EY-1034E-SG-0002

VAX/VMS
Users Introduction

Student Guide

Prepared by Educational Services
of
Digital Equipment Corporation

Copyright © 1982, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com-
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS IAS

TABLE OF CONTENTS

Chapter Page
l The User Environment ° . . . ° l_l
l.l The Hardware L] L] L] L] L] L3 L] . L] L] L] L] L] L] L] L] L] * L] 1-2

10 2 The Software * . . L] L] L] L] L] L] L] * L] L] L] . L] L] L] L] 1_4

1.3 Restricting the User Environment . . « « ¢« ¢« ¢ « « 1-4

2 Getting Started
2.1 Logging In and Out . . .
Special Terminal Keys .
DCL Command Format . . .
Getting HELP
Obtaining Information About the Environment
Modifying the Environment « . . .

3
.
L]
3

L[]
L L] . * L]

L[] L] L] ° L]
L] L] ® L] L]

wu:m?>wbow
=000 D
- S

] ® L] L] L] . [
L] L] L] L] L] [] .
. . L] [] L] L] L]

NN
L]
AU WN

3 File Naming and Manipulating . . .

3.1 File ConceptsS o o o o o o o o o o o o o o .o . -

3.2 Specifying Files . ¢« ¢ ¢« o o o o o o o o o . . -
3.2.1 File Specification Rules & .« -
3.2.2 Directories and Subdirectories . . . o . -
3.2.3 Purpose of Directories and Subdirectorie

3.2.4 Specifying Files in Subdirectories

o ¢ o o o ™Mo o o o o
-
n
o o o o 8 ¢ 0 * o e 0
WWWwwwwwwwww
HI—'I—‘F—'\D&O\U‘IU)I—'I—‘

3.2.5 Defaults . v« o ¢ o o ¢ o o o o o o o o . -
3.2.6 Changing Defaults .« ¢« ¢ ¢ « ¢ o o o« o -
3.2.7 Wildcards =« o o o o o o o o o o o o .« . -
3.3 Deciphering Error MesSsagesS « o« « o« o o o o o o -

4 Creating and Manipulating Files . .
4.1 Creating Files Using EDT
4.1.1 EDT Line Mode Commands . .

4.1.2 EDT Keypad Mode Commands .

4.1.3 Recovering From a System Fallure

4.2 File Manipulation with DCL Commands .

L]
L]
L]
L]
*

L] . L)
[
.
L]
.
®

.bnhoihsbhb
O 00BN -

L] (] [] [] L
|

5 Introduction to Program Development . . « « ¢« o« « « « 5-1
5.1 Program Development on VAX/VMS . . .« . ¢« « ¢ o« o o 5=2
5.2 Logical NameS .« « ¢ o o o o s o s o o o o o o o o 5-9
5.3 A Sample Program - GRADES . . e o o o o o o o o 5-1

5.3.1 Normal Execution of GRADES e o o o o o o o o 5-1
5.4 Using the Symbolic Debugger . . .« ¢« ¢« ¢ ¢« « « « « 5-1
5.4.1 Execution of GRADES with the Debugger . . . 5-1

(S, Vel N

Table of Contents (cont.)

Chapter

5.5 Program Development with MACRO .
5. 501 Source Files o ® . L] . L] L]

5.5.2 Preparing the Program for Execution

5.5.3 Debug Commands

5.6 Program Development with FORTRAN .

5.6.1 Source FilesS ¢« v ¢ o o o

5.6.1.1 Character Per Column Formatti

3

5.6.1.2 Tab Formatting

.2 Preparing the Program for Execution

«3 Debug Commands . . . + . .

gram Development with PASCAL
.l Source Files

5.7

2 Preparing the Program for Execution

5.6

5.6

Pro

5.7

5.7

5.7.3 Debug Commands . . + . o &
5.8 Program Development with BASIC .

5.8.1 Source Files . . . « « . .

5.8.

5.8.

Pro

5.9.

5.9

5.9

2 Preparing the Program for Execution

3 Debug Commands
gram Development with COBOL .
1l Source Files « « ¢« &« &« . &

5.9

.2 Preparing the Program for Execution

«3 Debug Commands . . « «. . .

6 Simplifying a User Session
6.1 Creating a Command Procedure .
6.1.1 The LOGIN.COM Procedure
6.2 Creating Symbols
6.2.1 Parameter Symbols . . .

6.2.2 Interpretation of Symbols

7 Producing Formatted Text Output .
7.1 Using RUNOFF . . ¢« « & & « o
7.2 Input Files . . . o . . o .
7.3 Summary of RUNOFF Commands .«

8 Miscellaneous VAX/VMS Utilities . .
8.1 Using the MAIL Uutility . . « « .
8.2 Using the PHONE Utility

.

L] . L[] L] L] *

L d

.

. ° L] L] . .

L] L] . .

3

L]

L] L L] * L] .

[L J . .

L] L] * L] L] . L] L] L] L . * L] L] L] D L] L] L] L[] L] L]

* . . [

Q

L[] L] L] L] L] L] L] . L] L) L] L] L L] . . . L[] L] L] .

L] L] * . L[] L] L] . L] * L] . L] L] L] . L] . L]] * L[]

. . [] .] L[]

INTRODUCTION

The purpose of this document is to introduce you to VAX/VMS.
The document 1is divided into chapters, where each chapter
discusses a different aspect of VAX/VMS from the user's point
of view.

Chapter 1 provides an overview of the wuser's environment,
discussing the software and hardware available with VAX/VMS.

Chapter 2 gets you started, by discussing how to 1log in and
out, wuse the terminal, enter commands, get help when needed,
and obtain information about or modify the user environment.

Chapter 3 discusses file naming conventions, directory
structure, use of defaults, and deciphering error messages.

Chapter 4 discusses file creation using the EDT editor, and
file manipulation commands.

Chapter 5 discusses program development in general, including
program examples for several languages supported on VAX/VMS
(MACRO, FORTRAN, COBOL, BASIC, PASCAL). The VAX-1l1l Symbolic
Debugger is also discussed in this chapter.

Chapter 6 introduces command procedures and symbols, methods
that can be used to simplify a user session.

Chapter 7 provides an overview of the RUNOFF text formatter,
including examples and a summary of popular commands.

Chapter 8 discusses some other useful utilities, MAIL and
PHONE.

CHAPTER 1

THE USER ENVIRONMENT

THE USER ENVIRONMENT
A computer system consists of two major parts:
o Hardware

o Software

Hardware is a term used to refer to the physical computer,
which is manufactured in a factory.

Software is a term used to refer to the programs that
contain instructions to be performed by the hardware.

The combination of hardware and software forms a system.
Many types of hardware and software exist, so computer
systems do not have to be, and rarely are, identical.

A user's environment is defined by the combination of
hardware and software on his/her particular system. Since
the elements forming each system may not be the same, a user
of one system will probably work in a different environment
than a user on another system.

Each system is managed by a system manager. The system
manager is familiar with the system environment, and can
further restrict each user's environment.

THE USER ENVIRONMENT Page 1-2

l.1 THE HARDWARE

The hardware on a system is generally divided into three
parts - the central processing unit (CPU), main memory, and
peripheral devices.

The central processing unit is where most of the work is
done on a computer system. In the VAX family of computers,
there are four models of the CPU, including the 11-789,
11-75¢, and 11-730. The 11-780 model is larger than the
11-756. The 11-730 is the smallest model. All do the same
job; some faster than others. There is usually only one
CPU per system. The 11-782 (larger than the 11-788) uses
two CPU's, one as the primary worker, and the other as the
secondary worker. Work is shared between the two processors
according to rules set up by the designers.

Main memory is used for temporary storage of instructions
and data. Main memory can be installed in units, so the
amount of memory on a system can vary. Battery backup is
available so the contents of main memory are not lost in the
case of a power failure. The system manager can set up the
system to start automatically after a failure (such as a
power outage), and restore the contents of memory.
Therefore, with battery backup, work is rarely lost.

Peripheral devices include disk drives, magnetic tape units,
printers, terminals, and card readers.

Each disk or magnetic tape is referred to as a volume in
this document. The term device 1is used to refer to the
physical equipment where the volume is mounted.

Disks are wused by the system to store currently used
information. A disk can be placed in a disk drive or stored
in a cabinet in the same way a record can be played on a
record player or stored in a cabinet. Although several disk
drives may be attached to a system, the user's information
is normally recorded on one disk only, which may be mounted
in any drive.

In the same way, a person may own several record players to
play records on. If a particular song is recorded on one
record only, the person may play the record on any of the
players and hear the same song. If the creators of another
record decided to include the same song, or a variation of
the song, on their record, the song would be on more than
one record. In the same way, the same information, or
different versions of the information, may be stored on more
than one disk.

THE USER ENVIRONMENT Page

Magnetic tapes are normally used to store information not in
current use, to free up storage space on the disks. The

owner of the disk decides what will be stored on tape and/or
removed from the disk.

Many different types of disk and magnetic tape drives can be
installed as part of a VAX/VMS system. The storage of
information on disks and magnetic tapes is handled by the
system and the system manager. This document assumes the
user will not be handling disks or magnetic tapes.

Most users of VAX/VMS work with printers and terminals.

Several types of printers are available. The system manager
chooses one of the printers on the system to be the default
printer. All files to be printed are sent to the default
printer unless the user specifies otherwise.

Several types of terminals are available. Some have a video
screen, such as the VT52 and VT1¢@#. Others are hardcopy
terminals using paper, such as the LA36 or LAl20 (see Figure
1-1). A standard keyboard is built into all DIGITAL
terminals (see Figure 1-2). This document assumes DIGITAL
terminals are being used.

A VIDEO A HARDCOPY
TERMINAL TERMINAL

TK7319

Figure 1-1 Figure 1-2

1-3

THE USER ENVIRONMENT Page 1-4

l.2 THE SOFTWARE

The software on a system is generally divided into two major
parts - application software and system software.

Application software includes programs written by users of
the system for specific purposes, such as budgeting,

pProcessing the payroll, running machines, or keeping
personnel records up-to-date.

System software includes programs written by the creators of
the system for such purposes as coordinating users, sharing
resources, running the hardware, and helping the user
communicate with the system.

1.3 RESTRICTING THE USER'S ENVIRONMENT
A user can be restricted from access to:

o The system (i.e., not allowed to work on the system)

o Other users (i.e., so can not affect the work of other
users)

o Certain kinds of software (such as system programs)

o Particular kinds of hardware

Information about each user is stored in a special file,
called the User Authorization File (UAF), on the system.
The system manager can modify any of information stored
there to allow the user more access to hardware and
software, or to restrict the user further.

The information in the UAF includes:

o The user's name and password - needed for access to the
system

o Privileges - to allow or disallow access to hardware
and/or software

o Limits - to restrict the use of system resources
o UIC - User Identification Code

o Priority - used by the scheduler to coordinate users -
on a 'higher priority - first serve' basis

THE USER ENVIRONMENT Page 1-5

When a user logs in, VMS uses this information to <create a
process. A process contains a complete description of the
user's environment, including all of the information from
the UAF, what the user is doing, and what part of memory the
user is working in. Therefore, the process is equivalent to
the wuser's environment. Each user works in the context of
their own process. VMS coordinates, manages, and allocates
resources to processes, not users.

Processes are created for the purpose of running programs.
When a user logs in, a special kind of process is created -
an interactive process. The term interactive means that the
user is interacting directly with the system, usually via a
terminal.

VMS runs a program for interactive processes as soon as they
are created. The default program may be changed by the
system manager, but this document assumes that the program
is the command language interpreter for the DIGITAL Command
Language (DCL).

The DCL interpreter accepts a DCL command input by the user
and runs the system program corresponding to that command.
One DCL command is the RUN command, which can be wused to
execute user programs. After user or system programs have
completed, VMS runs the DCL interpreter again, so the
process will not be deleted. (If a program is not executing
in a process, VMS deletes the process.)

The user will know if the DCL interpreter program is
executing by the presence of the DCL prompt, $ (a dollar
sign). The dollar sign prompt indicates that the DCL
interpreter is ready to receive a command from the user. If
the dollar sign prompt is not present, another program is
probably executing, and DCL commands should not be input.

Interactive processes are deleted by VMS when the user 1logs
off the system. Resources which were used by that process
are then available for use by other processes.

CHAPTER 2

GETTING STARTED

LOGGING IN AND OUT

Before you can 1log into the system you must obtain
permission to wuse the computer. The system manager is
usually the person to contact. The system manager will give
you a username and password that will permit you to use the
facilities of the system.

Once you have a username and password you can 1log in. To
log in to the VAX/VMS system, do one of the following:

o Press the <RETURN> key on the right side of the keyboard

o Press the control key <CTRL> on the 1left side of the
keyboard. Hold it down and press the C or Y key (both
achieve the same results).

You should see a request for your user name in the format:

Username:

If you do not see the prompt:

o First, check to see if the terminal 1is plugged
in and turned on.

o Then, try again.

o If you still do not see the prompt, get help
from your system manager or designated expert.

GETTING STARTED Page 2-2

If you received the prompt, enter your user nhame. The
system should output another prompt requesting your password
in the form:

Password:

Enter your password. The password does not echo (i.e., you
can not see what you type), so type carefully.

The system should output a welcome message. Some systems
also output site-specific informational messages. (These
informational messages can be changed, and added to, by the
system manager.)

If the system outputs an error message instead of a
welcome message:

o Start over and enter the information more
carefully

o If you still receive an error message, notify
your system manager or designated expert.
(Sometimes the information recorded in the UAF
corresponding to your user name is not correct.
Sometimes the information has not been recorded.
By notifying the system manager, the problem
should be corrected so you will not receive any
more error messages.)

If the system outputs an informational message such
as 'system busy - try again later', then obey the
message.

Assuming you have been successful in logging in, you should
see the dollar sign prompt, §$, at the left side of your
terminal screen. The §$ was output by the DCL interpreter
program executing in your process. The DCL interpreter is
ready to receive a valid DCL command.

One valid DCL command is LOGOUT. If you enter this command,
your process is deleted and its resources are returned to
the system.

$LOGOUT

GETTING STARTED Page

The examples that follow show both a successful and
unsuccessful attempt to login to the system.

Example 1 -- Successful Login
<CR>
Username :SMITH

Password:
Welcome to VMS V3.0

$

Example 2 -- Unsuccessful Login

<CR>

Username :SMITH

Password:

User Authorization Failure

GETTING STARTED Page 2-4

2.2

SPECIAL TERMINAL KEYS

A diagram of the standard DIGITAL keyboard can be seen 1in
chapter 1, Figure 1-2. The following terminal keys can be
used while you are logged in to correct errors or modify the
behavior of programs:

o DELETE - Used to delete the character Jjust entered on
the terminal

For example, If you enter PAPEF when you meant to enter
PAPER, press the DELETE key after entering the F.

On a video screen, the F will be erased, 1leaving the
cursor after the E. You can then enter the correct
letter, R.

When working on a hardcopy terminal, the deleted
character will be echoed, preceded by a backslash
character. When the correct letter is entered, another
backslash <character will appear on the paper, followed
by the new letter.

PAPEF/F/R

o BACKSPACE - Do not use! The character entered by this

key 1is unacceptable input to the DCL interpreter or a
compiler.

GETTING STARTED Page 2-5

o CTRL - This key is to be used in conjunction with one of
the following keys by holding it down while pressing one
of them:

- Cor Y - suspends the current command 1line or
currently executing program. The dollar sign prompt
is then output.

- R - retypes the current input line on the terminal.
CTRL-R is useful on hardcopy terminals after several
corrections have been made to an input line.

Papef/f/r is a uf/f/seful tb/b/ool (user types CTRL-R)

Paper is a useful tool (line is retyped as the
computer will see it.
Input may continue at
the end of the 1line.)

- U - cancels the current command line

- S - stops the display of information on the terminal
screen

- Q - continues printing output stopped with the
CTRL/S on the terminal screen

- O - suppresses output to the terminal screen but
allows program to continue. Entering another CTRL-0
reverses the effect so the output can be seen again.
(The information output by the program while output
to the terminal screen is suppressed is never seen
by the user.)

NOTE: Sometimes a terminal will not respond to a
user, and appears to have stopped working. Often,
this is because the user accidentally entered a
CTRL-S or a CTRL-O. The terminal will usually
respond if a CTRL-Q or CTRL-O is entered. If that
fails, enter a CTRL-Y.

GETTING STARTED Page 2-6

2.3 DCL COMMAND FORMAT

Any valid DCL command can be input by the user when the $§
prompt 1is seen. The general format of all DCL commands is
the same. However, some commands may be more explicitly
defined or modified through the use of command options,
parameters and qualifiers.

Table 2-1 lists the major command formats and examples of
commands using those formats.

Table 2-1

‘Command Format Example
$command $LOGOUT

$command option $SHOW SYSTEM

$command option/qualifier $SHOW DEVICE/ALL

$Scommand parameter STYPE FILE.DAT
$command/qualifier parameter $DIRECTORY/FULL FILE.DAT
$command parameter/qualifier SPRINT FILE.DAT/COPIES=2
$command parameter ,parameter SPRINT FILE.DAT,TEST.FOR
$command param,param/qualif SPRINT A.DAT,B.FOR/COPIES=4

The first four characters of any DCL command, option, or
qualifier wuniquely identifies it to the DCL interpreter.
For example, PRINT can be shortened to PRIN, and DIRECTORY
can be shortened to DIRE. Many commands are uniquely
defined by fewer characters than four, so the user rarely
needs to enter the entire command. For example, DIRECTORY
can actually be shortened to DIR.

Many commands require an option or parameter so the DCL
interpreter will know exactly what to do. The interpreter
will prompt the user for missing information. For example,
the PRINT command prompts for a file name.

S$SPRINT (user pressed <RETURN>)
$ _file: (system prompt...user
should input file name)

GETTING STARTED ' Page 2-7

As soon as the DCL interpreter has received all required
information, it will invoke the <corresponding system
program. For example, the PRINT command requires only one
file name. If a user enters one file name and presses the
carriage return, the file will be printed. If the user
intends to enter more than one file name, the carriage
return should not be pressed until all file names have been
entered. For example:

SPRINT (user pressed <RETURN)>)
$ _file: FILE.DAT (user enters file name and presses
<RETURN>. File is printed)

SPRINT

$ file: FILE.DAT,A.DAT,B.DAT (user list names and does not

- press <RETURN> until all have
been listed. All files are
printed.)

If a user needs to print so many files that the end of the
line 1is reached before all files have been 1listed, a
continuation marker can be placed at the end of the 1line.
The continuation marker accepted by the DCL interpreter is -
(a hyphen). The user can press the carriage return after
entering the hyphen, and continue to input file names after
the $_ prompt on the next line. A carriage return pressed
after the 1last name causes all listed files to be printed.
The continuation marker can be used with any DCL command.
For example:

SPRINT FILE.DAT,A.DAT,B.DAT, -
$_TEST.FOR, PAYROLL.DAT

GETTING STARTED Page 2-8

2.4 GETTING HELP

All commands listed in Table 2-1 are valid DCL commands.
More information is available on-line for every DCL command.
To obtain this information, enter the command HELP when the
$ prompt is seen.

An alphabetical 1listing of all DCL commands and other
selected topics will be seen. The HELP program then prompts
for a topic. The name of any topic 1listed can be input
after the prompt. Information about the topic will be

output, including a statement "additional information
available" preceding a list of subtopics, and a prompt for a
subtopic.

Information about a subtopic 1listed can be obtained by
inputting 1its name. If a carriage return 1is entered
instead, the topic prompt will be output. If another
carriage return is entered, the user will see the $ prompt.
For example:

$HELP
(Alphabetical list of commands and topics)
Topic? PRINT (user enters name of topic)
(general information about topic)
(subtopics listed if available)
Subtopic? /COPIES (user enters name of subtopic)
(information about subtopic is output)
Subtopic? (user presses <RETURN>)
Topic? (user presses <RETURN)>)

GETTING STARTED Page 2-9

NOTES

1. The three words: options, parameters, and/or qualifiers
are usually included 1in the 1list of subtopics for
commands. Any of these may be entered as a subtopic to
obtain general information. For example:

Subtopic? parameters

2. If the subtopic is a command qualifier, the / is part of
the name of the qualifier, as seen with /COPIES.

3. Another way to exit from the HELP program is by
inputting a CTRL-C or CTRL-Y.

4. The HELP command accepts a topic and/or subtopic as part
of the HELP command to obtain information more quickly.
For example:
SHELP topic subtopic
Some examples of this include:
SHELP SHOW SYSTEM

SHELP DIRECTORY
$HELP PRINT/COPIES

GETTING STARTED Page 2-10

2.5 OBTAINING INFORMATION ABOUT THE ENVIRONMENT

The environment of a user is defined by the hardware on the
system, the software available, and the information recorded
about the user in the UAF.

Users can look at their environment through the use of one
or more DCL commands listed in Table 2-2. Use HELP to find
out more information about these commands.

Table 2-2 Commands to obtain information about environment

Information desired Command to use
List of all processes on system SSHOW SYSTEM
Information about own process $SHOW PROCESS/ALL
Current statistics on own process S$SHOW STATUS
*Current position (device and $SHOW DEFAULT
directory)
Current system date and time $SSHOW TIME
Characteristics of own terminal $SHOW TERMINAL
Characteristics of other devices SSHOW DEVICE

*discussed in Chapter 3 of this document.

GETTING STARTED Page 2-11

2.6 MODIFYING THE ENVIRONMENT

Users can change some of the characteristics of their
environment. Table 2-3 1lists the commands used to change
typically modified characteristics. Use HELP to obtain more
information about these commands.

Table 2-3 Commands used to modify user environment

Characteristic Command
Password SSET PASSWORD
Width of line on terminal $SET TERMINAL/WIDTH=132

$SET TERMINAL/WIDTH=80

*Default position $SET DEFAULT [directory-name]
(device and directory)

*discussed in Chapter 3 of this document

CHAPTER 3

FILE NAMING AND MANIPULATING

FILE CONCEPTS

The following analogy should help you understand how
information is stored and accessed on VAX/VMS.

A large company, called WERGRATE, owns a building. The
building is divided into many rooms. Some of these rooms
are set aside for the storage of information. Filing
cabinets 1line the walls of each of these storage rooms.
File folders containing information are stored in most of
the cabinets.

In this analogy, we have defined several places:
The building
Rooms in the building
Filing cabinets in each room

One or more file folders in the cabinet

Many different types of information can be stored 1in the
file folders, such as drawings, reports, and personnel
records.

Many different kinds of files can be stored on a computer
system. A file stored on a computer system can contain such
things as text, source code, object code, or executable
code. Files are created by an editor, a compiler, the
linker, or other utilities. Normally, a file is stored on a
disk or magnetic tape.

The storage areas in a company correspond to storage areas
in a computer system as seen in Table 3-1.

FILE NAMING AND MANIPULATING Page 3-2

Table 3-1 Correspondence between a company and a VAX system

A company A VAX system
The building A node

A room A device

A filing cabinet A directory
A file folder A file

To send a person to retrieve a certain file folder,
directions to the folder must be specified. The person must
know which building to enter, where the correct room is, and
which filing cabinet to open to access the folder. It is
assumed the person sent is familiar with buildings, rooms,
file cabinets, and folders. However, if the person is given
incorrect directions, the folder may not be found, or a
different folder may be retrieved.

To send the computer system to access a file, directions to
the file, called a file specification, must be given to the
system. In VAX/VMS, a file specification includes the names
of the node, device, directory, and file. The system is
familiar with nodes, devices, directories, and file names,
and will attempt to locate the file as specified. 1If the
user gives the system an incorrect file specification, the
system may respond with an error message, or by retrieving a
different file than the user intended.

FILE NAMING AND MANIPULATING Page 3-3

3.2

SPECIFYING FILES
A file specification has the following format:

Node::Device:[Directory]File name.File_type;Version_number

The fields of a file specification are discussed below.

o Node:: - the name of the system connected to the device
where the file resides.

o Device: - the name of the device containing the volume
(disk pack, magnetic tape) where the file is stored.
Several devices may be connected to the wuser's system.
Volumes can be moved from device to device. The
information stored on a volume can be accessed only by
specifying the name of the device where the volume is
currently mounted. The system will respond with an
error message if the volume is not available.

o [Directory] - the name of a special file, a directory
file, where the name of the file 1is 1listed. The
directory file is stored on the same volume as the file.
Directory files are discussed further in section 3.2.2.

o File name - any name chosen by the user. The name
usually corresponds to the contents of the file.

o .File type - should indicate the kind of information
stored in the file, such as text (.TXT), data (.DAT),
FORTRAN source code (.FOR), object <code (.0OBJ). The
file type may also be chosen by the user, and does not
have to correspond to the contents of the file.

o ;Version number - indicates whether this is the first,
second, ~third, etc. version of the file. When a file
is created, the system assigns it a version number of 1.
If the file 1is modified, the modified version |is
assigned the version number of 2. Each new modification
is assigned a new number (increment is 1).

FILE NAMING AND MANIPULATING Page 3-4

For example:
If the node is NODEA ,
the device is DRA3 ,
the directory is WHITE ,
the filename is MYFILE ,
the filetype is TXT ,
and the version number is 4 ,
then the full VMS file specification is:

NODEA: :DRA3: [WHITE]MYFILE.TXT;4

The following are other examples of complete file
specifications:

ENGNDE: :DRAQ: [BROWN] TESTFIL.DAT;2
DEPT@1: :DBB3: [SERGIO] DRAWING4.TXT;33
ACCTNG: :DBA1l: [MANAGER]BUDGET.FOR;1

ACCTNG: :DRAQ: [SYSEXE]HELP.EXE;1

FILE NAMING AND MANIPULATING Page

3.2.1 FILE SPECIFICATION RULES

A few rules must be followed when creating a file
specification:

1. The punctuation marks are required to separate the
fields of the file specification.

2. Spaces are not allowed within a file specification.

3. The name chosen for each portion (except the
version number) may contain digits or characters,
but must begin with a character.

4. Each portion of the file specification 1is 1limited
to a certain length:

o Node: 1-6 characters

o Device: 1-15 characters

o Directory: 1-9 characters
o File name: 1-9 characters
o File type: @-3 characters

o Version number: 1-5 digits

FILE NAMING AND MANIPULATING Page 3-6

3.2.2 DIRECTORIES AND SUBDIRECTORIES

A directory file is a special kind of file. Directory
files contain a list of names of other files. They are
used by the system to access the other files.
Directories reside on disk volumes. Normally, one
directory file is created for each user on a system.
The name of this file is often the same as the user's
last name.

A master directory file, named 000009.DIR, resides on
each volume. This master file contains a list of the
names of the top-level directory files on the volume
(usually the files whose names correspond to user
names) .

For example, a volume could contain the directory files
for BROWN, SMITH, BLACK, and JONES. When the
P00000.DIR directory file is listed, all of these names
are seen:

$DIRECTORY NODEA::DRAl:[000000]

BLACK.DIR;1 BROWN.DIR;1 JONES.DIR;1 SMITH.DIR;1

Several conclusions can be drawn from this example:

l. Even though the name of the master directory is
P00PP0.DIR, to specify the name of the directory in
the command, the syntax [@00000@] must be used.
This is true of all directory files. Their names
are in the form name.DIR, but they must be
specified as [name] in a file specification.

2. The DIRECTORY command always outputs file names 1in
alphabetical order.

3. Directory files are always version 1.

The 200000.DIR file is a 1list of files which are
directory files themselves. Each of these directory
files should contain a list of files, some of which
could be directories. The directories listed in the
master file are <called top-level directories. The
directories 1listed in top-level directories are called
subdirectories. Subdirectories are directory files
which contain a list of file names, some of which can
be directories. Directories listed in a subdirectory
are also called subdirectories.

FILE NAMING AND MANIPULATING Page 3-7

Directory £files and subdirectories can be better
understood through the use of a tree diagram (like a
family tree), as seen in Figure 3-1.

—— ——————————— —— T — ———— - ——

. . . I
. . . I
. . . I

l

PROJECT1.DIR;1 FILE.DAT;19 TEST.FOR; 4

SHIPSPD.BAS;2 DATA.DAT;6 PROJNOTES.DIR;7

NOTESDATA,.DAT; 3 SHIPNOTES.DAT;9
Figure 3-1

In this figure, the files listed reside on the volume
mounted in the disk drive, DRAl. The DRAl device, as
well as the DRAP and DRA2 devices are connected to the
system with the node name NODEA. Each volume contains
a master directory.

The master directory on the volume mounted in the DRAl
device contains four top-level directories: BLACK.DIR,
BROWN.DIR, JONES.DIR, and SMITH.DIR. The SMITH.DIR
directory file (shown in figure) contains one directory
file, PROJECT1.DIR. PROJECT1.DIR, a subdirectory of
SMITH.DIR, contains a directory file, PROJNOTES.DIR.

FILE NAMING AND MANIPULATING Page 3-8

Notice that directories also contain other kinds of
files.

The number of directory files which may be 1listed in
any directory file is not 1limited. Therefore,
SMITH.DIR could contain the names of more than one
subdirectory, and each subdirectory file could contain
the names of several other subdirectory files.
However, only seven 1levels of directories may be
defined from the top. (SMITH.DIR is a top-level or
first-level directory. PROJECT1.DIR is a second-level
directory. PROJNOTES.DIR is a third-level directory.)

3.2.3 PURPOSE OF DIRECTORIES AND SUBDIRECTORIES

The major reason directories and subdirectories are
created 1is to logically separate information on a
volume. When users are separated from each other
through the wuse of top-level directories, each user
appears to own a portion of the volume for storage of
information. VMS supports a protection scheme which
can be used to prevent other users from accessing
files. This protection can be wused to protect an
entire directory from access, or to protect only a few
of the files in the directory.

In some situations, one user could be working on
several projects, each requiring several files.
Subdirectories can be used to separate the files
belonging to one project from files belonging to
another.

Subdirectories become very useful for a frequent user
because directory 1listings can be very long. OpWhen
information is separated, each directory is smaller and
easier to work with. Any user <can create a
subdirectory with their own directory structure with
the CREATE/DIRECTORY [name] DCL command.

FILE NAMING AND MANIPULATING Page 3-9

3.2.4 SPECIFYING FILES IN SUBDIRECTORIES

The system assumes that a master directory is stored on
each volume. When a file specification is input, the
system searches the master directory for the directory
name input. If the directory name is listed in the
master file, the system searches the directory file for
the file_ name.

If a file is stored in a subdirectory, the file name is
not listed in the top-level directory file; rather, it
is listed in the subdirectory file. Therefore, the
system must be given the name of the subdirectory file
to search. 1In a file specification, this 1is done in
the [DIRECTORY] portion by specifying the top-level
directory name followed by a period. After the period,
the subdirectory name is specified. If the file name
is 1listed in a second-level subdirectory, = the
[DIRECTORY] portion will contain two names. For
example, to specify DATA.DAT in the subdirectory
PROJECT1.DIR (see Figure 3-1), the following file
specification can be used:

NODEA: :DRAl: [SMITH. PROJECT1]DATA.DAT

If the file name is listed in a third-level
subdirectory, the top-level name and the second-level
name must be specified first to provide a search path
for the system. For example, to specify NOTESDATA.DAT
in the subdirectory PROJNOTES.DIR (see Figure 3-1), the
following specification can be used:

NODEA: :DRA1l: [SMITH. PROJECT1.PROJNOTES]NOTESDATA,.DAT

FILE NAMING AND MANIPULATING Page 3-10

3.2.5 DEFAULTS

Most users never have to input the complete file
specification to uniquely identify a file to the
system. This is because the system supplies several
fields of the specification if the wuser does not
specify them. These supplied fields are called
defaults. The system stores some default values as
part of the user's process. It is possible to default
any field of the specification except the file name.
However, fields may be defaulted only under certain
conditions:

o The node (the name of the system) may be defaulted
if the file resides on a device attached to the
system where the user is currently working.

o The name of one device where the wuser's top-level
directory file is stored is recorded in the UAF for
that user. If a device 1is not 1included in the
specification, the name of this device (the
default) is supplied.

o The name of the wuser's top-level directory is
normally recorded in the UAF. The system supplies
this directory name if the user does not specify a
directory.

o The name of each file is unique, so the user must
always supply a file_name. The system does not
supply a default.

o The kind of information stored in each file should
be 1indicated by the file type. Users may choose
any file type desired, but if the standard
file types are used, certain system programs will
supply the file type field of the specification.
For example, the PRINT and TYPE programs will
always supply the file type of LIS. However, if
the wuser desires to print a file of type FOR, the
file type of FOR should be included in the file
specification.

Some system programs which accept input files and
produce output files will assume one file type for
files 1input to them, and supply a different
file type for the output files. For example, the
FORTRAN compiler assumes input files have the
file type of FOR, and supplies the OBJ file type
for files output. -

FILE NAMING AND MANIPULATING Page 3-11

o The version number, as previously stated, is set to
1 by default when the file is created. As modified
versions are created, each is given a new version
number . Version numbers are incremented by 1
automatically. A user may assign any version
number to a file or allow the system to assign
numbers. System programs choose the version with
the highest number by default if no number is
given.

Defaulting can be seen in the following example:
Joe Brown is working
on a system whose name is NODEA,
where his files are stored on a device named DRAJ
in the top-level directory, [BROWN].
He is working with a file, TESTPRGM,
whose file type is LIS.

This is the third version of the file, and the other two
versions are also residing in the [BROWN] directory.

The program invoked by the PRINT command assumes all
files input are of the type LIS. To print the file,
Joe Brown can use any of the following commands:
$ PRINT NODEA::DRA@: [BROWN]TESTPRGM.LIS;3
PRINT DRA@: [BROWN] TESTPRGM.LIS;3
PRINT [BROWN]TESTPRGM.LIS;3
PRINT TESTPRGM.LIS;3
PRINT TESTPRGM.LIS

PRINT TESTPRGM

«w » o » N »n

FILE NAMING AND MANIPULATING Page 3-12

3.2.6 CHANGING DEFAULTS

Users can change the defaults recorded in their
process. The SET NODE command is used to change the
default node name to access another system connected by
DECnet to the current system. The SET DEFAULT command
can be used to change either the device name and/or the
directory name. The new device name must correspond to
an actual device on the system, and the new directory
name must correspond to an existing directory.

For example, the device and directory names recorded in
the UAF entry for Joe Smith are DRA@G and [SMITH],
respectively (see Figure 3-1). When Joe logs in, the
system sets his default to DRA@:[SMITH]. To compile
DRA@: [SMITH]TEST.FOR;4, Joe only has to enter the
command :

$FORTRAN TEST

If Joe wants to print DATA.DAT in the subdirectory
PROJECT1.DIR (see Figure 3-1), the following command
can be entered:

$PRINT [SMITH.PROJECT1]DATA.DAT

If Joe wants to work with several files for a while in
that subdirectory, he could change his default:

$SET DEFAULT ([SMITH.PROJECT1]

$PRINT DATA.DAT
Notice that Joe only has to enter the file name and
file type after the default has been changed, since the
default directory name is now [SMITH.PROJECT1}.

To change the default directory name back to [SMITH],
the following command can be used:

$SET DEFAULT [SMITH]
S$PRINT [SMITH.PROJECT1]DATA.DAT

SPRINT DATA.DAT
error message

Notice that if Joe tries to print DATA.DAT now, the

complete directory specification must be given, or an
error message results.

FILE NAMING AND MANIPULATING Page 3-13

3.2.7 WILDCARDS

To list the names of all files in a directory, the
DIRECTORY command is used:

S$DIRECTORY [SMITH]

To list the names of all files whose type is FOR in a
directory, a wildcard, *, may be used instead of any
particular file name:

S$SDIRECTORY [SMITH]*.FOR

To list the names of all files whose names begin with G
in a directory, the wildcard may also be used:

$DIRECTORY [SMITH]G*.*

To list all versions of a file:

$DIRECTORY [SMITH]FILE.DAT;*

This wildcard may be used in the directory, file_name,
file type, and version number portions of the file
specification. The purpose of the wildcard is to save
time and effort on the part of the user.

Another useful wildcard is the period (.). The period
is used within the [DIRECTORY] portion of the file
specification:

$DIRECTORY [SMITH.PROJECT1]

S$DIRECTORY [.PROJECT1]

By using the period, the user did not have to enter the
name SMITH. The system takes the current default value
for the directory name, and includes it before the
period. Then, the completed file specification is used
to search for the requested file.

FILE NAMING AND MANIPULATING Page 3-14

Therefore, if the default wvalue is [SMITH.PROJECT1],
the files in the subdirectory PROJNOTES, can be listed
using:

SDIRECTORY ([SMITH.PROJECT1.PROJNOTES]
or

S$DIRECTORY [.PROJNOTES]

Two other wildcards may be wused with the directory
portion as well; the ellipsis (...), and the hyphen
(-). The meaning of the ellipsis is to search down
through the directory structure. So, to list all files
in the current directory and all subdirectories:

$DIRECTORY [...]

The hyphen is used to mean back up one directory level.
So, 1if the default is set to [SMITH.PROJECT1l], and the
user wanted to list the files in [SMITH]:

$DIRECTORY [-]

Wildcards may be used 1in conjunction with directory
names. So, to 1list the files in the PROJECT1
subdirectory and all files below it (assuming the
default directory is [SMITH]):

SDIRECTORY [.PROJECTI...]

If the default is set to [SMITH.PROJECT1l], and the user
wanted to 1list all files in [SMITH] and all files in
the rest of the structure:

$DIRECTORY [-...]

Other combinations may be used. Users should practice
wildcards with the DIRECTORY command, as this command
does not change anything. However, the wildcards are
valid for wuse within most DCL commands requiring file
specifications as parameters.

FILE NAMING AND MANIPULATING Page 3-15

3.3 DECIPHERING ERROR MESSAGES

When a problem occurs in a program, utility, or DCL command,
an error message is displayed. The error message contains
four parts and appears in the following format:

$FACILITY-L-IDENT, TEXT

$FACILITY is the name of the system program or utility that
generated this error message (for example, DCL).

L is the level of the error. There are five 1levels of
errors:

o S - Successful. No error 1is reported. Usually, no
message is output if a program is successful.

o I - Informational. No error, but the program outputs
some information needed by the user. Often, these types
of messages do not appear in the above format.
Informational messages usually consist of text only.

o W - Warning. The program may have completed
successfully, or there may have been an error. The user
should check to see 1f the desired task has Dbeen

completed.

o E - Error. The program has encountered an error. The
program outputs the message and attempts to continue if
possible.

o F - Fatal or severe error. The program is not able to
recover from this error and continue. The program is
aborted.

IDENT is a code word that is an abbreviation of the message
text.

TEXT is a descriptive message that tells the user what the
problem is.

FILE NAMING AND MANIPULATING Page 3-16

The following example shows the error message which results
when a command unknown to the DCL interpreter is entered
after the $ prompt.

$SDDD
$DCL-W~IVVERB,unrecognized command
\SDDD\

$

The error message is a warning, output by the DCL
interpreter. The incorrect command is also echoed. (Most
messages include the echoing of incorrect input in some
format; not always enclosed in backslashes.)

Some errors are detected by more than one utility, so
several messages may be output. Usually, the first message
contains the most pertinent information, but the others can
be helpful.

For example:

$PRINT FILE.DAT
YPRINT-W-OPENIN, error opening DRA@: [BROWN]FILE.DAT as input
-RMS-E-FNF, file not found

In this example, the file to be printed could not be found
by RMS, so the PRINT program could not open it to print it.
To correct this error, the user should create the file or
enter the name of an existing file.

The user should ask the following questions when an error is
received, because the problem is usually a common one:

o Is every part of the command spelled correctly?

o Does the command exist (is it a valid DCL command)?

o Were the options, qualifiers,and/or parameters chosen
from the 1list displayed for the command by the HELP
program?

o Was the command entered correctly (i.e., are the
options, qualifiers, and parameters, if any, in the
correct order)?

o Is the user allowed to use the command?

o Is the wuser trying to access a non-existent or
restricted piece of hardware or software?

CHAPTER 4

CREATING AND MANIPULATING FILES

CREATING FILES WITH EDT

EDT is the DIGITAL standard editor for text files. Files
containing text can be created and modified using the EDT
editor. The following command is used to invoke the editor:

$EDIT file specification

Usually, the file name and file_type are sufficient for the
file specification. If the user desires to create a file on
a different device or in a different directory than the
current default values specify, the device and directory
portions of the file specification will have to be included.

When a file is created, the file 1is assigned the version
number of 1. If the editor is being used to modify an old
file, the editor will open the file of the name given which
has the highest version number.
Some examples:
SEDIT FILE.DAT (uses defaults)

SEDIT DRA@: [SMITH]FILE.DAT;1 (no defaults used
except system name)

To create a file in a subdirectory, the same kind of command
is used:

Method one:

$SET DEFAULT DRA@:[SMITH.PROJECTI1]
SEDIT DATA.DAT

Method two:

SEDIT DRA@:[SMITH.PROJECT1]DATA.DAT

CREATING AND MANIPULATING FILES Page 4-2

When the carriage return is pressed after the command is
input, the editor 1is invoked. The EDT editor outputs a
message and a prompt. The EDT prompt is an asterisk, *.

The EDT editor is capable of being in one of two modes, line
mode and character mode. The * signals the user that EDT is
in line mode, and is ready to accept 1line mode commands.
(Note: DCL commands can not be input after the * prompt.)

One line mode command is CHANGE, (can be abbreviated to C).
When this command is input, the mode is changed to character
mode. No prompt is output for character mode, and the
editor will only accept character mode commands. (Note:
Neither DCL commands nor EDT line mode commands are accepted
when there is no prompt.)

A Computer-Based course is available that will teach you how
to use the features of EDT. Contact your system manager to
see if this course is available on your system.

4.1.1 EDT LINE MODE COMMANDS

Since character mode 1is so easy to use on video
terminals, most 1line mode commands are only used on
hardcopy terminals. People working on video terminals
will normally use the CHANGE (to enter character mode),
EXIT, QUIT, and SUBSTITUTE line commands.

In line mode, the EDT editor numbers each 1line so it
can be identified. Line numbers begin at @ and the
normal increment is 1. However, fractional numbers are
used also. For example, if a line is inserted between
lines 1 and 2, the new line is given the number of 1.5.
When too many lines have been inserted, numbers are not
assigned to the new lines. At this point, the user can
enter the RESEQUENCE command to renumber the file in
increments of 1 (or some other chosen increment).

To indicate a line in a line mode command, the number
of the 1line should be specified. To indicate several
lines, a range can be specified by entering the number
of the first line, followed by a colon and the number
of the last line. For example, to DELETE 1lines 2
through 10 (inclusive), the range is specified as 2:14.
To indicate the entire file, as often happens with the
SUBSTITUTE command, the symbol $WH (or $WHOLE) can be
entered (see Table 4-1 for an example).

All EDT line mode commands are terminated by the input
of a carriage return. All commands can be abbreviated
(see Table 4-1) except the QUIT command.

CREATING AND MANIPULATING FILES Page 4-3

Table 4-1 lists a subset of line mode commands. The
EDT editor has on-line HELP, so help can be obtained on
each of the commands listed.

Table 4-1 Subset of EDT line mode commands

Command Function Example (s)

CHANGE To change to character mode *CHANGE or *C

COPY To copy a line or a group of *COPY 10 TO 100
lines from one area of the *CO 1:5 TO 8
file to BEFORE another line
in the file

DELETE Delete a line or group of *DELETE 10
lines *D11:25

EXIT Exit from the editor, saving *EXIT or *EX
all changes

HELP Obtain help on all 1line *HELP or *H
mode commands

INSERT Add text to the file. Editor * INSERT
inserts BEFORE current position new text
or BEFORE line number specified. <CTRL-Z>
No prompt is output while *I5
inserting. To return to the other new text
* prompt, press <CTRL-Z>. <CTRL-2>

*

MOVE Move a line or lines from one *MOVE 10 TO 5
area of the file to BEFORE a *MO 3:4 TO 11
line in another area

QUIT Exit from the editor without *QUIT
saving any changes

REPLACE Delete a line or group of lines *REPLACE 10 or *R10
and enter Insert mode to add 1l line deleted
text new text added

<CTRL~Z>
*

RESEQUENCE Renumber all lines in the *RESEQUENCE
file in increments of 1 *RES

SUBSTITUTE Substitute a new piece of *SUBSTITUTE/0ld/new/$WH

—— —————————— —— — — —— — — S — —— VD D W WD T P WES = T W = . ———— - G- — — — —— ———— — — i — — — —————— - — — T — ——— — -

text for an old piece

*S/text/newtext/10: 20

CREATING AND MANIPULATING FILES Page 4-4

4.1.2 EDT KEYPAD MODE COMMANDS

Character mode in the EDT editor is easy to learn, fast
to use, and powerful. No prompt is output, because all
commands are based on the <current position of the
cursor (the flashing light on the screen).

In character mode, the wuser is always inserting.
Whenever a character is entered from the main keyboard,
it is echoed on the terminal and becomes part of the
file. New 1lines are created by pressing the carriage
return. Commands are entered by using the keypad to
the right of the keyboard. Character mode commands are
terminated when they are input. (A carriage return
does not mean 'end of command' in character mode.)

Each key on the keypad means something different to the
editor. Figure 4-1 shows the layout of the keypads for
the VT52 and VT1@@#. The commands available on each
terminal are similar, but the keypad 1layout 1is
different. Most users cut out a copy of one of these
diagrams to paste to the front of the appropriate
terminal for reference.

The easiest way to learn how to use character mode is
by using it. The following 1list of character mode
commands should be practiced on a practice file until
the user is familiar with them.

CREATING AND MANIPULATING FILES Page 4-5

MAJOR KEYS

o GOLD - wused in conjunction with other keys.
Normally, the command associated with a key is the
command 1listed at the top of the square
corresponding to the key in Figure 4-1. To invoke
the commands at the bottom of the square, press
GOLD, and then press the key. For example, the DEL
C key deletes a character. Pressing GOLD and the
DEL C key will undelete a character.

o HELP - will output a picture of Figure 4-1 for the
current terminal and allow the user to obtain HELP
for any of the keys on the keypad.

o ADVANCE - When pressed, causes the cursor to be 1in
advance mode (the default). All commands used to
move the cursor will move it in a forward
direction, towards the end of the file.

o BACKUP - When pressed, causes the cursor to be 1in
backup mode. All commands used to move the cursor
will move it in a backward direction, towards the
beginning of the file.

CREATING AND MANIPULATING FILES Page 4-6

Commands affected by ADVANCE or BACKUP

o SECT - moves the cursor several lines at a time
o LINE - moves the cursor one line at a time
o WORD - moves the cursor one word at a time
o CHAR - moves the cursor one character at a time

o EOL - moves the cursor to the end of a line

Commands not affected by ADVANCE or BACKUP

o DEL CHAR - deletes the character at the cursor
position

(DELETE - not on the keypad, but on the regular
keyboard, deletes one character to the left of the
cursor as usual)

o DEL WORD - deletes the word to the right of the
cursor

o DEL LINE - deletes the line to the right of the
cursor (including the «carriage return and line
feed)

Note that when the DEL CHAR, DEL WORD, and DEL LINE
keys are used, the deleted text is saved in a temporary
buffer so the user can UNDelete the text. This 1is
useful 1in the <case of an accident, where text is
unintentionally deleted. It is also useful when the
user wants the same 1line of text to be placed in
several places in the file. The user can delete the
line, wundelete 1it, and then move to the other places,

undeleting the line wherever it is needed. However,
these buffers only hold one value (i.e., one line, one
word, or one character) at a time. They are

overwritten by newly deleted values.

If the user would like to save several lines of text in
a buffer, to be placed in another place or several
places in the file, the CUT and PASTE keys should be
used. To save the text, the user should position the
cursor at the beginning of the text and press SELECT.
Then, the user should position the cursor after the end
of the text and press CUT. The selected text will be
removed from the file and placed 1in a buffer.
Therefore, the text is deleted. The wuser could stop
here, or replace the text elsewhere in the file by

CREATING AND MANIPULATING FILES

moving the cursor to the desired position and pressing
PASTE. The text will be inserted before the current
position of the cursor when PASTE 1is pressed. (Note
that the GOLD key must be pressed before the PASTE key
to enter the PASTE command.)

EOT VERSION 3 KEYPAD FOR VT100

Page 4-7

CTRL/A Compute tab level
FNDNXT | DEL L
CTRL/D Decresse tab level GOLD HELP
FIND UNDL
CTRL/E Incresse tab level
PAGE SECT |APPEND | DELW
CTRL/K Dsfine key
ICOMMAND| FiLL REPL UNDW
CTRL/T Adjust tabs Py
Delete 10 start of ADVANCE | BACKI cut DELC
CTRLU W
ne 8OTTOM |TOP PASTE | UNDC
CTRLW Refresh screen
WORD {EOL CHAR
CTRL/Z Exit to EDT command
mode HNGCASE} DEL EOL |SPECINS | ENTER
DEL Rubout charscter
LINE SELECT | SUBS
ACK Go to beginning of
BAcks? line beinring OPEN LINE RESET
LF Delete to start of
word
VT100 KEYPAD
~ "
*I 14] — | o PF1 PF2 PF3 PF4
1 'x
L A
7 8] =
4 5 6
t 2 3
ENTER
0 . EDT VERSION 3 KEYPAD FOR VT52
DEL Delete character
N DELL fjup
Delete to beginning
LF GOLD HELP
hian of word UNDL |REPLACE
BACKSP Move to beginning of
line PAGE ENDNXT | DELW | pown
CTRL/A Compute tab level jcommano | FIND | unow | secr
CTRL/D Decresse tab level
ADVANCE | BACKUP | DELC | RIGHT
CTRLE incresse tab ievel
BOTTOM | TOP UNDC | SPECINS
CTR Fil text
LE WORD EOL cut LEFT
CTRL/K Define key
[CHNGCASE| DEL EOL | PASTE | APPEND
CTRL/T Adjust tabs
LINE SELECT | ENTER
CTAL/Z Return to line mode
OPEN LINE RESET | sues
VT 52 KEYPAD
v
stue | Reo | cRav | % |
H
|
7 ®
8 s
] 5 [--->
1 2 3 <---
[. ENTER

Other EDT character mode commands are used less
frequently. Information about them can be obtained
through the HELP facility.

CREATING AND MANIPULATING FILES Page 4-8

4.1.3 RECOVERING FROM A SYSTEM FAILURE

Recovering from a system failure during an edit session
is not difficult with the EDT editor. While the user
is editing, EDT 1is creating a journal file. This
journal file contains a list of all commands entered
since the beginning of the session. After the system
is running again, users can recover all edits done by
using the command:

$EDIT/RECOVER file specification

The user should specify the name of the file which was
being edited at the time of the system crash. The EDT
editor will read the latest version of that file as
input, and use the commands listed in the journal file
of the same name (name.JOU) to reconstruct the work
done. During recovery, the editor will actually repeat
the work done previously by the user. Users should not
touch the keyboard until the editor 1is done and a
prompt (if they were in line mode) appears. If the
system crashed while the user was in character mode,
the user should wait until the cursor stops moving
around. After the editor completes the journal file's
list of commands, it will accept commands from the
user. (Note: A journal file will also be created if
the user exits the editor incorrectly (i.e. with a
CTRL-Y).)

CREATING AND MANIPULATING FILES Page 4-9

4.2 FILE MANIPULATION WITH DCL COMMANDS

Several DCL commands are useful for moving, copying,
printing, and obtaining information about files. Table 4-2
contains the most commonly used DCL commands for these
purposes.

The * wildcard can be used with any of these commands 1in
place of one or more fields of the file specification.
Notice that most commands will prompt for missing
information. This 1is especially useful for the COPY
command, as shown.

More information about any of the commands in Table 4-2 can
be obtained through the use of the HELP command.

CREATING AND MANIPULATING FILES Page 4-190

Table 4-2 Commonly used DCL commands for file manipulation

Command Function Example

DIRECTORY Used to obtain information about $DIRECTORY
files. The /FULL qualifier is $DIRECTORY/FULL
used to obtain more information.

COPY Used to copy information stored $COPY
in one file to another file. $ from:FILE.TXT
The second file usually has a $_to:DATA.DAT

different file specification.
(Result is two files
containing the same information)

RENAME Used to change the name of a SRENAME
file. $_from:DATA.DAT
$ to:TEST.FOR

PRINT For printing a file on the S$PRINT BUDGET.FOR
system default printer
designated by the system manager.

TYPE For outputting the contents of S$TYPE FILE.BAS
a file to the terminal.

DELETE To delete a file. Requires a SDELETE NAME,.DAT;3
version number.

PURGE To delete all but the latest $PURGE
version of any or all files
in a directory. SPURGE FILE.DAT

CHAPTER 5

PROGRAM DEVELOPMENT

INTRODUCTION TO PROGRAM DEVELOPMENT

VAX/VMS provides a number of tools that significantly
decrease the time spent developing VAX-1ll1l programs. These
tools include:

o Interactive Text Editor (EDT)
o Programming Languages

o Linker

o Librarian

o Common Run-Time Library

o Symbolic Debugger

o Record Management Services

The editors, programming languages, and linker, are
utilities that are used to prepare a source program for
execution. The symbolic debugger is used to detect errors
in executable programs (programs that do not appear to
contain errors when compiled/assembled and 1linked, but,
nevertheless, fail to produce correct results).

The librarian enables storage of frequently-used segments of
code, such as procedures or functions, in specially indexed
files called libraries. Procedures or functions stored in a
library can be referenced in a program. The linker combines
the code from the library with the wuser's source code to
produce an executable image.

PROGRAM DEVELOPMENT Page 5-2

For the MACRO language, definitions (macros) can be stored
in a different type of library. Libraries containing macros
can be accessed by the assembler to include a specific macro
in the program.

The Run-Time Library is a system library containing a large
number of predefined routines that can be called from user
programs (such as routines to manipulate strings or generate
random numbers). The MACRO programmer will find some of the
I/0 routines to be especially useful, while high-level
language programmers will probably wuse the math or bit
manipulation routines more often. Help can be obtained
on-line for most of the Run-Time Library routines by
entering the DCL command, HELP RTL, and specifying one of
the categories listed as the subtopic.

This chapter begins with a discussion of program development
in general, followed by sections on each of several VAX-11
programming languages (MACRO, FORTRAN, PASCAL, BASIC, and
COBOL) . Those sections contain a discussion of the VAX-1l1l
specific conventions regarding that language, a sample
program, and a debug session using the sample program.

5.1 PROGRAM DEVELOPMENT ON VAX/VMS

To develop a program written in a programming language, the
following sequence of steps must be completed:

1. Create a text file with an editor which contains
statements written in a programming language.

2. Compile/Assemble the source program.

3. Link the compiled program to create an executable image.
4. Test the program.

5. Debug (make corrections to) the source program and

repeat steps 2 through 5 until the program executes
properly.

These steps are explained in detail on the following pages.

PROGRAM DEVELOPMENT Page 5-3

1. Create a text file which contains the source statements
of your program.

The file_type should be related to the language being
used. Two reasons that this is important is that it
helps you tell a source program in one language from
another, and the compilers will search for certain
default file_types as shown below.

Language Default File_ Type
MACRO «MAR
FORTRAN . FOR
BASIC .BAS
PASCAL . PAS
PLI .PLI
COBOL .COB

The entire program may be entered in one text file, or
several files may be created. Usually, if several files
are created, the code representing the main program is
entered 1in one file, and the subprograms referenced are
each placed in separate files. There is no rule stating
a 1limit on the number of subprograms per text file.
However, if each is in a separate file, they are more
accessible to other programs.

2. Compile/assemble the text file to produce a file
containing object code.

The compiler/assembler translates the source statements
of each input file into executable code, producing one
or more object files of type .OBJ.

To compile/assemble the code, the command related to the
language must be used:

Language Compiler/Assembler Command
MACRO SMACRO file specification
FORTRAN $FORTRAN file specification
BASIC $BASIC file_specification
PASCAL $PASCAL file specification
PLI $PLI file specification
COBOL $COBOL file specification

File types other than the defaults listed earlier must
be 1included in the file specification. Otherwise, the
appropriate file type will be provided by the command
used. :

PROGRAM DEVELOPMENT Page 5-4

More than one input file may be 1listed as parameters.
If input file specifications are separated by (,)
commas, a separate object file is created for each input
file. If they are separated by (+) plus signs, one
object file is created containing the code from all
input files.

If syntax errors are found 1in the source code, an
appropriate message Wwill be output at the user's
terminal. The DCL HELP command can be used to
understand errors output by the compilers for FORTRAN,
BASIC, and COBOL by entering HELP language ERROR.

When the error is understood, an editor should be used
to correct the source code, and the new version of the
text file should be submitted to the compiler/assembler
for translation.

Many qualifiers can be used 1in conjunction with the
compiler or assembler command. The DCL HELP command can
be used to obtain information about qualifiers by
entering the 'HELP language_name' command. Most
compilers will take the following qualifiers with the
compile command. You should check the user guide for
the specific language for information on other
qualifiers.

/LIST The most commonly used qualifier
that causes a listing file to be
produced as well as the object
file. The file is useful when
trying to debug the program.

/CROSS_REFERENCE The cross reference qualifier
tells the compiler to generate a
cross reference listing. This
type of list contains program
symbols, their class, and the
program lines in which they are
referenced.

/DEBUG The debug qualifier tells the
compiler to provide information
to the symbolic debugger and the
system run-time error traceback
mechanism.

- - —_———— ————— ——————— —— — — ———— Y S — t— - —_— —— > - W — > 4 W —— > G

PROGRAM DEVELOPMENT Page 5-5

For example, to compile a BASIC program, called SAMPLE,
and obtain a 1list of the program as well as cross
referenced listing of program variable you would type:

BASIC/LIST/CROSS_ REFERENCE SAMPLE

3. Link the object file or files to produce an executable
image.

The linker assigns virtual addresses to the 1lines of
executable code in each input file, and resolves
references to symbols between modules. The linker also
searches personal and system libraries for external
procedures and functions that cannot be found in the
input files specified.

To link the object file(s), the VAX-11 Linker is invoked
using the DCL command, LINK. The names of the files to
be linked, such as object code files or modules from
libraries, can be specified following the command.
Names should be separated by commas. The linker assumes
the file type of input files is .0BJ.

The file output by the linker contains executable code,
and is assigned the file_type of .EXE.

If the linker is unable to resolve certain symbols or to
locate <certain subprograms, it displays an appropriate
error message. Linker errors usually indicate one of
two problems:

o A subprogram was referenced but not included in the
list of input files

o A subprogram/variable was not defined/referenced
properly in the program

Linker errors and recommended solutions are described in
the VAX-11 Linker Reference Manual.

Several qualifiers are available for use with the linker
command (enter HELP LINK). Cross-reference listings,
maps, and other information can be written to files or
to the terminal by using these qualifiers. The
information produced is most useful to the more advanced
programmer, and will not be discussed in this document.
The following table shows some of the most common LINK
command qualifiers.

PROGRAM DEVELOPMENT Page 5-6

/MAP This qualifier produces a file
containing a list of the symbols
and data used in the program and
their locations in memory.

/CROSS REFERENCE This qualifier produces a cross
- reference list of each global
symbol used in the program, its
value, the name of the first
module in which is defined, and
the name of each module in which
it is referenced.

/DEBUG The qualifier causes the linker to:
(1) Generate a Debug Symbol Table
(2) Gives control to the debugger

when the image is run.

—— ——— — ——————— —————— — - -~ — —— — — — -~ - — — . — ———— — —— A — ——— —— — ————

The following example illustrates the use of the LINK
command to create an executable image of the program
SAMPLE and creating a map file.

LINK/MAP SAMPLE

PROGRAM DEVELOPMENT Page 5-7

4. Test the image produced from the linker.

To execute a program, enter the DCL command, RUN,
followed by the name of a single executable image file.
The run command assumes the file type of the input file
is .EXE.

Users should not attempt to execute a program 1if
compiler and linker errors have not been corrected.

Errors output at run-time could indicate syntax problems
not identified by the compiler/assembler or linker.
Other run-time errors could be output by procedures
referenced by the program, such as system routines.
Some errors output by system routines are documented
on-line. To 1look at a description of these errors,
enter the DCL command, HELP ERROR, and enter the
appropriate facility code as the subtopic. Information
on other errors can be obtained by entering HELP ERROR
SYSTEM error_code.

If all obvious errors have been corrected, errors output
at run-time can indicate 1logical errors. A logical
error occurs because the organization of the statements
in the program does not do the intended job. A logical
error could produce error messages, or, simply, the
wrong result. Results should be checked carefully. If
the program receives input from the user, it should be
executed several times with various types of input to be
sure it does the required job in all given situations.

To correct the program, the user must debug it to find
out where the error 1is occurring. When the error is
found, the source program must be modified and submitted
to the compiler/assembler and linker again. Then the
new executable file can be executed to see if the error
was corrected.

PROGRAM DEVELOPMENT Page 5-8

5. Debug the program to correct errors.

To find the cause of a 1logical error, the user must
examine the program carefully, 1looking at the source
code one line at a time. Lists of variables and their
contents should be kept on paper, as well as comments on
loops and output to ©peripherals. Often, in 1larger
programs, the problem can be isolated to a particular
area of the program, saving the user the time of looking
at every line.

If the problem can be isolated, or the program 1is not
very large, examining a program using paper is not
difficult, and errors can be easily found. As larger
programs are written, involving more I/O and more
variables and more 1loops, debugging becomes more
complicated.

The VAX-11] Symbolic Debugger is provided to simplify the
user's debugging job. Symbolic debugger commands
implement the same debugging techniques used on paper.

The flowchart in Table 5-1 summarizes the program
development steps. Although the flowchart in the table
uses a FORTRAN program, the flowchart can be used for a
program written in any programming language.

PROGRAM DEVELOPMENT Page 5-9

CREATE A
SOURCE
FILE

COMPILE THE
SOURCE FILE

YES | CORRECT THE
ERRORS SOURCE PROGRAM

NO

LINK THE
OBJECT o —
FILE ‘7
|
I
|
|

ERRORS — s e et

NO

RUN THE
IMAGE
FILE

NO

SUCCESS
TK-8099

Developing a Program

PROGRAM DEVELOPMENT Page 5-10¢

5.2 LOGICAL NAMES

If a file specification or device name is 1included 1in the
source file for a program, the program is said to be file
dependent or device dependent. When the program is
dependent, the file or device must exist when the program is
executed, and the program always outputs to or inputs from
the file or device specified.

File and device independence can be achieved through the use
of 1logical names. A logical name is created by the DCL
command ASSIGN, and can be used in a program instead of the
file or device name. The ASSIGN command assigns a specified
logical name to a specified device or file name (called the
equivalence name). When the logical name is encountered in
a program, the system translates it into the equivalence
name. The general forms of the DCL ASSIGN command are:

ASSIGN device: logical name
ASSIGN file specification logical name

The example below illustrates the use of the ASSIGN command
to make a program device and file independent.

PROGRAM1 PROGRAM 2
File dependent program File independent program
writes to particular file, writes to logical name,
FILE.DAT OUTPUT_FILE
Execution of PROGRAM1: Execution of PROGRAM2:
SRUN PROGRAM1 SASSIGN GENERAL.DAT OUTPUT_FILE
STYPE FILE.DAT SRUN PROGRAM2
contains output STYPE GENERAL,.DAT
from lst execution contains output from
SRUN PROGRAM1 lst execution
$STYPE FILE.DAT SASSIGN OUTPUT.DAT OUTPUT FILE
contains output $RUN PROGRAM2 -
from 2nd execution $STYPE OUTPUT.DAT

contains output from
2nd execution

Notice that PROGRAM1 always outputs to FILE.DAT, whereas
PROGRAM2 can send output to a different file each time it is
executed. (The assignment command must be executed prior to
the execution of the program.)

PROGRAM DEVELOPMENT Page 5-11

Several logical names are provided by the system, and are
stored in the user's process logical name table. To look at
the table, use the DCL command SHOW LOGICAL/PROCESS. Table
5-2 1lists some of the system-defined logical names commonly
used in programs.

Table 5-2 System-defined logical names

. — ———— —— — — ———— —-— — ——— - — ———— ——— . S ————— o — T — - {— —— S —, — T — S ———

——— — — — . —————————— - - - —— — — — _— . ———— — —— — - f— —— - — - - t— ————— —— —— ——

SYSSINPUT Default input device. For the interactive
user, SYSSINPUT is equated to the terminal.

SYSS$OUTPUT Default output device. For the interactive
user, SYSSOUTPUT is equated to the terminal.

SYSS$DISK Default user disk established at login time.
Can be changed by SET DEFAULT command.

SYSSLOGIN Default user disk and directory established
at login time. Usually the top-level
directory. Specified in the user's UAF
entry by the system manager.

T - - ——— — ——— T —" — Y — — — ————— = —— — T — —— O s ——— W W — S —— o

PROGRAM DEVELOPMENT Page 5-12

5.3 A SAMPLE PROGRAM -- GRADES

The GRADES program has been created 1in each language
discussed in this chapter. The 1listing file for each
language's implementation of GRADES 1is included in the
section of the chapter discussing that language (following
this section).

The GRADES program creates a file containing the names of
students and the average of their grades for a particular
course. The program obtains the names and grades from the
user, computes the average of the grades, and outputs the
results to the terminal and to a designated file. The
logical name ‘'Course', created before the program is
executed, is assigned to the name of the output file. For
example:

$ASSIGN HISTORY.DAT Course
$RUN GRADES

In this example, the program GRADES is executed to compute
the average of the grades for the students in the history
class. The output file, HISTORY.DAT, 1is assigned to the
logical name ‘'Course' before the program is executed. The
program writes results to the logical name 'Course'.

PROGRAM DEVELOPMENT Page 5-13

5.3.1 NORMAL EXECUTION OF GRADES

A sample run of the GRADES program follows. The
FORTRAN version was used in this example:

FABHIGN ENGLISH.DAT COURSE

FLINK GRADES
$RUN GRADES

Student name®™ JOHMN SMITH

Ineut grade (or 0 to end ineub): 45
Ineut grade (or 0 to end ineut)?! 80
Irieut grade (or 0 to end inesut)! 99
Irisut dgrade (or 0 to end ineput)d ©

Student: JOHN SMITH Averases 74.7
Are wou dome P (Yes/No) N

Student name? MARY HAGERTY

ITrisut #grade (or 0 to end imeut)d 82
Ireut grade (or 0 to end input)t &9
Triet grade (or O to end input)! 94
Ineuat grade (or ¢ to end insutd? ©

Student: MARY HAGERTY AverassHe ! 81.7
Are wou dorme T (Yes/No) N

Student name? HOSIAH MOWER

Imeut grade (or 0 to end ingut)? 90

Imeut grade (or 0 to end ineutd! 78

Ineut dgrade (or O to end ineut): 81

ITreut grade (or 0 to end insut)! ©

Student? HUQIAH HOWER Average?’ 83.0
Are wou done P (Yes/No) Y

4

%

HTYPE ENGLISH . DAT

Student? JOHN SMITH Aversge! 74,7
Studerntd MARY HAGERTY Averadge? 81.7

Student: HOSIAH HOWER fiveradge ! 83.0
%

PROGRAM DEVELOPMENT Page 5-14

5.4

USING THE SYMBOLIC DEBUGGER

Three methods are available for invoking the Symbolic
Debugger :

1. Including the debugger in the executable image.

The debugger is included in the executable image if the
/DEBUG qualifier is entered with the LINK command. When
your program is subsequently executed, the debugger is
automatically invoked, and the debug prompt is output.
For example:

SLINK/DEBUG filename

Unless the /DEBUG qualifier 1is also included 1in the
compiler command (/ENABLE=DEBUG with the MACRO command),
local symbol tables will not be included. The symbol
tables contain the names and addresses of various
symbols and variables used in the program. If the wuser
intends to examine the contents of variables, the tables
should be included. Other debug commands, such as GO,
STEP, or setting tracepoints, work without this
information.

2. Halting the program and invoking the debugger with the
DCL command S$DEBUG.

A program can be halted by entering <CTRL/Y> or
<CTRL/C>. The debugger can then be invoked by entering
the DCL command, DEBUG. In this case, the debugger does
not have access to local symbols.

This method can be used to halt a 'hung' program, one
that will not run to completion. The debugger can be
used to determine where the program is hung.

This method can also be used for a program that Iis
executing in the debugger already in case the user wants
to input a debug command at a time when the debug prompt
is not seen.

3. Running the program with the debugger.

A program can be run with the debugger if the /DEBUG
qualifier is included in the RUN command. Again, if the
debug qualifier was not included with the
compiler/assembler command, the symbol tables will not
be included and the contents of variables can not be
accessed.

PROGRAM DEVELOPMENT

Table 5-3 Major Symbolic Debugger Commands

Page 5-15

—— —— —— ——— — ————— — o~ - T S T — s Yot Sk S e T Y —— — — - ——————— - — - —— — —— ————— - — -

Feature Description Command Format
Display Display variable contents EXAMINE variable
values using symbolic names
Change Modify variable contents DEPOSIT variable =
values value
Define Define symbolic names DEFINE symbol =
symbols for later use value
Calculate Compute expressions using EVALUATE expression
values symbolic names
Get help Get help for any command HELP [command name]
Breakpoints Suspend program execution SET BREAK at line #

at a specified point
Tracepoints Monitor order of execution SET TRACE at line #

of program lines
Watchpoints Suspend program execution SET WATCH variable

when the content of a

variable changes
Test Call and pass arguments CALL sub_name
subroutines to a subroutine [(arg,.e..)]
Execute - from a given point GO [address]
program

- for a specified STEP [n]

number (n) of
instructions or lines

Debug Make symbols from specified SET MODULE module
routines module available to debugger

Define default module name SET SCOPE module

for setting tracepoints and

watchpoints on symbols whose

names appear in more than one

module
Stop Leave debugger EXIT
debugger and return to DCL prompt

————— — ————— ———— ————————— —— — . ——— — — —— T — _— S — — ———— T — — - —— — — -~ — -~

Note: Fields enclosed in [] (brackets) are optional.

PROGRAM DEVELOPMENT Page 5-16

5.4.1 EXECUTION OF GRADES WITH THE DEBUGGER

Three examples of the GRADES program using the debugger
follow. The FORTRAN version of the program was used.
The syntax of most of the debug commands shown 1is the
same for other 1languages. Therefore, these debug
examples and associated comments should be read by all
users. A 1listing of the FORTRAN program is provided
before the examples.

Each of the languages mentioned earlier is discussed
briefly in the sections following these examples. A
listing of the GRADES program is included, followed by
a discussion on using the symbolic debugger with that
language.

A brief description of most of the commands used can be
found 1in Table 5-3. The HELP facility in the debugger
can be wused to obtain more information. More
discussion of some of the commands and their output is
included with the examples.

PROGRAM DEVELOPMENT

Listing of Main Prodram

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
oois
0019
0020
0021
0022
0023
0024
0025
0026

Listing

0001
0002
0003
0004
0005
0004
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023

10
20

30

40

S50
60

of

10
20

30

40

PROGRAM GRADES

CHARACTER STUDENT.NAME%30s DONEX4
REAL AVERAGE

OPEN (UNIT=1, FILE=‘Course’s STATUS='New’)

Subroutine

TYFE 20
FORMAT (/’ Student name? ‘%)
ACCEPT 30 STUDENT.NAME
FORMAT (1A30)
CALL Get.dgrades_compute_averase (AVERAGE)
TYPE 40ySTUDENT_NAME» AVERAGE
WRITE (1,40) STUDENT_NAMEsAVERAGE
FORMAT (/’ Student! ‘»A30»‘Averade’ ‘»F10.1)
TYPE 50
FORMAT (/’ Are wou done 7 (Yes/No) ‘»$)
ACCEPT 60y DONE
FORMAT (1A4)
IF (DONEJNE.‘Y’ +AND. DONE.NE.’w’) GOTO 10
CLOSE (UNIT=1)
END
SUBROUTINE Gei-!rados-conrutc-avoraso {AVERAGE)
INTEGER ICOUNT
REAL TOTAL» GRADE
ICOUNT = 0
TOTAL = 0
TYPE 20
FORMAT (’ Input srasde (or O to end inerut)! ‘»$)
ACCEPT 30» GRADE
FORMAT (F10.0)
IF (GRADE.NE.0) THEN
ICOUNT = ICOUNT + 1
TOTAL = TOTAL + GRADE
GO T0 10
ENDIF
IF (ICOUNT.NE.0) AVERAGE = TOTAL/ICOUNT

RETURN
END

Page 5-17

PROGRAM DEVELOPMENT Page 5-18

—— — ——— —_—— ————————— - ————— ——— ————— —— Y ———- —— T — ——————— - ————— — ———

The following three DCL commands compile, link, and execute the
program GRADES. Because the /DEBUG qualifier was used in the
language compile and LINK command the symbolic debugger will
gain control of the program execution.

$FORTRAN/LIST/DERUG GRADES
$LINK/ZDERBUG GRADES
SRUN GRADES

UAaX-11 DERUG Versiorn 3.0-5
AOERUG-T-INITIALy Lansusdge is FORTRAN: module set to ‘GRANDES”

The EXAMINE command of the debugger allows you to check the
contents of variables in the program. The DEPOSIT command
gives you the opportunity to alter the contents of variables.
With the following debug commands the value of the variable
DONE is examined and altered. The SET WATCH command sets

a watchpoint on the variable which causes the debugger to
display the old and new values of the variable whenever the
contents of the variable is altered. The SHOW WATCH command
causes the debugger to display the locations at which
watchpoints have been established.

DRGEXAMINE DONE

GRADES\DONE (1340 ¢

DRGEDEFOSIT DONE="YES®

DBRGHEXAMINE DONE

GRADES\DONE (1343 YES

NRGSET WATCH DONE

DRG=SHOW WATCH

watchroint at GRADES\DONE(1:4) for 4. bules.

The GO command causes the program to execute or resume execution
at the point it was suspended.

NRG=GO

routine start at GRADES

Student mname? JOE SMITH

Inrut dgrade (or O to end inerulb)d 6

Trsut grade (or O to end ineut)?d 7

Ineut dgrade (or 0 Lo ernd ineult)d ¢

Studernt: JOE SMITH Average! &.5

Are wou done T (Yes/No) N

PROGRAM DEVELOPMENT Page 5-19

Because a watchpoint was established for the variable DONE the
debugger displays the old and new contents of the variable.

write Lo GRADES\DONE(LI4) at PLC 704649
old value = YES
new value = N

DRGEEXAMINE DONE

GRADES\DNONE(1:43¢ N

In the following section a breakpoint is set with the SET BREAK
command at line 23. When the program resumes execution with the
GO command the debugger will indicate the module name and the
line number where the program is interrupted.

NRG=SET BREAK ZLINE 23

NRG-GO

start at 70659

breal at GRADESNZLINE 23

NEG=6GO

start at GRADESNZLINE 23

Student name? GERALD HORNER

Irneut grade (or 0 Lo end ineut)? 50
Ineut grade (or O to end ineutl)? 100
Ineut dgrade (or O Lo end inrgt)?! O

Student? GERALD HORNER Average 75.0

Are wou done T (Yes/No) N

write to GRADES\DONE(LI4) at FLC 70649
old value = N
new value = N

The CANCEL WATCH command is used to cancel watchpoints that have
been set.

DRG-CANCEL WATCH DONE

NRG=-G0

start at 704659

hreask at GRADESNZLINE 23

DRG-G0

start at GRADESNZLINE 23

Student name? MARY HAGERTY

ITrneut dgrade (or ¢ to end inpat)? 9
Trrut dgrade (or O to end inrutdt 9
Inerut grade (or O to end ineFat)? O

Student? MARY HAGERTY Averade 2.0

Are wou done T (Yes/Nao) N
The CANCEL BREAK command cancels a single breakpoint or by using
the /ALL qualifier cancels all breakpoints set in the program.

Now that all watchpoints and breakpoints have been cancelled
program execution will continue until normal program execution.

PROGRAM DEVELOPMENT

DBRG=CANCEL BREAK/ALL

nRG-GO

start at GRADES\ZLINE 23

Student mame? HORACE O0°TOOLE

Irneult dgrade (or 0 to emnd dineut)?: 8
Irneut grade (or 0 to end imeuat): O

Studernt? HORACE O0TOOLE Averase 8.0

Are wou done T (Yes/No) N

Student mname? CRAIG SMYTHE

Imeut dgrade (or O to end imeat)? 10
Imeut grade (or O to end inerutl)? 10
Inegut grade (or 0 Lo end inputd? O

Student: CRAIG SMYTHE Averase 10.0

Are wou done T (Yes/No) Y

Page 5-2¢

The following message and command indicates normal program

termination. Control is then returned to the debugger.

The

EXIT command terminates the debugger and returns control to

DCL.

Ia ‘YUSYSTEM-~-S~NORMAL» normal successful comeletion’
IRG=EXTT
%

PROGRAM DEVELOPMENT Page 5-21

Before you can use the symbolic debugger you must first compile
the program with the /DEBUG qualifier, then link the program
again using the /DEBUG qualifier. When you run the program the
symbolic debugger will automatically take control of the
execution of the program.

$FORTRAN/LIST/DERUG GRADES
$LINK/DERUG GRADES
$RUN GRADES

VaAX-11 DERUG VERSION 3.0-3

ZOERUG-I~INITIALy Languasge is FORTRANs module set to ‘GRADES’

The EXAMINE and DEPOSIT commands allow you to check the values of
variables in a program and alter the contents of those variables.
In this example the value of DONE was examined and its contents
displayed. With the DEPOSIT command the variable DONE was
altered to contain "YES".

DRGFEXAMINE DONE
GRAVES\DONE (13432
ORGHDEFDSIT DONE ="YES®

A breakpoint is set at line 23 so that execution of the program
will be interrupted. When the program is interrupted the debugger
displays the DBG> prompt. Using the SET TRACE command tracepoints
are set in the program. Tracepoints allow you to examine the order
in which the statements are being executed.

DRGFSET BREAK ZLINE 23
NRGESET TRACE ZLLINE 8
DRGESET TRACE ZLINE 13
DRG=GET TRACE XLINE 19
NERG-GO

routine start at GRADES
trace al GRADESNZLAREL 10

Studernt name? JOE SMITH
trace al GRADES\NZLINE 13
It grade (or 0 to end inerut)? 6
Ineut dgrade (or 0 Lo end imeut)? 7
Ineat drade (or O to end ineut)?d O

Studernt: JOE SMITH Averase e
trace at GRADESNZLINE 19

Are wou done T {(Yes/No) N
bhreak at GRADESNZLINE 23

PROGRAM DEVELOPMENT Page 5-22

While the GO command causes the program to execute until a
breakpoint is reached or the program terminates normally, the

STEP command causes the debugger to execute one single
statement.

DRG-STEP

start at GRADESNZLINE 23
sterred Lo GRADESNZLAREL 10
DRG-STEF

start at GRADES\XZLAREL 10
trace at GRADESNZLAREL 10

Studenrnt mame? MARY HAGERTY
trace at GRADES\ZLINE 13

Imegt dgrade (or O to end ineut)? 100
Ineut srade (or O to end ineut)d 50
Insut dgrade (or O Lo end inrut)?d O

Student? MARY HAGBERTY Averasie! 750
trace at GRADESNZLINE 19

Are wou dorne T (Yes/No) N
hreak at GRADES\ZLINE 27

The CANCEL TRACE command with the /ALL qualifier cancels all
tracepoints set in the program.

DRG=CANCEL TRACE/ALL
ORG-GO
start at GRAUDESN\XLINE 23

Student name? CRAIG SMYTHE

It grade (or 0 to end inerut)! 9
Imeut dgrade (or O Lo end irneut)?t 9
Input grade (or 0 to end inerut)? O

Student? CRAIG SMYTHE Averases 9.0
fAre wou done T (Yes/Naod) Y

Because the breakpoint is still set for line 23 the debugger
continues to halt execution.

break at GRAVES\ZLINE 2

HRG-GO

start at GRANES\XLINE 23

ITg ‘ASYSTEM~8-NORMAL» normal successful comerletion’
DRG=EXTT

i

PROGRAM DEVELOPMENT Page 5-23

$FORTRAN/DERUG/LIST GRADES
$LINK/DERBUG GRADES
SRUN GRADES

UaX-11 DERUG Version 3.0-5
YHERUG-T~INITIALy Lansguasge is FORTRAN» module set to ‘GRADES’

DRG: SET LOG SESSITON.DAT
ORG: SET OQUTRUT LOG

DRG> EXAMINE DONE
GRADESNIONE (12452

DRGE DEFOSIT DONE=‘YES’
RG> EXAMINE DONE
GRADES\DONE (134)% YES
nEGx> SET WATCH DONE

ORG: SHOW WATCH
wateheoint at GRADES\DONE(1:4) for 4. butes.
NG GO

routine start at GRADES

Student name? JOE SMITH

Inwuh grade (or 0 to end imsrutld? 6
Ireut grade (or O to end ineutd? 7
Imeut grade (or O to end ineut)? O

Student? JOE SMITH fiveradesd 6.5

Are wou dome T (Yes/No) N

write to GRADES\DONE(L1:i4) at PC 63269
old value = YES
rew value = N

----------- (using TRACE while watching DONE) —-—-=—==————=—--

DRGE SET TRACE ZLINE 8
RG> SET TRACE ZLINE 13
nRGE SET TRACE ZLINE 19
LRG> GO

start at 63279

trace alt GRADESNZLAREL 10

Studernt rname? MARY HAGERTY

trace at GRADESNZLINE 13

Inrut dgrade (or O to end ineuatd: 9
Ineut dgrade (or O to end inputlt 9
Irieul dgrade (or O to end ineut)? O

Student: MARY MHAGERTY Averade! 2.0

PROGRAM DEVELOPMENT Page 5-24

trace at GRADES\ZLINE 19

Are wou done T (Yes/Noa) N
write to GRADES\DONE(1:4) at FC 63269

old value = N
new value = N
————————— (Stop watching DONE. Set break point) —————e—--o

DRG> CANCEL WATCH DONE
DRG: SET BREAK ZLLINE 23
nRG:> GO

start at 63279

breask at GRADES\ZLINE 23
LDRG: GO

start at GRADESNZLINE 23
trace at GRADES\ZLARBEL 10

Student name? GERALD HORNER

trace at GRADES\ZLINE 13

Ineut dgrade (or 0 to end ineut)?! 50
Ineut grade (or 0 to end insut)?! 100
Imeut grade (or 0 to end ineut)! O

Student?! GERALD HORNER Averase ! 75.0
trace at GRADES\NXZLINE 19

Are wou dome T (Yes/No) N
hreak at GRADNES\ZLINE 23

——————————— (Try to watch TOTAL. Doesn't work.) —-—=———————e-o
DRG: SET WATCH TOTAL

ZDEBUG-W-NOSYMEOL y swmbol ‘TOTAL’ is not in the sumbol table
——————————— (The symbol TOTAL is in subroutine,) ————————c-o

NRG> SHOW MODULE

module name sumbols size

GRADES HEs 272

COMPUTE "o 304

total FORTRAN modules? 2. remaining sizel! B56776,
—————— (The symbol table of subroutine must be loaded) --—-—---

DERG: SET MODULE COMPUTE
LRG> SHOW MODULE
modiule name

sumbhols ot)
GRADES wea 270
COMPUTE Hes 304
total FORTRAN modules? 2. remaining sire! S4572,

——————————— (Now we can watch TOTAL.,) -—=—————eeee-

PROGRAM DEVELOPMENT

DRG: SET WATCH TOTAL

DRG: GO
start at GRADES\ZLINE 23
trace at GRADESB\ZLAREL 10

Student nameT JENNY GRATIN
trace at GRADESNZLINE 13

write to COMPUTENTOTAL at PC COMPUTENXZLINE 7
old value = 155,0000
rnew value = 0. 0000000E+00

DRG> GO

start at COMPUTENZLAREL 10

Ineut grade (or 0 to end inrut)t &

write to COMPUTENTOTAL at PC COMPUTENZLINE 16
old value = 0. 0000000E+00
new value = 5. 000000

RG> GO
astart at COMFUTENXZLINE 17
Inrut grade (or O to end input): 6

write to COMPUTENTOTAL at FC COMPUTENZLINE 16
old value = 5. 000000
new value = 11.00000

DRG:> GO
start at COMFUTENZLINE 17
Inrut dgrade (or 0 to end inmpul)? O

Student?! JENNY GRATIN Averadge !
trace at GRADESNZLINE 19

Are wou done 7T (Yes/No) N
break at GRADESNZLINE 23
DEG> SHOW SCOFE

scoret O [= GRADES]
nRG> SET SCOFE COMPUTE

ORGH> SHOW SCOFE
scored COMPUTE
NRG> SHOW TRACE
traceroint al GRADESNZLINE 19
traceroint at GRADESNZLINE 13
tracersoint at GRANESNXLINE 10

DRGE> CANCEL WATCH TOTAL

]

Page 5-25

4]

PROGRAM DEVELOPMENT Page 5-26
LRG: CANCEL TRACE ZLINE 13
DRG> CANCEL TRACE ZLINE 19
NBEG> SHOW TRACE
traceroint at GRADES\XZLAREL 10
—————— (Try to cancel trace at line 10, module GRADES) ———==—-
NRG> CANCEL TRACE ZLAREL 10
ADERBUG-I-NOSUCHTFTy mo such traceroint
DEG: SHOW TRACE
traceroint at GRADES\XZLAREL 10
—————— (Doesn't work because scope is not set to GRADES) =----
NERG> SET SCOFPE GRADES
DRG> CANCEL TRACE ZLAREL 10
DRG: SHOW TRACE
ANERUG-I-NOTRACESy no traceroints are selr no orcode bracins
————— (Add a tracepoint in main routine and subroutine) ----
LRG> SHOW SCOFE
scarad GRADES
LRG> SET TRACE ZLINE 10
DRG: SET TRACE ZLINE COMFUTENS
DERGH SHOW TRACE
traceroint at COMPUTENZLAREL 10
traceroint at ORADESNZLINE 10
—————— (If duplicate labels, can specify in normal
way if scope is set to module containing
label to be specified. If scope is not set,
must specify module name also., ————————————ea-
neG:> GO
sltart alt GRADES\ZLINE 23
Lrace at COMPUTENZLAREL 10
Treut dgrade {or 0 to end inrut)? &
trace at COMPUTENXZLABREL 10
Ineut srade (or O to end ineut)?d O
Student? CRAIG SMYTHE Averadge! 6.0

Are wou dorne P (Yes/No) N
mreak al GRADES\NZLINE 23

——————————————— (Cancel all tracepoints) =—=-=-=————eoeee—o

DREGE CANCEL TRACE/ZALL
ODRG> SHOW TRACE

ANERUG-T-NOTRACESy no traceroints are sets no orcode tracing

IRG:> GO
start at GRANESNZLINE 23

PROGRAM DEVELOPMENT Page 5-27

Student mname? HORACE Q/TOOLE

Ineut dgrade (or O to end ineut)?d 8
Irnrut grade (or 0 to end ineput)? 0

Student?! HORACE 0/TOOLE Averase? 8.0

Are wou done T (Yes/No) N
bhreak at GRADES\ZLINE 23

e (Eygluate the exeression TOTAL/ICOUNT) -

DRG: SET SCOFE COMPUTE

NRG> SET BREAK X%LINE 20

LeG> GO

routine start st GRADESNZLINE 23

oreak at COMPFUTENZLINE 20

LRG> SET WATCH COMPUTENAVERAGE

nee: GO

start at COMPUTENZLINE 20

write to GRADES\NAVERAGE at FC COMPUTENZLINE 20 +7
old value = Q.. 0000000E+00

new value = 2,000000
NEG: FEVALUATE TOTAL/ZICOUNT
9. 000000

DRG> EXIT
%

PROGRAM DEVELOPMENT

$FORTRAN/DERUG/LIST GRADES
$LINK/DERUG GRARES
$RUN GRADES

VAX-11 DERUG Version 3,0~5

ZDEBUG-I-INITIALy Languasge is FORTRANy module set to ‘GRADES’
NRG=GO
routine start at GRADES

Student name? SUZY QUE
Inrut dgrade (or 0 to end ineut)?! 4
Irmeut grade (or 0 to end inerut)?: 9

Imeut dgrade (or 0 to end ineut)!
Y

$ CONTINUE
Studernt: SUZY QUE Averade ! &.5
Are gou done T (Yes/No) N

Student name 7 SUZY QUE

Ireut dgrade (or 0 to end ineut): 4
Ireut drade (or 0 to end inepugt)d 9
Insut grade (or 0 to end ineut)?

i 4

SOERUG
NRG-GO
start at 2147410216

Studernt! SUZY QUE Averasde! b5

fAre wou done T (Yes/No) N
treal. at GRANES\XZLINE 23
NRG=EXIT

%

PROGRAM DEVELOPMENT Page 5-29
with VAX-11 MACRO

5.5 PROGRAM DEVELOPMENT WITH MACRO

VAX-11 MACRO is the assembly 1language for VAX/VMS. This
language is ©provided with the VMS software. Examples of
programs written in VAX-11 MACRO can be found in the
majority of the manuals for VMS. The language reference
manual and user's guide for VAX-11 MACRO are provided as
part of the documentation set.

5.5.1 SOURCE FILES
A MACRO statement consists of the following fields:

o A label field. A label is a symbol used to refer
to a location in your program. A label can be up
to 31 characters long and can contain underscore
(_) and dollar sign ($) characters. Terminate the
label field with a colon (:), a double <colon (::)
or a space. If a 1label extends past column 7,
place it on a line by itself; place the operator
on the following 1line beginning at column 9.
Labels are optional.

o An operator field. An operator specifies the
action to be performed by a statement. The
operator can be a symbol for an instruction, an
assembler directive or a macro instruction.
Terminate the operator field with a tab. The
operator field is required.

o An operand field. The operand field contains
symbolic names or specifications for the addresses
of one or more operands. Operands specify
instruction operands, assembler directive
arguments, or macro arguments. The operand field
is required.

o A comment field. A comment contains text that
explains the function of the preceding statement.
Ideally, you should comment every 1line of MACRO
code, but they are optional elements of any MACRO
statement. A comment can be continued from one
line to the next. A comment can appear on a line
by itself. Mark the beginning of any comment with
a semicolon (;).

The format of a complete MACRO statement is:

Label: Operator Operandl,Operand2,... ;Comment

PROGRAM DEVELOPMENT Page 5-30
with VAX-11 MACRO

A statement can be continued on several lines by using

a hyphen (-) as the last non-blank character before the
comment field.

Conventionally, each field should begin at the column
indicated by Table 5-4 for readability. The TAB key
should be used the number of times indicated 1in the
table to move the cursor to the correct column to begin
input.

Table 5-4 Formatting Conventions for MACRO Statements

Field Column Tab Characters
Label 1]
Operator 9 1
Operand 17 2

Comment 41 5

PROGRAM DEVELOPMENT Page 5-31
with VAX-11 MACRO

5.5.2 PREPARING THE PROGRAM FOR EXECUTION
Source programs written in VAX-11 MACRO nmust be
assembled, not compiled. The assembler produces an
object file which must be 1linked to produce an
executable image. The following is an example of the

steps of program development for a program written in
MACRO:

1. SEDIT GRADES.MAR
Creates the source file.
2. $SMACRO/LIST/ENABLE=DEBUG GRADES

Assembles the source code, producing an object file
and a listing file.

3. SLINK/DEBUG GRADES

4. SRUN GRADES

5. DBG> GO
Control passes to the symbolic debugger
automatically on execution of the program. To run

the program, the debug command GO should be
entered.

Page 5-32

PROGRAM DEVELOPMENT
with VAX-11 MACRO

NONNT nyg

S1044@ 103 %Oayd utese ¢ $0Z ‘0N sq414
HAvAvN=Ay¥ L1I3NNOIs

a[t4 07 WeAL(S PIOI3L JIBUNOY

JOJ4dd 4T 3IXD ¥OMMN3 ;B 1:4
S40443 10j }S9% ¢ $0T <0y :1: i

qyAvEvd=9¥d J1v3NIs
(3714 232340 pueg) 3114 03 [auueyd uadp

TY40Y 4480X3 PASN SUIPSTHEIL 3ABS ¢ (OYOPAUSENITYOHL 4LHVLIS ANINT®

UTI0d RIJUI WEUEOJIY

*34 *je01) UT 3peds proy I[IIm
apeds apeJdaae pIoy [1IM

0 ONILlVOd~a*
0 SNILVOI4™a’

4
[
BUTJ3S IIJSY Se apeds ¢ =3 ¢ aNia°
paJajus apeds ¢ INTYA SSIVAAY®
404 J03414053p BUTJ}S § [ONO*
padR] aweu JO yj3sual (enqoe ¢ 0 ayon’
aweu JuUaPNIS SO0 XY | (3 axg’
IWeY JU8PNIS ¢ AIN3IANLS SS3YAav*
JOg 40}414063p BUTJLS ¢ og gNoT*

sease apeu03s ejeq

/ / 1138%°
asH - ¢
ZOSH - * =
/ / 1138v*
/ t9sedanys 11ISVY*
TSN - ¢ =
/ 7/ 1138V°
/ t3juspnig/ IIJSY*
a[14 09 93T4m 0} ¢ 95K SSINAAY*
PI0OD3) 4O JOJL4TIISBD FUTIS ¢ 21S9Su ONO1*
/R/ 1138V
/h/ 11289°
/ (N 40 A) jauop nos aiy/ QIISY’
/ $(AN4UT pus 03 0 40) SpeJdsE 3NSUI/ QIISY’

/ éidweu juapnig/ QIJIsV
19sn woJdj/07 sapessay

ZISISW=Z8Y ‘9SH=49Y “¥aVavi=qvi guys

¥I=1V¥ $<INd>=0¥4 $<ISUNOI>=HN4 qvis
SUOT3TUTJ3P 34N3INIYS SITJ e32p SWY

NYW*SIAVY9

(€ 3o 1 399ys) burisi

weiboad QNIVKW

Ly 6210
(44 9310 1I£ +vd00
sv £310 83 0S £0
180T Vv 8d10
¢ EV 84710
[44 8410
114 s410 1g €300
ov cdto 83 0S5 £0
68 Y10
¢ BE LY10
LE Y10
9L SVI0 J£00
¢ SF SV10
ve SY10
SHAN E£F 4610 00000000 00000000
$139vy3AY 2E €610 00000000 00000000
13nva 1£ 9810 S6100000
0L 2810 ,98100000
133038 62 3,10 340000000
INITINI 82 310 0000
$IN3ANLS L2 3810 24100000
k44 vST10 ,3S100000
$INYN S2 9510 37000000
LI £4 9510
§ £C 95710
0ST0 0Z 0Z 02 0T 0C 02
¥¥10 0Z 0Z 0Z 0T 0Z 0Z
$SNNVIE T2 8E£T0 02 02 02 0C 0Z 0T
= ZIS9SW 12 8£10 J£000000
N3TZ9SH 02 8£10 20000000
$1COSH 61 3210 02 0T 02 0T 0T OT
81 £210 1I¥ 94 S9 TL 19 L9
N3ITT9SH LT €210 31000000
arto 02 0Z 02 0T 0T 0Z
1110 02 02 02 0C 0T 0T
$T9SH 91 S0T0 02 02 02 0C 02 0T
tOSW ST 3400 £S ¥L SL v? S9? 39
[4] 8400 ,33000000
$3809SH £1 ©400 ,3£000000
1AT¥3MOT ET £400 64
A1t 2400 6S
4300 &£ 02 3V 6T 0T
1300 &£ 0T ¥9 49 39 §9
$3INOQ o7 £000 ,00003010.,481000000
0100 62 vE 0T
¥J00 . 49 0T S% 39 ¢v9
8400 (L9 TL 19 v? S9 0T
130YN9 6 v¥00 ,00003010,249000000
Z¥00 . OZ 39 19 a9 S9
INSY 8 ¥600 ,00003070.,36000000
¢ L ¥600
¢ 9 ¥600
tyIvavy S 0500
1dIvavd b 0000
¢ £ 0000
¢ 2 0000
¢ 1 0000

0z
0z

114
€9

0C
Ve

E}
134

0cC
:14
.34
4€
£S

14
0

0z
VE
oz
Vg

(124
(74

69
a9
39

e

0z
0C

0z
[+14
(24
oz

8z
s9

a9
(44
0L

SL

0z
(114

0z

224
0z

68
(14

[:74
0T
SL

144

114
0T

0z

0z
0C

0z
6L

T4
og
ve

44

0z
0¢

0c

0T
0c

49
49

ve
(114

(114

39

Page 5-33

PROGRAM DEVELOPMENT
with VAX-11] MACRO

(€ 30 T 393Yys)

apeds putd

(£¥ pue z¥) s4ajunod osaz ¢ zy BY¥12
pasn S$499S1E84 aa8s <EM4ZH>H. ‘ILNHNO0D AMINIT®
apelane 31NdWOD pue Sapeds 485 04 Auljhodqng

0¥ ST1IX3s
WeJ450dd d0(S 3 APOI J0JUD AETSSIP [[IM ¢3UTOE 3TXd 40443

welg0dd JIXD

13y
YoAH3 o0 2474

yivavd=d¥4 35070s
FUTYTIXa 310439 a1ty asol)

8114 03 [auueyd Asold

$0C mnyg

ANTYACSANYIF {NITTOSHE £I00N
INIANLS SHNYIGINITTOSHE £IN0NR
COSHSANYIGENITZASUHE £IN0N
TOSH¢SNNVIG4NITTOSHE £IN0N

(padsajre SY-0Y) uUdPRIS Ixau ¢
404 syuelq 03 SBUTJ}S 8884 ¢

$0S 1034
(paJajTe gy-04) R 404 3883 ¢ ATY3INDTCLNIANLS T# £IdWI
$0S 1034

(pasaqie g£Y-0N 330U) A 404 3833
auop Jt 485N yse

4844NQ SNOTABId 3SNaJ

$5a4ppe +DS3P AFLSSAW JJ4WOUd

ASLINIANLST# £3d4WI
INANITL39¢41I7.9 2% $T11%d
IWYN BYHSNd

ANOG BYHSNd

auop 4t aas

PENRTNE PPN

yoWy3 nug

$0v ‘0¥ sd1d

NAvEVY=dVYy 1nds

a114 03 aFeldAe pue aWeU 3}TJIM

Teutula) 04 3314mM
+0Sap BUTI}S JO SSAIPPE 185

“
m
Avoguoﬁmmzuoxvmmngw>»~uum¢maoom
(P343312 GY-0Y) 9WeU JuUapni}s RLOD ¢

1NdIN0™LNd$dIT.9 “T# §17v
JSO9SK OVYHSNd
ZOSH3INTVASNITZOSHE £300H
TOSHELNIANLS *NITTOSKHE £IA0W
417a71AD$H04.9 ‘£ ST1IVI

apeJang qQuUIOS BFUT}20T4 JIVNINY JUHSNA
apeJ43A2 POJ}JIAUOD U104 4DS3P SUTJILS 34038 OYHSNd
S311IFIP AATJ ueyj alou ou [3 IHSNA

4344NQ 40 Y3Bual 39sad ¢ 3FH025¢ST# MAOH

[2UTWI3] UO REILSIP pue I198¢Y 01 3BeJIdAL 143AU0Y

" an in o

JINANOD ‘T# 71792
39943INY dYHSNd
3E213AE 3}N4UW0D puUe SIPEJS 33F 04 IUINOJL [1e)

cwnmmmLu m uow Jawﬂ
<¥3> Isnf 41 4 NIINI misi
PaTJIIa4s aweu JUBPNYS OL ST 3a8s 0% 353§

BUNP3I04d PAT[4NS-WALSAS

awey 4nd 03 34aym $3qQlJ4ISap
aweu 404 Ys2 04 BUTLLS j-<wodd
padAR] Bweu Jo YjBuUaT aaey T1IM

IN4NITL39¢41I7 .9¢E# §77vD
JWYN DVHSNA

NSV OVHSNd

NITINI MvHSNd

aweu 3uUaPNLS 389

am am am am

-

1youN3
¢

1408
¢

- -

-

.
»
P=

- 4

butisiT weiboid OYOVW

vy8zo
vazo
8820
9820
9820
9820
acszo
asco
1.0
3420
6420
3920
3920
3920
49z0
£920
4820
£620
aveco
6v20
1344
4£20
L£20
0EZ0
J2TOo
8220
8zeo
820
§220
Tzeo
L1eo
L120
L120
o1go
3020
020
3410
S410
c410
4310
a3iro
6310
6310
6310
¢3ato
4010
4010
4010
qato
V110
vato
vaio
£410
0q10
2210
6310
6310

74
J000

vo
63

1£
8z
82
;14
:14
£1
6T

62
a4
E T4
ETA

£
83

a4
ETA
8z
8¢
a4

ET4
aa
0d

a4
4a

£1
cq

a4
ETA
T4
4€

14

0S 10

4544

20 43 0434 40 4144
a 43 843d 43 9434
0 43 0334 43 1134
EL 40 8334 43 2434
£2

10 43 8144 43 ¥v34
ae

10 49 ¢zdd 40 £434
co 49,00000000

40 9244

40 £v3ad

§500

0S £0

10 49,00000000

43 ¢334

20 43 444 42 0244
It 43 gsid 423 1044
£0 49,00000000

dv oy

4v 28

S0

40 v 16

10 43,98200000

49 £4d

v3

v dé

£0 49,00000000

4v €8

43 ¥234d

4y 04

Page 5-34

PROGRAM DEVELOPMENT
with VAX-11 MACRO

1y¥vis

apedane uanjad (dV)¥d ¢g£¥ ¢y

]
BUTJ20T 09 JA3UNOD 34BAUDD ¢ ZyezZy
aEBlaAE BUIPUTS dTYS ¢ $0S
paJajua sapeusg ou St 4 zy
asedane
apeds 3Xau 10 400 pue ¢ $0¢
18303 ajepdn ¢ £M ¢HAN
137UN0D ajepdn § F4Y)

1

$Ov
HNN
paJajua apeds ou 4t aas

dT1710J%S10.9 ¢T#

3N0Is

WAN

anieA BuUT(e013 03 IIJSY

INANIT139¢417.9 “£#
3¥03s
JqvA9
3¥03s

(1) $UYW SAAVIONLIAINOYISA*ANIONITYNA 8TI0531L0 TBET-N4V-OT

€

asey

00~-£0n O0428) TI-XVUA £G1460:9T ZBET-TNC-62

(€ 3o € 393yg) buristT weiboad QUIVW

aN3*

139
£4014
37UND

1934
q1Ss1
a3ndwo)

qyg
gdaay
TINI

2409 BUTUUNJG Pue SIAJUNOD ajepd(

1034
4181
03 3saj

$77vD
avHSNd
dVHSNd
448AU07)

§1W)
BYHSNd
buHSNd
MYHSNd

{808

180t
4

1808

133
(1344
621
8c1
L2t
9ZT
szt
vzt
£21
(24
12t
ozt
611
: 299
L11
211
Stit
vit
£11
cit
1234
[291
601
8071
{01
901
S0t

8320
8320
2320
2320
4420
agzo
q4z0
ade0
q4Z0
6420
[4:54
(4:¢44]
[4:t4:]
cdeo
040
aveo
qvzo
aveo
|vZo
veo
aszo
aseo
q620
9620
26T0
3820
v8zo

o
I44
klg
£1
sq

11
oV
9a

£1
£S

a4
ETA
da

a4
EVa
44
El

s
s
80
cs

42
42
t44

60
42

20
42
42

£0
42
43
43

£§ 24 O
(44

S334 £S

1334

49,00000000
6034
3434

49,00000000
8334

8134
0434

*NIVKW®

PROGRAM DEVELOPMENT Page 5-35
with VAX-11 MACRO

5.5.3

DEBUG COMMANDS

Refer to the list of debug commands in the discussion
of the FORTRAN language, Section 5.6.3. Debug commands
for MACRO programs can be entered using the same format
except for:

1. The MACRO programmer usually has a better idea of
what is occurring in their program than the

high-level language programmer. Therefore,
commands such as DEPOSIT and EXAMINE are used to a
greater extent. Locations such as the program

counter, offsets from the argument pointer, and
places in memory can be examined and the
information returned is usually helpful. Locations
are specified using the same syntax as in a MACRO
program (PC, @AP, @AP+5, R2, Q@AP:@AP+0C, 400).

2. The DEFINE command is useful for making it easier
to work in the debugger. Symbolic names can be
assigned to addresses. After the DEFINE command is
used, the symbolic name can be specified instead of
the address. For example,

DBG> EXAMINE GRADES+4
contents of the location GRADES+4

DBG> DEFINE PLACE = GRADES+4

DBG> EXAMINE PLACE
contents of the location GRADES+4

3. The DEPOSIT command can be used to change an
instruction if the SET TYPE INSTRUCTION command is
input ‘first. For example;

DBG> SET TYPE INSTRUCTION

DBG> EXAMINE PLACE
PLACE: MOVL @B"A SORTED(AP) [R2],@B"A_ SORTED (AP) [R2]

DBG> DEPOSIT PLACE=' MOVL @B"A ARRAY (AP) [R2],-
@B"A_SORTED (AP) [R2] '

DBG> EXAMINE PLACE
PLACE: MOVL @B“A_ARRAY(AP) [R2],@B"A SORTED (AP) [R2]

4. The SET TYPE command can be used to change the
default type to other types so the EXAMINE and
DEPOSIT commands can be used as intended.

PROGRAM DEVELOPMENT Page 5-36
with VAX-11] FORTRAN

5.6 PROGRAM DEVELOPMENT WITH FORTRAN

5.6.1 SOURCE FILES

A line in a FORTRAN source program consists of five
fields:

Comment Indicator Field
Statement Label Field
Continuation Indicator Field
Statement Field

Sequence Number Field

O 00O0O

There are two ways to format these fields in a FORTRAN
line:

1. By means of "character-per-column" formatting

2. By means of "tab" formatting

5.6.1.1 CHARACTER-PER-COLUMN FORMATTING

Character-per-column formatting is used on VAX-1l1
systems to preserve compatibility with existing
FORTRAN programs and those intended to be
transportable between systems. The
character-per~-column format is the format used on
punched cards, and 1is specified in the ANSI
standard for the FORTRAN language.

The character-per-column format requires that each
field of a FORTRAN 1line begin in a particular
column. The columns that correspond to each field
in a VAX-11] FORTRAN line are listed in Table 5-5.

PROGRAM DEVELOPMENT Page 5-37
with VAX-11 FORTRAN

Table 5-5 Column Conventions for FORTRAN

Column ANSI Standard Definition
1 Comment indicator (C)
2-5 Line number
6 Continuation indicator
7-72 Valid FORTRAN statement
73-80 Sequence number

5.6.1.2 TAB FORMATTING

VAX-11 FORTRAN allows the use of the TAB key to
input 1lines of code. The compiler translates the
TAB character differently depending on where it is
entered in the line. Use of the TAB key makes it
easier to create FORTRAN source files.

Table 5-6 shows the action taken by the compiler
when it encounters the TAB character, or any
characters that are not in the fields defined for
them by the ANSI standard.

PROGRAM DEVELOPMENT
with VAX-11 FORTRAN

Page 5-38

Table 5-6 Using Tab Formatting

{TAB>text

<TAB>#text

#<TAB>text

C text

D text

text !comment

text in columns
73-80

The text is a valid FORTRAN
statement and places it in columns
7-72

The number (#) is a continuation

mark, and places it in column 6,

followed by the text which starts
in column 7

The number (#) is a line number (or
statement label), and places it in
columns 2-5, followed by the text
which starts in column 7

The entire line is a comment and
ignores it

The entire line is a comment and
ignores it unless the /D_LINES
qualifier is included with the
compiler command. If the /D LINES
qualifier is included, the compiler
assumes the line contains a valid
FORTRAN statement, and processes it

The text is a valid FORTRAN statement,
and anything following an exclamation
point is a comment; to be ignored

The text is a comment and ignores it
unless the /EXTEND qualifier is
included with the compiler command.

If the /EXTEND qualifier is included,
the compiler assumes the text is a
continuation of the current line, or a
valid FORTRAN statement, and processes
it

—————————— —— S —— - — — T — — — — —— — — —— - —— " (——— — ——————

PROGRAM DEVELOPMENT Page 5-39
with VAX-11 FORTRAN

5.6.2 PREPARING THE PROGRAM FOR EXECUTION

Assuming the source file has been created, the next
step is compilation followed by linking; then the
program can be executed. This list, an example of the
steps in program development for a FORTRAN program, is
followed by a partial listing of the program developed.
The debugging session in section 5.4.1 uses the line
numbers in the far-left column of the listing file, as
well as the variable and subroutine names shown.

1. S$EDIT GRADES.FOR
Creates the source file.

2. SFORTRAN/LIST/NOOPTIMIZE/DEBUG GRADES
Code is normally optimized by the FORTRAN compiler.
Optimization involves methods which can decrease
the effectiveness of the symbolic debugger. When
using the debugger, the /NOOPTIMIZE qualifier
should always be included to ensure close

correspondence between the object code produced by
the compiler and the source code.

3. SLINK/DEBUG GRADES
4. S$SRUN GRADES
5. DBG>GO
Control passes to the symbolic debugger immediately

on execution of the program. To run the program,
the debug command GO should be entered.

PROGRAM DEVELOPMENT
with VAX-11 FORTRAN

Listing of Main Frodram

0001
0002
0003
0004
0005
0008
0007
0008
0009
0010
0011
0012
0013
0014
00135
0014
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026

Listing

0001
0002
0003
0004
00035
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
00%7
0018
0019
0020
0021
0022
0023

10
20

30

40

S0
60

of

10
20

30

40

PROGRAM GRADES

CHARACTER STUDENT.NAMEX30s, DONEX4
REAL AVERAGE

OFPEN (UNIT=1, FILE=‘Course’sy STATUS=’New’)

Subroutine

TYFE 20
FORMAT (/’ Student name? ‘%)
ACCEFT 30, STURENT.NAME
FORMAT (1A30) .
CALL Get_drades_comrute_averade (AVERAGE)
TYFE 40,STUDENT_NAME» AVERAGE
WRITE (1,40) STUDENT.NAME»AVERAGE
FORMAT (/' Student! ‘»A30s‘Averade’ ‘»F10.1)
TYPE S0
FORMAT (/’ Are wou done ? (Yes/No) ‘»$)
ACCEPT 60y DONE
FORMAT (1A4)
IF (DONE.NE.“Y’ LAND. DONE.NE.’w’) GOTO 10
CLOSE (UNIT=1)
END
SUBROUTINE Get_sdrades.compute.averade (AVERAGE)
INTEGER ICOUNT
REAL TOTALs GRADE
ICOUNT = 0
TOTAL = 0
TYPE 20
FORMAT (‘ Input drade (or 0 to end inrFut)! ‘+$)
ACCEPT 30s GRADE
FORMAT (F10.0)
IF (GRADE.NE.O) THEN
ICOUNT = ICOUNT + 1
TOTAL = TOTAL + GRADE
GO TO 10
ENDIF
IF (ICOUNT.NE.O) AVERAGE = TOTAL/ICOUNT

RETURN
END

Page 5-4¢

PROGRAM DEVELOPMENT Page
with VAX-11 FORTRAN
5.6.3 DEBUG COMMANDS

One example of each of the debug commands used in the
sample debug session in section 5.4.1 follows:

SET LOG FILE.DAT

SET OUTPUT LOG

SET BREAK $LINE 23

SET MODULE COMPUTE

SET SCOPE COMPUTE

SET TRACE %LINE 8
(Trace and break statements can not be set at
blank 1lines, comment 1lines, or 1lines where a
FORMAT statement is specified.)

SET WATCH DONE

SHOW BREAK

SHOW MODULE

SHOW SCOPE

SHOW TRACE

SHOW WATCH

EXAMINE DONE

DEPOSIT DONE='YES'

EVALUATE TOTAL/ICOUNT

CANCEL BREAK S$LINE 23

CANCEL TRACE %LINE 8

CANCEL TRACE/ALL

CANCEL WATCH DONE

CANCEL ALL (equivalent to CANCEL BREAK/ALL)

GO

EXIT

PROGRAM DEVELOPMENT Page 5-42
with VAX-11 PASCAL

5.7 PROGRAM DEVELOPMENT WITH PASCAL

5.7.1 SOURCE FILES

All ©procedures and functions should be in the
declaration section of a PASCAL program. Any of these
may be removed and placed in a separate source file.
The source file containing the main program must begin
with the statement PROGRAM. The source files
containing procedures and functions must begin with the
statement MODULE.

5.7.2 PREPARING THE PROGRAM FOR EXECUTION

Assuming the source file has been created, the next
step 1is compilation followed by 1linking; then the
program can be executed. This list, an example of the
steps in program development for a PASCAL program, is
followed by a partial listing of the program developed.
The line numbers shown in the left-hand column are used
for symbolic debugger commands requiring line numbers.

1. SEDIT GRADES.PAS
Creates the source file.
2. $PASCAL/LIST/DEBUG/NOSTANDARD/NOWARNING GRADES

Non-standard features, including underscores () in
identifier names, the OPEN statement, and carriage
control specifications in the WRITELN statement,
can be used in a VAX-11 PASCAL program. The VAX-11
PASCAL compiler displays a warning message each
time it encounters one of these extensions. To
suppress the messages, use the /NOSTANDARD
qualifier with the compiler command. To suppress
warning messages regarding unorthodox, but
acceptable syntax in a program, the /NOWARNING
qualifier is used.

3. SLINK/DEBUG GRADES
4. SRUN GRADES
5. DBG>GO
Control passes to the symbolic debugger immediately

on execution of the program. To run the program,
the debug command GO should be entered.

PROGRAM DEVELOPMENT Page
with VAX-11 PASCAL

FPascal Source Listingd

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028

0029 .

0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050

PROGRAM Grades (Courses INPUT, OUTPUT)

TYFE
Yes.no = (4Wesrnodi
VAR
Student.name ! FACKED ARRAY [1.,401 OF CHARj;
Course ¢ TEXTS
Icount ¢ INTEGER}
Done ¢ Yes.noj
Grader Totaly Averade ! REAL}
8ty Av ¢ PACKED ARRAY [1..,10]1 OF CHAR}

VALUE
8t ¢= ‘Studentt! '} Av i= ‘Averade! ‘3

PROCEDURE Computei
BEGIN
Icount != 0F Total &= 0}
REFPEAT
WRITE (’ Inrut grade (or 0 to end inrPut)i ‘)i
READ (Grade)i
IF Grade <> 0
THEN Icount != Icount + 13

Total ¢= Total + Gradei
UNTIL Grade = 03
Averade = Total / Icountj
END3}

BEGIN { Main Frocedure }

REWRITE (Course)i
REPEAT
{ Get information for one student >
WRITELN}
WRITE (’Student name? ‘)i
READ (Student_Nzane)ij
Comrutei
{ Outrput results to terminal and file)
WRITELN$} WRITELNG}
WRITELN (Sts, Student_Names Avs Averade !3!11)}
WRITELN (Course» Sty Student_Name» Avy Averade (3:1)j
{ Check if more students X
WRITELNG
WRITELN (‘Are wou done ? (Yes/No) ‘)i
READ (Done)i
UNTIL Done = Yes#
CLOSE (Course)i

END { Prodgram Grades 2.

5-43

PROGRAM DEVELOPMENT Page 5-44
with VAX-11 PASCAL

5.7.3 DEBUG COMMANDS

Refer to the list of commands in the discussion of the
FORTRAN language, Section 5.6.3. Debug commands for
PASCAL programs are entered using identical formats
except for:

l. 1If the SET WATCH command 1is used to watch a
variable that is stored on the same page in memory
as a file wvariable, when the file wvariable is
accessed by the program, errors occur.

2. Trace and break statements can not be set at blank
lines or comment lines.

3. The COMPUTE procedure is considered as part of the
main program, GRADES, so all variables are known to
the debugger. Unless routines are coded in
separate source files, and the MODULE statement is
used, the SET SCOPE and SET MODULE commands are not
useful in PASCAL.

4. The DEPOSIT command for depositing 'yes' into DONE
works differently for this version of the PASCAL
program, because DONE is declared as a type. The
possible values of DONE are YES and NO. Since
these are considered to be values, not strings, the
apostrophes are not required
(DBG> DEPOSIT DONE=YES). 1If DONE is supposed to
contain a string, the DEPOSIT command would be
identical.

5. Notice that the output from the debugger differs
from the output when a FORTRAN module is being run.

6. The SET WATCH command can not be used with
variables declared in subprograms.

PROGRAM DEVELOPMENT Page 5-45
with VAX-11 BASIC

5.8 PROGRAM DEVELOPMENT WITH BASIC

5.8.1 SOURCE FILES

VAX-11] BASIC can be used as though it were either an
interpreter or a compiler. A fast RUN command and
support for direct execution of unnumbered statements
(immediate mode) gives the VAX-11 BASIC user the 'feel'
of an interpreter. However, source programs created
with an interactive editor can be compiled, linked, and
run in the same manner as source programs written in
other native-mode languages (see Section 5.1).

Table 5-7 shows the steps of program development using
VAX-11] BASIC in immediate mode. More information about
immediate mode or other features of VAX-11 BASIC can be
found in the VAX-11 BASIC documentation. Some
information is available while the user is in immediate
mode, if HELP is entered at the "Ready?" prompt.

Table 5-7 BASIC Program Development Using Immediate Mode

Steps Comments

1. $BASIC Enters the BASIC environment.

2. Enter program Includes line numbers

3. [LOAD file_spec] (optional) Includes any programs

needed by the main program

4. [COMPILE] (optional) Compiles the program
and any subprograms. Only used
if you want to create an object
file that can later that can be
linked with other programs.

5. RUN Executes program. If a CTRL/C
is typed or a STOP statement is
encountered, immediate mode
debugging statements (see VAX-11
BASIC User's Guide) may be
entered.

——— — — v T S G . W - S S T S S W O G G S — G T — — G — — T T T — " W > —— A —— T > —————

PROGRAM DEVELOPMENT Page 5-46
with VAX-11 BASIC
5.8.2 PREPARING THE PROGRAM FOR EXECUTION
Assuming the source file has been created, the next
step is compilation followed by 1linking; then the
program can be executed. This 1list, an example of the
steps in program development for a BASIC program, is
followed by a partial listing of the program developed.
l. S$EDIT GRADES.BAS
2. $BASIC/LIST/DEBUG GRADES
3. SLINK/DEBUG GRADES
4. $RUN GRADES
5. DBG>GO
Control passes to the symbolic debugger immediately

on execution of the program. To run the program,
the debug command GO should be entered.

PROGRAM DEVELOPMENT Page 5-47
with VAX-11 BASIC

Listing of Main Frodram

10 | PROGRAM GRADES
!

INPUT ‘Are uou done (Yes/No)’s DONES$
IF DONE$ <> ‘uw’ AND DONE$ <> ‘Y’ THEN GOTO 20
990 ! CLOSE 1%
999 : END
it#*

1

1

1 15 OFEN ‘Course’ FOR OUTFUT AS FILE 1%
1)

1 20 FRINT

2 INFUT ‘Student name’i STUDENT_NAMES
1 !

1 30 CALL COMPUTE (AVERAGE)

1 !

i 40 PRINT

2 PRINT ‘Student?! ‘3 %

2 STUDENT _NAMES b

2 ‘ Averade! ‘i &
2 AVERAGE

3 PRINT #1%Z

4 PRINT #1%y ‘Student?! ‘i 1

4 STUDENT..NAMES» &

4 ‘ Averade! ‘i &
4 AVERAGE

1 !

1 60 PRINT

2

4

1

1

1

1

1

1

1

Listing of Subprodranm

THEN AVERAGE = TOTAL/ICOUNT
!

10099 SUBEND

1 10000 SUB COMPUTE (AVERAGE)

1 !

1 10010 ICOUNT = 0%

2 TOTAL = 0%

1 !

1 10020 INFUT ‘Inrput drade (or O to end ineput)’$ GRADE
1 |

1 10030 IF GRADE <> 0%

2 THEN ICOUNT = ICOUNT + 1%
3 TOTAL = TOTAL + GRADE
4 GOTO 10020

1 !

1 10040 IF ICOUNT <> 0%

2

1

1

PROGRAM DEVELOPMENT Page 5-48
with VAX-11 BASIC

5.8.3 DEBUG COMMANDS

Several Kinds of variables are initialized at run-time
before the code in a VAX-11 BASIC program is executed.
Therefore, before examining the contents of any
variables, set a breakpoint at the first statement, and
input the GO command. This is true for subprograms as
well. The 1initialization 1is done as you enter the
subprogram. Therefore, before examining variables in a
subprogram, set a breakpoint at the first statement in
the subprogram and GO to that point.

Most implementations of the BASIC language require the
user to input 1line numbers for each line of source
code. Users of VAX-1ll BASIC are not required to input
any line numbers. However, each line must be numbered
in the listing so the user can wuse the debugger and
specify a particular line. The VAX-11 BASIC compiler
does not generate more line numbers in the 1listing
file. 1Instead, the line numbers in the source code are
used in debug commands in a special way.

In VAX-~11l BASIC, several source statements can share
the same 1line number. The first source statement
associated with a line number is assigned the number 1,
which appears in the left-hand column of the listing
file. The second source statement is assigned the
humber 2, and so on. In some cases, a particular
source statement is continued over several text lines.
In the 1listing, each 1line will be assigned the same
number .

To designate a particular source line to the debugger,
specify the line number associated with that line. If
the statement is the second statement associated with
the line number, specify the line number, a period, and
the number 2 (line_number.2).

For example, look at the statement with the line number
40 in the listing of the GRADES program. Four source
statements are associated with 1line 49g. To set a
breakpoint at each, the following commands should be
used:

DBG>SET BREAK S$LINE 44.1
DBG>SET BREAK SLINE 40.2
DBG>SET BREAK S$LINE 4¢.3
DBG>SET BREAK $LINE 40.4

The first line number can be specified using 40.1 or 49
(the 1 1is implied). Line numbers can be specified in
the same manner for other debug commands requiring
them.

PROGRAM DEVELOPMENT Page 5-49
with VAX-11 COBOL

5.9 PROGRAM DEVELOPMENT WITH COBOL

5.9.1 SOURCE FILES

The VAX-11 COBOL compiler accepts two source program
coding formats: ASNI standard and terminal. Both
formats are described in terms of character positions
in a line. The ANSI standard, (sometimes call
conventional), format is based on the traditional COBOL
format as applied to an 8#-column punched card. The
terminal format is a DEC-specified format for
convenient use with an interactive text editor.

Table 5-8 compares the two formats. Notice that the
terminal format does not allow the sequence number or
identification fields, and both formats accept tab
characters or carriage return characters as line
terminators.

Table 5-8 Character Positions in COBOL Source Files

— ———————— — — - - —— . — - —— ——— — —— — G T W W S - —— — " ————— ——— - - — -

COLUMNS
Fields ANSI Standard Terminal
Sequence numbers 1-6 not used
Continuation/Comment 7 1
Indicator Area
Area A 8-11 1-4
Area B 12-72 5-56
Identification Field 73-80 not used

Tab stops are defined by the compiler depending on the
format used.

For ANSI standard format, they are set at:
7, 8, 12, 20, 28, 36, 44, 52, 604, 68, 73
For terminal format they are set at:

5, 13, 21, 29, 37, 45, 53, 61, 66

PROGRAM DEVELOPMENT Page 5-50
with VAX-11 COBOL '

Terminal format is the compiler default. The use of
terminal format saves a considerable amount of space in
a source file on disk as compared to the use of ANSI
standard format. For this reason, if you have files on
a disk which are in ANSI standard format, you may wish
to convert them to terminal format using the REFORMAT
utility. This utility can also be used to convert a
file in terminal format to conventional format. The
DCL command to invoke the REFORMAT utility is:

SRUN SYS$SYSTEM:REFORMAT

The utility will then prompt you for all pertinent
information. The REFORMAT utility is described in the
VAX-11 COBOL User's Guide.

5.9.2 PREPARING THE PROGRAM FOR EXECUTION

Assuming the source file has been created, the next
step is compilation followed by 1linking; then the
program can be executed. When you compile a COBOL
program, the compiler will assume that you are using
terminal format unless you specify the /ANSI FORMAT
qualifier.

This 1list, an example of the steps in program
development for a COBOL program, 1is followed by a
partial listing of the program developed. The 1line
numbers shown in the left-hand column can be used with
symbolic debugger commands requiring line numbers.
1. SEDIT GRADES.COB
2. $COBOL/LIST/DEBUG GRADES

or

$COBOL/ANSI_FORMAT/LIST/DEBUG GRADES
3. SLINK/DEBUG GRADES
4. S$SRUN GRADES
5. DBG>GO

Control passes to the symbolic debugger immediately

on execution of the program. To run the program,
the debug command GO should be entered.

PROGRAM DEVELOPMENT
with VAX-11 COBOL

Source Listing

VO NO U D W -

Page 5-51
¥ PROGRAM GRADES
X
IDENTIFICATION DIVISION.
X
PROGRAM-1ID, GRADES.
%
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE~CONTROL.,
SELECT COURSE ASSIGN TO °“COURSE®.,
DATA DIVISION.
FILE SECTION.
FD COURSE
LABEL RECORDS ARE STANDARD.
01 OUT.REC FIC X(72).
WORKING-STORAGE SECTION.
01 STUDENT_NAME PIC X(40).
01 AVERAGE PIC 999V999 COMF.
01 DONE PIC X(4),
01 OUT_LINE.,
05 FILLER PIC X(9) VALUE IS *Student! *'.
05 OUT_NAME PIC X(40).
05 FILLER PIC X(16) VALUE IS * Averade! ",
05 OUT_AVG PIC ZZ9.99%.
PROCEDURE DIVISION.
BEGIN.,
OPEN OUTPUT COURSE.
ACCEPT-STUDENT.
DISPLAY *°*.,
DISPLAY **.
DISPLAY °*Student name? * WITH NO ADVANCING.
ACCEPT STUDENT_NAME.
CALL *Get._srades.comrute-average® USING BY REFERENCE AVERAGE.
MOVE STUDENT.NAME TO OUT.NAME.
MOVE AVERAGE TO OUT.AVG.
DISPLAY *°,
DISPLAY **,
DISPLAY OUT_LINE.
WRITE OUT_REC FROM OUT.LINE.
DISPLAY **,
DISPLAY "Are wou done (Y/N)7 * WITH NO ADVANCING.
ACCEPT DONE.
IF DONE IS NOT EQUAL TO °*Y* AND DONE IS NOT EQUAL TO °u*

THEN GO TO ACCEPT-STUDENT.

CLOSE COURSE.
STOP RUN.
END PROGRAM GRADES.

PROGRAM DEVELOPMENT Page 5-52
with VAX-11 COBOL

Source Listing of Subrrosgram

53

54

59

LT

57 IDENTIFICATION DIVISION,

58 X

59 PROGRAM-ID., Get_drades.comrute_averade.
40 X

61 X

62 DATA DIVISION.

63 WORKING-STORAGE SECTION.

64 01 IN.GRADE PIC 999,

65 01 GRADE PIC 999 COMF,

66 01 ICOUNT PIC 999 COMP .,

67 01 TOTAL PIC 999 COMP.

48

69 LINKAGE SECTION.

70 01 AVERAGE PIC 999V999 COMP.
71

72 PROCEDURE DIVISION USING AVERAGE.

73 BEGIN.

74 MOVE ZERO TO ICOUNT.

79 MOVE ZERO TO TOTAL.

76

77 DISFLAY *°*,

78 DISPLAY *°*.,

79 DNISPLAY *(Grades must be 3-didits lond, Pad with leadind 0’s.)"*
80 DISPLAY *°*.,

81 ACCEPT-GRADE.,

82 DISPLAY "Enter grade (or 000 to end inrut)? *
83 WITH NO ADVANCING.

84

85 ACCEPT IN_GRADE.

86

87 IF IN_GRADE IS NOT EQUAL TO O THEN
88 ADD! 1 TO ICOUNT

8¢9 ADD IN_GRADE TO TOTAL

9?0 GO TO ACCEPT-GRADE

91 END-IF,

92

?3 IF ICOUNT IS NOT EQUAL TO 0 THEN
94 DIVIDE ICOUNT INTO TOTAL GIVING AVERAGE.
9%

?6 EXIT PROGRAM.,

97

?8 END PROGRAM Get_drades_comrute.averade.

PROGRAM DEVELOPMENT Page 5-53
with VAX-11 COBOL

5.9.3 DEBUG COMMANDS

Debug commands for programs written in COBOL are
identical to those for FORTRAN programs (see Section
5.6.3) with the exception of:

1. SET WATCH is not avalilable when files are used.

2. STEP is used to step 1l instruction at a time. The
specification of a certain number of steps is not
available.

3. The TYPE command can be used to type out source
statements in modules. Line numbers specified are
those output in the listing file. TYPE is unique
to COBOL. An example follows:

neEG> TYPE 1:4
module GRADES
13 % PROGRAM GRARES
2 0%
I: IDENTIFICATION DIVISION.
4% X
DERG: TYFE 935
mocdule GRADES
553
DRG: TYRE &5:1469
modiule GRADES
YOERUG-W~NOLINXXXy lines 65169 do not exdist in module GRADES
DERG: SHOW MODULE

module name sumbols langduasde size
GRADES Hes CORQOL 560
COMFUTE o CORGL 364
CORSRMS RLOCKS] BLISS 52
LIBSAR.CUTTP.U o MACRO 104
total modulest 4. remaining sizel 546980,

nRG> SET MODULE COMFUTE

DEG: TYPE 65169

module GRADES

YIERUG-W-NOLINXXXy lines 651469 do not exist in module GRADES
NEGE TYPE COMPUTENGSG 169

module comerule

638 01 GRALE FIC 999 COMF .
668 01 ICOUNT FIC 999 COMF.
671 01 TOTAL FIC 999 COMF .
682

691 LINKAGE SECTION.

PROGRAM DEVELOPMENT
with VAX-11 COBOL

NRG> SET SCOPE COMFUTE
DBRG> TYPE 6516469
mocdule comrute

63 01 GRADE FIC 999
66t 01 ICOUNT FIC 999
67 01 TOTAL FIC 999

681
69 LINKAGE SECTION.
DRG> EXIT

COMF .
COMF .
COMF .

Page 5-54

CHAPTER 6

SIMPLIFYING A USER SESSION

User sessions can be simplified through the use of command
procedures and symbols. This is especially helpful for the
frequent user. Command procedures are usually created to
perform specified or repetitive jobs.

A command procedure is a text file, created by an editor.
It contains a 1list of DCL commands, and is formatted in a
standard way. The DCL interpreter can read the DCL commands
from the file instead of from the user's terminal. By
placing commonly used DCL command sequences in a file, the
user can more easily interact with the system.

A symbol is a series of characters representing part or all
of a DCL command. The series of characters for a symbol is
chosen by the user. Using symbols gives the user the
ability to tailor the DCL command language for themselves.

CREATING A COMMAND PROCEDURE

Command procedures are an easy way of entering commonly-used
DCL command sequences. Since all the necessary commands are
in a file, the exact order and form of the commands is
recorded. Once entered into a file, a command procedure can
be used as many times as needed. The continued reuse of a
command procedure saves users the time needed to find the
correct command sequence and enter it each time.

When the user is working at a terminal, the DCL interpreter
outputs a prompt, $, to indicate when it is ready to receive
a command. When a command procedure 1is created, each
command 1listed should be preceded by a $. Any line not
preceded by a $ will be treated as data, not as a command.
(Note: The $ should always be entered in the first column
of the line.)

SIMPLIFYING A USER SESSION Page 6-2

After you create a command procedure, you can execute all
the commands in it with a single command. For example,
suppose a procedure named PROCESS.COM contains the lines:

SFORTRAN/LIST PROGRAM.FOR
SPRINT PROGRAM.LIS

SLINK PROGRAM,FOR

SRUN PROGRAM.FOR

The commands in this file can be executed by entering the
following command at the DCL prompt:

$@PROCESS

The @ (execute procedure) command assumes the filetype is
.COM. Each command in the command procedure is executed in
the order specified.

The commands in a DCL command procedure are not normally
displayed as they are executed. The user will see any
output or error messages normally associated with the
command, but not the command itself. If the user inputs the
SET VERIFY command, the commands will be seen. Commands
will continue to be seen for all command procedures
subsequently executed until a SET NOVERIFY is input.

The SET commands can be included in the command procedure or
entered interactively by the user. Users will find the SET
VERIFY command to be especially helpful when a new procedure
has been created, and they are trying to determine whether
it is working as intended or not. For example:

User creates three files:

SHOW.COM SHOW2.COM DO.COM
SSHOW TIME $SET VERIFY S@SHOW
$SHOW USERS $SHOW TIME $@SHOW?2

$SHOW USERS S@SHOW

SIMPLIFYING A USER SESSION Page 6-3

User invokes the DO.COM procedure in an interactive session
and observes the output:

$@Do
5-APR-1982 ©9:57:25
VAX/VMS Interactive Users - Total =1
5-APR-1982 09:57:25.54

TTALl: DRAGI p0040035

$SSHOW TIME
5-APR-1982 @9:57:25
$SHOW USERS
VAX/VMS Interactive Users - Total =1
5-APR-1982 (9:57:26.07

TTAl: DRAGI 000400835

S@SHOW
$SHOW TIME
5-APR-1982 09:57:26
$SSHOW USERS
VAX/VMS Interactive Users - Total =1
5-APR-1982 09:57:26.95

TTAl: DRAGI pPB400B35

Commands (if SET VERIFY is activated), output from commands,
and error messages can be saved in a file by including the
/OUTPUT qualifier to the @ command:

$@DO/OUTPUT=DO. LIS
$

Errors will appear on the terminal as well as in the output
file. If no errors occur, no output will be seen. The
output file must be printed or typed to observe the results.

Commands should not be abbreviated in a command procedure.
Using the complete command makes the procedure more readable
and self-commenting. If extra comments are needed within a
procedure, they can be placed anywhere in a line if preceded
by an exclamation point (!). The DCL interpreter ignores
everything on a 1line after an ! 1is read. Therefore,
comments are not executed. ‘

DCL commands are normally executed in the order they appear
in the command procedure, 1in the same way statements are
executed in the order they appear in programs.

SIMPLIFYING A USER SESSION ‘ Page 6-4

Some DCL commands are available to change the order of
execution, including IF, GOTO, and EXIT. Other commands are
available for the manipulation of files from a command
procedure, including OPEN, READ, and WRITE. These commands
are not needed in simple procedures, but more sophisticated
users can learn about them through the use of the HELP
facility.

If any command executed in a command procedure causes an
error or severe error to occur, an appropriate message will
be output and the command procedure will be terminated.
Successful commands, and those causing warning messages to
be output, will not terminate the procedure.

6.1.1 THE LOGIN.COM PROCEDURE

Most users will create at least one command procedure
with the name LOGIN.COM. This procedure, stored in the
user's top-level directory, is executed by the system
each time the wuser 1logs 1in. The LOGIN.COM file
typically contains commands to change the user
environment, output information to the user, and create
symbols (see Section 6.2). For example:

The LOGIN.COM file contains the following lines:

SSET VERIFY

$!

$! Obtain information
$!

SSHOW SYSTEM

SSHOW USERS

SSHOW PROCESS

SSHOW TIME

Modify the environment
ET TERMINAL/VT52

Create symbols

¢ b= 0= [f) b= b= o

LORDEGEDEH K]

After the LOGIN.COM has been created or modified, the
user should always test it before logging out:

$@QLOGIN

This precaution is necessary, because if the procedure
contains certain errors, the user may not be able to
log back in again. When the procedure executes without
error, the user can log out and log in to observe that
the system executes the procedure automatically.

SIMPLIFYING A USER SESSION Page 6-5

6.2 CREATING SYMBOLS

Symbols can be used to create synonyms for DCL commands or
parts of DCL commands. Symbols are created through the use
of an assignment statement. For example, the symbol LIST

could be defined to equate to the DCL command DIRECTORY as
follows:

$LIST == "DIRECTORY"

The symbol can be used as follows:
SLIST

(output for the directory command is seen)

When the user inputs LIST as a command, the DCL interpreter
looks 1in the table where symbols are stored and translates
LIST to be DIRECTORY. Then the interpreter executes the
DIRECTORY command.

A symbol can also be equated to a portion of a command, as
follows:

$FL == "FORTRAN/LIST"

Since FORTRAN/LIST requires a file specification to be
complete, FL also requires a file specification:

$FL PRGM.FOR

A symbol created by a user is valid only for that user. Two
kinds of symbols can be created, local and global. Global
symbols are most useful to the average user, and that is the
kind of symbol <created in the previous examples. To list
all global symbols <created during a user session, the
command "SHOW SYMBOL/GLOBAL/ALL" can be entered. To delete
a symbol, the command "DELETE/SYMBOL/GLOBAL symbol name" can
be entered. -

SIMPLIFYING A USER SESSION Page 6-6

6.2.1 PARAMETER SYMBOLS

Eight local symbols, called parameter symbols, are
created automatically for the user whenever a command
procedure is invoked. These can be used to input
information to the procedure at the time of activation.
The names of these symbols are P1l, P2, P3, P4, P5, P6,
P7, and P8.

Procedures are executed with the command:

$@file_specification

Information can be input optionally on this command
line following the file specification. The information
can be any string of characters. The first piece of
information 1is automatically equated to the Pl symbol.
The second piece of information is equated to the P2
symbol, and so on, up to eight pieces of information.

Parameter symbols exist for the duration of the command
procedure only. When the command procedure is done,
the symbols are deleted by the systen. If the
procedure is invoked again, the symbols are re-created.
Parameter symbols are commonly used to input file names
or instructions to the procedure, as shown in the
following examples:
Example 6-1
The file PROCESS.COM contains the following statements:

$SET VERIFY

SFORTRAN/LIST 'P1! INotice that Pl is enclosed
S$PRINT 'P1! !in apostrophes to indicate
SLINK 'P1l’ lto the DCL interpreter that

SRUN 'P1°’ it is a symbol

SIMPLIFYING A USER SESSION

A user executes the procedure, passing PRGM as the
value of Pl:

$
S@PROCESS PRGM
SFORTRAN/LIST PRGM
SPRINT PRGM
Job 509 entered on queue SYSSPRINT

SLINK PRGM
SRUN PRGM
HI

During the execution of the command procedure, the DCL
interpreter will substitute PRGM wherever Pl appears.
Default values for portions of file specifications not
input are available within command procedures.
Therefore, PRGM is sufficient, as the FORTRAN compiler
will add the file type of .FOR, the PRINT program will
add the file_type of .LIS, the LINK program will add
the file type of .0BJ, and the RUN program will add the
file type of .EXE.

Example 6-2
The file LOGOUT.COM contains the following lines:

$SET VERIFY

$!

SIF P1.NES."PURGE" THEN GOTO LOGOUT 1String

$! comparison
SPURGE [.e..]%*.%

St

$LOGOUT: 1Label - indicated by colon

S terminator

$LOGOUT

When the user inputs the command @LOGOUT, with no
parameter, the LOGOUT command will be executed. If the
user inputs any string as a parameter other than PURGE,
the LOGOUT command will be executed. If the PURGE
string is input for P1l, then the PURGE command will be
executed followed by the LOGOUT command.

$@LOGOUT
user is logged out

$@LOGOUT JKLM
user is logged out

$@LOGOUT PURGE
all files are purged
user is logged out

Page 6-7

SIMPLIFYING A USER SESSION Page 6-8

6.2.2

INTERPRETATION OF SYMBOLS

Symbols can be used in several places. The previous
examples have shown three ways a symbol can be used.
Many rules exist by which DCL interprets symbols. Some
of these rules follow:

1. The DCL interpreter assumes any string input after
the $ prompt, during an interactive session, could
be a symbol. Therefore, the interpreter always
checks the symbol table to see if the first string
input is a symbol.

2. In some DCL commands used within command
procedures, such as IF, WRITE, and INQUIRE, the
interpreter assumes certain strings could be
symbols. If the string 1is found in the symbol
table, the substitution is made and the command is
executed.

3. In other DCL commands, the interpreter must be
informed that a string is a symbol, such as TYPE,
PRINT, FORTRAN, and LINK. The interpreter can be
informed in these cases by enclosing the symbol in
single apostrophes.

For example, in the case of the FORTRAN command, if
the wuser inputs FORTRAN Pl, the FORTRAN program
will add the file type .FOR to Pl, and attempt to
compile P1.FOR.

To inform the interpreter that Pl is really a
symbol equated to a value (in this case, the name
of the file), Pl should be enclosed in quotes. The
command input should be FORTRAN 'Pl°'. The
interpreter substitutes the value equated to Pl;
the FORTRAN program adds the file type of .FOR, and
the correct file is compiled.

SIMPLIFYING A USER SESSION Page 6-9

For most DCL commands, the DCL interpreter must be
informed (by using apostrophes) that a string is a
symbol. If the documentation states that the input
string may be a symbol, then no apostrophes are needed.
For example, look at the documentation for IF and
WRITE, using the HELP command as follows:

$HELP IF parameters

SHELP WRITE parameters
Contrast that documentation with the information output
for the FORTRAN command:

SHELP FORTRAN parameters

CHAPTER 7

PRODUCING FORMATTED TEXT OUTPUT

The RUNOFF utility is a text formatter. The utility accepts
an 1input file and produces an output file. The input file
contains text and RUNOFF formatting commands. The output
file contains the formatted text. The formatted output file
includes line feeds and form feeds at appropriate points for
output on a 1line printer. By 1learning and using a few
RUNOFF commands, users can produce professional 1looking
text.

PRODUCING FORMATTED TEXT OUTPUT Page 7-2

7.1 USING RUNOFF

To use the RUNOFF utility, the following steps should be
taken:

l. Create the input file using an editor
- file_type should be .RNO
2. Exit the editor, saving the contents
3. Create the formatted output file by using the command:

SRUNOFF file name

4. Print or type the output file

- file_type is .MEM

While the RUNOFF utility is processing the input file, it
may encounter incorrect commands. If this occurs, an error
message will be output describing the error. The message
usually includes the number of the line in the input file
where the error occurred. To correct the error, the input
file must be modified using an editor. After modification,
the new version of the input file should be processed by
RUNOFF to produce a new output file.

When the input file has been processed successfully, the
output file should be examined. 1If the output is formatted
as intended, a final copy can be printed. Otherwise, the
input file should be modified with an editor to reflect any
corrections, and the new version of the input file should be
processed by RUNOFF. These steps should be repeated until
the output file is acceptable.

Several qualifiers are available to be used with the RUNOFF
command. Use the DCL HELP utility to learn more about these
qualifiers.

PRODUCING FORMATTED TEXT OUTPUT Page 7-3

7.2 INPUT FILES

RUNOFF commands always begin with a period (.). This period
must appear in the first column followed by the command (no
space between period and first word of command).

Some RUNOFF commands are normally included before or after
text. Others are usually included at the beginning of the
input file rather than repetitively within the file. Some
special commands called symbols appear within text strings.
Most commands are input in one of the following formats:

1. .command

2. .command number

3. .command ; TEXT

4, .command
TEXT

5. .command ; TEXTsymbol TEXTsymbol TEXT

The next section of this chapter contains examples of input
files and their corresponding output files. Tables listing
all commands used can be found in the section following the
example 1listings. A few commands are discussed further
within the examples. Some of the output files included
several form feeds to display the action of RUNOFF commands.
These form feeds will be indicated by the following (which
would not normally be seen in an output file):

----------- <Form Feed> ------=-=—---

PRODUCING FORMATTED TEXT OUTPUT Page 7-4

.page size 58,70
.title EXAMPLE 1
.first title
.autoparagraph

.set paragraph #,1,2
.flags bold

.center ;Introduction

.blank 2

This is example number one. This paragraph will be
automatically formatted by RUNOFF so all lines will
look like they are the same length. Notice that the
.autoparagraph command is set at the beginning of the
file. Since this paragraph begins with a space, it
will be formatted as a new paragraph.

This is a new paragraph. RUNOFF starts a new paragraph
if a blank line or a space at the beginning of a line
are read.

All paragraphs are output with the .set paragraph
format. Therefore;

.list "o"

.le;Paragraphs are not indented

-le;One blank line is output before each paragraph
-le;If only one line of a paragraph can fit on a page,
a form feed is done first.

.end list

To make the input file easy to read, paragraphs
should be separated by a blank line “*and* begun with
a space. (If this file were processed by RUNOFF, and
the resulting file were printed, the 'and' in the
previous sentence would be bolded.)

The other commands listed at the beginning of this
file are:

.list

.le; .title

.le; .first title
.le; .flags bold
.le; .center

.le; .page size
.end list

PRODUCING FORMATTED TEXT OUTPUT Page 7-5
EXAMPLE 1 Page 1

Introduction

This is example number one. This paragraph will be automatically
formatted by RUNOFF so all 1lines will look like they are the same
length. Notice that the .autoparagraph command is set at the
beginning of the file. Since this paragraph begins with a space, it
will be formatted as a new paragraph.

This is a new paragraph. RUNOFF starts a new paragraph if a blank
line or a space at the beginning of a line are read. ’

All paragraphs are output with the .set paragraph format. Therefore;
o Paragraphs are not indented
o One blank line is output before each paragraph
o If only one line of a paragraph can fit on a page, a form

feed is done first.

To make the input file easy to read, paragraphs should be separated by
a blank 1line and begun with a space. (If this file were processed
by RUNOFF, and the resulting file were printed, the 'and' in
the previous sentence would be bolded.)

The other commands listed at the beginning of this file are:
1. .title
2. .first title
3. .flags bold

4, .center

5. .page size

PRODUCING FORMATTED TEXT OUTPUT Page 7-6

.page size 20,790 !Range of values is: length, 13 - 9999
o! width, 3 - 15¢
.title EXAMPLE 2

.set paragraph 5,1,2

.spacing 2 {Causes all lines in the output file
! to be double-~spaced

.center ;Introduction

.paragraph

This paragraph begins with an indentation of 5 spaces, as
specified in the .set paragraph command. The title, EXAMPLE 2,
should not appear until the second page of this document.

When 20 lines have been entered on this page, the RUNOFF
formatter will automatically insert a form feed into the output
file, and begin a new page.

.spacing 1 !Changes the spacing to single spacing again
! Notice that comments do not appear in the output file

-header level 1 Discussion of header levels and paragraphs

.paragraph

Notice that the title, 'DISCUSSION OF HEADER LEVELS AND
PARAGRAPHS', follows the number 1.0 in the output file.

A new section of text, usually discussing the item described
in the title, begins after the section header. Sections

are set apart by blank lines before and after the number and
name of the sections. (Notice that this paragraph is also
indented by 5 spaces, and that it is necessary to use the
.pParagraph command to indicate a new paragraph.) If the
.paragraph command is not used, and .autoparagraph is not
set, all text will be included in the same paragraph.

Notice that if .autoparagraph was set, this paragraph would
be set apart as a separate paragraph. Since it is not set,
this paragraph is included as part of the preceding paragraph.

+header level 2 More discussion of paragraphs

.paragraph 3,1,2

The .paragraph command can be used to change the indentation
and other characteristics of paragraphs also.

.paragraph

Notice that all letters in the top header level are
capitalized by default, and the first letters of the second
level are capitalized.

.header level 3 displaying header level 1 characteristics

.paragraph

For third level header levels, the first character of each
word in the title is capitalized, and the title is followed
by a hyphen. -

PRODUCING FORMATTED TEXT OUTPUT Page 7-7

Introduction

This paragraph begins with an indentation of 5 spaces, as
specified in the .set paragraph command. The title, EXAMPLE 2, should
not appear until the second page of this document. When 2@ lines have
been entered on this page, the RUNOFF formatter will automatically
insert a form feed into the output file, and begin a new page.

——————————— <Form Feed> -—--—=-————==--

EXAMPLE 2 Page 2

1.4 DISCUSSION OF HEADER LEVELS AND PARAGRAPHS

Notice that the title, 'DISCUSSION OF HEADER LEVELS AND
PARAGRAPHS', follows the number 1.0 in the output file. A new section
of text, usually discussing the item described in the title, begins
after the section header. Sections are set apart by blank lines
before and after the number and name of the sections. (Notice that
this paragraph is also indented by 5 spaces, and that it is necessary
to use the .paragraph command to indicate a new paragraph.) If the
.paragraph command is not wused, and .autoparagraph is not set, all
text will be included in the same paragraph. Notice that if
.autoparagraph was set, this paragraph would be set apart as a
separate paragraph. Since it is not set, this paragraph 1is 1included
as part of the preceding paragraph.

——————————— <Form Feed> ---—-—--w---

EXAMPLE 2 Page 3

1.1 More Discussion Of Paragraphs

The .paragraph command can be used to change the indentation and
other characteristics of paragraphs also.

Notice that all letters in the top header level are capitalized by
default, and the first letters of the second level are capitalized.

l.1.1 Displaying Header Level 1 Characteristics -

For third level header levels, the first character of each word in
the title is capitalized, and the title is followed by a hyphen.

PRODUCING FORMATTED TEXT OUTPUT Page 7-8

.page size 58,70
.title EXAMPLE 3
.first title
.autoparagraph

.set paragraph 9,1,2
.center ; INTRODUCTION
.blank 2

In many types of documents, reports, and memos, lists of items
must be created. When creating a list, items are usually set
apart by numbering, or bulleting each item. These methods are
shown in Example#l. This example shows other methods of
identifying list elements by using the .display element command.
The colors of the United States of America's flag are:

.blank 2

.indent 2;Lowercase letters:
.list

.display element " ",LL," "
.le;red

.le;white

.le;blue

.end list

.blank 2

.indent 2;Lowercase letters followed by a period:
.list

.display element " ",LL,"."

.le;red

.le;white

.le;blue

.end list

.blank 2

.indent 2;Uppercase letters surrounded by parentheses:
.list

.display element " (",LU,")"
.le;red

.le;white

.le;blue

.end list

.blank 2

.indent 2;Lowercase Roman numerals:
.list

.display element " " ,RL,"."

.le;red

.le;white

.le;blue

.end list

PRODUCING FORMATTED TEXT OUTPUT Page 7-9

EXAMPLE 3 Page 1

INTRODUCTION

In many types of documents, reports, and memos, lists of items must be
created. When c¢reating a 1list, items are usually set apart by
numbering, or bulleting each item. These methods are shown in
Example 1. This example shows other methods of identifying list
elements by using the .display element command. The colors of the
United States of America's flag are:

Lowercase letters:

a red
b white
c blue

Lowercase letters followed by a period:

a. red
b. white
c. blue

Uppercase letters surrounded by parentheses:

(A) red
(B) white
(C) Dblue

Lowercase Roman numerals:
i. red
ii. white

iii. Dblue

PRODUCING FORMATTED TEXT OUTPUT Page 7-10

.page size 58,740
.title EXAMPLE 4
.first title
.subtitle
.autosubtitle
.autoparagraph

.set paragraph 2,1,2
.center ; INTRODUCTION

Several commands are used to center, set apart, or display
text in unconventional manners. The commands include:
.blank 1
.list g,"-"

.le; .literal

.le; .end literal
.le; .note

.le; .end note

.le; .right margin #
.le; .left margin ¥
.end list -

.note

The notes command is used to set text apart from other
text by indenting the text an equal distance from each
margin. The word NOTE is placed before the indented text.
.end note

.left margin +2

.right margin -2

.blank 1

.center ;NOTE

To create a note that appears differently from the normal
NOTE command's output, the .left margin and right margin
commands can be used. These commands reset the margin,
and all text is then formatted within the new margins.
The margins can be reset to the original margins at any
time, or they can be reset to other new margins.

.right margin +2

.left margin -2

.blank 1
.literal
Some text is required to appear

in a certain format regardless of what the margins are.
For this purpose, the .literal command
is used. Text following the .literal
command appears in the output file to be identical to
the text in the input file until a .end literal command
is reached.

.blank 2
Notice that commands are ignored within a literal.

.end literal

PRODUCING FORMATTED TEXT OUTPUT Page 7-11

EXAMPLE 4 Page 1

INTRODUCTION

Several commands are used to center, set apart, or display text
unconventional manners. The commands include:

- Wliteral
- +end literal
- onote

- .end note
- .right margin #
- .left margin #

NOTE

The notes command is used to set text
apart from other text by indenting the
text an equal distance from each margin.
The word NOTE 1is placed before the
indented text.

NOTE

in

To create a note that appears differently from the normal NOTE

command's output, the .left margin and right margin commands can
be used. These commands reset the margin, and all text 1is then
formatted within the new margins. The margins can be reset to the

original margins at any time, or they can be reset to other new

margins.

Some text is required to appear
in a certain format regardless of what the margins are.
For this purpose, the .literal command
is used. Text following the .literal
command appears in the output file to be identical to
the text in the input file until a .end literal command
is reached.
.blank 2
Notice that commands are ignored within a literal.

PRODUCING FORMATTED TEXT OUTPUT Page 7-12

.require "FORMAT.RNO"
.title EXAMPLE 5
.number chapter 5

The FORMAT.RNO file is listed below. It contains the
general formatting information used by this example:

Contents of FORMAT.RNO

.page size 58,70
.first title
.sSubtitle
.autosubtitle
.autoparagraph

.set paragraph 2,1,2
.center ; INTRODUCTION

[] L] . L] . L]
Gem G Omm Svm Gmm S Gum S Smw Gem Guw Guw Omm Sum

.header level 1 Chapters

The output of
the .chapter command can be seen by looking at the beginning
of each chapter. The .number chapter n command was used at
the beginning of each chapter to indicate the chapter number.
The new number was then incorporated as part of the page
identification.

.page

Notice that a form feed is done even though 58 lines have not
been output because of the .page command.

.header level 2 Layout

The default was used for the .layout command, and all pages
are numbered using decimal numbers. Notice that the first
header level is used as the subtitle.

.page
.autosubtitle 2
.header level 2 Commands not shown in examples

Notice that the second header 1level title is used as the
subtitle because of the .autosubtitle command.

These examples have contained
most of the commands listed in the following tables. The
commands not depicted are more advanced. Users should be
able to read the syntax of the command from the table to
incorporate it in their input file.

PRODUCING FORMATTED TEXT OUTPUT Page 7-13

INTRODUCTION

1.0 CHAPTERS

The output of the .chapter command can be seen by 1looking at the
beginning of each chapter. The .number chapter n command was used at
the beginning of each chapter to indicate the chapter number. The new
number was then incorporated as part of the page identification.

----------- <Form Feed> —-—=——=-———e——-

EXAMPLE 5 Page 5-2
CHAPTERS

Notice that a form feed is done even though 58 lines have not been
output because of the .page command.

l.1 Layout

The default was used for the .layout command, and all pages are
numbered using decimal numbers. Notice that the first header 1level is
used as the subtitle.

EXAMPLE 5 Page 5-3
Commands Not Shown In Examples

1.2 Commands Not Shown In Examples

Notice that the second header level title is used as the subtitle
because of the .autosubtitle command.

These examples have contained most of the commands listed 1in the
following tables. The commands not depicted are more advanced. Users
should be able to read the syntax of the command from the table to
incorporate it in their input file.

PRODUCING FORMATTED TEXT OUTPUT Page

7.3

SUMMARY OF RUNOFF COMMANDS

Commonly used RUNOFF commands are summarized 1in several
tables in the next section. Commands are listed in tables
by function for reference purposes.

The tables contain commands affecting the following:

o Table 7-1 - Paragraph format

o Table 7-2 - Text format

o Table 7-3 - Creation of lists

o Table 7-4 - Symbols

o Table 7-5 - Recognition of symbols

o Table 7-6 - Title information

o Table 7-7 - Amount of text on a page

o Table 7-8 - Page identification

o Table 7-9 - General format

NOTE

Any of the commands listed in the tables can be
included anywhere in the input file. Abbreviations
for each command are included in parentheses under
each command although command files are more
readable and self-documented when abbreviations are
not used. Optional portions of commands are
enclosed in square brackets (e.g. [optional])

7-14

PRODUCING FORMATTED TEXT OUTPUT Page 7-15

Table 7-1 Commands affecting paragraph format

Command Effect on output file
.autoparagraph Enables the automatic recognition
(.ap) of paragraphs. A new paragraph is

begun in the output file if a blank
line or a line beginning with a
space is read in the input file

.no autoparagraph Disables automatic paragraph

(.nap) recognition (default)

.set paragraph [i,v,t] Describes the format of each paragraph.
(.spr) i designates how many spaces to indent

before text begins. v designates the
number of vertical line feeds before a
paragraph. t designates how many lines
can be output before a form feed must
be done. If the specified number of
lines can not be output, the form feed
is output first; then the paragraph.
Default is 5,1, 2.

.paragraph [i,v,t] Specifies that the following text is a
(.P) new paragraph. Needed only if
.autoparagraph is not specified.
Can reset paragraph characteristics
(see .set paragraph)

" —— — — — > - - W - I D T - —— — — ——— —— " > ————— ———— —— t— - — ———— — . — ———— ——— —————

PRODUCING FORMATTED TEXT OUTPUT Page 7-16

Table 7-2 Commands used to format specific portions of text

———— —————— - — — _— —— T ——————— — _— —— —— —————— — f— ———— — — - — S—— - — G 4 T W W T T T~ - = S n S w——

Command Effect on output file
.center ;text Center the specified text. Text may
(.cC) follow .center; or may be input on

the subsequent line. Only one 1line
will be centered.

.indent n Indent next line n spaces to the right

(.1) or left (if n is negative) of the left
margin.

.left margin n Set the left margin to column n or;

(«1m) Move the left margin:

- to the right if n is positive
- to the left if n is negative

.right margin n Set the right margin to column n or;
(.rm) Move the right margin:

- to the right if n is positive

- to the left if n is negative

.break End the current line without filling
(ebr or .) or justifying it and begin new line.
.literal Specify that the subsequent text is
(.1t) not to be formatted. It will appear

in the output file exactly as it
appears in the input file. (Caution:
The TAB is the exception. TAB is

is translated as a space. Use the
SPACE bar instead of TAB.)

.end literal Causes RUNOFF to begin formatting

(.el) text again.

.note [title] Indent text between .note and .end

.end note note from both margins. Precedes and
follows the text with blank lines.

(e.n and .en) Also precedes the text with the word

NOTE (or optional title centered on
a line.

———— o T —— - — T — —— A —— — A A S — — S W - —— — — — — —— — - Y W W T ——— WA M TED T —— ———— - - -

PRODUCING FORMATTED TEXT OUTPUT Page 7-17

Table 7-3 Commands used for the creation of lists

Command Effect on output file
.list n,"c" Begin a list with n blank lines between
(.1s) each item. Each item begins with the

character indicated by "c", by default,
decimal numbers incremented by 1.

Typical values for "c" are "o", or " ",
or |l_ll.
.display element "a","b","c" Identify list items.
(.dle)
"a" and "c" are single characters
to be displayed before and/or after
"bll
"b" is defined using a code
chosen from the following list:
Code Output
D Decimal numbers
RU Roman uppercase numerals
RL Roman lowercase numerals
RM Roman mixed case numerals
LU Letters, uppercase
LL Letters, lowercase
LM Letters, mixed case
(mixed case - 1lst letter
only is uppercase)
.list element;text Specifies item to be listed. This
(.1le) command must precede each item.
.end list Identifies the end of the 1list.

(.els)

- — — - . e s Gl S — G —— T T ——— - G —— T — — —— — T — —————— ————— ——— ——— —_—_ T > W > " ———————

PRODUCING FORMATTED TEXT OUTPUT Page 7-18

Table 7-4 Symbols used within text lines to format text

———— —— — — — — ———— " — e i W foe S o G — - A - —— — — — — — ——— - - T W W G = S = — - ———

The following symbols are automatically enabled:

“stext\&

Underscore. Causes any character following it
to be accepted as normal text. Useful when a
special symbol is to be included in text as
text.

Number sign. Outputs exactly one space.

Ampersand. Underlines the character
immediately following it.

The text between the up-arrow ampersand
and backslash ampersand symbols is underlined.

The following symbols must be enabled to have any effect:

*

“*text*

Asterisk. Causes the character immediately
following it to be bolded. (Appears darker
if output file is printed)

The text between the up-arrow asterisk and
backslash ampersand symbols is bolded.

Percent sign. When inserted between two
characters, causes the preceding character
to be overstruck by the subsequent character.

PRODUCING FORMATTED TEXT OUTPUT Page 7-19

Table 7-5 Commands used to enable/disable recognition of symbols

.flags bold
(.£1 bold)

.no flags bold
(.nfl bold)

.flags overstrike
(.£1 overstrike)

.no flags overstrike
(.nfl overstrike)

Enables recognition of * as the bolding
command.

Disables recognition of * as bolding command

Enables recognition of % as the overstrike
command.

Disables recognition of % as the overstrike
command.

————— — —— —— — —— T ——————— ———— — " - —— T — T~ —— S - T ————————t— o

PRODUCING FORMATTED TEXT OUTPUT

Table 7-6 Commands affecting titles output on pages

—— o ————— - — - - — —— - — ——

.title text
(.t)

.subtitle text
(.st)

.first title
(.£ft)

.autosubtitle n
(.ast)

.nhoautosubtitle
(.nast)

.header level n text
(.hl)

.display level code

Includes the specified title, TEXT,
as the first line on each page
except the first page

Enables automatic subtitling.

If a subtitle, TEXT, is specified,
includes it under the title on every
page except the first page.

If .autosubtitle is also input

as a command, includes header level
titles as subtitles instead

Causes the title and subtitle to be
output on the first page also

Causes header level titles up to and
including the level indicated by n
(default is 1) to be used as subtitles
if .subtitle is also input as a command.

Disables autosubtitling

Allows use of section numbering:

Value of n: Type of Output

1 2.1 text
2.2 text

2 2.1.1 text
2.1.2 text
2.1.3 text

3 2.1.1.1 text
2.1.1.2 text
2.1.1.3 text

Displays header level numbers in format
according to code (see .display element
for codes). Default is decimal numbers.

—— ——— —— T T Y — T > T T WP T > S T G S - o —— - - —————— — — —

PRODUCING FORMATTED TEXT OUTPUT Page 7-21

Table 7-7 Commands affecting amount of text on a page

Command Effect on output file
.page size 1,w Determines the size of each page.
(.pPs) 1 designates the length (lines per

page), and w designates the width
(characters per line). Default is

58,60.
.page Starts a new page
(«P9)
.spacing n Establishes spacing between lines
(.sp) (1=single space, 2=double space,
etc. up to 5)
.test page n Start a new page if there are less
(.tp) than n lines left on current page

.blank n | Output n blank lines
(.b)

PRODUCING FORMATTED TEXT OUTPUT Page 7-22

Table 7-8 Commands affecting Page Identification

.no number Disable listing (but not counting) of

(.nnm)

.number page n
(.nmpg)

.display number code
{.dnm)

.chapter [title]
(.ch)

.number chapter n
(.nmch)

.display chapter code
{.dch)

—— — ——————— —— T ——————" ——— = ———

page numbers.

Resume sequential page numbering,
using page number n as first page.
If n is not specified, use current
page number.

Display page numbers in format
according to code (see .display
element for code). Default is
decimal numbers.

Start a new chapter on a new page
using title specified.

Specify the number of the current
chapter. If n is not specified,
1 is used.

Display chapter numbers in format
according to code (see .display
element for code). Default is
decimal numbers.

- i - ———— —— ——— - —_— - — — - — — - - - ————— —————

PRODUCING FORMATTED TEXT OUTPUT Page 7-23

Table 7-9

Commands affecting overall format of output file

.require "file"

(.req)

.layout n,[m]

(.10)

comment

Causes the specified file to be read and
processed. The file usually contains commands
to set up the general format of the output
file.

Specifies the location of the title/subtitle
and page identification.

Use one of the following codes for n (@ is
default):

@ Title/subtitle flush left
Page id flush right

1 Title/subtitle centered at top of page
Page id centered at bottom of page

2 Title/subtitle flush right (odd page)
and flush left (even page)
Page id centered at bottom of page

3 Title/subtitle flush left
Page id flush right and page numbers
incremented by 1 centered at bottom
of each page. (e.g. at top, page
number is 4-7; at bottom, page
number is 132)

The second argument, m, is used to indicate
the number of blank lines which should be
inserted between the page id at the bottom
of the page, and the last line of text.
(required for codes 1 to 3)

To include comments which will not appear
in the formatted output file

CHAPTER 8

MISCELLANEOUS VAX/VMS UTILITIES

The MAIL and PHONE wutilities allow interactive users to
communicate on-line. The MAIL utility 1is used to send
messages to one or more users on a system (or to users on
another system via DECnet) in the same way a person would
mail a letter. The PHONE wutility allows users to
communicate interactively in the same way a person would use
a telephone.

USING THE MAIL UTILITY

All mail sent to a user is stored in a file, MAIL.MAI, in
the user's top-level directory. This file is accessed by
the MAIL utility.

To use the MAIL utility, enter the DCL command MAIL. The
mail wutility will be invoked, and the MAIL prompt will be
output. If the HELP command is entered, all available MAIL
commands are listed. Help can be obtained on any of the
commands listed by using the HELP facility in the same
manner as the DCL HELP facility.

Most MAIL commands ask for the name of the wuser you are
sending the mail to, and the subject of the message. The
user name can be preceded by a node name if the |user is
working on another system.

Examples of user names:

Smith
NODEA: : Jones
GREAT: : Howeser

Several MAIL commands will not work unless you are reading
or have just read a piece of mail. For example, the FORWARD
command forwards the mail just read to the specified user.
The discussion of the command output by HELP should be read

MISCELLANEOUS VAX/VMS UTILITIES Page 8-2

carefully to notice which commands are in this category.

Table 8-1 lists the major MAIL commands and their functions.

Table 8-~1 MAIL commands

Function Command
Send mail to another user SEND [file name]
List all available messages DIRECTORY
Display a message on the terminal READ [#]
Copy the current message to the printer PRINT
Copy the current message to a file FILE file name
Send a copy of the current message to FORWARD
another user
Reply to the current message REPLY
Remove the current message from DELETE

the mail file

When a message is sent to a user, the user 1is notified by
the MAIL utility. A message will appear on the screen, 'new
mail from user_name'. The user name in the message 1is the
name of the user who sent the mail.

If:
o The user does not read the mail
o The user is not logged in when the mail is sent

then the MAIL utility keeps track of the number of messages
sent. When the user logs in again, the MAIL utility sends a
message to his/her terminal indicating the number of
messages that have not been read.

To list the available messages, the DIRECTORY command should
be used. The READ command accepts a number as a parameter
so a specific message can be read. When the user enters
MAIL and specifies the READ command without a number, MAIL
displays the latest messages received.

MISCELLANEOUS VAX/VMS UTILITIES

SMAIL

MAIL> SEND
to: Joe Smith
subj: Sending example of the latest version of GRADES

Page 8-3

Enter your message below. Press CTRL/Z when complete, CTRL/C to quit:

Hi...I am sending you a copy of the latest version of
the GRADES program in the next message for your interest.

~Z

MAIL> SEND GRADES.FOR
to: Joe Smith

subj: Here it is!

MAIL> EXIT

To send a file or message to more than one user, 1list

user names (separated by commas) after the to: prompt,

specify a distribution list. Distribution lists are

the

or

lists

of wuser names (separated by commas or on separate lines).
These lists are stored in files of file_ type .DIS. Create a
distribution 1list by using an editor. Use the @ command to

specify the file. For example,
Contents of NAMES.DIS:

SMITH, JONES, BARKER

SMAIL

MAIL> SEND Meeting.dat
to: @NAMES
subj: Meeting tomorrow

MAIL> EXIT

MISCELLANEOUS VAX/VMS UTILITIES Page 8-4

8.2 USING THE PHONE UTILITY

To PHONE another user, enter the PHONE utility by typing the
DCL command, PHONE. The information on the terminal screen
will be replaced by a screen formatted for the use of PHONE.
The PHONE format includes:

o A command line - beginning with a % prompt.
o A section of the screen for the caller's use.

o The lower section of the screen for the callee's use.

The HELP utility in PHONE will list all PHONE commands if
HELP 1is entered on the command line (after the % prompt).
Help can be obtained on any PHONE command by entering HELP
command.

Users can phone other users, put calls on hold, send short
messages using the MAIL utility while in PHONE, send files
to other users, and refuse to accept calls. Commands are
listed in Table 8-2.

DIAL is the default command. To phone another user, enter
DIAL username on the command 1line (or simply enter the
username). Users on other nodes can be dialed via DECnet by
specifying the node (node::username).

PHONE rings the other users terminal. If the other user
enters the DCL command, PHONE, following by the PHONE
command, ANSWER, communication can begin. Users enter text
which will appear 1in the top half of their own terminal
screen and the bottom half of the other users screen.
Several 1lines of text can be entered. As the user enters
text, the text appears on the other user's terminal.

All text entered after the call has begun is assumed to be
part of the message. Commands must be entered on the
command line only. To get to the command 1line while
entering a message, the switchhook character should be
entered. The default switchhook character 1is the percent
sign (%). One command may be entered; then the user is
returned to the message area. This is useful for entering
commands such as HOLD or REJECT (see Table 8-2).

MISCELLANEOUS VAX/VMS UTILITIES Page 8-5

Table 8-2 PHONE Commands

—— —— — — —— T — ————— — ————— — ———— - —— ——————— S~ ——— — — — — ———— — ————————————————

Function Command

Place a call (Default) DIAL username

Answer a call while in PHONE ANSWER

Display a list of available users DIRECTORY [node::]
(including users on other nodes)

Send the contents of a file to _ FACSIMILE file name
all users involved in the conversation

Place a caller on hold HOLD

Reject a call from a caller REJECT

Take a caller off hold UNHOLD

Send a short (one line) message MAIL

to a user who is unavailable for
a PHONE conversation

Hangup your own phone HANGUP (or CTRL-Z)

Obtain help on PHONE commands HELP

—— — — ——— — — o . . T o T (e . S ——— — ——— —— ————— ———— T — — — D W R D V™D W FEE T == . S ———————— - -t -

VAX/VMS CUSTOMER CURRICULUM

LEC/LAB

VAX/VMS
DEVICE DRIVER
LEC/LAB
3
VAX/VMS VAX/VMS DESIGN OF APPLICATIONS
DECNET USER OPERATING SYSTEM INTERNALS UNDER VAX/VMS

LEC/LAB

SEMINAR

PROGRAMMING VMS IN
VAX-11 BASIC

LLEC/LAB OR SPI

PROGRAMMING VMS IN
VAX-11COBOL

LEC/LAB OR SPI

PROGRAMMING VMS IN
VAX-11 FORTRAN/MACRO

LEC/LAB OR SP!

PROGRAMMING VMS

OPERATING SYSTEM INDEPENDENT
PROGRAMMING LANGUAGES

ASSEMBLY LANGUAGE

IN DSM BASIC/FORTRAN/COBOL PROGRAMMING IN VAX-11 MACRO
SP| LEC OR SP! LEC
/ ‘
VAX/VMS VAX/VMS VAX-11
SYSTEM MANAGEMENT a— UTILITIES AND COMMANDS INSTRUCTION SET
LEC/LAB LEC/LAB OR SPI A/V
VAX/VMS OPERATOR VAX-11 CONCEPTS
LEC/LAB OR SP| A/V OR LEC
KEY
LEC LECTURE
LEC/LAB LECTURE AND LAB

SPY
AV

enonon

SELF-PACED INSTRUCTION
AUDIOVISUAL INSTRUCTION

TK-9040

For more information concerning VAX/VMS Education, contact your Educational Services Marketing
Representative, Digital Sales Representative or your nearest Digital Training Center.

Australia:

Digital Equipment Australia Pty Ltd.

Educational Services Department
Chatswood Plaza Building

P.O. Box 384

Chatswood, New South Wales, 2067
Telephone: (02) 412 5252

Canada:

Digital Equipment of Canada Ltd.
Educational Services Department
100 Herzberg Road

P.O. Box 13000

Kanata, Ontario K2K 2A6
Telephone: (613) 592 5111

Digital Equipment of Canada Ltd.
Educational Services Department
165 Attwell Road

Rexdale, Ontario M9W 5Y5
Telephone: (416) 674 2580

Digital Equipment of Canada Ltd.
Educational Services Department
10711 Cambie Road, Suite 130
Richmond, British Columbia
V6X 3C9

Telephone: (604) 278 3466

Digital Equipment of Canada Ltd.
Educational Services Department
394 Isabey Street

St.-Laurent, Quebec

H4T 1V3

Telephone: (514) 342 5321

Europe:

Belgium

Digital Equipment N.V.-S.A.
Educational Services Department
Boulevard Brand Whitlock 87
B-1040 Brussels

Telephone: [32]-(2)-733-9650

England

Digital Equipment Co. Ltd.
Educational Services Department
Fountain House, The Butts Center
Reading RG1 7QN

Telephone: [44]-(734)-583555

Digital Equipment Co. Ltd.
Education Services Department
Arndale House

Chester Road, Stretford
Manchester M32 9BH
Telephone: [44]-(61)-865-0785

Finland

Digital Equipment Corporation OY
Educational Services Department
P.0. Box 16

SF-02201 Espoo 20

Telephone: [358]-(0)-423511

dlilgliltlall

— |
19571982

France

Digital Equipment France
Service Education

2 rue Gaston Cremieux

Evry les Epinettes

BP 136

F-9100 Evry Cedex
Telephone: [33]1-(6)-077-8292

Ireland

Digital Equipment Ireland Ltd.
Educational Services Department
Park House

North Circular Road

Dublin 7

Telephone: [353]-(1)-308-433

Italy

Digital Equipment Corporation S.p.A.
Educational Services Department
Viale Fulvio Testi 117

I-20092 Cinisello Balsamo

Milam

Telephone: [39]1-(2)-61797

Netherlands

Digital Equipment BV
Educational Services

Ratelaar 38

3434 EQ Nieuwegein
Telephone: [31]1-(3402)-45654

Spain

Digital Equipment Corporation S.A,
Educational Services Department
Agustin de Foxa, 27

Madrid 16

Telephone: [34]-(1)-733-1900

Sweden

Digital Equipment AB
Educational Services Department
Box 1250

S-171 24 Solna

Telephone: [46]-(8)-7300200

Switzerland

Digital Equipment Corporation, SA
Educational Services Department
Schaffhauserstrasse 144

CH-8302 Kloten/ZH

Telephone: [41]-(1)-8169111

West Germany

Digital Equipment GmbH
Educational Services Department
Wallensteinplatz 2

D-8000 Munich 40

Telephone: {49]-(89)-35030

Japan:
Digital Equipment Corporation Int.l
Educational Services Department

Sunshine 60, P.O. Box 1135 36th floor

1-1 Higashi Ikebukuro 3-Chome
Toshima-Ku, Tokyo 170, Japan
Telephone: (03) 989 7180

Digital Equipment Corporation Int’l
Educational Services Department
Koei Building Shinkan 4F

3-7 Nishitenma 6-Chome

Kitaku, Osaka 530, Japan
Telephone: (06) 364 0401

Mexico:

Digital Equipment de Mexico,
Educational Services Department
Nueva York 115, Col. Napoles
03810 Mexico, D.F.

Telephone: (905) 687 6681

United States:

Boston

Digital Equipment Corporation
Educational Services Department
12 Crosby Drive

Bedford, Massachusetts 01730
Telephone: (617) 276 4111

Chicago

Digital Equipment Corporation
Educational Services Department
5600 Apollo Drive

Rolling Meadows, Illinois 60008
Telephone: (312) 640 5520

Dallas

Digital Equipment Corporation
Educational Services Department
12100 Ford Road

Suite 110

Dallas, Texas 75234

Telephone: (214) 620 2051

Los Angeles

Digital Equipment Corporation
Educational Services Department
4311 Wilshire Boulevard

Suite 400

Los Angeles, California 90010
Telephone: (213) 937 3870

New York

Digital Equipment Corporation
Educational Services Department
One Penn Plaza

New York, New York 10001
Telephone: (212) 971 3545

San Francisco

Digital Equipment Corporation
Educational Services Department
2525 Augustine Drive

Santa Clara, California 95051
Telephone: (408) 727 0200

Washington

Digital Equipment Corporation
Educational Services Department
Lanham 30 Office Building

5900 Princess Garden Parkway
Lanham, Maryland 20801
Telephone: (301) 459 7900

EDUCATIONAL SERVICES

