffff, where 00 is the hexadecimal 6-bit opcode and ffff is the hexadecimal 26-bit

function code.

Table 6—-1 Required PALcode Function Codes

Mnemonic Type Function Code
DRAINA Privileged 00.0002
HALT Privileged 00.0000
IMB Unprivileged 00.0086

6.4 Opcodes Reserved for PALcode

Table 6-2 lists the opcodes reserved by the Alpha architecture for implementation-spe-
cific use. These opcodes are privileged and are only available in PALmode.

Table 6-2 Opcodes Reserved for PALcode

Architecture
Mnemonic Opcode Mnemonic Function

HW_LD 1B PAL1B Dstream load instruction
HW_ST 1F PAL1F Dstream store instruction
HW_RET 1E PAL1E Return from PALcode routine
HW_MFPR 19 PAL19

Copies the value of an IPR into an integer GPR

HW_MTPR 1D PAL1D Writes the value of an integer GPR into an IPR

These instructions generally produce an OPCDEC exception if executed while the pro-
cessor is not in PALmode. If |_CTL[HWE] is set, these instructions can also be exe-

cuted in kernel mode. Software that uses these instructions must adhere to the PALcode
restrictions listed in this section.

6.4.1 HW_LD Instruction

PALcode uses the HW_LD instruction to access memory outside the realm of normal

Alpha memory management and to perform special Dstream load transactions. Data
alignment traps are disabled for the HW_LD instruction.

Figure 6—1 shows the HW_LD instruction format.

21264/EV68A Hardware Reference Manual Privileged Architecture Library Code 6-3

Opcodes Reserved for PALcode

Figure 6-1 HW_LD Instruction Format
31 . 2625 21 20, 1615 13 12 11 ‘ ‘ 0

UL
‘O?CPPE‘ RA RB DISP

TYPE T T T | T T

LEN FM-05654.A14

Table 6—3 describes the HW_LD instruction fields.

Table 6-3 HW_LD Instruction Fields Descriptions

Extent Mnemonic Value Description

[31:26] OPCODE 1Bg The opcode value.

[25:21] RA — Destination register number.

[20:16] RB — Base register for memory address.

[15:13] TYPE 00Q Physical — The effective address for the HW_LD instruction is physical.
001, Physical/Lock — The effective address for the HW_LD instruction is

physical. It is the load lock version of the HW_LD instruction.

016, Virtual/VPTE — Flags a virtual PTE fetch (LD_VPTE). Used by trap logic
to distinguish a single TB miss from a double TB miss. Kernel mode access
checks are performed.

100, Virtual — The effective address for the HW_LD instruction is virtual.

10%, Virtual/WrChk — The effective address for the HW_LD instruction is
virtual. Access checks for fault-on-read (FOR), fault-on-write (FOW), read
and write protection.

110, Virtual/Alt — The effective address for the HW_LD instruction is virtual.
Access checks use DTB_ALT_MODE IPR.
111, Virtual/WrChk/Alt — The effective address for the HW_LD instruction is

virtual. Access checks for FOR, FOW, read and write protection. Access
checks use DTB_ ALT_MODE IPR.

[12] LEN 0 Access length is longword.
1 Access length is quadword.
[11:0] DISP — Holds a 12-bit signed byte displacement.

6.4.2 HW_ST Instruction

PALcode uses the HW_ST instruction to access memory outside the realm of normal
Alpha memory management and to do special forms of Dstream store instructions. Data
alignment traps are inhibited for HW_ST instructions. Figure 6—2 shows the HW_ST
instruction format.

Figure 6—2 HW_ST Instruction Format

31 . 2625 2120, 1615 131211 ‘ ‘ 0
P T T L T I L
\OI\:)C\C)I\DE\ | \RA\ | | \RB\ | el I \Dl\sp\ I

1 1 1 1 1

TYPE

LEN FM-05654.A14

6-4 Privileged Architecture Library Code 21264/EV68A Hardware Reference Manual

Opcodes Reserved for PALcode

Table 6—4 describes the HW_ST instruction fields.

Table 6-4 HW_ST Instruction Fields Descriptions

Extent Mnemonic Value Description
[31:26] OPCODE 1kg The opcode value.
[25:21] RA — Write data register number.
[20:16] RB — Base register for memory address.
[15:13] TYPE 00Q Physical — The effective address for the HW_ST instruction is physical.
001, Physical/Cond — The effective address for the HW_ST instruction is
physical. Store conditional version of the HW_ST instruction. The lock
flag is returned in RA. Refer to PALcode restrictions for correct use of this
function.
016, Virtual — The effective address for the HW_ST instruction is virtual.
110, Virtual/Alt — The effective address for the HW_ST instruction is virtual.
Access checks use DTB_ ALT_MODE IPR.
All others Unused.
[12] LEN 0 Access length is longword.
1 Access length is quadword.
[11:0] DISP — Holds a 12-bit signed byte displacement.

6.4.3 HW_RET Instruction

The HW_RET instruction is used to return instruction flow to a specified PC. The RB
field of the HW_RET instruction specifies an integer GPR, which holds the new value
of the PC. Bit [0] of this register provides the new value of PALmode after the
HW_RET instruction is executed. Bits [15:14] of the instruction determine the stack
action.

Normally the HW_RET instruction succeeds a CALL_PAL instruction, or a trap han-
dler that pushed its PC onto the prediction stack. In this mode, the HINT should be set
to ‘10’ to pop the PC and generate a predicted target address for the HW_RET instruc-
tion.

In some conditions, the HW_RET instruction is used in the middle of a PALcode flow
to cause a group of instructions to retire. In these cases, if the HW_RET instruction
does not have a corresponding instruction that pushed a PC onto the stack, the HINT
field should be set to ‘00’ to keep the stack from being modified.

In the rare circumstance that the HW_RET instruction might be used like a JSR or
JSR_COROUTINE, the stack can be managed by setting the HINT bits accordingly.

See Section D.25 for more information about the HW_RET instruction.

Figure 6—3 shows the HW_RET instruction format.

21264/EV68A Hardware Reference Manual Privileged Architecture Library Code 6-5

Opcodes Reserved for PALcode

Figure 6-3 HW_RET Instruction Format

I I I [[[[I
| I | I ey Iy

i i i i
HINT |

STALL FM-05656.Al14

Table 6-5 describes the HW_RET instruction fields.

Table 6-5 HW_RET Instruction Fields Descriptions

Extent Mnemonic Value Description
[31:26] OPCODE 1kg The opcode value.
[25:21] RA — Register number. It should be R31.
[20:16] RB — Target PC of the HW_RET instruction. Bit [0] of the register’s contents
determines the new value of PALmode.
[15:14] HINT 00 HW_JMP — The PC is not pushed onto the prediction stack. The predicted
targetis PC + (4*DISP[12:0]).
01 HW_JSR — The PC is pushed onto the prediction stack. The predicted
targetis PC + (4*DISP[12:0]).
10 HW_RET — The prediction is popped off the stack and used as the target.
11 HW_COROUTINE — The prediction is popped off the stack and used as

the target. The PC is pushed onto the stack.

[13] STALL — If set, the fetcher is stalled until the HW_RET instruction is retired or
aborted. The 21264/EV68A will:

* Force a mispredict

¢ Kill instructions that were fetched beyond the HW_RET instruction
* Refetch the target of the HW_RET instruction

¢ Stall until the HW_RET instruction is retired or aborted

If instructions beyond the HW_RET have been issued out of order, they
will be killed and refetched.

[12:0] DISP — Holds a 13-bit signed longword displacement.

6.4.4 HW_MFPR and HW_MTPR Instructions

The HW_MFPR and HW_MTPR instructions are used to access internal processor reg-
isters. The HW_MFPR instruction reads the value from the specified IPR into the inte-
ger register specified by the RA field of the instruction. The HW_MTPR instruction
writes the value from the integer GPR, specified by the RB field of the instruction, into
the specified IPR. Figure 6—4 shows the HW_MFPR and HW_MTPR instructions for-
mat.

Figure 6-4 HW_MFPR and HW_MTPR Instructions Format

31 . 2625 2120, 16 15 8 7 ‘ 0
T T T
\S?B\D MI\AS\K |

FM-05657.Al4

6-6 Privileged Architecture Library Code 21264/EV68A Hardware Reference Manual

Internal Processor Register Access Mechanisms

Table 6—6 describes the HW_MFPR and HW_MTPR instructions fields.

Table 6-6 HW_MFPR and HW_MTPR Instructions Fields Descriptions

Extent Mnemonic Value Description
[31:26] OPCODE 196 The opcode value for the HW_MFPR instruction.
1D¢g The opcode value for the HW_MTPR instruction.

[25:21] RA — Destination register for the HW_MFPR instruction. It should be R31
for the HW_MTPR instruction.

[20:16] RB — Source regi;ter for Fhe HW_MTPR instruction. It should be R31 for the
HW_MFPR instruction.

[15:8] INDEX — IPR index.

[7:0] SCBD_MASK — Specifies which IPR scoreboard bits in the IQ are to be applied to this

instruction. If a mask bit is set, it indicates that the corresponding IPR
scoreboard bit should be applied to this instruction.

6.5 Internal Processor Register Access Mechanisms

This section describes the hardware and software access mechanisms that are used for
the 21264s IPRs.

Because the Ibox reorders and executes instructions speculatively, extra hardware is
required to provide software with therect view of the arhitecturally-defined state.

The Alpha architecture defines two classes of state: general-purpose registers and
memory. Register renaming is used to provide architecturally-correct register file
behavior. The Ibox and Mbox each have dedicated hardware that provides correct mem-
ory behavior to the programmer. Because the internal processor registers are implemen-
tation-specific, and their state is not defined by the Alpha architecture, access
mechanisms for these registers may be defined that impose restrictions and limitations
on the software that uses them.

For every IPR, each instruction type can be classified by how it affects and is affected
by the value held by that IPR.

e Explicit readers are HW_MFPR instructions that explicitly read the value of the
IPR.

* Implicit readers are instructions whose behavior is affected by the value of the IPR.
For example, each load instruction is an implicit reader of the DTB.

e Explicit writers are HW_MTPR instructions that explicitly write a value into the
IPR.

* Implicit writers are instructions that may write a value into the IPR as adfidet
of execution. For example, a load instruction that generates an access violation is
an implicit writer of the VA, MM_STAT, and EXC_ADDR IPRs. In the 21264/
EV68A, only instructions that generate an exception will act as implicit IPR writ-
ers.

Only certain IPRs, such as those with write-one-to-clear bits, are both implicitly and
explicitly written. The read-write semantics of these IPRs is controlled by software.

21264/EV68A Hardware Reference Manual Privileged Architecture Library Code 6-7

Internal Processor Register Access Mechanisms

6.5.1 IPR Scoreboard Bits

In previous Alpha implementations, IPR registers were not scoreboarded in hardware.
Software was required to schedule HW_MTPR and HW_MFPR instructions for each
machine’s pipeline organization in order to ensurgect behaior. This software
scheduling task is more difficult in the 21264/EV68A because the Ibox performs
dynamic scheduling. Hence, eight extra scoreboard bits are used within the IQ to help
maintain correct IPR access order. The HW_MTPR and HW_ MR RBRuction for-

mats contain an 8-bit field that is used as an IPR scoreboard bit mask to specify which
of the eight IPR scoreboard bits are to be applied to the instruction.

If any of the unmasked scoreboard bits are set when an instruction is about to enter the
1Q, then the instruction, and those behind it, are stalled outside the 1Q until all the
unmasked scoreboard bits are clear and the queue does not contain any implicit or
explicit readers that were dependenttbose bits when they entered the queue. When

all the unmasked scoreboard bits are clear, and the queue does not contain any of those
readers, the instruction enters the 1Q and the unmasked scoreboard bits are set.

HW_MFPR instructions are stalled in the 1Q until all their unmasked IPR scoreboard
bits are clear.

When scoreboard bits [3:0] and [7:4] are set, their effect on other instructions is differ-
ent, and they are cleared in a different manner.

If any of scoreboard bits [3:0] are set when a load or store instruction enters the 1Q, that
load or store instruction will not be issued from the 1Q until those scoreboard bits are
clear.

Scoreboard bits [3:0] are cleared when the HW_MTPR instructions that set them are
issued (or are aborted). Bits [7:4] are cleared when the HW_MTPR instructions that set
them are retired (or are aborted).

Bits [3:0] are used for the DTB_TAG and DTB_PTE register pairs within the DTB fill
flows. These bits can be used to order writes to the DTB for load and store instructions.
See Sections 5.3.1 and 6.9.1.

Bit [0] is used in both DTB and ITB fill flows to trigger, in hardware, a lightweight
memory barrier (TB-MB) to be inserted between a LD_VPTE and the corresponding
virtual-mode load instruction that missed in the TB.

6.5.2 Hardware Structure of Explicitly Written IPRs

IPRs that are written by software are physically implemented as two registers. When
the HW_MTPR instruction that writes the IPR executes, it writes its value téirte
register. When the HW_MTPR instruction is retired, the contents diithteregister are
written into thesecondegister. Instructions that either implicitly or explicitly read the
value of the IPR access tlsecondegister. Read-after-write and write-after-write
dependencies are managed using the IPR scoreboard bits. To avoid write-after-read
conflicts, thesecondregister is not written until the writer is retired. The writer will not

be retired until the previous reader is retired, and the reader is retired after it has read its
value from thesecondregister.

Some groups of IPRs are built using a single shdirstiregister. To prevent write-
after-write conflicts, IPRs that shardfiest register also share scoreboard bits.

6-8 Privileged Architecture Library Code 21264/EV68A Hardware Reference Manual

Internal Processor Register Access Mechanisms

6.5.3 Hardware Structure of Implicitly Written IPRs

Implicitly written IPRs are physically built using only a single level of register, how-
ever the IPR has two hardware states associated with it:

1. Default State—The contents of the register may be written when an instruction gen-
erates an exception. If an exception occurs, write a new value into the IPR and go to
state 2.

2. Locked State—The contents of the register may only be overwritten by an except-
ing instruction that is older than the instruction associated with the contents of the
IPR. If such an exception occurs, overwrite the value of the IPR. When the trigger-
ing instruction, or instruction that is older than the triggering instruction, is killed
by the Ibox, go to state 1.

6.5.4 IPR Access Ordering

IPR access mechanisms must allow values to be passed through each IPR from a pro-
ducer to its intended consumers.

Table 6—7 lists all of the paired instruction orderings between instructions of the four
IPR access types. It specifies whether access order must be maintained, and if so, the
mechanisms used to ensure correct ordering.

Table 6—7 Paired Instruction Fetch Order

Second
Instruction First Instruction
Implicit Reader| Implicit Writer Explicit Reader Explicit Writer
Implicit Read transac- |No IPRs in this clasq. Read transactions cph variety of mechanisms are
Reader tions can be be reordered. used to ensure order:
reordered. scoreboard bits to stall issue df
reader; HW_RET_STALL to
stall reader; double write plus
buffer blocks to force retire and
allow for propagation delay.
Implicit No IPRs in this | The hardware struc-| IPR-specific PALcode| No IPRs in this class.
Writer class. ture of implicitly restrictions are
written IPRs handled required for this case.
this case. An interlock mecha-
nism must be placed
between the explicit
reader and the implici
writer (a read transacH
tion).
Explicit Read transac- |If the reader is in the| Read transactions capScoreboard bits stall issue of
Reader tions can be PALcode routine be reordered. reader until writer is retired.
reordered. invoked by the
exception associated
with the writer, then
ordering is guaran-
teed.

21264/EV68A Hardware Reference Manual Privileged Architecture Library Code 6-9

Internal Processor Register Access Mechanisms

Table 6—7 Paired Instruction Fetch Order (Continued)

Writer cannot
write second
register until it
is retired.

Second

Instruction First Instruction

Explicit Reader reads |Write-one-to-clear |[Reader reads second|Scoreboard bits stall second
Writer second register| bits, or performance|register. Writer canno{ writer in map stage until first

counter special caselwrite second register |writer is retired.
For example, perfor{ until it is retired.

mance counter incre
ments are typically
not scoreboarded
against read transad|
tions.

For convenience of implementation, there is no IPR scoreboard bit checking within the
same fetch block (octaword-aligned octaword).

* Within one fetch block, there can be only one explicit writer (HW_MTPR) to an
IPR in a particular scoreboard group.

e Within one fetch block, an explicit writer (HW_MTPR) to an IPR in a particular
scoreboard group cannot be followed by an explicit reader (HW_MFPR) to an IPR
in that same scoreboard group.

e Within one fetch block, an explicit writer (HW_MTPR) to an IPR in a particular
scoreboard group cannot be followed by an implicit reader to an IPR in that score-
board group. This case covers writes to DTB_PTE or DTB_TAG followed by a
LD, ST, or any memory operation, including HW_RETs without the ‘stall’ bit set.

6.5.5 Correct Ordering of Explicit Writers Followed by Implicit Readers

Across fetch blocks, the cagct ordering of the xplicit write of the DTB_PTE or
DTB_TAG followed by an implicit reader (memory operation) is guaranteed using the
IPR scoreboard bits.

However, there are cases wherereot ordering of gplicit writers followed by implicit
readers cannot be guaranteed using the IPR scoreboard mechanism. If the instruction
that implicitly reads the IPR does so before the issue stage of the pipeline, the score-
board mechanism is not sufficient.

For example, modification of the ITB affects instructions before the issue state of the
pipeline. In this case, PALcode must contain a HW_RET instruction, with its stall bit
set, before any instruction that implicitly reads the IPR(S) in question. This prevents
instructions that are newer than the HW_RET instruction from being successfully
fetched, issued, and retired until after the HW_RET instruction is retired (or aborted).

There are also cases when the HW_RET with the STALL bit mechanism is not suffi-
cient. There may be additional propagation delay past the retirement of the HW_RET
instruction. In these cases, instead of usinga HW_RET, a suggested method of ensur-
ing the ordering is coding a group of 5 fetch blocks, where the first contains the
HW_MTPR to the IPR, the second contains a HW_MTPR to the same IPR or one in the
same scoreboard group, and where the following 3 fetch blocks each contain at least
one non-NOP instruction. See Appendix D for a listing of cases where this method is
recommended.

6-10 Privileged Architecture Library Code

21264/EV68A Hardware Reference Manual

PALshadow Registers

6.5.6 Correct Ordering of Explicit Readers Followed by Implicit Writers

Certain IPRs that are updated as a result of faulting memory operations require PAL-
code assistance to maintain ordering against newer instructions. Consider the following
code sequence:

HW_MFPR IPR_MM_STAT
LDQ rx,(ry)
It is typically the case that these instructions would issue in-order:

* The MFPR is data-ready and both instructions use a lower subcluster. However, the
HW_MFPRs (and HW_MTPRS) respond to certain resource-busy indications and
do not issue when the MBOX informs the IBOX that a certain set of resources
(store bubbles) are busy.

* The LDs respond to a different set of resource-busy indications (load-bubbles) and
could issue around the HW_MFPR in the presence of the former. PALcode assis-
tance is required to enforce the issue order.

One totally reliable method is to insert an MB (memoayrtter)instruction before the
first load that occurs after the HW_MFPR MM_STAT. Another method would be to
force a register dependency between the HW_MFPR and the LD.

6.6 PALshadow Registers

The 21264/EV68A contains eight extra virtual integer registers, called shadow regis-
ters, which are available to PALcode for use as scratch space and storage for com-
monly used values. These registers are made available under the control of the SDE[1]
field of the |_CTL IPR. These shadow registers overlay R4 through R7 and R20
through R23, when the CPU is in PALmode and SDE[1] is set.

PALcode generally runs with shadow mode enabled. Any PALcode that supports
CALL_PAL instructions must run in that mode because the hardware writes a
PALshadow register with the return address of CALL_PAL instructions.

PALcode may occasionally be required to toggle shadow mode to obtain access to the
overlayed registers. See the PALcode restriction, Updating |_ CTL[SDE], in Section
D.32.

6.7 PALcode Emulation of the FPCR

The FPCR register contains status and control bits. They are accessed by way of the
MT_FPCR and MF_FPCR instructions. The register is physically implemented like an
explicitly written IPR. It may be written with a value from the floating-point register

file by way of the MT_FPCR instruction. Architecturally-compliant FPCR behavior
requires PALcode assistance. The FPCR register must operate as listed here:

1. Correct operation of the status bits, which must be set when a floating-point
instruction encounters an exceptional condition, independent of whether a trap for
the condition is enabled.

2. Correct values must be returned when the FPCR is read by way of a MF_FPCR
instruction.

21264/EV68A Hardware Reference Manual Privileged Architecture Library Code 6-11

PALcode Entry Points

3. Correct actions must occur when the FPCR is written by way of a MT_FPCR
instruction.

6.7.1 Status Flags

The FPCR status bits in the 21264/EV68A are set with PALcode assistance. Floating-
point exceptions, for which the associated FPCR status bit is clear or for which the
associated trap is enabled, resultin a hardware trap to the ARITH PALcode routine. The
EXC_SUM register contains information to allow this routine to update the FPCR
appropriately, and to decide whether to report the exception to the operating system.

6.7.2 MF_FPCR

The MF_FPCR is issued from the floating-point queue and executed by the Fbox. No
PALcode assistance is required.

6.7.3 MT_FPCR

The MT_FPCR instruction is issued from the floating-point queue. This instruction is
implemented as an explicit IPR write operation. The value is written intdittstdatch,

and when the instruction is retired, the value is written intostheondatch. There is no
IPR scoreboarding mechanism in the floating-point queue, so PALcode assistance is
required to ensure that subsequent readers of the FPCR get the updated value.

After writing thefirst latch, the MT_FPCR instruction invokes a synchronous trap to
the MT_FPCR PALcode entry point. The PALcode can return using a HW_RET
instruction with its STALL bit set. This sequence ensures that the MT_FPCR instruc-
tion will be correctly ordered for subsequent readers of the FPCR.

6.8 PALcode Entry Points

PALcode is invoked at specific entry points, of which there are two classes:
CALL_PAL and exceptions.

6.8.1 CALL_PAL Entry Points

CALL_PAL entry points are used whenever the Ibox encounters a CALL_PAL instruc-
tion in the Istream. To speed the processing of CALL_PAL instructions, CALL_PAL
instructions do not invoke pipeline aborts but are processed as normal jumps to the off-
set from the contents of the PAL_BASE register, which is specified by the CALL_PAL
instruction’s function field.

The Ibox fetches a CALL_PAL instruction, bubbles one cycle, and then fetches the
instructions at the CALL_PAL entry point. For convenience of implementation, returns
from CALL_PAL are aided by a linkage register (much like JSRs). PALshadow regis-
ter R23 is used as the linkage register. The Ibox loads the PC of the instruction after the
CALL_PAL instruction, into the linkage register. Bit [0] of the linkage register is set if
the CALL_PAL instruction was executed while the processor was in PALmode.

The Ibox pushes the value of the return PC onto the return prediction stack.
CALL_PAL instructions start at the following offsets:

* Privileged CALL_PAL instructions start at offset 20Q0
* Nonprivileged CALL_PAL instructions start at offset 3G@0

6-12 Privileged Architecture Library Code 21264/EV68A Hardware Reference Manual

PALcode Entry Points

Each CALL_PAL instruction includes a function field that is used to calculate the PC of
its associated PALcode entry point. The PALcode OPCDEC exception flow will be
invoked if the CALL_PAL function field satisfies any of the following requirements:

* Isinthe range of 4{;to 7F;ginclusive
* Is greater than Bfg

* Is between 0gs and 3Fginclusive, and IER_CM[CM] is not equal to the kernel
mode value 0

If none of the conditions above are met, the PALcode entry point PC is as follows:
* PC[63:15] = PAL_BASE[63:15]

* PC[14]=0

* PC[13]=1

J PC[12] = CALL_PAL function field [7]

J PC[11:6] = CALL_PAL function field [5:0]

* PC[5:1]=0

J PC[0] = 1 (PALmode)

6.8.2 PALcode Exception Entry Points

When hardware encounters an exception, Ibox execution jumps to a PALcode entry
point at a PC determined by the type of exception. The return PC of the instruction that
triggered the exception is placed in the EXC_ADDR register and onto the return predic-
tion stack.

Table 6—8 shows the PALcode exception entry locations and their offset from the
PAL_BASE IPR.

Table 6-8 PALcode Exception Entry Locations

Entry Name Type Offset 14 Description

DTBM_DOUBLE_3 Fault 100 Dstream TB miss on virtual page table entry fetch. Use three-
level flow.

DTBM_DOUBLE_4 Fault 180 Dstream TB miss on virtual page table entry fetch. Use four-
level flow.

FEN Fault 200 Floating point disabled.

UNALIGN Fault 280 Unaligned Dstream reference.

DTBM_SINGLE Fault 300 Dstream TB miss.

DFAULT Fault 380 Dstream fault or virtual address sign check error.

OPCDEC Fault 400 Illegal opcode or function field:

*Opcode 1,2,3,4,5,60r7

* Opcode 19g, 1Bg 1D;6 1Eg0r 1F g, not PALmode or
not |_CTL[HWE]

» Extended precision IEEE format

» Unimplemented function field of opcodes {kbr 1C;¢

IACV Fault 480 Istream access violation or virtual address sign check error.

21264/EV68A Hardware Reference Manual Privileged Architecture Library Code 6-13

Translation Buffer (TB) Fill Flows

Table 6-8 PALcode Exception Entry Locations (Continued)

Entry Name Type Offset 14 Description

MCHK Interrupt 500 Machine check.

ITB_MISS Fault 580 Istream TB miss.

ARITH Synch. Trap 600 Arithmetic exception or update to FPCR.
INTERRUPT Interrupt 680 Interrupts: hardware, software, and AST.
MT_FPCR Synch. Trap 700 Invoked when a MT_FPCR instruction is issued.
RESET/WAKEUP Interrupt 780 Chip reset or wake-up from sleep mode.

6.9 Translation Buffer (TB) Fill Flows

This section shows the expected PALcode flows for DTB miss and ITB miss. Familiar-
ity with 21264/EV68A IPRs is assumed.

6.9.1 DTB Fill

Figure 6-5 shows single-miss DTB instructions flow.

Figure 6-5 Single-Miss DTB Instructions Flow Example

hw_mfpp23, EV6__ EXC_ADDR ; (OL) get exception address
hw_mfpmp4, EV6__ VA FORM ; (4-7,1L) get vpte address
hw_mfpp5, EV6__ MM_STAT ; (OL) get miss info
hw_mfpr p7, EV6__EXC SUM ; (OL) get exc_sum for ra
hw_mfpr p6, EV6__ VA ; (4-7,1L) get original va

bic p7, #1, p7 ; Clear double miss flag

xorp4, p6, p4 ; interlock p4 and p6

xor p4, p6, p4 ; restore p4

trap__dtbm_single_vpte:

hw_ldg/v p4, (p4) ; (1L) get vpte

blit p_misc, trap__ditol ; (XU) <63>=1 => 1+o-1
blbcp4, trap__invalid_dpte ; (xU) invalid => branch
and p4, #%80, p7 ; isolate mb it
xorp7, #x%80, p7 ; fip mb bit

ALIGN_FETCH_BLOCK <"x47FF041F>

PVC _VIOLATE <2> ; ignore scoreboard violation
hw_mtpmp6, EV6__ DTB_TAGO ; (2&6,0L) write tag0
hw_mtpr p6, EV6__ DTB_TAG1 ; (1&5,1L) write tagl
hw_mtpmp4, <EV6__DTB_PTEO ! "x44> ; (04,2,6) (OL) write pte0
hw_mtpmp4, <EV6__DTB_PTEL ! "x22> ; (3,7,1,5) (1L) write ptel

6-14 Privileged Architecture Library Code 21264/EV68A Hardware Reference Manual

Translation Buffer (TB) Fill Flows

ASSUME <tb mb_en + pte_eco> ne 2

Jif ne pte_eco
bne p7, trap__dtbm_single_mb ; branch for mb
hw_ret (p23) ; retun
trap__dtbm_single_mb:
mb
hw_ret(p23) ; retun
Jiff
hw_ret(p23) ; retun

.endc

; (@assumes tb_mb_en on multi-processors)

The following list presents information about the single-miss DTB code example:

In Figure 6-5, where (x,y) or (y) appear in the commertgpecifies the scoreboard
bits andy specifies the Ebox subcluster.

r4 —r7 and r20- r23 are PALshadow registers.

PALshadow r22 contains a flag that indicates whether the native code is running
“1-to-1", that is, running in a mode where the physical address should be mapped
1-to-1 to the virtual address, rather than being taken from a page table.

IPR scoreboard bits [3:0] are used to order the restarted load or store instructions
for the DTB write transactions.

MM_STAT and VA will not be overwritten if the LD_VPTE instruction misses the
DTB. There is no issue order constraint.

The code is written to prevent a later execution of the DTB fill instruction from
being issued before a previous execution and corrupting the previous write to the
TB registers. The avect sequence of exettons is accomplished by placing code
dependencies on scoreboard bits [7:4] in the path of the successive writers. This
prevents the successive writers from being issued before the previous writers are
retired.

When |_CTL[TB_MB_EN] =1, the issue of MTPR DTB_PTEDO triggers, in hard-
ware, a lightweight memory barrier (TB-MB). The lightweight memory barrier
enforces read-ordering of store instructions from another processor (l) to this pro-
cessor’s (J) page table and this processor’s virtual memory area such that if this
processor sees the write to the PTE from (1) it will see the new data.

Processor | Processor J

Wr Data LD/ST

MB <tb miss>

Wr PTE LD-PTE, write TB
LD/ST

21264/EV68A Hardware Reference Manual Privileged Architecture Library Code 6-15

Translation Buffer (TB) Fill Flows

6.9.2 ITB Fill

The conditional branch is placed in the code so that all of the MTPR instructions
are issued and retired or none of them are issued and retired. This allows the TB fill
hardware to update the TB whenever it sees the retiring of PTE1 and to ignore
writes to TAGO/TAG1/PTEO/PTEL in the interim between the issuing of those
writes and a retire of PTEL.

As an alternative to using |_CTL[TB_MB_EN] = 1 to enforoead ordeing,
|_CTL[TB_MB_EN] can be set to 0 and the PALcode may use a bit in the PTE to
indicate whether to do an explicit MB.

The flow example in Figure 65 shows the code using pte_eco and the code not
using pte_eco. It assumes the following:

— In a multi-processor configuration, if pte_eco is not enabled, it is necessary to
enabletb_mb_en.

— Inauni-processor configuration, if pte_eco is not enabled, it is not necessary to
enabletb_mb_en.

— Atnotime should pte_eco and tb_mb_en both be enabled.

The value in DTB_PTKGH] determines whether the scoreboard mechanism alone
is sufficient to guarantee all subsequent load/store instructions (implicit readers of
the DTB) are ordered relative to the creation of a new DTB entry; whether all sub-
sequent loads and stores to the loaded address will hit in the DTB.

— If DTB_PTEX[GH] is zero, the scoreboard mechanism alone is sufficient.

— If DTB_PTEX[GH] is not zero, the scoreboard mechanism alone is not suffi-
cient (although this is not a problem). In this case, the new DTB entry is not
visible to subsequent load/store instructions until after the MTPR DTB_PTE1
retires.

Issuing a HW_RET_STALL instead of a HW_RET would guarantee ordering,
but is not necessary. Code executes correctly without the stall although execu-
tion might result in two passes through the DTB miss flow, rather than one,
because the re-exetion of the memory ogration after the first DTB miss

might miss again.

This behavior is functionally correct because DTB loads that tag-match an
existing DTB entry are ignored by the 21264/EV68A and the second DTB miss
execution will load exactly the same entry as the first.

Figure 6—6 shows the ITB miss instructions flow.

Figure 6-6 ITB Miss Instructions Flow Example

hw_mfpr r4, EV6__IVA FORM ; (OL) get vpte address

hw_mfor 123, EV6__EXC ADDR ; (OL) get exception address

Ida 6, OFFF(r31) ; (xU) create mask for prot

bis r31, r3l, r31 ; (xU) fill out fetch block
trap__itb_miss_vpte:

hw_ldgv 4, ()] ; (XL) get vpte

and r4, 16, r5 ; (XL) get prot bits

blt p_misc, trap__iltol ; (xU) 1-to-1 => branch

6-16 Privileged Architecture Library Code 21264/EV68A Hardware Reference Manual

Performance Counter Support

st r4, #OSF PTE_PFN_S, 16 ; (xU) shit PFN to <0>
sl 16, #EV6_ITB PTE__PFN_S, 16 ; (xU) shift PFN into place
and r4, #<1@OSF_PTE__ FOE _S>, 17 ; (XL) get FOE bit
blbc r4, trap__invalid_ipte ; (xU) invalid => branch

bne r7, trap__foe ; (xU) FOE => branch

sl r4, #7, 17 ; check for mb bit

bis 15, 16, r6 ; (XL) PTE in ITB format
hw mtor 123, EV6_ITB TAG ; (6,0L) write tag
hw_mtpr 16, EV6_ITB PTE ; (0&4,0L) write PTE

ASSUME <tb mb_en + pte_eco> ne 2
Jif ne pte_eco
blbc r7, trap__itb_miss_mb ; branch for mb
hw_ret stall (r23); (OL)
trap__itb_miss_mb:
mb
.endc
hw_ret stall (123) ; (OL)

The following list presents information about the ITB miss flow code example:

* In Figure 6-6, where (x,y) or (y) appear in the commexgtgecifies the scoreboard
bits andy specifies the Ebox subcluster.

e TheITB is only accessed on Icache misses.
* r4-r7 and r20-r23 are PALshadow registers.

e PALshadow r22 contains a flag that indicates whether the native code is running
“1-to-1", that is, running in a mode where the physical address should be mapped
1-to-1 to the virtual address, rather than being taken from a page table.

e The HW_RET instruction should have its STALL bit set to ensure that the restarted
Istream does not read the ITB until the ITB is written.

As an alternative to using |_CTL[TB_MB_EN] = 1 to enforoead ordeng,
|_CTL[TB_MB_EN] can be set to 0 and the PALcode may use a bit in the PTE to
indicate whether to do an explicit MB. The flow example in Figure 6—6 assumes
this alternative.

6.10 Performance Counter Support

The 21264/EV68A provides hardware support for two methods of obtaining program
performance feedback information. The two heeds do not require program modifica-
tion. Instead, performanceanitoring utilities make calls to the PALcode to set up the
counters and contain interrupt handlers that call PALcode to retrieve the collected data.
The first method, Aggregate moddfers capaHities that are similar to earlier micro-
processor prformance counter§his mode counts events when enabled, until it over-
flows, causing an imrrupt that can retrieve the collected data. The second method,

21264/EV68A Hardware Reference Manual Privileged Architecture Library Code 6-17

Performance Counter Support

ProfileMe mode, supports a hew way of statistically sampling individual instructions
during program execution. This mode counts events triggered by a targeted inflight
instruction.

Counter support uses the hardware registers listed in Table 6-9.

Table 6-9 IPRs Used for Performance Counter Support

Register Name Mnemonic Relevant Fields Described in Section
ProfileMe PC PMPC All fields 5.2.6
Interrupt enable and current procesilER_CM PCEN[1:0] 5.2.9
sor mode
Interrupt summary ISUM PC[1:0] 5.2.11
Ibox control I_CTL SPCE, PCTO_EN, PCT1_EN 5.2.15
Ibox status |_STAT OVR, ICM, TRAP-TYPE, 5.2.16
LSO, TRP, MIS
Ibox process context PCTX PPCE 5.2.21
Performance counter support PCTR_CTL Allfields 5.2.22

6.10.1 General Precautions

Initialize both counters, (PCTR_CTL[PCTRO and PCTR1]), to zero in reset PALcode
to avoid spurious interrupts when exiting initial PALcode. Counters must be written
twice during initialization to ensure that theenlow latch has been cleared (see the
PALcode restrictions in Sections D.28 and D.34).

The counters should never be left within one cycle of overflow when disabled because
that can cause some interrupts to be blocked in anticipation of an overflow interrupt
(see PALcode restriction 32).

If a counter is at the overflow threshold and a value is written to that counter, the
counter signals an @rflow interrupt upon leaving PALmode, even if that counter is
disabled. To avoid that interrupt, the PALcode should clear the interrupt by writing to
HW_INT_CLR.

Interrupts are disabled in PALmode.

As a quirk of the implementation, while counting is disabled, a read of PCTR_CTL can
yield value+some increment, where value is the actual value in PCTR_CTL, and incre-
ment for PCTRO is in the range 0..4 (retired instructions in that cycle), and increment
for PCTRL1 is dependent on SL1.

6.10.2 Aggregate Mode Programming Guidelines
Use the following information to program counters in Aggregate mode.

6.10.2.1 Aggregate Mode Precautions
Counters continue to count after overflow.
Only the counters return useful data. See Table 6—11 for counting modes.

Counters can be read by a PALcode instruction at any time to get the aggregate count.

6-18 Privileged Architecture Library Code 21264/EV68A Hardware Reference Manual

Performance Counter Support

The legal range for PCTRO when writing the IPR i§20*20-16).
The legal range for PCTR1 when writing the IPR i§20*20-4).

6.10.2.2 Operation

1. Setup

The following IPRs need to be set up by PALcode instructions.

IPR Name Relevant Fields Meaning
IER_CM PCEN][1:0] Enable Interrupts.
PCTX PPCE Enable Process Performance Counting or use |_CTL[SPCE].
PCTR_CTL SLO Selects Aggregate or ProfileMe mode; set to 0 for Aggregate mode.
SL1 Selgcts PCTRO and PCTR1 counting modes. See Table 6—-11 for more infor-
mation.
PCTRO[19:0] Set counter 0 starting value [0:(2**20-16)]. See Section 6.10.1 for setup
precautions.
PCTR1[19:0] Set'counter 1 starting value [0:(2**20-4)]. See Section 6.10.1 for setup pre-
cautions.
| CTL SPCE Enable System Performance Counting or use PCTX[PPCE].
PCTO_EN Enable performance counter O.
PCT1_EN Enable performance counter 1.

2. Count

If PCTRO and PCTR1 are enabled, will increment according to modes selected by
SLO and SL1.

3. Overflow
If PCEN[1:0] is enabled, PC[1:0] is set when PCTRO or PCTR1 overflows.
4. Hardware interrrupt

When PCJ1:0] is set, the PALcode interrupt routine iseeatl. Interrupt is daowl-
edged and PALcode generates an interrupt to the operating systéonrpance
monitoring utility.

5. Operating system interrupt handler

The handler should read the IPR PCTR_CTL, as shown in Table 6-10, to note
which counter overflowed in the handler's data structures. The handler may read the
counter to see how many events have happened since the overflow.

The handler may also choose to write the counters to control the frequency of inter-
rupts.

Table 6-10 Aggregate Mode Returned IPR Contents

IPR Field Contents
PCTR_CTL PCTRO0[19:0] Counter #0 value
PCTR1[19:0] Counter #1 value

21264/EV68A Hardware Reference Manual Privileged Architecture Library Code 6-19

Performance Counter Support

6.10.2.3 Aggregate Counting Mode Description
6.10.2.3.1 Cycle counting
Counts cycles.

PCTRO is incremented by the number of cycles counted, that is, 1.

6.10.2.3.2 Retired instructions cycles

PCTRO is incremented by up to 8 retired instructions per cycle when enabled via
|_CTL[PCTO_EN] and either |_CTL[SPCE] or PCTX[PPCE]. On overflow, an inter-
rupt is triggered as ISUM[PCQO] if enabled via IER_CM[PCENO].

The 21264/EV68A can retire up to 11 instructions per cycle, which exceeds PCTRO's
maximum increment of 8 per cyclelowever, no retires go uncounted because the
21264/EV68A cannot sustain 11 retires per cycle, and the 21264/EV68A corrects
PCTRO in subsequent cycles.

A squashed instruction does not count as a retire.
6.10.2.3.3 Bcache miss or long latency probes cycles
This input counts the number of times the Bcache result was a miss.

Essentially, a long latency probe is a data request from other processes that cause
Bcache misses in a system.

This count is phase shifted three cycles early and thus includes events thaiedccu
three cycles before the start and before the end of the ProfileMe window.

6.10.2.3.4 Mbox replay traps cycles
This input counts Mbox replay traps.

6.10.2.4 Counter Modes for Aggregate Mode

Table 6—-11 shows the counter modes that are used with Aggregate mode.

Table 6-11 Aggregate Mode Performance Counter IPR Input Select Fields

SLO[4] SL1[3:2] PCTRO PCTR1

0 00 Retired instructions Cycle counting

0 01 Cycle counting Not defined

0 10 Retired instructions Bcache miss or long latency probes
0 11 Cycle counting Mbox replay traps

6.10.3 ProfileMe Mode Programming Guidelines
Use the following information to program counters in ProfileMe mode.

6.10.3.1 ProfileMe Mode Precautions
Squashed NOPs count as valid fetched instructions.

Counter 1 must be explicitly cleared in the trap handler before each data collection.

6-20 Privileged Architecture Library Code 21264/EV68A Hardware Reference Manual

Performance Counter Support

The CMOV instruction is decomposed into two valid fetched instructions that, in the

absence of stalls, are fetched in consecutive cycles. See Table 6-12 for more informa-
tion.

Table 6-12 CMOV Decomposed

Instruction New Instructions

CMOV Ra, Rb--> Rc CMOV1 Ra, oldRe—> newRc1

CMOV2 newRc1, Rb-—> newRc2

6.10.3.2 Operation

1.

Setup

The following IPRs need to be set up by using PALcode instructions.

IPR Name Relevant Fields Meaning

IER_CM PCENJ1:0] Enable Interrupts.

PCTX PPCE Enable Process Performance Counting or use |_CTL[SPCE].
PCTR_CTL SLO Selects Aggregate or ProfileMe mode; set to 1 for ProfileMe mode.

SL1 Selects PCTRO and PCTR1 counting modes. See Table 6-14 for more infor-
mation.

PCTRO[19:0] Set counter 0 value (2**20-N). This selects approximately the Nth valid
fetched instruction as the profiled instruction. Because writes to PCTRO are
incremented by 0..4, the profiled instruction is one of the (N-4)th to Nth valid
fetched instructions. See Section 6.10.1 for more setup precautions.

PCTR1[19:0] Set counter 1 value = 0. See Section 6.10.1 for more setup precautions.

| CTL SPCE Enable System Performance Counting or use PCTX[PPCE].
PCTO_EN Enable performance counter O.
PCT1_EN Enable performance counter 1.
2. Open window
PCTRO accumulates up to 4 valid fetched instructions per cycle when enabled via
|_CTL[PCTO_EN] and either | _CTL[SPCE] or PCTX[PPCE].
The valid fetched instruction that causes PCTRO to overflow opens the window and
becomes therofiled instruction and covers a period of time near to when the
instruction was in flight. The first cycle of the window is the 5th cycle after the
instruction was fetched. A residual count of up to 7 valid fetched instructions is
accumulated in PCTRO in the two cycles between overflow and the start of the Pro-
fileMe window. This residual count is returned in |_STAT[overcount(2,0)].
3. Count
If PCTRO and PCTR1 are enabled, they increment according to modes selected by
SLO & SL1.
4. End window

The last cycle of the window depends on whether the instruction traps, retires,
aborts, and/or is squashed by the fetcher.

21264/EV68A Hardware Reference Manual Privileged Architecture Library Code 6-21

Performance Counter Support

For instructions that cause a trap, the last cycle in the window is the 2nd cycle after
the trap. Mispredicted branches are included in this category.

For nontrapping instructions that retire, the last cycle in the window is the 2nd
cycle after the instruction retires.

For instructions that abort, the last cycle in the window is the 2nd cycle after the
trap that caused the abort.

For instructions that are squashed (such as TRAPB), the last cycle in the window is
approximately the 2nd cycle after the squashed instruction would have aborted or
retired.

Every non-squashed valid fetched instruction either aborts or retires, but not both.
In either case, the instruction may also trap.

PCTRO is disabled from counting until PCTR_CTL is next written.
5. Interrupt PALcode

When ISUM field PCJ[1:0] is set, execution of PCTRO's or PCTR 1'srinfpt PAL-
code is performed.

6. Operating system interrupt handler
The handler should first read the IPRs in Table 6-13 and then write PCTR_CTL to set
up the next interrupt.

Table 6-13 ProfileMe Mode Returned IPR Contents

IPR Name Relevant Fields Meaning
PMPC[63:0] All Profiled PC.
|_STAT ICM Instruction was in a new Icache fill stream.
TRP Instruction causgd atrap and was not in the shadow of
a younger trapping instruction.
MIS Conditional branch mispredict.
TRAP TYPE Exception type code.
LSO Load-store order replay trap.
OVR Counter 0 overcount.
PCTR_CTL VAL Instruction retired valid.
TAK Branch direction if instruction is a conditional branch.
PM_STALLED Instruction stalled for at least one cycle between fetch

and map stages of pipeline.

PM_KILLED_BM Instruction killed during or before cycle in which it
was mapped.

PCTRO0[19:0] Counter 0 value.
PCTR1[19:0] Counter 1 value.

6-22 Privileged Architecture Library Code 21264/EV68A Hardware Reference Manual

Performance Counter Support

6.10.3.3 ProfileMe Counting Mode Description
6.10.3.3.1 Cycle counting

In ProfileMe mode, either counter counts cycles during the window of the profiled
instruction.

6.10.3.3.2 Inum retire delay cycles

This input is used to measure a lower bound on the inum retire delay of the profiled
instruction. The maximum final value of PCTR1 is the length of the ProfileMe window
minus 2.

Counts cycles that a profiled instruction delayed the retire pointer advance during the
ProfileMe window. The 21264/EV68A tracks instructions in the pipeline by allocating

them "inums" near the front of the pipeline. All inums are retired in the order in which
they were allocated at the end of the pipeline.

Inums are allocated in batches of four, so there may be more inums allocated than there
are program instructions in flight. Every inum is retired in order, including those for
aborted instructions.

The "retire pointer" points to the next inum to be retired. An inum retires in the cycle
that the retire pointer advances past the inum.

Let X and Y be consecutive inums in the allocation order. The "inum retire delay" of Y
is [(cycle in which Y retired) — (cycle in which X retired)]. A large inum retire delay
indicates a possible performance bottleneck (for example, an instruction stalled on a
data cache miss).

6.10.3.3.3 Retired instructions cycles

When counting retired instructions in ProfileMe mode, the final count in PCTRO may
include instructions that retired before the ProfileMe window and may exclude instruc-
tions that retired near the end of the ProfileMe window. These discrepancies are caused
by a variable delay between the time that an instruction retires and the time that PCTRO
is incremented for that retire. This discrepancy is in the range of plus or minus 4 retired
instructions.

6.10.3.3.4 Bcache miss or long latency probes cycles
This input counts the number of times the Bcache result was a miss.

Essentially, a long latency probe is a data request from other processes that cause
Bcache misses in a system.

This count is phase shifted three cycles early and thus includes events thaiedccu
three cycles before the start and before the end of the ProfileMe window.

6.10.3.3.5 Mbox replay traps cycles
This input counts Mbox replay traps.

PCTRL1 is enabled to count Mbox replay traps that occur during a window that is the
ProfileMe window phase-shifted one cycle later. The first replay trap counted would be
the 7th cycle after the instruction is fetched.

21264/EV68A Hardware Reference Manual Privileged Architecture Library Code 6-23

Performance Counter Support

6.10.3.4 Counter Modes for ProfileMe Mode
Table 6-14 shows the counter modes that are used with ProfileMe mode.

Table 6-14 ProfileMe Mode PCTR_CTL Input Select Fields

SLO[4] SL1[3:2] PCTRO PCTR1

1 00 Retired instructions Cycle counting

1 01 Cycle counting Inum retire delay

1 10 Retired instructions Bcache miss or long latency probes
1

11 Cycle counting Mbox replay traps

6-24 Privileged Architecture Library Code 21264/EV68A Hardware Reference Manual

v

Initialization and Configuration

This chapter provides information on 21264/EV68A-specific microprocessor system
initialization and configuration. It is organized as follows:

e Power-up reset flow

* Faultreset flow

* Energy star certification and sleep mode flow

* Warm reset flow

e Array initialization

e Initialization mode processing

* External interface initialization

* Internal processor register (IPR) reset state

* |EEE 1149.1 test port reset

* Reset state machine state transitions

* Phase-locked loop (PLL) functional description

Initialization is controlled by the reset state machine, which is responsible for four
major operations. Table 7—1 describes the four major operations.

Table 7-1 21264/EV68A Reset State Machine Major Operations

Operation Function

Ramp up Sequence the PLL input and output dividerg/ (&xnd Z,) to gradually raise the internal
GCLK frequency and generate time intervals for the PLL to re-establish lock.

BiST/SROM Receive a synchronous transfer on@led=wdRst_H pin in order to start built-in self-test and
SROM load at a predictable GCLK cycle.

Clock forward Receive a synchronous transfer on @lkFwdRst_H pin in order to initialize the clock for-
interface warding interface.

Ramp down Sequence the PLL input and output dividegg,(Xnd Zy;,) to gradually lower the internal
GCLK frequency during sleep mode.

7.1 Power-Up Reset Flow and the Reset_L and DCOK_H Pins

The 21264/EV68A reset sequence is triggered using the two input sigeatst Land
DCOK_H in a sequence thatis described in Section 7.1.1. ARtget_Lis deasserted,
the following sequence of operations takes place:

21264/EV68A Hardware Reference Manual Initialization and Configuration 7-1

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

1. The clock forwarding and system clock ratio configuration information is loaded
onto the 21264/EV68A. See Section 7.1.2.

The internal PLL is ramped up to operating frequency.

The internal arrays built-in self-test (BiST) is run, followed by Icache initialization
using an external serial ROM (SROM) interface.

The 21264/EV68A systems, unlike the Alpha 21064 and 21164 microprocessor
systems, are required to have an SROM. The SROM provides the only means to
configure the system port, and the SROM pins can be used as a software-controlled
UART.

The Icache must contain PALcode that starts at location 0x780. This code is used to
configure the 21264/EV68A IPRs as necessary before causing any offchip read or
write commands. This allows the 21264/EV68A to be configured to match the
external system implementation.

4. After configuring the 21264/EV68A, control can be tramsfd to code aywhere
in memory, including the noncacheable regions. The Icache can be flushed by a
write operation to the ITB invalidatall register after control is transferred. This
transfer of control should be to addresses not loaded in the Icache by the SROM
interface or the Icache may provide unexpected instructions.

5. Typically, any state required by the PALcode is initialized and then the console is
started (switching out of PALmode and into native mode). The console code initial-
izes and configures the system and boots an operating system from an 1/O device
such as a disk or the network.

Figure 7—1 shows the sequence of events at power-up, or cold reset. In Figure 7-1, note
the following symbols for constraints and information:

Constraints:

A Setup (A0) and hold (A1) for IRQ’s to be latched by DCOK (2 ns for each).

B Enough time foReset Lto propagate through 5 stages of RESET synchronizer (clocked by the inter-
nal framing clock, which is driven bigV6CIk_x). Worst case for the 21264/EV68A would be 5x8x15
=600 GCLK cycles.

C Min =1 FrameClIk cycle.

Information:

8 GCLK cycles from DCOK assertion to first “regEV6Clk_x cycle.

Approximately 525 GCLK cycles for external framing clock to be sampled and captured.
1FrameClIk_x cycle.

3FrameCIk_x cycles.

Approximately 264 GCLK cycles to prevent first command from appearing too early.

Approximately 700,000 GCLK cycles for BiST + approximately 100,000 GCLK cycles fixed time +
approximately 50,000 GCLK cycles per line of Icache for SROM load.

g 16 GCLK cycles.

-~ O O O T Q©

7-2 Initialization and Configuration 21264/EV68A Hardware Reference Manual

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

Figure 7-1 Power-Up Timing Sequence

—»]A0|A L}
IRQ_H |
DCOK_H /
—| a I<—
Reset_L /
B | | f —]
state WAIT SETTLE _ XWAIT_NORMAL X RAMP1 X RAMP2 X WAIT Clkfwdrsto X WAIT_BiST X WAIT_CIkFwdRstL X_RUN
b
b= el [a— & =1
SromOE_L \ /W
ClkFwdRst_H o min \ / o min =\
—>»| C | —>| d |
internal CIkFwdRst
|
TestStat_H M\, """~ ——~———-—-
— -
external Clks A /]
|

End of BiST BiST Fails BiST Passes
FM-06486B.FH8

7.1.1 Power Sequencing and Reset State for Signal Pins

Power sequencing and avoiding potential failure mechanisms is described in Section
9.3.

The reset state for the signal pins is listed in Table 7-2.

Table 7-2 Signal Pin Reset State

Signal Reset State Signal Reset State

Bcache

BcAdd_H[23:4] Tristated

BcCheck _H[15:0] Tristated BcTagInClk_H NA (input)

BcData_H[127:0] Tristated BcTagOE_L Tristated

BcDatalnClk_HJ[7:0] NA (input) BcTagOutClk_x Tristated

BcDataOE_L Tristated BcTagParity H Tristated

BcDataOutClk_x[3:0] Tristated BcTagShared_H Tristated

BcDataWr_L Tristated BcTagValid_H Tristated

BcLoad_L Tristated BcTagWr_L Tristated

BcTag_H[42:20] Tristated BcVref NA
(I_DC_REF)

BcTagDirty H Tristated

System Interface

IRQ_H[5:0] NA (input) SysDatalnClk_H[7:0] NA (input)

SysAddin_L[14:0] NA (input) SysDatalnValid_L NA (input)

SysAddInClk_L NA (input) SysDataOutClk_L[7:0] Tristated

21264/EV68A Hardware Reference Manual Initialization and Configuration 7-3

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

Table 7-2 Signal Pin Reset State (Continued)

Signal Reset State Signal Reset State

SysAddOut_L[14:0] Initially, during power-up reset, stateSysDataOutValid_L NA (input)
is not defined. If not during power-
up, preserves previous state. Then,
after the clock forward reset period
(as the external clocks start), signal
driven to NZNOP until the reset
state machine enters RUN, when it
is driven to NOP.

SysAddOutCIk_L Tristated SyskFillvalid_L NA (input)

SysCheck_L[7:0] Tristated SysVref NA
(I_DC_REF)

SysData_L[63:0] Tristated

Clocks

CIkFwdRst_H NA (input) FrameCIk_x NA (input)

Clkin_H NA (input) PLL_ VDD NA

Clkin_L (I_DC_REF)

EV6CIk_H NA (input)

EV6CIk_L

Miscellaneous

DCOK_H Must be deasserted until dc voltageTck_H NA (input)
reaches proper operating level.

PliIBypass_H NA (input) Tdi_H NA (input)

Reset L NA (input) Tdo_H Unspecified

SromCIlk_H Tristated TestStat H Tristated

SromData_H NA (input) Tms_H NA (input)

SromOE_L Tristated Trst_ L NA (input)

In addition, as power is being rampédgRieset _Lmust be asserted — this allows the
21264/EV68A to reset internal state. Once the target voltage levels are attained, sys-
tems should asseBBCOK_H. This indicates to the 21264/EV68A that internal logic
functions can be evaluated correctly and that the power-up seqaboakl be contin-

ued. Prior toDCOK_H being asserted, the logic internal to the 21264/EV68A is being
reset and the internal clock network is running (either clocked by the PLL VCO, which
is at a nominal speed, or liylkin_H , if the PLL is bypassed).

The reset state machine is in state WAIT_SETTLE.

7.1.2 Clock Forwarding and System Clock Ratio Configuration

WhenDCOK_H is asserted, the 21264/EV68A samples several pins and latches in
some initialization state, including the value of the PL}; Yivisor, which specifies

the ratio of the system clock to the internal clock (see Section 7.11.2.3), and enables the
charge pump on the phase-locked loop.

7-4 Initialization and Configuration 21264/EV68A Hardware Reference Manual

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

Table 7-3 summarizes the pins and the suggested/required initialization state. Most of
this information is supplied by placing (switch-selectable or hardwired) weak pull-ups
or pull-downs on theRQ_H pins. ThelRQ_H pins are sampled on the rising edge of
DCOK_H, during which time the 21264/EV68A is in reset and is not generating any
system activity. During normal operation, tHeQ_H pins supply interrupt requests to

the 21264/EV68A.

It is possible to disable the 21264/EV68A PLL and source GCLK directly from
Clkin_x. This mode is selected vRllIBypass H The 21264/EV68A still produces a
divided-down clock orEV6CIk_x; this output clock, whichracks GCLK, can be used
in a feedback loop to generate a locked input clock via an external PLL. The input
clock can be locked against a slower speed system reference clock.

Table 7-3 Pin Signal Names and Initialization State

Signal Name Sample Time Function Value

PlIBypass_H Continuous input Sele@lkin_x onto GCLK instead of internal 0 Bypas$
PLL. 1 UsePLL

ClkFwdRst_H Sampling method — —
according to

IRQ_H[4]
Reset L Continuous input — —
IRQ_H[5] Rising edge of Select 1:1 FrameClk mode. 0 Sample with
DCOK_H Internal FrameClk can be generated two ways: FrameClk_H
1 By samplingFrameClk_H. Used if L LEJ\S/%&EOW of
FrameClk_H is slower tharClkin_H . -
2 Asadirect copy oEV6CIk_H. Used if
FrameClk_H is the same frequency as
Clkin_H oris DC.
IRQ_H[4] Rising edge of Select method of samplinglkFwdRst_H to 0 Sample with Exter-
DCOK_H produce internal CIkFwdRst — either with nal FrameCIk_x
external or internal copy dframeClk_x. 1 Sample with Inter-

nal Frameclk

IRQ_H[3:0] Rising edge of Select Yy, divisor value. Thisis the divide- IRQ_H[3:0] Divisor
DCOK_H down factor between GCLK ar@V6CIk_x.

0011 3

When the PLL is in use and the 21264/EV68A [£100 4

ramped-up to full speed, the VCO adjusts in 8%% g
order to phase-align (and rate-mat&y6CIk_x o111 7
to ClIkin_x. When the PLL is not in use, and 0000 8
Clkin_ x is bypassed onto GCLKEV6CIk x is 1000 9

slower tharCIkIn_x by the divisor Yg;,. 1001 10

1010 11
1011 12
1100 13
1101 14
1110 15
1111 16

21264/EV68A Hardware Reference Manual Initialization and Configuration 7-5

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

Table 7-3 Pin Signal Names and Initialization State (Continued)

Signal Name

Sample Time Function Value

DCOK_H

Continuous input When deasserted, initializes the internal 21264/
EV68A reset state machine and keeps the PLL
internal oscillator running at a nominal speed.
Assertion, which implies power to the 21264/
EV68A is good, causes configuration informa-
tion to be sampled.

1 The maximum permissible instantaneous chang@likin_ x frequency is 333 MHz (to prevent cur-
rent spikes).

7.1.3 PLL Ramp Up

After the configuration is loaded through tHRQ_H pins, the next phase in the power

up flow is the internal PLL ramp up sequence. Ramping up of the PLL is required to
guarantee that the dynamic change in frequency will not cause the supply on the 21264/
EV68A to fall due to the supply loop inductance. Clock control circuitry steps GCLK
from power-up/reset clocking to 1/%operating frequency, to ¥z operating frequency,
and finally normal operating frequency.

After the assertion dDCOK_H, the 21264/EV68A waits for the deassertion of
Reset_Lfrom the system while the PLL attempts to achieve a lock. The PLL internal
ramp dividers are set to divide down the input clock by 16 and the PLL attempts to
achieve lock against an effective input frequencydin_ x/16. Once lock is
achieved, the actual internal frequency (GCLKEK&INn_ x*(Y 4, divisor value)/16.
There should be a minimum delay of 100 ms between the assertib@0K_H and

the deassertion dReset_Lto allow for this locking The reset state machine is in the
WAIT_NOMINAL state.

After the deassertion dReset_L, the reset state machine goes into the RAMP1 state.
The 21264/EV68A ramps the internal frequency, by changing the effective input fre-
guency of the PLL tcClkIn_ x/2 for a sufficient lock interval (at most, 30s at 400
MHZz). The state machine then goes into the RAMP2 state, changireffdaiveinput
frequency to Clkin/1 for an additional lock interval (abouti2§). The lock periods are
generated by the internal duration counter, which is driven by GCLK. The counter
counts 4108 GCLK cycles during ti&kin_ x/2 lock interval. Note that GCLK is pro-
duced by the output of the PLL, which is locking to an input clock which is 1/2 of the
operatingfrequency — therefore, the 4108 cycle interval constitutes a isZ@terval
when the operating frequency is 400-1250 MHz. Then, the counter counts 8205 GCLK
cycles during theClkin_ x/1 lock interval.

7.1.4 BiST and SROM Load and the TestStat H Pin

The 21264/EV68A uses the deassertiolCtdFwdRst_H (which must be deasserted
for a minimum of oné=rameCIlk_H cycle and then reasserted) to begin built-in self-
test (BiST). The reset state machine goes into the WAIT_BIiST state. Details on BiST
are given in Chapter 11. The pewup BiST lasts approximateg00,000 cycles. The
result of the self-test is made available on TiestStat_Hpin. The pin is forced low by
the system reset. It is then forced high during BiST.

7-6 Initialization and Configuration 21264/EV68A Hardware Reference Manual

Power-Up Reset Flow and the Reset_L and DCOK_H Pins

As BiST completes, th&estStat Hpin is held low for 16 GCLK cycles. Then, if BiST
succeeds, the pin remains low. Otherwise, it is asserted. After successfully completing
BiST, the 21264/EV68A then performs the SROM load sequence (described in Chapter
11). After the SROM load sequence is finished, the 21264/EV68A deasserts
SromOE_L.

7.1.5 Clock Forward Reset and System Interface Initialization

After the deassertion @romOE_L, the reset state machine enters the
WAIT_CIkFwdRstl state, where the 21264/EV68A waits for the system to deassert
ClkFwdReset_H. The 21264/EV68A samples the deasserting edge of
ClkFwdReset_H to take synchronous actions. It uses this synchronous event to reset
the clock forwarding interface, start tlh@itgoing clocks, and deassert internal reset.
The chip then waits 264 cycles before issuing commands. The reset state machine is
then in RUN and the 21264/EV68A begins fetching code at address 0x780.

Table 7—4 lists signals relevant to the power-up flow, provides a short description of
each, and any relevant constraints.

Table 7-4 Power-Up Flow Signals and Their Constraints

Signal Name Description Constraint

CIkIn_x Differential clocks that are Clocks must be running befo2COK_H is
inputs to PLL or are asserted.
bypassed onto GCLK
directly

PLL_VDD VDD supply to PLL PLL_VDD mustleadvDD.

VDD VDD supply to the 21264/ —
EV68A chip logic (except
PLL)

DCOK_H Logic signal to the 21264/ —
EV68A that the VDD sup-
ply is good

Reset L RESET pin asserted by Reset_Lmust be asserted prior @®COK_H and
SYSTEM to the 21264/ must remain asserted for at least 100 ms after
EV68A DCOK_H is asserted. This allows for PLL settling

time. Deassertion dReset_Lcauses the 21264/
EV68A to ramp divisors to their final value and

begin BiST.
ClIkFwdRst_H Signal asserted by SYS- CIlkFwdRst_H must be deasserted after PLL has
Deassertion #1 TEM to synchronously achieved its lock in its final divisor value (about 20
commence built-in self-testus). The deassertion causes built-in self-test to
and SROM load begin on an internal clock cycle that corresponds to

one framing clock cycle afteClkFwdRst_H is
deassertedClkFwdRst_H can be asserted after
one frame clock cycle. See Figure 7-1.

CIkFwdRst_H Signal asserted by SYS- ClkFwdRst_H must be deasserted when the Cbox
Deassertion #2 TEM to initialize and reset has loaded configuration information. This occurs
clock forwarding interfacesas the first part of the serial ROM load, after BiST
is run. OnceClkFwdRst_H is deasserted, the
interface is initialized and can receive probe
requests from the 21264/EV68A.

21264/EV68A Hardware Reference Manual Initialization and Configuration 7-7

Fault Reset Flow

7.2 Fault Reset Flow

The fault reset sequence of operation is triggered by the assertion©ithe/dRst H
signal line. Figure 7—2 shows the fault reset sequence of operation. The reset state
machine is initially in RUN stateClkFwdRst_H is asserted by the system, which
causes the state machine to transition to the WAIT_FAULT_RESET state.

The 21264/EV68A internally resets a minimum amount of internal state. Note the
effects of that reset on the IPRs in Table 7-5

Table 7-5 Effect on IPRs After Fault Reset

IPR After Reset
PAL_BASE Maintained (not reset)
|_CTL Bit value = 3 (both Icaches are enabled)

PCTX[FPE] Set
WRITE_MANY Cleared (That is, the WRITE_MANY chain is initialized and the Bcache is turned off.)
EXC_ADDR Set to an address that is close to the PC

The 21264/EV68A then waits faElkFwdRst _H to deassert twice:

* One deassert to transition directly to the WAIT_CIkFwdRst1 state without perform-
ing any BiST

* One deassert to initialize the clock forwarding ifitee
The 21264/EV68A then begins fetching code at PAL_BASE + 0x780.

Figure 7—2 shows the fault reset sequence of operation. In Figure 7-2, note the follow-
ing symbols for constraints and information:

Constraints:

A Min =1 FrameCIk_x cycle

Information:

Approximately 264 GCLK cycles

Approximately 525 GCLK cycles for external framing clock to be sampled and captured
1FrameClk_x cycle plus 2 GCLK cycles

NextFrameClk_x rising edge

3 FrameClk_x cycles

Approximately 264 GCLK cycles to prevent first command from appearing too early

Q " 0o O T 9

7-8 Initialization and Configuration 21264/EV68A Hardware Reference Manual

Energy Star Certification and Sleep Mode Flow

Figure 7-2 Fault Reset Sequence of Operation

* internal clks aligned

= |=-e
state RUN X_WAIT FAULT RESET X WAIT_CIKFwdRst0 X WAIT ClkFwdRstl X RUN
| a | b—>| <— c —> le— g —>|
SromOE_L \;r_/\
ClkFwd RSI_H —/ no min _/ no min\
-] A | —>| f |-
internal CIkFwdRst / \
external Clks \ /

FM-06488B.Al4

7.3 Energy Star Certification and Sleep Mode Flow

The 21264/EV68A is Energy Star compliant. Energy Star is a program administered by
the Environmental Protection Agency to reduce energy consumption. For compliance,
a computer must automatically enter a low power sleep mode using 30 watts or less
after a specified period of inactivity. When the system is awakened, the user shall be
returned automatically to the same situation that existed prior to entering sleep mode.

During normal operation, the 21264/EV68A encounters inactive periods and enters a
mode that saves the entire active processor state to memory.

The PALcode is responsible for saving all necessary state to DRAM and flushing the
caches.

The sleep mode sequence of operations is triggered by the PALcode twice performing a
HW_MTPR to the Ibox SLEEP IPR. The first write prevents the assertion of
ClkFwdRst_H from fault-resetting the chip.

The PALcode then informs the system, in an implementation-dependent way, that it
may asserClkFwdRst_H.

On the second HW_MTPR to the SLEEP IPR, the PLL begins to ramp down and the
21264/EV68A can then respond to tBé&kFwdRst_H that was asserted by the system,
causing the outgoing clocks from the 21264/EV68A to stop.

The PLL ramp-down sequence takes exactly the same amount of time as the ramp up
sequence described in Section 7.1.3. The same internal duration counter is used and the
reset state machine transitions through the DOWN1, DOWN2, and DOWN3 states
which have similar PLL divisor ratios and clock speeds to the RAMP2, RAMP1, and
WAIT_NOMINAL states.

21264/EV68A Hardware Reference Manual Initialization and Configuration 7-9

Energy Star Certification and Sleep Mode Flow

7-10

After the PLL has finished ramping down, the reset state machine enters the
WAIT_INTERRUPT state. Note theffects of the entrynto that state on the IPRs
listed in Table 7—6.

Table 7-6 Effect on IPRs After Transition Through Sleep Mode

IPR Effects After Transition Through Sleep Mode
PAL_BASE Maintained (not reset)
|_CTL Bit value = 3 (both Icaches are enabled)

PCTX[FPE] Set

WRITE_MANY Cleared (That is, the WRITE_MANY chain is initialized and the Bcache is
turned off.)

Note that Interrupt enables are maintained during sleep mode, enabling the 21264/
EV68A to wake up. The 21264/EV68A waits for either an unmasked clock interrupt or
an unmasked device interrupt from the system.

When an enabled interrupt occurs, the PLL ramps back to full frequency. Subsequent to
that, the 21264/EV68A performs a built-in self-initialization (BiSl), a shortened built-in
self-test, which initializes the internal arrayed structures. The SROM is not reloaded.
Instead, the 21264/EV68A begins fetching code from the system at address
PAL_BASE + 0x780.

Figure 7—3 shows the sleep mode sequence of operations. In Figure 7-3, note the fol-
lowing constraint and informational symbols:

Constraints:

A Min =1 FrameCIk_x cycle
Informational symbols:

Approximately 525 GCLK cycles for external framing clock to be sampled and captured
NextFrameClk_x rising edge

1FrameCIk_x cycle

3FrameClk_x cycles

Approximately 264 GCLK cycles to prevent first command from appearing too early
Approximately 8192 GCLK cycles for BiSlI

16 GCLK cycles

Q " 0o o O T 9

Initialization and Configuration 21264/EV68A Hardware Reference Manual

Warm Reset Flow

Figure 7-3 Sleep Mode Sequence of Operation

*imernal clks
—>| |=b e I
state RUN X _powni X pownz X Downs XWAIT_INTR RAMPL RAMP2 WAIT_ClkFwdRst0__ XWAIT_BiSIX_WAIT_ClkFwdRstL X __RUN
|Je—a—a| —c |<—
SLEEPIPR _/___/\ | e
Wake-up interrupt /\
SromOE_L \
c"(FWdRSt—H l / no min _/ no min \
—| A || d |
TestStat_H /\
internal CIkFwdRst / \
external Clks \ /

FM-06487A.Al4
Table 7—7 describes each signal and constraint for the sleep mode sequence.

Table 7-7 Signals and Constraints for the Sleep Mode Sequence

Signal Name Description Constraint
ClkFwdRst_H Signal asserted by the system to ClkFwdRst_H must be asserted by the system
initialize and reset clock forwardingwhen entering sleep mode. The system deasserts
interfaces ClkFwdRst_H no sooner than onerameCIlk_H
cycle after sourcing an interrupt to the 21264/
EV68A.
Forwarded clocks Bit clocks forwarded to/from the Clocks stop running undeZlkFwdRst_H.
21264/EV68A
System interrupt Asynchronous interrupt which —
causes the 21264/EV68A to exit
sleep mode

7.4 Warm Reset Flow

The warm reset sequence of operation is teiggl by the assertion of theset Lsig-

nal line. The reset state machine is initially in RUN state. The 21264/EV68A then, by
default, ramps down the PLL (similar to the sleep flow sequence) and the reset state

machine ends up in the WAIT_RESET state.
Note the effects of entry into that state on the IPRs listed in Table 7-8

Table 7-8 Effect on IPRs After Warm Reset

IPR Effects After Warm Reset
PAL_BASE Cleared
|_CTL Cleared

PCTX[FPE] Set

WRITE_MANY Cleared (Thatis, the WRITE_MANY chain is initialized and the Bcache is

turned off.)

21264/EV68A Hardware Reference Manual Initialization and Configuration 7-11

Array Initialization

The 21264/EV68A waits untiReset_Lis deasserted before transitioning from the
WAIT_RESET state. The 21264/EV68A ramps up the PLL until the state machine
enters the WAIT_CIlkFwdRstO state. Note that the system must aSkénvdRst_H
before the state machine enters the WAIT_CIkFwdRst0 state. Then, similarly to the
other flows,SromOE_L is asserted and the system waits for the deassertion of
ClkFwdRst_H.

On the deassertion @flkFwdRst_H, the 21264/EV68A prforms BiST and the SROM
loading procedure.

After BiST and SROM loading have complete&gstomOE_L deasserts and the 21264/
EV68A waits forCIkFwdRst_H to deassert before starting the external clocks and, like
the other flows, waits for 264 cycles before starting instructions.

7.5 Array Initialization

The following arrays are initialized by BiST:

* |cache and Icache tag
e Dcache, Dcache tag, and Duplicate Dcache tag
e Branch history table

The external second-level cache (Bcache) is disabladdset L

The Bcache must be initialized by PALcode before it is enabled.

7.6 Initialization Mode Processing

7-12

The initialization mode allows the 21264/EV68A to generate and manipulate cache
blocks before the system interface has been initialized. Within the 21264/EV68A, the
Cbox configuration registers are divided into the WRITE_ONCE and the
WRITE_MANY shift register chains (see Sections 5.4.3 and 5.4.4). The
WRITE_ONCE chain is loaded from the SROM during reset processing, and contains
information such as the clock forwarding setup values. The WRITE_MANY chain can
be written many times using MTPR instructions.

The WRITE_MANY chain contains the following CSRs that are important to initializa-
tion mode, which must be set to the values in Table 7-9 to initialize the Bcache.

Table 7-9 WRITE_MANY Chain CSR Values for Bcache Initialization

WRITE_MANY Chain CSRs Required Value at Initialization Mode

BC_ENABLE 1
The duplicate bits for BC_ENABLE in [14:12] must
be 0 during initialization mode.

BC_SIZE[3:0] The exact size or maximum size of the Bcache.
INVAL_TO_DIRTY_ENABLE[1:0] 1
SET_DIRTY_ENABLE[2:0] 0
INIT_MODE 1

Initialization and Configuration 21264/EV68A Hardware Reference Manual

Initialization Mode Processing

Table 7-9 WRITE_MANY Chain CSR Values for Bcache Initialization (Continued)

WRITE_MANY Chain CSRs Required Value at Initialization Mode
EVICT_ENABLE 0

BC_WRT_STS[3:0] 0

BC_BANK_ENABLE 0

Except for INIT_MODE, all the CSR registers have been described in earlier sections.
When asserted, INIT_MODE has the following behavior:

e Cache block updates to the Dcache set the block to the Clean state.
J Updates to the Bcache use the BC_WRT_STS[3:0] bits.
* WrVictimBIk command generation to the system interface are squashed.

Using the INVAL_TO_DIRTY_ENABLE and INIT_MODE registers, initialization

code loaded from the SROM can generate and delete blocks inside the 21264/EV68A
without system interaction. This behavior is very useful for initialization and startup
processing, when the system interfaces are not fully functional. Figure 7—4 shows a
code example for initializing Bcache.

Figure 7-4 Example for Initializing Bcache
Reset chip and load Icache with this code

set init_mode ;now all WrVictims are ignored
;bc_enable_a 1
;zeroblk_enable_a 1
;set_dirty_enable_a 0
;init_mode_a 1
;enable_evict a 0
;bc wit sts a 0
;bc_bank_enable_a 0
;bc_size a 15

;now all writes to Bcache actually invalidate
the Bcache. (ff space was needed for scratch
pad, the status bits could just as

well be Valid)
for 2 X b c_size ;This loop generates legal ECC data, and
{ WH64 address } ;invalidate tags which are written to the

:Bcache for all but the final 64KB of address.

tumn_off_bcache: ;bc_enable_a 0
jinit_mode_a 0
jbc_size a 0
;zeroblk_enable_a 1
;enable_evict a
;set_dirty_enable_a 0
;bc_bank_enable_a 0
bc_wrt sts a 0

21264/EV68A Hardware Reference Manual Initialization and Configuration 7-13

External Interface Initialization

SweepMemory: \Write good parity/ecc to memory by
; writing a all memory locations. This is
;done by WH64 of memory addresses

tum_on_bcache: ;bc_enable_a 0
jbc_size a Actual Bcache size
;zeroblk_enable_a 3
;set_dirty_enable_a 6
jnit_mode_a 0
;enable_evict a 0
bc writ sts a 0
;bc_bank enable_a 0

for 2 X b c_size ;This loop generates legal ECC data, and

{ WH64 address } ;invalidate tags which are written to the

:Bcache for all but the final 64KB of address.
for 2 X d cache size
{ ECB address } ;and cleans up the Dcache also.
(done)

In addition to initialization, the dynamic programming ability of the WRITE_MANY
chain provides the basic tools to build various other software flows such as dynamically
changing the Bcache enable/size parameters for performance testing.

7.7 External Interface Initialization

After reset, the system iatface is in the default configuration dictated by the reset state
of the IPR bits that select the configuration options.

The response to system infidce commands and internally generated memory accesses
is determined by this default configuration. System environments that are not compati-
ble with the default configuration must use the SR@che load feature timitially

load and execute a PALcode program to configure the external system interface unit
IPRs as needed.

7.8 Internal Processor Register Power-Up Reset State

Many IPR bits are not initialized by reset. They are located in error-reporting registers
and other IPR states. They must be initialized by initialization PALcode. Tables 7-5,
7-6, and 7-8, list the effects on IPRs by fault reset, transition through sleep mode, and
warm reset, respectively. Table 7-10 lists the state of all internal processor registers
(IPRs) immediately following power-up reset. The table also specifies which registers
need to be initialized by poar-up PALcode.

Table 7-10 Internal Processor Registers at Power-Up Reset State

Mnemonic Register Name Reset State Comments
Ibox IPRs

ITB_TAG ITB tag array write X —
ITB_PTE ITB PTE array write X —

7-14 Initialization and Configuration 21264/EV68A Hardware Reference Manual

Internal Processor Register Power-Up Reset State

Table 7-10 Internal Processor Registers at Power-Up Reset State (Continued)
Mnemonic Register Name Reset State Comments
ITB_IAP ITB invalidate-all (ASM=0) X —
ITB_IA ITB invalidate all X Must be written to in PALcode.
ITB_IS ITB invalidate single X —
PMPC ProfileMePC X —
EXC_ADDR Exception address X —
IVA_FORM Instruction VA format X —
IER_CM Interrupt enable current mode X Must be written to in PALcode.
SIRR Software interrupt request X —
ISUM Interrupt summary X —
HW_INT_CLR Hardware interrupt clear X Must be cleared in PALcode.
EXC_SUM Exception summary X —
PAL_BASE PAL base address Cleared —
|_CTL Ibox control IC_EN =3 All other bits are cleared on reset.
|_STAT Ibox status X Must be cleared in PALcode.
IC_FLUSH Icache flush X —
CLR_MAP Clear virtual-to-physical map X —
SLEEP Sleep mode X —
PCTX Ibox process context PCTX[FPE] is set. All other bits are X.
PCTR_CTL Performance counter control X Must be cleared in PALcode.
Ebox IPRs
CcC Cycle counter X Must be cleared in PALcode.
CC_CTL Cycle counter control X Must be cleared in PALcode.
VA Virtual address X —
VA_FORM Virtual address format X —
VA_CTL Virtual address control X Must be cleared in PALcode.
Mbox IPRs
DTB_TAGO DTB tag array write O Cleared —
DTB_TAG1 DTB tag array write 1 Cleared —
DTB_PTEO DTB PTE array write 0 Cleared —
DTB_PTE1 DTB PTE array write 1 Cleared —
DTB_ALTMODE DTB alternate processor mode X PALcode must initialize.
DTB_IAP DTB invalidate all process X —

ASM =0
DTB_IA DTB invalidate all process X Must be written to in PALcode.

21264/EV68A Hardware Reference Manual

Initialization and Configuration 7-15

IEEE 1149.1 Test Port Reset

Table 7-10 Internal Processor Registers at Power-Up Reset State (Continued)

Mnemonic Register Name Reset State Comments

DTB_ISO DTB invalidate single (array 0) X —

DTB_IS1 DTB invalidate single (array 1) X —

DTB_ASNO DTB address space number 0 Cleared —

DTB_ASN1 DTB address space number 1 Cleared —

MM_STAT Memory management status X —

M_CTL Mbox control Cleared —

DC_CTL Dcache control DC_CTL[7:2] are cleared at reset.
DC_CTLJ[1:0] are set at power up.

DC_STAT Dcache status X Must be cleared in PALcode.

Cbox IPRs

C_DATA Chox data X Must be read in PALcode.

C_SHFT Cbox shift control X —

7.9 |EEE 1149.1 Test Port Reset

SignalTrst_L must be asserted when powering up the 21264/EV@8#. L must not
be deasserted prior to assertiorDOK_H. Trst_L can remain asserted during nor-
mal operation of the 21264/EV68A.

7.10 Reset State Machine

The state diagram in Figure 7-5 summarizes how the 21264/EV68A transitions into
running code. Each state is described in Table 7-11. Table 7-11 describes outputs and
approximate state transition equations. Note that there are implicit transitions from
each state to an appropriate down-ramp state viReset Lis asserted.

7-16 Initialization and Configuration 21264/EV68A Hardware Reference Manual

Reset State Machine

Figure 7-5 21264/EV68A Reset State Machine State Diagram

DCOK_H
asserted

Reset_L
asserted

PLL Ramp Up
Reset_L RAMP1 Counter
deasserted [2,4]F finished

WAIT
NOMINAL Counter
[16,32]1 finished

WAIT_CIkFwd
Rst0

Counter

finished ClkFwdRst_H Out of
Reset_L deasserted Sleep
deasserted Mode

Enabled [(:)AL\Jlth
Interrupt RESET*
Reset_L BiST BiSI
WAIT asserted finished finished
INTERRUPT
CIkFwdRst_H
asserted WAIT_ClkFwd
fNumbers in"[,]" are Rstl
Xdiv and Zdiv divisors,
respectively
Counter Counter *No BIST/BIS| ClkFwdRst_H
finished & finished & on recovery from Fault deasserted
Sleep Mode not Sleep Mode Reset

Counter Counter
finished finished
DOWN3f Sleep Mode
(16,32] or Reset_L
asserted

PLL Ramp Down

LKG-10982A-98WF

Table 7-11 21264/EV68A Reset State Machine State Descriptions

State Name Description

COLD Chip cold. Transitioned to WAIT_SETTLE with assertionRéset_L PLL_VDD, and
VDD.

WAIT_SETTLE PLL_VDD asserted; PLL at minimum frequency.

WAIT_NOMINAL

RAMP1

Triggered by assertion oDCOK_H. PLL achieves a lock at g, and Z;, divisors equal
16 and 32, respectively.

Triggered byReset_L deassertion; ¥, and Z;, divisors are changed to 2 and 4, respec-
tively, increasing the internal GCLK frequency. An internal duration counter is initial-
ized to count 4108 GCLK cycles.

21264/EV68A Hardware Reference Manual Initialization and Configuration 7-17

Reset State Machine

Table 7-11 21264/EV68A Reset State Machine State Descriptions (Continued)

State Name

Description

RAMP2

WAIT_CIKFwdRSstO

WAIT_BiST

WAIT_BiSI

WAIT_CIkFwdRst1

RUN

WAIT_RESET

FAULT_RESET

DOWN1

Triggered by the duration counter reaching 4108 cycles, thg and Zy;, divisors are
changed to 1 and 2, respectively, and the frequency is increased. The duration counter is
reloaded to count 8205-cycles.

Triggered by the duration counter reaching 8205 cycles (or by the deassertion of
Reset_Lwhile in the WAIT_RESET state). 21264/EV68A ass&StemOE_L and

waits for SYSTEM to deasse@tlkFwdReset H. The deassertion must be synchronous

to a falling edge ofFrameClk_H. 21264/EV68A uses this deassertion to begin BiST

and SROM load at a predictable time. 21264/EV68A samples and generates an internal,
aligned copy ofFrameClk_H, and, in turn, uses this clock to sam@kFwdReset H

BiST and SROM load is started. The SROM first loads the Write-once chain and then
reads the number of bits of Icache data to load.

This state is entered when 'waking up' from sleep mode. 21264/EV68A receives an
external interrupt, ramps the PLL, synchronously samples a transition on
ClkFwdReset_H, and runs built-in self-initialization to clear the internal caches. Built-
in self-test is not performed and the SROM is not loaded.

Entered when the appropriate amount of BiST and SROM loading has been completed.
21264/EV68A deasser&romOE_L and waits for SYSTEM to deassert

CIkFwdReset_H. The deassertion must be synchronous to a rising edge of
FrameClk_H. 21264/EV68A uses this synchronous event to reset the clock forwarding
interface and deassert internal reset. 21264/EV68A subsequently begins running code
(either preloaded in the SROM or located in memory) and begins system transactions.

Chip is running software, interface is reset, and system transactions can be processed.
From power-up, the Icache sets are enabled and contain bootstrap code loaded from the
SROM; 21264/EV68A executes code from Icache. From wake-up, the Icache sets are
disabled and 21264/EV68A fetches and executes code from DRAM.

Triggered by duration counter reaching 264 cycles, or ideset_Lis asserted when in
WAIT_INTERRUPT state. 21264/EV68A waits in this state uRtdset_Lis deasserted,
at which point, the PLL starts to ramp up again.

ClkFwdResetis asserted while the 21264/EV68A is running. The 21264/EV68A inter-
nally resets a minimum amount of internal state, waits for clock forward reset deasser-
tion, and begins fetching code at PAL_BASE + 0x780.

21264/EV68A was in a state in which GCLK was at its highest speedRasdt_Lwas
asserted. Internal chip functions are reset and the internal duration counter is setto 8205
cycles. The purpose of this sequence is to down-ramp the clocks in anticipation of power
being removed. If power is not removed (that is, reset is being toggled), 21264/EV68A
ramps the clocks back to the original speed.

This state is also entered when software writes the |_CTL internal processor register to
sleep mode.

7-18 Initialization and Configuration 21264/EV68A Hardware Reference Manual

Phase-Lock Loop (PLL) Functional Description

Table 7-11 21264/EV68A Reset State Machine State Descriptions (Continued)

State Name Description

DOWNZ2 Triggered by duration counter reaching 8205 cycles, the PLL ramps GCLK frequency
down by the first divider ratio (¥, and Zy;, equal 2 and 4, respectively). This has the
effect of halving the GCLK frequency. The duration counter is set to 4108 cycles.

DOWN3 Triggered by duration counter reaching 4108 cycles, the PLL ramps frequency down by
the second divider ratio (3, and Z;;, equal 16 and 32, respectively). This has the
effect of reducing the frequency by a factor of 16 (of the original frequency). The inter-
nal counter is set to 264 cycles.

WAIT_INTERRUPT Triggered by duration counter reaching 264 cycles, the 21264/EV68A waits for either an
unmasked clock interrupt or unmasked device interrupt from system. The interrupts are
wired to the interrupt request and enable internal registers. When an enabled interrupt
occurs, the PLL ramps back to full frequency. Subsequent to that, the built-in self-init
(BiSl) initializes arrayed structures. The SROM is not reloaded; instead, the 21264/
EV68A begins fetching code from the SYSTEM.

7.11 Phase-Lock Loop (PLL) Functional Description

The PLL multiplies the clock frequency of afféirential input reference clock and
aligns the phase of its output to that differentigbiit clock. Thus, the 21264/EV68A
can communicate synchronously on clock boundaries with clock periods that are
defined by the system.

7.11.1 Differential Reference Clocks

A skew-controlled, ac-coupled differential clock is provided to the PLL by way of
Clkin_x . CIkIn_x are input signals to a differential amplifier. The frequency of
Clkin_x can range from 80 MHz to 200 MHEZIKIn_ x can be sourced by a variety of
components that include PECL fanout parts or system PClidn_ x are also the pri-
mary clock source for the 21264/EV68A when in PLL bypass mode.

7.11.2 PLL Output Clocks
The following sections summarize the PLL output clocks.

7.11.2.1 GCLK

The PLL provides an output clock, GCLK, withfeequency that can range from 400
MHz to 1.25 GHz under full-speed conditions. GCLK is the nominal onchip clock that
is distributed to the entire 21264/EV68A chip.

7.11.2.2 Differential 21264/EV68A Clocks

TheEV6CIKk_x output pads provide an external test point to measure the PLL phase
alignment. They do not provide a clock sourE&/6CIlk_x are square-wave signals
that drive rail-to-rail continually from 0 to VDD.

7.11.2.3 Nominal Operating Frequency

Under normal operating conditions, the frequency of the PLL output clock, GCLK, is a
simple function of the Y;, divider value.

21264/EV68A Hardware Reference Manual Initialization and Configuration 7-19

Phase-Lock Loop (PLL) Functional Description

Table 7-12 shows the allowab@kin_ x frequencies for a given operating frequency
of the 21264/EV68A and the g, divider. For example, to set the 21264/EV68A GCLK
frequency to 500 MHz with &€lkin_ x frequency of 166.7 MHz, the system must select
a Yy divider of 3 by placing the value 003bn pinsIRQ_H[3:0].

Table 7-12 Differential Reference Clock Frequencies in Full-Speed Lock

GCLK Reference Clock Frequency (MHz) for Y g, Dividers L

Period Frequency 3? 4 5 6 7 8 9 10 11 12 13 14 15 16
(ns) (MHz)

25 400 133.3 100 80 — — — — — —_ — — — - —
2.4 416.7 1389 104.2 833 — — — — — —_ — — — - —
2.3 434.8 1449 108.7 87.0 — — — — — — — — — - —
2.2 454.5 151.2 1136 909 — — — — — —_ — — — - —
21 476.2 158.7 119.0 95.2 — — — — — —_ — — — - —
20 500 166.7 125.0 100 833 — — — — — — — — - —
1.9 526.3 1754 131.6 1053 87.7 — — — — _ — — — - —
1.8 555.6 185.2 1389 1111 926 — — — — —_ — — — - —
1.7 588.2 196.1 147.1 1176 980 840 — — — —_ — — - —
1.6 625 — 156.3 125.0 104.2 893 — — — —_ — — — - —
15 666.7 — 166.7 133.3 111.1 95.2 833 — — —_ — — - —
1.4 714.3 — 178.6 1429 119.1 1020 89.3 — — —_— — — - —
13 769.2 — 192.3 153.8 128.2 1099 96.2 855 — —_ — — - —
1.2 833.3 — — 166.7 138.9 119.0 104.2 926 833 — — — — - —
11 909.1 — — 181.8 1515 1299 1136 101 909 — — — — —_ -
1.0 1000 — — 200 166.7 1429 125 111,1 100 909 833- — —_ —
0.9 11111 — — — 185.2 158.7 138.9 1235 111101.0 92.6 855 — —_ -
0.8 1250 — — — — 178.6 156.3 1389 125 113.804.2 96.2 89.3 83.3 —

1 Divider 16 is out of range for the 21264/EV68A and reserved for future use. Valid reference clock
(Clkin_x) frequencies for the 21264/EV68A are specified in the range from 80 to 200. Divider values
that are out of that range are displayed as a dash “—".

2 Dividers of 1 and 2 are to be used only in a PLL test mode.

7.11.2.4 Power-Up/Reset Clocking

During the power-up/reset sequence, when not in PLL bypass mode, there may be a
period of time wherClklin_ x is not yet running, but there is a voltage BhL_VDD.

The signaDCOK_H is deasserted until power is good throughout the system. The
10% to 90% rise time oDCOK_H should be less than 2 ns. The deasserted state of
DCOK_H and the presence &fLL_VDD causes the PLL to generate a global clock
that is distributed throughout the 21264/EV68A with a frequency range of 1 MHz to
500 MHz. The presence of the global clock during this period avoids permanent dam-
age to the 21264/EV68A.

7-20 Initialization and Configuration 21264/EV68A Hardware Reference Manual

8

Error Detection and Error Handling

This chapter gives an overview of the 21264/EV68A error detection and error handling
mechanisms, and is organized as follows:

* Data error corretion code

* |cache data or tag parity error

e Dcache tag parity error

* Dcache data correctable ECC error

* Dcache store second error

e Dcache duplicate tag parity error

e Bcache tag parity error

* Bcache data correctable ECC error

* Memory/system port data correctable ECC error
e Bcache data correctable ECC error on a probe

* Double-bit fill errors

e Error case summary

Table 8-1 summarizes the 21264/EV68A error detection.

Table 8-1 21264/EV68A Error Detection Mechanisms

Component Error Detection Mechanism
Bcache tag Parity protected.

Bcache data array Quadword-ECC protected.
Dcache tag array Parity protected.

Dcache duplicate tag array ~ Parity protected.

Dcache data array Quadword-ECC protected, however this mode of operation is
only supported in systems that have ECC enabled on both the
system and Bcache ports.

Icache tag array Parity protected.
Icache data array Parity protected.
System port data bus Quadword-ECC protected.

21264/EV68A Hardware Reference Manual Error Detection and Error Handling 8-1

Data Error Correction Code

8.1 Data Error Correction Code

The 21264/EV68A supports a quadword error correction code (ECC) for the system data
bus. ECC is generated by the 21264/EV68A for all memory write transactions
(WrVictimBIk) emitted from the 21264/EV68A and for all probe data. ECC is also
checked on every memory read transaction for single-bit correction and double-bit error
detection. Bcache data is checked for fills to the Dcache and Icache, and for Bcache-to-
system transfers that are initiated by a probe (if enabled by the CSR
ENABLE_PROBE_CHECK).

The 21264/EV68A ECC implementation corrects single-bit errors in harew

I/0 write transaction data will not have a valid ECC (the ECC bits must be ignored by
the system). Also, ECC checking is not performed on 1/O read data.

Error detection and correction can be enabled/disabled by way of Mbox IPR
DC_CTL[DCDAT_ERR_EN].

Table 8—2 shows the ECC code.

Table 8-2 64-Bit Data and Check Bit ECC Code

CBO
CB1
cB2
CB3
CcB4
CB5
CB6
CcB7

11 1111 1111 2222 2222 2233 3333 3333 4444 4444 4455 5555 5555 6666 CCCC CCCC

0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 0123 0123 4567

0111
1110
1001
1100
0011
0000
1111
1111

0100 1101 0010 0111 0100 1101 0010 1000
1010 1010 1000 1110 1010 1010 1000 1110
1001 0110 0101 1001 1001 0110 0101 1001
0111 0001 1100 1100 0111 0001 1100 1100
1111 0000 0011 0011 1111 0000 0011 0011
0000 1111 1111 0000 0000 1111 1111 0000
1111 0000 0000 0000 0000 1111 1111 1111
1111 0000 0000 0000 0000 1111 1111 0000

1011
1010
1001
0111
1111
0000
1111
0000

0010 1101
1010 1000
0110 0101
0001 1100
0000 0011
1111 1111
0000 0000
1111 1111

1000
1110
1001
1100
0011
0000
0000
1111

1011 0010
1010 1010
1001 0110
0111 0001
1111 0000
0000 1111
0000 1111
1111 0000

1101
1000
0101
1100
0011
1111
1111
0000

1000
0100
0010
0001
0000
0000
0000
0000

0000
0000
0000
0000
1000
0100
0010
0001

8.2

Icache Data or Tag Parity Error

The following actions are performed when an Icache data or tag pariby occurs.

1. When the hardware detects an error during an Icache read transaction, it traps and
replays the instructions that were fetched during the error, then flushes the entire
Icache so the re-fetched instructions do not come directly from the Icache.

|_STAT[PAR] is set.
A corrected read data (CRD) interrupt is posted, when enabled. (Pass 3 only)

8.3 Dcache Tag Parity Error

8-2

Error Detection and Error Handling

The primary copies of the Dcache tags are used only when servicing 21264/EV68A-gen-
erated load and store instructions. There are correctable and uncorrectable forms of this
error. If an issued load or store instruction detects a Dcache tag parity error, the following
actions are erformed:

1. MM_STAT[DC_TAG_PERR]is set.
2. A Dstream fault (DFAULT) is taken.

21264/EV68A Hardware Reference Manual

Dcache Data Single-Bit Correctable ECC Error

3. The virtual address associated with the error is available in the VA register.

4. The PALcode flushes the error block by temporarily disabling
DC_CTL[DCTAG_PAR_EN] and evicting the block using two HW_LD instruc-
tions. The onchip duplicate tag provides the correct victim address and cache
coherence state.

If a retried load instruction detects the Dcache tag parity error, the merafagence
may have already been retired, so the EXC_ADDR is not available. In this case, the
error is uncorrectable and the Mbox performs the following actions:

e Either DC_STAT[TPERR_PO] or DC_STAT[TPERR_P1]is set, indicating the
source of the error.

* When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

8.4 Dcache Data Single-Bit Correctable ECC Error

The following operations may cause Dcache data ECC errors:
* Load instructions

e Stores of less than quadword length

* Dcache victim read transactions

The hardware flow used for Dcache data ECC errors depends on the event that
caused the error.

8.4.1 Load Instruction

Loads that read data from the Dcache may do so either in the same cycle as the Dcache
tag probe (typical case) or in some subsequent cycle (load-queue retry). The hardware
functional flows for these two error cases differ slightly.

When a load instruction reads the Dcache data array in the same cycle asdh&yag
if an ECC error occurs on the LSD ECC error detectors, then the dhaps retiring
instructions and does not resume retiring until after hardware recovers from the error.

If an ECC error occurs on the LSD ECC error detectors, when a load instruction reads
the Dcache tag array before it reads the Dcache data array, then the load instruction may
have already been retired. In either case:

* Theincorrect data is written into the load instruction’s destination register;
however, the load queue retains the state associated with the load instruction.

* A consumer of the load instruction’s data may be issued before the error is
recognized; however, the Ibox will invoke a replay trap at an instruction that is
older than (or equal to) any instruction that consumes the load instruction’s data,
and then stalls the replayed Istream in the map stage of the pipeline until the error is
corrected.

* Given a READ_ERR read-type from the Mbox for the error load instruction, the
Cbox scrubs the block in the Dcache by evicting the block into the victim buffer
(thereby scrubbing it) and writing it back into the Dcache as follows:

— C_STAT[DSTREAM_DC_ERR] s set.

21264/EV68A Hardware Reference Manual Error Detection and Error Handling 8-3

Dcache Store Second Error

C_ADDR contains bits [19:6] of the Dcache address of the block that contains
the error (bits [42:20] of the physical address are not updated).

— DC_STAT[ECC_ERR_LD] is set.
— The load queue retries the load and rewrites the register.

— A corrected read data (CRD) error interrupt is posted, when enabled.

Note: Errors in speculative load instructions cause a CRD erreriapt
to be posted but the data is not scrubbed by hardware. The PALcode
cannot perform a scrub because C_STAT is zero and C_ADDR does not
contain the address of the error.

8.4.2 Store Instruction (Quadword or Smaller)

A store instruction that is a quadword or smaller could invoke a Dcache ECC error,
since the original quadword must be read to calculate the new check bits.

* The Mbox scrubs the original quadword and replays the write transaction.
* DC_STAT[ECC_ERR_ST]is set.

* Acorrected read data (CRD) error interrupt is posted, when enabled.

8.4.3 Dcache Victim Extracts

* Dcache victims with an ECC error are scrubbed as they are written into the
victim data buffer.

* No status is logged.

* No exception is posted.

8.5 Dcache Store Second Error

A second store instructioarror is logged when it occurs closehied the first.
Neither error is corrected.

* DC_STAT[ECC_ERR_ST]is set.
e DC_STAT[SEQ] s set.

* When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

8.6 Dcache Duplicate Tag Parity Error

The Dcache duplicate tag has th@rrectversion of the Dcache coherence state for the
21264/EV68A, allowing it to be used for correct tag/status data when the Dcache tags
generate a parity error. These tags are parity protected also; however, the Dcache dupli-
cate tag cell is designed to be much more tolerant of soft errors. The parity generators
for the duplicate tags are enabled whenever the Cbox performs a physically-indexed
read transaction of eight locations in the tag array. If an error is generated, the following
actions are taken:

* Dcache duplicate tag parity errors are not rezrable.

8-4 Error Detection and Error Handling 21264/EV68A Hardware Reference Manual

Bcache Tag Parity Error

« C_STAT[DC_PERR]is set.

e C_ADDR contains bits [42:6] of the Dcache duplicate tag address of the block that
contains the error.

* When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

8.7 Bcache Tag Parity Error
The Bcache tag parity is checked on all Bcache tag referencédisding references
invoked by system probes. If an error is detected, the following actions are taken:
e Bcache tag parity errors are not recoverable.
* C_STAT[BC_PERR]is set.

e C_ADDR contains bits [42:6] of the Bcache address of the block that contains the
error.

* When enabled, a machine check (MCHK) is posted. The MCHK is taken when not
in PALmode.

8.8 Controlling Bcache Block Parity Calculation

Parity is calculated for either valid Bcache blocks or all Bcache blocks. The calculation
is controlled by the value in Cbox CSR BC_VALID_MODE in the WRITE_MANY
chain, as follows:

* |f the MSB of BcTag_H is less than the value of Maximum PA in Table 4-13, then
BC_VALID_MODE=1 and parity is calculated for only valid Bcache blocks.

e |f the MSB of BcTag_H is greater than or equal to the value of Maximum PA in
Table 4-13, then BC_VALID_MODE=0 and parity is calculated for all Bcache
blocks.

For example, if BcTag_H[38:20] and Maximum PA is 36, then 38 is greater than or
equal to 36 and BC_VALID _MODE=0 and parity is calculated for all Bcache blocks.

8.9 Bcache Data Single-Bit Correctable ECC Error

The following actions may trigger Bcache data ECC errors:

* |cache fill, data possibly used by Icache

* Dcache fill, data possibly used by load instruction

* Bcache victim during an ECB instruction or during a Dcache/Bcache miss
The recovery mechanism depends on the action that triggeremritre

8.9.1 Icache Fill from Bcache

For an Icache fill, the LSD ECC checkers detect the error, and bad Icache data parity is
generated for the octaword that contains the quadword in error. If an error is detected,
the following actions are taken:

e The hardware flushes the Icache.
e C_STAT[ISTREAM_BC_ERR] s set.

21264/EV68A Hardware Reference Manual Error Detection and Error Handling 8-5

Bcache Data Single-Bit Correctable ECC Error

e C_ADDR contains bits [42:6] of the Bcache fill address of the block that contains
the error.

e C_SYNDROME_O0[7:0] and C_SYNDROME_1[7:0] contain the syndrome of
guadword